1
|
Liu Y, Tao YD, Zhang LB, Wang F, Xu J, Zhang JZ, Fu DY. Blue Light Exposure Caused Large-Scale Transcriptional Changes in the Abdomen and Reduced the Reproductive Fitness of the Fall Armyworm Spodoptera frugiperda. INSECTS 2023; 15:10. [PMID: 38249016 PMCID: PMC10816951 DOI: 10.3390/insects15010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/21/2023] [Accepted: 12/23/2023] [Indexed: 01/23/2024]
Abstract
In the present study, we found that blue light stress negatively affected the development periods, body weight, survival and reproduction of Spodoptera frugiperda, and it showed a dose-dependent reaction, as longer irradiation caused severer effects. Further transcriptome analysis found blue light stress induced fast and large-scale transcriptional changes in the head, thorax and, particularly, the abdomen of female S. frugiperda adults. A functional enrichment analysis indicated that shorter durations of blue light irradiation induced the upregulation of more stress response- and defense-related genes or pathways, such as abiotic stimuli detection and response, oxidative stress, ion channels and protein-kinase-based signal pathways. In the abdomen, however, different durations of blue-light-exposure treatments all induced the downregulation of a large number genes and pathways related to cellular processes, metabolism, catalysis and reproduction, which may be a trade-off between antistress defense and other processes or a strategy to escape stressful conditions. These results indicate irradiation duration- and tissue-specific blue light stress responses and consequences, as well as suggest that the stress that results in transcriptional alterations is associated with the stress that causes a fitness reduction in S. frugiperda females.
Collapse
Affiliation(s)
- Yu Liu
- Key Laboratory of Forest Disaster Warning and Control in Yunnan Province, Faculty of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, China; (Y.L.); (Y.-D.T.); (F.W.)
- Yunnan Key Laboratory of Plateau Wetland Conservation, Restoration and Ecological Services, Southwest Forestry University, Kunming 650224, China
| | - Yi-Dong Tao
- Key Laboratory of Forest Disaster Warning and Control in Yunnan Province, Faculty of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, China; (Y.L.); (Y.-D.T.); (F.W.)
| | - Li-Bao Zhang
- Key Laboratory of Forest Disaster Warning and Control in Yunnan Province, Faculty of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, China; (Y.L.); (Y.-D.T.); (F.W.)
| | - Fen Wang
- Key Laboratory of Forest Disaster Warning and Control in Yunnan Province, Faculty of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, China; (Y.L.); (Y.-D.T.); (F.W.)
- Tianbao Customs Comprehensive Technical Center, Wenshan 663603, China
| | - Jin Xu
- Key Laboratory of Forest Disaster Warning and Control in Yunnan Province, Faculty of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, China; (Y.L.); (Y.-D.T.); (F.W.)
- Yunnan Key Laboratory of Plateau Wetland Conservation, Restoration and Ecological Services, Southwest Forestry University, Kunming 650224, China
| | - Jun-Zhong Zhang
- Key Laboratory of Forest Disaster Warning and Control in Yunnan Province, Faculty of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, China; (Y.L.); (Y.-D.T.); (F.W.)
| | - Da-Ying Fu
- Key Laboratory of Forest Disaster Warning and Control in Yunnan Province, Faculty of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, China; (Y.L.); (Y.-D.T.); (F.W.)
| |
Collapse
|
2
|
Wang G, Wang J, Nie L. Transcriptome sequencing of the central nervous system to identify the neuropeptides and neuropeptide receptors of Antheraea pernyi. Int J Biol Macromol 2023:125411. [PMID: 37327925 DOI: 10.1016/j.ijbiomac.2023.125411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/10/2023] [Accepted: 06/13/2023] [Indexed: 06/18/2023]
Abstract
Neuropeptides and neuropeptide receptors are crucial regulators for the behavior, lifecycle, and physiology of insects and are mainly produced and released from the neurosecretory cells of the central nervous system (CNS). In this study, RNA-seq was employed to investigate the transcriptome profile of the CNS which is composed of the brain and ventral nerve cord (VNC) of Antheraea pernyi. From the data sets, a total of 18 and 42 genes were identified, which respectively encode the neuropeptides and neuropeptide receptors involved in regulating multiple behaviors including feeding, reproductive behavior, circadian locomotor, sleep, and stress response and physiological processes such as nutrient absorption, immunity, ecdysis, diapause, and excretion. Comparison of the patterns of expression of those genes between the brain and VNC showed that most had higher levels of expression in the brain than VNC. Besides, 2760 differently expressed genes (DEGs) (1362 up-regulated and 1398 down-regulated ones between the B and VNC group) were also screened and further analyzed via gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes pathway (KEGG) enrichment analyses. The results of this study could provide comprehensive profiles of the neuropeptides and neuropeptide receptors of A. pernyi CNS and lay the foundation for further research into their functions.
Collapse
Affiliation(s)
- Guobao Wang
- College of Biology and Oceanography, Weifang University, Weifang 261061, China.
| | - Jiangrun Wang
- College of Biology and Oceanography, Weifang University, Weifang 261061, China
| | - Lei Nie
- Shandong Sericulture Research Institute, Shandong Academy of Agricultural Sciences, Yantai 264002, China
| |
Collapse
|
3
|
Geier B, Gil-Mansilla E, Liutkevičiūtė Z, Hellinger R, Vanden Broeck J, Oetjen J, Liebeke M, Gruber CW. Multiplexed neuropeptide mapping in ant brains integrating microtomography and three-dimensional mass spectrometry imaging. PNAS NEXUS 2023; 2:pgad144. [PMID: 37215633 PMCID: PMC10194420 DOI: 10.1093/pnasnexus/pgad144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/14/2023] [Indexed: 05/24/2023]
Abstract
Neuropeptides are important regulators of animal physiology and behavior. Hitherto the gold standard for the localization of neuropeptides have been immunohistochemical methods that require the synthesis of antibody panels, while another limiting factor has been the brain's opacity for subsequent in situ light or fluorescence microscopy. To address these limitations, we explored the integration of high-resolution mass spectrometry imaging (MSI) with microtomography for a multiplexed mapping of neuropeptides in two evolutionary distant ant species, Atta sexdens and Lasius niger. For analyzing the spatial distribution of chemically diverse peptide molecules across the brain in each species, the acquisition of serial mass spectrometry images was essential. As a result, we have comparatively mapped the three-dimensional (3D) distributions of eight conserved neuropeptides throughout the brain microanatomy. We demonstrate that integrating the 3D MSI data into high-resolution anatomy models can be critical for studying organs with high plasticity such as brains of social insects. Several peptides, like the tachykinin-related peptides (TK) 1 and 4, were widely distributed in many brain areas of both ant species, whereas others, for instance myosuppressin, were restricted to specific regions only. Also, we detected differences at the species level; many peptides were identified in the optic lobe of L. niger, but only one peptide (ITG-like) was found in this region in A. sexdens. Building upon MS imaging studies on neuropeptides in invertebrate model systems, our approach leverages correlative MSI and computed microtomography for investigating fundamental neurobiological processes by visualizing the unbiased 3D neurochemistry in its complex anatomic environment.
Collapse
Affiliation(s)
| | | | - Zita Liutkevičiūtė
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna 1090, Austria
| | - Roland Hellinger
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna 1090, Austria
| | - Jozef Vanden Broeck
- Molecular Developmental Physiology and Signal Transduction Group, Zoological Institute, KU Leuven, Leuven 3000, Belgium
| | - Janina Oetjen
- To whom correspondence should be addressed: (J.O.); (M.L.); (C.W.G.)
| | - Manuel Liebeke
- To whom correspondence should be addressed: (J.O.); (M.L.); (C.W.G.)
| | | |
Collapse
|
4
|
Trebels B, Dippel S, Anders J, Ernst C, Goetz B, Keyser T, Rexer KH, Wimmer EA, Schachtner J. Anatomic and neurochemical analysis of the palpal olfactory system in the red flour beetle Tribolium castaneum, HERBST. Front Cell Neurosci 2023; 17:1097462. [PMID: 36998268 PMCID: PMC10043995 DOI: 10.3389/fncel.2023.1097462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 01/30/2023] [Indexed: 02/25/2023] Open
Abstract
The paired antennal lobes were long considered the sole primary processing centers of the olfactory pathway in holometabolous insects receiving input from the olfactory sensory neurons of the antennae and mouthparts. In hemimetabolous insects, however, olfactory cues of the antennae and palps are processed separately. For the holometabolous red flour beetle Tribolium castaneum, we could show that primary processing of the palpal and antennal olfactory input also occurs separately and at distinct neuronal centers. While the antennal olfactory sensory neurons project into the antennal lobes, those of the palps project into the paired glomerular lobes and the unpaired gnathal olfactory center. Here we provide an extended analysis of the palpal olfactory pathway by combining scanning electron micrographs with confocal imaging of immunohistochemical staining and reporter expression identifying chemosensory and odorant receptor-expressing neurons in the palpal sensilla. In addition, we extended the anatomical characterization of the gnathal olfactory center by 3D reconstructions and investigated the distribution of several neuromediators. The similarities in the neuromediator repertoire between antennal lobes, glomerular lobes, and gnathal olfactory center underline the role of the latter two as additional primary olfactory processing centers.
Collapse
Affiliation(s)
- Björn Trebels
- Animal Physiology, Department of Biology, Philipps-University Marburg, Marburg, Germany
- *Correspondence: Joachim Schachtner Björn Trebels Ernst A. Wimmer
| | - Stefan Dippel
- Animal Physiology, Department of Biology, Philipps-University Marburg, Marburg, Germany
| | - Janet Anders
- Animal Physiology, Department of Biology, Philipps-University Marburg, Marburg, Germany
| | - Clara Ernst
- Animal Physiology, Department of Biology, Philipps-University Marburg, Marburg, Germany
| | - Brigitte Goetz
- Animal Physiology, Department of Biology, Philipps-University Marburg, Marburg, Germany
| | - Tim Keyser
- Animal Physiology, Department of Biology, Philipps-University Marburg, Marburg, Germany
| | - Karl Heinz Rexer
- Biodiversity of Plants, Department of Biology, Philipps-University Marburg, Marburg, Germany
| | - Ernst A. Wimmer
- Department of Developmental Biology, Johann-Friedrich-Blumenbach-Institute for Zoology and Anthropology, Georg-August-University Göttingen, Göttingen, Germany
- *Correspondence: Joachim Schachtner Björn Trebels Ernst A. Wimmer
| | - Joachim Schachtner
- Animal Physiology, Department of Biology, Philipps-University Marburg, Marburg, Germany
- Clausthal University of Technology, Clausthal-Zellerfeld, Germany
- *Correspondence: Joachim Schachtner Björn Trebels Ernst A. Wimmer
| |
Collapse
|
5
|
Sasao M, Uno T, Kitagawa R, Matsui A, Toryu F, Mizoguchi A, Kanamaru K, Sakamoto K, Uno Y. Localization of SNARE proteins in the brain and corpus allatum of Bombyx mori. Histochem Cell Biol 2023; 159:199-208. [PMID: 36129568 DOI: 10.1007/s00418-022-02153-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2022] [Indexed: 11/04/2022]
Abstract
Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) make up the core machinery that mediates membrane fusion. SNAREs, syntaxin, synaptosome-associated protein (SNAP), and synaptobrevin form a tight SNARE complex that brings the vesicle and plasma membranes together and is essential for membrane fusion. The cDNAs of SNAP-25, VAMP2, and Syntaxin 1A from Bombyx mori were inserted into a plasmid, transformed into Escherichia coli, and purified. We then produced antibodies against the SNAP-25, VAMP2, and Syntaxin 1A of Bombyx mori of rabbits and rats, which were used for immunohistochemistry. Immunohistochemistry results revealed that the expression of VAMP2 was restricted to neurons in the pars intercerebralis (PI), dorsolateral protocerebrum (DL), and central complex (CX) of the brain. SNAP-25 was restricted to neurons in the PI and the CX of the brain. Syntaxin 1A was restricted to neurons in the PI and DL of the brain. VAMP2 co-localized with SNAP-25 in the CX, and with Syntaxin 1A in the PI and DL. VAMP2, SNAP-25, and Syntaxin 1A are present in the CA. Bombyxin-immunohistochemical reactivities (IRs) of brain and CA overlapped with VAMP2-, SNAP-25, and Syntaxin 1A-IRs. VAMP2 and Syntaxin 1A are present in the prothoracicotropic hormone (PTTH)-secretory neurons of the brain.
Collapse
Affiliation(s)
- Mako Sasao
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Tomohide Uno
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan.
| | - Risa Kitagawa
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Asuka Matsui
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Fumika Toryu
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Akira Mizoguchi
- Division of Liberal Arts and Sciences, Aichi Gakuin University, Nisshin, Aichi, 470-0195, Japan
| | - Kengo Kanamaru
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Katsuhiko Sakamoto
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Yuichi Uno
- Department of Plant Resource Science, Faculty of Agriculture, Kobe University, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| |
Collapse
|
6
|
Nevoa JC, Latorre-Estivalis JM, Pais FSM, Marliére NP, Fernandes GDR, Lorenzo MG, Guarneri AA. Global characterization of gene expression in the brain of starved immature Rhodnius prolixus. PLoS One 2023; 18:e0282490. [PMID: 36867641 PMCID: PMC9983911 DOI: 10.1371/journal.pone.0282490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 02/15/2023] [Indexed: 03/04/2023] Open
Abstract
BACKGROUND Rhodnius prolixus is a vector of Chagas disease and has become a model organism to study physiology, behavior, and pathogen interaction. The publication of its genome allowed initiating a process of comparative characterization of the gene expression profiles of diverse organs exposed to varying conditions. Brain processes control the expression of behavior and, as such, mediate immediate adjustment to a changing environment, allowing organisms to maximize their chances to survive and reproduce. The expression of fundamental behavioral processes like feeding requires fine control in triatomines because they obtain their blood meals from potential predators. Therefore, the characterization of gene expression profiles of key components modulating behavior in brain processes, like those of neuropeptide precursors and their receptors, seems fundamental. Here we study global gene expression profiles in the brain of starved R. prolixus fifth instar nymphs by means of RNA sequencing (RNA-Seq). RESULTS The expression of neuromodulatory genes such as those of precursors of neuropeptides, neurohormones, and their receptors; as well as the enzymes involved in the biosynthesis and processing of neuropeptides and biogenic amines were fully characterized. Other important gene targets such as neurotransmitter receptors, nuclear receptors, clock genes, sensory receptors, and takeouts genes were identified and their gene expression analyzed. CONCLUSION We propose that the set of neuromodulatory-related genes highly expressed in the brain of starved R. prolixus nymphs deserves functional characterization to allow the subsequent development of tools targeting them for bug control. As the brain is a complex structure that presents functionally specialized areas, future studies should focus on characterizing gene expression profiles in target areas, e.g. mushroom bodies, to complement our current knowledge.
Collapse
Affiliation(s)
- Jessica Coraiola Nevoa
- Vector Behaviour and Pathogen Interaction Group, Instituto René Rachou – FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil
| | - Jose Manuel Latorre-Estivalis
- Laboratorio de Insectos Sociales, Instituto de Fisiología, Biología Molecular y Neurociencias, Universidad de Buenos Aires - CONICET, Buenos Aires, Argentina
| | | | - Newmar Pinto Marliére
- Vector Behaviour and Pathogen Interaction Group, Instituto René Rachou – FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil
| | | | - Marcelo Gustavo Lorenzo
- Vector Behaviour and Pathogen Interaction Group, Instituto René Rachou – FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil
| | - Alessandra Aparecida Guarneri
- Vector Behaviour and Pathogen Interaction Group, Instituto René Rachou – FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil
- * E-mail:
| |
Collapse
|
7
|
Afifi S, Wahedi A, Paluzzi JP. Functional insight and cell-specific expression of the adipokinetic hormone/corazonin-related peptide in the human disease vector mosquito, Aedes aegypti. Gen Comp Endocrinol 2023; 330:114145. [PMID: 36244431 DOI: 10.1016/j.ygcen.2022.114145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/20/2022] [Accepted: 10/10/2022] [Indexed: 11/05/2022]
Abstract
The adipokinetic hormone/corazonin-related peptide (ACP) is an insect neuropeptide structurally intermediate between corazonin (CRZ) and adipokinetic hormone (AKH). Unlike the AKH and CRZ signaling systems that are widely known for their roles in the mobilization of energy substrates and stress responses, respectively, the main role of ACP and its receptor (ACPR) remains unclear in most arthropods. The current study aimed to localize the distribution of ACP in the nervous system and provide insight into its physiological roles in the disease vector mosquito, Aedes aegypti. Immunohistochemical analysis and fluorescence in situ hybridization localized the ACP peptide and transcript within a number of cells in the central nervous system, including two pairs of laterally positioned neurons in the protocerebrum of the brain and a few ventrally localized neurons within the pro- and mesothoracic regions of the fused thoracic ganglia. Further, extensive ACP-immunoreactive axonal projections with prominent blebs and varicosities were observed traversing the abdominal ganglia. Given the prominent enrichment of ACPR expression within the abdominal ganglia of adult A. aegypti mosquitoes as determined previously, the current results indicate that ACP may function as a neurotransmitter and/or neuromodulator facilitating communication between the brain and posterior regions of the nervous system. In an effort to elucidate a functional role for ACP signaling, biochemical measurement of energy substrates in female mosquitoes revealed a reduction in abdominal fat body in response to ACP that matched the actions of AKH, but interestingly, a corresponding hypertrehalosaemic effect was only found in response to AKH since ACP did not influence circulating carbohydrate levels. Comparatively, both ACP and AKH led to a significant increase in haemolymph carbohydrate levels in male mosquitoes while both peptides had no influence on their glycogen stores. Neither ACP nor AKH influenced circulating or stored lipid levels in both male and female mosquitoes. Collectively, these results reveal ACP signaling in mosquitoes may have complex sex-specific actions, and future research should aim to expand knowledge on the role of this understudied neuropeptide.
Collapse
Affiliation(s)
- Salwa Afifi
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario M3J1P3, Canada
| | - Azizia Wahedi
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario M3J1P3, Canada
| | - Jean-Paul Paluzzi
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario M3J1P3, Canada.
| |
Collapse
|
8
|
Marciniak P, Pacholska-Bogalska J, Ragionieri L. Neuropeptidomes of Tenebrio molitor L. and Zophobas atratus Fab. (Coleoptera, Polyphaga: Tenebrionidae). J Proteome Res 2022; 21:2247-2260. [PMID: 36107737 PMCID: PMC9552230 DOI: 10.1021/acs.jproteome.1c00694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Indexed: 11/28/2022]
Abstract
Neuropeptides are signaling molecules that regulate almost all physiological processes in animals. Around 50 different genes for neuropeptides have been described in insects. In Coleoptera, which is the largest insect order based on numbers of described species, knowledge about neuropeptides and protein hormones is still limited to a few species. Here, we analyze the neuropeptidomes of two closely related tenebrionid beetles: Tenebrio molitor and Zophobas atratus─both of which are model species in physiological and pharmacological research. We combined transcriptomic and mass spectrometry analyses of the central nervous system to identify neuropeptides and neuropeptide-like and protein hormones. Several precursors were identified in T. molitor and Z. atratus, of which 50 and 40, respectively, were confirmed by mass spectrometry. This study provides the basis for further functional studies of neuropeptides as well as for the design of environmentally friendly and species-specific peptidomimetics to be used as biopesticides. Furthermore, since T. molitor has become accepted by the European Food Safety Authority as a novel food, a deeper knowledge of the neuropeptidome of this species will prove useful for optimizing production programs at an industrial scale.
Collapse
Affiliation(s)
- Paweł Marciniak
- Department
of Animal Physiology and Developmental Biology, Institute of Experimental
Biology, Faculty of Biology, Adam Mickiewicz
University, Poznań 61-614, Poland
| | - Joanna Pacholska-Bogalska
- Department
of Animal Physiology and Developmental Biology, Institute of Experimental
Biology, Faculty of Biology, Adam Mickiewicz
University, Poznań 61-614, Poland
| | - Lapo Ragionieri
- Department
for Biology, Institute of Zoology, University
of Cologne, Cologne 50674, Germany
| |
Collapse
|
9
|
Single-cell transcriptomic analysis of honeybee brains identifies vitellogenin as caste differentiation-related factor. iScience 2022; 25:104643. [PMID: 35800778 PMCID: PMC9254125 DOI: 10.1016/j.isci.2022.104643] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 03/31/2022] [Accepted: 06/14/2022] [Indexed: 11/22/2022] Open
Abstract
The honeybee (Apis mellifera) is a well-known eusocial insect. In honeybee colonies, thousands of sterile workers, including nurse and forager bees, perform various tasks within or outside the hive, respectively. The queen is the only fertile female and is responsible for reproduction. The queen and workers share similar genomes but occupy different caste statuses. We established single-cell transcriptomic atlases of brains from queens and worker subcastes and identified five major cell groups: Kenyon, optic lobe, olfactory projection, glial, and hemocyte cells. By dividing Kenyon and glial cells into multiple subtypes based on credible markers, we observed that vitellogenin (vg) was highly expressed in specific glial-cell subtypes in brains of queens. Knockdown of vg at the early larval stage significantly suppressed the development into adult queens. We demonstrate vg expression as a "molecular signature" for the queen caste and suggest involvement of vg in regulating caste differentiation. scRNA-seq revealed distinct gene expression in the brains of queens and workers Vitellogenin (vg) may represent a "molecular signature" of the queen caste Knockdown of vg at early larval stage suppressed development into adult queens Vg may be involved in regulating caste differentiation
Collapse
|
10
|
Hensgen R, Dippel S, Hümmert S, Jahn S, Seyfarth J, Homberg U. Myoinhibitory peptides in the central complex of the locust Schistocerca gregaria and colocalization with locustatachykinin-related peptides. J Comp Neurol 2022; 530:2782-2801. [PMID: 35700405 DOI: 10.1002/cne.25374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 11/10/2022]
Abstract
The central complex in the brain of insects provides a neural network for sensorimotor processing that is essential for spatial navigation and locomotion and plays a role in sleep control. Studies on the neurochemical architecture of the central complex have been performed especially in the fruit fly Drosophila melangoaster and the desert locust, Schistocerca gregaria. In several insect species, myoinhibitory peptides (MIPs) are involved in circadian control and sleep-wake regulation. To identify neurons that might underlie these functions, we investigated the distribution of MIPs in the central complex of the locust. In silico transcript analysis suggests the presence of eight different MIPs in the desert locust. Through immunolabeling, we identified five systems of central-complex neurons that express MIP-like peptides. Two systems constitute columnar neurons of the protocerebral bridge and the lower division of the central body, while the other three systems are columnar neurons (two systems) and tangential neurons (one system) of the upper division of the central body. The innervation pattern and cell count of two systems of columnar neurons revealed the existence of 18 instead of 16 columns of the protocerebral bridge. Immunostaining of preparations containing intracellularly stained single cells allowed us to further specify subtypes of labeled columnar neurons. Double-label experiments showed that three systems of MIP-immunostained columnar neurons are also locustatachykinin-immunoreactive. No colocalization was found with serotonin immunostaining. The data provide novel insights into the architecture of the locust central complex and suggest that MIPs play a prominent role within the central-complex network.
Collapse
Affiliation(s)
- Ronja Hensgen
- Department of Biology, Animal Physiology, Philipps-Universität Marburg, Marburg, Germany
| | - Stefan Dippel
- Department of Biology, Zoology, and Developmental Biology, Justus Liebig University of Giessen, Gießen, Germany
| | - Sophie Hümmert
- Department of Biology, Animal Physiology, Philipps-Universität Marburg, Marburg, Germany
| | - Stefanie Jahn
- Department of Biology, Animal Physiology, Philipps-Universität Marburg, Marburg, Germany
| | - Jutta Seyfarth
- Department of Biology, Animal Physiology, Philipps-Universität Marburg, Marburg, Germany
| | - Uwe Homberg
- Department of Biology, Animal Physiology, Philipps-Universität Marburg, Marburg, Germany.,Center for Mind, Brain, and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Marburg, Germany
| |
Collapse
|
11
|
Wu HP, Wang XY, Hu J, Su RR, Lu W, Zheng XL. Identification of neuropeptides and neuropeptide receptor genes in Phauda flammans (Walker). Sci Rep 2022; 12:9892. [PMID: 35701459 PMCID: PMC9198061 DOI: 10.1038/s41598-022-13590-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/25/2022] [Indexed: 11/25/2022] Open
Abstract
Neuropeptides and neuropeptide receptors are crucial regulators to insect physiological processes. The 21.0 Gb bases were obtained from Illumina sequencing of two libraries representing the female and male heads of Phauda flammans (Walker) (Lepidoptera: Phaudidae), which is a diurnal defoliator of ficus plants and usually outbreaks in the south and south-east Asia, to identify differentially expressed genes, neuropeptides and neuropeptide receptor whose tissue expressions were also evaluated. In total, 99,386 unigenes were obtained, in which 156 up-regulated and 61 down-regulated genes were detected. Fifteen neuropeptides (i.e., F1b, Ast, NP1, IMF, Y, BbA1, CAP2b, NPLP1, SIF, CCH2, NP28, NP3, PDP3, ARF2 and SNPF) and 66 neuropeptide receptor genes (e.g., A2-1, FRL2, A32-1, A32-2, FRL3, etc.) were identified and well-clustered with other lepidopteron. This is the first sequencing, identification neuropeptides and neuropeptide receptor genes from P. flammans which provides valuable information regarding the molecular basis of P. flammans.
Collapse
Affiliation(s)
- Hai-Pan Wu
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Xiao-Yun Wang
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Jin Hu
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Ran-Ran Su
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Wen Lu
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Xia-Lin Zheng
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
12
|
Wosnitza A, Martin JP, Pollack AJ, Svenson GJ, Ritzmann RE. The Role of Central Complex Neurons in Prey Detection and Tracking in the Freely Moving Praying Mantis (Tenodera sinensis). Front Neural Circuits 2022; 16:893004. [PMID: 35769200 PMCID: PMC9234402 DOI: 10.3389/fncir.2022.893004] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/12/2022] [Indexed: 11/24/2022] Open
Abstract
Complex tasks like hunting moving prey in an unpredictable environment require high levels of motor and sensory integration. An animal needs to detect and track suitable prey objects, measure their distance and orientation relative to its own position, and finally produce the correct motor output to approach and capture the prey. In the insect brain, the central complex (CX) is one target area where integration is likely to take place. In this study, we performed extracellular multi-unit recordings on the CX of freely hunting praying mantises (Tenodera sinensis). Initially, we recorded the neural activity of freely moving mantises as they hunted live prey. The recordings showed activity in cells that either reflected the mantis's own movements or the actions of a prey individual, which the mantises focused on. In the latter case, the activity increased as the prey moved and decreased when it stopped. Interestingly, cells ignored the movement of the other prey than the one to which the mantis attended. To obtain quantitative data, we generated simulated prey targets presented on an LCD screen positioned below the clear floor of the arena. The simulated target oscillated back and forth at various angles and distances. We identified populations of cells whose activity patterns were strongly linked to the appearance, movement, and relative position of the virtual prey. We refer to these as sensory responses. We also found cells whose activity preceded orientation movement toward the prey. We call these motor responses. Some cells showed both sensory and motor properties. Stimulation through tetrodes in some of the preparations could also generate similar movements. These results suggest the crucial importance of the CX to prey-capture behavior in predatory insects like the praying mantis and, hence, further emphasize its role in behaviorally and ecologically relevant contexts.
Collapse
Affiliation(s)
- Anne Wosnitza
- Department of Biology, College of Arts and Sciences, Case Western Reserve University, Cleveland, OH, United States
| | - Joshua P. Martin
- Department of Biology, Colby College, Waterville, ME, United States
- *Correspondence: Joshua P. Martin
| | - Alan J. Pollack
- Department of Biology, College of Arts and Sciences, Case Western Reserve University, Cleveland, OH, United States
| | - Gavin J. Svenson
- Cleveland Museum of Natural History, Cleveland, OH, United States
| | - Roy E. Ritzmann
- Department of Biology, College of Arts and Sciences, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
13
|
Kaiser A, Hensgen R, Tschirner K, Beetz E, Wüstenberg H, Pfaff M, Mota T, Pfeiffer K. A three-dimensional atlas of the honeybee central complex, associated neuropils and peptidergic layers of the central body. J Comp Neurol 2022; 530:2416-2438. [PMID: 35593178 DOI: 10.1002/cne.25339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/15/2022] [Accepted: 04/26/2022] [Indexed: 11/11/2022]
Abstract
The central complex (CX) in the brain of insects is a highly conserved group of midline-spanning neuropils consisting of the upper and lower division of the central body, the protocerebral bridge, and the paired noduli. These neuropils are the substrate for a number of behaviors, most prominently goal-oriented locomotion. Honeybees have been a model organism for sky-compass orientation for more than 70 years, but there is still very limited knowledge about the structure and function of their CX. To advance and facilitate research on this brain area, we created a high-resolution three-dimensional atlas of the honeybee's CX and associated neuropils, including the posterior optic tubercles, the bulbs, and the anterior optic tubercles. To this end, we developed a modified version of the iterative shape averaging technique, which allowed us to achieve high volumetric accuracy of the neuropil models. For a finer definition of spatial locations within the central body, we defined layers based on immunostaining against the neuropeptides locustatachykinin, FMRFamide, gastrin/cholecystokinin, and allatostatin and included them into the atlas by elastic registration. Our honeybee CX atlas provides a platform for future neuroanatomical work.
Collapse
Affiliation(s)
- Andreas Kaiser
- Department of Biology/Animal Physiology, Philipps-University Marburg, Marburg, Germany
| | - Ronja Hensgen
- Department of Biology/Animal Physiology, Philipps-University Marburg, Marburg, Germany
| | - Katja Tschirner
- Behavioural Physiology and Sociobiology (Zoology II), Biocenter, University of Würzburg, Würzburg, Germany
| | - Evelyn Beetz
- Behavioural Physiology and Sociobiology (Zoology II), Biocenter, University of Würzburg, Würzburg, Germany
| | - Hauke Wüstenberg
- Department of Biology/Animal Physiology, Philipps-University Marburg, Marburg, Germany
| | - Marcel Pfaff
- Behavioural Physiology and Sociobiology (Zoology II), Biocenter, University of Würzburg, Würzburg, Germany
| | - Theo Mota
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Keram Pfeiffer
- Department of Biology/Animal Physiology, Philipps-University Marburg, Marburg, Germany.,Behavioural Physiology and Sociobiology (Zoology II), Biocenter, University of Würzburg, Würzburg, Germany
| |
Collapse
|
14
|
Llopis-Giménez A, Parenti S, Han Y, Ros VID, Herrero S. A proctolin-like peptide is regulated after baculovirus infection and mediates in caterpillar locomotion and digestion. INSECT SCIENCE 2022; 29:230-244. [PMID: 33783135 DOI: 10.1111/1744-7917.12913] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/29/2021] [Accepted: 02/17/2021] [Indexed: 06/12/2023]
Abstract
Baculoviruses constitute a large group of invertebrate DNA viruses, predominantly infecting larvae of the insect order Lepidoptera. During a baculovirus infection, the virus spreads throughout the insect body producing a systemic infection in multiple larval tissues, included the central nervous system (CNS). As a main component of the CNS, neuropeptides are small protein-like molecules functioning as neurohormones, neurotransmitters, or neuromodulators. These peptides are involved in regulating animal physiology and behavior and could be altered after baculovirus infection. In this study, we have investigated the effect of Spodoptera exigua multiple nucleopolyhedrovirus (SeMNPV) infection on expression of Spodoptera exigua neuropeptides and neuropeptide-like genes. Expression of the gene encoding a polypeptide that resembles the well-known insect neuropeptide proctolin and named as proctolin-like peptide (PLP), was downregulated in the larval brain following infection and was chosen for further analysis. A recombinant Autographa californica multiple nucleopolyhedrovirus (AcMNPV) overexpressing the C-terminal part of the PLP was generated and used in bioassays using S. exigua larvae to study its influence on the viral infection and insect behavior. AcMNPV-PLP-infected larvae showed less locomotion activity and a reduction in growth compared to larvae infected with wild type AcMNPV or mock-infected larvae. These results are indicative of this new peptide as a neuromodulator that regulates visceral and skeletal muscle contractions and offers a novel effector involved in the behavioral changes during baculovirus infection.
Collapse
Affiliation(s)
- Angel Llopis-Giménez
- Department of Genetics and Institut Universitari en Biotecnologia i Biomedicina (BIOTECMED), Universitat de València, Valencia, Spain
| | - Stefano Parenti
- Department of Genetics and Institut Universitari en Biotecnologia i Biomedicina (BIOTECMED), Universitat de València, Valencia, Spain
| | - Yue Han
- Laboratory of Virology, Wageningen University and Research, Wageningen, the Netherlands
- Current address. Department of Pathology, University of Cambridge, Cambridge, UK
| | - Vera I D Ros
- Laboratory of Virology, Wageningen University and Research, Wageningen, the Netherlands
| | - Salvador Herrero
- Department of Genetics and Institut Universitari en Biotecnologia i Biomedicina (BIOTECMED), Universitat de València, Valencia, Spain
| |
Collapse
|
15
|
Internal state effects on behavioral shifts in freely behaving praying mantises (Tenodera sinensis). PLoS Comput Biol 2021; 17:e1009618. [PMID: 34928939 PMCID: PMC8751982 DOI: 10.1371/journal.pcbi.1009618] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 01/11/2022] [Accepted: 11/05/2021] [Indexed: 11/19/2022] Open
Abstract
How we interact with our environment largely depends on both the external cues presented by our surroundings and the internal state from within. Internal states are the ever-changing physiological conditions that communicate the immediate survival needs and motivate the animal to behaviorally fulfill them. Satiety level constitutes such a state, and therefore has a dynamic influence on the output behaviors of an animal. In predatory insects like the praying mantis, hunting tactics, grooming, and mating have been shown to change hierarchical organization of behaviors depending on satiety. Here, we analyze behavior sequences of freely hunting praying mantises (Tenodera sinensis) to explore potential differences in sequential patterning of behavior as a correlate of satiety. First, our data supports previous work that showed starved praying mantises were not just more often attentive to prey, but also more often attentive to further prey. This was indicated by the increased time fraction spent in attentive bouts such as prey monitoring, head turns (to track prey), translations (closing the distance to the prey), and more strike attempts. With increasing satiety, praying mantises showed reduced time in these behaviors and exhibited them primarily towards close-proximity prey. Furthermore, our data demonstrates that during states of starvation, the praying mantis exhibits a stereotyped pattern of behavior that is highly motivated by prey capture. As satiety increased, the sequenced behaviors became more variable, indicating a shift away from the necessity of prey capture to more fluid presentations of behavior assembly.
Collapse
|
16
|
Harzsch S, Dircksen H, Hansson BS. Local olfactory interneurons provide the basis for neurochemical regionalization of olfactory glomeruli in crustaceans. J Comp Neurol 2021; 530:1399-1422. [PMID: 34843626 DOI: 10.1002/cne.25283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/18/2021] [Accepted: 11/23/2021] [Indexed: 11/08/2022]
Abstract
The primary olfactory centers of metazoans as diverse as arthropods and mammals consist of an array of fields of dense synaptic neuropil, the olfactory glomeruli. However, the neurochemical structure of crustacean olfactory glomeruli is largely understudied when compared to the insects. We analyzed the glomerular architecture in selected species of hermit crabs using immunohistochemistry against presynaptic proteins, the neuropeptides orcokinin, RFamide and allatostatin, and the biogenic amine serotonin. Our study reveals an unexpected level of structural complexity, unmatched by what is found in the insect olfactory glomeruli. Peptidergic and aminergic interneurons provide the structural basis for a regionalization of the crustacean glomeruli into longitudinal and concentric compartments. Our data suggest that local olfactory interneurons take a central computational role in modulating the information transfer from olfactory sensory neurons to projection neurons within the glomeruli. Furthermore, we found yet unknown neuronal elements mediating lateral inhibitory interactions across the glomerular array that may play a central role in modulating the transfer of sensory input to the output neurons through presynaptic inhibition. Our study is another step in understanding the function of crustacean olfactory glomeruli as highly complex units of local olfactory processing.
Collapse
Affiliation(s)
- Steffen Harzsch
- Department of Cytology and Evolutionary Biology, Zoological Institute and Museum, University of Greifswald, Greifswald, Germany.,Department of Evolutionary Neuroethology, Max-Planck-Institute for Chemical Ecology, Jena, Germany
| | | | - Bill S Hansson
- Department of Evolutionary Neuroethology, Max-Planck-Institute for Chemical Ecology, Jena, Germany
| |
Collapse
|
17
|
Prince E, Kretzschmar J, Trautenberg LC, Broschk S, Brankatschk M. DIlp7-Producing Neurons Regulate Insulin-Producing Cells in Drosophila. Front Physiol 2021; 12:630390. [PMID: 34385929 PMCID: PMC8353279 DOI: 10.3389/fphys.2021.630390] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 07/02/2021] [Indexed: 11/17/2022] Open
Abstract
Cellular Insulin signaling shows a remarkable high molecular and functional conservation. Insulin-producing cells respond directly to nutritional cues in circulation and receive modulatory input from connected neuronal networks. Neuronal control integrates a wide range of variables including dietary change or environmental temperature. Although it is shown that neuronal input is sufficient to regulate Insulin-producing cells, the physiological relevance of this network remains elusive. In Drosophila melanogaster, Insulin-like peptide7-producing neurons are wired with Insulin-producing cells. We found that the former cells regulate the latter to facilitate larval development at high temperatures, and to regulate systemic Insulin signaling in adults feeding on calorie-rich food lacking dietary yeast. Our results demonstrate a role for neuronal innervation of Insulin-producing cells important for fruit flies to survive unfavorable environmental conditions.
Collapse
Affiliation(s)
- Elodie Prince
- Biotechnologisches Zentrum, Dresden, Germany.,CNRS UMR 7277, Inserm U1091, UNS - Bâtiment Centre de Biochimie, Faculté des Sciences, iBV - Institut de Biologie Valrose, Nice, France
| | | | | | - Susanne Broschk
- Applied Zoology, Faculty of Biology, Technische Universität Dresden, Dresden, Germany
| | | |
Collapse
|
18
|
Nässel DR, Wu SF. Leucokinins: Multifunctional Neuropeptides and Hormones in Insects and Other Invertebrates. Int J Mol Sci 2021; 22:1531. [PMID: 33546414 PMCID: PMC7913504 DOI: 10.3390/ijms22041531] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 01/28/2021] [Accepted: 01/28/2021] [Indexed: 12/27/2022] Open
Abstract
Leucokinins (LKs) constitute a neuropeptide family first discovered in a cockroach and later identified in numerous insects and several other invertebrates. The LK receptors are only distantly related to other known receptors. Among insects, there are many examples of species where genes encoding LKs and their receptors are absent. Furthermore, genomics has revealed that LK signaling is lacking in several of the invertebrate phyla and in vertebrates. In insects, the number and complexity of LK-expressing neurons vary, from the simple pattern in the Drosophila larva where the entire CNS has 20 neurons of 3 main types, to cockroaches with about 250 neurons of many different types. Common to all studied insects is the presence or 1-3 pairs of LK-expressing neurosecretory cells in each abdominal neuromere of the ventral nerve cord, that, at least in some insects, regulate secretion in Malpighian tubules. This review summarizes the diverse functional roles of LK signaling in insects, as well as other arthropods and mollusks. These functions include regulation of ion and water homeostasis, feeding, sleep-metabolism interactions, state-dependent memory formation, as well as modulation of gustatory sensitivity and nociception. Other functions are implied by the neuronal distribution of LK, but remain to be investigated.
Collapse
Affiliation(s)
- Dick R. Nässel
- Department of Zoology, Stockholm University, S-10691 Stockholm, Sweden
| | - Shun-Fan Wu
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China;
| |
Collapse
|
19
|
Rainey AN, Fukui SM, Mark K, King HM, Blitz DM. Intrinsic sources of tachykinin-related peptide in the thoracic ganglion mass of the crab, Cancer borealis. Gen Comp Endocrinol 2021; 302:113688. [PMID: 33275935 DOI: 10.1016/j.ygcen.2020.113688] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 11/27/2020] [Accepted: 11/28/2020] [Indexed: 11/30/2022]
Abstract
Neuropeptides comprise the largest class of neural and neuroendocrine signaling molecules. Vertebrate tachykinins (TKs) and the structurally-related invertebrate tachykinin-related peptides (TRPs) together form the largest neuropeptide superfamily, with a number of conserved neural and neuroendocrine functions across species. Arthropods, including crustaceans, have provided many insights into neuropeptide signaling and function. Crustacean tachykinin-related peptide occurs in endocrine organs and cells and in two of the major crustacean CNS components, the supraoesophageal ganglion ("brain") and the stomatogastric nervous system. However, little is known about TRP sources in the remaining major CNS component, the thoracic ganglion mass (TGM). To gain further insight into the function of this peptide, we aimed to identify intrinsic TRP sources in the TGM of the Jonah crab, Cancer borealis. We first adapted a clearing protocol to improve TRP immunoreactivity specifically in the TGM, which is a dense, fused mass of multiple ganglia in short-bodied crustaceans such as Cancer species of crabs. We verified that the clearing protocol avoided distortion of cell body morphology yet increased visibility of TRP immunoreactivity. Using confocal microscopy, we found TRP-immunoreactive (TRP-IR) axon tracts running the length of the TGM, TRP-IR neuropil in all ganglia, and approximately 110 TRP-IR somata distributed throughout the TGM, within and between ganglia. These somata likely represent both neural and neuroendocrine sources of TRP. Thus, there are many potential intrinsic sources of TRP in the TGM that are positioned to regulate behaviors such as food intake, locomotion, respiration, and reproduction.
Collapse
Affiliation(s)
- Amanda N Rainey
- Department of Biology and Center for Neuroscience, Miami University, Oxford, OH 45056, United States
| | - Stephanie M Fukui
- Department of Biology and Center for Neuroscience, Miami University, Oxford, OH 45056, United States
| | - Katie Mark
- Department of Biology and Center for Neuroscience, Miami University, Oxford, OH 45056, United States
| | - Hailey M King
- Department of Biology and Center for Neuroscience, Miami University, Oxford, OH 45056, United States
| | - Dawn M Blitz
- Department of Biology and Center for Neuroscience, Miami University, Oxford, OH 45056, United States.
| |
Collapse
|
20
|
Fuscà D, Kloppenburg P. Odor processing in the cockroach antennal lobe-the network components. Cell Tissue Res 2021; 383:59-73. [PMID: 33486607 PMCID: PMC7872951 DOI: 10.1007/s00441-020-03387-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/07/2020] [Indexed: 02/06/2023]
Abstract
Highly interconnected neural networks perform olfactory signal processing in the central nervous system. In insects, the first synaptic processing of the olfactory input from the antennae occurs in the antennal lobe, the functional equivalent of the olfactory bulb in vertebrates. Key components of the olfactory network in the antennal lobe are two main types of neurons: the local interneurons and the projection (output) neurons. Both neuron types have different physiological tasks during olfactory processing, which accordingly require specialized functional phenotypes. This review gives an overview of important cell type-specific functional properties of the different types of projection neurons and local interneurons in the antennal lobe of the cockroach Periplaneta americana, which is an experimental system that has elucidated many important biophysical and cellular bases of intrinsic physiological properties of these neurons.
Collapse
Affiliation(s)
- Debora Fuscà
- Biocenter, Institute for Zoology, and Cologne Excellence Cluster On Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany
| | - Peter Kloppenburg
- Biocenter, Institute for Zoology, and Cologne Excellence Cluster On Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany.
| |
Collapse
|
21
|
Alvarado-Delgado A, Martínez-Barnetche J, Téllez-Sosa J, Rodríguez MH, Gutiérrez-Millán E, Zumaya-Estrada FA, Saldaña-Navor V, Rodríguez MC, Tello-López Á, Lanz-Mendoza H. Prediction of neuropeptide precursors and differential expression of adipokinetic hormone/corazonin-related peptide, hugin and corazonin in the brain of malaria vector Nyssorhynchus albimanus during a Plasmodium berghei infection. CURRENT RESEARCH IN INSECT SCIENCE 2021; 1:100014. [PMID: 36003598 PMCID: PMC9387463 DOI: 10.1016/j.cris.2021.100014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 03/18/2021] [Accepted: 03/22/2021] [Indexed: 12/02/2022]
Abstract
We describe precursors that predicted at least sixty neuropeptides in Ny. albimanus. At least 16 precursors are encoded in the Ny. albimanus brain. Myosuppressin neuropeptide precursor was identified in Ny albimanus. acp and hugin transcripts increased in Ny. albimanus brains infected with P. berghei.
Insect neuropeptides, play a central role in the control of many physiological processes. Based on an analysis of Nyssorhynchus albimanus brain transcriptome a neuropeptide precursor database of the mosquito was described. Also, we observed that adipokinetic hormone/corazonin-related peptide (ACP), hugin and corazonin encoding genes were differentially expressed during Plasmodium infection. Transcriptomic data from Ny. albimanus brain identified 29 pre-propeptides deduced from the sequences that allowed the prediction of at least 60 neuropeptides. The predicted peptides include isoforms of allatostatin C, orcokinin, corazonin, adipokinetic hormone (AKH), SIFamide, capa, hugin, pigment-dispersing factor, adipokinetic hormone/corazonin-related peptide (ACP), tachykinin-related peptide, trissin, neuropeptide F, diuretic hormone 31, bursicon, crustacean cardioactive peptide (CCAP), allatotropin, allatostatin A, ecdysis triggering hormone (ETH), diuretic hormone 44 (Dh44), insulin-like peptides (ILPs) and eclosion hormone (EH). The analysis of the genome of An. albimanus and the generated transcriptome, provided evidence for the identification of myosuppressin neuropeptide precursor. A quantitative analysis documented increased expression of precursors encoding ACP peptide, hugin and corazonin in the mosquito brain after Plasmodium berghei infection. This work represents an initial effort to characterize the neuropeptide precursors repertoire of Ny. albimanus and provides information for understanding neuroregulation of the mosquito response during Plasmodium infection.
Collapse
|
22
|
Homberg U, Hensgen R, Rieber E, Seyfarth J, Kern M, Dippel S, Dircksen H, Spänig L, Kina YP. Orcokinin in the central complex of the locust Schistocerca gregaria: Identification of immunostained neurons and colocalization with other neuroactive substances. J Comp Neurol 2020; 529:1876-1894. [PMID: 33128250 DOI: 10.1002/cne.25062] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/22/2020] [Accepted: 10/22/2020] [Indexed: 12/20/2022]
Abstract
The central complex is a group of highly interconnected neuropils in the insect brain. It is involved in the control of spatial orientation, based on external compass cues and various internal needs. The functional and neurochemical organization of the central complex has been studied in detail in the desert locust Schistocerca gregaria. In addition to classical neurotransmitters, immunocytochemistry has provided evidence for a major contribution of neuropeptides to neural signaling within the central complex. To complement these data, we have identified all orcokinin-immunoreactive neurons in the locust central complex and associated brain areas. About 50 bilateral pairs of neurons innervating all substructures of the central complex exhibit orcokinin immunoreactivity. Among these were about 20 columnar neurons, 33 bilateral pairs of tangential neurons of the central body, and seven pairs of tangential neurons of the protocerebral bridge. In silico transcript analysis suggests the presence of eight different orcokinin-A type peptides in the desert locust. Double label experiments showed that all orcokinin-immunostained tangential neurons of the lateral accessory lobe cluster were also immunoreactive for GABA and the GABA-synthesizing enzyme glutamic acid decarboxylase. Two types of tangential neurons of the upper division of the central body were, furthermore, also labeled with an antiserum against Dip-allatostatin I. No colocalization was found with serotonin immunostaining. The data provide additional insights into the neurochemical organization of the locust central complex and suggest that orcokinin-peptides of the orcokinin-A gene act as neuroactive substances at all stages of signal processing in this brain area.
Collapse
Affiliation(s)
- Uwe Homberg
- Department of Biology, Animal Physiology & Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Marburg, Germany
| | - Ronja Hensgen
- Department of Biology, Animal Physiology & Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Marburg, Germany
| | - Evelyn Rieber
- Department of Biology, Animal Physiology & Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Marburg, Germany.,Behavioral Physiology and Sociobiology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Jutta Seyfarth
- Department of Biology, Animal Physiology & Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Marburg, Germany
| | - Martina Kern
- Department of Biology, Animal Physiology & Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Marburg, Germany
| | - Stefan Dippel
- Department of Biology, Animal Physiology & Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Marburg, Germany
| | | | - Lisa Spänig
- Department of Biology, Animal Physiology & Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Marburg, Germany
| | - Yelda Pakize Kina
- Department of Biology, Animal Physiology & Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Marburg, Germany
| |
Collapse
|
23
|
Polanska MA, Kirchhoff T, Dircksen H, Hansson BS, Harzsch S. Functional morphology of the primary olfactory centers in the brain of the hermit crab Coenobita clypeatus (Anomala, Coenobitidae). Cell Tissue Res 2020; 380:449-467. [PMID: 32242250 PMCID: PMC7242284 DOI: 10.1007/s00441-020-03199-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 03/03/2020] [Indexed: 11/07/2022]
Abstract
Terrestrial hermit crabs of the genus Coenobita display strong behavioral responses to volatile odors and are attracted by chemical cues of various potential food sources. Several aspects of their sense of aerial olfaction have been explored in recent years including behavioral aspects and structure of their peripheral and central olfactory pathway. Here, we use classical histological methods and immunohistochemistry against the neuropeptides orcokinin and allatostatin as well as synaptic proteins and serotonin to provide insights into the functional organization of their primary olfactory centers in the brain, the paired olfactory lobes. Our results show that orcokinin is present in the axons of olfactory sensory neurons, which target the olfactory lobe. Orcokinin is also present in a population of local olfactory interneurons, which may relay lateral inhibition across the array of olfactory glomeruli within the lobes. Extensive lateral connections of the glomeruli were also visualized using the histological silver impregnation method according to Holmes-Blest. This technique also revealed the structural organization of the output pathway of the olfactory system, the olfactory projection neurons, the axons of which target the lateral protocerebrum. Within the lobes, the course of their axons seems to be reorganized in an axon-sorting zone before they exit the system. Together with previous results, we combine our findings into a model on the functional organization of the olfactory system in these animals.
Collapse
Affiliation(s)
- Marta A Polanska
- Department of Animal Physiology, Institute of Zoology, Faculty of Biology, University of Warsaw, 1 Miecznikowa Street, 02-096, Warsaw, Poland
| | - Tina Kirchhoff
- Zoological Institute and Museum, Department of Cytology and Evolutionary Biology, University of Greifswald, Soldmannstrasse 23, 17498, Greifswald, Germany
| | - Heinrich Dircksen
- Department of Zoology, Stockholm University, Svante Arrhenius väg 18B, SE-10691, Stockholm, Sweden
| | - Bill S Hansson
- Max-Planck-Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Hans-Knöll-Straße 8, 07745, Jena, Germany
| | - Steffen Harzsch
- Zoological Institute and Museum, Department of Cytology and Evolutionary Biology, University of Greifswald, Soldmannstrasse 23, 17498, Greifswald, Germany.
- Max-Planck-Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Hans-Knöll-Straße 8, 07745, Jena, Germany.
| |
Collapse
|
24
|
Krieger J, Hörnig MK, Sandeman RE, Sandeman DC, Harzsch S. Masters of communication: The brain of the banded cleaner shrimp Stenopus hispidus (Olivier, 1811) with an emphasis on sensory processing areas. J Comp Neurol 2019; 528:1561-1587. [PMID: 31792962 DOI: 10.1002/cne.24831] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 02/06/2023]
Abstract
The pan-tropic cleaner shrimp Stenopus hispidus (Crustacea, Stenopodidea) is famous for its specific cleaning behavior in association with client fish and an exclusively monogamous life-style. Cleaner shrimps feature a broad communicative repertoire, which is considered to depend on superb motor skills and the underlying mechanosensory circuits in combination with sensory organs. Their most prominent head appendages are the two pairs of very long biramous antennules and antennae, which are used both for attracting client fish and for intraspecific communication. Here, we studied the brain anatomy of several specimens of S. hispidus using histological sections, immunohistochemical labeling as well as X-ray microtomography in combination with 3D reconstructions. Furthermore, we investigated the morphology of antennules and antennae using fluorescence and scanning electron microscopy. Our analyses show that in addition to the complex organization of the multimodal processing centers, especially chemomechanosensory neuropils associated with the antennule and antenna are markedly pronounced when compared to the other neuropils of the central brain. We suggest that in their brains, three topographic maps are present corresponding to the sensory appendages. The brain areas which provide the neuronal substrate for these maps share distinct structural similarities to a unique extent in decapods, such as size and characteristic striated and perpendicular layering. We discuss our findings with respect to the sensory landscape within animal's habitat. In an evolutionary perspective, the cleaner shrimp's brain is an excellent example of how sensory potential and functional demands shape the architecture of primary chemomechanosensory processing areas.
Collapse
Affiliation(s)
- Jakob Krieger
- University of Greifswald, Zoological Institute and Museum, Cytology and Evolutionary Biology, Greifswald, Germany
| | - Marie K Hörnig
- University of Greifswald, Zoological Institute and Museum, Cytology and Evolutionary Biology, Greifswald, Germany
| | - Renate E Sandeman
- University of Greifswald, Zoological Institute and Museum, Cytology and Evolutionary Biology, Greifswald, Germany
| | - David C Sandeman
- University of Greifswald, Zoological Institute and Museum, Cytology and Evolutionary Biology, Greifswald, Germany
| | - Steffen Harzsch
- University of Greifswald, Zoological Institute and Museum, Cytology and Evolutionary Biology, Greifswald, Germany
| |
Collapse
|
25
|
Machon J, Krieger J, Meth R, Zbinden M, Ravaux J, Montagné N, Chertemps T, Harzsch S. Neuroanatomy of a hydrothermal vent shrimp provides insights into the evolution of crustacean integrative brain centers. eLife 2019; 8:e47550. [PMID: 31383255 PMCID: PMC6684273 DOI: 10.7554/elife.47550] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 07/14/2019] [Indexed: 11/13/2022] Open
Abstract
Alvinocaridid shrimps are emblematic representatives of the deep hydrothermal vent fauna at the Mid-Atlantic Ridge. They are adapted to a mostly aphotic habitat with extreme physicochemical conditions in the vicinity of the hydrothermal fluid emissions. Here, we investigated the brain architecture of the vent shrimp Rimicaris exoculata to understand possible adaptations of its nervous system to the hydrothermal sensory landscape. Its brain is modified from the crustacean brain ground pattern by featuring relatively small visual and olfactory neuropils that contrast with well-developed higher integrative centers, the hemiellipsoid bodies. We propose that these structures in vent shrimps may fulfill functions in addition to higher order sensory processing and suggest a role in place memory. Our study promotes vent shrimps as fascinating models to gain insights into sensory adaptations to peculiar environmental conditions, and the evolutionary transformation of specific brain areas in Crustacea.
Collapse
Affiliation(s)
- Julia Machon
- Sorbonne Université, UMR CNRS MNHN 7208 Biologie des organismes et écosystèmes aquatiques (BOREA), Equipe Adaptation aux Milieux ExtrêmesParisFrance
| | - Jakob Krieger
- Department of Cytology and Evolutionary BiologyUniversity of Greifswald, Zoological Institute and MuseumGreifswaldGermany
| | - Rebecca Meth
- Department of Cytology and Evolutionary BiologyUniversity of Greifswald, Zoological Institute and MuseumGreifswaldGermany
| | - Magali Zbinden
- Sorbonne Université, UMR CNRS MNHN 7208 Biologie des organismes et écosystèmes aquatiques (BOREA), Equipe Adaptation aux Milieux ExtrêmesParisFrance
| | - Juliette Ravaux
- Sorbonne Université, UMR CNRS MNHN 7208 Biologie des organismes et écosystèmes aquatiques (BOREA), Equipe Adaptation aux Milieux ExtrêmesParisFrance
| | - Nicolas Montagné
- Sorbonne Université, UPEC, Univ Paris Diderot, CNRS, INRA, IRD, Institute of Ecology & Environmental Sciences of Paris (iEES-Paris)ParisFrance
| | - Thomas Chertemps
- Sorbonne Université, UPEC, Univ Paris Diderot, CNRS, INRA, IRD, Institute of Ecology & Environmental Sciences of Paris (iEES-Paris)ParisFrance
| | - Steffen Harzsch
- Department of Cytology and Evolutionary BiologyUniversity of Greifswald, Zoological Institute and MuseumGreifswaldGermany
| |
Collapse
|
26
|
Nässel DR, Zandawala M. Recent advances in neuropeptide signaling in Drosophila, from genes to physiology and behavior. Prog Neurobiol 2019; 179:101607. [PMID: 30905728 DOI: 10.1016/j.pneurobio.2019.02.003] [Citation(s) in RCA: 183] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/18/2019] [Accepted: 02/28/2019] [Indexed: 12/11/2022]
Abstract
This review focuses on neuropeptides and peptide hormones, the largest and most diverse class of neuroactive substances, known in Drosophila and other animals to play roles in almost all aspects of daily life, as w;1;ell as in developmental processes. We provide an update on novel neuropeptides and receptors identified in the last decade, and highlight progress in analysis of neuropeptide signaling in Drosophila. Especially exciting is the huge amount of work published on novel functions of neuropeptides and peptide hormones in Drosophila, largely due to the rapid developments of powerful genetic methods, imaging techniques and innovative assays. We critically discuss the roles of peptides in olfaction, taste, foraging, feeding, clock function/sleep, aggression, mating/reproduction, learning and other behaviors, as well as in regulation of development, growth, metabolic and water homeostasis, stress responses, fecundity, and lifespan. We furthermore provide novel information on neuropeptide distribution and organization of peptidergic systems, as well as the phylogenetic relations between Drosophila neuropeptides and those of other phyla, including mammals. As will be shown, neuropeptide signaling is phylogenetically ancient, and not only are the structures of the peptides, precursors and receptors conserved over evolution, but also many functions of neuropeptide signaling in physiology and behavior.
Collapse
Affiliation(s)
- Dick R Nässel
- Department of Zoology, Stockholm University, Stockholm, Sweden.
| | - Meet Zandawala
- Department of Zoology, Stockholm University, Stockholm, Sweden; Department of Neuroscience, Brown University, Providence, RI, USA.
| |
Collapse
|
27
|
Uno T, Ozakiya Y, Furutani M, Sakamoto K, Uno Y, Kajiwara H, Kanamaru K, Mizoguchi A. Functional characterization of insect-specific RabX6 of Bombyx mori. Histochem Cell Biol 2018; 151:187-198. [DOI: 10.1007/s00418-018-1710-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2018] [Indexed: 10/28/2022]
|
28
|
Nässel DR. Substrates for Neuronal Cotransmission With Neuropeptides and Small Molecule Neurotransmitters in Drosophila. Front Cell Neurosci 2018; 12:83. [PMID: 29651236 PMCID: PMC5885757 DOI: 10.3389/fncel.2018.00083] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 03/08/2018] [Indexed: 01/11/2023] Open
Abstract
It has been known for more than 40 years that individual neurons can produce more than one neurotransmitter and that neuropeptides often are colocalized with small molecule neurotransmitters (SMNs). Over the years much progress has been made in understanding the functional consequences of cotransmission in the nervous system of mammals. There are also some excellent invertebrate models that have revealed roles of coexpressed neuropeptides and SMNs in increasing complexity, flexibility, and dynamics in neuronal signaling. However, for the fly Drosophila there are surprisingly few functional studies on cotransmission, although there is ample evidence for colocalization of neuroactive compounds in neurons of the CNS, based both on traditional techniques and novel single cell transcriptome analysis. With the hope to trigger interest in initiating cotransmission studies, this review summarizes what is known about Drosophila neurons and neuronal circuits where different neuropeptides and SMNs are colocalized. Coexistence of neuroactive substances has been recorded in different neuron types such as neuroendocrine cells, interneurons, sensory cells and motor neurons. Some of the circuits highlighted here are well established in the analysis of learning and memory, circadian clock networks regulating rhythmic activity and sleep, as well as neurons and neuroendocrine cells regulating olfaction, nociception, feeding, metabolic homeostasis, diuretic functions, reproduction, and developmental processes. One emerging trait is the broad role of short neuropeptide F in cotransmission and presynaptic facilitation in a number of different neuronal circuits. This review also discusses the functional relevance of coexisting peptides in the intestine. Based on recent single cell transcriptomics data, it is likely that the neuronal systems discussed in this review are just a fraction of the total set of circuits where cotransmission occurs in Drosophila. Thus, a systematic search for colocalized neuroactive compounds in further neurons in anatomically defined circuits is of interest for the near future.
Collapse
Affiliation(s)
- Dick R Nässel
- Department of Zoology, Stockholm University, Stockholm, Sweden
| |
Collapse
|
29
|
Selcho M, Mühlbauer B, Hensgen R, Shiga S, Wegener C, Yasuyama K. Anatomical characterization of PDF-tri neurons and peptidergic neurons associated with eclosion behavior in Drosophila. J Comp Neurol 2018; 526:1307-1328. [DOI: 10.1002/cne.24408] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 01/31/2018] [Accepted: 02/01/2018] [Indexed: 01/06/2023]
Affiliation(s)
- Mareike Selcho
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter; University of Würzburg; Würzburg D-97074 Germany
| | - Barbara Mühlbauer
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter; University of Würzburg; Würzburg D-97074 Germany
| | - Ronja Hensgen
- Animal Physiology, Department of Biology; Philipps-University Marburg; Marburg D-35032 Germany
| | - Sakiko Shiga
- Department of Biology and Geosciences, Graduate School of Science; Osaka City University; Osaka 558-8585 Japan
| | - Christian Wegener
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter; University of Würzburg; Würzburg D-97074 Germany
| | - Kouji Yasuyama
- Department of Natural Sciences; Kawasaki Medical School; Kurashiki 701-0192 Japan
| |
Collapse
|
30
|
Stone T, Webb B, Adden A, Weddig NB, Honkanen A, Templin R, Wcislo W, Scimeca L, Warrant E, Heinze S. An Anatomically Constrained Model for Path Integration in the Bee Brain. Curr Biol 2017; 27:3069-3085.e11. [PMID: 28988858 DOI: 10.1016/j.cub.2017.08.052] [Citation(s) in RCA: 201] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/24/2017] [Accepted: 08/21/2017] [Indexed: 01/30/2023]
Abstract
Path integration is a widespread navigational strategy in which directional changes and distance covered are continuously integrated on an outward journey, enabling a straight-line return to home. Bees use vision for this task-a celestial-cue-based visual compass and an optic-flow-based visual odometer-but the underlying neural integration mechanisms are unknown. Using intracellular electrophysiology, we show that polarized-light-based compass neurons and optic-flow-based speed-encoding neurons converge in the central complex of the bee brain, and through block-face electron microscopy, we identify potential integrator cells. Based on plausible output targets for these cells, we propose a complete circuit for path integration and steering in the central complex, with anatomically identified neurons suggested for each processing step. The resulting model circuit is thus fully constrained biologically and provides a functional interpretation for many previously unexplained architectural features of the central complex. Moreover, we show that the receptive fields of the newly discovered speed neurons can support path integration for the holonomic motion (i.e., a ground velocity that is not precisely aligned with body orientation) typical of bee flight, a feature not captured in any previously proposed model of path integration. In a broader context, the model circuit presented provides a general mechanism for producing steering signals by comparing current and desired headings-suggesting a more basic function for central complex connectivity, from which path integration may have evolved.
Collapse
Affiliation(s)
- Thomas Stone
- School of Informatics, University of Edinburgh, Edinburgh, UK
| | - Barbara Webb
- School of Informatics, University of Edinburgh, Edinburgh, UK
| | - Andrea Adden
- Lund Vision Group, Department of Biology, Lund University, Lund, Sweden
| | | | - Anna Honkanen
- Lund Vision Group, Department of Biology, Lund University, Lund, Sweden
| | - Rachel Templin
- Queensland Brain Institute, University of Queensland, Brisbane, Australia
| | - William Wcislo
- Smithsonian Tropical Research Institute, Panama City, Panama
| | - Luca Scimeca
- School of Informatics, University of Edinburgh, Edinburgh, UK
| | - Eric Warrant
- Lund Vision Group, Department of Biology, Lund University, Lund, Sweden
| | - Stanley Heinze
- Lund Vision Group, Department of Biology, Lund University, Lund, Sweden.
| |
Collapse
|
31
|
Zhang G, Vilim FS, Liu DD, Romanova EV, Yu K, Yuan WD, Xiao H, Hummon AB, Chen TT, Alexeeva V, Yin SY, Chen SA, Cropper EC, Sweedler JV, Weiss KR, Jing J. Discovery of leucokinin-like neuropeptides that modulate a specific parameter of feeding motor programs in the molluscan model, Aplysia. J Biol Chem 2017; 292:18775-18789. [PMID: 28924050 DOI: 10.1074/jbc.m117.795450] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 08/31/2017] [Indexed: 12/12/2022] Open
Abstract
A better understanding of neuromodulation in a behavioral system requires identification of active modulatory transmitters. Here, we used identifiable neurons in a neurobiological model system, the mollusc Aplysia, to study neuropeptides, a diverse class of neuromodulators. We took advantage of two types of feeding neurons, B48 and B1/B2, in the Aplysia buccal ganglion that might contain different neuropeptides. We performed a representational difference analysis (RDA) by subtraction of mRNAs in B48 versus mRNAs in B1/B2. The RDA identified an unusually long (2025 amino acids) peptide precursor encoding Aplysia leucokinin-like peptides (ALKs; e.g. ALK-1 and ALK-2). Northern blot analysis revealed that, compared with other ganglia (e.g. the pedal-pleural ganglion), ALK mRNA is predominantly present in the buccal ganglion, which controls feeding behavior. We then used in situ hybridization and immunohistochemistry to localize ALKs to specific neurons, including B48. MALDI-TOF MS on single buccal neurons revealed expression of 40 ALK precursor-derived peptides. Among these, ALK-1 and ALK-2 are active in the feeding network; they shortened the radula protraction phase of feeding motor programs triggered by a command-like neuron. We also found that this effect may be mediated by the ALK-stimulated enhancement of activity of an interneuron, which has previously been shown to terminate protraction. We conclude that our multipronged approach is effective for determining the structure and defining the diverse functions of leucokinin-like peptides. Notably, the ALK precursor is the first verified nonarthropod precursor for leucokinin-like peptides with a novel, marked modulatory effect on a specific parameter (protraction duration) of feeding motor programs.
Collapse
Affiliation(s)
- Guo Zhang
- From the State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Ferdinand S Vilim
- the Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, and
| | - Dan-Dan Liu
- From the State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Elena V Romanova
- the Beckman Institute for Advanced Science and Technology and Department of Chemistry, University of Illinois, Urbana, Illinois 61801
| | - Ke Yu
- From the State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Wang-Ding Yuan
- From the State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Hui Xiao
- From the State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Amanda B Hummon
- the Beckman Institute for Advanced Science and Technology and Department of Chemistry, University of Illinois, Urbana, Illinois 61801
| | - Ting-Ting Chen
- From the State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Vera Alexeeva
- the Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, and
| | - Si-Yuan Yin
- From the State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Song-An Chen
- From the State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Elizabeth C Cropper
- the Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, and
| | - Jonathan V Sweedler
- the Beckman Institute for Advanced Science and Technology and Department of Chemistry, University of Illinois, Urbana, Illinois 61801
| | - Klaudiusz R Weiss
- the Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, and
| | - Jian Jing
- From the State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China, .,the Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, and
| |
Collapse
|
32
|
Uno T, Furutani M, Sakamoto K, Uno Y, Kanamaru K, Mizoguchi A, Hiragaki S, Takeda M. Localization and functional analysis of the insect-specific RabX4 in the brain of Bombyx mori. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2017; 96:e21404. [PMID: 28707374 DOI: 10.1002/arch.21404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Rab proteins are small monomeric GTPases/GTP-binding proteins, which form the largest branch of the Ras superfamily. The different Rab GTPases are localized to the cytosolic face of specific intracellular membranes, where they function as regulators of distinct steps in membrane trafficking. RabX4 is an insect-specific Rab protein that has no close homolog in vertebrates. There is little information about insect-specific Rab proteins. RabX4 was expressed in Escherichia coli and subsequently purified. Antibodies against Bombyx mori RabX4 were produced in rabbits for western immunoblotting and immunohistochemistry. Western blotting of neural tissues revealed a single band, at approximately 26 kD. RabX4-like immunohistochemical reactivity was restricted to neurons of the pars intercerebralis and dorsolateral protocerebrum in the brain. Further immunohistochemical analysis revealed that RabX4 colocalized with Rab6 and bombyxin in the corpus allatum, a neuronal organ that secretes neuropeptides synthesized in the brain into the hemolymph. RabX4 expression in the frontal ganglion, part of the insect stomatogastric nervous system that is found in most insect orders, was restricted to two neurons on the outer region and did not colocalize with allatotropin or Rab6. Furthermore, RNA interference of RabX4 decreased bombyxin expression levels in the brain. These findings suggest that RabX4 is involved in the neurosecretion of a secretory organ in Bombyx mori.
Collapse
Affiliation(s)
- Tomohide Uno
- Laboratory of Biological Chemistry, Department of Biofunctional Chemistry, Faculty of Agriculture, Kobe University, Hyogo, Japan
| | - Masayuki Furutani
- Laboratory of Biological Chemistry, Department of Biofunctional Chemistry, Faculty of Agriculture, Kobe University, Hyogo, Japan
| | | | - Yuichi Uno
- Department of Plant Resource Science, Faculty of Agriculture, Kobe University, Hyogo, Japan
| | - Kengo Kanamaru
- Laboratory of Biological Chemistry, Department of Biofunctional Chemistry, Faculty of Agriculture, Kobe University, Hyogo, Japan
| | - Akira Mizoguchi
- Division of Liberal Arts and Sciences, Aichi Gakuin University, Nisshin, Aichi, Japan
| | - Susumu Hiragaki
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Makio Takeda
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| |
Collapse
|
33
|
Fabian-Fine R, Anderson CM, Roush MA, Johnson JAG, Liu H, French AS, Torkkeli PH. The distribution of cholinergic neurons and their co-localization with FMRFamide, in central and peripheral neurons of the spider Cupiennius salei. Cell Tissue Res 2017; 370:71-88. [PMID: 28687927 DOI: 10.1007/s00441-017-2652-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 05/23/2017] [Indexed: 12/21/2022]
Abstract
The spider Cupiennius salei is a well-established model for investigating information processing in arthropod sensory systems. Immunohistochemistry has shown that several neurotransmitters exist in the C. salei nervous system, including GABA, glutamate, histamine, octopamine and FMRFamide, while electrophysiology has found functional roles for some of these transmitters. There is also evidence that acetylcholine (ACh) is present in some C. salei neurons but information about the distribution of cholinergic neurons in spider nervous systems is limited. Here, we identify C. salei genes that encode enzymes essential for cholinergic transmission: choline ACh transferase (ChAT) and vesicular ACh transporter (VAChT). We used in-situ hybridization with an mRNA probe for C. salei ChAT gene to locate somata of cholinergic neurons in the central nervous system and immunohistochemistry with antisera against ChAT and VAChT to locate these proteins in cholinergic neurons. All three markers labeled similar, mostly small neurons, plus a few mid-sized neurons, in most ganglia. In the subesophageal ganglia, labeled neurons are putative efferent, motor or interneurons but the largest motor and interneurons were unlabeled. Groups of anti-ChAT labeled small neurons also connect the optic neuropils in the spider protocerebrum. Differences in individual cell labeling intensities were common, suggesting a range of ACh expression levels. Double-labeling found a subpopulation of anti-VAChT-labeled central and mechanosensory neurons that were also immunoreactive to antiserum against FMRFamide-like peptides. Our findings suggest that ACh is an important neurotransmitter in the C. salei central and peripheral nervous systems.
Collapse
Affiliation(s)
- Ruth Fabian-Fine
- Department of Biology, Saint Michael's College, One Winooski Park, Box 283, Colchester, VT, 05439, USA.
| | - Carly M Anderson
- Department of Biology, Saint Michael's College, One Winooski Park, Box 283, Colchester, VT, 05439, USA
| | - Molly A Roush
- Department of Biology, Saint Michael's College, One Winooski Park, Box 283, Colchester, VT, 05439, USA
| | - Jessica A G Johnson
- Department of Physiology and Biophysics, Dalhousie University, PO Box 15000, Halifax, NS, B3H 4R2, Canada
| | - Hongxia Liu
- Department of Physiology and Biophysics, Dalhousie University, PO Box 15000, Halifax, NS, B3H 4R2, Canada
| | - Andrew S French
- Department of Physiology and Biophysics, Dalhousie University, PO Box 15000, Halifax, NS, B3H 4R2, Canada
| | - Päivi H Torkkeli
- Department of Physiology and Biophysics, Dalhousie University, PO Box 15000, Halifax, NS, B3H 4R2, Canada
| |
Collapse
|
34
|
Brain architecture of the Pacific White Shrimp Penaeus vannamei Boone, 1931 (Malacostraca, Dendrobranchiata): correspondence of brain structure and sensory input? Cell Tissue Res 2017; 369:255-271. [PMID: 28389816 DOI: 10.1007/s00441-017-2607-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 02/20/2017] [Indexed: 10/19/2022]
Abstract
Penaeus vannamei (Dendrobranchiata, Decapoda) is best known as the "Pacific White Shrimp" and is currently the most important crustacean in commercial aquaculture worldwide. Although the neuroanatomy of crustaceans has been well examined in representatives of reptant decapods ("ground-dwelling decapods"), there are only a few studies focusing on shrimps and prawns. In order to obtain insights into the architecture of the brain of P. vannamei, we use neuroanatomical methods including X-ray micro-computed tomography, 3D reconstruction and immunohistochemical staining combined with confocal laser-scanning microscopy and serial sectioning. The brain of P. vannamei exhibits all the prominent neuropils and tracts that characterize the ground pattern of decapod crustaceans. However, the size proportion of some neuropils is salient. The large lateral protocerebrum that comprises the visual neuropils as well as the hemiellipsoid body and medulla terminalis is remarkable. This observation corresponds with the large size of the compound eyes of these animals. In contrast, the remaining median part of the brain is relatively small. It is dominated by the paired antenna 2 neuropils, while the deutocerebral chemosensory lobes play a minor role. Our findings suggest that visual input from the compound eyes and mechanosensory input from the second pair of antennae are major sensory modalities, which this brain processes.
Collapse
|
35
|
Chen J, Reiher W, Hermann-Luibl C, Sellami A, Cognigni P, Kondo S, Helfrich-Förster C, Veenstra JA, Wegener C. Allatostatin A Signalling in Drosophila Regulates Feeding and Sleep and Is Modulated by PDF. PLoS Genet 2016; 12:e1006346. [PMID: 27689358 PMCID: PMC5045179 DOI: 10.1371/journal.pgen.1006346] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 09/07/2016] [Indexed: 11/19/2022] Open
Abstract
Feeding and sleep are fundamental behaviours with significant interconnections and cross-modulations. The circadian system and peptidergic signals are important components of this modulation, but still little is known about the mechanisms and networks by which they interact to regulate feeding and sleep. We show that specific thermogenetic activation of peptidergic Allatostatin A (AstA)-expressing PLP neurons and enteroendocrine cells reduces feeding and promotes sleep in the fruit fly Drosophila. The effects of AstA cell activation are mediated by AstA peptides with receptors homolog to galanin receptors subserving similar and apparently conserved functions in vertebrates. We further identify the PLP neurons as a downstream target of the neuropeptide pigment-dispersing factor (PDF), an output factor of the circadian clock. PLP neurons are contacted by PDF-expressing clock neurons, and express a functional PDF receptor demonstrated by cAMP imaging. Silencing of AstA signalling and continuous input to AstA cells by tethered PDF changes the sleep/activity ratio in opposite directions but does not affect rhythmicity. Taken together, our results suggest that pleiotropic AstA signalling by a distinct neuronal and enteroendocrine AstA cell subset adapts the fly to a digestive energy-saving state which can be modulated by PDF.
Collapse
Affiliation(s)
- Jiangtian Chen
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Wencke Reiher
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Christiane Hermann-Luibl
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Azza Sellami
- INCIA, UMR 5287 CNRS, University of Bordeaux, Talence, France
| | - Paola Cognigni
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Shu Kondo
- Genetic Strains Research Center, National Institute of Genetics, Shizuoka, Japan
| | - Charlotte Helfrich-Förster
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Jan A. Veenstra
- INCIA, UMR 5287 CNRS, University of Bordeaux, Talence, France
| | - Christian Wegener
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Würzburg, Germany
| |
Collapse
|
36
|
Schürmann FW. Fine structure of synaptic sites and circuits in mushroom bodies of insect brains. ARTHROPOD STRUCTURE & DEVELOPMENT 2016; 45:399-421. [PMID: 27555065 DOI: 10.1016/j.asd.2016.08.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 07/01/2016] [Accepted: 08/05/2016] [Indexed: 06/06/2023]
Abstract
In the insect brain, mushroom bodies represent a prominent central neuropil for multisensory integration and, crucially, for learning and memory. For this reason, special attention has been focused on its small chemical synapses. Early studies on synaptic types and their distribution, using conventional electron microscopy, and recent publications have resolved basic features of synaptic circuits. More recent studies, using experimental methods for resolving neurons, such as immunocytochemistry, genetic labelling, high resolution confocal microscopy and more advanced electron microscopy, have revealed many new details about the fine structure and molecular contents of identifiable neurons of mushroom bodies and has led to more refined modelling of functional organisation. Synaptic circuitries have been described in most detail for the calyces. In contrast, the mushroom bodies' columnar peduncle and lobes have been explored to a lesser degree. In dissecting local microcircuits, the scientist is confronted with complex neuronal compartmentalisation and specific synaptic arrangements. This article reviews classical and modern studies on the fine structure of synapses and their networks in mushroom bodies across several insect species.
Collapse
Affiliation(s)
- Friedrich-Wilhelm Schürmann
- Johann-Friedrich-Blumenbach Institut für Zoologie und Anthropologie, Georg-August-University Göttingen, Berlinerstrasse 28, D-37073 Göttingen, Germany.
| |
Collapse
|
37
|
Zhang JH, Wang S, Yang S, Yi J, Liu Y, Xi JH. DIFFERENTIAL PROTEOME ANALYSIS OF THE MALE AND FEMALE ANTENNAE FROM Holotrichia parallela. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2016; 92:274-287. [PMID: 27396371 DOI: 10.1002/arch.21338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
To understand the olfactory mechanisms of Holotrichia parallela antennae in detecting volatile compounds in the environment, protein profiles of H. parallela antennae were analyzed using two-dimensional electrophoresis followed by mass spectrometry and bioinformatics analyses. Approximately 1,100 protein spots in silver staining gel were detected. Quantitative image analysis revealed that in total 47 protein spots showed significant changes in different genders of adult antennae. Thirty-five differentially expressed proteins were identified by Matrix assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF/TOF) tandem mass spectrometer, among which 65.7% are involved in carbohydrate and energy metabolism, antioxidant system, transport, and amino acid/nucleotide metabolism. Some proteins identified here have not been reported previously in insect antennae. Identified male-biased proteins included odorant-binding protein 4, pheromone-binding protein-related protein 2, odorant-binding protein 14, prophenoloxidase-I, acyl-CoA dehydrogenase, aldo-keto reductase-like, carbamoyl phosphate synthetase, etc. whereas some proteins are female biased, such as antennae-rich cytochrome P450, aldehyde dehydrogenase, and putative glutamine synthetase. Alterations in the levels of some proteins were further confirmed by real time polymerase chain reaction (RT-PCR). The proteomic resources displayed here are valuable for the discovery of proteins from H. parallela antennae.
Collapse
Affiliation(s)
- Ju-Hong Zhang
- College of Plant Science, Jilin University, ChangChun, P. R. China
| | - Shang Wang
- College of Plant Science, Jilin University, ChangChun, P. R. China
| | - Shuang Yang
- College of Plant Science, Jilin University, ChangChun, P. R. China
| | - Jiankun Yi
- College of Plant Science, Jilin University, ChangChun, P. R. China
| | - Yan Liu
- College of Plant Science, Jilin University, ChangChun, P. R. China
| | - Jing-Hui Xi
- College of Plant Science, Jilin University, ChangChun, P. R. China
| |
Collapse
|
38
|
Reisenman CE, Lei H, Guerenstein PG. Neuroethology of Olfactory-Guided Behavior and Its Potential Application in the Control of Harmful Insects. Front Physiol 2016; 7:271. [PMID: 27445858 PMCID: PMC4928593 DOI: 10.3389/fphys.2016.00271] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 06/16/2016] [Indexed: 11/26/2022] Open
Abstract
Harmful insects include pests of crops and storage goods, and vectors of human and animal diseases. Throughout their history, humans have been fighting them using diverse methods. The fairly recent development of synthetic chemical insecticides promised efficient crop and health protection at a relatively low cost. However, the negative effects of those insecticides on human health and the environment, as well as the development of insect resistance, have been fueling the search for alternative control tools. New and promising alternative methods to fight harmful insects include the manipulation of their behavior using synthetic versions of "semiochemicals", which are natural volatile and non-volatile substances involved in the intra- and/or inter-specific communication between organisms. Synthetic semiochemicals can be used as trap baits to monitor the presence of insects, so that insecticide spraying can be planned rationally (i.e., only when and where insects are actually present). Other methods that use semiochemicals include insect annihilation by mass trapping, attract-and- kill techniques, behavioral disruption, and the use of repellents. In the last decades many investigations focused on the neural bases of insect's responses to semiochemicals. Those studies help understand how the olfactory system detects and processes information about odors, which could lead to the design of efficient control tools, including odor baits, repellents or ways to confound insects. Here we review our current knowledge about the neural mechanisms controlling olfactory responses to semiochemicals in harmful insects. We also discuss how this neuroethology approach can be used to design or improve pest/vector management strategies.
Collapse
Affiliation(s)
- Carolina E. Reisenman
- Department of Molecular and Cell Biology and Essig Museum of Entomology, University of California, BerkeleyBerkeley, CA, USA
| | - Hong Lei
- Department of Neuroscience, University of ArizonaTucson, AZ, USA
| | - Pablo G. Guerenstein
- Lab. de Estudio de la Biología de Insectos, CICyTTP-CONICETDiamante, Argentina
- Facultad de Ingeniería, Universidad Nacional de Entre RíosOro Verde, Argentina
| |
Collapse
|
39
|
Howe J, Schiøtt M, Boomsma JJ. Tachykinin Expression Levels Correlate with Caste-Specific Aggression in Workers of the Leaf-Cutting Ant Acromyrmex echinatior. Front Ecol Evol 2016. [DOI: 10.3389/fevo.2016.00055] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
40
|
Abstract
In eukaryotic cells, Rab guanosine triphosphate-ases serve as key regulators of membrane-trafficking events, such as exocytosis and endocytosis. Rab3, Rab6, and Rab27 control the regulatory secretory pathway of neuropeptides and neurotransmitters. The cDNAs of Rab3, Rab6, and Rab27 from B. mori were inserted into a plasmid, transformed into Escherichia coli, and then subsequently purified. We then produced antibodies against Rab3, Rab6, and Rab27 of Bombyx mori in rabbits and rats for use in western immunoblotting and immunohistochemistry. Western immunoblotting of brain tissue revealed a single band at approximately 26 kDa. Immunohistochemistry results revealed that Rab3, Rab6, and Rab27 expression was restricted to neurons in the pars intercerebralis and dorsolateral protocerebrum of the brain. Rab3 and Rab6 co-localized with bombyxin, an insect neuropeptide. However, there was no Rab that co-localized with prothoracicotropic hormone. The corpus allatum secretes neuropeptides synthesized in the brain into the hemolymph. Results showed that Rab3 and Rab6 co-localized with bombyxin in the corpus allatum. These findings suggest that Rab3 and Rab6 are involved in neurosecretion in B. mori. This study is the first to report a possible relationship between Rab and neurosecretion in the insect corpus allatum.
Collapse
|
41
|
Roller L, Čižmár D, Gáliková Z, Bednár B, Daubnerová I, Žitňan D. Molecular cloning, expression and identification of the promoter regulatory region for the neuropeptide trissin in the nervous system of the silkmoth Bombyx mori. Cell Tissue Res 2016; 364:499-512. [PMID: 26809512 DOI: 10.1007/s00441-015-2352-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 12/15/2015] [Indexed: 12/13/2022]
Abstract
Trissin has recently been identified as a conserved insect neuropeptide, but its cellular expression and function is unknown. We detected the presence of this neuropeptide in the silkworm Bombyx mori using in silico search and molecular cloning. In situ hybridisation was used to examine trissin expression in the entire central nervous system (CNS) and gut of larvae, pupae and adults. Surprisingly, its expression is restricted to only two pairs of small protocerebral interneurons and four to five large neurons in the frontal ganglion (FG). These neurons were further characterised by subsequent multiple staining with selected antibodies against insect neuropeptides. The brain interneurons innervate edges of the mushroom bodies and co-express trissin with myoinhibitory peptides (MIP) and CRF-like diuretic hormones (CRF-DH). In the FG, one pair of neurons co-express trissin with calcitonin-like diuretic hormone (CT-DH), short neuropeptide F (sNPF) and MIP. These neurons innervate the brain tritocerebrum and musculature of the anterior midgut. The other pair of trissin neurons in the FG co-express sNPF and project axons to the tritocerebrum and midgut. We also used the baculovirus expression system to identify the promoter regulatory region of the trissin gene for targeted expression of various molecular markers in these neurons. Dominant expression of trissin in the FG indicates its possible role in the regulation of foregut-midgut contractions and food intake.
Collapse
Affiliation(s)
- Ladislav Roller
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06, Bratislava, Slovakia
| | - Daniel Čižmár
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06, Bratislava, Slovakia
| | - Zuzana Gáliková
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06, Bratislava, Slovakia
| | - Branislav Bednár
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06, Bratislava, Slovakia
| | - Ivana Daubnerová
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06, Bratislava, Slovakia
| | - Dušan Žitňan
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06, Bratislava, Slovakia.
| |
Collapse
|
42
|
Urlacher E, Soustelle L, Parmentier ML, Verlinden H, Gherardi MJ, Fourmy D, Mercer AR, Devaud JM, Massou I. Honey Bee Allatostatins Target Galanin/Somatostatin-Like Receptors and Modulate Learning: A Conserved Function? PLoS One 2016; 11:e0146248. [PMID: 26741132 PMCID: PMC4704819 DOI: 10.1371/journal.pone.0146248] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 12/15/2015] [Indexed: 12/21/2022] Open
Abstract
Sequencing of the honeybee genome revealed many neuropeptides and putative neuropeptide receptors, yet functional characterization of these peptidic systems is scarce. In this study, we focus on allatostatins, which were first identified as inhibitors of juvenile hormone synthesis, but whose role in the adult honey bee (Apis mellifera) brain remains to be determined. We characterize the bee allatostatin system, represented by two families: allatostatin A (Apime-ASTA) and its receptor (Apime-ASTA-R); and C-type allatostatins (Apime-ASTC and Apime-ASTCC) and their common receptor (Apime-ASTC-R). Apime-ASTA-R and Apime-ASTC-R are the receptors in bees most closely related to vertebrate galanin and somatostatin receptors, respectively. We examine the functional properties of the two honeybee receptors and show that they are transcriptionally expressed in the adult brain, including in brain centers known to be important for learning and memory processes. Thus we investigated the effects of exogenously applied allatostatins on appetitive olfactory learning in the bee. Our results show that allatostatins modulate learning in this insect, and provide important insights into the evolution of somatostatin/allatostatin signaling.
Collapse
Affiliation(s)
- Elodie Urlacher
- Department of Zoology, Dunedin, Otago, New Zealand
- Centre National de la Recherche Scientifique (CNRS), Centre de Recherches sur la Cognition Animale (UMR 5169), Toulouse, France
- Université de Toulouse, UPS Centre de Recherches sur la Cognition Animale (UMR 5169), Toulouse, France
- * E-mail:
| | - Laurent Soustelle
- CNRS, UMR 5203, Institut de Génomique Fonctionnelle, Montpellier, France
- INSERM, U1191, Montpellier, France
- Université de Montpellier, UMR 5203, Montpellier, France
| | - Marie-Laure Parmentier
- CNRS, UMR 5203, Institut de Génomique Fonctionnelle, Montpellier, France
- INSERM, U1191, Montpellier, France
- Université de Montpellier, UMR 5203, Montpellier, France
| | - Heleen Verlinden
- Department of Animal Physiology and Neurobiology, Zoological Institute, KU Leuven, Leuven, Belgium
| | - Marie-Julie Gherardi
- EA 4552 Réceptorologie et ciblage thérapeutique en cancérologie, Université de Toulouse, UPS, Toulouse, France
| | - Daniel Fourmy
- EA 4552 Réceptorologie et ciblage thérapeutique en cancérologie, Université de Toulouse, UPS, Toulouse, France
| | | | - Jean-Marc Devaud
- Centre National de la Recherche Scientifique (CNRS), Centre de Recherches sur la Cognition Animale (UMR 5169), Toulouse, France
- Université de Toulouse, UPS Centre de Recherches sur la Cognition Animale (UMR 5169), Toulouse, France
| | - Isabelle Massou
- Centre National de la Recherche Scientifique (CNRS), Centre de Recherches sur la Cognition Animale (UMR 5169), Toulouse, France
- Université de Toulouse, UPS Centre de Recherches sur la Cognition Animale (UMR 5169), Toulouse, France
| |
Collapse
|
43
|
Ormerod KG, LePine OK, Bhutta MS, Jung J, Tattersall GJ, Mercier AJ. Characterizing the physiological and behavioral roles of proctolin in Drosophila melanogaster. J Neurophysiol 2016; 115:568-80. [PMID: 26538605 PMCID: PMC4760479 DOI: 10.1152/jn.00606.2015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 10/24/2015] [Indexed: 11/22/2022] Open
Abstract
The neuropeptide proctolin (RYLPT) plays important roles as both a neurohormone and a cotransmitter in arthropod neuromuscular systems. We used third-instar Drosophila larvae as a model system to differentiate synaptic effects of this peptide from its direct effects on muscle contractility and to determine whether proctolin can work in a cell-selective manner on muscle fibers. Proctolin did not appear to alter the amplitude of excitatory junctional potentials but did induce sustained muscle contractions in preparations where the CNS had been removed and no stimuli were applied to the remaining nerves. Proctolin-induced contractions were dose-dependent, were reduced by knocking down expression of the Drosophila proctolin receptor in muscle tissue, and were larger in some muscle cells than others (i.e., larger in fibers 4, 12, and 13 than in 6 and 7). Proctolin also increased the amplitude of nerve-evoked contractions in a dose-dependent manner, and the magnitude of this effect was also larger in some muscle cells than others (again, larger in fibers 4, 12, and 13 than in 6 and 7). Increasing the intraburst impulse frequency and number of impulses per burst increased the magnitude of proctolin's enhancement of nerve-evoked contractions and decreased the threshold and EC50 concentrations for proctolin to enhance nerve-evoked contractions. Reducing proctolin receptor expression decreased the velocity of larval crawling at higher temperatures, and thermal preference in these larvae. Our results suggest that proctolin acts directly on body-wall muscles to elicit slow, sustained contractions and to enhance nerve-evoked contractions, and that proctolin affects muscle fibers in a cell-selective manner.
Collapse
Affiliation(s)
- Kiel G Ormerod
- Division of Biological Sciences, Brock University, St. Catharines, Ontario, Canada
| | - Olivia K LePine
- Division of Biological Sciences, Brock University, St. Catharines, Ontario, Canada
| | | | - JaeHwan Jung
- Division of Biological Sciences, Brock University, St. Catharines, Ontario, Canada
| | - Glenn J Tattersall
- Division of Biological Sciences, Brock University, St. Catharines, Ontario, Canada
| | - A Joffre Mercier
- Division of Biological Sciences, Brock University, St. Catharines, Ontario, Canada
| |
Collapse
|
44
|
Krieger J, Braun P, Rivera NT, Schubart CD, Müller CH, Harzsch S. Comparative analyses of olfactory systems in terrestrial crabs (Brachyura): evidence for aerial olfaction? PeerJ 2015; 3:e1433. [PMID: 26713228 PMCID: PMC4690415 DOI: 10.7717/peerj.1433] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Accepted: 11/03/2015] [Indexed: 11/30/2022] Open
Abstract
Adaptations to a terrestrial lifestyle occurred convergently multiple times during the evolution of the arthropods. This holds also true for the "true crabs" (Brachyura), a taxon that includes several lineages that invaded land independently. During an evolutionary transition from sea to land, animals have to develop a variety of physiological and anatomical adaptations to a terrestrial life style related to respiration, reproduction, development, circulation, ion and water balance. In addition, sensory systems that function in air instead of in water are essential for an animal's life on land. Besides vision and mechanosensory systems, on land, the chemical senses have to be modified substantially in comparison to their function in water. Among arthropods, insects are the most successful ones to evolve aerial olfaction. Various aspects of terrestrial adaptation have also been analyzed in those crustacean lineages that evolved terrestrial representatives including the taxa Anomala, Brachyura, Amphipoda, and Isopoda. We are interested in how the chemical senses of terrestrial crustaceans are modified to function in air. Therefore, in this study, we analyzed the brains and more specifically the structure of the olfactory system of representatives of brachyuran crabs that display different degrees of terrestriality, from exclusively marine to mainly terrestrial. The methods we used included immunohistochemistry, detection of autofluorescence- and confocal microscopy, as well as three-dimensional reconstruction and morphometry. Our comparative approach shows that both the peripheral and central olfactory pathways are reduced in terrestrial members in comparison to their marine relatives, suggesting a limited function of their olfactory system on land. We conclude that for arthropod lineages that invaded land, evolving aerial olfaction is no trivial task.
Collapse
Affiliation(s)
- Jakob Krieger
- Zoological Institute and Museum, Department of Cytology and Evolutionary Biology, Ernst-Moritz-Arndt Universität Greifswald, Greifswald, Germany
| | - Philipp Braun
- Zoological Institute and Museum, Department of Cytology and Evolutionary Biology, Ernst-Moritz-Arndt Universität Greifswald, Greifswald, Germany
| | - Nicole T. Rivera
- Institute for Zoology, Department of Zoology & Evolution, Universität Regensburg, Regensburg, Germany
| | - Christoph D. Schubart
- Institute for Zoology, Department of Zoology & Evolution, Universität Regensburg, Regensburg, Germany
| | - Carsten H.G. Müller
- Zoological Institute and Museum, Department of General and Systematic Zoology, Ernst-Moritz-Arndt Universität Greifswald, Greifswald, Germany
| | - Steffen Harzsch
- Zoological Institute and Museum, Department of Cytology and Evolutionary Biology, Ernst-Moritz-Arndt Universität Greifswald, Greifswald, Germany
| |
Collapse
|
45
|
Fusca D, Schachtner J, Kloppenburg P. Colocalization of allatotropin and tachykinin-related peptides with classical transmitters in physiologically distinct subtypes of olfactory local interneurons in the cockroach (Periplaneta americana). J Comp Neurol 2015; 523:1569-86. [PMID: 25678036 DOI: 10.1002/cne.23757] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 01/28/2015] [Accepted: 02/03/2015] [Indexed: 11/06/2022]
Abstract
In the insect antennal lobe different types of local interneurons mediate complex excitatory and inhibitory interactions between the glomerular pathways to structure the spatiotemporal representation of odors. Mass spectrometric and immunohistochemical studies have shown that in local interneurons classical neurotransmitters are likely to colocalize with a variety of substances that can potentially act as cotransmitters or neuromodulators. In the antennal lobe of the cockroach Periplaneta americana, gamma-aminobutyric acid (GABA) has been identified as the potential inhibitory transmitter of spiking type I local interneurons, whereas acetylcholine is most likely the excitatory transmitter of nonspiking type IIa1 local interneurons. This study used whole-cell patch clamp recordings combined with single-cell labeling and immunohistochemistry to test if the GABAergic type I local interneurons and the cholinergic type IIa1 local interneurons express allatotropin and tachykinin-related neuropeptides (TKRPs). These are two of the most abundant types of peptides in the insect antennal lobe. GABA-like and choline acetyltransferase (ChAT)-like immunoreactivity were used as markers for GABAergic and cholinergic neurons, respectively. About 50% of the GABA-like immunoreactive (-lir) spiking type I local interneurons were allatotropin-lir, and ∼ 40% of these neurons were TKRP-lir. About 20% of nonspiking ChAT-lir type IIa1 local interneurons were TKRP-lir. Our results suggest that in subpopulations of GABAergic and cholinergic local interneurons, allatotropin and TKRPs might act as cotransmitters or neuromodulators. To unequivocally assign neurotransmitters, cotransmitters, and neuromodulators to identified classes of antennal lobe neurons is an important step to deepen our understanding of information processing in the insect olfactory system.
Collapse
Affiliation(s)
- Debora Fusca
- Biocenter, Institute for Zoology, and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | | | - Peter Kloppenburg
- Biocenter, Institute for Zoology, and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| |
Collapse
|
46
|
De Haes W, Van Sinay E, Detienne G, Temmerman L, Schoofs L, Boonen K. Functional neuropeptidomics in invertebrates. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1854:812-26. [PMID: 25528324 DOI: 10.1016/j.bbapap.2014.12.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 11/27/2014] [Accepted: 12/10/2014] [Indexed: 10/24/2022]
Abstract
Neuropeptides are key messengers in almost all physiological processes. They originate from larger precursors and are extensively processed to become bioactive. Neuropeptidomics aims to comprehensively identify the collection of neuropeptides in an organism, organ, tissue or cell. The neuropeptidome of several invertebrates is thoroughly explored since they are important model organisms (and models for human diseases), disease vectors and pest species. The charting of the neuropeptidome is the first step towards understanding peptidergic signaling. This review will first discuss the latest developments in exploring the neuropeptidome. The physiological roles and modes of action of neuropeptides can be explored in two ways, which are largely orthogonal and therefore complementary. The first way consists of inferring the functions of neuropeptides by a forward approach where neuropeptide profiles are compared under different physiological conditions. Second is the reverse approach were neuropeptide collections are used to screen for receptor-binding. This is followed by localization studies and functional tests. This review will focus on how these different functional screening methods contributed to the field of invertebrate neuropeptidomics and expanded our knowledge of peptidergic signaling. This article is part of a Special Issue entitled: Neuroproteomics: Applications in Neuroscience and Neurology.
Collapse
Affiliation(s)
- Wouter De Haes
- Functional Genomics and Proteomics, Department of Biology, University of Leuven (KU Leuven), Naamsestraat 59, 3000 Leuven, Belgium
| | - Elien Van Sinay
- Functional Genomics and Proteomics, Department of Biology, University of Leuven (KU Leuven), Naamsestraat 59, 3000 Leuven, Belgium
| | - Giel Detienne
- Functional Genomics and Proteomics, Department of Biology, University of Leuven (KU Leuven), Naamsestraat 59, 3000 Leuven, Belgium
| | - Liesbet Temmerman
- Functional Genomics and Proteomics, Department of Biology, University of Leuven (KU Leuven), Naamsestraat 59, 3000 Leuven, Belgium
| | - Liliane Schoofs
- Functional Genomics and Proteomics, Department of Biology, University of Leuven (KU Leuven), Naamsestraat 59, 3000 Leuven, Belgium
| | - Kurt Boonen
- Functional Genomics and Proteomics, Department of Biology, University of Leuven (KU Leuven), Naamsestraat 59, 3000 Leuven, Belgium.
| |
Collapse
|
47
|
Abstract
Genetic manipulations of neuronal activity are a cornerstone of studies aimed to identify the functional impact of defined neurons for animal behavior. With its small nervous system, rapid life cycle, and genetic amenability, the fruit fly Drosophila melanogaster provides an attractive model system to study neuronal circuit function. In the past two decades, a large repertoire of elegant genetic tools has been developed to manipulate and study neural circuits in the fruit fly. Current techniques allow genetic ablation, constitutive silencing, or hyperactivation of neuronal activity and also include conditional thermogenetic or optogenetic activation or inhibition. As for all genetic techniques, the choice of the proper transgenic tool is essential for behavioral studies. Potency and impact of effectors may vary in distinct neuron types or distinct types of behavior. We here systematically test genetic effectors for their potency to alter the behavior of Drosophila larvae, using two distinct behavioral paradigms: general locomotor activity and directed, visually guided navigation. Our results show largely similar but not equal effects with different effector lines in both assays. Interestingly, differences in the magnitude of induced behavioral alterations between different effector lines remain largely consistent between the two behavioral assays. The observed potencies of the effector lines in aminergic and cholinergic neurons assessed here may help researchers to choose the best-suited genetic tools to dissect neuronal networks underlying the behavior of larval fruit flies.
Collapse
|
48
|
Pool AH, Kvello P, Mann K, Cheung SK, Gordon MD, Wang L, Scott K. Four GABAergic interneurons impose feeding restraint in Drosophila. Neuron 2014; 83:164-77. [PMID: 24991960 DOI: 10.1016/j.neuron.2014.05.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2014] [Indexed: 10/25/2022]
Abstract
Feeding is dynamically regulated by the palatability of the food source and the physiological needs of the animal. How consumption is controlled by external sensory cues and internal metabolic state remains under intense investigation. Here, we identify four GABAergic interneurons in the Drosophila brain that establish a central feeding threshold which is required to inhibit consumption. Inactivation of these cells results in indiscriminate and excessive intake of all compounds, independent of taste quality or nutritional state. Conversely, acute activation of these neurons suppresses consumption of water and nutrients. The output from these neurons is required to gate activity in motor neurons that control meal initiation and consumption. Thus, our study reveals a layer of inhibitory control in feeding circuits that is required to suppress a latent state of unrestricted and nonselective consumption.
Collapse
Affiliation(s)
- Allan-Hermann Pool
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, 16 Barker Hall, Berkeley, CA 94720, USA
| | - Pal Kvello
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, 16 Barker Hall, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California, Berkeley, 16 Barker Hall, Berkeley, CA 94720, USA
| | - Kevin Mann
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, 16 Barker Hall, Berkeley, CA 94720, USA
| | - Samantha K Cheung
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, 16 Barker Hall, Berkeley, CA 94720, USA
| | - Michael D Gordon
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, 16 Barker Hall, Berkeley, CA 94720, USA
| | - Liming Wang
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, 16 Barker Hall, Berkeley, CA 94720, USA
| | - Kristin Scott
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, 16 Barker Hall, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California, Berkeley, 16 Barker Hall, Berkeley, CA 94720, USA.
| |
Collapse
|
49
|
Fusca D, Husch A, Baumann A, Kloppenburg P. Choline acetyltransferase-like immunoreactivity in a physiologically distinct subtype of olfactory nonspiking local interneurons in the cockroach (periplaneta americana). J Comp Neurol 2014; 521:3556-69. [PMID: 23749599 DOI: 10.1002/cne.23371] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 05/15/2013] [Accepted: 05/23/2013] [Indexed: 11/10/2022]
Abstract
Behavioral and physiological studies have shown that local interneurons are pivotal for processing odor information in the insect antennal lobe. They mediate inhibitory and excitatory interactions between the glomerular pathways and ultimately shape the tuning profile of projection neurons. To identify putative cholinergic local interneurons in the antennal lobe of Periplaneta americana, an antibody raised against the biosynthetic enzyme choline acetyltransferase (ChAT) was applied to individual morphologically and electrophysiologically characterized local interneurons. In nonspiking type IIa1 local interneurons, which were classified in this study, we found ChAT-like immunoreactivity suggesting that they are most likely excitatory. This is a well-defined population of neurons that generates Ca(2+) -driven spikelets upon depolarization and stimulation with odorants, but not Na(+) -driven action potentials, because they lack voltage-activated transient Na(+) currents. The nonspiking type IIa2 and type IIb local interneurons, in which Ca(2+) -driven spikelets were absent, had no ChAT-like immunoreactivity. The GABA-like immunoreactive, spiking type I local interneurons had no ChAT-like immunoreactivity. In addition, we showed that uniglomerular projection neurons with cell bodies located in the ventral portion of the ventrolateral somata group and projections along the inner antennocerebral tract exhibited ChAT-like immunoreactivity. Assigning potential transmitters and neuromodulators to distinct morphological and electrophysiological types of antennal lobe neurons is an important prerequisite for a detailed understanding of odor information processing in insects.
Collapse
Affiliation(s)
- Debora Fusca
- Biocenter, Institute for Zoology, Center for Molecular Medicine Cologne (CMMC), and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50674, Cologne, Germany
| | | | | | | |
Collapse
|
50
|
Galizia CG. Olfactory coding in the insect brain: data and conjectures. Eur J Neurosci 2014; 39:1784-95. [PMID: 24698302 PMCID: PMC4237541 DOI: 10.1111/ejn.12558] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 02/11/2014] [Accepted: 02/13/2014] [Indexed: 11/28/2022]
Abstract
Much progress has been made recently in understanding how olfactory coding works in insect brains. Here, I propose a wiring diagram for the major steps from the first processing network (the antennal lobe) to behavioral readout. I argue that the sequence of lateral inhibition in the antennal lobe, non-linear synapses, threshold-regulating gated spring network, selective lateral inhibitory networks across glomeruli, and feedforward inhibition to the lateral protocerebrum cover most of the experimental results from different research groups and model species. I propose that the main difference between mushroom bodies and the lateral protocerebrum is not about learned vs. innate behavior. Rather, mushroom bodies perform odor identification, whereas the lateral protocerebrum performs odor evaluation (both learned and innate). I discuss the concepts of labeled line and combinatorial coding and postulate that, under restrictive experimental conditions, these networks lead to an apparent existence of 'labeled line' coding for special odors. Modulatory networks are proposed as switches between different evaluating systems in the lateral protocerebrum. A review of experimental data and theoretical conjectures both contribute to this synthesis, creating new hypotheses for future research.
Collapse
|