1
|
Tleiss F, Montanari M, Milleville R, Pierre O, Royet J, Osman D, Gallet A, Kurz CL. Spatial and temporal coordination of Duox/TrpA1/Dh31 and IMD pathways is required for the efficient elimination of pathogenic bacteria in the intestine of Drosophila larvae. eLife 2024; 13:RP98716. [PMID: 39576741 PMCID: PMC11584180 DOI: 10.7554/elife.98716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2024] Open
Abstract
Multiple gut antimicrobial mechanisms are coordinated in space and time to efficiently fight foodborne pathogens. In Drosophila melanogaster, production of reactive oxygen species (ROS) and antimicrobial peptides (AMPs) together with intestinal cell renewal play a key role in eliminating gut microbes. A complementary mechanism would be to isolate and treat pathogenic bacteria while allowing colonization by commensals. Using real-time imaging to follow the fate of ingested bacteria, we demonstrate that while commensal Lactiplantibacillus plantarum freely circulate within the intestinal lumen, pathogenic strains such as Erwinia carotovora or Bacillus thuringiensis, are blocked in the anterior midgut where they are rapidly eliminated by antimicrobial peptides. This sequestration of pathogenic bacteria in the anterior midgut requires the Duox enzyme in enterocytes, and both TrpA1 and Dh31 in enteroendocrine cells. Supplementing larval food with hCGRP, the human homolog of Dh31, is sufficient to block the bacteria, suggesting the existence of a conserved mechanism. While the immune deficiency (IMD) pathway is essential for eliminating the trapped bacteria, it is dispensable for the blockage. Genetic manipulations impairing bacterial compartmentalization result in abnormal colonization of posterior midgut regions by pathogenic bacteria. Despite a functional IMD pathway, this ectopic colonization leads to bacterial proliferation and larval death, demonstrating the critical role of bacteria anterior sequestration in larval defense. Our study reveals a temporal orchestration during which pathogenic bacteria, but not innocuous, are confined in the anterior part of the midgut in which they are eliminated in an IMD-pathway-dependent manner.
Collapse
Affiliation(s)
- Fatima Tleiss
- Université Côte d'Azur, CNRS, INRAE, ISA, Nice, France
| | | | | | | | - Julien Royet
- Aix-Marseille Université, CNRS, IBDM, Marseille, France
| | - Dani Osman
- UMR PIMIT (Processus Infectieux en Milieu Insulaire Tropical) CNRS 9192-INSERM 1187-IRD 249-Université de La Réunion, île de La Réunion, France
| | - Armel Gallet
- Université Côte d'Azur, CNRS, INRAE, ISA, Nice, France
| | | |
Collapse
|
2
|
Delamotte P, Montagne J. Dietary Lipids and Their Metabolism in the Midgut. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024. [PMID: 39565560 DOI: 10.1007/5584_2024_835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Animals use dietary lipids to sustain their growth and survival. Insects can synthesize fatty acids (FAs) and are autotroph for a number of lipids, but auxotroph for specific lipids classes (e.g. sterols, polyunsaturated FAs). Once ingested, lipids are hydrolysed in the intestinal lumen and taken up into intestinal cells within specific regions of the insect digestive tract. These lipids can be either stored in the intestinal cells or exported through the haemolymph circulation to specific organs. In this chapter, we describe the various lipids provided by insect diets, their extracellular hydrolysis in the gut lumen and their intake and metabolic fate in the intestinal cells. This chapter emphasizes the critical role of the digestive tract and its regionalization in processing dietary lipids prior to their transfer to the requiring tissues.
Collapse
Affiliation(s)
- Pierre Delamotte
- Institute for Integrative Biology of the Cell (I2BC), UMR 9198, CNRS, Université Paris-Sud, CEA, Gif-sur-Yvette, France
| | - Jacques Montagne
- Institute for Integrative Biology of the Cell (I2BC), UMR 9198, CNRS, Université Paris-Sud, CEA, Gif-sur-Yvette, France.
| |
Collapse
|
3
|
Chen J, Nouzová M, Noriega FG, Tatar M. Gut-to-brain regulation of Drosophila aging through neuropeptide F, insulin, and juvenile hormone. Proc Natl Acad Sci U S A 2024; 121:e2411987121. [PMID: 39413128 PMCID: PMC11513968 DOI: 10.1073/pnas.2411987121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/09/2024] [Indexed: 10/18/2024] Open
Abstract
Dietary restriction (DR) slows aging in many animals, while in some cases, the sensory signals from diet alone are sufficient to retard or accelerate lifespan. The digestive tract is a candidate location to sense nutrients, where neuropeptides secreted by enteroendocrine cells (EEC) produce systemic signals in response to food. Here, we measure how Drosophila neuropeptide F (NPF) is secreted into adult circulation by EEC and find that specific EEC differentially respond to dietary sugar and yeast. Female lifespan is increased when gut NPF is genetically depleted, and this manipulation is sufficient to blunt the longevity benefit conferred by DR. Depletion of NPF receptors at insulin-producing neurons of the brain also increases female lifespan, consistent with observations where loss of gut NPF decreases neuronal insulin secretion. The longevity conferred by repressing gut NPF and brain NPF receptors is reversed by treating adults with a juvenile hormone (JH) analog. JH is produced by the adult corpora allata, and inhibition of the insulin receptor at this tissue decreases JH titer and extends lifespan in both males and females, while this longevity is restored to wild type by treating adults with a JH analog. Overall, EEC of the gut modulate Drosophila aging through interorgan communication mediated by a gut-brain-corpora allata axis, and insulin produced in the brain impacts lifespan through its control of JH titer. These data suggest that we consider how human incretins and their analogs, which are used to treat obesity and diabetes, may impact aging.
Collapse
Affiliation(s)
- Jiangtian Chen
- Department of Ecology, Evolution and Organismal Biology, Brown University, Providence, RI02912
| | - Marcela Nouzová
- Institute of Parasitology, Laboratory of Molecular Biology and Physiology of Mosquitoes, Biology Centre Czech Academy of Sciences, České Budějovice37005, Czech Republic
| | - Fernando G. Noriega
- Department of Biological Sciences and Biomolecular Sciences Institute, Florida International University, Miami, FL33199
- Department of Parasitology, University of South Bohemia, České Budějovice37005, Czech Republic
| | - Marc Tatar
- Department of Ecology, Evolution and Organismal Biology, Brown University, Providence, RI02912
| |
Collapse
|
4
|
Ignatiou A, Pitsouli C. Host-diet-microbiota interplay in intestinal nutrition and health. FEBS Lett 2024; 598:2482-2517. [PMID: 38946050 DOI: 10.1002/1873-3468.14966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 06/11/2024] [Indexed: 07/02/2024]
Abstract
The intestine is populated by a complex and dynamic assortment of microbes, collectively called gut microbiota, that interact with the host and contribute to its metabolism and physiology. Diet is considered a key regulator of intestinal microbiota, as ingested nutrients interact with and shape the resident microbiota composition. Furthermore, recent studies underscore the interplay of dietary and microbiota-derived nutrients, which directly impinge on intestinal stem cells regulating their turnover to ensure a healthy gut barrier. Although advanced sequencing methodologies have allowed the characterization of the human gut microbiome, mechanistic studies assessing diet-microbiota-host interactions depend on the use of genetically tractable models, such as Drosophila melanogaster. In this review, we first discuss the similarities between the human and fly intestines and then we focus on the effects of diet and microbiota on nutrient-sensing signaling cascades controlling intestinal stem cell self-renewal and differentiation, as well as disease. Finally, we underline the use of the Drosophila model in assessing the role of microbiota in gut-related pathologies and in understanding the mechanisms that mediate different whole-body manifestations of gut dysfunction.
Collapse
Affiliation(s)
- Anastasia Ignatiou
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - Chrysoula Pitsouli
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| |
Collapse
|
5
|
McKim TH, Gera J, Gayban AJ, Reinhard N, Manoli G, Hilpert S, Helfrich-Förster C, Zandawala M. Synaptic connectome of a neurosecretory network in the Drosophila brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.28.609616. [PMID: 39257829 PMCID: PMC11384003 DOI: 10.1101/2024.08.28.609616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Hormones mediate inter-organ signaling which is crucial in orchestrating diverse behaviors and physiological processes including sleep and activity, feeding, growth, metabolism and reproduction. The pars intercerebralis and pars lateralis in insects represent major hubs which contain neurosecretory cells (NSC) that produce various hormones. To obtain insight into how hormonal signaling is regulated, we have characterized the synaptic connectome of NSC in the adult Drosophila brain. Identification of neurons providing inputs to multiple NSC subtypes implicates diuretic hormone 44-expressing NSC as a major coordinator of physiology and behavior. Surprisingly, despite most NSC having dendrites in the subesophageal zone (primary taste processing center), gustatory inputs to NSC are largely indirect. We also deciphered pathways via which diverse olfactory inputs are relayed to NSC. Further, our analyses revealed substantial inputs from descending neurons to NSC, suggesting that descending neurons regulate both endocrine and motor output to synchronize physiological changes with appropriate behaviors. In contrast to NSC inputs, synaptic output from NSC is sparse and mostly mediated by corazonin NSC. Therefore, we additionally determine putative paracrine interconnectivity between NSC subtypes and hormonal pathways from NSC to peripheral tissues by analyzing single-cell transcriptomic datasets. Our comprehensive characterization of the Drosophila neurosecretory network connectome provides a platform to understand complex hormonal networks and how they orchestrate animal behaviors and physiology.
Collapse
Affiliation(s)
- Theresa H. McKim
- Integrative Neuroscience Program, University of Nevada Reno, Reno, 89557, NV, USA
- Department of Biology, University of Nevada Reno, Reno, 89557, NV, USA
| | - Jayati Gera
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Ariana J. Gayban
- Integrative Neuroscience Program, University of Nevada Reno, Reno, 89557, NV, USA
- Department of Biochemistry and Molecular Biology, University of Nevada Reno, Reno, 89557, NV, USA
| | - Nils Reinhard
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Giulia Manoli
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Selina Hilpert
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Charlotte Helfrich-Förster
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Meet Zandawala
- Integrative Neuroscience Program, University of Nevada Reno, Reno, 89557, NV, USA
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, 97074 Würzburg, Germany
- Department of Biochemistry and Molecular Biology, University of Nevada Reno, Reno, 89557, NV, USA
| |
Collapse
|
6
|
Kubrak O, Jørgensen AF, Koyama T, Lassen M, Nagy S, Hald J, Mazzoni G, Madsen D, Hansen JB, Larsen MR, Texada MJ, Hansen JL, Halberg KV, Rewitz K. LGR signaling mediates muscle-adipose tissue crosstalk and protects against diet-induced insulin resistance. Nat Commun 2024; 15:6126. [PMID: 39033139 PMCID: PMC11271308 DOI: 10.1038/s41467-024-50468-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 07/04/2024] [Indexed: 07/23/2024] Open
Abstract
Obesity impairs tissue insulin sensitivity and signaling, promoting type-2 diabetes. Although improving insulin signaling is key to reversing diabetes, the multi-organ mechanisms regulating this process are poorly defined. Here, we screen the secretome and receptome in Drosophila to identify the hormonal crosstalk affecting diet-induced insulin resistance and obesity. We discover a complex interplay between muscle, neuronal, and adipose tissues, mediated by Bone Morphogenetic Protein (BMP) signaling and the hormone Bursicon, that enhances insulin signaling and sugar tolerance. Muscle-derived BMP signaling, induced by sugar, governs neuronal Bursicon signaling. Bursicon, through its receptor Rickets, a Leucine-rich-repeat-containing G-protein coupled receptor (LGR), improves insulin secretion and insulin sensitivity in adipose tissue, mitigating hyperglycemia. In mouse adipocytes, loss of the Rickets ortholog LGR4 blunts insulin responses, showing an essential role of LGR4 in adipocyte insulin sensitivity. Our findings reveal a muscle-neuronal-fat-tissue axis driving metabolic adaptation to high-sugar conditions, identifying LGR4 as a critical mediator in this regulatory network.
Collapse
Affiliation(s)
- Olga Kubrak
- Department of Biology, University of Copenhagen, 2100, Copenhagen O, Denmark
| | - Anne F Jørgensen
- Department of Biology, University of Copenhagen, 2100, Copenhagen O, Denmark
- Novo Nordisk, Novo Nordisk Park, 2760, Maaløv, Denmark
| | - Takashi Koyama
- Department of Biology, University of Copenhagen, 2100, Copenhagen O, Denmark
| | - Mette Lassen
- Department of Biology, University of Copenhagen, 2100, Copenhagen O, Denmark
| | - Stanislav Nagy
- Department of Biology, University of Copenhagen, 2100, Copenhagen O, Denmark
| | - Jacob Hald
- Novo Nordisk, Novo Nordisk Park, 2760, Maaløv, Denmark
| | | | - Dennis Madsen
- Novo Nordisk, Novo Nordisk Park, 2760, Maaløv, Denmark
| | - Jacob B Hansen
- Department of Biology, University of Copenhagen, 2100, Copenhagen O, Denmark
| | - Martin Røssel Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230, Odense, Denmark
| | - Michael J Texada
- Department of Biology, University of Copenhagen, 2100, Copenhagen O, Denmark
| | | | - Kenneth V Halberg
- Department of Biology, University of Copenhagen, 2100, Copenhagen O, Denmark
| | - Kim Rewitz
- Department of Biology, University of Copenhagen, 2100, Copenhagen O, Denmark.
| |
Collapse
|
7
|
Vetkama W, Tinikul R, Sobhon P, Tinikul Y. Differential expression of neuropeptide F in the digestive organs of female freshwater prawn, Macrobrachium rosenbergii, during the ovarian cycle. Cell Tissue Res 2024; 397:13-36. [PMID: 38592496 PMCID: PMC11231001 DOI: 10.1007/s00441-024-03893-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 03/19/2024] [Indexed: 04/10/2024]
Abstract
Neuropeptide F is a key hormone that controls feeding in invertebrates, including decapod crustaceans. We investigated the differential expression of Macrobrachium rosenbergii neuropeptide F (MrNPF) in the digestive organs of female prawns, M. rosenbergii, during the ovarian cycle. By using RT-qPCR, the expression of MrNPF mRNA in the esophagus (ESO), cardia (CD), and pylorus (PY) of the foregut (FG) gradually increased from stage II and peaked at stage III. In the midgut (MG), hindgut (HG), and hepatopancreas (HP), MrNPF mRNA increased from stage I, reaching a maximal level at stage II, and declined by about half at stages III and IV (P < 0.05). In the ESO, CD, and PY, strong MrNPF-immunoreactivities were seen in the epithelium, muscle, and lamina propria. Intense MrNPF-ir was found in the MG cells and the muscular layer. In the HG, MrNPF-ir was detected in the epithelium of the villi and gland regions, while MrNPF-ir was also more intense in the F-, R-, and B-cells in the HP. However, we found little colocalization between the MrNPF and PGP9.5/ChAT in digestive tissues, implying that most of the positive cells might not be neurons but could be digestive tract-associated endocrine cells that produce and secrete MrNPF to control digestive organ functions in feeding and utilizing feed. Taken together, our first findings indicated that MrNPF was differentially expressed in digestive organs in correlation with the ovarian cycle, suggesting an important link between MrNPF, the physiology of various digestive organs in feeding, and possibly ovarian maturation in female M. rosenbergii.
Collapse
Affiliation(s)
- Warinthip Vetkama
- Department of Anatomy, Faculty of Science, Mahidol University, 272 Rama VI Road, Ratchathewi District, Bangkok 10400, Thailand
| | - Ruchanok Tinikul
- Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Prasert Sobhon
- Department of Anatomy, Faculty of Science, Mahidol University, 272 Rama VI Road, Ratchathewi District, Bangkok 10400, Thailand
| | - Yotsawan Tinikul
- Department of Anatomy, Faculty of Science, Mahidol University, 272 Rama VI Road, Ratchathewi District, Bangkok 10400, Thailand.
| |
Collapse
|
8
|
Chen J, Nouzova M, Noriega FG, Tatar M. Gut-to-brain regulation of Drosophila aging through neuropeptide F, insulin and juvenile hormone. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.26.600832. [PMID: 38979180 PMCID: PMC11230353 DOI: 10.1101/2024.06.26.600832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Dietary restriction slows aging in many animals, while in some cases the sensory signals from diet alone are sufficient to retard or accelerate lifespan. The digestive tract is a candidate location to sense nutrients, where neuropeptides secreted by enteroendocrine cells (EEC) produce systemic signals in response to food. Here we measure how Drosophila neuropeptide F (NPF) is secreted into adult circulation by enteroendocrine cells and find that specific enteroendocrine cells differentially respond to dietary sugar and yeast. Lifespan is increased when gut NPF is genetically depleted, and this manipulation is sufficient to blunt the longevity benefit conferred by dietary restriction. Depletion of NPF receptors at insulin producing neurons of the brain also increases lifespan, consistent with observations where loss of gut NPF decreases neuronal insulin secretion. The longevity conferred by repressing gut NPF and brain NPF receptors is reversed by treating adults with a juvenile hormone (JH) analog. JH is produced by the adult corpora allata, and inhibition of the insulin receptor at this tissue decreases JH titer and extends lifespan, while this longevity is restored to wild type by treating adults with a JH analog. Overall, enteroendocrine cells of the gut modulate Drosophila aging through interorgan communication mediated by a gut-brain-corpora allata axis, and insulin produced in the brain impacts lifespan through its control of JH titer. These data suggest that we should consider how human incretins and their analogs, which are used to treat obesity and diabetes, may impact aging.
Collapse
Affiliation(s)
- Jiangtian Chen
- Department of Ecology, Evolution and Organismal Biology, Brown University, Providence, RI 02912 USA
| | - Marcela Nouzova
- Institute of Parasitology, Biology Centre CAS, České Budějovice, Czech Republic, 37005
| | - Fernando G. Noriega
- Department of Biological Sciences and Biomolecular Sciences Institute, Florida International University, Miami, FL, 33199 USA
- Department of Parasitology, University of South Bohemia, České Budějovice, 37005 Czech Republic
| | - Marc Tatar
- Department of Ecology, Evolution and Organismal Biology, Brown University, Providence, RI 02912 USA
| |
Collapse
|
9
|
Sukumar SK, Antonydhason V, Molander L, Sandakly J, Kleit M, Umapathy G, Mendoza-Garcia P, Masudi T, Schlosser A, Nässel DR, Wegener C, Shirinian M, Palmer RH. The Alk receptor tyrosine kinase regulates Sparkly, a novel activity regulating neuropeptide precursor in the Drosophila central nervous system. eLife 2024; 12:RP88985. [PMID: 38904987 PMCID: PMC11196111 DOI: 10.7554/elife.88985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024] Open
Abstract
Numerous roles for the Alk receptor tyrosine kinase have been described in Drosophila, including functions in the central nervous system (CNS), however the molecular details are poorly understood. To gain mechanistic insight, we employed Targeted DamID (TaDa) transcriptional profiling to identify targets of Alk signaling in the larval CNS. TaDa was employed in larval CNS tissues, while genetically manipulating Alk signaling output. The resulting TaDa data were analyzed together with larval CNS scRNA-seq datasets performed under similar conditions, identifying a role for Alk in the transcriptional regulation of neuroendocrine gene expression. Further integration with bulk and scRNA-seq datasets from larval brains in which Alk signaling was manipulated identified a previously uncharacterized Drosophila neuropeptide precursor encoded by CG4577 as an Alk signaling transcriptional target. CG4577, which we named Sparkly (Spar), is expressed in a subset of Alk-positive neuroendocrine cells in the developing larval CNS, including circadian clock neurons. In agreement with our TaDa analysis, overexpression of the Drosophila Alk ligand Jeb resulted in increased levels of Spar protein in the larval CNS. We show that Spar protein is expressed in circadian (clock) neurons, and flies lacking Spar exhibit defects in sleep and circadian activity control. In summary, we report a novel activity regulating neuropeptide precursor gene that is regulated by Alk signaling in the Drosophila CNS.
Collapse
Affiliation(s)
- Sanjay Kumar Sukumar
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of GothenburgGothenburgSweden
| | - Vimala Antonydhason
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of GothenburgGothenburgSweden
| | - Linnea Molander
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of GothenburgGothenburgSweden
| | - Jawdat Sandakly
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of BeirutBeirutLebanon
| | - Malak Kleit
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of BeirutBeirutLebanon
| | - Ganesh Umapathy
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of GothenburgGothenburgSweden
| | - Patricia Mendoza-Garcia
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of GothenburgGothenburgSweden
| | - Tafheem Masudi
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of GothenburgGothenburgSweden
| | - Andreas Schlosser
- Julius-Maximilians-Universität Würzburg, Rudolf-Virchow-Center, Center for Integrative and Translational BioimagingWürzburgGermany
| | - Dick R Nässel
- Department of Zoology, Stockholm UniversityStockholmSweden
| | - Christian Wegener
- Julius-Maximilians-Universität Würzburg, Biocenter, Theodor-Boveri-Institute, Neurobiology and GeneticsWürzburgGermany
| | - Margret Shirinian
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of BeirutBeirutLebanon
| | - Ruth H Palmer
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of GothenburgGothenburgSweden
| |
Collapse
|
10
|
Krishnan N. Endocrine Control of Lipid Metabolism. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024. [PMID: 38782869 DOI: 10.1007/5584_2024_807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Lipids are essential in insects and play pleiotropic roles in energy storage, serving as a fuel for energy-driven processes such as reproduction, growth, development, locomotion, flight, starvation response, and diapause induction, maintenance, and termination. Lipids also play fundamental roles in signal transduction, hormone synthesis, forming components of the cell membrane, and thus are essential for maintenance of normal life functions. In insects, the neuroendocrine system serves as a master regulator of most life activities, including growth and development. It is thus important to pay particular attention to the regulation of lipid metabolism through the endocrine system, especially when considering the involvement of peptide hormones in the processes of lipogenesis and lipolysis. In insects, there are several lipogenic and lipolytic hormones that are involved in lipid metabolism such as insulin-like peptides (ILPs), adipokinetic hormone (AKH), 20-hydroxyecdysone (20-HE), juvenile hormone (JH), and serotonin. Other neuropeptides such as diapause hormone-pheromone biosynthesis activating neuropeptide (DH-PBAN), CCHamide-2, short neuropeptide F, and the cytokines Unpaired 1 and 2 may play a role in inducing lipogenesis. On the other hand, neuropeptides such as neuropeptide F, allatostatin-A, corazonin, leukokinin, tachykinins, limostatins, and insulin-like growth factor (ILP6) stimulate lipolysis. This chapter briefly discusses the current knowledge of the endocrine regulation of lipid metabolism in insects that could be utilized to reveal differences between insects and mammalian lipid metabolism which may help understand human diseases associated with dysregulation of lipid metabolism. Physiological similarities of insects to mammals make them valuable model systems for studying human diseases characterized by disrupted lipid metabolism, including conditions like diabetes, obesity, arteriosclerosis, and various metabolic syndromes.
Collapse
Affiliation(s)
- Natraj Krishnan
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS, USA.
| |
Collapse
|
11
|
Cardoso JCR, Mc Shane JC, Li Z, Peng M, Power DM. Revisiting the evolution of Family B1 GPCRs and ligands: Insights from mollusca. Mol Cell Endocrinol 2024; 586:112192. [PMID: 38408601 DOI: 10.1016/j.mce.2024.112192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 02/28/2024]
Abstract
Family B1 G protein-coupled receptors (GPCRs) are one of the most well studied neuropeptide receptor families since they play a central role in many biological processes including endocrine, gastrointestinal, cardiovascular and reproduction in animals. The genes for these receptors emerged from a common ancestral gene in bilaterian genomes and evolved via gene/genome duplications and deletions in vertebrate and invertebrate genomes. Their existence and function have mostly been characterized in vertebrates and few studies exist in invertebrate species. Recently, an increased interest in molluscs, means a series of genomes have become available, and since they are less modified than insect and nematode genomes, they are ideal to explore the origin and evolution of neuropeptide gene families. This review provides an overview of Family B1 GPCRs and their peptide ligands and incorporates new data obtained from Mollusca genomes and taking a comparative approach challenges existing models on their origin and evolution.
Collapse
Affiliation(s)
- João C R Cardoso
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal.
| | - Jennifer C Mc Shane
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Zhi Li
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Maoxiao Peng
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Deborah M Power
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
12
|
Gao J, Zhang S, Deng P, Wu Z, Lemaitre B, Zhai Z, Guo Z. Dietary L-Glu sensing by enteroendocrine cells adjusts food intake via modulating gut PYY/NPF secretion. Nat Commun 2024; 15:3514. [PMID: 38664401 PMCID: PMC11045819 DOI: 10.1038/s41467-024-47465-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Amino acid availability is monitored by animals to adapt to their nutritional environment. Beyond gustatory receptors and systemic amino acid sensors, enteroendocrine cells (EECs) are believed to directly percept dietary amino acids and secrete regulatory peptides. However, the cellular machinery underlying amino acid-sensing by EECs and how EEC-derived hormones modulate feeding behavior remain elusive. Here, by developing tools to specifically manipulate EECs, we find that Drosophila neuropeptide F (NPF) from mated female EECs inhibits feeding, similar to human PYY. Mechanistically, dietary L-Glutamate acts through the metabotropic glutamate receptor mGluR to decelerate calcium oscillations in EECs, thereby causing reduced NPF secretion via dense-core vesicles. Furthermore, two dopaminergic enteric neurons expressing NPFR perceive EEC-derived NPF and relay an anorexigenic signal to the brain. Thus, our findings provide mechanistic insights into how EECs assess food quality and identify a conserved mode of action that explains how gut NPF/PYY modulates food intake.
Collapse
Affiliation(s)
- Junjun Gao
- Department of Medical Genetics, School of Basic Medicine, Institute for Brain Research, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Song Zhang
- Department of Medical Genetics, School of Basic Medicine, Institute for Brain Research, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pan Deng
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, PR China
- Department of Mechanical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| | - Zhigang Wu
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, PR China
| | - Bruno Lemaitre
- Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Zongzhao Zhai
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan, PR China.
| | - Zheng Guo
- Department of Medical Genetics, School of Basic Medicine, Institute for Brain Research, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Cell Architecture Research Center, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
13
|
Quintero M, Bangi E. Disruptions in cell fate decisions and transformed enteroendocrine cells drive intestinal tumorigenesis in Drosophila. Cell Rep 2023; 42:113370. [PMID: 37924517 PMCID: PMC10841758 DOI: 10.1016/j.celrep.2023.113370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 07/11/2023] [Accepted: 10/18/2023] [Indexed: 11/06/2023] Open
Abstract
Most epithelial tissues are maintained by stem cells that produce the different cell lineages required for proper tissue function. Constant communication between different cell types ensures precise regulation of stem cell behavior and cell fate decisions. These cell-cell interactions are often disrupted during tumorigenesis, but mechanisms by which they are co-opted to support tumor growth in different genetic contexts are poorly understood. Here, we introduce PromoterSwitch, a genetic platform we established to generate large, transformed clones derived from individual adult Drosophila intestinal stem/progenitor cells. We show that cancer-driving genetic alterations representing common colon tumor genome landscapes disrupt cell fate decisions within transformed tissue and result in the emergence of abnormal cell fates. We also show that transformed enteroendocrine cells, a differentiated, hormone-secreting cell lineage, support tumor growth by regulating intestinal stem cell proliferation through multiple genotype-dependent mechanisms, which represent potential vulnerabilities that could be exploited for therapy.
Collapse
Affiliation(s)
- Maria Quintero
- Department of Biological Science, Florida State University, Tallahassee, FL 32304, USA
| | - Erdem Bangi
- Department of Biological Science, Florida State University, Tallahassee, FL 32304, USA.
| |
Collapse
|
14
|
Yang ZZ, Parchem RJ. The role of noncoding RNAs in pancreatic birth defects. Birth Defects Res 2023; 115:1785-1808. [PMID: 37066622 PMCID: PMC10579456 DOI: 10.1002/bdr2.2178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/19/2023] [Accepted: 04/03/2023] [Indexed: 04/18/2023]
Abstract
Congenital defects in the pancreas can cause severe health issues such as pancreatic cancer and diabetes which require lifelong treatment. Regenerating healthy pancreatic cells to replace malfunctioning cells has been considered a promising cure for pancreatic diseases including birth defects. However, such therapies are currently unavailable in the clinic. The developmental gene regulatory network underlying pancreatic development must be reactivated for in vivo regeneration and recapitulated in vitro for cell replacement therapy. Thus, understanding the mechanisms driving pancreatic development will pave the way for regenerative therapies. Pancreatic progenitor cells are the precursors of all pancreatic cells which use epigenetic changes to control gene expression during differentiation to generate all of the distinct pancreatic cell types. Epigenetic changes involving DNA methylation and histone modifications can be controlled by noncoding RNAs (ncRNAs). Indeed, increasing evidence suggests that ncRNAs are indispensable for proper organogenesis. Here, we summarize recent insight into the role of ncRNAs in the epigenetic regulation of pancreatic development. We further discuss how disruptions in ncRNA biogenesis and expression lead to developmental defects and diseases. This review summarizes in vivo data from animal models and in vitro studies using stem cell differentiation as a model for pancreatic development.
Collapse
Affiliation(s)
- Ziyue Zoey Yang
- Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, Texas, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, USA
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Ronald J Parchem
- Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, Texas, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, USA
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
15
|
Yoon HJ, Price BE, Parks RK, Ahn SJ, Choi MY. Diuretic hormone 31 activates two G protein-coupled receptors with differential second messengers for diuresis in Drosophila suzukii. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 162:104025. [PMID: 37813200 DOI: 10.1016/j.ibmb.2023.104025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/06/2023] [Accepted: 10/06/2023] [Indexed: 10/11/2023]
Abstract
Diuretic hormones (DHs) bind to G protein-coupled receptors (GPCRs), regulating water and ion balance to maintain homeostasis in animals. Two distinct DHs are known in insects: calcitonin (CT)-like DH31 and corticotropin-releasing factor (CRF)-like DH44. In this study, we identified and characterized DH31 and two DH31 GPCR variants, DH31-Ra and DH31-Rb, from spotted-wing drosophila, Drosophila suzukii, a globally prevalent vinegar fly causing severe damage to small fruits. Both GPCRs are active, but DH31-Ra is the dominant receptor based on gene expression analyses and DH31 peptide binding affinities. A notable difference between the two variants lies in 1) the GPCR structures of their C-termini and 2) the utilization of second messengers, and the amino acid sequences of the two variants are identical. DH31-Ra contains 12 additional amino acids, providing different intracellular C-terminal configurations. DH31-Ra utilizes both cAMP and Ca2+ as second messengers, whereas DH31-Rb utilizes only cAMP; this is the first time reported for an insect CT-like DH31 peptide. DH31 stimulated fluid secretion in D. suzukii adults, and secretion increased in a dose-dependent manner. However, when the fly was injected with a mixture of DH31 and CAPA, an anti-diuretic hormone, fluid secretion was suppressed. Here, we discuss the structures of the DH31 receptors and the differential signaling pathways, including second messengers, involved in fly diuresis. These findings provide fundamental insights into the characterization of D. suzukii DH31 and DH31-Rs, and facilitate the identification of potential biological targets for D. suzukii management.
Collapse
Affiliation(s)
- Ho Jung Yoon
- USDA-ARS, Horticultural Crops Research Unit, 3420 NW Orchard Ave, Corvallis, OR, 97330, USA; Department of Horticulture, Oregon State University, 3420 NW Orchard Ave, Corvallis, OR, 97330, USA
| | - Briana E Price
- USDA-ARS, Horticultural Crops Research Unit, 3420 NW Orchard Ave, Corvallis, OR, 97330, USA
| | - Ryssa K Parks
- USDA-ARS, Horticultural Crops Research Unit, 3420 NW Orchard Ave, Corvallis, OR, 97330, USA; Department of Horticulture, Oregon State University, 3420 NW Orchard Ave, Corvallis, OR, 97330, USA
| | - Seung-Joon Ahn
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Man-Yeon Choi
- USDA-ARS, Horticultural Crops Research Unit, 3420 NW Orchard Ave, Corvallis, OR, 97330, USA.
| |
Collapse
|
16
|
González Segarra AJ, Pontes G, Jourjine N, Del Toro A, Scott K. Hunger- and thirst-sensing neurons modulate a neuroendocrine network to coordinate sugar and water ingestion. eLife 2023; 12:RP88143. [PMID: 37732734 PMCID: PMC10513480 DOI: 10.7554/elife.88143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023] Open
Abstract
Consumption of food and water is tightly regulated by the nervous system to maintain internal nutrient homeostasis. Although generally considered independently, interactions between hunger and thirst drives are important to coordinate competing needs. In Drosophila, four neurons called the interoceptive subesophageal zone neurons (ISNs) respond to intrinsic hunger and thirst signals to oppositely regulate sucrose and water ingestion. Here, we investigate the neural circuit downstream of the ISNs to examine how ingestion is regulated based on internal needs. Utilizing the recently available fly brain connectome, we find that the ISNs synapse with a novel cell-type bilateral T-shaped neuron (BiT) that projects to neuroendocrine centers. In vivo neural manipulations revealed that BiT oppositely regulates sugar and water ingestion. Neuroendocrine cells downstream of ISNs include several peptide-releasing and peptide-sensing neurons, including insulin producing cells (IPCs), crustacean cardioactive peptide (CCAP) neurons, and CCHamide-2 receptor isoform RA (CCHa2R-RA) neurons. These neurons contribute differentially to ingestion of sugar and water, with IPCs and CCAP neurons oppositely regulating sugar and water ingestion, and CCHa2R-RA neurons modulating only water ingestion. Thus, the decision to consume sugar or water occurs via regulation of a broad peptidergic network that integrates internal signals of nutritional state to generate nutrient-specific ingestion.
Collapse
Affiliation(s)
| | - Gina Pontes
- University of California, BerkeleyBerkeleyUnited States
| | | | | | - Kristin Scott
- University of California, BerkeleyBerkeleyUnited States
| |
Collapse
|
17
|
González-Segarra AJ, Pontes G, Jourjine N, Del Toro A, Scott K. Hunger- and thirst-sensing neurons modulate a neuroendocrine network to coordinate sugar and water ingestion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.06.535891. [PMID: 37066363 PMCID: PMC10104137 DOI: 10.1101/2023.04.06.535891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Consumption of food and water is tightly regulated by the nervous system to maintain internal nutrient homeostasis. Although generally considered independently, interactions between hunger and thirst drives are important to coordinate competing needs. In Drosophila , four neurons called the Interoceptive Subesophageal zone Neurons (ISNs) respond to intrinsic hunger and thirst signals to oppositely regulate sucrose and water ingestion. Here, we investigate the neural circuit downstream of the ISNs to examine how ingestion is regulated based on internal needs. Utilizing the recently available fly brain connectome, we find that the ISNs synapse with a novel cell type Bilateral T-shaped neuron (BiT) that projects to neuroendocrine centers. In vivo neural manipulations revealed that BiT oppositely regulates sugar and water ingestion. Neuroendocrine cells downstream of ISNs include several peptide-releasing and peptide-sensing neurons, including insulin producing cells (IPC), crustacean cardioactive peptide (CCAP) neurons, and CCHamide-2 receptor isoform RA (CCHa2R-RA) neurons. These neurons contribute differentially to ingestion of sugar and water, with IPCs and CCAP neurons oppositely regulating sugar and water ingestion, and CCHa2R-RA neurons modulating only water ingestion. Thus, the decision to consume sugar or water occurs via regulation of a broad peptidergic network that integrates internal signals of nutritional state to generate nutrient-specific ingestion.
Collapse
Affiliation(s)
| | - Gina Pontes
- University of California, Berkeley, United States
- present address: IBBEA, CONICET-UBA, Buenos Aires, Argentina
| | - Nicholas Jourjine
- University of California, Berkeley, United States
- present address: Harvard University, Cambridge, United States
| | - Alexander Del Toro
- University of California, Berkeley, United States
- present address: Brown University, Rhode Island, United States
| | | |
Collapse
|
18
|
Liu J, Liu W, Thakur D, Mack J, Spina A, Montell C. Alleviation of thermal nociception depends on heat-sensitive neurons and a TRP channel in the brain. Curr Biol 2023; 33:2397-2406.e6. [PMID: 37201520 PMCID: PMC10330845 DOI: 10.1016/j.cub.2023.04.055] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/11/2023] [Accepted: 04/24/2023] [Indexed: 05/20/2023]
Abstract
Acute avoidance of dangerous temperatures is critical for animals to prevent or minimize injury. Therefore, surface receptors have evolved to endow neurons with the capacity to detect noxious heat so that animals can initiate escape behaviors. Animals including humans have evolved intrinsic pain-suppressing systems to attenuate nociception under some circumstances. Here, using Drosophila melanogaster, we uncovered a new mechanism through which thermal nociception is suppressed. We identified a single descending neuron in each brain hemisphere, which is the center for suppression of thermal nociception. These Epi neurons, for Epione-the goddess of soothing of pain-express a nociception-suppressing neuropeptide Allatostatin C (AstC), which is related to a mammalian anti-nociceptive peptide, somatostatin. Epi neurons are direct sensors for noxious heat, and when activated they release AstC, which diminishes nociception. We found that Epi neurons also express the heat-activated TRP channel, Painless (Pain), and thermal activation of Epi neurons and the subsequent suppression of thermal nociception depend on Pain. Thus, while TRP channels are well known to sense noxious temperatures to promote avoidance behavior, this work reveals the first role for a TRP channel for detecting noxious temperatures for the purpose of suppressing rather than enhancing nociception behavior in response to hot thermal stimuli.
Collapse
Affiliation(s)
- Jiangqu Liu
- Neuroscience Research Institute and Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Weiwei Liu
- Neuroscience Research Institute and Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Dhananjay Thakur
- Neuroscience Research Institute and Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - John Mack
- Neuroscience Research Institute and Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Aidin Spina
- Neuroscience Research Institute and Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Craig Montell
- Neuroscience Research Institute and Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA.
| |
Collapse
|
19
|
Oikawa I, Kondo S, Hashimoto K, Yoshida A, Hamajima M, Tanimoto H, Furukubo-Tokunaga K, Honjo K. A descending inhibitory mechanism of nociception mediated by an evolutionarily conserved neuropeptide system in Drosophila. eLife 2023; 12:RP85760. [PMID: 37310871 DOI: 10.7554/elife.85760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023] Open
Abstract
Nociception is a neural process that animals have developed to avoid potentially tissue-damaging stimuli. While nociception is triggered in the peripheral nervous system, its modulation by the central nervous system is a critical process in mammals, whose dysfunction has been extensively implicated in chronic pain pathogenesis. The peripheral mechanisms of nociception are largely conserved across the animal kingdom. However, it is unclear whether the brain-mediated modulation is also conserved in non-mammalian species. Here, we show that Drosophila has a descending inhibitory mechanism of nociception from the brain, mediated by the neuropeptide Drosulfakinin (DSK), a homolog of cholecystokinin (CCK) that plays an important role in the descending control of nociception in mammals. We found that mutants lacking dsk or its receptors are hypersensitive to noxious heat. Through a combination of genetic, behavioral, histological, and Ca2+ imaging analyses, we subsequently revealed neurons involved in DSK-mediated nociceptive regulation at a single-cell resolution and identified a DSKergic descending neuronal pathway that inhibits nociception. This study provides the first evidence for a descending modulatory mechanism of nociception from the brain in a non-mammalian species that is mediated by the evolutionarily conserved CCK system, raising the possibility that the descending inhibition is an ancient mechanism to regulate nociception.
Collapse
Affiliation(s)
- Izumi Oikawa
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Shu Kondo
- Faculty of Advanced Engineering, Tokyo University of Science, Katsushika-ku, Tokyo, Japan
| | - Kao Hashimoto
- College of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Akiho Yoshida
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Megumi Hamajima
- Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Hiromu Tanimoto
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | | | - Ken Honjo
- Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Japan
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
20
|
Li Y, Zhou X, Cheng C, Ding G, Zhao P, Tan K, Chen L, Perrimon N, Veenstra JA, Zhang L, Song W. Gut AstA mediates sleep deprivation-induced energy wasting in Drosophila. Cell Discov 2023; 9:49. [PMID: 37221172 DOI: 10.1038/s41421-023-00541-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 03/13/2023] [Indexed: 05/25/2023] Open
Abstract
Severe sleep deprivation (SD) has been highly associated with systemic energy wasting, such as lipid loss and glycogen depletion. Despite immune dysregulation and neurotoxicity observed in SD animals, whether and how the gut-secreted hormones participate in SD-induced disruption of energy homeostasis remains largely unknown. Using Drosophila as a conserved model organism, we characterize that production of intestinal Allatostatin A (AstA), a major gut-peptide hormone, is robustly increased in adult flies bearing severe SD. Interestingly, the removal of AstA production in the gut using specific drivers significantly improves lipid loss and glycogen depletion in SD flies without affecting sleep homeostasis. We reveal the molecular mechanisms whereby gut AstA promotes the release of an adipokinetic hormone (Akh), an insulin counter-regulatory hormone functionally equivalent to mammalian glucagon, to mobilize systemic energy reserves by remotely targeting its receptor AstA-R2 in Akh-producing cells. Similar regulation of glucagon secretion and energy wasting by AstA/galanin is also observed in SD mice. Further, integrating single-cell RNA sequencing and genetic validation, we uncover that severe SD results in ROS accumulation in the gut to augment AstA production via TrpA1. Altogether, our results demonstrate the essential roles of the gut-peptide hormone AstA in mediating SD-associated energy wasting.
Collapse
Affiliation(s)
- Yingge Li
- Department of Hepatobiliary and Pancreatic Surgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Xiaoya Zhou
- Department of Hepatobiliary and Pancreatic Surgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Chen Cheng
- Department of Hepatobiliary and Pancreatic Surgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Guangming Ding
- Department of Hepatobiliary and Pancreatic Surgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Peng Zhao
- Department of Hepatobiliary and Pancreatic Surgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Kai Tan
- Department of Hepatobiliary and Pancreatic Surgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Lixia Chen
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Norbert Perrimon
- Department of Genetics, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Jan A Veenstra
- INCIA, UMR 5287 CNRS, University of Bordeaux, Talence, France
| | - Luoying Zhang
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wei Song
- Department of Hepatobiliary and Pancreatic Surgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China.
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
21
|
Lee G, Jang H, Oh Y. The role of diuretic hormones (DHs) and their receptors in Drosophila. BMB Rep 2023; 56:209-215. [PMID: 36977606 PMCID: PMC10140481 DOI: 10.5483/bmbrep.2023-0021] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/12/2023] [Accepted: 03/28/2023] [Indexed: 10/11/2023] Open
Abstract
Maintaining internal homeostasis and regulating innate behaviors are essential for animal survival. In various animal species, a highly conserved neuroendocrine system integrates sensory inputs and regulates physiological responses to environmental and internal changes. Diuretic hormones 44 and 31, which are homologs of mammalian corticotropin-releasing factor (CRF) and calcitonin gene-related peptide (CGRP), respectively, control body fluid secretion in Drosophila. These neuropeptides and their receptors have multiple physiological roles, including the regulation of body-fluid secretion, sleep:wake cycle, internal nutrientsensing, and CO2-dependent response. This review discusses the physiological and behavioral roles of DH44 and DH31 signaling pathways, consisting of neuroendocrine cells that secrete DH44 or DH31 peptides and their receptor-expressing organs. Further research is needed to understand the regulatory mechanisms of the behavioral processes mediated by these neuroendocrine systems. [BMB Reports 2023; 56(4): 209-215].
Collapse
Affiliation(s)
- Gahbien Lee
- Department of Life Sciences, College of Natural Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Heejin Jang
- Department of Life Sciences, College of Natural Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Yangkyun Oh
- Department of Life Sciences, College of Natural Sciences, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
22
|
Kotronarou K, Charalambous A, Evangelou A, Georgiou O, Demetriou A, Apidianakis Y. Dietary Stimuli, Intestinal Bacteria and Peptide Hormones Regulate Female Drosophila Defecation Rate. Metabolites 2023; 13:metabo13020264. [PMID: 36837883 PMCID: PMC9965912 DOI: 10.3390/metabo13020264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/09/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Peptide hormones control Drosophila gut motility, but the intestinal stimuli and the gene networks coordinating this trait remain poorly defined. Here, we customized an assay to quantify female Drosophila defecation rate as a proxy of intestinal motility. We found that bacterial infection with the human opportunistic bacterial pathogen Pseudomonas aeruginosa (strain PA14) increases defecation rate in wild-type female flies, and we identified specific bacteria of the fly microbiota able to increase defecation rate. In contrast, dietary stress, imposed by either water-only feeding or high ethanol consumption, decreased defecation rate and the expression of enteroendocrine-produced hormones in the fly midgut, such as Diuretic hormone 31 (Dh31). The decrease in defecation due to dietary stress was proportional to the impact of each stressor on fly survival. Furthermore, we exploited the Drosophila Genetic Reference Panel wild type strain collection and identified strains displaying high and low defecation rates. We calculated the narrow-sense heritability of defecation rate to be 91%, indicating that the genetic variance observed using our assay is mostly additive and polygenic in nature. Accordingly, we performed a genome-wide association (GWA) analysis revealing 17 candidate genes linked to defecation rate. Downregulation of four of them (Pmp70, CG11307, meso18E and mub) in either the midgut enteroendocrine cells or in neurons reduced defecation rate and altered the midgut expression of Dh31, that in turn regulates defecation rate via signaling to the visceral muscle. Hence, microbial and dietary stimuli, and Dh31-controlling genes, regulate defecation rate involving signaling within and among neuronal, enteroendocrine, and visceral muscle cells.
Collapse
|
23
|
Liessem S, Held M, Bisen RS, Haberkern H, Lacin H, Bockemühl T, Ache JM. Behavioral state-dependent modulation of insulin-producing cells in Drosophila. Curr Biol 2023; 33:449-463.e5. [PMID: 36580915 DOI: 10.1016/j.cub.2022.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/01/2022] [Accepted: 12/02/2022] [Indexed: 12/29/2022]
Abstract
Insulin signaling plays a pivotal role in metabolic control and aging, and insulin accordingly is a key factor in several human diseases. Despite this importance, the in vivo activity dynamics of insulin-producing cells (IPCs) are poorly understood. Here, we characterized the effects of locomotion on the activity of IPCs in Drosophila. Using in vivo electrophysiology and calcium imaging, we found that IPCs were strongly inhibited during walking and flight and that their activity rebounded and overshot after cessation of locomotion. Moreover, IPC activity changed rapidly during behavioral transitions, revealing that IPCs are modulated on fast timescales in behaving animals. Optogenetic activation of locomotor networks ex vivo, in the absence of actual locomotion or changes in hemolymph sugar levels, was sufficient to inhibit IPCs. This demonstrates that the behavioral state-dependent inhibition of IPCs is actively controlled by neuronal pathways and is independent of changes in glucose concentration. By contrast, the overshoot in IPC activity after locomotion was absent ex vivo and after starvation, indicating that it was not purely driven by feedforward signals but additionally required feedback derived from changes in hemolymph sugar concentration. We hypothesize that IPC inhibition during locomotion supports mobilization of fuel stores during metabolically demanding behaviors, while the rebound in IPC activity after locomotion contributes to replenishing muscle glycogen stores. In addition, the rapid dynamics of IPC modulation support a potential role of insulin in the state-dependent modulation of sensorimotor processing.
Collapse
Affiliation(s)
- Sander Liessem
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, Julius-Maximilians-University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Martina Held
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, Julius-Maximilians-University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Rituja S Bisen
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, Julius-Maximilians-University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Hannah Haberkern
- HHMI Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Haluk Lacin
- Department of Genetics, Washington University School of Medicine, 4523 Clayton Avenue, St Louis, MO 63110, USA
| | - Till Bockemühl
- Department of Biology, Institute of Zoology, University of Cologne, Zülpicher Str. 47b, 50674 Cologne, Germany
| | - Jan M Ache
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, Julius-Maximilians-University of Würzburg, Am Hubland, 97074 Würzburg, Germany.
| |
Collapse
|
24
|
Okamoto N, Watanabe A. Interorgan communication through peripherally derived peptide hormones in Drosophila. Fly (Austin) 2022; 16:152-176. [PMID: 35499154 PMCID: PMC9067537 DOI: 10.1080/19336934.2022.2061834] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/21/2022] [Accepted: 03/29/2022] [Indexed: 02/06/2023] Open
Abstract
In multicellular organisms, endocrine factors such as hormones and cytokines regulate development and homoeostasis through communication between different organs. For understanding such interorgan communications through endocrine factors, the fruit fly Drosophila melanogaster serves as an excellent model system due to conservation of essential endocrine systems between flies and mammals and availability of powerful genetic tools. In Drosophila and other insects, functions of neuropeptides or peptide hormones from the central nervous system have been extensively studied. However, a series of recent studies conducted in Drosophila revealed that peptide hormones derived from peripheral tissues also play critical roles in regulating multiple biological processes, including growth, metabolism, reproduction, and behaviour. Here, we summarise recent advances in understanding target organs/tissues and functions of peripherally derived peptide hormones in Drosophila and describe how these hormones contribute to various biological events through interorgan communications.
Collapse
Affiliation(s)
- Naoki Okamoto
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Akira Watanabe
- Degree Programs in Life and Earth Sciences, Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
25
|
Abe M, Kamiyama T, Izumi Y, Qian Q, Yoshihashi Y, Degawa Y, Watanabe K, Hattori Y, Uemura T, Niwa R. Shortened lifespan induced by a high-glucose diet is associated with intestinal immune dysfunction in Drosophila sechellia. J Exp Biol 2022; 225:jeb244423. [PMID: 36226701 PMCID: PMC9687539 DOI: 10.1242/jeb.244423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 10/03/2022] [Indexed: 11/20/2022]
Abstract
Organisms can generally be divided into two nutritional groups: generalists that consume various types of food and specialists that consume specific types of food. However, it remains unclear how specialists adapt to only limited nutritional conditions in nature. In this study, we addressed this question by focusing on Drosophila fruit flies. The generalist Drosophila melanogaster can consume a wide variety of foods that contain high glucose levels. In contrast, the specialist Drosophila sechellia consumes only the Indian mulberry, known as noni (Morinda citrifolia), which contains relatively little glucose. We showed that the lifespan of D. sechellia was significantly shortened under a high-glucose diet, but this effect was not observed for D. melanogaster. In D. sechellia, a high-glucose diet induced disorganization of the gut epithelia and visceral muscles, which was associated with abnormal digestion and constipation. RNA-sequencing analysis revealed that many immune-responsive genes were suppressed in the gut of D. sechellia fed a high-glucose diet compared with those fed a control diet. Consistent with this difference in the expression of immune-responsive genes, high glucose-induced phenotypes were restored by the addition of tetracycline or scopoletin, a major nutritional component of noni, each of which suppresses gut bacterial growth. We propose that, in D. sechellia, a high-glucose diet impairs gut immune function, which leads to a change in gut microbiota, disorganization of the gut epithelial structure and a shortened lifespan.
Collapse
Affiliation(s)
- Maiko Abe
- Degree Programs in Life and Earth Sciences, Graduate School of Science and Technology, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8572, Japan
| | - Takumi Kamiyama
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8577, Japan
| | - Yasushi Izumi
- Division of Cell Structure, National Institute for Physiological Sciences, Okazaki, Aichi 444-8787, Japan
- Department of Physiological Sciences, School of Life Science, SOKENDAI (Graduate University for Advanced Studies), Okazaki, Aichi 444-8585, Japan
| | - Qingyin Qian
- PhD Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8577, Japan
| | - Yuma Yoshihashi
- Degree Programs in Life and Earth Sciences, Graduate School of Science and Technology, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8572, Japan
- Sugadaira Research Station, Mountain Science Center, University of Tsukuba, Sugadairakogen 1278-294, Nagano 386-2204, Japan
| | - Yousuke Degawa
- Sugadaira Research Station, Mountain Science Center, University of Tsukuba, Sugadairakogen 1278-294, Nagano 386-2204, Japan
| | - Kaori Watanabe
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Yukako Hattori
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Tadashi Uemura
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
- Research Center for Dynamic Living Systems, Kyoto University, Kyoto 606-8501, Japan
- AMED-CREST, AMED, Otemachi 1-7-1, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Ryusuke Niwa
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8577, Japan
- AMED-CREST, AMED, Otemachi 1-7-1, Chiyoda-ku, Tokyo 100-0004, Japan
| |
Collapse
|
26
|
Malita A, Kubrak O, Koyama T, Ahrentløv N, Texada MJ, Nagy S, Halberg KV, Rewitz K. A gut-derived hormone suppresses sugar appetite and regulates food choice in Drosophila. Nat Metab 2022; 4:1532-1550. [PMID: 36344765 PMCID: PMC9684077 DOI: 10.1038/s42255-022-00672-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 09/30/2022] [Indexed: 11/09/2022]
Abstract
Animals must adapt their dietary choices to meet their nutritional needs. How these needs are detected and translated into nutrient-specific appetites that drive food-choice behaviours is poorly understood. Here we show that enteroendocrine cells of the adult female Drosophila midgut sense nutrients and in response release neuropeptide F (NPF), which is an ortholog of mammalian neuropeptide Y-family gut-brain hormones. Gut-derived NPF acts on glucagon-like adipokinetic hormone (AKH) signalling to induce sugar satiety and increase consumption of protein-rich food, and on adipose tissue to promote storage of ingested nutrients. Suppression of NPF-mediated gut signalling leads to overconsumption of dietary sugar while simultaneously decreasing intake of protein-rich yeast. Furthermore, gut-derived NPF has a female-specific function in promoting consumption of protein-containing food in mated females. Together, our findings suggest that gut NPF-to-AKH signalling modulates specific appetites and regulates food choice to ensure homeostatic consumption of nutrients, providing insight into the hormonal mechanisms that underlie nutrient-specific hungers.
Collapse
Affiliation(s)
- Alina Malita
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Olga Kubrak
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Takashi Koyama
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Nadja Ahrentløv
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Michael J Texada
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Stanislav Nagy
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Kenneth V Halberg
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Kim Rewitz
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
27
|
Guo X, Zhang Y, Huang H, Xi R. A hierarchical transcription factor cascade regulates enteroendocrine cell diversity and plasticity in Drosophila. Nat Commun 2022; 13:6525. [PMID: 36316343 PMCID: PMC9622890 DOI: 10.1038/s41467-022-34270-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 10/19/2022] [Indexed: 11/07/2022] Open
Abstract
Enteroendocrine cells (EEs) represent a heterogeneous cell population in intestine and exert endocrine functions by secreting a diverse array of neuropeptides. Although many transcription factors (TFs) required for specification of EEs have been identified in both mammals and Drosophila, it is not understood how these TFs work together to generate this considerable subtype diversity. Here we show that EE diversity in adult Drosophila is generated via an "additive hierarchical TF cascade". Specifically, a combination of a master TF, a secondary-level TF and a tertiary-level TF constitute a "TF code" for generating EE diversity. We also discover a high degree of post-specification plasticity of EEs, as changes in the code-including as few as one distinct TF-allow efficient switching of subtype identities. Our study thus reveals a hierarchically-organized TF code that underlies EE diversity and plasticity in Drosophila, which can guide investigations of EEs in mammals and inform their application in medicine.
Collapse
Affiliation(s)
- Xingting Guo
- grid.410717.40000 0004 0644 5086National Institute of Biological Sciences, No. 7 Science Park Road, Zhongguancun Life Science Park, 102206 Beijing, China ,grid.12527.330000 0001 0662 3178Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, 102206 Beijing, China
| | - Yongchao Zhang
- grid.410717.40000 0004 0644 5086National Institute of Biological Sciences, No. 7 Science Park Road, Zhongguancun Life Science Park, 102206 Beijing, China ,grid.12527.330000 0001 0662 3178Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, 102206 Beijing, China
| | - Huanwei Huang
- grid.410717.40000 0004 0644 5086National Institute of Biological Sciences, No. 7 Science Park Road, Zhongguancun Life Science Park, 102206 Beijing, China ,grid.12527.330000 0001 0662 3178Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, 102206 Beijing, China
| | - Rongwen Xi
- grid.410717.40000 0004 0644 5086National Institute of Biological Sciences, No. 7 Science Park Road, Zhongguancun Life Science Park, 102206 Beijing, China ,grid.12527.330000 0001 0662 3178Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, 102206 Beijing, China
| |
Collapse
|
28
|
Hauser F, Koch TL, Grimmelikhuijzen CJP. Review: The evolution of peptidergic signaling in Cnidaria and Placozoa, including a comparison with Bilateria. Front Endocrinol (Lausanne) 2022; 13:973862. [PMID: 36213267 PMCID: PMC9545775 DOI: 10.3389/fendo.2022.973862] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/26/2022] [Indexed: 11/13/2022] Open
Abstract
Bilateria have bilateral symmetry and are subdivided into Deuterostomia (animals like vertebrates) and Protostomia (animals like insects and mollusks). Neuropeptides occur in both Proto- and Deuterostomia and they are frequently structurally related across these two lineages. For example, peptides belonging to the oxytocin/vasopressin family exist in both clades. The same is true for the G protein-coupled receptors (GPCRs) of these peptides. These observations suggest that these neuropeptides and their GPCRs were already present in the common ancestor of Proto- and Deuterostomia, which lived about 700 million years ago (MYA). Furthermore, neuropeptides and their GPCRs occur in two early-branching phyla that diverged before the emergence of Bilateria: Cnidaria (animals like corals and sea anemones), and Placozoa (small disk-like animals, feeding on algae). The sequences of these neuropeptides and their GPCRs, however, are not closely related to those from Bilateria. In addition, cnidarian neuropeptides and their receptors are not closely related to those from Placozoa. We propose that the divergence times between Cnidaria, Placozoa, and Bilateria might be too long for recognizing sequence identities. Leucine-rich repeats-containing GPCRs (LGRs) are a special class of GPCRs that are characterized by a long N-terminus containing 10-20 leucine-rich domains, which are used for ligand binding. Among the ligands for LGRs are dimeric glycoprotein hormones, and insulin-like peptides, such as relaxin. LGRs have been found not only in Proto- and Deuterostomia, but also in early emerging phyla, such as Cnidaria and Placozoa. Humans have eight LGRs. In our current review, we have revisited the annotations of LGRs from the sea anemone Nematostella vectensis and the placozoan Trichoplax adhaerens. We identified 13 sea anemone LGRs and no less than 46 LGRs from T. adhaerens. All eight human LGRs appear to have orthologues in sea anemones and placozoans. LGRs and their ligands, therefore, have a long evolutionary history, going back to the common ancestor of Cnidaria and Placozoa.
Collapse
Affiliation(s)
- Frank Hauser
- Section for Cell and Neurobiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Thomas L. Koch
- Section for Cell and Neurobiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
29
|
Genome-wide analysis identifies Homothorax and Extradenticle as regulators of insulin in Drosophila Insulin-Producing cells. PLoS Genet 2022; 18:e1010380. [PMID: 36095003 PMCID: PMC9499297 DOI: 10.1371/journal.pgen.1010380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 09/22/2022] [Accepted: 08/15/2022] [Indexed: 11/19/2022] Open
Abstract
Drosophila Insulin-Producing Cells (IPCs) are the main production site of the Drosophila Insulin-like peptides or dilps which have key roles in regulating growth, development, reproduction, lifespan and metabolism. To better understand the signalling pathways and transcriptional networks that are active in the IPCs we queried publicly available transcriptome data of over 180 highly inbred fly lines for dilp expression and used dilp expression as the input for a Genome-wide association study (GWAS). This resulted in the identification of variants in 125 genes that were associated with variation in dilp expression. The function of 57 of these genes in the IPCs was tested using an RNAi-based approach. We found that IPC-specific depletion of most genes resulted in differences in expression of one or more of the dilps. We then elaborated further on one of the candidate genes with the strongest effect on dilp expression, Homothorax, a transcription factor known for its role in eye development. We found that Homothorax and its binding partner Extradenticle are involved in regulating dilp2, -3 and -5 expression and that genetic depletion of both TFs shows phenotypes associated with reduced insulin signalling. Furthermore, we provide evidence that other transcription factors involved in eye development are also functional in the IPCs. In conclusion, we showed that this expression level-based GWAS approach identified genetic regulators implicated in IPC function and dilp expression. Insulin signalling has a central and evolutionarily conserved role in many processes including growth, development, reproduction, lifespan, stress resistance and metabolic homeostasis. In the fruitfly Drosophila melanogaster insulin-producing cells in the brain are the main source of three insulin-like peptides, Dilp2, -3 and -5. How the production and secretion of these three insulin-like peptides are regulated remains incompletely understood. In the current study, genome-wide association studies were used to identify 50 novel regulators of Dilp2, -3 and -5. We show that one of the top candidate regulators, Homothorax, is an important regulator of dilp2, -3 and –5 expression in the IPCs and is necessary for normal systemic insulin signalling and regulates adult size and developmental timing. We also show that the Hth interactor Extradenticle (Exd) is equally required in the adult but not in the larval IPCs. Finally, we show that most genes of the so-called retinal determination gene network are expressed in the IPCs and regulate normal dilp2 and -5 expression. Together, these results identify further regulatory levels active in the IPCs and implicate a reshuffled version of a previously identified gene regulatory network therein.
Collapse
|
30
|
Roller L, Daubnerová I, Mizoguchi A, Satake H, Tanaka Y, Stano M, Klucar L, Žitňan D. Expression analysis of peptidergic enteroendocrine cells in the silkworm Bombyx mori. Cell Tissue Res 2022; 389:385-407. [PMID: 35829810 DOI: 10.1007/s00441-022-03666-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 06/27/2022] [Indexed: 11/25/2022]
Abstract
Enteroendocrine cells (ECs) in the insect midgut respond to physiological changes in the intestine by releasing multiple peptides to control food intake, gastrointestinal activity and systemic metabolism. Here, we performed a comprehensive mapping of ECs producing different regulatory peptides in the larval midgut of Bombyx mori. In total, we identified 20 peptide genes expressed in different ECs in specific regions of the midgut. Transcript-specific in situ hybridisation combined with antibody staining revealed approximately 30 subsets of ECs, each producing a unique peptide or a combination of several different peptides. Functional significance of this diversity and specific roles of different enteroendocrine peptides are largely unknown. Results of this study highlight the importance of the midgut as a major endocrine/paracrine source of regulatory molecules in insects and provide important information to clarify functions of ECs during larval feeding and development.
Collapse
Affiliation(s)
- Ladislav Roller
- Institute of Zoology, Slovak Academy of Sciences, Bratislava, Slovakia.
- Institute of Molecular Physiology and Genetics, Centre of Biosciences SAS, Bratislava, Slovakia.
| | - Ivana Daubnerová
- Institute of Zoology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Akira Mizoguchi
- Division of Liberal Arts and Sciences, Aichi Gakuin University, Nisshin, Aichi, Japan
| | - Honoo Satake
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan
| | - Yoshiaki Tanaka
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Matej Stano
- Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Lubos Klucar
- Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Dušan Žitňan
- Institute of Zoology, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
31
|
Nässel DR, Zandawala M. Endocrine cybernetics: neuropeptides as molecular switches in behavioural decisions. Open Biol 2022; 12:220174. [PMID: 35892199 PMCID: PMC9326288 DOI: 10.1098/rsob.220174] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Plasticity in animal behaviour relies on the ability to integrate external and internal cues from the changing environment and hence modulate activity in synaptic circuits of the brain. This context-dependent neuromodulation is largely based on non-synaptic signalling with neuropeptides. Here, we describe select peptidergic systems in the Drosophila brain that act at different levels of a hierarchy to modulate behaviour and associated physiology. These systems modulate circuits in brain regions, such as the central complex and the mushroom bodies, which supervise specific behaviours. At the top level of the hierarchy there are small numbers of large peptidergic neurons that arborize widely in multiple areas of the brain to orchestrate or modulate global activity in a state and context-dependent manner. At the bottom level local peptidergic neurons provide executive neuromodulation of sensory gain and intrinsically in restricted parts of specific neuronal circuits. The orchestrating neurons receive interoceptive signals that mediate energy and sleep homeostasis, metabolic state and circadian timing, as well as external cues that affect food search, aggression or mating. Some of these cues can be triggers of conflicting behaviours such as mating versus aggression, or sleep versus feeding, and peptidergic neurons participate in circuits, enabling behaviour choices and switches.
Collapse
Affiliation(s)
- Dick R. Nässel
- Department of Zoology, Stockholm University, 10691 Stockholm, Sweden
| | - Meet Zandawala
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Am Hubland Würzburg 97074, Germany
| |
Collapse
|
32
|
Holsopple JM, Cook KR, Popodi EM. Identification of novel split-GAL4 drivers for the characterization of enteroendocrine cells in the Drosophila melanogaster midgut. G3 (BETHESDA, MD.) 2022; 12:jkac102. [PMID: 35485968 PMCID: PMC9157172 DOI: 10.1093/g3journal/jkac102] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 04/18/2022] [Indexed: 01/09/2023]
Abstract
The Drosophila melanogaster midgut is commonly studied as a model epithelial tissue for many reasons, one of which is the presence of a diverse population of secretory cells called enteroendocrine cells. Subpopulations of these cells secrete various combinations of peptide hormones which have systemic effects on the organism. Many of these hormones are also produced in the Drosophila brain. The split-GAL4 system has been useful for identifying and manipulating discrete groups of cells, but previously characterized split-GAL4 drivers have not driven expression in high proportions of enteroendocrine cells. In this study, we screened candidate split-GAL4 drivers for enteroendocrine cell expression using known reference drivers for this cell type and discovered a new split-GAL4 driver pair that confers expression in a greater number of enteroendocrine cells than previously characterized driver pairs. The new pair demonstrates less brain expression, thereby providing better tools for disentangling the physiological roles of gut- and brain-secreted peptides. We also identified additional split-GAL4 drivers that promote expression in discrete subpopulations of enteroendocrine cells. Overall, the tools reported here will help researchers better target enteroendocrine cell subpopulations.
Collapse
Affiliation(s)
- Jessica M Holsopple
- Department of Biology, Bloomington Drosophila Stock Center, Indiana University, Bloomington, IN 47405, USA
| | - Kevin R Cook
- Department of Biology, Bloomington Drosophila Stock Center, Indiana University, Bloomington, IN 47405, USA
| | - Ellen M Popodi
- Department of Biology, Bloomington Drosophila Stock Center, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
33
|
Meiselman MR, Alpert MH, Cui X, Shea J, Gregg I, Gallio M, Yapici N. Recovery from cold-induced reproductive dormancy is regulated by temperature-dependent AstC signaling. Curr Biol 2022; 32:1362-1375.e8. [PMID: 35176227 PMCID: PMC8969192 DOI: 10.1016/j.cub.2022.01.061] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/09/2021] [Accepted: 01/21/2022] [Indexed: 11/25/2022]
Abstract
Animals have evolved a variety of behaviors to cope with adverse environmental conditions. Similar to other insects, the fly, Drosophila melanogaster, responds to sustained cold by reducing its metabolic rate and arresting its reproduction. Here, we show that a subset of dorsal neurons (DN3s) that express the neuropeptide allatostatin C (AstC) facilitates recovery from cold-induced reproductive dormancy. The activity of AstC-expressing DN3s, as well as AstC peptide levels, are suppressed by cold. Cold temperature also impacts AstC levels in other Drosophila species and mosquitoes, Aedes aegypti, and Anopheles stephensi. The stimulatory effect of AstC on egg production is mediated by cholinergic AstC-R2 neurons. Our results demonstrate that DN3s coordinate female reproductive capacity with environmental temperature via AstC signaling. AstC/AstC-R2 is conserved across many insect species and their role in regulating female reproductive capacity makes them an ideal target for controlling the population of agricultural pests and human disease vectors.
Collapse
Affiliation(s)
- Matthew R Meiselman
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Michael H Alpert
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
| | - Xinyue Cui
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Jamien Shea
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Ian Gregg
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Marco Gallio
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
| | - Nilay Yapici
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
34
|
Nutrient Sensing via Gut in Drosophila melanogaster. Int J Mol Sci 2022; 23:ijms23052694. [PMID: 35269834 PMCID: PMC8910450 DOI: 10.3390/ijms23052694] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 01/08/2023] Open
Abstract
Nutrient-sensing mechanisms in animals' sense available nutrients to generate a physiological regulatory response involving absorption, digestion, and regulation of food intake and to maintain glucose and energy homeostasis. During nutrient sensing via the gastrointestinal tract, nutrients interact with receptors on the enteroendocrine cells in the gut, which in return respond by secreting various hormones. Sensing of nutrients by the gut plays a critical role in transmitting food-related signals to the brain and other tissues informing the composition of ingested food to digestive processes. These signals modulate feeding behaviors, food intake, metabolism, insulin secretion, and energy balance. The increasing significance of fly genetics with the availability of a vast toolbox for studying physiological function, expression of chemosensory receptors, and monitoring the gene expression in specific cells of the intestine makes the fly gut the most useful tissue for studying the nutrient-sensing mechanisms. In this review, we emphasize on the role of Drosophila gut in nutrient-sensing to maintain metabolic homeostasis and gut-brain cross talk using endocrine and neuronal signaling pathways stimulated by internal state or the consumption of various dietary nutrients. Overall, this review will be useful in understanding the post-ingestive nutrient-sensing mechanisms having a physiological and pathological impact on health and diseases.
Collapse
|
35
|
Hutfilz C. Endocrine Regulation of Lifespan in Insect Diapause. Front Physiol 2022; 13:825057. [PMID: 35242054 PMCID: PMC8886022 DOI: 10.3389/fphys.2022.825057] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/25/2022] [Indexed: 01/27/2023] Open
Abstract
Diapause is a physiological adaptation to conditions that are unfavorable for growth or reproduction. During diapause, animals become long-lived, stress-resistant, developmentally static, and non-reproductive, in the case of diapausing adults. Diapause has been observed at all developmental stages in both vertebrates and invertebrates. In adults, diapause traits weaken into adaptations such as hibernation, estivation, dormancy, or torpor, which represent evolutionarily diverse versions of the traditional diapause traits. These traits are regulated through modifications of the endocrine program guiding development. In insects, this typically includes changes in molting hormones, as well as metabolic signals that limit growth while skewing the organism's energetic demands toward conservation. While much work has been done to characterize these modifications, the interactions between hormones and their downstream consequences are incompletely understood. The current state of diapause endocrinology is reviewed here to highlight the relevance of diapause beyond its use as a model to study seasonality and development. Specifically, insect diapause is an emerging model to study mechanisms that determine lifespan. The induction of diapause represents a dramatic change in the normal progression of age. Hormones such as juvenile hormone, 20-hydroxyecdysone, and prothoracicotropic hormone are well-known to modulate this plasticity. The induction of diapause-and by extension, the cessation of normal aging-is coordinated by interactions between these pathways. However, research directly connecting diapause endocrinology to the biology of aging is lacking. This review explores connections between diapause and aging through the perspective of endocrine signaling. The current state of research in both fields suggests appreciable overlap that will greatly contribute to our understanding of diapause and lifespan determination.
Collapse
|
36
|
The gut hormone Allatostatin C/Somatostatin regulates food intake and metabolic homeostasis under nutrient stress. Nat Commun 2022; 13:692. [PMID: 35121731 PMCID: PMC8816919 DOI: 10.1038/s41467-022-28268-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 01/18/2022] [Indexed: 12/13/2022] Open
Abstract
AbstractThe intestine is a central regulator of metabolic homeostasis. Dietary inputs are absorbed through the gut, which senses their nutritional value and relays hormonal information to other organs to coordinate systemic energy balance. However, the gut-derived hormones affecting metabolic and behavioral responses are poorly defined. Here we show that the endocrine cells of the Drosophila gut sense nutrient stress through a mechanism that involves the TOR pathway and in response secrete the peptide hormone allatostatin C, a Drosophila somatostatin homolog. Gut-derived allatostatin C induces secretion of glucagon-like adipokinetic hormone to coordinate food intake and energy mobilization. Loss of gut Allatostatin C or its receptor in the adipokinetic-hormone-producing cells impairs lipid and sugar mobilization during fasting, leading to hypoglycemia. Our findings illustrate a nutrient-responsive endocrine mechanism that maintains energy homeostasis under nutrient-stress conditions, a function that is essential to health and whose failure can lead to metabolic disorders.
Collapse
|
37
|
Huygens C, Ribeiro Lopes M, Gaget K, Duport G, Peignier S, De Groef S, Parisot N, Calevro F, Callaerts P. Evolutionary diversification of insulin-related peptides (IRPs) in aphids and spatiotemporal distribution in Acyrthosiphon pisum. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 141:103670. [PMID: 34666188 DOI: 10.1016/j.ibmb.2021.103670] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
Members of the insulin superfamily activate the evolutionarily highly conserved insulin/insulin-like growth factor signaling pathway, involved in regulation of growth, energy homeostasis, and longevity. In the current study we focus on aphids to gain more insight into the evolution of the IRPs and how they may contribute to regulation of the insulin-signaling pathway. Using the latest annotation of the pea aphid (Acyrthosiphon pisum) genome, and combining sequence alignments and phylogenetic analyses, we identified seven putative IRP encoding-genes, with IRP1-IRP4 resembling the classical insulin and insulin-like protein structures, and IRP5 and IRP6 bearing insulin-like growth factor (IGF) features. We also identified IRP11 as a new and structurally divergent IRP present in at least eight aphid genomes. Globally the ten aphid genomes analyzed in this work contain four to 15 IRPs, while only three IRPs were found in the genome of the grape phylloxera, a hemipteran insect representing an earlier evolutionary branch of the aphid group. Expression analyses revealed spatial and temporal variation in the expression patterns of the different A. pisum IRPs. IRP1 and IRP4 are expressed throughout all developmental stages and morphs in neuroendocrine cells of the brain, while IRP5 and IRP6 are expressed in the fat body. IRP2 is expressed in specific cells of the gut in aphids in non-crowded conditions and in the head of aphids under crowded conditions, IRP3 in salivary glands, and both IRP2 and IRP3 in the male morph. IRP11 expression is enriched in the carcass. This complex spatiotemporal expression pattern suggests functional diversification of the IRPs.
Collapse
Affiliation(s)
- C Huygens
- Laboratory of Behavioral and Developmental Genetics, Department of Human Genetics, KULeuven, University of Leuven, B-3000, Leuven, Belgium; Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621, Villeurbanne, France
| | - M Ribeiro Lopes
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621, Villeurbanne, France
| | - K Gaget
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621, Villeurbanne, France
| | - G Duport
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621, Villeurbanne, France
| | - S Peignier
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621, Villeurbanne, France
| | - S De Groef
- Laboratory of Behavioral and Developmental Genetics, Department of Human Genetics, KULeuven, University of Leuven, B-3000, Leuven, Belgium
| | - N Parisot
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621, Villeurbanne, France
| | - F Calevro
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621, Villeurbanne, France.
| | - P Callaerts
- Laboratory of Behavioral and Developmental Genetics, Department of Human Genetics, KULeuven, University of Leuven, B-3000, Leuven, Belgium.
| |
Collapse
|
38
|
Lin HH, Kuang MC, Hossain I, Xuan Y, Beebe L, Shepherd AK, Rolandi M, Wang JW. A nutrient-specific gut hormone arbitrates between courtship and feeding. Nature 2022; 602:632-638. [PMID: 35140404 PMCID: PMC9271372 DOI: 10.1038/s41586-022-04408-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 12/22/2021] [Indexed: 11/08/2022]
Abstract
Animals must set behavioural priority in a context-dependent manner and switch from one behaviour to another at the appropriate moment1-3. Here we probe the molecular and neuronal mechanisms that orchestrate the transition from feeding to courtship in Drosophila melanogaster. We find that feeding is prioritized over courtship in starved males, and the consumption of protein-rich food rapidly reverses this order within a few minutes. At the molecular level, a gut-derived, nutrient-specific neuropeptide hormone-Diuretic hormone 31 (Dh31)-propels a switch from feeding to courtship. We further address the underlying kinetics with calcium imaging experiments. Amino acids from food acutely activate Dh31+ enteroendocrine cells in the gut, increasing Dh31 levels in the circulation. In addition, three-photon functional imaging of intact flies shows that optogenetic stimulation of Dh31+ enteroendocrine cells rapidly excites a subset of brain neurons that express Dh31 receptor (Dh31R). Gut-derived Dh31 excites the brain neurons through the circulatory system within a few minutes, in line with the speed of the feeding-courtship behavioural switch. At the circuit level, there are two distinct populations of Dh31R+ neurons in the brain, with one population inhibiting feeding through allatostatin-C and the other promoting courtship through corazonin. Together, our findings illustrate a mechanism by which the consumption of protein-rich food triggers the release of a gut hormone, which in turn prioritizes courtship over feeding through two parallel pathways.
Collapse
Affiliation(s)
- Hui-Hao Lin
- Neurobiology Section, Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Meihua Christina Kuang
- Neurobiology Section, Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Imran Hossain
- Neurobiology Section, Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Yinan Xuan
- Neurobiology Section, Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Laura Beebe
- Neurobiology Section, Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Andrew K Shepherd
- Neurobiology Section, Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Marco Rolandi
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Jing W Wang
- Neurobiology Section, Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
39
|
Najjar H, Al-Ashmar S, Qush A, Al-Asmar J, Rashwan S, Elgamal A, Zeidan A, Kamareddine L. Enteric Pathogens Modulate Metabolic Homeostasis in the Drosophila melanogaster host. Microbes Infect 2022; 24:104946. [DOI: 10.1016/j.micinf.2022.104946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 10/19/2022]
|
40
|
Reinhard N, Bertolini E, Saito A, Sekiguchi M, Yoshii T, Rieger D, Helfrich-Förster C. The lateral posterior clock neurons (LPN) of Drosophila melanogaster express three neuropeptides and have multiple connections within the circadian clock network and beyond. J Comp Neurol 2021; 530:1507-1529. [PMID: 34961936 DOI: 10.1002/cne.25294] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 11/12/2022]
Abstract
Drosophila's lateral posterior neurons (LPNs) belong to a small group of circadian clock neurons that is so far not characterized in detail. Thanks to a new highly specific split-Gal4 line, here we describe LPNs' morphology in fine detail, their synaptic connections, daily bimodal expression of neuropeptides, and propose a putative role of this cluster in controlling daily activity and sleep patterns. We found that the three LPNs are heterogeneous. Two of the neurons with similar morphology arborize in the superior medial and lateral protocerebrum and most likely promote sleep. One unique, possibly wakefulness-promoting, neuron with wider arborizations extends from the superior lateral protocerebrum toward the anterior optic tubercle. Both LPN types exhibit manifold connections with the other circadian clock neurons, especially with those that control the flies' morning and evening activity (M- and E-neurons, respectively). In addition, they form synaptic connections with neurons of the mushroom bodies, the fan-shaped body, and with many additional still unidentified neurons. We found that both LPN types rhythmically express three neuropeptides, Allostatin A, Allostatin C, and Diuretic Hormone 31 with maxima in the morning and the evening. The three LPN neuropeptides may, furthermore, signal to the insect hormonal center in the pars intercerebralis and contribute to rhythmic modulation of metabolism, feeding, and reproduction. We discuss our findings in the light of anatomical details gained by the recently published hemibrain of a single female fly on the electron microscopic level and of previous functional studies concerning the LPN. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Nils Reinhard
- Neurobiology and Genetics, Biocenter, University of Würzburg, Germany
| | - Enrico Bertolini
- Neurobiology and Genetics, Biocenter, University of Würzburg, Germany
| | - Aika Saito
- Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Manabu Sekiguchi
- Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Taishi Yoshii
- Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Dirk Rieger
- Neurobiology and Genetics, Biocenter, University of Würzburg, Germany
| | | |
Collapse
|
41
|
Biglou SG, Bendena WG, Chin-Sang I. An overview of the insulin signaling pathway in model organisms Drosophila melanogaster and Caenorhabditis elegans. Peptides 2021; 145:170640. [PMID: 34450203 DOI: 10.1016/j.peptides.2021.170640] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 08/01/2021] [Accepted: 08/20/2021] [Indexed: 12/12/2022]
Abstract
The insulin/insulin-like growth factor signaling pathway is an evolutionary conserved pathway across metazoans and is required for development, metabolism and behavior. This pathway is associated with various human metabolic disorders and cancers. Thus, model organisms including Drosophila melanogaster and Caenorhabditis elegans provide excellent opportunities to examine the structure and function of this pathway and its influence on cellular metabolism and proliferation. In this review, we will provide an overview of human insulin and the human insulin signaling pathway and explore the recent discoveries in model organisms Drosophila melanogaster and Caenorhabditis elegans. Our review will provide information regarding the various insulin-like peptides in model organisms as well as the conserved functions of insulin signaling pathways. Further investigation of the insulin signaling pathway in model organisms could provide a promising opportunity to develop novel therapies for various metabolic disorders and insulin-mediated cancers.
Collapse
Affiliation(s)
- Sanaz G Biglou
- Department of Biology, Queen's University Kingston, ON, K7L3N6, Canada
| | - William G Bendena
- Department of Biology, Queen's University Kingston, ON, K7L3N6, Canada; Centre for Neuroscience, Queen's University, Kingston, ON, K7L3N6, Canada.
| | - Ian Chin-Sang
- Department of Biology, Queen's University Kingston, ON, K7L3N6, Canada
| |
Collapse
|
42
|
Zhu Q, Wang J, Gao M, Lu L, Liu X. Neuropeptide F from endocrine cells in Plutella xylostella midgut modulates feeding and synergizes Cry1Ac action. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2021; 108:e21845. [PMID: 34605064 DOI: 10.1002/arch.21845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/11/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
With the wide cultivation of transgenic plants throughout the world and the rising risk of resistance to Bacillus thuringiensis crystal (Cry) toxins, it is essential to design an adaptive resistance management strategy for continued use. Neuropeptide F (NPF) of insects has proven to be valuable for the production of novel-type transgenic plants via its important role in the control of feeding behavior. In this study, the gene encoding NPF was cloned from the diamondback moth, Plutella xylostella, an important agricultural pest. Real-time quantitative reverse transcription-polymerase chain reaction and in situ hybridization showed a relatively high expression of P. xylostella-npf (P. x-npf) in endocrine cells of the midgut of fourth instar larvae, and it was found to participate in P. xylostella feeding behavior and Cry1Ac-induced feeding inhibition. Prokaryotic expression and purification provided structure unfolded P. x-npf from inclusion bodies for diet surface overlay bioassays and the results demonstrated a significant synergistic effect of P. x-npf on Cry1Ac toxicity by increasing intake of noxious food which contains Cry toxins, especially quick death at an early stage of feeding. Our findings provided a potential new way to efficiently control pests by increasing intake of lower dose Cry toxins and a novel hint for the complex Cry toxin mechanism.
Collapse
Affiliation(s)
- Qing Zhu
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jingxuan Wang
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Meijing Gao
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Lina Lu
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xianjin Liu
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| |
Collapse
|
43
|
Jang S, Chen J, Choi J, Lim SY, Song H, Choi H, Kwon HW, Choi MS, Kwon JY. Spatiotemporal organization of enteroendocrine peptide expression in Drosophila. J Neurogenet 2021; 35:387-398. [PMID: 34670462 DOI: 10.1080/01677063.2021.1989425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The digestion of food and absorption of nutrients occurs in the gut. The nutritional value of food and its nutrients is detected by enteroendocrine cells, and peptide hormones produced by the enteroendocrine cells are thought to be involved in metabolic homeostasis, but the specific mechanisms are still elusive. The enteroendocrine cells are scattered over the entire gastrointestinal tract and can be classified according to the hormones they produce. We followed the changes in combinatorial expression of regulatory peptides in the enteroendocrine cells during metamorphosis from the larva to the adult fruit fly, and re-confirmed the diverse composition of enteroendocrine cell populations. Drosophila enteroendocrine cells appear to differentially regulate peptide expression spatially and temporally depending on midgut region and developmental stage. In the late pupa, Notch activity is known to determine which peptides are expressed in mature enteroendocrine cells of the posterior midgut, and we found that the loss of Notch activity in the anterior midgut results in classes of enteroendocrine cells distinct from the posterior midgut. These results suggest that enteroendocrine cells that populate the fly midgut can differentiate into distinct subtypes that express different combinations of peptides, which likely leads to functional variety depending on specific needs.
Collapse
Affiliation(s)
- Sooin Jang
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Republic of Korea.,Department of Life Sciences & Convergence Research Center for Insect Vectors, College of Life Science and Bioengineering, Incheon National University, Incheon, Republic of Korea
| | - Ji Chen
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Republic of Korea.,Guangdong Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| | - Jaekyun Choi
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Republic of Korea
| | - Seung Yeon Lim
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Republic of Korea
| | - Hyejin Song
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Republic of Korea
| | - Hyungjun Choi
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Republic of Korea
| | - Hyung Wook Kwon
- Department of Life Sciences & Convergence Research Center for Insect Vectors, College of Life Science and Bioengineering, Incheon National University, Incheon, Republic of Korea
| | - Min Sung Choi
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jae Young Kwon
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
44
|
Insects as a New Complex Model in Hormonal Basis of Obesity. Int J Mol Sci 2021; 22:ijms222011066. [PMID: 34681728 PMCID: PMC8540125 DOI: 10.3390/ijms222011066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/07/2021] [Accepted: 10/09/2021] [Indexed: 11/30/2022] Open
Abstract
Nowadays, one of the biggest problems in healthcare is an obesity epidemic. Consumption of cheap and low-quality energy-rich diets, low physical activity, and sedentary work favor an increase in the number of obesity cases within many populations/nations. This is a burden on society, public health, and the economy with many deleterious consequences. Thus, studies concerning this disorder are extremely needed, including searching for new, effective, and fitting models. Obesity may be related, among other factors, to disrupting adipocytes activity, disturbance of metabolic homeostasis, dysregulation of hormonal balance, cardiovascular problems, or disorders in nutrition which may lead to death. Because of the high complexity of obesity, it is not easy to find an ideal model for its studies which will be suitable for genetic and physiological analysis including specification of different compounds’ (hormones, neuropeptides) functions, as well as for signaling pathways analysis. In recent times, in search of new models for human diseases there has been more and more attention paid to insects, especially in neuro-endocrine regulation. It seems that this group of animals might also be a new model for human obesity. There are many arguments that insects are a good, multidirectional, and complex model for this disease. For example, insect models can have similar conservative signaling pathways (e.g., JAK-STAT signaling pathway), the presence of similar hormonal axis (e.g., brain–gut axis), or occurrence of structural and functional homologues between neuropeptides (e.g., neuropeptide F and human neuropeptide Y, insulin-like peptides, and human insulin) compared to humans. Here we give a hint to use insects as a model for obesity that can be used in multiple ways: as a source of genetic and peptidomic data about etiology and development correlated with obesity occurrence as well as a model for novel hormonal-based drug activity and their impact on mechanism of disease occurrence.
Collapse
|
45
|
Hung RJ, Li JSS, Liu Y, Perrimon N. Defining cell types and lineage in the Drosophila midgut using single cell transcriptomics. CURRENT OPINION IN INSECT SCIENCE 2021; 47:12-17. [PMID: 33609768 DOI: 10.1016/j.cois.2021.02.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
The Drosophila midgut has emerged in recent years as a model system to study stem cell renewal and differentiation and tissue homeostasis. Histological, genetic and gene expression studies have provided a wealth of information on gut cell types, regionalization, genes and pathways involved in cell proliferation and differentiation, stem cell renewal, and responses to changes in environmental factors such as the microbiota and nutrients. Here, we review the contribution of single cell transcriptomic methods to our understanding of gut cell type diversity, lineage and behavior.
Collapse
Affiliation(s)
- Ruei-Jiun Hung
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, United States
| | - Joshua Shing Shun Li
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, United States
| | - Yifang Liu
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, United States
| | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, United States; Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, United States.
| |
Collapse
|
46
|
Bonfini A, Dobson AJ, Duneau D, Revah J, Liu X, Houtz P, Buchon N. Multiscale analysis reveals that diet-dependent midgut plasticity emerges from alterations in both stem cell niche coupling and enterocyte size. eLife 2021; 10:64125. [PMID: 34553686 PMCID: PMC8528489 DOI: 10.7554/elife.64125] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 09/22/2021] [Indexed: 12/27/2022] Open
Abstract
The gut is the primary interface between an animal and food, but how it adapts to qualitative dietary variation is poorly defined. We find that the Drosophila midgut plastically resizes following changes in dietary composition. A panel of nutrients collectively promote gut growth, which sugar opposes. Diet influences absolute and relative levels of enterocyte loss and stem cell proliferation, which together determine cell numbers. Diet also influences enterocyte size. A high sugar diet inhibits translation and uncouples intestinal stem cell proliferation from expression of niche-derived signals, but, surprisingly, rescuing these effects genetically was not sufficient to modify diet’s impact on midgut size. However, when stem cell proliferation was deficient, diet’s impact on enterocyte size was enhanced, and reducing enterocyte-autonomous TOR signaling was sufficient to attenuate diet-dependent midgut resizing. These data clarify the complex relationships between nutrition, epithelial dynamics, and cell size, and reveal a new mode of plastic, diet-dependent organ resizing.
Collapse
Affiliation(s)
- Alessandro Bonfini
- Cornell Institute of Host-Microbe Interactions and Disease, Department of Entomology, Cornell University, Ithaca, United States
| | - Adam J Dobson
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, United Kingdom
| | - David Duneau
- Université Toulouse 3 Paul Sabatier, CNRS, UMR5174 EDB (Laboratoire Évolution & Diversité Biologique), Toulouse, France.,Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Jonathan Revah
- Cornell Institute of Host-Microbe Interactions and Disease, Department of Entomology, Cornell University, Ithaca, United States
| | - Xi Liu
- Cornell Institute of Host-Microbe Interactions and Disease, Department of Entomology, Cornell University, Ithaca, United States
| | - Philip Houtz
- Cornell Institute of Host-Microbe Interactions and Disease, Department of Entomology, Cornell University, Ithaca, United States
| | - Nicolas Buchon
- Cornell Institute of Host-Microbe Interactions and Disease, Department of Entomology, Cornell University, Ithaca, United States
| |
Collapse
|
47
|
A nutrient-responsive hormonal circuit mediates an inter-tissue program regulating metabolic homeostasis in adult Drosophila. Nat Commun 2021; 12:5178. [PMID: 34462441 PMCID: PMC8405823 DOI: 10.1038/s41467-021-25445-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 08/04/2021] [Indexed: 02/07/2023] Open
Abstract
Animals maintain metabolic homeostasis by modulating the activity of specialized organs that adjust internal metabolism to external conditions. However, the hormonal signals coordinating these functions are incompletely characterized. Here we show that six neurosecretory cells in the Drosophila central nervous system respond to circulating nutrient levels by releasing Capa hormones, homologs of mammalian neuromedin U, which activate the Capa receptor (CapaR) in peripheral tissues to control energy homeostasis. Loss of Capa/CapaR signaling causes intestinal hypomotility and impaired nutrient absorption, which gradually deplete internal nutrient stores and reduce organismal lifespan. Conversely, increased Capa/CapaR activity increases fluid and waste excretion. Furthermore, Capa/CapaR inhibits the release of glucagon-like adipokinetic hormone from the corpora cardiaca, which restricts energy mobilization from adipose tissue to avoid harmful hyperglycemia. Our results suggest that the Capa/CapaR circuit occupies a central node in a homeostatic program that facilitates the digestion and absorption of nutrients and regulates systemic energy balance.
Collapse
|
48
|
Yoshinari Y, Kosakamoto H, Kamiyama T, Hoshino R, Matsuoka R, Kondo S, Tanimoto H, Nakamura A, Obata F, Niwa R. The sugar-responsive enteroendocrine neuropeptide F regulates lipid metabolism through glucagon-like and insulin-like hormones in Drosophila melanogaster. Nat Commun 2021; 12:4818. [PMID: 34376687 PMCID: PMC8355161 DOI: 10.1038/s41467-021-25146-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 07/24/2021] [Indexed: 02/08/2023] Open
Abstract
The enteroendocrine cell (EEC)-derived incretins play a pivotal role in regulating the secretion of glucagon and insulins in mammals. Although glucagon-like and insulin-like hormones have been found across animal phyla, incretin-like EEC-derived hormones have not yet been characterised in invertebrates. Here, we show that the midgut-derived hormone, neuropeptide F (NPF), acts as the sugar-responsive, incretin-like hormone in the fruit fly, Drosophila melanogaster. Secreted NPF is received by NPF receptor in the corpora cardiaca and in insulin-producing cells. NPF-NPFR signalling resulted in the suppression of the glucagon-like hormone production and the enhancement of the insulin-like peptide secretion, eventually promoting lipid anabolism. Similar to the loss of incretin function in mammals, loss of midgut NPF led to significant metabolic dysfunction, accompanied by lipodystrophy, hyperphagia, and hypoglycaemia. These results suggest that enteroendocrine hormones regulate sugar-dependent metabolism through glucagon-like and insulin-like hormones not only in mammals but also in insects.
Collapse
Affiliation(s)
- Yuto Yoshinari
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Ibaraki, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hina Kosakamoto
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Laboratory for Nutritional Biology, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, Japan
| | - Takumi Kamiyama
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Ryo Hoshino
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Rena Matsuoka
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Shu Kondo
- Genetic Strains Research Center, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Hiromu Tanimoto
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Akira Nakamura
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
- Laboratory of Germline Development, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Fumiaki Obata
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Ibaraki, Japan
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Laboratory for Nutritional Biology, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, Japan
- Laboratory of Molecular Cell Biology and Development, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- AMED-PRIME, Japan Agency for Medical Research and Development Chiyoda-ku, Tokyo, Japan
| | - Ryusuke Niwa
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Ibaraki, Japan.
- AMED-CREST, Japan Agency for Medical Research and Development, Chiyoda-ku, Tokyo, Japan.
| |
Collapse
|
49
|
Semaniuk U, Strilbytska O, Malinovska K, Storey KB, Vaiserman A, Lushchak V, Lushchak O. Factors that regulate expression patterns of insulin-like peptides and their association with physiological and metabolic traits in Drosophila. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 135:103609. [PMID: 34146686 DOI: 10.1016/j.ibmb.2021.103609] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/05/2021] [Accepted: 06/13/2021] [Indexed: 06/12/2023]
Abstract
Insulin-like peptides (ILPs) and components of the insulin signaling pathway are conserved across different animal phyla. Eight ILPs (called DILPs) and two receptors, dInR and Lgr3, have been described in Drosophila. DILPs regulate varied physiological traits including lifespan, reproduction, development, feeding behavior, stress resistance and metabolism. At the same time, different conditions such as nutrition, dietary supplements and environmental factors affect the expression of DILPs. This review focuses primarily on DILP2, DILP3, and DILP5 which are produced by insulin-producing cells in the brain of Drosophila. Although they are produced by the same cells and can potentially compensate for each other, DILP2, DILP3, and DILP5 expression may be differentially regulated at the mRNA level. Thus, we summarized available data on the conditions affecting the expression profiles of these DILPs in adult Drosophila. The accumulated data indicate that transcript levels of DILPs are determined by (a) nutritional conditions such as the protein-to-carbohydrate ratio, (b) carbohydrate type within the diet, (c) malnutrition or complete starvation; (d) environmental factors such as stress or temperature; (e) mutations of single peptides that induce changes in the expression of the other peptides; and (f) dietary supplements of drugs or natural substances. Furthermore, manipulation of specific genes in a cell- and tissue-specific manner affects mRNA levels for DILPs and, thereby, modulates various physiological traits and metabolism in Drosophila.
Collapse
Affiliation(s)
- Uliana Semaniuk
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| | - Olha Strilbytska
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| | - Karina Malinovska
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| | | | | | - Volodymyr Lushchak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine; Research and Development University, Ivano-Frankivsk, Ukraine
| | - Oleh Lushchak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine; Research and Development University, Ivano-Frankivsk, Ukraine.
| |
Collapse
|
50
|
Chowański S, Walkowiak-Nowicka K, Winkiel M, Marciniak P, Urbański A, Pacholska-Bogalska J. Insulin-Like Peptides and Cross-Talk With Other Factors in the Regulation of Insect Metabolism. Front Physiol 2021; 12:701203. [PMID: 34267679 PMCID: PMC8276055 DOI: 10.3389/fphys.2021.701203] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/04/2021] [Indexed: 02/06/2023] Open
Abstract
The insulin-like peptide (ILP) and insulin-like growth factor (IGF) signalling pathways play a crucial role in the regulation of metabolism, growth and development, fecundity, stress resistance, and lifespan. ILPs are encoded by multigene families that are expressed in nervous and non-nervous organs, including the midgut, salivary glands, and fat body, in a tissue- and stage-specific manner. Thus, more multidirectional and more complex control of insect metabolism can occur. ILPs are not the only factors that regulate metabolism. ILPs interact in many cross-talk interactions of different factors, for example, hormones (peptide and nonpeptide), neurotransmitters and growth factors. These interactions are observed at different levels, and three interactions appear to be the most prominent/significant: (1) coinfluence of ILPs and other factors on the same target cells, (2) influence of ILPs on synthesis/secretion of other factors regulating metabolism, and (3) regulation of activity of cells producing/secreting ILPs by various factors. For example, brain insulin-producing cells co-express sulfakinins (SKs), which are cholecystokinin-like peptides, another key regulator of metabolism, and express receptors for tachykinin-related peptides, the next peptide hormones involved in the control of metabolism. It was also shown that ILPs in Drosophila melanogaster can directly and indirectly regulate AKH. This review presents an overview of the regulatory role of insulin-like peptides in insect metabolism and how these factors interact with other players involved in its regulation.
Collapse
Affiliation(s)
- Szymon Chowański
- Department of Animal Physiology and Development, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Karolina Walkowiak-Nowicka
- Department of Animal Physiology and Development, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Magdalena Winkiel
- Department of Animal Physiology and Development, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Pawel Marciniak
- Department of Animal Physiology and Development, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Arkadiusz Urbański
- Department of Animal Physiology and Development, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland.,HiProMine S.A., Robakowo, Poland
| | - Joanna Pacholska-Bogalska
- Department of Animal Physiology and Development, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|