1
|
Roske C, Nguyen TN, Schwartz JJ, Erulker A, Nie K, Xie H, Kim-Schulze S, Ely BA, Tobe RH, Mowrey W, Gabbay V. Immunological correlates of suicidality among adolescents with internalizing symptoms. Brain Behav Immun Health 2024; 41:100866. [PMID: 39350953 PMCID: PMC11439560 DOI: 10.1016/j.bbih.2024.100866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/14/2024] [Accepted: 09/16/2024] [Indexed: 10/04/2024] Open
Abstract
Background Suicide is a leading cause of death in adolescents and young adults globally. Well-established risk factors for suicide are depression and past suicide attempts. People experiencing suicidality may represent a distinct neurobiological group of people with depression. Because converging evidence has implicated inflammation in depression, we sought to investigate relationships between suicidality and immune markers in youth experiencing diverse mood and anxiety symptoms. We hypothesized that adolescents with suicidality would exhibit a unique immune signature. Methods Adolescents underwent semi-structured interviews and completed self-reported measures to assess psychopathology, including suicidality (suicidal ideation, plans, or attempts). Fasting blood samples were collected, cultured with and without lipopolysaccharide (LPS) to stimulate an inflammatory response, and analyzed for 41 immune analytes. To assess how immune function related to suicidality categorically and dimensionally, we conducted group comparisons and correlations while controlling for multiple comparisons using false discovery rate (FDR). To further uncover subtle immune-suicidality relationships, we employed a data-driven approach using factor analysis to extract major immune factors, each of which was subsequently correlated with suicidality measures. Results Among 126 participants, 29 were healthy controls and 97 participants had internalizing symptoms; within the clinical group, 57 experienced suicidality. Three immune analytes differed between healthy controls, suicidal, and non-suicidal adolescents with internalizing symptoms in the LPS condition: Flt-3L (p FDR = 0.0246), GM-CSF (p FDR = 0.0246), and IFN-γ (p FDR = 0.0246). These analytes were negatively correlated with the Beck Scale for Suicide Ideation (BSSI): Flt-3L (ρ = -0.19, p = 0.04); GM-CSF (ρ = -0.26, p = 0.004); IFN-γ (ρ =-0.33, p = 0.0003). GM-CSF also negatively correlated with number of suicide attempts (ρ = -0.39, p = 0.003). Factor analysis reduced 41 analytes to several common immune factors across experimental conditions, with Flt-3L, GM-CSF, and IFN-γ all loading heavily onto immune factors that were hypoactive in suicidality. Through this data-driven approach, we detected further associations between suicidality and immune factors across all conditions. Conclusions Peripheral immune function may be distinctly altered in adolescent suicidality. Future work should examine immune-suicidality relationships longitudinally.
Collapse
Affiliation(s)
- Chloe Roske
- Department of Psychology, Harvard University, Cambridge, MA, USA
| | - Tram N.B. Nguyen
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY, USA
- Medical Scientist Training Program, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Joshua J. Schwartz
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ava Erulker
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Kai Nie
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hui Xie
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Seunghee Kim-Schulze
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Benjamin A. Ely
- Department of Psychiatry and Behavioral Sciences, University of Miami Leonard M. Miller School of Medicine, Miami, FL, USA
| | - Russell H. Tobe
- Department of Clinical Research, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA
- Center for the Developing Brain, Child Mind Institute, New York, NY, USA
| | - Wenzhu Mowrey
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Vilma Gabbay
- Department of Psychiatry and Behavioral Sciences, University of Miami Leonard M. Miller School of Medicine, Miami, FL, USA
- Department of Clinical Research, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| |
Collapse
|
2
|
Yang S, Han J, Ye Z, Zhou H, Yan Y, Han D, Chen S, Wang L, Feng Q, Zhao X, Kang C. The correlation of inflammation, tryptophan-kynurenine pathway, and suicide risk in adolescent depression. Eur Child Adolesc Psychiatry 2024:10.1007/s00787-024-02579-4. [PMID: 39287643 DOI: 10.1007/s00787-024-02579-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 09/02/2024] [Indexed: 09/19/2024]
Abstract
Accumulating evidence suggests a role for the tryptophan-kynurenine pathway (TKP) in the psychopathology of major depressive disorder (MDD). Abnormal inflammatory profile and production of TKP neurotoxic metabolites appear more pronounced in MDD with suicidality. Progress in understanding the neurobiology of MDD in adolescents lags significantly behind that in adults due to limited empirical evidence. Aims of this study was to investigate the association between inflammation, TKP, and suicidality in adolescent depression. Seventy-three adolescents with MDD were assessed for serum levels of interleukin (IL)-1β, IL-6, IL-18, IL-10, tumor necrosis factor-α (TNF-α), tryptophan (TRP), kynurenine (KYN), 3-hydroxykynurenine (3-HK), and kynurenine acid (KA). Correlations between cytokines and TKP measures were examined. Patients were divided into high- (n = 42) and non-high-suicide-risk groups (n = 31), and serum levels of cytokines and TKP metabolites were compared. Significant negative correlations were found between TRP and IL-8 (r = - 0.27, P < 0.05) and IL-10 (r = - 0.23, P < 0.05), while a significant positive correlation was observed between 3-HK and IL-8 (r = 0.39, P < 0.01) in depressed adolescents. The KYN/TPR (index of indoleamine 2,3-dioxygenase, IDO) was positively correlated with IL-1β (r = 0.34), IL-6 (r = 0.32), IL-10 (r = 0.38) and TNF-α (r = 0.35) levels (P < 0.01); and 3-HK/KYN (index of kynurenine3-monooxidase, KMO) was positively correlated with IL-8 level (r = 0.31, P < 0.01). Depressed adolescents at high suicide risk exhibited significantly higher levels of IL-1β (Z = 2.726, P < 0.05), IL-10 (Z = 2.444, P < 0.05), and TNF-α (Z = 2.167, P < 0.05) and lower levels of 3-HK (Z = 2.126, P < 0.05) compared to their non-high suicide risk counterparts. Our findings indicated that serum inflammatory cytokines were robustly associated with IDO and KMO activity, along with significantly decreased serum level of TRP, increased level of 3-HK, and higher suicide risk in adolescent depression.
Collapse
Affiliation(s)
- Shuran Yang
- Department of Psychosomatic Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Jingjing Han
- Department of Psychosomatic Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Zhihan Ye
- Department of Clinical Laboratory, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Huizhi Zhou
- 920th Hospital of Joint Logistics Support Force, PLA, Yunnan, 650000, Kunming, China
| | - Yangye Yan
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Dong Han
- Department of Psychosomatic Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Shi Chen
- Department of Psychosomatic Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Lu Wang
- Department of Psychosomatic Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Qiang Feng
- Department of Psychosomatic Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Xudong Zhao
- Department of Psychosomatic Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
- Clinical Research Center for Mental Disorders, School of Medicine, Chinese-German Institute of Mental Health, Shanghai Pudong New Area Mental Health Center, Tongji University, Shanghai, 200124, China
| | - Chuanyuan Kang
- Department of Psychosomatic Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China.
| |
Collapse
|
3
|
Schwartz JJ, Roske C, Liu Q, Tobe RH, Ely BA, Gabbay V. C-Reactive Protein Does Not Predict Future Depression Onset in Adolescents: Preliminary Findings from a Longitudinal Study. J Child Adolesc Psychopharmacol 2024; 34:233-240. [PMID: 38669109 PMCID: PMC11322627 DOI: 10.1089/cap.2023.0091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Introduction: Neuroinflammatory processes have been extensively implicated in the underlying neurobiology of numerous neuropsychiatric disorders. Elevated C-reactive protein (CRP), an indicator of nonspecific inflammation commonly utilized in clinical practice, has been associated with depression in adults. In adolescents, our group previously found CRP to be associated with altered neural reward function but not with mood and anxiety symptoms assessed cross-sectionally. We hypothesized that the distinct CRP findings in adolescent versus adult depression may be due to chronicity, with neuroinflammatory effects on psychiatric disorders gradually accumulating over time. Here, we conducted a longitudinal study to evaluate if CRP levels predicted future onset or progression of depression in adolescents. Methods: Participants were 53 adolescents (age = 14.74 ± 1.92 years, 35 female), 40 with psychiatric symptoms and 13 healthy controls. At baseline, participants completed semistructured diagnostic evaluations; dimensional assessments for anxiety, depression, anhedonia, and suicidality severity; and bloodwork to quantify CRP levels. Clinical assessments were repeated at longitudinal follow-up after ∼1.5 years. Spearman's correlation between CRP levels and follow-up symptom severity were controlled for body mass index, age, sex, and follow-up interval and considered significant at the two-tailed, Bonferroni-adjusted p < 0.05 level. Results: After correction for multiple comparisons, no relationships were identified between baseline CRP levels and follow-up symptom severity. Conclusion: CRP levels were not significantly associated with future psychiatric symptoms in adolescents in this preliminary analysis. This may suggest that CRP is not a useful biomarker for adolescent depression and anxiety. However, future longitudinal studies with larger sample sizes and incorporating additional indicators of neuroinflammation are needed.
Collapse
Affiliation(s)
- Joshua J. Schwartz
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Chloe Roske
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Qi Liu
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Russel H. Tobe
- The Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York, USA
| | - Benjamin A. Ely
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Vilma Gabbay
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, Florida, USA
- The Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York, USA
| |
Collapse
|
4
|
Cogan AB, Persons JB, Kring AM. Using the Beck Depression Inventory to Assess Anhedonia: A Scale Validation Study. Assessment 2024; 31:431-443. [PMID: 37039528 PMCID: PMC10822059 DOI: 10.1177/10731911231164628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
Anhedonia is central to several psychological disorders and a frequent target of psychosocial and pharmacological treatments. We evaluated the psychometric properties of two widely used anhedonia measures derived from the Beck Depression Inventory: a 3-item (BDI-Anh3) and a 4-item version (BDI-Anh4). We evaluated these measures in a large undergraduate sample, a community sample, and a clinical sample. Both the BDI-Anh3 and the BDI-Anh4 showed adequate internal consistency, with BDI-Anh4 performing somewhat better, across the three samples. Both measures showed good convergent and discriminant validity, even after controlling for shared variance with other items on the BDI. These findings indicate that both measures have sufficient reliability and validity to support their use by researchers and clinicians.
Collapse
Affiliation(s)
| | - Jacqueline B. Persons
- University of California, Berkeley, USA
- Oakland Cognitive Behavior Therapy Center, CA, USA
| | | |
Collapse
|
5
|
Hornick MG, Potempa LA. Monomeric C-reactive protein as a biomarker for major depressive disorder. Front Psychiatry 2024; 14:1325220. [PMID: 38250276 PMCID: PMC10797126 DOI: 10.3389/fpsyt.2023.1325220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/15/2023] [Indexed: 01/23/2024] Open
Abstract
Neuroinflammation has been postulated to be a key factor in the pathogenesis of major depressive disorder (MDD). With this is mind, there has been a wave of research looking into pro-inflammatory mediators as potential biomarkers for MDD. One such mediator is the acute phase protein, C-reactive protein (CRP). While several studies have investigated the potential of CRP as a biomarker for MDD, the results have been inconsistent. One explanation for the lack of consistent findings may be that the high-sensitivity CRP tests utilized in these studies only measure the pentameric isoform of CRP (pCRP). Recent research, however, has indicated that the monomeric isoform of CRP (mCRP) is responsible for the pro-inflammatory function of CRP, while pCRP is weakly anti-inflammatory. The objective of this minireview is to re-examine the evidence of CRP involvement in MDD with a view of mCRP as a potential biomarker.
Collapse
Affiliation(s)
- Mary G. Hornick
- College of Science, Health and Pharmacy, Roosevelt University, Schaumburg, IL, United States
| | | |
Collapse
|
6
|
Boyle CC, Bower JE, Eisenberger NI, Irwin MR. Stress to inflammation and anhedonia: Mechanistic insights from preclinical and clinical models. Neurosci Biobehav Rev 2023; 152:105307. [PMID: 37419230 DOI: 10.1016/j.neubiorev.2023.105307] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/09/2023]
Abstract
Anhedonia, as evidenced by impaired pleasurable response to reward, reduced reward motivation, and/or deficits in reward-related learning, is a common feature of depression. Such deficits in reward processing are also an important clinical target as a risk factor for depression onset. Unfortunately, reward-related deficits remain difficult to treat. To address this gap and inform the development of effective prevention and treatment strategies, it is critical to understand the mechanisms that drive impairments in reward function. Stress-induced inflammation is a plausible mechanism of reward deficits. The purpose of this paper is to review evidence for two components of this psychobiological pathway: 1) the effects of stress on reward function; and 2) the effects of inflammation on reward function. Within these two areas, we draw upon preclinical and clinical models, distinguish between acute and chronic effects of stress and inflammation, and address specific domains of reward dysregulation. By addressing these contextual factors, the review reveals a nuanced literature which might be targeted for additional scientific inquiry to inform the development of precise interventions.
Collapse
Affiliation(s)
- Chloe C Boyle
- Norman Cousins Center for Psychoneuroimmunology, Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, UCLA, USA.
| | - Julienne E Bower
- Norman Cousins Center for Psychoneuroimmunology, Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, UCLA, USA; Department of Psychology, UCLA, Los Angeles, CA, USA
| | | | - Michael R Irwin
- Norman Cousins Center for Psychoneuroimmunology, Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, UCLA, USA
| |
Collapse
|
7
|
Dai J, Kim H, You Z, McCabe MF, Zhang S, Wang S, Lim G, Chen L, Mao J. Role of 5-HT1A-mediated upregulation of brain indoleamine 2,3 dioxygenase 1 in the reduced antidepressant and antihyperalgesic effects of fluoxetine during maintenance treatment. Front Pharmacol 2022; 13:1084108. [PMID: 36588734 PMCID: PMC9800882 DOI: 10.3389/fphar.2022.1084108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
The reduced antidepressant and antihyperalgesic effects of selective serotonin reuptake inhibitors (SSRIs) such as fluoxetine during maintenance treatment has been reported, but little is known about the molecular mechanism of this phenomenon. In three comorbid pain and depression animal models (genetic predisposition, chronic social stress, arthritis), we showed that the fluoxetine's antidepressant and antihyperalgesic effects were reduced during the maintenance treatment. Fluoxetine exposure induced upregulation of the 5-hydroxytryptamine 1A (5-HT1A) auto-receptor and indoleamine 2,3 dioxygenase 1 (IDO1, a rate-limiting enzyme of tryptophan metabolism) in the brainstem dorsal raphe nucleus (DRN), which shifted the tryptophan metabolism away from the 5-HT biosynthesis. Mechanistically, IDO1 upregulation was downstream to fluoxetine-induced 5-HT1A receptor expression because 1) antagonism of the 5-HT1A receptor with WAY100635 or 5-HT1A receptor knockout blocked the IDO1 upregulation, and 2) inhibition of IDO1 activity did not block the 5-HT1A receptor upregulation following fluoxetine exposure. Importantly, inhibition of either the 5-HT1A receptor or IDO1 activity sustained the fluoxetine's antidepressant and antihyperalgesic effects, indicating that 5-HT1A-mediated IDO1 upregulation in the brainstem DRN contributed to the reduced antidepressant and antihyperalgesic effects of fluoxetine. These results suggest a new strategy to improving the therapeutic efficacy of SSRI during maintenance treatment.
Collapse
Affiliation(s)
- Jiajia Dai
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States,Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hyangin Kim
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States,*Correspondence: Jianren Mao, ; Hyangin Kim,
| | - Zerong You
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Michael F. McCabe
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Shuzhuo Zhang
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Shiyu Wang
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Grewo Lim
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Lucy Chen
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Jianren Mao
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States,*Correspondence: Jianren Mao, ; Hyangin Kim,
| |
Collapse
|
8
|
Halaris A, Prochaska D, Stefanski A, Filip M. C-reactive protein in major depressive disorder: Promise and challenge. JOURNAL OF AFFECTIVE DISORDERS REPORTS 2022. [DOI: 10.1016/j.jadr.2022.100427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
9
|
Validation of a novel method of ultraviolet-induced cutaneous inflammation and its associations with anhedonia. Sci Rep 2022; 12:20237. [PMID: 36424456 PMCID: PMC9691739 DOI: 10.1038/s41598-022-24598-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 11/17/2022] [Indexed: 11/27/2022] Open
Abstract
Affective immunology of the skin is a growing area; however, established protocols for measuring individual differences in cutaneous inflammation are lacking. To address this, we present a preliminary validation of Precision Implementation of Minimal Erythema Dose (PI-MED) testing as a method for measuring cutaneous inflammation. PI-MED is a recently adapted protocol, optimized for reproducibility and individual differences research, that uses ultraviolet (UV) light to evoke cutaneous erythema, or inflammatory skin reddening. PI-MED's novel UV dosage schedule produces standardized erythema responses across different skin pigmentation types and shows strong internal consistency within person and good test-retest reliability across 8-10 weeks. In line with predictions, increased PI-MED erythema was associated with heightened anhedonia, across several measures, beyond influences of non-affective covariates. While future work should further refine the dosage schedule for the lightest and darkest skin types, overall, evidence supports PI-MED as a protocol for inducing and measuring individual differences in cutaneous inflammation. Further, PI-MED-induced erythema can expand psychoneuroimmunology research by offering a complementary assessment for general inflammatory tone. This work adds to a growing body of evidence demonstrating a distinct relationship between inflammation and anhedonia.
Collapse
|
10
|
Aarsland TIM, Instanes JT, Posserud MBR, Ulvik A, Kessler U, Haavik J. Changes in Tryptophan-Kynurenine Metabolism in Patients with Depression Undergoing ECT-A Systematic Review. Pharmaceuticals (Basel) 2022; 15:1439. [PMID: 36422569 PMCID: PMC9694349 DOI: 10.3390/ph15111439] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/03/2022] [Accepted: 11/11/2022] [Indexed: 10/29/2023] Open
Abstract
The kynurenine pathway of tryptophan (Trp) metabolism generates multiple biologically active metabolites (kynurenines) that have been implicated in neuropsychiatric disorders. It has been suggested that modulation of kynurenine metabolism could be involved in the therapeutic effect of electroconvulsive therapy (ECT). We performed a systematic review with aims of summarizing changes in Trp and/or kynurenines after ECT and assessing methodological issues. The inclusion criterium was measures of Trp and/or kynurenines before and after ECT. Animal studies and studies using Trp administration or Trp depletion were excluded. Embase, MEDLINE, PsycInfo and PubMed were searched, most recently in July 2022. Outcomes were levels of Trp, kynurenines and ratios before and after ECT. Data on factors affecting Trp metabolism and ECT were collected for interpretation and discussion of the reported changes. We included 17 studies with repeated measures for a total of 386 patients and 27 controls. Synthesis using vote counting based on the direction of effect found no evidence of effect of ECT on any outcome variable. There were considerable variations in design, patient characteristics and reported items. We suggest that future studies should include larger samples, assess important covariates and determine between- and within-subject variability. PROSPERO (CRD42020187003).
Collapse
Affiliation(s)
| | | | - Maj-Britt Rocio Posserud
- Department of Clinical Medicine, University of Bergen, 5020 Bergen, Norway
- Division of Psychiatry, Haukeland University Hospital, 5021 Bergen, Norway
| | - Arve Ulvik
- Bevital A/S, Laboratoriebygget, 5020 Bergen, Norway
| | - Ute Kessler
- Department of Clinical Medicine, University of Bergen, 5020 Bergen, Norway
- Division of Psychiatry, Haukeland University Hospital, 5021 Bergen, Norway
| | - Jan Haavik
- Department of Biomedicine, University of Bergen, 5020 Bergen, Norway
| |
Collapse
|
11
|
Nguyen TNB, Ely BA, Pick D, Patel M, Xie H, Kim-Schulze S, Gabbay V. Clenbuterol attenuates immune reaction to lipopolysaccharide and its relationship to anhedonia in adolescents. Brain Behav Immun 2022; 106:89-99. [PMID: 35914697 PMCID: PMC9817216 DOI: 10.1016/j.bbi.2022.07.163] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 02/01/2023] Open
Abstract
While inflammation has been implicated in psychopathology, relationships between immune-suppressing processes and psychiatric constructs remain elusive. This study sought to assess whether β2-agonist clenbuterol (CBL) would attenuate immune activation in adolescents with mood and anxiety symptoms following ex vivo exposure of whole blood to lipopolysaccharide (LPS). Our focus on adolescents aimed to target a critical developmental period when psychiatric conditions often emerge and prior to chronicity effects. To capture a diverse range of immunologic and symptomatologic phenotypes, we included 97 psychotropic-medication free adolescents with mood and anxiety symptoms and 33 healthy controls. All participants had comprehensive evaluations and dimensional assessments of psychiatric symptoms. Fasting whole-blood samples were collected and stimulated with LPS in the presence and absence of CBL for 6 hours, then analyzed for 41 cytokines, chemokines, and hematopoietic growth factors. Comparison analyses used Bonferroni-corrected nonparametric tests. Levels of nine immune biomarkers-including IL-1RA, IL-1β, IL-6, IP-10, MCP-1, MIP-1α, MIP-1β, TGF-α, and TNF-α-were significantly reduced by CBL treatment compared to LPS alone. Exploratory factor analysis reduced 41 analytes into 5 immune factors in each experimental condition, and their relationships with psychiatric symptoms were examined as a secondary aim. CBL + LPS Factor 4-comprising EGF, PDGF-AA, PDGF-AB/BB, sCD40L, and GRO-significantly correlated with anticipatory and consummatory anhedonia, even after controlling for depression severity. This study supports the possible inhibitory effect of CBL on immune activation. Using a data-driven method, distinctive relationships between CBL-affected immune biomarkers and dimensional anhedonia were reported, further elucidating the role of β2-agonism in adolescent affective symptomatology.
Collapse
Affiliation(s)
- Tram N B Nguyen
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY, United States.
| | - Benjamin A Ely
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY, United States.
| | - Danielle Pick
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY, United States.
| | - Manishkumar Patel
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| | - Hui Xie
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| | - Seunghee Kim-Schulze
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| | - Vilma Gabbay
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY, United States; Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, United States.
| |
Collapse
|
12
|
Skorobogatov K, De Picker L, Verkerk R, Coppens V, Leboyer M, Müller N, Morrens M. Brain Versus Blood: A Systematic Review on the Concordance Between Peripheral and Central Kynurenine Pathway Measures in Psychiatric Disorders. Front Immunol 2021; 12:716980. [PMID: 34630391 PMCID: PMC8495160 DOI: 10.3389/fimmu.2021.716980] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 09/08/2021] [Indexed: 12/19/2022] Open
Abstract
Objective Disturbances in the kynurenine pathway have been implicated in the pathophysiology of psychotic and mood disorders, as well as several other psychiatric illnesses. It remains uncertain however to what extent metabolite levels detectable in plasma or serum reflect brain kynurenine metabolism and other disease-specific pathophysiological changes. The primary objective of this systematic review was to investigate the concordance between peripheral and central (CSF or brain tissue) kynurenine metabolites. As secondary aims we describe their correlation with illness course, treatment response, and neuroanatomical abnormalities in psychiatric diseases. Methods We performed a systematic literature search until February 2021 in PubMed. We included 27 original research articles describing a correlation between peripheral and central kynurenine metabolite measures in preclinical studies and human samples from patients suffering from neuropsychiatric disorders and other conditions. We also included 32 articles reporting associations between peripheral KP markers and symptom severity, CNS pathology or treatment response in schizophrenia, bipolar disorder or major depressive disorder. Results For kynurenine and 3-hydroxykynurenine, moderate to strong concordance was found between peripheral and central concentrations not only in psychiatric disorders, but also in other (patho)physiological conditions. Despite discordant findings for other metabolites (mainly tryptophan and kynurenic acid), blood metabolite levels were associated with clinical symptoms and treatment response in psychiatric patients, as well as with observed neuroanatomical abnormalities and glial activity. Conclusion Only kynurenine and 3-hydroxykynurenine demonstrated a consistent and reliable concordance between peripheral and central measures. Evidence from psychiatric studies on kynurenine pathway concordance is scarce, and more research is needed to determine the validity of peripheral kynurenine metabolite assessment as proxy markers for CNS processes. Peripheral kynurenine and 3-hydroxykynurenine may nonetheless represent valuable predictive and prognostic biomarker candidates for psychiatric disorders.
Collapse
Affiliation(s)
- Katrien Skorobogatov
- Faculty of Medicine and Health Sciences, Collaborative Antwerp Psychiatric Research Institute (CAPRI), University of Antwerp, Antwerp, Belgium.,Scientific Initiative of Neuropsychiatric and Psychopharmacological Studies (SINAPS), University Psychiatric Centre Duffel, Duffel, Belgium
| | - Livia De Picker
- Faculty of Medicine and Health Sciences, Collaborative Antwerp Psychiatric Research Institute (CAPRI), University of Antwerp, Antwerp, Belgium.,Scientific Initiative of Neuropsychiatric and Psychopharmacological Studies (SINAPS), University Psychiatric Centre Duffel, Duffel, Belgium
| | - Robert Verkerk
- Laboratory of Medical Biochemistry, University of Antwerp, Antwerp, Belgium
| | - Violette Coppens
- Faculty of Medicine and Health Sciences, Collaborative Antwerp Psychiatric Research Institute (CAPRI), University of Antwerp, Antwerp, Belgium.,Scientific Initiative of Neuropsychiatric and Psychopharmacological Studies (SINAPS), University Psychiatric Centre Duffel, Duffel, Belgium
| | - Marion Leboyer
- INSERM U955, Equipe Psychiatrie Translationnelle, Créteil, France.,Fondation FondaMental - Hôpital Albert Chenevier - Pôle Psychiatrie, Créteil, France.,AP-HP, Hôpitaux Universitaires Henri Mondor, DHU Pepsy, Pôle de Psychiatrie et d'Addictologie, Créteil, France.,Université Paris Est Créteil, Faculté de Médecine, Creteil, France
| | - Norbert Müller
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University, München, Germany
| | - Manuel Morrens
- Faculty of Medicine and Health Sciences, Collaborative Antwerp Psychiatric Research Institute (CAPRI), University of Antwerp, Antwerp, Belgium.,Scientific Initiative of Neuropsychiatric and Psychopharmacological Studies (SINAPS), University Psychiatric Centre Duffel, Duffel, Belgium
| |
Collapse
|
13
|
Ely BA, Nguyen TNB, Tobe RH, Walker AM, Gabbay V. Multimodal Investigations of Reward Circuitry and Anhedonia in Adolescent Depression. Front Psychiatry 2021; 12:678709. [PMID: 34366915 PMCID: PMC8345280 DOI: 10.3389/fpsyt.2021.678709] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/15/2021] [Indexed: 02/01/2023] Open
Abstract
Depression is a highly prevalent condition with devastating personal and public health consequences that often first manifests during adolescence. Though extensively studied, the pathogenesis of depression remains poorly understood, and efforts to stratify risks and identify optimal interventions have proceeded slowly. A major impediment has been the reliance on an all-or-nothing categorical diagnostic scheme based solely on whether a patient endorses an arbitrary number of common symptoms for a sufficiently long period. This approach masks the well-documented heterogeneity of depression, a disorder that is highly variable in presentation, severity, and course between individuals and is frequently comorbid with other psychiatric conditions. In this targeted review, we outline the limitations of traditional diagnosis-based research and instead advocate an alternative approach centered around symptoms as unique dimensions of clinical dysfunction that span across disorders and more closely reflect underlying neurobiological abnormalities. In particular, we highlight anhedonia-the reduced ability to anticipate and experience pleasure-as a specific, quantifiable index of reward dysfunction and an ideal candidate for dimensional investigation. Anhedonia is a core symptom of depression but also a salient feature of numerous other conditions, and its severity varies widely within clinical and even healthy populations. Similarly, reward dysfunction is a hallmark of depression but is evident across many psychiatric conditions. Reward function is especially relevant in adolescence, a period characterized by exaggerated reward-seeking behaviors and rapid maturation of neural reward circuitry. We detail extensive work by our research group and others to investigate the neural and systemic factors contributing to reward dysfunction in youth, including our cumulative findings using multiple neuroimaging and immunological measures to study depressed adolescents but also trans-diagnostic cohorts with diverse psychiatric symptoms. We describe convergent evidence that reward dysfunction: (a) predicts worse clinical outcomes, (b) is associated with functional and chemical abnormalities within and beyond the neural reward circuitry, (c) is linked to elevated peripheral levels of inflammatory biomarkers, and (d) manifests early in the course of illness. Emphasis is placed on high-resolution neuroimaging techniques, comprehensive immunological assays, and data-driven analyses to fully capture and characterize the complex, interconnected nature of these systems and their contributions to adolescent reward dysfunction.
Collapse
Affiliation(s)
- Benjamin A. Ely
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Tram N. B. Nguyen
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Russell H. Tobe
- Department of Clinical Research, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, United States
| | - Audrey M. Walker
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Vilma Gabbay
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Clinical Research, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, United States
| |
Collapse
|
14
|
Öztürk M, Yalın Sapmaz Ş, Kandemir H, Taneli F, Aydemir Ö. The role of the kynurenine pathway and quinolinic acid in adolescent major depressive disorder. Int J Clin Pract 2021; 75:e13739. [PMID: 32997876 DOI: 10.1111/ijcp.13739] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 09/23/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The biological mechanisms underlying major depressive disorder (MDD) are not yet sufficiently understood. The kynurenine pathway has been proposed to play a key role between peripheral inflammation and alterations in the central nervous system. This is because of reduced usability of tryptophan (TRP) and production of oxygen radicals and highly potent neurotoxic agents in this pathway. OBJECTIVE In this study, we aimed to compare the metabolites of the serum kynurenine pathway (tryptophan, kynurenine, quinolinic acid and kynurenic acid) and IFN-γ, IL-6, IL-1β and high-sensitivity C-reactive protein (hsCRP) levels in patients with major depressive disorder and in healthy controls and to evaluate the relationship between cytokine levels and the functioning of the kynurenine pathway. METHODS Clinical and biochemical data from the patients were obtained and assessed in a cross-sectional design. Serum samples were analysed for IL-6, IL-1β, interferon (IFN)-γ, tryptophan (TRP), quinolinic acid (QUIN), kynurenic acid (KYNA) and kynurenine (Kyn) levels by the enzyme-linked immunosorbent assay. hsCRP test was analysed by the immunoturbidimetric method. RESULTS In total, 48 adolescent patients with major depressive disorder (no drug use) and 31 healthy controls were included in the study. TRP levels were observed to be significantly lower in patients with MDD than in healthy controls (P = .046); the Kyn/TRP ratio was significantly higher in patients with MDD than in healthy controls (P = .032); the levels of QUIN were significantly higher in patients with MDD than in healthy controls (P = .003). No significant difference was found between the groups in terms of other kynurenine metabolites and cytokines levels. CONCLUSION These results suggest that the Kyn and related molecular pathways may play a role in the pathophysiology of MDD. The most important finding was the increased level of QUIN, which has a neurotoxic effect, in the kynurenine pathway.
Collapse
Affiliation(s)
- Masum Öztürk
- Department of Child and Adolescent Psychiatry, Kızıltepe State Hospital, Mardin, Turkey
| | - Şermin Yalın Sapmaz
- Faculty of Medicine, Department of Child and Adolescent Psychiatry, Manisa Celal Bayar University, Manisa, Turkey
| | - Hasan Kandemir
- Faculty of Medicine, Department of Child and Adolescent Psychiatry, Manisa Celal Bayar University, Manisa, Turkey
| | - Fatma Taneli
- Faculty of Medicine, Department of Biochemistry, Manisa Celal Bayar University, Manisa, Turkey
| | - Ömer Aydemir
- Faculty of Medicine, Department of Psychiatry, Manisa Celal Bayar University, Manisa, Turkey
| |
Collapse
|
15
|
Liu Q, Ely BA, Schwartz JJ, Alonso CM, Stern ER, Gabbay V. Reward function as an outcome predictor in youth with mood and anxiety symptoms. J Affect Disord 2021; 278:433-442. [PMID: 33010568 PMCID: PMC7704618 DOI: 10.1016/j.jad.2020.09.074] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 06/14/2020] [Accepted: 09/15/2020] [Indexed: 02/01/2023]
Abstract
BACKGROUND Adolescent depression varies considerably in its course. However, there remain no biobehavioral predictors of illness trajectory, and follow-up studies in depressed youth are sparse. Here, we sought to examine whether reward function would predict future clinical outcomes in adolescents with depressive symptoms. We utilized the reward flanker fMRI task to assess brain function during distinct reward processes of anticipation, attainment, and positive prediction error (PPE, i.e. receiving uncertain rewards). METHODS Subjects were 29 psychotropic-medication-free adolescents with mood and anxiety symptoms and 14 healthy controls (HC). All had psychiatric evaluations at baseline and approximately 24-month follow-up. Thirty-two participants (10 HC) had usable fMRI data. Correlation and hierarchical regression models examined baseline symptom severity measures as predictors of follow-up clinical outcomes. Whole-brain analyses examined relationships between neural reward processes and follow-up outcomes. RESULTS Clinically, anhedonia, but not irritability, predicted future depression and suicidal ideation. Among reward processes, only baseline neural activation during PPE correlated with follow-up depression and anhedonia severity. Specifically, activation in the left angular gyrus-a component of the default mode network-was associated with future depression, while activation in the dorsal anterior cingulate, operculum, and left insula-key salience and pain network regions-was associated with future anhedonia, even when controlling for baseline anhedonia. LIMITATIONS The small sample size and variable follow-up intervals limit the generalizability of conclusions. CONCLUSIONS This research suggests that reward dysfunction, indexed by anhedonia, may predict worse clinical trajectories in depressed youth. Adolescents presenting with significant anhedonia should be carefully monitored for illness progression.
Collapse
Affiliation(s)
- Qi Liu
- Department of Psychiatry and Behavioral Science, Albert Einstein College of Medicine, Bronx, NY
| | - Benjamin A. Ely
- Department of Psychiatry and Behavioral Science, Albert Einstein College of Medicine, Bronx, NY
| | - Joshua J. Schwartz
- Department of Psychiatry and Behavioral Science, Albert Einstein College of Medicine, Bronx, NY
| | - Carmen M. Alonso
- Department of Psychiatry and Behavioral Science, Albert Einstein College of Medicine, Bronx, NY
| | - Emily R. Stern
- Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY,New York University School of Medicine, New York, NY
| | - Vilma Gabbay
- Department of Psychiatry and Behavioral Science, Albert Einstein College of Medicine, Bronx, NY, United States; Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, United States.
| |
Collapse
|
16
|
Corwin EJ, Brewster G, Dunbar SB, Wells J, Hertzberg V, Holstad M, Song MK, Jones D. The Metabolomic Underpinnings of Symptom Burden in Patients With Multiple Chronic Conditions. Biol Res Nurs 2020; 23:270-279. [PMID: 32914645 DOI: 10.1177/1099800420958196] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Over 25% of the adult population in the United States suffers from multiple chronic conditions, with numbers continuing to rise. Those with multiple chronic conditions often experience symptoms or symptom clusters that undermine their quality of life and ability to self-manage. Importantly, symptom severity in those with even the same multiple chronic conditions varies, suggesting that the mechanisms driving symptoms in patients with multiple chronic conditions are not fixed but may differ in ways that could make them amenable to targeted interventions. In this manuscript we describe at a metabolic level, the symptom experience of persons with multiple chronic conditions, including how symptoms may synergize or cluster across multiple chronic conditions to augment one's symptom burden. To guide this discussion, we consider the metabolites and metabolic pathways known to span multiple adverse health conditions and associate with severe symptoms of fatigue, depression, and anxiety and their cluster. We also describe how severe versus mild symptoms, and their associated metabolites and metabolic pathways, may vary, depending on the presence of covariates; two of which, sex as a biological variable and the contribution of gut microbiota dysbiosis, are discussed in additional detail. Intertwining metabolomics and symptom science into nursing research, offers the unique opportunity to better understand how the metabolites and metabolic pathways affected in those with multiple chronic conditions may initiate or exacerbate symptom presence within a given individual, ultimately allowing clinicians to develop targeted interventions to improve the health quality of patients their families.
Collapse
Affiliation(s)
| | - Glenna Brewster
- 15792Nell Hodgson Woodruff School of Nursing Emory University, Atlanta, GA, USA
| | - Sandra B Dunbar
- 15792Nell Hodgson Woodruff School of Nursing Emory University, Atlanta, GA, USA
| | - Jessica Wells
- 15792Nell Hodgson Woodruff School of Nursing Emory University, Atlanta, GA, USA
| | - Vicki Hertzberg
- 15792Nell Hodgson Woodruff School of Nursing Emory University, Atlanta, GA, USA
| | - Marcia Holstad
- 15792Nell Hodgson Woodruff School of Nursing Emory University, Atlanta, GA, USA
| | - Mi-Kyung Song
- 15792Nell Hodgson Woodruff School of Nursing Emory University, Atlanta, GA, USA
| | - Dean Jones
- 12239Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
17
|
Messaoud A, Mensi R, Douki W, Neffati F, Najjar MF, Gobbi G, Valtorta F, Gaha L, Comai S. Reduced peripheral availability of tryptophan and increased activation of the kynurenine pathway and cortisol correlate with major depression and suicide. World J Biol Psychiatry 2019; 20:703-711. [PMID: 29683396 DOI: 10.1080/15622975.2018.1468031] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Objectives: Patients affected by major depression (MDD) are at high risk of suicide. The metabolism of tryptophan (Trp) along the serotonin (5-HT) and kynurenine (Kyn) pathways was found dysfunctional in MDD and in suicide. However, a clear biological framework linking dysfunctions in Trp metabolism via 5-HT and Kyn, cortisol, and the activities of tryptophan and indoleamino 2,3-dioxygenase (TDO, IDO) enzymes has not been yet clarified in MDD with or without suicidal behaviours.Methods: We analysed peripheral markers of Trp via 5-HT and Kyn pathways, Kyn/Trp ratio as a measure of TDO/IDO activities, cortisol, and psychopathology in 73 non-suicidal and 56 suicidal MDD patients, and in 40 healthy controls.Results: Plasma Trp levels were lower and the ratio Kyn/Trp higher in suicidal MDD than in non-suicidal MDD patients and controls. Trp levels and the ratio Kyn/Trp correlated with suicidal ideation, and cortisol with the Kyn/Trp ratio. Finally, Trp levels discriminated controls from non-suicidal and suicidal MDD patients, and also non-suicidal from suicidal MDD patients.Conclusions: Reduced availability of Trp for 5-HT synthesis and increased activation of the Kyn pathway and cortisol correlate with depression and suicide. Low plasma Trp levels may be a biomarker of MDD and suicide in MDD.
Collapse
Affiliation(s)
- Amel Messaoud
- Neuropsychopharmacology Unit, San Raffaele Scientific Institute and Vita-Salute University, Milan, Italy.,Department of Psychiatry, Monastir University Hospital, University of Monastir, Monastir, Tunisia.,Biochemistry Department, CHU Fattouma Bourguiba, Monastir, Tunisia
| | - Rym Mensi
- Department of Psychiatry, Monastir University Hospital, University of Monastir, Monastir, Tunisia.,Biochemistry Department, CHU Fattouma Bourguiba, Monastir, Tunisia
| | - Wahiba Douki
- Department of Psychiatry, Monastir University Hospital, University of Monastir, Monastir, Tunisia.,Biochemistry Department, CHU Fattouma Bourguiba, Monastir, Tunisia
| | - Fadoua Neffati
- Biochemistry Department, CHU Fattouma Bourguiba, Monastir, Tunisia
| | | | - Gabriella Gobbi
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University Health Center, McGill University, Montreal, QC, Canada
| | - Flavia Valtorta
- Neuropsychopharmacology Unit, San Raffaele Scientific Institute and Vita-Salute University, Milan, Italy
| | - Lotfi Gaha
- Department of Psychiatry, Monastir University Hospital, University of Monastir, Monastir, Tunisia
| | - Stefano Comai
- Neuropsychopharmacology Unit, San Raffaele Scientific Institute and Vita-Salute University, Milan, Italy.,Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University Health Center, McGill University, Montreal, QC, Canada
| |
Collapse
|
18
|
Zhang H, Ding L, Shen T, Peng D. HMGB1 involved in stress-induced depression and its neuroinflammatory priming role: a systematic review. Gen Psychiatr 2019; 32:e100084. [PMID: 31552388 PMCID: PMC6738663 DOI: 10.1136/gpsych-2019-100084] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/15/2019] [Accepted: 07/17/2019] [Indexed: 12/12/2022] Open
Abstract
Background Evidence from clinical and preclinical studies has demonstrated that stress can cause depressive-like symptoms including anhedonia and psychomotor retardation, namely, the manifestation of motivational deficits in depression. The proximate mediator of linking social-environmental stress with internal motivational deficits remains elusive, although substantial studies proposed neural endocrine mechanisms. As an endogenous danger-associated molecule, high mobility group box-1 (HMGB1) is necessary and sufficient for stress-induced sensitization of innate immune cells and subsequent (neuro)inflammation. Aim This review aims to provide evidence to unveil the potential mechanism of the relationship between motivational deficits and stress in depression. Methods We reviewed original case-control studies investigating the association between HMGB1-mediated inflammation and stress-induced depression. The literature search of Pubmed and Web of Science electronic database from inception up to March 28th, 2019 were conducted by two independent authors. We performed a qualitative systematic review approach to explore the correlation between HMGB1-mediated inflammation and anhedonia/psychomotor retardation in depression. Results A total of 69 studies based on search strategy were retrieved and seven eligible studies met the inclusion criteria. Studies showed that HMGB1 was implicated with depressive-like behaviors, which are similar with motivational deficits. Furthermore, HMGB1-mediated inflammation in depressive-like behaviors may be involved in Nod-like receptor family pyrin domain containing three (NLRP3) inflammasome and proinflammatory cytokines, abnormal kynurenine pathway and imbalance between neuroprotective and neurotoxic factors. Conclusions We found that stress-induced inflammation mediated by HMGB1 may affect motivational deficits through regulating dopamine pathway in corticostriatal neurocircuitry. The systematic review may shed light on the novel neurobiological underpinning for treatment of motivation deficits in depression.
Collapse
Affiliation(s)
- Huifeng Zhang
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Ding
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ting Shen
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Daihui Peng
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
19
|
Relationships between neural activation during a reward task and peripheral cytokine levels in youth with diverse psychiatric symptoms. Brain Behav Immun 2019; 80:374-383. [PMID: 30953769 PMCID: PMC6660409 DOI: 10.1016/j.bbi.2019.04.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 03/18/2019] [Accepted: 04/02/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Inflammation has been hypothesized to contribute to reward dysfunction across psychiatric conditions, but little is known about this relationship in youth. Therefore, the present study investigated the associations between general and specific markers of inflammation and neural activation during reward processing, including anticipation and attainment, in youth with diverse psychiatric symptoms. METHODS Forty-six psychotropic medication-free youth with diverse psychiatric symptoms underwent a blood draw to measure 41 cytokines, as well as structural and functional magnetic resonance imaging. The Reward Flanker Task examined neural activation during reward anticipation and attainment. Relationships between inflammation and neural activation were assessed using data reduction techniques across the whole-brain, as well as in specific reward regions of interest (basal ganglia, anterior and mid-cingulate cortex [ACC/MCC]). RESULTS Whole-brain principal component analyses showed that factor 3 (12 cytokines: FGF-2, Flt3-L, fractalkine, GM-CSF, IFN-α2, IFN-γ, IL-3, IL-4, IL-7, IL-17A, MDC, and VEGF) was negatively correlated with precuneus/posterior cingulate cortex activity during anticipation. Factor 2 (11 cytokines: eotaxin, IL-1α, IL-1Rα, IL-2, IL-5, IL-9, IL-12p40, IL-13, IL-15, MCP-3, and TNF-β) was negatively correlated with angular gyrus activity during attainment. ROI analyses additionally showed that multiple cytokines were related to activity in the basal ganglia (EGF, FGF-2, Flt-3L, IL-2, IL-13, IL-15, IL-1Rα, MCP-3) and ACC/MCC (Flt-3L) during attainment. C-reactive protein (CRP) was not associated with neural activation. CONCLUSIONS Investigation of specific markers of immune function showed associations between inflammatory processes and activation of posterior default mode network, prefrontal cortex, and basal ganglia regions during multiple phases of reward processing.
Collapse
|
20
|
Traina G. Mast Cells in Gut and Brain and Their Potential Role as an Emerging Therapeutic Target for Neural Diseases. Front Cell Neurosci 2019; 13:345. [PMID: 31417365 PMCID: PMC6682652 DOI: 10.3389/fncel.2019.00345] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 07/12/2019] [Indexed: 12/11/2022] Open
Abstract
The mast cells (MCs) are the leader cells of inflammation. They are well known for their involvement on allergic reactions through degranulation and release of vasoactive, inflammatory, and nociceptive mediators. Upon encountering potential danger signal, MCs are true sensors of the environment, the first to respond in rapid and selective manner. The MC activates the algic response and modulates the evolution of nociceptive pain, typical of acute inflammation, to neuropathic pain, typical not only of chronic inflammation but also of the dysregulation of the pain system. Yet, MC may contribute to modulate intensity of the associated depressive and anxiogenic component on the neuronal and microglial biological front. Chronic inflammation is a common mediator of these co-morbidities. In parallel to the removal of the etiological factors of tissue damage, the modulation of MC hyperactivity and the reduction of the release of inflammatory factors may constitute a new frontier of pharmacological intervention aimed at preventing the chronicity of inflammation, the evolution of pain, and also the worsening of the depression and anxiogenic state associated with it. So, identifying specific molecules able to modify MC activity may be an important therapeutic tool. Various preclinical evidences suggest that the intestinal microbiota contributes substantially to mood and behavioral disorders. In humans, conditions of the microbiota have been linked to stress, anxiety, depression, and pain. MC is likely the crucial neuroimmune connecting between these components. In this review, the involvement of MCs in pain, stress, and depression is reviewed. We focus on the MC as target that may be mediating stress and mood disorders via microbiota-gut-brain axis.
Collapse
Affiliation(s)
- Giovanna Traina
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| |
Collapse
|
21
|
Freed RD, Mehra LM, Laor D, Patel M, Alonso CM, Kim-Schulze S, Gabbay V. Anhedonia as a clinical correlate of inflammation in adolescents across psychiatric conditions. World J Biol Psychiatry 2018; 20:712-722. [PMID: 29843560 PMCID: PMC6377856 DOI: 10.1080/15622975.2018.1482000] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Objectives: Peripheral inflammation has been associated with multiple psychiatric disorders, particularly with depression. However, findings remain inconsistent and unreproducible, most likely due to the disorder's heterogeneity in phenotypic presentation. Therefore, in the present study, in an effort to account for inter-individual differences in symptom severity, we utilised a dimensional approach to assess the relationships between a broad panel of inflammatory cytokines and key psychiatric symptoms (i.e. depression, anhedonia, anxiety, fatigue and suicidality) in adolescents across psychiatric disorders. We hypothesised that only anhedonia (reflecting deficits of reward function) will be associated with inflammation.Methods: Participants were 54 psychotropic medication-free adolescents with diverse psychiatric conditions and 22 healthy control (HC) adolescents, aged 12-20. We measured 41 cytokines after in vitro lipopolysaccharide stimulation. Mann-Whitney U and Spearman correlation tests examined group comparison and associations, respectively, while accounting for multiple comparisons and confounds, including depression severity adolescent.Results: There were no group differences in cytokine levels. However, as hypothesised, within the psychiatric group, only anhedonia was associated with 19 cytokines, including haematopoietic growth factors, chemokines, pro-inflammatory cytokines, and anti-inflammatory cytokines.Conclusions: Our findings suggest that general inflammation may induce reward dysfunction, which plays a salient role across psychiatric conditions, rather than be specific to one categorical psychiatric disorder.
Collapse
Affiliation(s)
- Rachel D. Freed
- Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY
| | - Lushna M. Mehra
- Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY
| | - Daniel Laor
- Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY
| | - Manishkumar Patel
- Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY
| | - Carmen M. Alonso
- Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY
| | | | - Vilma Gabbay
- Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY,Nathan S. Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd, Orangeburg, NY
| |
Collapse
|
22
|
Wang B, Lian YJ, Su WJ, Peng W, Dong X, Liu LL, Gong H, Zhang T, Jiang CL, Wang YX. HMGB1 mediates depressive behavior induced by chronic stress through activating the kynurenine pathway. Brain Behav Immun 2018; 72:51-60. [PMID: 29195782 DOI: 10.1016/j.bbi.2017.11.017] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 11/21/2017] [Accepted: 11/22/2017] [Indexed: 12/20/2022] Open
Abstract
Our previous study has reported that the proactive secretion and role of central high mobility group box 1 (HMGB1) in lipopolysaccharide-induced depressive behavior. Here, the potential mechanism of HMGB1 mediating chronic-stress-induced depression through the kynurenine pathway (KP) was further explored both in vivo and in vitro. Depression model was established with the 4-week chronic unpredictable mild stress (CUMS). Sucrose preference and Barnes maze test were performed to reflect depressive behaviors. The ratio of kynurenine (KYN)/tryptophan (Trp) represented the enzyme activity of indoleamine-2,3-dioxygenase (IDO). Gene transcription and protein expression were assayed by real-time RT-PCR and western-blot or ELISA kit respectively. Along with depressive behaviors, HMGB1 concentrations in the hippocampus and serum substantially increased post 4-week CUMS exposure. Concurrent with the upregulated HMGB1 protein, the regulator of translocation of HMGB1, sirtuin 1 (SIRT1) concentration in the hippocampus remarkably increased. In addition to HMGB1 and SIRT1, IDO, the rate limiting enzyme of KP, was upregulated at the level of mRNA expression and enzyme activity in stressed hippocampi and LPS/HMGB1-treated hippocampal slices. The gene transcription of kynurenine monooxygenase (KMO) and kynureninase (KYNU) in the downstream of KP also increased both in vivo and in vitro. Mice treated with ethyl pyruvate (EP), the inhibitor of HMGB1 releasing, were observed with lower tendency of developing depressive behaviors and reduced activation of enzymes in KP. All of these experiments demonstrate that the role of HMGB1 on the induction of depressive behavior is mediated by KP activation.
Collapse
Affiliation(s)
- Bo Wang
- Lab of Stress Medicine, Department of Psychology and Mental Health, Second Military Medical University, Shanghai 200433, PR China
| | - Yong-Jie Lian
- Lab of Stress Medicine, Department of Psychology and Mental Health, Second Military Medical University, Shanghai 200433, PR China
| | - Wen-Jun Su
- Lab of Stress Medicine, Department of Psychology and Mental Health, Second Military Medical University, Shanghai 200433, PR China
| | - Wei Peng
- Lab of Stress Medicine, Department of Psychology and Mental Health, Second Military Medical University, Shanghai 200433, PR China; Department of Psychiatry, The 92nd Hospital of PLA, Nanping 353000, PR China
| | - Xin Dong
- School of Pharmacy, Second Military Medical University, Shanghai 200433, PR China
| | - Lin-Lin Liu
- Lab of Stress Medicine, Department of Psychology and Mental Health, Second Military Medical University, Shanghai 200433, PR China; Department of Nursing, The 474th Hospital of PLA, Urumqi 830012, PR China
| | - Hong Gong
- Lab of Stress Medicine, Department of Psychology and Mental Health, Second Military Medical University, Shanghai 200433, PR China
| | - Ting Zhang
- Department of Navy Medicine, Second Military Medical University, Shanghai 200433, PR China
| | - Chun-Lei Jiang
- Lab of Stress Medicine, Department of Psychology and Mental Health, Second Military Medical University, Shanghai 200433, PR China
| | - Yun-Xia Wang
- Lab of Stress Medicine, Department of Psychology and Mental Health, Second Military Medical University, Shanghai 200433, PR China.
| |
Collapse
|
23
|
Pain O, Dudbridge F, Cardno AG, Freeman D, Lu Y, Lundstrom S, Lichtenstein P, Ronald A. Genome-wide analysis of adolescent psychotic-like experiences shows genetic overlap with psychiatric disorders. Am J Med Genet B Neuropsychiatr Genet 2018; 177:416-425. [PMID: 29603866 PMCID: PMC6001485 DOI: 10.1002/ajmg.b.32630] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 01/15/2018] [Accepted: 03/01/2018] [Indexed: 12/16/2022]
Abstract
This study aimed to test for overlap in genetic influences between psychotic-like experience traits shown by adolescents in the community, and clinically-recognized psychiatric disorders in adulthood, specifically schizophrenia, bipolar disorder, and major depression. The full spectra of psychotic-like experience domains, both in terms of their severity and type (positive, cognitive, and negative), were assessed using self- and parent-ratings in three European community samples aged 15-19 years (Final N incl. siblings = 6,297-10,098). A mega-genome-wide association study (mega-GWAS) for each psychotic-like experience domain was performed. Single nucleotide polymorphism (SNP)-heritability of each psychotic-like experience domain was estimated using genomic-relatedness-based restricted maximum-likelihood (GREML) and linkage disequilibrium- (LD-) score regression. Genetic overlap between specific psychotic-like experience domains and schizophrenia, bipolar disorder, and major depression was assessed using polygenic risk score (PRS) and LD-score regression. GREML returned SNP-heritability estimates of 3-9% for psychotic-like experience trait domains, with higher estimates for less skewed traits (Anhedonia, Cognitive Disorganization) than for more skewed traits (Paranoia and Hallucinations, Parent-rated Negative Symptoms). Mega-GWAS analysis identified one genome-wide significant association for Anhedonia within IDO2 but which did not replicate in an independent sample. PRS analysis revealed that the schizophrenia PRS significantly predicted all adolescent psychotic-like experience trait domains (Paranoia and Hallucinations only in non-zero scorers). The major depression PRS significantly predicted Anhedonia and Parent-rated Negative Symptoms in adolescence. Psychotic-like experiences during adolescence in the community show additive genetic effects and partly share genetic influences with clinically-recognized psychiatric disorders, specifically schizophrenia and major depression.
Collapse
Affiliation(s)
- Oliver Pain
- Department of Psychological SciencesBirkbeck, University of LondonLondonUnited Kingdom
| | - Frank Dudbridge
- Department of Non‐Communicable Disease EpidemiologyLondon School of Hygiene and Tropical MedicineLondonUnited Kingdom
| | - Alastair G. Cardno
- Academic Unit of Psychiatry and Behavioural SciencesUniversity of LeedsLeedsUnited Kingdom
| | - Daniel Freeman
- Department of PsychiatryUniversity of OxfordOxfordUnited Kingdom
| | - Yi Lu
- Department of Medical Epidemiology and BiostatisticsKarolinska InstituteStockholmSweden
| | - Sebastian Lundstrom
- Centre for Ethics, Law and Mental Health (CELAM)University of GothenburgGothenburgSweden
- Gillberg Neuropsychiatry CentreUniversity of GothenburgGothenburgSweden
| | - Paul Lichtenstein
- Department of Medical Epidemiology and BiostatisticsKarolinska InstituteStockholmSweden
| | - Angelica Ronald
- Department of Psychological SciencesBirkbeck, University of LondonLondonUnited Kingdom
| |
Collapse
|
24
|
Wigner P, Czarny P, Synowiec E, Bijak M, Talarowska M, Galecki P, Szemraj J, Sliwinski T. Variation of genes encoding KAT1, AADAT and IDO1 as a potential risk of depression development. Eur Psychiatry 2018; 52:95-103. [PMID: 29777939 DOI: 10.1016/j.eurpsy.2018.05.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/30/2018] [Accepted: 05/02/2018] [Indexed: 12/18/2022] Open
Abstract
Numerous data suggests that the disorders of tryptophan catabolites (TRYCATs) pathway, including a decreased level of tryptophan or evaluated concentration of harmful TRYCATs -kynurenine, quinolinic acid, 3-hydroxyanthranilic acid, 3-hydroxytryptophan - may cause the occurrence of DD symptoms. In this work, we assessed the relationship between single-nucleotide polymorphisms (SNPs) of KAT1, KAT2 and IDO1 gene encoding, and the risk of depression development. Our study was performed on the DNA isolated from peripheral blood of 281 depressed patients and 236 controls. We genotyped, by using TaqMan probes, four polymorphisms: c.*456G > A of KAT1 (rs10988134), c.975-7T > C of AADAT (rs1480544), c.-1849C > A (rs3824259) and c.-1493G > C(rs10089084)of IDO1. We found that only the A/A genotype of c.*456G > A - KAT1 (rs10988134) increased the risk of depression occurrence. Interestingly, when we stratified the study group according to gender, this relationship was present only in male population. However, a gene-gene analysis revealed a link between the T/T-C/C genotype of c.975-7T > C - AADAT (rs1480544)or c.-1493G > C - IDO1 (rs10089084) and C/C-C/A genotype of c.975-7T > C - AADAT (rs1480544)and c. -1849C > A - IDO1 (rs3824259) and the disease. Moreover, we found, that the c.975-7T > C - AADAT and c. *456G > A KAT1 (rs10988134) polymorphisms may modulate the effectiveness of selective serotonin reuptake inhibitors therapy. Concluding, our results confirm the hypothesis formulated in our recently published article that the SNPs of genes involved in TRYCATs pathway may modulate the risk of depression. This provides some further evidence that the pathway plays the crucial role in development of the disease.
Collapse
Affiliation(s)
- Paulina Wigner
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Piotr Czarny
- Department of Medical Biochemistry, Medical University of Lodz, Lodz, Poland
| | - Ewelina Synowiec
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Michał Bijak
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Monika Talarowska
- Department of Adult Psychiatry, Medical University of Lodz, Lodz, Poland
| | - Piotr Galecki
- Department of Adult Psychiatry, Medical University of Lodz, Lodz, Poland
| | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Lodz, Lodz, Poland
| | - Tomasz Sliwinski
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland.
| |
Collapse
|
25
|
Skaper SD, Facci L, Zusso M, Giusti P. An Inflammation-Centric View of Neurological Disease: Beyond the Neuron. Front Cell Neurosci 2018; 12:72. [PMID: 29618972 PMCID: PMC5871676 DOI: 10.3389/fncel.2018.00072] [Citation(s) in RCA: 301] [Impact Index Per Article: 50.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 02/27/2018] [Indexed: 12/13/2022] Open
Abstract
Inflammation is a complex biological response fundamental to how the body deals with injury and infection to eliminate the initial cause of cell injury and effect repair. Unlike a normally beneficial acute inflammatory response, chronic inflammation can lead to tissue damage and ultimately its destruction, and often results from an inappropriate immune response. Inflammation in the nervous system (“neuroinflammation”), especially when prolonged, can be particularly injurious. While inflammation per se may not cause disease, it contributes importantly to disease pathogenesis across both the peripheral (neuropathic pain, fibromyalgia) and central [e.g., Alzheimer disease, Parkinson disease, multiple sclerosis, motor neuron disease, ischemia and traumatic brain injury, depression, and autism spectrum disorder] nervous systems. The existence of extensive lines of communication between the nervous system and immune system represents a fundamental principle underlying neuroinflammation. Immune cell-derived inflammatory molecules are critical for regulation of host responses to inflammation. Although these mediators can originate from various non-neuronal cells, important sources in the above neuropathologies appear to be microglia and mast cells, together with astrocytes and possibly also oligodendrocytes. Understanding neuroinflammation also requires an appreciation that non-neuronal cell—cell interactions, between both glia and mast cells and glia themselves, are an integral part of the inflammation process. Within this context the mast cell occupies a key niche in orchestrating the inflammatory process, from initiation to prolongation. This review will describe the current state of knowledge concerning the biology of neuroinflammation, emphasizing mast cell-glia and glia-glia interactions, then conclude with a consideration of how a cell's endogenous mechanisms might be leveraged to provide a therapeutic strategy to target neuroinflammation.
Collapse
Affiliation(s)
- Stephen D Skaper
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Laura Facci
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Morena Zusso
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Pietro Giusti
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| |
Collapse
|
26
|
DeWitt SJ, Bradley KA, Lin N, Yu C, Gabbay V. A pilot resting-state functional connectivity study of the kynurenine pathway in adolescents with depression and healthy controls. J Affect Disord 2018; 227:752-758. [PMID: 29254065 PMCID: PMC5805652 DOI: 10.1016/j.jad.2017.11.040] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 09/07/2017] [Accepted: 11/11/2017] [Indexed: 12/28/2022]
Abstract
BACKGROUND The neuroimmunological kynurenine pathway (KP) has been hypothesized to play a role in depressive/anhedonic symptoms and related CNS disturbances. Indoleamine 2,3-dioxygenase (IDO) is the rate limiting enzyme which leads to neurotrophic [kynurenic acid (KA)] and neurotoxic [Quinolinic acid (QUIN)] branches. In this pilot, we sought to examine associations between blood KP neuro-toxic/trophic measures and anhedonia/depression associated networks in youth with major depression (MDD) and healthy controls (HC). METHODS Subjects were 14 psychotropic-medication free adolescents with MDD and 7 HC, ages 12-19 yo. All underwent resting-state functional magnetic resonance imagining (fMRI) scans. Voxel-wise maps were generated indicating correlation strengths among 4 bilateral seeds [(dorsal anterior cingulate cortex (dACC), perigenual ACC (pgACC), subgenual ACC (sgACC) and nucleus accumbens (NAc)] and remaining brain regions. FMRI analyses were family-wise error corrected. KP metabolites were measured using liquid chromatography-tandem mass spectrometry. RESULTS Connectivity between the right dACC and the right precuneus was positively correlated with KA levels. This same cluster demonstrated an inverse correlation with IDO activity. Exploratory analysis at a more liberal clustering threshold showed the KA/QUIN ratio was positively correlated with connectivity between the pgACC and the right medial prefrontal cortex. Lastly, connectivity between the pgACC and the left inferior temporal gyrus was positively correlated with QUIN levels. LIMITATIONS Findings are preliminary due to the small sample size. CONCLUSIONS This pilot study is the first report in depressed adolescents demonstrating associations between the KP and anhedonia/depression-associated brain networks. This pilot adds evidence to the putative role of the KP in MDD.
Collapse
Affiliation(s)
- Samuel J DeWitt
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Kailyn A Bradley
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Na Lin
- Department of Genetics and Genomic Sciences Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Chunli Yu
- Department of Genetics and Genomic Sciences Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Vilma Gabbay
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
27
|
Freed RD, Hollenhorst CN, Weiduschat N, Mao X, Kang G, Shungu DC, Gabbay V. A pilot study of cortical glutathione in youth with depression. Psychiatry Res 2017; 270:54-60. [PMID: 29078101 PMCID: PMC5673254 DOI: 10.1016/j.pscychresns.2017.10.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 07/27/2017] [Accepted: 10/01/2017] [Indexed: 12/14/2022]
Abstract
AIM This study used proton magnetic resonance spectroscopy (1H MRS) to measure in vivo brain glutathione (GSH) in adolescents with major depressive disorder (MDD), and explored the relationship between GSH and illness severity and chronicity. Secondarily, associations between GSH and anhedonia, a key symptom of MDD in adolescents, were investigated. METHODS Occipital cortex GSH levels were obtained in 19 psychotropic medication-free adolescents with MDD (ages 12-21) and compared to those in eight healthy control adolescents. Correlations between GSH levels and anhedonia severity were examined both in the full participant sample and within the MDD group. Within the MDD group, correlations between GSH levels and illness severity and chronicity were assessed. RESULTS Occipital GSH levels were lower in adolescents with MDD compared to controls, but did not correlate with anhedonia (either within the MDD group or the full sample), MDD severity, or onset. There were also no group differences in levels of total choline, creatine, and N-acetylaspartate - all neurometabolites that were simultaneously detected with 1H MRS. CONCLUSIONS Although preliminary, findings add new data to support the role of oxidative stress in MDD and suggest that lower GSH may be a potential marker of MDD early on in the course of illness.
Collapse
Affiliation(s)
- Rachel D Freed
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Cecilia N Hollenhorst
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nora Weiduschat
- Department of Radiology, Weill Medical College of Cornell University, New York, NY, USA
| | - Xiangling Mao
- Department of Radiology, Weill Medical College of Cornell University, New York, NY, USA
| | - Guoxin Kang
- Department of Radiology, Weill Medical College of Cornell University, New York, NY, USA
| | - Dikoma C Shungu
- Department of Radiology, Weill Medical College of Cornell University, New York, NY, USA
| | - Vilma Gabbay
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA.
| |
Collapse
|
28
|
Affiliation(s)
- Giovanna Traina
- Department of Pharmaceutical Sciences, University of Perugia, Via S. Costanzo, 06126 Perugia, Italy. Tel.: ; Fax: ; E-mail:
| |
Collapse
|
29
|
Dostal CR, Carson Sulzer M, Kelley KW, Freund GG, M cCusker RH. Glial and tissue-specific regulation of Kynurenine Pathway dioxygenases by acute stress of mice. Neurobiol Stress 2017; 7:1-15. [PMID: 29520368 PMCID: PMC5840960 DOI: 10.1016/j.ynstr.2017.02.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 01/10/2017] [Accepted: 02/07/2017] [Indexed: 01/11/2023] Open
Abstract
Stressors activate the hypothalamic-pituitary-adrenal (HPA) axis and immune system eliciting changes in cognitive function, mood and anxiety. An important link between stress and altered behavior is stimulation of the Kynurenine Pathway which generates neuroactive and immunomodulatory kynurenines. Tryptophan entry into this pathway is controlled by rate-limiting indoleamine/tryptophan 2,3-dioxygenases (DOs: Ido1, Ido2, Tdo2). Although implicated as mediating changes in behavior, detecting stress-induced DO expression has proven inconsistent. Thus, C57BL/6J mice were used to characterize DO expression in brain-regions, astrocytes and microglia to characterize restraint-stress-induced DO expression. Stress increased kynurenine in brain and plasma, demonstrating increased DO activity. Of three Ido1 transcripts, only Ido1-v1 expression was increased by stress and within astrocytes, not microglia, indicating transcript- and glial-specificity. Stress increased Ido1-v1 only in frontal cortex and hypothalamus, indicating brain-region specificity. Of eight Ido2 transcripts, Ido2-v3 expression was increased by stress, again only within astrocytes. Likewise, stress increased Tdo2-FL expression in astrocytes, not microglia. Interestingly, Ido2 and Tdo2 transcripts were not correspondingly induced in Ido1-knockout (Ido1KO) mice, suggesting that Ido1 is necessary for the central DO response to acute stress. Unlike acute inflammatory models resulting in DO induction within microglia, only astrocyte DO expression was increased by acute restraint-stress, defining their unique role during stress-dependent activation of the Kynurenine Pathway.
Collapse
Affiliation(s)
- Carlos R. Dostal
- Neuroscience Program, 250 Edward R Madigan Laboratory, 1201 W. Gregory Drive, Urbana, IL 61801, USA
- Medical Scholars Program, 250 Edward R Madigan Laboratory, 1201 W. Gregory Drive, Urbana, IL 61801, USA
| | - Megan Carson Sulzer
- School of Molecular and Cellular Biology, 250 Edward R Madigan Laboratory, 1201 W. Gregory Drive, Urbana, IL 61801, USA
| | - Keith W. Kelley
- Neuroscience Program, 250 Edward R Madigan Laboratory, 1201 W. Gregory Drive, Urbana, IL 61801, USA
- Department of Animal Sciences, 250 Edward R Madigan Laboratory, 1201 W. Gregory Drive, Urbana, IL 61801, USA
- Department of Pathology, University of Illinois at Urbana-Champaign, 250 Edward R Madigan Laboratory, 1201 W. Gregory Drive, Urbana, IL 61801, USA
| | - Gregory G. Freund
- Neuroscience Program, 250 Edward R Madigan Laboratory, 1201 W. Gregory Drive, Urbana, IL 61801, USA
- Department of Animal Sciences, 250 Edward R Madigan Laboratory, 1201 W. Gregory Drive, Urbana, IL 61801, USA
- Department of Pathology, University of Illinois at Urbana-Champaign, 250 Edward R Madigan Laboratory, 1201 W. Gregory Drive, Urbana, IL 61801, USA
| | - Robert H. McCusker
- Neuroscience Program, 250 Edward R Madigan Laboratory, 1201 W. Gregory Drive, Urbana, IL 61801, USA
- Department of Animal Sciences, 250 Edward R Madigan Laboratory, 1201 W. Gregory Drive, Urbana, IL 61801, USA
- Department of Pathology, University of Illinois at Urbana-Champaign, 250 Edward R Madigan Laboratory, 1201 W. Gregory Drive, Urbana, IL 61801, USA
| |
Collapse
|
30
|
Hendriksen E, van Bergeijk D, Oosting RS, Redegeld FA. Mast cells in neuroinflammation and brain disorders. Neurosci Biobehav Rev 2017; 79:119-133. [DOI: 10.1016/j.neubiorev.2017.05.001] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 05/01/2017] [Accepted: 05/01/2017] [Indexed: 12/13/2022]
|
31
|
Clark SM, Pocivavsek A, Nicholson JD, Notarangelo FM, Langenberg P, McMahon RP, Kleinman JE, Hyde TM, Stiller J, Postolache TT, Schwarcz R, Tonelli LH. Reduced kynurenine pathway metabolism and cytokine expression in the prefrontal cortex of depressed individuals. J Psychiatry Neurosci 2016; 41:386-394. [PMID: 27070351 PMCID: PMC5082509 DOI: 10.1503/jpn.150226] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Neuroinflammatory processes are increasingly believed to participate in the pathophysiology of a number of major psychiatric diseases, including depression. Immune activation stimulates the conversion of the amino acid tryptophan to kynurenine, leading to the formation of neuroactive metabolites, such as quinolinic acid and kynurenic acid. These compounds affect glutamatergic neurotransmission, which plays a prominent role in depressive pathology. Increased tryptophan degradation along the kynurenine pathway (KP) has been proposed to contribute to disease etiology. METHODS We used postmortem brain tissue from the ventrolateral prefrontal cortex (VLPFC) to assess tissue levels of tryptophan and KP metabolites, the expression of several KP enzymes and a series of cytokines as well as tissue pathology, including microglial activation. Tissue samples came from nonpsychiatric controls (n = 36) and individuals with depressive disorder not otherwise specified (DD-NOS, n = 45) who died of natural causes, homicide, accident, or suicide. RESULTS We found a reduction in the enzymatic conversion of tryptophan to kynurenine, determined using the kynurenine:tryptophan ratio, and reduced messenger RNA expression of the enzymes indoleamine-2,3-dioxygenase 1 and 2 and tryptophan-2,3-dioxygenase in depressed individuals irrespective of the cause of death. These findings correlated with reductions in the expression of several cytokines, including interferon-γ and tumour necrosis factor-α. Notably, quinolinic acid levels were also lower in depressed individuals than controls. LIMITATIONS Information on the use of antidepressants and other psychotropic medications was insufficient for statistical comparisons. CONCLUSION Contrary to expectations, the present results indicate that depression, in the absence of medical illness or an overt inflammatory process, is associated with compromised, rather than increased, KP metabolism in the VLPFC.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Leonardo H. Tonelli
- Correspondence to: L.H. Tonelli, Laboratory of Behavioral Neuroimmunology, Department of Psychiatry, University of Maryland School of Medicine, 655 W. Baltimore St. Baltimore MD, 21201, USA;
| |
Collapse
|
32
|
Garden GA, Campbell BM. Glial biomarkers in human central nervous system disease. Glia 2016; 64:1755-71. [PMID: 27228454 PMCID: PMC5575821 DOI: 10.1002/glia.22998] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 04/07/2016] [Accepted: 04/13/2016] [Indexed: 12/13/2022]
Abstract
There is a growing understanding that aberrant GLIA function is an underlying factor in psychiatric and neurological disorders. As drug discovery efforts begin to focus on glia-related targets, a key gap in knowledge includes the availability of validated biomarkers to help determine which patients suffer from dysfunction of glial cells or who may best respond by targeting glia-related drug mechanisms. Biomarkers are biological variables with a significant relationship to parameters of disease states and can be used as surrogate markers of disease pathology, progression, and/or responses to drug treatment. For example, imaging studies of the CNS enable localization and characterization of anatomical lesions without the need to isolate tissue for biopsy. Many biomarkers of disease pathology in the CNS involve assays of glial cell function and/or response to injury. Each major glia subtype (oligodendroglia, astroglia and microglia) are connected to a number of important and useful biomarkers. Here, we describe current and emerging glial based biomarker approaches for acute CNS injury and the major categories of chronic nervous system dysfunction including neurodegenerative, neuropsychiatric, neoplastic, and autoimmune disorders of the CNS. These descriptions are highlighted in the context of how biomarkers are employed to better understand the role of glia in human CNS disease and in the development of novel therapeutic treatments. GLIA 2016;64:1755-1771.
Collapse
Affiliation(s)
- Gwenn A. Garden
- Department of Neurology, University of Washington, Seattle, Washington
| | | |
Collapse
|
33
|
Douet V, Tanizaki N, Franke A, Li X, Chang L. Polymorphism of Kynurenine Pathway-Related Genes, Kynurenic Acid, and Psychopathological Symptoms in HIV. J Neuroimmune Pharmacol 2016; 11:549-61. [PMID: 27072370 PMCID: PMC6502481 DOI: 10.1007/s11481-016-9668-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 03/23/2016] [Indexed: 01/02/2023]
Abstract
HIV-infection is associated with neuroinflammation and greater psychopathological symptoms, which may be mediated by imbalances in the kynurenic pathway (KP). Two key KP enzymes that catabolize kynurenine include kynurenine-aminotransferase II (KATII), which yields antioxidative kynurenine acid [KYNA] in astrocytes, and kynurenine-3-monooxygenase (KMO), which produces neurotoxic metabolites in microglia. The relationships between polymorphisms in KMO and KATII, psychopathological symptoms, and cerebrospinal fluid (CSF) [KYNA] were evaluated in subjects with and without HIV-infection. Seventy-two HIV-positive and 72-seronegative (SN) participants were genotyped for KATII-rs1480544 and KMO-rs1053230. Although our participants were not currently diagnosed with depression or anxiety, they were assessed for psychopathological distress with Center for Epidemiologic Studies-Depression scale and Symptom Checklist-90-Revised. CSF-[KYNA] was also measured in 100 subjects (49 HIV/51 SN). HIV-participants had more psychopathological distress than SN, especially for anxiety. KATII-by-HIV interactions were found on anxiety, interpersonal sensitivity and obsessive compulsivity; KATII-C-carriers had lower scores than TT-carriers in SN but not in HIV. In contrast, the KMO-polymorphism had no influence on psychopathological symptoms in both groups. Overall, CSF-[KYNA] increased with age independently of HIV-serostatus, except KATII-TT-carriers tended to show no age-dependent variations. Therefore, the C-allele in KATII-rs1480544 appears to be protective against psychopathological distress in SN but not in HIV individuals, who had more psychopathological symptoms and likely greater neuroinflammation. The age-dependent increase in CSF-[KYNA] may reflect a compensatory response to age-related inflammation, which may be deficient in KATII-TT-carriers. Targeted treatments that decrease neuroinflammation and increase KYNA in at risk KATII-TT-carriers may reduce psychopathological symptoms in HIV.
Collapse
Affiliation(s)
- Vanessa Douet
- Department of Medicine, John A. Burns School of Medicine, University of Hawai'i and Queen's Medical Center, 1356 Lusitana Street, 7th Floor, Room 716, Honolulu, HI, 96813, USA.
| | - Naomi Tanizaki
- Department of Medicine, John A. Burns School of Medicine, University of Hawai'i and Queen's Medical Center, 1356 Lusitana Street, 7th Floor, Room 716, Honolulu, HI, 96813, USA
| | - Adrian Franke
- The University of Hawai'i Cancer Center, University of Hawai'i at Manoa, Honolulu, HI, USA
| | - Xingnan Li
- The University of Hawai'i Cancer Center, University of Hawai'i at Manoa, Honolulu, HI, USA
| | - Linda Chang
- Department of Medicine, John A. Burns School of Medicine, University of Hawai'i and Queen's Medical Center, 1356 Lusitana Street, 7th Floor, Room 716, Honolulu, HI, 96813, USA.
| |
Collapse
|
34
|
Yirmiya R, Rimmerman N, Reshef R. Depression as a microglial disease. Trends Neurosci 2016; 38:637-658. [PMID: 26442697 DOI: 10.1016/j.tins.2015.08.001] [Citation(s) in RCA: 577] [Impact Index Per Article: 72.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 08/10/2015] [Accepted: 08/11/2015] [Indexed: 12/12/2022]
Abstract
Despite decades of intensive research, the biological mechanisms that causally underlie depression are still unclear, and therefore the development of novel effective antidepressant treatments is hindered. Recent studies indicate that impairment of the normal structure and function of microglia, caused by either intense inflammatory activation (e.g., following infections, trauma, stroke, short-term stress, autoimmune or neurodegenerative diseases) or by decline and senescence of these cells (e.g., during aging, Alzheimer's disease, or chronic unpredictable stress exposure), can lead to depression and associated impairments in neuroplasticity and neurogenesis. Accordingly, some forms of depression can be considered as a microglial disease (microgliopathy), which should be treated by a personalized medical approach using microglial inhibitors or stimulators depending on the microglial status of the depressed patient.
Collapse
Affiliation(s)
- Raz Yirmiya
- Department of Psychology, The Hebrew University of Jerusalem, Jerusalem 91905, Israel.
| | - Neta Rimmerman
- Department of Psychology, The Hebrew University of Jerusalem, Jerusalem 91905, Israel
| | - Ronen Reshef
- Department of Psychology, The Hebrew University of Jerusalem, Jerusalem 91905, Israel
| |
Collapse
|
35
|
Mapping inflammation onto mood: Inflammatory mediators of anhedonia. Neurosci Biobehav Rev 2016; 64:148-66. [PMID: 26915929 DOI: 10.1016/j.neubiorev.2016.02.017] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Revised: 11/30/2015] [Accepted: 02/18/2016] [Indexed: 12/20/2022]
Abstract
Evidence supports inflammatory involvement in mood and cognitive symptoms across psychiatric, neurological and medical disorders; however, inflammation is not a sensitive or specific characteristic of these diagnoses. The National Institute of Mental Health Research Domain Criteria (RDoC) ask for a shift away from symptom-based diagnoses toward a transdiagnostic neurobiological focus in the study of brain illnesses. The RDoC matrix may provide a useful framework for integrating the effects of inflammation on brain function. Based on preclinical and clinical findings, relevant relationships span negative and positive valence systems, cognitive systems, systems for social processes and arousal/regulatory systems. As an exemplar, we consider the psychopathological domain of anhedonia, conceptualizing the relevance of inflammation (e.g., cellular immunity) and downstream processes (e.g., indoleamine 2,3-dioxygenase activation and oxidative inactivation of tetrahydrobiopterin) across RDoC units of analysis (e.g., catecholamine neurotransmitter molecules, nucleus accumbens medium spiny neuronal cells, dopaminergic mesolimbic and mesocortical reward circuits, animal paradigms, etc.). We discuss implications across illnesses affecting the brain, including infection, major depressive disorder, stroke, Alzheimer's disease and type 2 diabetes.
Collapse
|
36
|
Bradley KAL, Mao X, Case JAC, Kang G, Shungu DC, Gabbay V. Increased ventricular cerebrospinal fluid lactate in depressed adolescents. Eur Psychiatry 2016; 32:1-8. [PMID: 26802978 PMCID: PMC4831134 DOI: 10.1016/j.eurpsy.2015.08.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 08/25/2015] [Accepted: 08/28/2015] [Indexed: 10/22/2022] Open
Abstract
BACKGROUND Mitochondrial dysfunction has been increasingly examined as a potential pathogenic event in psychiatric disorders, although its role early in the course of major depressive disorder (MDD) is unclear. Therefore, the purpose of this study was to investigate mitochondrial dysfunction in medication-free adolescents with MDD through in vivo measurements of neurometabolites using high-spatial resolution multislice/multivoxel proton magnetic resonance spectroscopy. METHODS Twenty-three adolescents with MDD and 29 healthy controls, ages 12-20, were scanned at 3T and concentrations of ventricular cerebrospinal fluid lactate, as well as N-acetyl-aspartate (NAA), total creatine (tCr), and total choline (tCho) in the bilateral caudate, putamen, and thalamus were reported. RESULTS Adolescents with MDD exhibited increased ventricular lactate compared to healthy controls [F(1,41)=6.98, P=0.01]. However, there were no group differences in the other neurometabolites. Dimensional analyses in the depressed group showed no relation between any of the neurometabolites and symptomatology, including anhedonia and fatigue. CONCLUSIONS Increased ventricular lactate in depressed adolescents suggests mitochondrial dysfunction may be present early in the course of MDD; however it is still not known whether the presence of mitochondrial dysfunction is a trait vulnerability of individuals predisposed to psychopathology or a state feature of the disorder. Therefore, there is a need for larger multimodal studies to clarify these chemical findings in the context of network function.
Collapse
Affiliation(s)
- K A L Bradley
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, 10029-6574 New York, USA
| | - X Mao
- Department of Radiology, Weill Cornell Medical College, New York, USA
| | - J A C Case
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, 10029-6574 New York, USA
| | - G Kang
- Department of Radiology, Weill Cornell Medical College, New York, USA
| | - D C Shungu
- Department of Radiology, Weill Cornell Medical College, New York, USA
| | - V Gabbay
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, 10029-6574 New York, USA; Nathan Kline Institute for Psychiatric Research, Orangeburg, USA.
| |
Collapse
|
37
|
Réus GZ, Jansen K, Titus S, Carvalho AF, Gabbay V, Quevedo J. Kynurenine pathway dysfunction in the pathophysiology and treatment of depression: Evidences from animal and human studies. J Psychiatr Res 2015; 68:316-28. [PMID: 26028548 PMCID: PMC4955923 DOI: 10.1016/j.jpsychires.2015.05.007] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 04/29/2015] [Accepted: 05/07/2015] [Indexed: 12/16/2022]
Abstract
Treatment-resistant depression affects up to 20% of individuals suffering from major depressive disorder (MDD). The medications currently available to treat depression, including serotonin re-uptake inhibitors (SSRIs), monoamine oxidase inhibitors (MAOIs) and tricyclic antidepressants (TCAs), fail to produce adequate remission of depressive symptoms for a large number of patients. The monoamine hypothesis upon which these medications are predicated should be expanded and revised as research elucidates alternative mechanisms of depression and effective methods to treat the underlying pathologic consequences. Research into the role of tryptophan degradation and the kynurenine pathway in the setting of inflammation has brought new insight into potential etiologies of MDD. Further investigation into the connection between inflammatory mediators, tryptophan degradation, and MDD can provide many targets for novel antidepressant therapies. Thus, this review will highlight the role of the kynurenine pathway in the pathophysiology of depression, as well as a novel therapeutic target to classic and new modulators to treat depression based on findings from preclinical and clinical studies.
Collapse
Affiliation(s)
- Gislaine Z. Réus
- Center for Translational Psychiatry, Department of Psychiatry and Behavioral Sciences, The University of Texas Medical School at Houston, Houston, TX, USA,Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, Brazil,Corresponding author: Gislaine Z. Réus, PhD, Center for Experimental Models in Psychiatry, Department of Psychiatry and Behavioral Sciences, The University of Texas Medical School at Houston, 1941 East Road, Houston, TX 77054, USA. , Phone: +1 (713) 486 2653, Fax: +1 (713) 486 2553
| | - Karen Jansen
- Center for Translational Psychiatry, Department of Psychiatry and Behavioral Sciences, The University of Texas Medical School at Houston, Houston, TX, USA,Graduate Program in Health and Behavior, Catholic University of Pelotas, Pelotas, RS, Brazil
| | - Stephanie Titus
- Center for Translational Psychiatry, Department of Psychiatry and Behavioral Sciences, The University of Texas Medical School at Houston, Houston, TX, USA
| | - André F. Carvalho
- Department of Clinical Medicine and Translational Psychiatry Research Group, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Vilma Gabbay
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - João Quevedo
- Center for Translational Psychiatry, Department of Psychiatry and Behavioral Sciences, The University of Texas Medical School at Houston, Houston, TX, USA,Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, Brazil
| |
Collapse
|
38
|
Bradley KAL, Case JAC, Khan O, Ricart T, Hanna A, Alonso CM, Gabbay V. The role of the kynurenine pathway in suicidality in adolescent major depressive disorder. Psychiatry Res 2015; 227:206-12. [PMID: 25865484 PMCID: PMC4430385 DOI: 10.1016/j.psychres.2015.03.031] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 03/06/2015] [Accepted: 03/08/2015] [Indexed: 11/25/2022]
Abstract
The neuroimmunological kynurenine pathway (KP) has been implicated in major depressive disorder (MDD) in adults and adolescents, most recently in suicidality in adults. The KP is initiated by the enzyme indoleamine 2,3-dioxygenase (IDO), which degrades tryptophan (TRP) into kynurenine (KYN) en route to neurotoxins. Here, we examined the KP in 20 suicidal depressed adolescents-composed of past attempters and those who expressed active suicidal intent-30 non-suicidal depressed youth, and 22 healthy controls (HC). Plasma levels of TRP, KYN, 3-hydroxyanthranilic acid (3-HAA), and KYN/TRP (index of IDO) were assessed. Suicidal adolescents showed decreased TRP and elevated KYN/TRP compared to both non-suicidal depressed adolescents and HC. Findings became more significantly pronounced when excluding medicated participants, wherein there was also a significant positive correlation between KYN/TRP and suicidality. Finally, although depressed adolescents with a history of suicide attempt differed from acutely suicidal adolescents with respect to disease severity, anhedonia, and suicidality, the groups did not differ in KP measures. Our findings suggest a possible specific role of the KP in suicidality in depressed adolescents, while illustrating the clinical phenomenon that depressed adolescents with a history of suicide attempt are similar to acutely suicidal youth and are at increased risk for completion of suicide.
Collapse
Affiliation(s)
- Kailyn A. L. Bradley
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY, 10029, USA
| | - Julia A. C. Case
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY, 10029, USA
| | - Omar Khan
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA.
| | - Thomas Ricart
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA.
| | - Amira Hanna
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA.
| | - Carmen M. Alonso
- NYU Child Study Center, Child and Adolescent Psychiatry, New York University School of Medicine, One Park Ave. 10th Floor, New York, NY, 10016, USA
| | - Vilma Gabbay
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA; Nathan S. Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd, Orangeburg, NY 10962, USA; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA.
| |
Collapse
|
39
|
Gabbay V, Johnson AR, Alonso CM, Evans LK, Babb JS, Klein RG. Anhedonia, but not irritability, is associated with illness severity outcomes in adolescent major depression. J Child Adolesc Psychopharmacol 2015; 25:194-200. [PMID: 25802984 PMCID: PMC4403015 DOI: 10.1089/cap.2014.0105] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVES Unlike adult major depressive disorder (MDD) which requires anhedonia or depressed mood for diagnosis, adolescent MDD can be sufficiently diagnosed with irritability in the absence of the former symptoms. In addition, the current Diagnostic and Statistical Manual of Mental Disorders (DSM) schema does not account for the interindividual variability of symptom severity among depressed adolescents. This practice has contributed to the high heterogeneity and diagnostic complexity of adolescent MDD. Here, we sought to examine relationships between two core symptoms of adolescent MDD - irritability and anhedonia, assessed both quantitatively and categorically - and other clinical correlates among depressed adolescents. METHODS Ninety adolescents with MDD (51 females), ages 12-20, were enrolled. Anhedonia and irritability scores were quantified by summing related items on the Children's Depression Rating Scale-Revised and the Beck Depression Inventory. Extremes of score distribution were defined as high or low irritability/anhedonia subgroups. A significance level of p=0.01 was set to adjust for the five comparisons. RESULTS Despite all subjects exhibiting moderate to severe MDD, both irritability and anhedonia scores manifested a full and normally distributed severity range including the lowest values possible. However, only anhedonia severity was associated with more severe clinical outcomes, including greater overall illness severity (p<0.001), suicidality scores (p<0.001), episode duration (p=0.006), and number of MDD episodes (p=0.01). Similarly, only the high-anhedonia subgroup manifested more severe outcomes; specifically, greater illness severity (p<0.0001), number of MDD episodes (p=0.01), episode duration (p=0.01), and suicidality scores (p=0.0001). CONCLUSIONS Our findings suggest the significance of anhedonia as a hallmark of adolescent MDD and the need to incorporate dimensional analyses. These data are preliminary, and future prospective studies are needed to better characterize the syndrome of adolescent MDD.
Collapse
Affiliation(s)
- Vilma Gabbay
- Icahn School of Medicine at Mount Sinai, New York, New York.,Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York
| | - Amy R. Johnson
- Icahn School of Medicine at Mount Sinai, New York, New York
| | | | - Lori K. Evans
- New York University Langone Medical Center, New York, New York
| | - James S. Babb
- New York University Langone Medical Center, New York, New York
| | - Rachel G. Klein
- New York University Langone Medical Center, New York, New York
| |
Collapse
|
40
|
Henderson SE, Vallejo AI, Ely BA, Kang G, Krain Roy A, Pine DS, Stern ER, Gabbay V. The neural correlates of emotional face-processing in adolescent depression: a dimensional approach focusing on anhedonia and illness severity. Psychiatry Res 2014; 224:234-41. [PMID: 25448398 PMCID: PMC4254639 DOI: 10.1016/j.pscychresns.2014.09.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 09/11/2014] [Accepted: 09/12/2014] [Indexed: 11/15/2022]
Abstract
Deficits in emotion processing, a known clinical feature of major depressive disorder (MDD), have been widely investigated using emotional face paradigms and neuroimaging. However, most studies have not accounted for the high inter-subject variability of symptom severity. Similarly, only sparse research has focused on MDD in adolescence, early in the course of the illness. Here we sought to investigate neural responses to emotional faces using both categorical and dimensional analyses with a focus on anhedonia, a core symptom of MDD associated with poor outcomes. Nineteen medication-free depressed adolescents and 18 healthy controls (HC) were scanned during presentation of happy, sad, fearful, and neutral faces. ANCOVAs and regressions assessed group differences and relationships with illness and anhedonia severity, respectively. Findings included a group by valence interaction with depressed adolescents exhibiting decreased activity in the superior temporal gyrus (STG), putamen and premotor cortex. Post-hoc analyses confirmed decreased STG activity in MDD adolescents. Dimensional analyses revealed associations between illness severity and altered responses to negative faces in prefrontal, cingulate, striatal, and limbic regions. However, anhedonia severity was uniquely correlated with responses to happy faces in the prefrontal, cingulate, and insular regions. Our work highlights the need for studying specific symptoms dimensionally in psychiatric research.
Collapse
Affiliation(s)
- Sarah E Henderson
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ana I Vallejo
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Benjamin A Ely
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Guoxin Kang
- Department of Radiology, Weill Cornell Medical College, New York, NY, USA
| | - Amy Krain Roy
- Department of Psychology, Fordham University, New York, NY, USA
| | - Daniel S Pine
- National Institute of Mental Health, Bethesda, MD, USA
| | - Emily R Stern
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Vilma Gabbay
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA.
| |
Collapse
|
41
|
Inflammatory depressive bowel diseases: the new era. J Am Acad Child Adolesc Psychiatry 2014; 53:720-2. [PMID: 24954820 PMCID: PMC4105694 DOI: 10.1016/j.jaac.2014.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Accepted: 05/01/2014] [Indexed: 11/23/2022]
|
42
|
In vivo (1)H MRS study of potential associations between glutathione, oxidative stress and anhedonia in major depressive disorder. Neurosci Lett 2014; 569:74-9. [PMID: 24704328 DOI: 10.1016/j.neulet.2014.03.056] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 03/20/2014] [Accepted: 03/24/2014] [Indexed: 11/22/2022]
Abstract
Inflammation and oxidative stress are important mechanisms that have been implicated in the pathophysiology of major depressive disorder (MDD). Glutathione (GSH) is the most abundant antioxidant in human tissue, and a key index of antioxidant capacity and, hence, of oxidative stress. The aims of this investigation were to examine possible relationships between occipital GSH and dimensional measures of depressive symptom severity, including anhedonia - the reduced capacity to experience pleasure - and fatigue. We hypothesized that the magnitude of anhedonia and fatigue will be negatively correlated with occipital GSH levels in subjects with MDD and healthy controls (HC). Data for eleven adults with MDD and ten age- and sex-matched HC subjects were included in this secondary analysis of data from a previously published study. In vivo levels of GSH in a 3cm×3cm×2cm voxel of occipital cortex were obtained by proton magnetic resonance spectroscopy ((1)H MRS) on a 3T MR system, using the standard J-edited spin-echo difference technique. Anhedonia was assessed by combining interest items from depression and fatigue rating scales, and fatigue by use of the multidimensional fatigue inventory. Across the full sample of participants, anhedonia severity and occipital GSH levels were negatively correlated (r=-0.55, p=0.01). No associations were found between fatigue severity and GSH in this sample. These preliminary findings are potentially consistent with a pathophysiological role for GSH and oxidative stress in anhedonia and MDD. Larger studies in anhedonic depressed patients are indicated.
Collapse
|
43
|
Is there a role for glutamate-mediated excitotoxicity in inflammation-induced depression? J Neural Transm (Vienna) 2014; 121:925-32. [PMID: 24633997 DOI: 10.1007/s00702-014-1187-1] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 02/26/2014] [Indexed: 12/20/2022]
Abstract
Chronic inflammation in physically ill patients is often associated with the development of symptoms of depression. The mechanisms that are responsible for inflammation-associated depression have been elucidated over the last few years. Kynurenine produced from tryptophan in a reaction catabolized by indoleamine 2,3 dioxygenase is transported into the brain where it is metabolized by microglial enzymes into a number of neurotropic compounds including quinolinic acid, an agonist of N-methyl-D-aspartate receptors. Quinolinic acid can synergize with glutamate released by activated microglia. This chain of events opens the possibility to treat inflammation-induced depression using therapies that target the transport of kynurenine through the blood-brain barrier, the production of quinolinic acid and glutamate by activated microglia, or the efflux of glutamate from the brain to the blood.
Collapse
|
44
|
Campbell BM, Charych E, Lee AW, Möller T. Kynurenines in CNS disease: regulation by inflammatory cytokines. Front Neurosci 2014; 8:12. [PMID: 24567701 PMCID: PMC3915289 DOI: 10.3389/fnins.2014.00012] [Citation(s) in RCA: 265] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 01/20/2014] [Indexed: 12/27/2022] Open
Abstract
The kynurenine pathway (KP) metabolizes the essential amino acid tryptophan and generates a number of neuroactive metabolites collectively called the kynurenines. Segregated into at least two distinct branches, often termed the “neurotoxic” and “neuroprotective” arms of the KP, they are regulated by the two enzymes kynurenine 3-monooxygenase and kynurenine aminotransferase, respectively. Interestingly, several enzymes in the pathway are under tight control of inflammatory mediators. Recent years have seen a tremendous increase in our understanding of neuroinflammation in CNS disease. This review will focus on the regulation of the KP by inflammatory mediators as it pertains to neurodegenerative and psychiatric disorders.
Collapse
Affiliation(s)
- Brian M Campbell
- Neuroinflammation Disease Biology Unit, Lundbeck Research USA Paramus, NJ, USA
| | - Erik Charych
- Neuroinflammation Disease Biology Unit, Lundbeck Research USA Paramus, NJ, USA
| | - Anna W Lee
- Neuroinflammation Disease Biology Unit, Lundbeck Research USA Paramus, NJ, USA
| | - Thomas Möller
- Neuroinflammation Disease Biology Unit, Lundbeck Research USA Paramus, NJ, USA
| |
Collapse
|
45
|
Gabbay V, Ely BA, Li Q, Bangaru SD, Panzer AM, Alonso CM, Castellanos FX, Milham MP. Striatum-based circuitry of adolescent depression and anhedonia. J Am Acad Child Adolesc Psychiatry 2013; 52:628-41.e13. [PMID: 23702452 PMCID: PMC3762469 DOI: 10.1016/j.jaac.2013.04.003] [Citation(s) in RCA: 169] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 02/19/2013] [Accepted: 04/01/2013] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Striatum-based circuits have been implicated in both major depressive disorder (MDD) and anhedonia, a symptom that reflects deficits of reward processing. Yet adolescents with MDD often exhibit a wide range of anhedonia severity. Addressing this clinical phenomenon, we aimed to use intrinsic functional connectivity (iFC) to study striatum-based circuitry in relation to categorical diagnosis of MDD and anhedonia severity. METHOD A total of 21 psychotropic medication-free adolescents with MDD and 21 healthy controls (HC), group-matched for age and sex, underwent resting-state functional magnetic resonance imagining (fMRI) scans. Voxelwise maps indicating correlation strengths of spontaneous blood-oxygenation-level-dependent (BOLD) signals among 6 bilateral striatal seeds (dorsal caudate, ventral caudate, nucleus accumbens, dorsal-rostral putamen, dorsal-caudal putamen, ventral-rostral putamen) and the remaining brain regions were compared between groups. Relationships between striatal iFC and severity of MDD and anhedonia were examined in the MDD group. Analyses were corrected for multiple comparisons. RESULTS Adolescents with MDD manifested increased iFC between all striatal regions bilaterally and the dorsomedial prefrontal cortex (dmPFC), as well as between the right ventral caudate and the anterior cingulate cortex (ACC). MDD severity was associated with iFC between the striatum and midline structures including the precuneus, posterior cingulate cortex, and dmPFC. However, distinct striatal iFC patterns involving the pregenual ACC, subgenual ACC, supplementary motor area, and supramarginal gyrus were associated with anhedonia severity. CONCLUSIONS Although MDD diagnosis and severity were related to striatal networks involving midline cortical structures, distinct circuits within the reward system were associated with anhedonia. Findings support the incorporation of both categorical and dimensional approaches in neuropsychiatric research.
Collapse
Affiliation(s)
- Vilma Gabbay
- Department of Psychiatry, Mount Sinai School of Medicine, New York, NY 10029-6574, USA.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Ho N, Sommers M. Anhedonia: a concept analysis. Arch Psychiatr Nurs 2013; 27:121-9. [PMID: 23706888 PMCID: PMC3664836 DOI: 10.1016/j.apnu.2013.02.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 02/05/2013] [Accepted: 02/08/2013] [Indexed: 10/26/2022]
Abstract
Anhedonia presents itself in a myriad of disease processes. To further develop our understanding of anhedonia and effective ways to manage it, the concept requires clear boundaries. This paper critically examined the current scientific literature and conducted a concept analysis of anhedonia to provide a more accurate and lucid understanding of the concept. As part of the concept analysis, this paper also provides model, borderline, related, and contrary examples of anhedonia.
Collapse
Affiliation(s)
- Nancy Ho
- School of Nursing, University of Pennsylvania, Philadelphia, PA, USA.
| | | |
Collapse
|
47
|
Henderson SE, Johnson AR, Vallejo AI, Katz L, Wong E, Gabbay V. A preliminary study of white matter in adolescent depression: relationships with illness severity, anhedonia, and irritability. Front Psychiatry 2013; 4:152. [PMID: 24324445 PMCID: PMC3839092 DOI: 10.3389/fpsyt.2013.00152] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 11/08/2013] [Indexed: 11/13/2022] Open
Abstract
Major depressive disorder (MDD) during adolescence is a common and disabling psychiatric condition; yet, little is known about its neurobiological underpinning. Evidence indicates that MDD in adults involves alterations in white and gray matter; however, sparse research has focused on adolescent MDD. Similarly, little research has accounted for the wide variability of symptom severity among depressed teens. Here, we aimed to investigate white matter (WM) microstructure between 17 adolescents with MDD and 16 matched healthy controls (HC) using diffusion tensor imaging. We further assessed within the MDD group relationships between WM integrity and depression severity, as well as anhedonia and irritability - two core symptoms of adolescent MDD. As expected, adolescents with MDD manifested decreased WM integrity compared to HC in the anterior cingulum and anterior corona radiata. Within the MDD group, greater depression severity was correlated with reduced WM integrity in the genu of corpus callosum, anterior thalamic radiation, anterior cingulum, and sagittal stratum. However, anhedonia and irritability were associated with alterations in distinct WM tracts. Specifically, anhedonia was associated with disturbances in tracts related to reward processing, including the anterior limb of the internal capsule and projection fibers to the orbitofrontal cortex. Irritability was associated with decreased integrity in the sagittal stratum, anterior corona radiata, and tracts leading to prefrontal and temporal cortices. Overall, these preliminary findings provide further support for the hypotheses that there is a disconnect between prefrontal and limbic emotional regions in depression, and that specific clinical symptoms involve distinct alterations in WM tracts.
Collapse
Affiliation(s)
- Sarah E Henderson
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai , New York, NY , USA
| | | | | | | | | | | |
Collapse
|