1
|
González-Flores O, Garcia-Juárez M, Tecamachaltzi-Silvarán MB, Lucio RA, Ordoñez RD, Pfaus JG. Cellular and molecular mechanisms of action of ovarian steroid hormones. I: Regulation of central nervous system function. Neurosci Biobehav Rev 2024; 167:105937. [PMID: 39510217 DOI: 10.1016/j.neubiorev.2024.105937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/25/2024] [Accepted: 10/31/2024] [Indexed: 11/15/2024]
Abstract
The conventional way steroid hormones work through receptors inside cells is widely acknowledged. There are unanswered questions about what happens to the hormone in the end and why there isn't always a strong connection between how much tissue takes up and its biological effects through receptor binding. Steroid hormones can also have non-traditional effects that happen quickly but don't involve entering the cell. Several possible mechanisms for these non-traditional actions include (a) changes in membrane fluidity, (b) steroid hormones acting on receptors on the outer surface of cells, (c) steroid hormones regulating GABAA receptors on cell membranes, and (d) activation of steroid receptors by factors like EGF, IGF-1, and dopamine. Data also suggests that steroid hormones may be inserted into DNA through receptors, acting as transcription factors. These proposed new mechanisms of action should not be seen as challenging the conventional mechanism. Instead, they contribute to a more comprehensive understanding of how hormones work, allowing for rapid, short-term, and prolonged effects to meet the body's physiological needs.
Collapse
Affiliation(s)
- Oscar González-Flores
- Centro de Investigación en Reproducción Animal, Universidad Autónoma de Tlaxcala-CINVESTAV, Tlaxcala, Mexico.
| | - Marcos Garcia-Juárez
- Centro de Investigación en Reproducción Animal, Universidad Autónoma de Tlaxcala-CINVESTAV, Tlaxcala, Mexico
| | | | - Rosa Angélica Lucio
- Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| | - Raymundo Domínguez Ordoñez
- Centro de Investigación en Reproducción Animal, Universidad Autónoma de Tlaxcala-CINVESTAV, Tlaxcala, Mexico; Licenciatura en Ingeniería Agronómica y Zootecnia, Complejo Regional Centro, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - James G Pfaus
- Center for Sexual Health and Intervention, Czech National Institute of Mental Health, Klecany, Czech Republic; Department of Psychology and Life Sciences, Faculty of Humanities, Charles University, Prague, Czech Republic
| |
Collapse
|
2
|
Li S, Zhang Z, Jiang A, Ma X, Wang M, Ni H, Yang B, Zheng Y, Wang L, Dong GH. Repetitive transcranial magnetic stimulation reshaped the dynamic reconfiguration of the executive and reward networks in individuals with tobacco use disorder. J Affect Disord 2024; 365:427-436. [PMID: 39197549 DOI: 10.1016/j.jad.2024.08.120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/17/2024] [Accepted: 08/23/2024] [Indexed: 09/01/2024]
Abstract
BACKGROUND Studies have demonstrated the potential of repetitive transcranial magnetic stimulation (rTMS) to decrease smoking cravings in individuals with tobacco use disorder (TUD). However, the neural features underlying the effects of rTMS treatment, especially the dynamic attributes of brain networks associated with the treatment, remain unclear. METHODS Using dynamic functional connectivity analysis, this study first explored the differences in dynamic functional network features between 60 subjects with TUD and 64 nonsmoking healthy controls (HCs). Then, the left dorsolateral prefrontal cortex (DLPFC) was targeted for a five-day course of rTMS treatment in the 60 subjects with TUD (active rTMS in 42 subjects and sham treatment in 18 subjects). We explored the effect of rTMS on the dynamic network features associated with rTMS by comparing the actively treated group and the sham group. RESULTS Compared to nonsmokers, TUD subjects exhibited an increased integration coefficient between the frontoparietal network (FPN) and the basal ganglia network (BGN) and a reduced integration coefficient between the medial frontal network (MFN) and the FPN. Analysis of variance revealed that rTMS treatment reduced the integration coefficient between the FPN and BGN and improved the recruitment coefficient of the FPN. LIMITATIONS This study involved a limited sample of young male smokers, and the findings may not generalize to older smokers or female smokers with an extensive history of smoking. CONCLUSION rTMS treatment of the left DLPFC exhibited significant effectiveness in restructuring the neural circuits associated with TUD while significantly mitigating smoking cravings.
Collapse
Affiliation(s)
- Shuang Li
- Department of Psychology, Yunnan Normal University, Kunming, Yunnan Province, PR China; Center for Cognition and Brain Disorders, the Affiliated Hospital of Hangzhou Normal University, Hangzhou, PR China; Institute of Psychological Science, Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China
| | - ZhengJie Zhang
- Center for Cognition and Brain Disorders, the Affiliated Hospital of Hangzhou Normal University, Hangzhou, PR China; Institute of Psychological Science, Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China
| | - Anhang Jiang
- Center for Cognition and Brain Disorders, the Affiliated Hospital of Hangzhou Normal University, Hangzhou, PR China; Institute of Psychological Science, Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China
| | - Xuefeng Ma
- Center for Cognition and Brain Disorders, the Affiliated Hospital of Hangzhou Normal University, Hangzhou, PR China; Institute of Psychological Science, Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China
| | - Min Wang
- Center for Cognition and Brain Disorders, the Affiliated Hospital of Hangzhou Normal University, Hangzhou, PR China; Institute of Psychological Science, Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China
| | - Haosen Ni
- Center for Cognition and Brain Disorders, the Affiliated Hospital of Hangzhou Normal University, Hangzhou, PR China; Institute of Psychological Science, Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China
| | - Bo Yang
- Center for Cognition and Brain Disorders, the Affiliated Hospital of Hangzhou Normal University, Hangzhou, PR China; Institute of Psychological Science, Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China
| | - Yanbin Zheng
- Center for Cognition and Brain Disorders, the Affiliated Hospital of Hangzhou Normal University, Hangzhou, PR China; Institute of Psychological Science, Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China
| | - Lingxiao Wang
- Center for Cognition and Brain Disorders, the Affiliated Hospital of Hangzhou Normal University, Hangzhou, PR China; Institute of Psychological Science, Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang Province, PR China
| | - Guang-Heng Dong
- Department of Psychology, Yunnan Normal University, Kunming, Yunnan Province, PR China.
| |
Collapse
|
3
|
Enrico P, Zorzi F, Fanari R, Uccula AF, Mercante B. How "Light" Is "Light Smoking"? On the Cognitive Power of Nicotine Dependence. Behav Sci (Basel) 2024; 14:1075. [PMID: 39594375 PMCID: PMC11591032 DOI: 10.3390/bs14111075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/23/2024] [Accepted: 11/09/2024] [Indexed: 11/28/2024] Open
Abstract
In recent years, habits related to smoking have been changing. An increasing portion of light/occasional smokers tend to define themselves as non-smokers, leading to an incorrect perception of the risks that smoking even a few cigarettes can entail. In this study, we investigated the nicotine-induced cognitive distortion in young, higher-education students with low/moderate dependence (as indexed by the Fagerstrom questionnaire). The study involved 111 participants (62 female; mean age 24.43 ± 3.77) divided into smokers and non-smokers, who responded to specific questionnaires to evaluate their attachment style, emotion dysregulation, and state anxiety. Their response to smoking-related cues following emotional stimulation was experimentally evaluated, with participants being made to choose between care- or smoking-related images, following the presentation of threatening or neutral stimuli. The results show a cognitive bias in smokers, with participants choosing smoking-related stimuli significantly more often than non-smokers, with a slower reaction time, regardless of emotional cues. Emotion dysregulation and attachment style were also significantly correlated with response choice but not with response latency. Overall, our data indicate that there is no such thing as light use of nicotine and that smoking, even if not continuous, determines cognitive biases that lead to a vision of the environment as a function of substance seeking.
Collapse
Affiliation(s)
- Paolo Enrico
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy;
| | - Federico Zorzi
- Department of Pedagogy, Psychology, Philosophy, University of Cagliari, 09127 Cagliari, Italy; (F.Z.); (R.F.)
| | - Rachele Fanari
- Department of Pedagogy, Psychology, Philosophy, University of Cagliari, 09127 Cagliari, Italy; (F.Z.); (R.F.)
| | | | - Beniamina Mercante
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy;
- Institute of Biophysics, National Research Council, 90146 Palermo, Italy
| |
Collapse
|
4
|
Withey SL, Deshpande HU, Cao L, Bergman J, Kohut SJ. Effects of chronic naltrexone treatment on relapse-related behavior and neural responses to fentanyl in awake nonhuman primates. Psychopharmacology (Berl) 2024; 241:2289-2302. [PMID: 39122918 DOI: 10.1007/s00213-024-06633-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 06/03/2024] [Indexed: 08/12/2024]
Abstract
Naltrexone, an opioid antagonist that blocks the reinforcing properties of opioid agonists, is often prescribed to preclude relapse to opioid use disorder (OUD) following detoxification. However, few laboratory studies have directly investigated the ability of naltrexone to alter relapse-inducing effects of opioid agonists, including their priming strength in reinstatement studies and their impact in brain regions known to be involved in drug-induced reinforcement in MRI studies. Here we directly address this issue by investigating the effects of continuous exposure to naltrexone on 1) fentanyl-induced reinstatement of drug-seeking behavior, 2) fentanyl-induced patterns of blood oxygenation level dependent (BOLD) activation in the nucleus accumbens (NAcc), and 3) fentanyl-induced changes in NAcc functional connectivity (FC) in awake non-human primates that are engaged in ongoing opioid self-administration studies. We found that naltrexone antagonizes the priming strength of fentanyl as shown by a rightward shift in its reinstatement dose-effect curve and that naltrexone surmountably antagonizes the BOLD response induced by fentanyl. However, while naltrexone also countered fentanyl's effects on NAcc FC, the effects were not surmounted by a higher dose of fentanyl. Together, these data suggest that, in contrast to naltrexone's modulation of fentanyl's effects on behavior and BOLD responses, their interactive effects on FC between multiple brain regions do not reflect their receptor-mediated activity. Additionally, we demonstrated opposing effects in the absence and presence of naltrexone on NAcc FC at baseline (i.e., in the absence of any fentanyl prime) suggesting that naltrexone alters FC at baseline, even though naltrexone appears behaviorally silent in the absence of an agonist prime. Together these data provide additional insight into ways in which naltrexone interacts with opioid agonists, both behaviorally and in the brain. Further understanding the effects of opioid agonists on patterns of FC could help elucidate our understanding of the neural processes that contribute to the initiation of and relapse to opioid-seeking behavior in OUD.
Collapse
Affiliation(s)
- Sarah L Withey
- Behavioral Biology Program, McLean Hospital/Harvard Medical School, 115 Mill St., Belmont, MA, 02478, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Harshawardhan U Deshpande
- Behavioral Biology Program, McLean Hospital/Harvard Medical School, 115 Mill St., Belmont, MA, 02478, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Behavioral Neuroimaging Laboratory, McLean Hospital, Belmont, MA, USA
| | - Lei Cao
- Behavioral Biology Program, McLean Hospital/Harvard Medical School, 115 Mill St., Belmont, MA, 02478, USA
- Behavioral Neuroimaging Laboratory, McLean Hospital, Belmont, MA, USA
| | - Jack Bergman
- Behavioral Biology Program, McLean Hospital/Harvard Medical School, 115 Mill St., Belmont, MA, 02478, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Stephen J Kohut
- Behavioral Biology Program, McLean Hospital/Harvard Medical School, 115 Mill St., Belmont, MA, 02478, USA.
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA.
- Behavioral Neuroimaging Laboratory, McLean Hospital, Belmont, MA, USA.
- McLean Imaging Center, McLean Hospital, Belmont, MA, USA.
| |
Collapse
|
5
|
Howes O, Marcinkowska J, Turkheimer FE, Carr R. Synaptic changes in psychiatric and neurological disorders: state-of-the art of in vivo imaging. Neuropsychopharmacology 2024; 50:164-183. [PMID: 39134769 PMCID: PMC11525650 DOI: 10.1038/s41386-024-01943-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/03/2024] [Accepted: 07/19/2024] [Indexed: 11/01/2024]
Abstract
Synapses are implicated in many neuropsychiatric illnesses. Here, we provide an overview of in vivo techniques to index synaptic markers in patients. Several positron emission tomography (PET) tracers for synaptic vesicle glycoprotein 2 A (SV2A) show good reliability and selectivity. We review over 50 clinical studies including over 1700 participants, and compare findings in healthy ageing and across disorders, including addiction, schizophrenia, depression, posttraumatic stress disorder, and neurodegenerative disorders, including tauopathies, Huntington's disease and α-synucleinopathies. These show lower SV2A measures in cortical brain regions across most of these disorders relative to healthy volunteers, with the most well-replicated findings in tauopathies, whilst changes in Huntington's chorea, Parkinson's disease, corticobasal degeneration and progressive supranuclear palsy are predominantly subcortical. SV2A PET measures are correlated with functional connectivity across brain networks, and a number of other measures of brain function, including glucose metabolism. However, the majority of studies found no relationship between grey matter volume measured with magnetic resonance imaging and SV2A PET measures. Cognitive dysfunction, in domains including working memory and executive function, show replicated inverse relationships with SV2A measures across diagnoses, and initial findings also suggest transdiagnostic relationships with mood and anxiety symptoms. This suggests that synaptic abnormalities could be a common pathophysiological substrate underlying cognitive and, potentially, affective symptoms. We consider limitations of evidence and future directions; highlighting the need to develop postsynaptic imaging markers and for longitudinal studies to test causal mechanisms.
Collapse
Affiliation(s)
- Oliver Howes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, England.
- South London & the Maudsley NHS Trust, London, England.
- London Institute of Medical Sciences, London, England.
| | - Julia Marcinkowska
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, England
| | - Federico E Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, England
| | - Richard Carr
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, England
- South London & the Maudsley NHS Trust, London, England
- London Institute of Medical Sciences, London, England
| |
Collapse
|
6
|
Millidge B, Song Y, Lak A, Walton ME, Bogacz R. Reward Bases: A simple mechanism for adaptive acquisition of multiple reward types. PLoS Comput Biol 2024; 20:e1012580. [PMID: 39561186 PMCID: PMC11614280 DOI: 10.1371/journal.pcbi.1012580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 12/03/2024] [Accepted: 10/22/2024] [Indexed: 11/21/2024] Open
Abstract
Animals can adapt their preferences for different types of reward according to physiological state, such as hunger or thirst. To explain this ability, we employ a simple multi-objective reinforcement learning model that learns multiple values according to different reward dimensions such as food or water. We show that by weighting these learned values according to the current needs, behaviour may be flexibly adapted to present preferences. This model predicts that individual dopamine neurons should encode the errors associated with some reward dimensions more than with others. To provide a preliminary test of this prediction, we reanalysed a small dataset obtained from a single primate in an experiment which to our knowledge is the only published study where the responses of dopamine neurons to stimuli predicting distinct types of rewards were recorded. We observed that in addition to subjective economic value, dopamine neurons encode a gradient of reward dimensions; some neurons respond most to stimuli predicting food rewards while the others respond more to stimuli predicting fluids. We also proposed a possible implementation of the model in the basal ganglia network, and demonstrated how the striatal system can learn values in multiple dimensions, even when dopamine neurons encode mixtures of prediction error from different dimensions. Additionally, the model reproduces the instant generalisation to new physiological states seen in dopamine responses and in behaviour. Our results demonstrate how a simple neural circuit can flexibly guide behaviour according to animals' needs.
Collapse
Affiliation(s)
- Beren Millidge
- MRC Brain Network Dynamics Unit, University of Oxford, Oxford, United Kingdom
| | - Yuhang Song
- MRC Brain Network Dynamics Unit, University of Oxford, Oxford, United Kingdom
| | - Armin Lak
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, United Kingdom
| | - Mark E. Walton
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, United Kingdom
| | - Rafal Bogacz
- MRC Brain Network Dynamics Unit, University of Oxford, Oxford, United Kingdom
- Theoretical Sciences Visiting Program (TSVP), Okinawa Institute of Science and Technology Graduate University, Onna, Japan
| |
Collapse
|
7
|
Zheng X, Wang J, Yang X, Xu L, Becker B, Sahakian BJ, Robbins TW, Kendrick KM. Oxytocin, but not vasopressin, decreases willingness to harm others by promoting moral emotions of guilt and shame. Mol Psychiatry 2024; 29:3475-3482. [PMID: 38769372 PMCID: PMC11540849 DOI: 10.1038/s41380-024-02590-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 05/22/2024]
Abstract
Prosocial and moral behaviors have overlapping neural systems and can both be affected in a number of psychiatric disorders, although whether they involve similar neurochemical systems is unclear. In the current registered randomized placebo-controlled trial on 180 adult male and female subjects, we investigated the effects of intranasal administration of oxytocin and vasopressin, which play key roles in influencing social behavior, on moral emotion ratings for situations involving harming others and on judgments of moral dilemmas where others are harmed for a greater good. Oxytocin, but not vasopressin, enhanced feelings of guilt and shame for intentional but not accidental harm and reduced endorsement of intentionally harming others to achieve a greater good. Neither peptide influenced arousal ratings for the scenarios. Effects of oxytocin on guilt and shame were strongest in individuals scoring lower on the personal distress subscale of trait empathy. Overall, findings demonstrate for the first time that oxytocin, but not vasopressin, promotes enhanced feelings of guilt and shame and unwillingness to harm others irrespective of the consequences. This may reflect associations between oxytocin and empathy and vasopressin with aggression and suggests that oxytocin may have greater therapeutic potential for disorders with atypical social and moral behavior.
Collapse
Affiliation(s)
- Xiaoxiao Zheng
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- The MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
- Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jiayuan Wang
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- The MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Xi Yang
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- The MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Lei Xu
- Department of Psychology, Sichuan Normal University, Chengdu, Sichuan, China
| | - Benjamin Becker
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China
- Department of Psychology, The University of Hong Kong, Hong Kong, China
| | - Barbara J Sahakian
- The MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
- Department of Psychiatry, University of Cambridge, Hills Rd., Cambridge, CB2 0QQ, UK
| | - Trevor W Robbins
- The MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China.
- Department of Psychology, University of Cambridge, Downing St., Cambridge, CB2 3EB, UK.
| | - Keith M Kendrick
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
- The MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
8
|
Lamothe H, Karachi C, Lehongre K, Buot A, Grabli D, Thobois S, Burguière E, Giordana C, Houeto JL, Mallet L, Vidailhet M, Welter ML. Pallidal neuronal activity in Gilles de la Tourette syndrome and dystonic patients: A comparative study. Eur J Neurosci 2024; 60:6185-6194. [PMID: 39394889 DOI: 10.1111/ejn.16567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/21/2024] [Accepted: 09/26/2024] [Indexed: 10/14/2024]
Abstract
Gilles de la Tourette syndrome (GTS) and dystonia (DYS) are both hyperkinetic movement disorders effectively treated by deep brain stimulation (DBS) of the internal part of the globus pallidus (GPi). In this study, we compared single-neuron activity in the GPi between 18 GTS patients (with an average of 41 cells per patient) and 17 DYS patients (with an average of 54 cells per patient), all of whom underwent bilateral pallidal stimulation surgery, under general anesthesia or while awake at rest. We found no significant differences in GPi neuronal activity characteristics between patients operated on under general anesthesia versus those who were awake, irrespective of their diagnosis (GTS or DYS). We found higher firing rates, firing rate in bursts, pause duration and interspike interval coefficient of variation in GTS patients compared to DYS patients. On the opposite, we found higher number of pauses and bursts frequency in DYS patients. Lastly, we found a higher proportion of GPi oscillatory activities in DYS compared to GTS patients, with predominant activity within the low-frequency band (theta/alpha) in both patient groups. These findings underscore the complex relationship between the different neuronal discharge characteristic such as oscillatory or bursting activity within the GPi in shaping the clinical phenotypes of hyperkinetic disorders. Further research is warranted to deepen our understanding of how neuronal patterns are transmitted within deep brain structures and to develop strategies aimed at normalizing these pathological activities, by refining DBS techniques to enhance treatment efficacy and individual outcomes.
Collapse
Affiliation(s)
- Hugues Lamothe
- Inserm 1127, Sorbonne Université, UPMC Univ Paris 06, UMRS 1127, CNRS, UMR 7225, Paris Brain Institute, Paris, France
| | - Carine Karachi
- Inserm 1127, Sorbonne Université, UPMC Univ Paris 06, UMRS 1127, CNRS, UMR 7225, Paris Brain Institute, Paris, France
- Neurosurgery Department, APHP, Pitié-Salpêtrière Hospital, Paris, France
| | - Katia Lehongre
- Inserm 1127, Sorbonne Université, UPMC Univ Paris 06, UMRS 1127, CNRS, UMR 7225, Paris Brain Institute, Paris, France
| | - Anne Buot
- Inserm 1127, Sorbonne Université, UPMC Univ Paris 06, UMRS 1127, CNRS, UMR 7225, Paris Brain Institute, Paris, France
| | - David Grabli
- Inserm 1127, Sorbonne Université, UPMC Univ Paris 06, UMRS 1127, CNRS, UMR 7225, Paris Brain Institute, Paris, France
- Neurology Department, APHP, Pitié-Salpêtrière Hospital, Paris, France
| | - Stephane Thobois
- Neurology Department C, Expert Parkinson Centre, Hospices Civils de Lyon, Pierre Wertheimer Neurological Hospital, Hôpital Neurologique Pierre Wertheimer, Service de Neurologie C - Hospices Civils de Lyon, Bron, France
| | - Eric Burguière
- Inserm 1127, Sorbonne Université, UPMC Univ Paris 06, UMRS 1127, CNRS, UMR 7225, Paris Brain Institute, Paris, France
| | | | | | - Luc Mallet
- Inserm 1127, Sorbonne Université, UPMC Univ Paris 06, UMRS 1127, CNRS, UMR 7225, Paris Brain Institute, Paris, France
- Département Médical-Universitaire de Psychiatrie et d'Addictologie, APHP, Univ Paris-Est Créteil, DMU IMPACT, Hôpitaux Universitaires Henri Mondor - Albert Chenevier, Créteil, France
- Global Health Institute and Department of Mental Health and Psychiatry, University of Geneva, Geneva, Switzerland
| | - Marie Vidailhet
- Inserm 1127, Sorbonne Université, UPMC Univ Paris 06, UMRS 1127, CNRS, UMR 7225, Paris Brain Institute, Paris, France
- Neurology Department, APHP, Pitié-Salpêtrière Hospital, Paris, France
| | - Marie-Laure Welter
- Inserm 1127, Sorbonne Université, UPMC Univ Paris 06, UMRS 1127, CNRS, UMR 7225, Paris Brain Institute, Paris, France
- Neurophysiology department, CHU Rouen, University of Normandy, Rouen, France
| |
Collapse
|
9
|
Kleven H, Schlegel U, Groenewegen HJ, Leergaard TB, Bjerke IE. Comparison of basal ganglia regions across murine brain atlases using metadata models and the Waxholm Space. Sci Data 2024; 11:1036. [PMID: 39333155 PMCID: PMC11437236 DOI: 10.1038/s41597-024-03863-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 09/04/2024] [Indexed: 09/29/2024] Open
Abstract
The murine basal ganglia regions are targets for research into complex brain functions such as motor control and habit formation. However, there are several ways to name and annotate these regions, posing challenges for interpretation and comparison of data across studies. Here, we give an overview of basal ganglia terms and boundaries in the literature and reference atlases, and describe the criteria used for annotating these regions in the Waxholm Space rat brain atlas. We go on to compare basal ganglia annotations in stereotaxic rat brain atlases and the Allen Mouse brain Common Coordinate Framework to those in the Waxholm Space rat brain atlas. We demonstrate and describe considerable differences in the terms and boundaries of most basal ganglia regions across atlases and their versions. We also register information about atlases and regions in the openMINDS metadata framework, facilitating integration of data in neuroscience databases. The comparisons of terms and boundaries across rat and mouse atlases support analysis and interpretation of existing and new data from the basal ganglia.
Collapse
Affiliation(s)
- H Kleven
- Neural Systems Laboratory, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - U Schlegel
- Neural Systems Laboratory, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - H J Groenewegen
- Department of Anatomy and Neurosciences, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - T B Leergaard
- Neural Systems Laboratory, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - I E Bjerke
- Neural Systems Laboratory, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.
| |
Collapse
|
10
|
Martin E, Chowdury A, Kopchick J, Thomas P, Khatib D, Rajan U, Zajac-Benitez C, Haddad L, Amirsadri A, Robison AJ, Thakkar KN, Stanley JA, Diwadkar VA. The mesolimbic system and the loss of higher order network features in schizophrenia when learning without reward. Front Psychiatry 2024; 15:1337882. [PMID: 39355381 PMCID: PMC11443173 DOI: 10.3389/fpsyt.2024.1337882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 08/16/2024] [Indexed: 10/03/2024] Open
Abstract
Introduction Schizophrenia is characterized by a loss of network features between cognition and reward sub-circuits (notably involving the mesolimbic system), and this loss may explain deficits in learning and cognition. Learning in schizophrenia has typically been studied with tasks that include reward related contingencies, but recent theoretical models have argued that a loss of network features should be seen even when learning without reward. We tested this model using a learning paradigm that required participants to learn without reward or feedback. We used a novel method for capturing higher order network features, to demonstrate that the mesolimbic system is heavily implicated in the loss of network features in schizophrenia, even when learning without reward. Methods fMRI data (Siemens Verio 3T) were acquired in a group of schizophrenia patients and controls (n=78; 46 SCZ, 18 ≤ Age ≤ 50) while participants engaged in associative learning without reward-related contingencies. The task was divided into task-active conditions for encoding (of associations) and cued-retrieval (where the cue was to be used to retrieve the associated memoranda). No feedback was provided during retrieval. From the fMRI time series data, network features were defined as follows: First, for each condition of the task, we estimated 2nd order undirected functional connectivity for each participant (uFC, based on zero lag correlations between all pairs of regions). These conventional 2nd order features represent the task/condition evoked synchronization of activity between pairs of brain regions. Next, in each of the patient and control groups, the statistical relationship between all possible pairs of 2nd order features were computed. These higher order features represent the consistency between all possible pairs of 2nd order features in that group and embed within them the contributions of individual regions to such group structure. Results From the identified inter-group differences (SCZ ≠ HC) in higher order features, we quantified the respective contributions of individual brain regions. Two principal effects emerged: 1) SCZ were characterized by a massive loss of higher order features during multiple task conditions (encoding and retrieval of associations). 2) Nodes in the mesolimbic system were over-represented in the loss of higher order features in SCZ, and notably so during retrieval. Discussion Our analytical goals were linked to a recent circuit-based integrative model which argued that synergy between learning and reward circuits is lost in schizophrenia. The model's notable prediction was that such a loss would be observed even when patients learned without reward. Our results provide substantial support for these predictions where we observed a loss of network features between the brain's sub-circuits for a) learning (including the hippocampus and prefrontal cortex) and b) reward processing (specifically constituents of the mesolimbic system that included the ventral tegmental area and the nucleus accumbens. Our findings motivate a renewed appraisal of the relationship between reward and cognition in schizophrenia and we discuss their relevance for putative behavioral interventions.
Collapse
Affiliation(s)
- Elizabeth Martin
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
- Department of Psychiatry, University of Texas Austin, Austin, TX, United States
| | - Asadur Chowdury
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, United States
| | - John Kopchick
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Patricia Thomas
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Dalal Khatib
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Usha Rajan
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Caroline Zajac-Benitez
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Luay Haddad
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Alireza Amirsadri
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Alfred J. Robison
- Department of Physiology, Michigan State University, East Lansing, MI, United States
| | - Katherine N. Thakkar
- Department of Psychology, Michigan State University, East Lansing, MI, United States
| | - Jeffrey A. Stanley
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Vaibhav A. Diwadkar
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|
11
|
Liao YC, Yang CJ, Yu HY, Huang CJ, Hong TY, Li WC, Chen LF, Hsieh JC. The rhythmic mind: brain functions of percussionists in improvisation. Front Hum Neurosci 2024; 18:1418727. [PMID: 39118819 PMCID: PMC11308212 DOI: 10.3389/fnhum.2024.1418727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/26/2024] [Indexed: 08/10/2024] Open
Abstract
Introduction Percussionists stand out for their expertise in rhythm, with the network for musical rhythm (NMR) serving a vital neurological function in their improvisation, which is deeply rooted in comprehensive musical knowledge. Our research examines the central representations of various improvisation tactics used by percussionists and investigates the interactions between the NMR and other relevant neural networks. Methods Twenty-five percussionists participated in functional magnetic resonance imaging (fMRI) sessions, which included two cognitive strategies of improvisation. Structural improvisation (SIMP) emphasized rhythmic patterns, while free improvisation (FIMP) focused on musical spontaneity. Sight-reading scenario served as the reference condition. Paired t-tests were utilized for comparative analyses. Results The findings revealed a dynamic interplay characterized by increased activity in the executive control network and NMR, along with decreased activity in the default mode network during SIMP. During FIMP, heightened activity was observed in the executive control network, NMR, limbic, and memory systems. In both SIMP vs. sight-reading and FIMP vs. sight-reading comparisons, the visual network's activity decreased, a trend also observed in the comparative analysis of FIMP vs. SIMP. Discussion In SIMP, percussionists leverage external rhythmic signals, resulting in heightened NMR and ECN activity and reduced DMN activity. In contrast, FIMP is characterized by a rise in activity within the NMR, ECN, limbic system, memory system, and reward system, underscoring the vital roles of motivation and memory in the rapid production of spontaneous musical ideas within set frameworks. The diminished activity in the visual network during FIMP compared to SIMP suggests less reliance on visual stimuli in FIMP. These findings suggest that various improvisational tactics may engage different neural pathways.
Collapse
Affiliation(s)
- Yin-Chun Liao
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Integrated Brain Research Unit, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ching-Ju Yang
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Integrated Brain Research Unit, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Biological Science and Technology, College of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Hsin-Yen Yu
- Graduate Institute of Arts and Humanities Education, Taipei National University of the Arts, Taipei, Taiwan
| | - Chiu-Jung Huang
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Tzu-Yi Hong
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Integrated Brain Research Unit, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-devices, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Wei-Chi Li
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Integrated Brain Research Unit, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Biological Science and Technology, College of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Li-Fen Chen
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Integrated Brain Research Unit, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jen-Chuen Hsieh
- Integrated Brain Research Unit, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Biological Science and Technology, College of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-devices, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
12
|
Lewis AF, Bohnenkamp R, Myers M, den Ouden DB, Fritz SL, Stewart JC. Effect of positive social comparative feedback on the resting state connectivity of dopaminergic neural pathways: A preliminary investigation. Neurobiol Learn Mem 2024; 212:107930. [PMID: 38692391 DOI: 10.1016/j.nlm.2024.107930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 04/17/2024] [Accepted: 04/28/2024] [Indexed: 05/03/2024]
Abstract
Positive social comparative feedback is hypothesized to generate a dopamine response in the brain, similar to reward, by enhancing expectancies to support motor skill learning. However, no studies have utilized neuroimaging to examine this hypothesized dopaminergic mechanism. Therefore, the aim of this preliminary study was to investigate the effect of positive social comparative feedback on dopaminergic neural pathways measured by resting state connectivity. Thirty individuals practiced an implicit, motor sequence learning task and were assigned to groups that differed in feedback type. One group received feedback about their actual response time to complete the task (RT ONLY), while the other group received feedback about their response time with positive social comparison (RT + POS). Magnetic resonance imaging was acquired at the beginning and end of repetitive motor practice with feedback to measure practice-dependent changes in resting state brain connectivity. While both groups showed improvements in task performance and increases in performance expectancies, ventral tegmental area and the left nucleus accumbens (mesolimbic dopamine pathway) resting state connectivity increased in the RT + POS group but not in the RT ONLY group. Instead, the RT ONLY group showed increased connectivity between ventral tegmental area and primary motor cortex. Positive social comparative feedback during practice of a motor sequence task may induce a dopaminergic response in the brain along the mesolimbic pathway. However, given that absence of effects on expectancies and motor learning, more robust and individualized approaches may be needed to provide beneficial psychological and behavioral effects.
Collapse
Affiliation(s)
- Allison F Lewis
- University of South Carolina, Department of Exercise Science, Columbia, SC, USA
| | - Rachel Bohnenkamp
- University of South Carolina, Department of Exercise Science, Columbia, SC, USA
| | - Makenzie Myers
- University of South Carolina, Department of Exercise Science, Columbia, SC, USA
| | - Dirk B den Ouden
- University of South Carolina, Department of Communication Sciences and Disorders, Columbia, SC, USA
| | - Stacy L Fritz
- University of South Carolina, Department of Exercise Science, Columbia, SC, USA
| | | |
Collapse
|
13
|
Zhao X, Wu S, Li X, Liu Z, Lu W, Lin K, Shao R. Common neural deficits across reward functions in major depression: a meta-analysis of fMRI studies. Psychol Med 2024:1-13. [PMID: 38777630 DOI: 10.1017/s0033291724001235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Major depressive disorder (MDD) is characterized by deficient reward functions in the brain. However, existing findings on functional alterations during reward anticipation, reward processing, and learning among MDD patients are inconsistent, and it was unclear whether a common reward system implicated in multiple reward functions is altered in MDD. Here we meta-analyzed 18 past studies that compared brain reward functions between adult MDD patients (N = 477, mean age = 26.50 years, female = 59.40%) and healthy controls (N = 506, mean age = 28.11 years, females = 55.58%), and particularly examined group differences across multiple reward functions. Jack-knife sensitivity and subgroup meta-analyses were conducted to test robustness of findings across patient comorbidity, task paradigm, and reward nature. Meta-regression analyses assessed the moderating effect of patient symptom severity and anhedonia scores. We found during reward anticipation, MDD patients showed lower activities in the lateral prefrontal-thalamus circuitry. During reward processing, patients displayed reduced activities in the right striatum and prefrontal cortex, but increased activities in the left temporal cortex. During reward learning, patients showed reduced activity in the lateral prefrontal-thalamic-striatal circuitry and the right parahippocampal-occipital circuitry but higher activities in bilateral cerebellum and the left visual cortex. MDD patients showed decreased activity in the right thalamus during both reward anticipation and learning, and in the right caudate during both reward processing and learning. Larger functional changes in MDD were observed among patients with more severe symptoms and higher anhedonia levels. The thalamic-striatal circuitry functional alterations could be the key neural mechanism underlying MDD patients overarching reward function deficiencies.
Collapse
Affiliation(s)
- Xuanhao Zhao
- Department of Affective Disorder, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, P.R. China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, P.R. China
| | - Shiyun Wu
- Department of Affective Disorder, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, P.R. China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, P.R. China
| | - Xian Li
- Department of Affective Disorder, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, P.R. China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, P.R. China
| | - Zhongwan Liu
- Department of Affective Disorder, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, P.R. China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, P.R. China
| | - Weicong Lu
- Department of Affective Disorder, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, P.R. China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, P.R. China
| | - Kangguang Lin
- Department of Affective Disorder, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, P.R. China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, P.R. China
| | - Robin Shao
- Department of Affective Disorder, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, P.R. China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, P.R. China
| |
Collapse
|
14
|
Powell A, Hanna C, Sajjad M, Yao R, Blum K, Gold MS, Quattrin T, Thanos PK. Exercise Influences the Brain's Metabolic Response to Chronic Cocaine Exposure in Male Rats. J Pers Med 2024; 14:500. [PMID: 38793082 PMCID: PMC11122626 DOI: 10.3390/jpm14050500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/30/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024] Open
Abstract
Cocaine use is associated with negative health outcomes: cocaine use disorders, speedballing, and overdose deaths. Currently, treatments for cocaine use disorders and overdose are non-existent when compared to opioid use disorders, and current standard cocaine use disorder treatments have high dropout and recidivism rates. Physical exercise has been shown to attenuate addiction behavior as well as modulate brain activity. This study examined the differential effects of chronic cocaine use between exercised and sedentary rats. The effects of exercise on brain glucose metabolism (BGluM) following chronic cocaine exposure were assessed using Positron Emission Tomography (PET) and [18F]-Fluorodeoxyglucose (FDG). Compared to sedentary animals, exercise decreased metabolism in the SIBF primary somatosensory cortex. Activation occurred in the amygdalopiriform and piriform cortex, trigeminothalamic tract, rhinal and perirhinal cortex, and visual cortex. BGluM changes may help ameliorate various aspects of cocaine abuse and reinstatement. Further investigation is needed into the underlying neuronal circuits involved in BGluM changes and their association with addiction behaviors.
Collapse
Affiliation(s)
- Aidan Powell
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Department of Pharmacology and Toxicology, Clinical Research Institute on Addictions, Jacobs School of Medicine and Biomedical Science, State University of New York at Buffalo, Buffalo, NY 14203, USA; (A.P.); (C.H.)
| | - Colin Hanna
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Department of Pharmacology and Toxicology, Clinical Research Institute on Addictions, Jacobs School of Medicine and Biomedical Science, State University of New York at Buffalo, Buffalo, NY 14203, USA; (A.P.); (C.H.)
| | - Munawwar Sajjad
- Department of Nuclear Medicine, University at Buffalo, Buffalo, NY 14214, USA; (M.S.); (R.Y.)
| | - Rutao Yao
- Department of Nuclear Medicine, University at Buffalo, Buffalo, NY 14214, USA; (M.S.); (R.Y.)
| | - Kenneth Blum
- Center for Sports, Exercise, and Mental Health, Western University of Health Sciences, Pomona, CA 91766, USA;
- Department of Molecular Biology, Adelson School of Medicine, Ariel University, Ariel 40700, Israel
| | - Mark S. Gold
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA;
| | - Teresa Quattrin
- UBMD Pediatrics, JR Oishei Children’s Hospital, University at Buffalo, Buffalo, NY 14203, USA;
| | - Panayotis K. Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Department of Pharmacology and Toxicology, Clinical Research Institute on Addictions, Jacobs School of Medicine and Biomedical Science, State University of New York at Buffalo, Buffalo, NY 14203, USA; (A.P.); (C.H.)
- Department of Molecular Biology, Adelson School of Medicine, Ariel University, Ariel 40700, Israel
| |
Collapse
|
15
|
Avvisati R, Kaufmann AK, Young CJ, Portlock GE, Cancemi S, Costa RP, Magill PJ, Dodson PD. Distributional coding of associative learning in discrete populations of midbrain dopamine neurons. Cell Rep 2024; 43:114080. [PMID: 38581677 PMCID: PMC7616095 DOI: 10.1016/j.celrep.2024.114080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/12/2024] [Accepted: 03/24/2024] [Indexed: 04/08/2024] Open
Abstract
Midbrain dopamine neurons are thought to play key roles in learning by conveying the difference between expected and actual outcomes. Recent evidence suggests diversity in dopamine signaling, yet it remains poorly understood how heterogeneous signals might be organized to facilitate the role of downstream circuits mediating distinct aspects of behavior. Here, we investigated the organizational logic of dopaminergic signaling by recording and labeling individual midbrain dopamine neurons during associative behavior. Our findings show that reward information and behavioral parameters are not only heterogeneously encoded but also differentially distributed across populations of dopamine neurons. Retrograde tracing and fiber photometry suggest that populations of dopamine neurons projecting to different striatal regions convey distinct signals. These data, supported by computational modeling, indicate that such distributional coding can maximize dynamic range and tailor dopamine signals to facilitate specialized roles of different striatal regions.
Collapse
Affiliation(s)
- Riccardo Avvisati
- School of Physiology, Pharmacology, and Neuroscience, University of Bristol, Bristol BS8 1TD, UK; Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH, UK
| | - Anna-Kristin Kaufmann
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH, UK
| | - Callum J Young
- School of Physiology, Pharmacology, and Neuroscience, University of Bristol, Bristol BS8 1TD, UK; Computational Neuroscience Unit, Department of Computer Science, SCEEM, Faculty of Engineering, University of Bristol, Bristol BS8 1UB, UK
| | - Gabriella E Portlock
- School of Physiology, Pharmacology, and Neuroscience, University of Bristol, Bristol BS8 1TD, UK
| | - Sophie Cancemi
- School of Physiology, Pharmacology, and Neuroscience, University of Bristol, Bristol BS8 1TD, UK
| | - Rui Ponte Costa
- Computational Neuroscience Unit, Department of Computer Science, SCEEM, Faculty of Engineering, University of Bristol, Bristol BS8 1UB, UK
| | - Peter J Magill
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH, UK
| | - Paul D Dodson
- School of Physiology, Pharmacology, and Neuroscience, University of Bristol, Bristol BS8 1TD, UK; Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH, UK.
| |
Collapse
|
16
|
Seitz RJ, Paloutzian RF, Angel H. Manifestations, social impact, and decay of conceptual beliefs: A cultural perspective. Brain Behav 2024; 14:e3470. [PMID: 38558538 PMCID: PMC10983810 DOI: 10.1002/brb3.3470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 01/05/2024] [Accepted: 02/21/2024] [Indexed: 04/04/2024] Open
Abstract
INTRODUCTION Believing comprises multifaceted processes that integrate information from the outside world through meaning-making processes with personal relevance. METHODS Qualitative Review of the current literature in social cognitive neuroscience. RESULTS Although believing develops rapidly outside an individual's conscious awareness, it results in the formation of beliefs that are stored in memory and play an important role in determining an individual's behavior. Primal beliefs reflect an individual's experience of objects and events, whereas conceptual beliefs are based on narratives that are held in social groups. Conceptual beliefs can be about autobiographical, political, religious, and other aspects of life and may be encouraged by participation in group rituals. We hypothesize that assertions of future gains and rewards that transcend but are inherent in these codices provide incentives to follow the norms and rules of social groups. CONCLUSION The power of conceptual beliefs to provide cultural orientation is likely to fade when circumstances and evidence make it clear that what was asserted no longer applies.
Collapse
Affiliation(s)
- Rüdiger J. Seitz
- Department of Neurology, Centre of Neurology and Neuropsychiatry, LVR‐Klinikum Düsseldorf, Medical FacultyHeinrich Heine University DüsseldorfDüsseldorfGermany
| | | | - Hans‐Ferdinand Angel
- Institute of Catechetic and Pedagogic of ReligionKarl Franzens University GrazGrazAustria
| |
Collapse
|
17
|
Larry N, Zur G, Joshua M. Organization of reward and movement signals in the basal ganglia and cerebellum. Nat Commun 2024; 15:2119. [PMID: 38459003 PMCID: PMC10923830 DOI: 10.1038/s41467-024-45921-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 02/06/2024] [Indexed: 03/10/2024] Open
Abstract
The basal ganglia and the cerebellum are major subcortical structures in the motor system. The basal ganglia have been cast as the reward center of the motor system, whereas the cerebellum is thought to be involved in adjusting sensorimotor parameters. Recent findings of reward signals in the cerebellum have challenged this dichotomous view. To compare the basal ganglia and the cerebellum directly, we recorded from oculomotor regions in both structures from the same monkeys. We partitioned the trial-by-trial variability of the neurons into reward and eye-movement signals to compare the coding across structures. Reward expectation and movement signals were the most pronounced in the output structure of the basal ganglia, intermediate in the cerebellum, and the smallest in the input structure of the basal ganglia. These findings suggest that reward and movement information is sharpened through the basal ganglia, resulting in a higher signal-to-noise ratio than in the cerebellum.
Collapse
Affiliation(s)
- Noga Larry
- Edmond and Lily Safra Center for Brain Sciences, the Hebrew University, Jerusalem, Israel.
| | - Gil Zur
- Edmond and Lily Safra Center for Brain Sciences, the Hebrew University, Jerusalem, Israel
| | - Mati Joshua
- Edmond and Lily Safra Center for Brain Sciences, the Hebrew University, Jerusalem, Israel.
| |
Collapse
|
18
|
Xu T, Chen Z, Zhou X, Wang L, Zhou F, Yao D, Zhou B, Becker B. The central renin-angiotensin system: A genetic pathway, functional decoding, and selective target engagement characterization in humans. Proc Natl Acad Sci U S A 2024; 121:e2306936121. [PMID: 38349873 PMCID: PMC10895353 DOI: 10.1073/pnas.2306936121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 01/02/2024] [Indexed: 02/15/2024] Open
Abstract
Accumulating evidence suggests that the brain renin angiotensin system (RAS) plays a pivotal role in the regulation of cognition and behavior as well as in the neuropathology of neurological and mental disorders. The angiotensin II type 1 receptor (AT1R) mediates most functional and neuropathology-relevant actions associated with the central RAS. However, an overarching comprehension to guide translation and utilize the therapeutic potential of the central RAS in humans is currently lacking. We conducted a comprehensive characterization of the RAS using an innovative combination of transcriptomic gene expression mapping, image-based behavioral decoding, and pre-registered randomized controlled discovery-replication pharmacological resting-state functional magnetic resonance imaging (fMRI) trials (N = 132) with a selective AT1R antagonist. The AT1R exhibited a particular dense expression in a subcortical network encompassing the thalamus, striatum, and amygdalo-hippocampal formation. Behavioral decoding of the AT1R gene expression brain map showed an association with memory, stress, reward, and motivational processes. Transient pharmacological blockade of the AT1R further decreased neural activity in subcortical systems characterized by a high AT1R expression, while increasing functional connectivity in the cortico-basal ganglia-thalamo-cortical circuitry. Effects of AT1R blockade on the network level were specifically associated with the transcriptomic signatures of the dopaminergic, opioid, acetylcholine, and corticotropin-releasing hormone signaling systems. The robustness of the results was supported in an independent pharmacological fMRI trial. These findings present a biologically informed comprehensive characterization of the central AT1R pathways and their functional relevance on the neural and behavioral level in humans.
Collapse
Affiliation(s)
- Ting Xu
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu610054, People’s Republic of China
- Ministry of Education Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology, Chengdu610054, People’s Republic of China
| | - Zhiyi Chen
- Experimental Research Center for Medical and Psychological Science, School of Psychology, Third Military Medical University, Chongqing400037, People’s Republic of China
- Faculty of Psychology, Southwest University, Chongqing400715, People’s Republic of China
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing400715, People’s Republic of China
| | - Xinqi Zhou
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu 610066, People’s Republic of China
| | - Lan Wang
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu610054, People’s Republic of China
- Ministry of Education Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology, Chengdu610054, People’s Republic of China
| | - Feng Zhou
- Faculty of Psychology, Southwest University, Chongqing400715, People’s Republic of China
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing400715, People’s Republic of China
| | - Dezhong Yao
- Ministry of Education Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology, Chengdu610054, People’s Republic of China
| | - Bo Zhou
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu610054, People’s Republic of China
| | - Benjamin Becker
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu610054, People’s Republic of China
- Ministry of Education Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology, Chengdu610054, People’s Republic of China
- The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong999077, People’s Republic of China
- Department of Psychology, The University of Hong Kong, Hong Kong999077, People’s Republic of China
| |
Collapse
|
19
|
Schiavio A, Witek MAG, Stupacher J. Meaning-making and creativity in musical entrainment. Front Psychol 2024; 14:1326773. [PMID: 38235276 PMCID: PMC10792053 DOI: 10.3389/fpsyg.2023.1326773] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/05/2023] [Indexed: 01/19/2024] Open
Abstract
In this paper we suggest that basic forms of musical entrainment may be considered as intrinsically creative, enabling further creative behaviors which may flourish at different levels and timescales. Rooted in an agent's capacity to form meaningful couplings with their sonic, social, and cultural environment, musical entrainment favors processes of adaptation and exploration, where innovative and functional aspects are cultivated via active, bodily experience. We explore these insights through a theoretical lens that integrates findings from enactive cognitive science and creative cognition research. We center our examination on the realms of groove experience and the communicative and emotional dimensions of music, aiming to present a novel preliminary perspective on musical entrainment, rooted in the fundamental concepts of meaning-making and creativity. To do so, we draw from a suite of approaches that place particular emphasis on the role of situated experience and review a range of recent empirical work on entrainment (in musical and non-musical settings), emphasizing the latter's biological and cognitive foundations. We conclude that musical entrainment may be regarded as a building block for different musical creativities that shape one's musical development, offering a concrete example for how this theory could be empirically tested in the future.
Collapse
Affiliation(s)
- Andrea Schiavio
- School of Arts and Creative Technologies, University of York, York, United Kingdom
- Centre for Systematic Musicology, University of Graz, Graz, Austria
| | - Maria A. G. Witek
- Department of Music, School of Languages, Cultures, Art History and Music, University of Birmingham, Birmingham, United Kingdom
| | - Jan Stupacher
- Center for Music in the Brain, Aarhus University and The Royal Academy of Music Aarhus/Aalborg, Aarhus, Denmark
| |
Collapse
|
20
|
Zhang S, Mena-Segovia J, Gut NK. Inhibitory Pedunculopontine Neurons Gate Dopamine-Mediated Motor Actions of Unsigned Valence. Curr Neuropharmacol 2024; 22:1540-1550. [PMID: 37702175 PMCID: PMC11097985 DOI: 10.2174/1570159x21666230911103520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/22/2023] [Accepted: 05/28/2023] [Indexed: 09/14/2023] Open
Abstract
BACKGROUND The pedunculopontine nucleus (PPN) maintains a bidirectional connectivity with the basal ganglia that supports their shared roles in the selection and execution of motor actions. Previous studies identified a role for PPN neurons in goal-directed behavior, but the cellular substrates underlying this function have not been elucidated. We recently revealed the existence of a monosynaptic GABAergic input from the PPN that inhibits dopamine neurons of the substantia nigra. Activation of this pathway interferes with the execution of learned motor sequences when the actions are rewarded, even though the inhibition of dopamine neurons did not shift the value of the action, hence suggesting executive control over the gating of behavior. OBJECTIVE To test the attributes of the inhibition of dopamine neurons by the PPN in the context of goal-directed behavior regardless of whether the outcome is positively or negatively reinforced. METHODS We delivered optogenetic stimulation to PPN GABAergic axon terminals in the substantia nigra during a battery of behavioral tasks with positive and negative valence. RESULTS Inhibition of dopamine neurons by PPN optogenetic activation during an appetitive task impaired the initiation and overall execution of the behavioral sequence without affecting the consumption of reward. During an active avoidance task, the same activation impaired the ability of mice to avoid a foot shock, but their escape response was unaffected. In addition, responses to potential threats were significantly attenuated. CONCLUSION Our results show that PPN GABAergic neurons modulate learned, goal-directed behavior of unsigned valence without affecting overall motor behavior.
Collapse
Affiliation(s)
- Sirin Zhang
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ, USA
| | - Juan Mena-Segovia
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ, USA
| | - Nadine K. Gut
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ, USA
| |
Collapse
|
21
|
Hanna C, Yao R, Sajjad M, Gold M, Blum K, Thanos PK. Exercise Modifies the Brain Metabolic Response to Chronic Cocaine Exposure Inhibiting the Stria Terminalis. Brain Sci 2023; 13:1705. [PMID: 38137153 PMCID: PMC10742065 DOI: 10.3390/brainsci13121705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/28/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023] Open
Abstract
It is well known that exercise promotes health and wellness, both mentally and physiologically. It has been shown to play a protective role in many diseases, including cardiovascular, neurological, and psychiatric diseases. The present study examined the effects of aerobic exercise on brain glucose metabolic activity in response to chronic cocaine exposure in female Lewis rats. Rats were divided into exercise and sedentary groups. Exercised rats underwent treadmill running for six weeks and were compared to the sedentary rats. Using positron emission tomography (PET) and [18F]-Fluorodeoxyglucose (FDG), metabolic changes in distinct brain regions were observed when comparing cocaine-exposed exercised rats to cocaine-exposed sedentary rats. This included activation of the secondary visual cortex and inhibition in the cerebellum, stria terminalis, thalamus, caudate putamen, and primary somatosensory cortex. The functional network of this brain circuit is involved in sensory processing, fear and stress responses, reward/addiction, and movement. These results show that chronic exercise can alter the brain metabolic response to cocaine treatment in regions associated with emotion, behavior, and the brain reward cascade. This supports previous findings of the potential for aerobic exercise to alter the brain's response to drugs of abuse, providing targets for future investigation. These results can provide insights into the fields of exercise neuroscience, psychiatry, and addiction research.
Collapse
Affiliation(s)
- Colin Hanna
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacob School of Medicine and Biosciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Rutao Yao
- Department of Nuclear Medicine, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Munawwar Sajjad
- Department of Nuclear Medicine, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Mark Gold
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kenneth Blum
- Division of Addiction Research and Education, Center for Sports, Exercise and Global Mental Health, Western University Health Sciences, Pomona, CA 91766, USA
| | - Panayotis K. Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacob School of Medicine and Biosciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
- Department of Psychology, State University of New York at Buffalo, Buffalo, NY 14203, USA
| |
Collapse
|
22
|
Ricciardi L, Apps M, Little S. Uncovering the neurophysiology of mood, motivation and behavioral symptoms in Parkinson's disease through intracranial recordings. NPJ Parkinsons Dis 2023; 9:136. [PMID: 37735477 PMCID: PMC10514046 DOI: 10.1038/s41531-023-00567-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 08/07/2023] [Indexed: 09/23/2023] Open
Abstract
Neuropsychiatric mood and motivation symptoms (depression, anxiety, apathy, impulse control disorders) in Parkinson's disease (PD) are highly disabling, difficult to treat and exacerbated by current medications and deep brain stimulation therapies. High-resolution intracranial recording techniques have the potential to undercover the network dysfunction and cognitive processes that drive these symptoms, towards a principled re-tuning of circuits. We highlight intracranial recording as a valuable tool for mapping and desegregating neural networks and their contribution to mood, motivation and behavioral symptoms, via the ability to dissect multiplexed overlapping spatial and temporal neural components. This technique can be powerfully combined with behavioral paradigms and emerging computational techniques to model underlying latent behavioral states. We review the literature of intracranial recording studies investigating mood, motivation and behavioral symptomatology with reference to 1) emotional processing, 2) executive control 3) subjective valuation (reward & cost evaluation) 4) motor control and 5) learning and updating. This reveals associations between different frequency specific network activities and underlying cognitive processes of reward decision making and action control. If validated, these signals represent potential computational biomarkers of motivational and behavioural states and could lead to principled therapy development for mood, motivation and behavioral symptoms in PD.
Collapse
Affiliation(s)
- Lucia Ricciardi
- Neurosciences Research Centre, Molecular and Clinical Sciences Research Institute, St George's University of London, London, UK.
| | - Matthew Apps
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, UK
| | - Simon Little
- Movement Disorders and Neuromodulation Centre, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
23
|
Kelsall NC, Wang Y, Gameroff MJ, Cha J, Posner J, Talati A, Weissman MM, van Dijk MT. Differences in White Matter Structural Networks in Family Risk of Major Depressive Disorder and Suicidality: A Connectome Analysis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.09.07.23295211. [PMID: 37732277 PMCID: PMC10508803 DOI: 10.1101/2023.09.07.23295211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Background Depression and suicide are leading global causes of disability and death and are highly familial. Family and individual history of depression are associated with neurobiological differences including decreased white matter connectivity; however, this has only been shown for individual regions. We use graph theory models to account for the network structure of the brain with high levels of specialization and integration and examine whether they differ by family history of depression or of suicidality within a three-generation longitudinal family study with well-characterized clinical histories. Methods Clinician interviews across three generations were used to classify family risk of depression and suicidality. Then, we created weighted network models using 108 cortical and subcortical regions of interest for 96 individuals using diffusion tensor imaging derived fiber tracts. Global and local summary measures (clustering coefficient, characteristic path length, and global and local efficiencies) and network-based statistics were utilized for group comparison of family history of depression and, separately, of suicidality, adjusted for personal psychopathology. Results Clustering coefficient (connectivity between neighboring regions) was lower in individuals at high family risk of depression and was associated with concurrent clinical symptoms. Network-based statistics showed hypoconnected subnetworks in individuals with high family risk of depression and of suicidality, after controlling for personal psychopathology. These subnetworks highlighted cortical-subcortical connections including between the superior frontal cortex, thalamus, precuneus, and putamen. Conclusions Family history of depression and of suicidality are associated with hypoconnectivity between subcortical and cortical regions, suggesting brain-wide impaired information processing, even in those personally unaffected.
Collapse
|
24
|
Grogans SE, Bliss-Moreau E, Buss KA, Clark LA, Fox AS, Keltner D, Cowen AS, Kim JJ, Kragel PA, MacLeod C, Mobbs D, Naragon-Gainey K, Fullana MA, Shackman AJ. The nature and neurobiology of fear and anxiety: State of the science and opportunities for accelerating discovery. Neurosci Biobehav Rev 2023; 151:105237. [PMID: 37209932 PMCID: PMC10330657 DOI: 10.1016/j.neubiorev.2023.105237] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/11/2023] [Accepted: 05/13/2023] [Indexed: 05/22/2023]
Abstract
Fear and anxiety play a central role in mammalian life, and there is considerable interest in clarifying their nature, identifying their biological underpinnings, and determining their consequences for health and disease. Here we provide a roundtable discussion on the nature and biological bases of fear- and anxiety-related states, traits, and disorders. The discussants include scientists familiar with a wide variety of populations and a broad spectrum of techniques. The goal of the roundtable was to take stock of the state of the science and provide a roadmap to the next generation of fear and anxiety research. Much of the discussion centered on the key challenges facing the field, the most fruitful avenues for future research, and emerging opportunities for accelerating discovery, with implications for scientists, funders, and other stakeholders. Understanding fear and anxiety is a matter of practical importance. Anxiety disorders are a leading burden on public health and existing treatments are far from curative, underscoring the urgency of developing a deeper understanding of the factors governing threat-related emotions.
Collapse
Affiliation(s)
- Shannon E Grogans
- Department of Psychology, University of Maryland, College Park, MD 20742, USA
| | - Eliza Bliss-Moreau
- Department of Psychology, University of California, Davis, CA 95616, USA; California National Primate Research Center, University of California, Davis, CA 95616, USA
| | - Kristin A Buss
- Department of Psychology, The Pennsylvania State University, University Park, PA 16802 USA
| | - Lee Anna Clark
- Department of Psychology, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Andrew S Fox
- Department of Psychology, University of California, Davis, CA 95616, USA; California National Primate Research Center, University of California, Davis, CA 95616, USA
| | - Dacher Keltner
- Department of Psychology, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | - Jeansok J Kim
- Department of Psychology, University of Washington, Seattle, WA 98195, USA
| | - Philip A Kragel
- Department of Psychology, Emory University, Atlanta, GA 30322, USA
| | - Colin MacLeod
- Centre for the Advancement of Research on Emotion, School of Psychological Science, The University of Western Australia, Perth, WA 6009, Australia
| | - Dean Mobbs
- Department of Humanities and Social Sciences, California Institute of Technology, Pasadena, California 91125, USA; Computation and Neural Systems Program, California Institute of Technology, Pasadena, CA 91125, USA
| | - Kristin Naragon-Gainey
- School of Psychological Science, University of Western Australia, Perth, WA 6009, Australia
| | - Miquel A Fullana
- Adult Psychiatry and Psychology Department, Institute of Neurosciences, Hospital Clinic, Barcelona, Spain; Imaging of Mood, and Anxiety-Related Disorders Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer, CIBERSAM, University of Barcelona, Barcelona, Spain
| | - Alexander J Shackman
- Department of Psychology, University of Maryland, College Park, MD 20742, USA; Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD 20742, USA; Maryland Neuroimaging Center, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
25
|
Gong L, Cheng F, Li X, Wang Z, Wang S, Xu R, Zhang B, Xi C. Abnormal functional connectivity in the habenula is associated with subjective hyperarousal state in chronic insomnia disorder. Front Neurol 2023; 14:1119595. [PMID: 37588671 PMCID: PMC10426801 DOI: 10.3389/fneur.2023.1119595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 07/13/2023] [Indexed: 08/18/2023] Open
Abstract
Background The hyperarousal process model plays a central role in the physiology of chronic insomnia disorder (CID). Recent evidence has demonstrated that the habenula is involved in the arousal and sleep-wake cycle. However, whether the intrinsic habenular functional network contributes to the underlying mechanism of CID and its relationship to the arousal state in CID remains unclear. Methods This single-centered study included 34 patients with subjective CID and 22 matched good sleep control (GSC), and underwent a series of neuropsychological tests and resting-state functional magnetic resonance imaging scans. The habenular functional network was assessed using seed-based functional connectivity (FC) analysis. The subjective arousal state was evaluated with the hyperarousal scale (HAS). Alterations in the habenular FC network and their clinical significance in patients with CID were explored. Results Compared with the GSC group, the CID group showed decreased habenular FC in the left caudate nucleus and right inferior parietal lobule and increased FC in the right habenula, bilateral calcarine cortex, and posterior cingulate cortex. The decreased FC between the left habenula and caudate nucleus was associated with an increased arousal state in the CID group. Conclusion The present results provide evidence for a dysfunctional habenular network in patients with CID. These findings extend our understanding of the neuropathological mechanisms underlying the hyperarousal model in chronic insomnia.
Collapse
Affiliation(s)
- Liang Gong
- Department of Neurology, Chengdu Second People’s Hospital, Chengdu, Sichuan, China
| | - Fang Cheng
- Department of Neurology, The Third Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xue Li
- Department of Neurology, The Third Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Zhiqi Wang
- Department of Neurology, The Third Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Shuo Wang
- Department of Neurology, The Third Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Ronghua Xu
- Department of Neurology, Chengdu Second People’s Hospital, Chengdu, Sichuan, China
| | - Bei Zhang
- Department of Neurology, Chengdu Second People’s Hospital, Chengdu, Sichuan, China
| | - Chunhua Xi
- Department of Neurology, The Third Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
26
|
Plachti A, Latzman RD, Balajoo SM, Hoffstaedter F, Madsen KS, Baare W, Siebner HR, Eickhoff SB, Genon S. Hippocampal anterior- posterior shift in childhood and adolescence. Prog Neurobiol 2023; 225:102447. [PMID: 36967075 PMCID: PMC10185869 DOI: 10.1016/j.pneurobio.2023.102447] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 03/14/2023] [Accepted: 03/23/2023] [Indexed: 04/07/2023]
Abstract
Hippocampal-cortical networks play an important role in neurocognitive development. Applying the method of Connectivity-Based Parcellation (CBP) on hippocampal-cortical structural covariance (SC) networks computed from T1-weighted magnetic resonance images, we examined how the hippocampus differentiates into subregions during childhood and adolescence (N = 1105, 6-18 years). In late childhood, the hippocampus mainly differentiated along the anterior-posterior axis similar to previous reported functional differentiation patterns of the hippocampus. In contrast, in adolescence a differentiation along the medial-lateral axis was evident, reminiscent of the cytoarchitectonic division into cornu ammonis and subiculum. Further meta-analytical characterization of hippocampal subregions in terms of related structural co-maturation networks, behavioural and gene profiling suggested that the hippocampal head is related to higher order functions (e.g. language, theory of mind, autobiographical memory) in late childhood morphologically co-varying with almost the whole brain. In early adolescence but not in childhood, posterior subicular SC networks were associated with action-oriented and reward systems. The findings point to late childhood as an important developmental period for hippocampal head morphology and to early adolescence as a crucial period for hippocampal integration into action- and reward-oriented cognition. The latter may constitute a developmental feature that conveys increased propensity for addictive disorders.
Collapse
Affiliation(s)
- Anna Plachti
- Institute of Neuroscience and Medicine (INM-7), Research Centre Jülich, Jülich, Germany; Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital -Amager and Hvidovre, Copenhagen, Denmark
| | - Robert D Latzman
- Data Sciences Institute, Takeda Pharmaceutical, Cambridge, MA, USA
| | | | - Felix Hoffstaedter
- Institute of Neuroscience and Medicine (INM-7), Research Centre Jülich, Jülich, Germany
| | - Kathrine Skak Madsen
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital -Amager and Hvidovre, Copenhagen, Denmark; Radiography, Department of Technology, University College Copenhagen, Copenhagen, Denmark
| | - William Baare
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital -Amager and Hvidovre, Copenhagen, Denmark
| | - Hartwig R Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital -Amager and Hvidovre, Copenhagen, Denmark; Department of Neurology, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine (INM-7), Research Centre Jülich, Jülich, Germany; Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sarah Genon
- Institute of Neuroscience and Medicine (INM-7), Research Centre Jülich, Jülich, Germany; Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; GIGA-CRC In vivo Imaging, University of Liege, Liege, Belgium.
| |
Collapse
|
27
|
Rolls ET. Emotion, motivation, decision-making, the orbitofrontal cortex, anterior cingulate cortex, and the amygdala. Brain Struct Funct 2023; 228:1201-1257. [PMID: 37178232 PMCID: PMC10250292 DOI: 10.1007/s00429-023-02644-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 04/12/2023] [Indexed: 05/15/2023]
Abstract
The orbitofrontal cortex and amygdala are involved in emotion and in motivation, but the relationship between these functions performed by these brain structures is not clear. To address this, a unified theory of emotion and motivation is described in which motivational states are states in which instrumental goal-directed actions are performed to obtain rewards or avoid punishers, and emotional states are states that are elicited when the reward or punisher is or is not received. This greatly simplifies our understanding of emotion and motivation, for the same set of genes and associated brain systems can define the primary or unlearned rewards and punishers such as sweet taste or pain. Recent evidence on the connectivity of human brain systems involved in emotion and motivation indicates that the orbitofrontal cortex is involved in reward value and experienced emotion with outputs to cortical regions including those involved in language, and is a key brain region involved in depression and the associated changes in motivation. The amygdala has weak effective connectivity back to the cortex in humans, and is implicated in brainstem-mediated responses to stimuli such as freezing and autonomic activity, rather than in declarative emotion. The anterior cingulate cortex is involved in learning actions to obtain rewards, and with the orbitofrontal cortex and ventromedial prefrontal cortex in providing the goals for navigation and in reward-related effects on memory consolidation mediated partly via the cholinergic system.
Collapse
Affiliation(s)
- Edmund T Rolls
- Oxford Centre for Computational Neuroscience, Oxford, UK.
- Department of Computer Science, University of Warwick, Coventry, UK.
| |
Collapse
|
28
|
Antoniou G, Lambourg E, Steele JD, Colvin LA. The effect of adverse childhood experiences on chronic pain and major depression in adulthood: a systematic review and meta-analysis. Br J Anaesth 2023; 130:729-746. [PMID: 37087334 PMCID: PMC10251130 DOI: 10.1016/j.bja.2023.03.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/23/2023] [Accepted: 03/04/2023] [Indexed: 04/24/2023] Open
Abstract
BACKGROUND Adverse childhood experiences have been linked to increased multimorbidity, with physical and mental health consequences throughout life. Chronic pain is often associated with mood disorders, such as major depressive disorder (MDD); both have been linked to adverse childhood experiences. It is unclear how the effect of adverse childhood experiences on neural processing impacts on vulnerability to chronic pain, MDD, or both, and whether there are shared mechanisms. We aimed to assess evidence for central neural changes associated with adverse childhood experiences in subjects with chronic pain, MDD, or both using systematic review and meta-analysis. METHODS Electronic databases were systematically searched for neuroimaging studies of adverse childhood experiences, with chronic pain, MDD, or both. Two independent reviewers screened title, abstracts, and full text, and assessed quality. After extraction of neuroimaging data, activation likelihood estimate meta-analysis was performed to identify significant brain regions associated with these comorbidities. RESULTS Forty-nine of 2414 studies were eligible, of which 43 investigated adverse childhood experiences and MDD and six investigated adverse childhood experiences and chronic pain. None investigated adverse childhood experiences, chronic pain, and MDD together. Functional and structural brain abnormalities were identified in the superior frontal, lingual gyrus, hippocampus, insula, putamen, superior temporal, inferior temporal gyrus, and anterior cerebellum in patients with MDD exposed to adverse childhood experiences. In addition, brain function abnormalities were identified for patients with MDD or chronic pain and exposure to adverse childhood experiences in the cingulate gyrus, inferior parietal lobule, and precuneus in task-based functional MRI studies. CONCLUSIONS We found that adverse childhood experiences exposure can result in different functional and structural brain alterations in adults with MDD or chronic pain compared with those without adverse childhood experiences. SYSTEMATIC REVIEW PROTOCOL PROSPERO CRD42021233989.
Collapse
Affiliation(s)
- Georgia Antoniou
- Division of Population Health and Genomics, Medical Research Institute, University of Dundee, Dundee, UK.
| | - Emilie Lambourg
- Division of Population Health and Genomics, Medical Research Institute, University of Dundee, Dundee, UK
| | - J Douglas Steele
- Division of Imaging Science and Technology, Medical School, University of Dundee, Dundee, UK
| | - Lesley A Colvin
- Division of Population Health and Genomics, Medical Research Institute, University of Dundee, Dundee, UK
| |
Collapse
|
29
|
White TL, Gonsalves MA, Zimmerman C, Joyce H, Cohen RA, Clark US, Sweet LH, Lejuez CW, Nitenson AZ. Anger, agency, risk and action: a neurobehavioral model with proof-of-concept in healthy young adults. Front Psychol 2023; 14:1060877. [PMID: 37325735 PMCID: PMC10261990 DOI: 10.3389/fpsyg.2023.1060877] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 03/31/2023] [Indexed: 06/17/2023] Open
Abstract
Introduction Anger can engender action by individuals and groups. It is thus important to understand anger's behavioral phenotypes and their underlying neural substrates. Here, we introduce a construct we term agentic anger, a negatively valenced internal state that motivates action to achieve risky goals. We evaluate our neurobehavioral model via testable hypotheses in two proof-of-concept studies. Study 1 Methods Study 1 used the Incentive Balloon Analogue Risk Task in a within-subjects, repeated measures design in 39 healthy volunteers to evaluate: (a) impact of blockade of reward on agentic anger, assessed by self-reports of negative activation (NA), (b) impact of achievement of reward on exuberance, assessed by self-reports of positive activation (PA), (c) the interrelationship of these valenced states, and (d) their relationship with personality. Study 1 Results Task-induced NA was positively correlated with task-induced PA, risk-taking on the task and trait Social Potency (SP), a measure of trait agency and reward sensitivity on the Multidimensional Personality Questionnaire Brief-Form. Study 2 Methods Study 2 assessed functional MRI response to stakes for risk-taking in healthy volunteers receiving 20 mg d-amphetamine in a double-blinded, placebo-controlled crossover design (N = 10 males), providing preliminary information on ventral striatal response to risky rewards during catecholamine activation. Study 2 Results Trait SP and task-induced PA were strongly positively related to catecholamine-facilitated BOLD response in the right nucleus accumbens, a brain region where DA prediction error signal shapes action value and selection. Participants' task-induced NA was strongly positively related with trait SP and task-induced PA, replicating the findings of Study 1. Discussion Together these results inform the phenomenology and neurobiology of agentic anger, which recruits incentive motivational circuitry and motivates personal action in response to goals that entail risk (defined as exposure to uncertainty, obstacles, potential harm, loss and/or financial, emotional, bodily, or moral peril). Neural mechanisms of agency, anger, exuberance, and risk-taking are discussed, with implications for personal and group action, decision-making, social justice, and behavior change.
Collapse
Affiliation(s)
- Tara L. White
- Department of Behavioral and Social Sciences, Center for Alcohol and Addiction Studies, and Carney Institute for Brain Science, Brown University, Providence, RI, United States
| | - Meghan A. Gonsalves
- Neuroscience Graduate Program, Brown University, Providence, RI, United States
| | - Chloe Zimmerman
- Neuroscience Graduate Program, Brown University, Providence, RI, United States
| | - Hannah Joyce
- Undergraduate Program in Cognitive Neuroscience, Brown University, Providence, RI, United States
| | - Ronald A. Cohen
- Center for Cognitive Aging and Memory, McKnight Brain Foundation, University of Florida, Gainesville, FL, United States
| | - Uraina S. Clark
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Lawrence H. Sweet
- Department of Psychology, University of Georgia, Athens, GA, United States
| | - Carl W. Lejuez
- Provost and Executive Vice President, Department of Psychology, Department of Psychiatry and Behavioral Health, Stony Brook University, Stony Brook, NY, United States
| | - Adam Z. Nitenson
- Neuroscience Graduate Program, Brown University, Providence, RI, United States
| |
Collapse
|
30
|
Basanisi R, Marche K, Combrisson E, Apicella P, Brovelli A. Beta Oscillations in Monkey Striatum Encode Reward Prediction Error Signals. J Neurosci 2023; 43:3339-3352. [PMID: 37015808 PMCID: PMC10162459 DOI: 10.1523/jneurosci.0952-22.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 02/22/2023] [Accepted: 03/17/2023] [Indexed: 04/06/2023] Open
Abstract
Reward prediction error (RPE) signals are crucial for reinforcement learning and decision-making as they quantify the mismatch between predicted and obtained rewards. RPE signals are encoded in the neural activity of multiple brain areas, such as midbrain dopaminergic neurons, prefrontal cortex, and striatum. However, it remains unclear how these signals are expressed through anatomically and functionally distinct subregions of the striatum. In the current study, we examined to which extent RPE signals are represented across different striatal regions. To do so, we recorded local field potentials (LFPs) in sensorimotor, associative, and limbic striatal territories of two male rhesus monkeys performing a free-choice probabilistic learning task. The trial-by-trial evolution of RPE during task performance was estimated using a reinforcement learning model fitted on monkeys' choice behavior. Overall, we found that changes in beta band oscillations (15-35 Hz), after the outcome of the animal's choice, are consistent with RPE encoding. Moreover, we provide evidence that the signals related to RPE are more strongly represented in the ventral (limbic) than dorsal (sensorimotor and associative) part of the striatum. To conclude, our results suggest a relationship between striatal beta oscillations and the evaluation of outcomes based on RPE signals and highlight a major contribution of the ventral striatum to the updating of learning processes.SIGNIFICANCE STATEMENT Reward prediction error (RPE) signals are crucial for reinforcement learning and decision-making as they quantify the mismatch between predicted and obtained rewards. Current models suggest that RPE signals are encoded in the neural activity of multiple brain areas, including the midbrain dopaminergic neurons, prefrontal cortex and striatum. However, it remains elusive whether RPEs recruit anatomically and functionally distinct subregions of the striatum. Our study provides evidence that RPE-related modulations in local field potential (LFP) power are dominant in the striatum. In particular, they are stronger in the rostro-ventral rather than the caudo-dorsal striatum. Our findings contribute to a better understanding of the role of striatal territories in reward-based learning and may be relevant for neuropsychiatric and neurologic diseases that affect striatal circuits.
Collapse
Affiliation(s)
- Ruggero Basanisi
- Institut de Neurosciences de la Timone, Aix Marseille Université, Unité Mixte de Recherche 7289 Centre National de la Recherche Scientifique, Marseille 13005, France
| | - Kevin Marche
- Institut de Neurosciences de la Timone, Aix Marseille Université, Unité Mixte de Recherche 7289 Centre National de la Recherche Scientifique, Marseille 13005, France
- Wellcome Center for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Etienne Combrisson
- Institut de Neurosciences de la Timone, Aix Marseille Université, Unité Mixte de Recherche 7289 Centre National de la Recherche Scientifique, Marseille 13005, France
| | - Paul Apicella
- Institut de Neurosciences de la Timone, Aix Marseille Université, Unité Mixte de Recherche 7289 Centre National de la Recherche Scientifique, Marseille 13005, France
| | - Andrea Brovelli
- Institut de Neurosciences de la Timone, Aix Marseille Université, Unité Mixte de Recherche 7289 Centre National de la Recherche Scientifique, Marseille 13005, France
| |
Collapse
|
31
|
Loeffler A, Diaz-Alvarez A, Zhu R, Ganesh N, Shine JM, Nakayama T, Kuncic Z. Neuromorphic learning, working memory, and metaplasticity in nanowire networks. SCIENCE ADVANCES 2023; 9:eadg3289. [PMID: 37083527 PMCID: PMC10121165 DOI: 10.1126/sciadv.adg3289] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Nanowire networks (NWNs) mimic the brain's neurosynaptic connectivity and emergent dynamics. Consequently, NWNs may also emulate the synaptic processes that enable higher-order cognitive functions such as learning and memory. A quintessential cognitive task used to measure human working memory is the n-back task. In this study, task variations inspired by the n-back task are implemented in a NWN device, and external feedback is applied to emulate brain-like supervised and reinforcement learning. NWNs are found to retain information in working memory to at least n = 7 steps back, remarkably similar to the originally proposed "seven plus or minus two" rule for human subjects. Simulations elucidate how synapse-like NWN junction plasticity depends on previous synaptic modifications, analogous to "synaptic metaplasticity" in the brain, and how memory is consolidated via strengthening and pruning of synaptic conductance pathways.
Collapse
Affiliation(s)
- Alon Loeffler
- The University of Sydney, School of Physics, Sydney, Australia
- Corresponding author. (A.L.); (A.D.-A.); (Z.K.)
| | - Adrian Diaz-Alvarez
- International Center for Young Scientist (ICYS), National Institute for Materials Science (NIMS), Tsukuba, Japan
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Tsukuba, Japan
- Corresponding author. (A.L.); (A.D.-A.); (Z.K.)
| | - Ruomin Zhu
- The University of Sydney, School of Physics, Sydney, Australia
| | - Natesh Ganesh
- National Institute of Standards and Technology (NIST), Boulder, CO, USA
- University of Colorado, Boulder, CO, USA
| | - James M. Shine
- The University of Sydney, School of Physics, Sydney, Australia
- Brain and Mind Centre, The University of Sydney, Sydney, Australia
- The University of Sydney, School of Medical Sciences, Sydney, Australia
| | - Tomonobu Nakayama
- The University of Sydney, School of Physics, Sydney, Australia
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Tsukuba, Japan
- Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan
| | - Zdenka Kuncic
- The University of Sydney, School of Physics, Sydney, Australia
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Tsukuba, Japan
- The University of Sydney Nano Institute, Sydney, Australia
- Corresponding author. (A.L.); (A.D.-A.); (Z.K.)
| |
Collapse
|
32
|
Zhang L, Liu C, Zhou X, Zhou H, Luo S, Wang Q, Yao Z, Chen JF. Neural representation and modulation of volitional motivation in response to escalating efforts. J Physiol 2023; 601:631-645. [PMID: 36534700 PMCID: PMC10108165 DOI: 10.1113/jp283915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
Task-dependent volitional control of the selected neural activity in the cortex is critical to neuroprosthetic learning to achieve reliable and robust control of the external device. The volitional control of neural activity is driven by a motivational factor (volitional motivation), which directly reinforces the target neurons via real-time biofeedback. However, in the absence of motor behaviour, how do we evaluate volitional motivation? Here, we defined the criterion (ΔF/F) of the calcium fluorescence signal in a volitionally controlled neural task, then escalated the efforts by progressively increasing the number of reaching the criterion or holding time after reaching the criterion. We devised calcium-based progressive threshold-crossing events (termed 'Calcium PTE') and calcium-based progressive threshold-crossing holding-time (termed 'Calcium PTH') for quantitative assessment of volitional motivation in response to progressively escalating efforts. Furthermore, we used this novel neural representation of volitional motivation to explore the neural circuit and neuromodulator bases for volitional motivation. As with behavioural motivation, chemogenetic activation and pharmacological blockade of the striatopallidal pathway decreased and increased, respectively, the breakpoints of the 'Calcium PTE' and 'Calcium PTH' in response to escalating efforts. Furthermore, volitional and behavioural motivation shared similar dopamine dynamics in the nucleus accumbens in response to trial-by-trial escalating efforts. In general, the development of a neural representation of volitional motivation may open a new avenue for smooth and effective control of brain-machine interface tasks. KEY POINTS: Volitional motivation is quantitatively evaluated by M1 neural activity in response to progressively escalating volitional efforts. The striatopallidal pathway and adenosine A2A receptor modulate volitional motivation in response to escalating efforts. Dopamine dynamics encode prediction signal for reward in response to repeated escalating efforts during motor and volitional conditioning. Mice learn to modulate neural activity to compensate for repeated escalating efforts in volitional control.
Collapse
Affiliation(s)
- Liping Zhang
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, The State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Chengwei Liu
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, The State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xiaopeng Zhou
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, The State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Hui Zhou
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, The State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Shengtao Luo
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, The State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Qin Wang
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, The State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Zhimo Yao
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, The State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Jiang-Fan Chen
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, The State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China.,Oujiang Laboratory (Zhejiang Laboratory for Regenerative Medicine, Vision and Brain Health), School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
33
|
Mills EG, Ertl N, Wall MB, Thurston L, Yang L, Suladze S, Hunjan T, Phylactou M, Patel B, Muzi B, Ettehad D, Bassett PA, Howard J, Rabiner EA, Bech P, Abbara A, Goldmeier D, Comninos AN, Dhillo WS. Effects of Kisspeptin on Sexual Brain Processing and Penile Tumescence in Men With Hypoactive Sexual Desire Disorder: A Randomized Clinical Trial. JAMA Netw Open 2023; 6:e2254313. [PMID: 36735255 PMCID: PMC9898824 DOI: 10.1001/jamanetworkopen.2022.54313] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
IMPORTANCE The human physiological sexual response is crucial for reward, satisfaction, and reproduction. Disruption of the associated neurophysiological pathways predisposes to low sexual desire; the most prevalent psychological form is hypoactive sexual desire disorder (HSDD), which affects 8% of men but currently has no effective pharmacological treatment options. The reproductive neuropeptide kisspeptin offers a putative therapeutic target, owing to emerging understanding of its role in reproductive behavior. OBJECTIVE To determine the physiological, behavioral, neural, and hormonal effects of kisspeptin administration in men with HSDD. DESIGN, SETTING, AND PARTICIPANTS This double-blind, 2-way crossover, placebo-controlled randomized clinical trial was performed at a single academic research center in the UK. Eligible participants were right-handed heterosexual men with HSDD. Physiological, behavioral, functional magnetic resonance imaging (fMRI), and hormonal analyses were used to investigate the clinical and mechanistic effects of kisspeptin administration in response to visual sexual stimuli (short and long video tasks). The trial was conducted between January 11 and September 15, 2021, and data analysis was performed between October and November 2021. INTERVENTIONS Participants attended 2 study visits at least 7 days apart, in balanced random order, for intravenous infusion of kisspeptin-54 (1 nmol/kg/h) for 75 minutes or for administration of a rate-matched placebo. MAIN OUTCOMES AND MEASURES Changes in (1) brain activity on whole-brain analysis, as determined by fMRI blood oxygen level-dependent activity in response to visual sexual stimuli during kisspeptin administration compared with placebo, (2) physiological sexual arousal (penile tumescence), and (3) behavioral measures of sexual desire and arousal. RESULTS Of the 37 men randomized, 32 completed the trial. Participants had a mean (SD) age of 37.9 (8.6) years and a mean (SD) body mass index of 24.9 (5.4). On viewing sexual videos, kisspeptin significantly modulated brain activity in key structures of the sexual-processing network on whole-brain analysis compared with placebo (mean absolute change [Cohen d] = 0.81 [95% CI, 0.41-1.21]; P = .003). Furthermore, improvements in several secondary analyses were observed, including significant increases in penile tumescence in response to sexual stimuli (by up to 56% more than placebo; mean difference = 0.28 units [95% CI, 0.04-0.52 units]; P = .02) and behavioral measures of sexual desire-most notably, increased happiness about sex (mean difference = 0.63 points [95% CI, 0.10-1.15 points]; P = .02). CONCLUSIONS AND RELEVANCE Collectively, this randomized clinical trial provides the first evidence to date showing that kisspeptin administration substantially modulates sexual brain processing in men with HSDD, with associated increases in penile tumescence and behavioral measures of sexual desire and arousal. These data suggest that kisspeptin has potential as the first pharmacological treatment for men with low sexual desire. TRIAL REGISTRATION isrctn.org Identifier: ISRCTN17271094.
Collapse
Affiliation(s)
- Edouard G. Mills
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom
| | - Natalie Ertl
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom
- Invicro LLC, Hammersmith Hospital Campus, London, United Kingdom
| | - Matthew B. Wall
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom
- Invicro LLC, Hammersmith Hospital Campus, London, United Kingdom
| | - Layla Thurston
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom
| | - Lisa Yang
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom
| | - Sofiya Suladze
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom
| | - Tia Hunjan
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom
| | - Maria Phylactou
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom
| | - Bijal Patel
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom
| | - Beatrice Muzi
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom
| | - Dena Ettehad
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom
| | | | - Jonathan Howard
- Invicro LLC, Hammersmith Hospital Campus, London, United Kingdom
| | | | - Paul Bech
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom
| | - Ali Abbara
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom
| | - David Goldmeier
- Jane Wadsworth Sexual Function Clinic, St Mary’s Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Alexander N. Comninos
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Waljit S. Dhillo
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, United Kingdom
| |
Collapse
|
34
|
Weiss AR, Korzeniewska A, Chrabaszcz A, Bush A, Fiez JA, Crone NE, Richardson RM. Lexicality-Modulated Influence of Auditory Cortex on Subthalamic Nucleus During Motor Planning for Speech. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2023; 4:53-80. [PMID: 37229140 PMCID: PMC10205077 DOI: 10.1162/nol_a_00086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 10/18/2022] [Indexed: 05/27/2023]
Abstract
Speech requires successful information transfer within cortical-basal ganglia loop circuits to produce the desired acoustic output. For this reason, up to 90% of Parkinson's disease patients experience impairments of speech articulation. Deep brain stimulation (DBS) is highly effective in controlling the symptoms of Parkinson's disease, sometimes alongside speech improvement, but subthalamic nucleus (STN) DBS can also lead to decreases in semantic and phonological fluency. This paradox demands better understanding of the interactions between the cortical speech network and the STN, which can be investigated with intracranial EEG recordings collected during DBS implantation surgery. We analyzed the propagation of high-gamma activity between STN, superior temporal gyrus (STG), and ventral sensorimotor cortices during reading aloud via event-related causality, a method that estimates strengths and directionalities of neural activity propagation. We employed a newly developed bivariate smoothing model based on a two-dimensional moving average, which is optimal for reducing random noise while retaining a sharp step response, to ensure precise embedding of statistical significance in the time-frequency space. Sustained and reciprocal neural interactions between STN and ventral sensorimotor cortex were observed. Moreover, high-gamma activity propagated from the STG to the STN prior to speech onset. The strength of this influence was affected by the lexical status of the utterance, with increased activity propagation during word versus pseudoword reading. These unique data suggest a potential role for the STN in the feedforward control of speech.
Collapse
Affiliation(s)
- Alexander R. Weiss
- JHU Cognitive Neurophysiology and BMI Lab, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Anna Korzeniewska
- JHU Cognitive Neurophysiology and BMI Lab, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Anna Chrabaszcz
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alan Bush
- Brain Modulation Lab, Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Julie A. Fiez
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Communication Science and Disorders, University of Pittsburgh, Pittsburgh, PA, USA
- University of Pittsburgh Brain Institute, Pittsburgh, PA, USA
| | - Nathan E. Crone
- JHU Cognitive Neurophysiology and BMI Lab, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Robert M. Richardson
- Brain Modulation Lab, Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
35
|
Loeb GE. Remembrance of things perceived: Adding thalamocortical function to artificial neural networks. Front Integr Neurosci 2023; 17:1108271. [PMID: 36959924 PMCID: PMC10027940 DOI: 10.3389/fnint.2023.1108271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/13/2023] [Indexed: 03/09/2023] Open
Abstract
Recent research has illuminated the complexity and importance of the thalamocortical system but it has been difficult to identify what computational functions it performs. Meanwhile, deep-learning artificial neural networks (ANNs) based on bio-inspired models of purely cortical circuits have achieved surprising success solving sophisticated cognitive problems associated historically with human intelligence. Nevertheless, the limitations and shortcomings of artificial intelligence (AI) based on such ANNs are becoming increasingly clear. This review considers how the addition of thalamocortical connectivity and its putative functions related to cortical attention might address some of those shortcomings. Such bio-inspired models are now providing both testable theories of biological cognition and improved AI technology, much of which is happening outside the usual academic venues.
Collapse
|
36
|
Abstract
The frontal lobe is crucial and contributes to controlling truncal motion, postural responses, and maintaining equilibrium and locomotion. The rich repertoire of frontal gait disorders gives some indication of this complexity. For human walking, it is necessary to simultaneously achieve at least two tasks, such as maintaining a bipedal upright posture and locomotion. Particularly, postural control plays an extremely significant role in enabling the subject to maintain stable gait behaviors to adapt to the environment. To achieve these requirements, the frontal cortex (1) uses cognitive information from the parietal, temporal, and occipital cortices, (2) creates plans and programs of gait behaviors, and (3) acts on the brainstem and spinal cord, where the core posture-gait mechanisms exist. Moreover, the frontal cortex enables one to achieve a variety of gait patterns in response to environmental changes by switching gait patterns from automatic routine to intentionally controlled and learning the new paradigms of gait strategy via networks with the basal ganglia, cerebellum, and limbic structures. This chapter discusses the role of each area of the frontal cortex in behavioral control and attempts to explain how frontal lobe controls walking with special reference to postural control.
Collapse
Affiliation(s)
- Kaoru Takakusaki
- Department of Physiology, Division of Neuroscience, Asahikawa Medical University, Asahikawa, Japan.
| |
Collapse
|
37
|
Changes of insular function in lifelong premature ejaculation patients before and after SSRI administration. Psychopharmacology (Berl) 2022; 239:3953-3962. [PMID: 36344824 DOI: 10.1007/s00213-022-06268-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 10/19/2022] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Lifelong premature ejaculation (PE) is regarded as one of the most common male sexual dysfunction. We aimed to detect whether insula-related brain functional networks are altered in lifelong PE patients and whether such alterations are "normalised" after selective serotonin reuptake inhibitors (SSRI) administration. METHODS Twenty-three drug-naive lifelong PE patients and 30 healthy controls (HC) were recruited in current study. All subjects underwent resting-state functional magnetic resonance imaging (fMRI) scan at first. One hour after dapoxetine administration, all patients underwent fMRI scanning again. The degree centrality (DC), amplitude of low-frequency fluctuations (ALFF) and regional homogeneity (ReHo) analysis, and ROI-based functional connectivity (FC) analysis were applied to calculate the abnormalities in insula-related functions among three groups. RESULTS Compared to HC group, PE patients at baseline showed significantly altered DC, ALFF, and ReHo value of the bilateral insula, which subsequently showed a "normalised" trend after dapoxetine administration. Additionally, compared to HC group, PE patients at baseline showed significantly decreased FC between insula and precentral gyrus, inferior frontal gyrus, middle/inferior temporal gyrus, and caudate, while patients after dapoxetine administration showed increased insula-related FC in anterior cingulate cortex and decreased FC in thalamus and middle/inferior temporal gyrus. The main effects of dapoxetine were located in precentral gyrus, inferior frontal gyrus, caudate, and limbic system. CONCLUSIONS Our findings report altered brain mechanism of insula in lifelong PE patients and also indicate that dapoxetine can "normalise" the abnormal function of the insula to certain extent in lifelong PE patients.
Collapse
|
38
|
Seok SC, McDevitt E, Mednick SC, Malerba P. Global and non-Global slow oscillations differentiate in their depth profiles. FRONTIERS IN NETWORK PHYSIOLOGY 2022; 2:947618. [PMID: 36926094 PMCID: PMC10013040 DOI: 10.3389/fnetp.2022.947618] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 10/10/2022] [Indexed: 03/18/2023]
Abstract
Sleep slow oscillations (SOs, 0.5-1.5 Hz) are thought to organize activity across cortical and subcortical structures, leading to selective synaptic changes that mediate consolidation of recent memories. Currently, the specific mechanism that allows for this selectively coherent activation across brain regions is not understood. Our previous research has shown that SOs can be classified on the scalp as Global, Local or Frontal, where Global SOs are found in most electrodes within a short time delay and gate long-range information flow during NREM sleep. The functional significance of space-time profiles of SOs hinges on testing if these differential SOs scalp profiles are mirrored by differential depth structure of SOs in the brain. In this study, we built an analytical framework to allow for the characterization of SO depth profiles in space-time across cortical and sub-cortical regions. To test if the two SO types could be differentiated in their cortical-subcortical activity, we trained 30 machine learning classification algorithms to distinguish Global and non-Global SOs within each individual, and repeated this analysis for light (Stage 2, S2) and deep (slow wave sleep, SWS) NREM stages separately. Multiple algorithms reached high performance across all participants, in particular algorithms based on k-nearest neighbors classification principles. Univariate feature ranking and selection showed that the most differentiating features for Global vs. non-Global SOs appeared around the trough of the SO, and in regions including cortex, thalamus, caudate nucleus, and brainstem. Results also indicated that differentiation during S2 required an extended network of current from cortical-subcortical regions, including all regions found in SWS and other basal ganglia regions, and amygdala and hippocampus, suggesting a potential functional differentiation in the role of Global SOs in S2 vs. SWS. We interpret our results as supporting the potential functional difference of Global and non-Global SOs in sleep dynamics.
Collapse
Affiliation(s)
- Sang-Cheol Seok
- Battelle Center for Mathematical Medicine, Nationwide Children’s Hospital, Columbus, OH, United States
| | | | - Sara C. Mednick
- Department of Cognitive Sciences, University of California, Irvine, Irvine, CA, United States
| | - Paola Malerba
- Battelle Center for Mathematical Medicine, Nationwide Children’s Hospital, Columbus, OH, United States
- Center for Biobehavioral Health, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH, United States
- School of Medicine, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
39
|
Hüls A, Wedderburn CJ, Groenewold NA, Gladish N, Jones MJ, Koen N, MacIsaac JL, Lin DTS, Ramadori KE, Epstein MP, Donald KA, Kobor MS, Zar HJ, Stein DJ. Newborn differential DNA methylation and subcortical brain volumes as early signs of severe neurodevelopmental delay in a South African Birth Cohort Study. World J Biol Psychiatry 2022; 23:601-612. [PMID: 34895032 PMCID: PMC9273810 DOI: 10.1080/15622975.2021.2016955] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 01/25/2023]
Abstract
OBJECTIVES Early detection of neurodevelopmental delay is crucial for intervention and treatment strategies. We analysed associations between newborn DNA methylation (DNAm), neonatal magnetic resonance imaging (MRI) neuroimaging data, and neurodevelopment. METHODS Neurodevelopment was assessed in 161 children from the South African Drakenstein Child Health Study at 2 years of age using the Bayley Scales of Infant and Toddler Development III. We performed an epigenome-wide association study of neurodevelopmental delay using DNAm from cord blood. Subsequently, we analysed if associations between DNAm and neurodevelopmental delay were mediated by altered neonatal brain volumes (subset of 51 children). RESULTS Differential DNAm at SPTBN4 (cg26971411, Δbeta = -0.024, p-value = 3.28 × 10-08), and two intergenic regions (chromosome 11: cg00490349, Δbeta = -0.036, p-value = 3.02 × 10-08; chromosome 17: cg15660740, Δbeta = -0.078, p-value = 6.49 × 10-08) were significantly associated with severe neurodevelopmental delay. While these associations were not mediated by neonatal brain volume, neonatal caudate volumes were independently associated with neurodevelopmental delay, particularly in language (Δcaudate volume = 165.30 mm3, p = 0.0443) and motor (Δcaudate volume = 365.36 mm3, p-value = 0.0082) domains. CONCLUSIONS Differential DNAm from cord blood and increased neonatal caudate volumes were independently associated with severe neurodevelopmental delay at 2 years of age. These findings suggest that neurobiological signals for severe developmental delay may be detectable in very early life.
Collapse
Affiliation(s)
- Anke Hüls
- Department of Epidemiology and Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Catherine J Wedderburn
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa
- Department of Clinical Research, London School of Hygiene & Tropical Medicine, London, UK
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Nynke A Groenewold
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
- South African Medical Research Council (SAMRC) Unit on Child and Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Nicole Gladish
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
- BC Children's Hospital Research Institute, Vancouver, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, Canada
| | - Meaghan J Jones
- Department of Biochemistry and Medical Genetics, University of Manitoba, and Children's Hospital Research Institute of Manitoba, Winnipeg, Canada
| | - Nastassja Koen
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
- South African Medical Research Council (SAMRC) Unit on Risk and Resilience in Mental Disorders, University of Cape Town, Cape Town, South Africa
| | - Julia L MacIsaac
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
- BC Children's Hospital Research Institute, Vancouver, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, Canada
| | - David T S Lin
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
- BC Children's Hospital Research Institute, Vancouver, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, Canada
| | - Katia E Ramadori
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
- BC Children's Hospital Research Institute, Vancouver, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, Canada
| | - Michael P Epstein
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA, USA
| | - Kirsten A Donald
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Michael S Kobor
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
- BC Children's Hospital Research Institute, Vancouver, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, Canada
| | - Heather J Zar
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa
- South African Medical Research Council (SAMRC) Unit on Child and Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Dan J Stein
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
- South African Medical Research Council (SAMRC) Unit on Risk and Resilience in Mental Disorders, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
40
|
Raghunath BL, Sng KHL, Chen SHA, Vijayaragavan V, Gulyás B, Setoh P, Esposito G. Stronger brain activation for own baby but similar activation toward babies of own and different ethnicities in parents living in a multicultural environment. Sci Rep 2022; 12:10988. [PMID: 35768627 PMCID: PMC9243063 DOI: 10.1038/s41598-022-15289-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 06/22/2022] [Indexed: 11/10/2022] Open
Abstract
Specific facial features in infants automatically elicit attention, affection, and nurturing behaviour of adults, known as the baby schema effect. There is also an innate tendency to categorize people into in-group and out-group members based on salient features such as ethnicity. Societies are becoming increasingly multi-cultural and multi-ethnic, and there are limited investigations into the underlying neural mechanism of the baby schema effect in a multi-ethnic context. Functional magnetic resonance imaging (fMRI) was used to examine parents' (N = 27) neural responses to (a) non-own ethnic in-group and out-group infants, (b) non-own in-group and own infants, and (c) non-own out-group and own infants. Parents showed similar brain activations, regardless of ethnicity and kinship, in regions associated with attention, reward processing, empathy, memory, goal-directed action planning, and social cognition. The same regions were activated to a higher degree when viewing the parents' own infant. These findings contribute further understanding to the dynamics of baby schema effect in an increasingly interconnected social world.
Collapse
Affiliation(s)
- Bindiya Lakshmi Raghunath
- Psychology Program, School of Social Sciences, Nanyang Technological University, Singapore, Singapore
| | - Kelly Hwee Leng Sng
- Psychology Program, School of Social Sciences, Nanyang Technological University, Singapore, Singapore
| | - S H Annabel Chen
- Psychology Program, School of Social Sciences, Nanyang Technological University, Singapore, Singapore.,Centre for Research and Development in Learning (CRADLE), Nanyang Technological University, Singapore, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.,Office of Educational Research, National Institute of Education, Singapore, Singapore
| | - Vimalan Vijayaragavan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Balázs Gulyás
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Peipei Setoh
- Psychology Program, School of Social Sciences, Nanyang Technological University, Singapore, Singapore
| | - Gianluca Esposito
- Department of Psychology and Cognitive Science, University of Trento, Rovereto, Italy.
| |
Collapse
|
41
|
Horne CM, Sahni A, Pang SW, Vanes LD, Szentgyorgyi T, Averbeck B, Moran RJ, Shergill SS. The role of cognitive control in the positive symptoms of psychosis. Neuroimage Clin 2022; 34:103004. [PMID: 35468567 PMCID: PMC9059151 DOI: 10.1016/j.nicl.2022.103004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/28/2022] [Accepted: 04/04/2022] [Indexed: 11/26/2022]
Abstract
Mechanisms underlying positive symptoms in psychosis are unclear. Differential fMRI activity present in left amygdala, pallidum and thalamus in high positive symptom patients compared to low. Lower activity in SMA/pre-SMA also present in high symptom patients. We suggest poor integration of social-emotional information with reward feedback. Results may be important for guiding treatment strategies to prevent chronic illness.
Background Positive symptoms of psychosis (e.g., hallucinations) often limit everyday functioning and can persist despite adequate antipsychotic treatment. We investigated whether poor cognitive control is a mechanism underlying these symptoms. Methods 97 patients with early psychosis (30 with high positive symptoms (HS) and 67 with low positive symptoms (LS)) and 40 healthy controls (HC) underwent fMRI whilst performing a reward learning task with two conditions; low cognitive demand (choosing between neutral faces) and high cognitive demand (choosing between angry and happy faces – shown to induce an emotional bias). Decision and feedback phases were examined. Results Both patient groups showed suboptimal learning behaviour compared to HC and altered activity within a core reward network including occipital/lingual gyrus (decision), rostral Anterior Cingulate Cortex, left pre-central gyrus and Supplementary Motor Cortex (feedback). In the low cognitive demand condition, HS group showed significantly reduced activity in Supplementary Motor Area (SMA)/pre-SMA during the decision phase whilst activity was increased in LS group compared to HC. Recruitment of this region suggests a top-down compensatory mechanism important for control of positive symptoms. With additional cognitive demand (emotional vs. neutral contrast), HS patients showed further alterations within a subcortical network (increased left amygdala activity during decisions and reduced left pallidum and thalamus activity during feedback) compared to LS patients. Conclusions The findings suggest a core reward system deficit may be present in both patient groups, but persistent positive symptoms are associated with a specific dysfunction within a network needed to integrate social-emotional information with reward feedback.
Collapse
Affiliation(s)
- Charlotte M Horne
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, UK
| | - Angad Sahni
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, UK
| | - Sze W Pang
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, UK
| | - Lucy D Vanes
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, UK
| | - Timea Szentgyorgyi
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, UK
| | - Bruno Averbeck
- Laboratory of Neuropsychology, National Institute for Mental Health, Bethesda, BETHESDA, MD 20814, USA
| | - Rosalyn J Moran
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, UK
| | - Sukhwinder S Shergill
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, UK; Kent and Medway Medical School, Cantebury Christ Church University and University of Kent, Kent CT2 7FS, UK
| |
Collapse
|
42
|
Chen X, Xiao M, Qin J, Bian Z, Qiu J, Feng T, He Q, Lei X, Chen H. Association between high levels of body-esteem and increased degree of midcingulate cortex global connectivity: A resting-state fMRI study. Psychophysiology 2022; 59:e14072. [PMID: 35460526 DOI: 10.1111/psyp.14072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/09/2021] [Accepted: 03/27/2022] [Indexed: 11/26/2022]
Abstract
Multiple neuroimaging studies have examined the neural underpinnings of body image disturbances in patients with eating disorders. However, key brain regions related to body image, such as body-esteem (BE), among healthy individuals are understudied. Given the extremely crucial role of BE in eating behaviors and physical and mental health, the current study conducted data-driven analysis and characterized the neurobiological correlates of BE with the network properties of the resting brain using the voxel-wise degree centrality (DC) measures of resting-state functional magnetic resonance imaging (rs-fMRI) data and seed-based resting-state functional connectivity (RSFC). A total of 694 healthy young adults (females = 474, mean age = 18.38 years, range = 17-22) underwent rs-fMRI, and completed the Body-Esteem Scale for Adolescents and Adults, the Eating Disorder Diagnosis Scale, and the Restraint Scale. After correcting for differences in age, gender, body mass index, and head motion, whole-brain correlation analyses revealed that a high level of BE was associated with increased DC within the right midcingulate cortex (MCC) and subsequent high levels of MCC-based RSFC strengths. Furthermore, MCC connectivity patterns related to BE were inversely associated with disordered eating behaviors. These findings suggest that adaptive cognitive and emotional regulation (i.e., self-evaluation and emotion based on body image) may explain the potential relationship between MCC connectivity patterns and BE to a certain extent. As such, future studies should investigate these interesting possibilities.
Collapse
Affiliation(s)
- Ximei Chen
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
| | - Mingyue Xiao
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
| | - Jingmin Qin
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
| | - Ziming Bian
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
| | - Jiang Qiu
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China.,Southwest University Branch, Collaborative Innovation Center of Assessment Toward Basic Education Quality, Beijing Normal University, Chongqing, China
| | - Tingyong Feng
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China.,Research Center of Psychology and Social Development, Faculty of Psychology, Southwest University, Chongqing, China
| | - Qinghua He
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China.,Southwest University Branch, Collaborative Innovation Center of Assessment Toward Basic Education Quality, Beijing Normal University, Chongqing, China.,Institute of Psychology, Key Laboratory of Mental Health, Chinese Academy of Sciences, Beijing, China
| | - Xu Lei
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China.,Sleep and NeuroImaging Center, Faculty of Psychology, Southwest University, Chongqing, China
| | - Hong Chen
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
| |
Collapse
|
43
|
Effects of environmental enrichment on exploratory behavior, win-stay and lose-shift performance, motor sequence learning, and reversal learning during the three-lever operant task in mice. Behav Brain Res 2022; 429:113904. [DOI: 10.1016/j.bbr.2022.113904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/29/2022] [Accepted: 04/19/2022] [Indexed: 11/22/2022]
|
44
|
Moran EK, Gold JM, Carter CS, MacDonald AW, Ragland JD, Silverstein SM, Luck SJ, Barch DM. Both unmedicated and medicated individuals with schizophrenia show impairments across a wide array of cognitive and reinforcement learning tasks. Psychol Med 2022; 52:1115-1125. [PMID: 32799938 PMCID: PMC8095353 DOI: 10.1017/s003329172000286x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Schizophrenia is a disorder characterized by pervasive deficits in cognitive functioning. However, few well-powered studies have examined the degree to which cognitive performance is impaired even among individuals with schizophrenia not currently on antipsychotic medications using a wide range of cognitive and reinforcement learning measures derived from cognitive neuroscience. Such research is particularly needed in the domain of reinforcement learning, given the central role of dopamine in reinforcement learning, and the potential impact of antipsychotic medications on dopamine function. METHODS The present study sought to fill this gap by examining healthy controls (N = 75), unmedicated (N = 48) and medicated (N = 148) individuals with schizophrenia. Participants were recruited across five sites as part of the CNTRaCS Consortium to complete tasks assessing processing speed, cognitive control, working memory, verbal learning, relational encoding and retrieval, visual integration and reinforcement learning. RESULTS Individuals with schizophrenia who were not taking antipsychotic medications, as well as those taking antipsychotic medications, showed pervasive deficits across cognitive domains including reinforcement learning, processing speed, cognitive control, working memory, verbal learning and relational encoding and retrieval. Further, we found that chlorpromazine equivalency rates were significantly related to processing speed and working memory, while there were no significant relationships between anticholinergic load and performance on other tasks. CONCLUSIONS These findings add to a body of literature suggesting that cognitive deficits are an enduring aspect of schizophrenia, present in those off antipsychotic medications as well as those taking antipsychotic medications.
Collapse
Affiliation(s)
- Erin K. Moran
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO
| | - James M. Gold
- Department of Psychiatry, Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD
| | | | | | | | - Steven M. Silverstein
- Department of Psychiatry, Rutgers Robert Wood Johnson Medical School Hospital, Piscataway, NJ
| | - Steven J. Luck
- Department of Psychology, University of California, Davis, CA
| | - Deanna M. Barch
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO
- Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO
- Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
45
|
Kantak SS, Johnson T, Zarzycki R. Linking Pain and Motor Control: Conceptualization of Movement Deficits in Patients With Painful Conditions. Phys Ther 2022; 102:6497839. [PMID: 35079833 DOI: 10.1093/ptj/pzab289] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 09/13/2021] [Accepted: 12/10/2021] [Indexed: 12/20/2022]
Abstract
UNLABELLED When people experience or expect pain, they move differently. Pain-altered movement strategies, collectively described here as pain-related movement dysfunction (PRMD), may persist well after pain resolves and, ultimately, may result in altered kinematics and kinetics, future reinjury, and disability. Although PRMD may manifest as abnormal movements that are often evident in clinical assessment, the underlying mechanisms are complex, engaging sensory-perceptual, cognitive, psychological, and motor processes. Motor control theories provide a conceptual framework to determine, assess, and target processes that contribute to normal and abnormal movement and thus are important for physical therapy and rehabilitation practice. Contemporary understanding of motor control has evolved from reflex-based understanding to a more complex task-dependent interaction between cognitive and motor systems, each with distinct neuroanatomic substrates. Though experts have recognized the importance of motor control in the management of painful conditions, there is no comprehensive framework that explicates the processes engaged in the control of goal-directed actions, particularly in the presence of pain. This Perspective outlines sensory-perceptual, cognitive, psychological, and motor processes in the contemporary model of motor control, describing the neural substrates underlying each process and highlighting how pain and anticipation of pain influence motor control processes and consequently contribute to PRMD. Finally, potential lines of future inquiry-grounded in the contemporary model of motor control-are outlined to advance understanding and improve the assessment and treatment of PRMD. IMPACT This Perspective proposes that approaching PRMD from a contemporary motor control perspective will uncover key mechanisms, identify treatment targets, inform assessments, and innovate treatments across sensory-perceptual, cognitive, and motor domains, all of which have the potential to improve movement and functional outcomes in patients with painful conditions.
Collapse
Affiliation(s)
- Shailesh S Kantak
- Neuroplasticity and Motor Behavior Laboratory, Moss Rehabilitation Research Institute, Elkins Park, Pennsylvania, USA.,Department of Physical Therapy, Arcadia University, Glenside, Pennsylvania, USA
| | - Tessa Johnson
- Neuroplasticity and Motor Behavior Laboratory, Moss Rehabilitation Research Institute, Elkins Park, Pennsylvania, USA
| | - Ryan Zarzycki
- Department of Physical Therapy, Arcadia University, Glenside, Pennsylvania, USA
| |
Collapse
|
46
|
Biscuola E, Bongini M, Belcari I, Santarcangelo EL, Sebastiani L. Well-Being in Highly Hypnotizable Persons. Int J Clin Exp Hypn 2022; 70:123-135. [PMID: 35344452 DOI: 10.1080/00207144.2022.2049972] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Both hypnotizability and well-being are relevant to health. This study aimed to investigate whether high hypnotizability was positively associated with well-being and whether the latter was related to the activity of the behavioral inhibition/approach system (BIS/BAS). ANOVA revealed significantly higher scores on the General Well-Being Index (PGWBI) in highly hypnotizable (highs, n = 31) compared with low hypnotizable participants (lows, n = 53), with medium hypnotizable participants (mediums, n = 41) exhibiting intermediate values. This finding was discussed in relation to other hypnotizability-related traits, such as morpho-functional brain characteristics, equivalence between imagery and perception, and interoceptive sensitivity. A secondary finding was a nonsignificant gender difference in scores on the PGWBI. The highs' higher well-being could be considered a favorable prognostic factor for physical and mental health.
Collapse
Affiliation(s)
- Edith Biscuola
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Italy
| | - Marianna Bongini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Italy
| | - Iacopo Belcari
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Italy
| | - Enrica L Santarcangelo
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Italy
| | - Laura Sebastiani
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Italy
| |
Collapse
|
47
|
Neural substrates of rewarding and punishing self representations in depressed suicide-attempting adolescents. J Psychiatr Res 2022; 148:204-213. [PMID: 35131589 DOI: 10.1016/j.jpsychires.2022.01.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 10/06/2021] [Accepted: 01/13/2022] [Indexed: 11/23/2022]
Abstract
Adolescence is a period of plasticity in neural substrates underpinning self-processing. Such substrates are worth studying in depressed youth at risks for suicide because altered neurobiology of self-processing might partially explain differences between suicide attempting youth versus youth who contemplate but do not attempt suicide. Understanding altered substrates of self-processing among depressed adolescents with suicide attempts is critical for developing targeted prevention and treatment. Healthy youth (N = 40), youth with depression and low (N = 33) or high suicide ideation (N = 28), and youth with depression and past suicide attempt (N = 28) heard positive or negative self-descriptors during fMRI and evaluated them from their own, their mother's, classmates', and best friend's perspectives. Lower bilateral caudate activity during positive self-processing distinguished suicide attempting adolescents from all other youth. Higher bilateral caudate activity during negatively valenced self-processing tended to distinguish youth with depression. Blunted reward circuitry during positive vs. negative self-related material tended to distinguish suicide attempting youth, reflecting potentially enhanced behavioral preparedness for punishing vs. rewarding self-relevant cues.
Collapse
|
48
|
Yu J, Zhou P, Yuan S, Wu Y, Wang C, Zhang N, Li CSR, Liu N. Symptom provocation in obsessive-compulsive disorder: A voxel-based meta-analysis and meta-analytic connectivity modeling. J Psychiatr Res 2022; 146:125-134. [PMID: 34971910 DOI: 10.1016/j.jpsychires.2021.12.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 11/04/2021] [Accepted: 12/11/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND Obsessive-compulsive disorder (OCD) is a heterogeneous psychiatric illness with a complex array of symptoms and potentially distinct neural underpinnings. We employed meta-analysis and connectivity modeling of symptom dimensions to delineate the circuit mechanisms of OCD. METHODS With the activation likelihood estimation (ALE) algorithm we performed meta-analysis of whole-brain functional magnetic resonance imaging (fMRI) studies of symptom provocation. We contrasted all OCD patients and controls in a primary analysis and divided the studies according to clinical symptoms in secondary meta-analyses. Finally, we employed meta-analytic connectivity modeling analyses (MACMs) to examine co-activation patterns of the brain regions revealed in the primary meta-analysis. RESULTS A total of 14 experiments from 12 eligible studies with a total of 238 OCD patients (124 men) and 219 healthy controls (120 men) were included in the primary analysis. OCD patients showed higher activation in the right caudate body/putamen/insula and lower activation in the left orbitofrontal cortex (OFC), left inferior frontal gyrus (IFG), left caudate body/middle cingulate cortex (MCC), right middle temporal gyrus (MTG), middle occipital gyrus (MOG) and right lateral occipital gyrus (LOG). MACMs revealed significant co-activation between left IFG and left caudate body/MCC, left MOG and right LOG, right LOG and MTG. In the secondary meta-analyses, the washing subgroup showed higher activation in the right OFC, bilateral ACC, left MOG and right caudate body. CONCLUSION OCD patients showed elevated dorsal striatal activation during symptom provocation. In contrast, the washing subgroup engaged higher activation in frontal, temporal and posterior cortical structures as well as right caudate body. Broadly consistent with the proposition of cortico-striatal-thalamic-cortical circuit dysfunction, these findings highlight potentially distinct neural circuits that may underlie the symptoms and potentially etiological subtypes of OCD.
Collapse
Affiliation(s)
- Jianping Yu
- The Affiliated Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing, Jiangsu, 210029, China.
| | - Ping Zhou
- Department of Medical Psychology, The Affiliated Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing, Jiangsu, 210029, China.
| | - Shiting Yuan
- The Affiliated Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing, Jiangsu, 210029, China.
| | - Yun Wu
- Functional Brain Imaging Institute of Nanjing Medical University, 264 Guangzhou Road, Nanjing, Jiangsu, 210029, China.
| | - Chun Wang
- The Affiliated Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing, Jiangsu, 210029, China.
| | - Ning Zhang
- The Affiliated Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing, Jiangsu, 210029, China.
| | - Chiang-Shan R Li
- Department of Psychiatry, Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA.
| | - Na Liu
- Department of Medical Psychology, The Affiliated Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing, Jiangsu, 210029, China.
| |
Collapse
|
49
|
Johnson BP, Cohen LG. Reward and plasticity: Implications for neurorehabilitation. HANDBOOK OF CLINICAL NEUROLOGY 2022; 184:331-340. [PMID: 35034746 DOI: 10.1016/b978-0-12-819410-2.00018-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Neuroplasticity follows nervous system injury in the presence or absence of rehabilitative treatments. Rehabilitative interventions can be used to modulate adaptive neuroplasticity, reducing motor impairment and improving activities of daily living in patients with brain lesions. Learning principles guide some rehabilitative interventions. While basic science research has shown that reward combined with training enhances learning, this principle has been only recently explored in the context of neurorehabilitation. Commonly used reinforcers may be more or less rewarding depending on the individual or the context in which the task is performed. Studies in healthy humans showed that both reward and punishment can enhance within-session motor performance; but reward, and not punishment, improves consolidation and retention of motor skills. On the other hand, neurorehabilitative training after brain lesions involves complex tasks (e.g., walking and activities of daily living). The contribution of reward to neurorehabilitation is incompletely understood. Here, we discuss recent research on the role of reward in neurorehabilitation and the needed directions of future research.
Collapse
Affiliation(s)
- Brian P Johnson
- Human Cortical Physiology and Neurorehabilitation Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Leonardo G Cohen
- Human Cortical Physiology and Neurorehabilitation Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States.
| |
Collapse
|
50
|
Schettler L, Thomasius R, Paschke K. Neural correlates of problematic gaming in adolescents: A systematic review of structural and functional magnetic resonance imaging studies. Addict Biol 2022; 27:e13093. [PMID: 34496459 DOI: 10.1111/adb.13093] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 08/03/2021] [Accepted: 08/06/2021] [Indexed: 12/19/2022]
Abstract
Problematic gaming in adolescents is associated with neural alterations in structural and functional imaging studies. Especially frontal regions, associated with cognitive control functions, as well as temporoparietal areas, responsible for attention processes and self-concepts, and frontolimbic and subcortical regions, connected to emotion regulation and reward processing, are affected. The differences provide a further explanation for addictive disorders and emphasize the importance of interventions that address executive and cognitive-affective deficits.
Collapse
Affiliation(s)
- Leonie Schettler
- German Center for Addiction Research in Childhood and Adolescence (DZSKJ) University Medical Center Hamburg‐Eppendorf (UKE) Hamburg Germany
| | - Rainer Thomasius
- German Center for Addiction Research in Childhood and Adolescence (DZSKJ) University Medical Center Hamburg‐Eppendorf (UKE) Hamburg Germany
| | - Kerstin Paschke
- German Center for Addiction Research in Childhood and Adolescence (DZSKJ) University Medical Center Hamburg‐Eppendorf (UKE) Hamburg Germany
| |
Collapse
|