1
|
Köksal BG, Bollucuoğlu K, Şahin E, Bayram MG, Küçükosman G, Ayoğlu H. The effect of anesthesia methods on the neutrophil-lymphocyte ratio in patients undergoing forearm surgery: A monocentric and retrospective study. Medicine (Baltimore) 2024; 103:e40290. [PMID: 39470550 PMCID: PMC11521084 DOI: 10.1097/md.0000000000040290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/30/2024] Open
Abstract
Surgical trauma can induce systemic inflammation. The selected anesthesia method may modulate the inflammatory response and surgical results in the inflammatory process that occurs during surgical trauma. In this retrospective study, we aimed to compare the anti-inflammatory effects of general anesthesia and peripheral nerve block (infraclavicular block). Demographic, clinical, and laboratory records (hemogram, total leukocyte count, neutrophil-to-lymphocyte ratio, platelet-to-lymphocyte ratio, and mean platelet volume) were obtained from the archival data. The patients were divided into 2 groups: Group G, who received general anesthesia, and Group P, who received a peripheral nerve block (infraclavicular block) for forearm surgery. The amount of opioid consumed postoperatively was significantly lower in Group P. Infraclavicular block as an alternative to general anesthesia was found to be associated with a significant decrease in the neutrophil-to-lymphocyte ratio, total leukocyte count, and platelet-to-lymphocyte ratio levels compared to those observed after general anesthesia. Peripheral nerve blocks may play a role in reducing inflammation and alleviating stress.
Collapse
Affiliation(s)
- Bengü G. Köksal
- Department of Anesthesiology and Reanimation, Faculty of Medicine, Zonguldak Bülent Ecevit University Zonguldak, Turkey
| | - Keziban Bollucuoğlu
- Department of Anesthesiology and Reanimation, Faculty of Medicine, Zonguldak Bülent Ecevit University Zonguldak, Turkey
| | - Ercan Şahin
- Department of Orthopedics and Traumatology, Faculty of Medicine, Zonguldak Bulent Ecevit University, Zonguldak, Turkey
| | - Mustafa Gökhan Bayram
- Department of Anesthesiology and Reanimation, Faculty of Medicine, Zonguldak Bülent Ecevit University Zonguldak, Turkey
| | - Gamze Küçükosman
- Department of Anesthesiology and Reanimation, Faculty of Medicine, Zonguldak Bülent Ecevit University Zonguldak, Turkey
| | - Hilal Ayoğlu
- Department of Anesthesiology and Reanimation, Faculty of Medicine, Zonguldak Bülent Ecevit University Zonguldak, Turkey
| |
Collapse
|
2
|
Barkus A, Baltrūnienė V, Baušienė J, Baltrūnas T, Barkienė L, Kazlauskaitė P, Baušys A. The Gut-Brain Axis in Opioid Use Disorder: Exploring the Bidirectional Influence of Opioids and the Gut Microbiome-A Comprehensive Review. Life (Basel) 2024; 14:1227. [PMID: 39459527 PMCID: PMC11508959 DOI: 10.3390/life14101227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/15/2024] [Accepted: 09/20/2024] [Indexed: 10/28/2024] Open
Abstract
Opioid Use Disorder is a chronic condition characterized by compulsive opioid use despite negative consequences, resulting in severe health risks such as overdose and contraction of infectious diseases. High dropout rates in opioid agonist therapy highlight the need for more effective relapse prevention strategies. Animal and clinical studies indicate that opioids influence gut microbiota, which in turn plays a critical role in addiction development and alters behavioral responses to opioids. This study provides a comprehensive review of the literature on the effects of opioids on the gut microbiome and explores the potential of microbiome manipulation as a therapeutic target in opioid addiction.
Collapse
Affiliation(s)
- Artūras Barkus
- Department of Pathology and Forensic Medicine, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania
- Laboratory of Experimental Surgery and Oncology, Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania
| | - Vaida Baltrūnienė
- Department of Pathology and Forensic Medicine, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania
- Laboratory of Experimental Surgery and Oncology, Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania
| | - Justė Baušienė
- Department of Pathology and Forensic Medicine, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania
- Laboratory of Experimental Surgery and Oncology, Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania
| | - Tomas Baltrūnas
- Department of Pathology and Forensic Medicine, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania
- Laboratory of Experimental Surgery and Oncology, Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania
| | - Lina Barkienė
- Department of Pathology and Forensic Medicine, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania
- Laboratory of Experimental Surgery and Oncology, Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania
| | - Paulina Kazlauskaitė
- Department of Pathology and Forensic Medicine, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania
- Laboratory of Experimental Surgery and Oncology, Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania
| | - Augustinas Baušys
- Department of Pathology and Forensic Medicine, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania
- Laboratory of Experimental Surgery and Oncology, Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania
| |
Collapse
|
3
|
Abbasi Kasbi N, Ghane Ezabadi S, Kohandel K, Khodaie F, Sahraian AH, Nikkhah Bahrami S, Mohammadi M, Almasi-Hashiani A, Eskandarieh S, Sahraian MA. Lifetime exposure to smoking and substance abuse may be associated with late-onset multiple sclerosis: a population-based case-control study. BMC Neurol 2024; 24:327. [PMID: 39243006 PMCID: PMC11378646 DOI: 10.1186/s12883-024-03815-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 08/20/2024] [Indexed: 09/09/2024] Open
Abstract
BACKGROUND Late-onset multiple sclerosis (LOMS), defined as the development of MS after the age of 50, has shown a substantial surge in incidence rates and is associated with more rapid progression of disability. Besides, studies have linked tobacco smoking to a higher chance of MS progression. However, the role of smoking on the risk of developing LOMS remains unclear. This study aims to evaluate the possible association between lifetime exposure to cigarette and waterpipe smoking, drug abuse, and alcohol consumption and the risk of LOMS. METHODS This population-based case-control study involved LOMS cases and healthy sex and age-matched controls from the general population in Tehran, Iran. The primary data for confirmed LOMS cases were obtained from the nationwide MS registry of Iran (NMSRI), while supplementary data were collected through telephone and on-site interviews. Predesigned questionnaire for multinational case-control studies of MS environmental risk factors was used to evaluate the LOMS risk factors. The study employed Likelihood ratio chi-square test to compare qualitative variables between the two groups and utilized two independent sample t-test to compare quantitative data. Adjusted odds ratio (AOR) for age along with 95% confidence intervals (CI) were calculated using matched logistic regression analysis in SPSS 23. RESULTS Totally, 83 LOMS cases and 207 controls were included in the analysis. The female to male ratio in the cases was 1.5: 1. The mean ± SD age of 83 cases and 207 controls was 61.14 ± 5.38) and 61.51 ± 7.67 years, respectively. The mean ± SD expanded disability status scale (EDSS) score was 3.68 ± 2.1. Although the results of waterpipe exposure had no significant effect on LOMS development (P-value: 0.066), ever cigarette-smoked participants had a significantly higher risk of developing LOMS than those who never smoked (AOR: 2.57, 95% CI: 1.44-4.60). Furthermore, people with a history of smoking for more than 20 years had 3.45 times the odds of developing MS than non-smokers. Drug and alcohol abuse were both associated with LOMS in our study; of which opioids (AOR: 5.67, 95% CI: 2.05-15.7), wine (AOR: 3.30, 95% CI: 1.41-7.71), and beer (AOR: 3.12, 95% CI: 1.45-6.69) were found to pose the greatest risk of LOMS, respectively. CONCLUSION For the first time, we identified smoking, drug, and alcohol use as potential risk factors for LOMS development. According to the global increase in cigarette smoking and alcohol use, these findings highlight the importance of conducting interventional approaches for prevention.
Collapse
Affiliation(s)
- Naghmeh Abbasi Kasbi
- Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Hasan Abad Sq., Tehran, Iran
| | - Sajjad Ghane Ezabadi
- Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Hasan Abad Sq., Tehran, Iran
| | - Kosar Kohandel
- Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Hasan Abad Sq., Tehran, Iran
| | - Faezeh Khodaie
- Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Hasan Abad Sq., Tehran, Iran
| | - Amir Hossein Sahraian
- Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Hasan Abad Sq., Tehran, Iran
| | - Sahar Nikkhah Bahrami
- Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Hasan Abad Sq., Tehran, Iran
- Student Research Committee, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Mahsa Mohammadi
- Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Hasan Abad Sq., Tehran, Iran
| | - Amir Almasi-Hashiani
- Department of Epidemiology, School of Health, Arak University of Medical Sciences, Arak, Iran
| | - Sharareh Eskandarieh
- Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Hasan Abad Sq., Tehran, Iran.
| | - Mohammad Ali Sahraian
- Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Hasan Abad Sq., Tehran, Iran.
| |
Collapse
|
4
|
Barnett RC, Lewis AN, Gong Q, Preston DL, Frazer LC, Werthammer JW, Good M. Modulation of intestinal TLR4 expression in infants with neonatal opioid withdrawal syndrome. J Perinatol 2024; 44:1125-1131. [PMID: 38151596 PMCID: PMC11209831 DOI: 10.1038/s41372-023-01859-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/23/2023] [Accepted: 12/12/2023] [Indexed: 12/29/2023]
Abstract
OBJECTIVE Neonatal Opioid Withdrawal Syndrome (NOWS) has been associated with the development of necrotizing enterocolitis (NEC) in term and late-preterm neonates. In this study, we used stool gene expression to determine if an increase in baseline inflammation in the intestine of infants with NOWS is associated with these findings. STUDY DESIGN Stool samples were prospectively collected between days 1-3 and days 4-9 after delivery for opioid-exposed ( n = 9) or non-exposed neonates (n = 8). Stool gene expression for TLR4 and HMGB1 was determined via real-time PCR. RESULTS TLR4 expression was higher in the stool of the non-exposed group in both time periods, between days 1-3 (P < 0.0001) and days 4-9 (P < 0.05) after delivery. No significant difference in HMGB1 expression was found at either time point (P > 0.05). CONCLUSION These findings point to an important interplay between opioid exposure and/or NOWS and the inflammatory milieu of the neonatal intestine.
Collapse
Affiliation(s)
- Rebecca C Barnett
- Department of Pediatrics, Marshall University, Joan C. Edwards School of Medicine, Huntington, WV, USA
| | - Angela N Lewis
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Saint Louis University, Cardinal Glennon Children's Hospital, St. Louis, MO, USA
| | - Qingqing Gong
- Division of Newborn Medicine, Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO, USA
| | - Deborah L Preston
- Department of Pediatrics, Marshall University, Joan C. Edwards School of Medicine, Huntington, WV, USA
| | - Lauren C Frazer
- Division of Newborn Medicine, Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO, USA
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, University of North Carolina Children's Hospital, Chapel Hill, NC, USA
| | - Joseph W Werthammer
- Department of Pediatrics, Marshall University, Joan C. Edwards School of Medicine, Huntington, WV, USA
| | - Misty Good
- Division of Newborn Medicine, Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO, USA.
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, University of North Carolina Children's Hospital, Chapel Hill, NC, USA.
| |
Collapse
|
5
|
Ummadisetty O, Akhilesh, Gadepalli A, Chouhan D, Patil U, Singh SP, Singh S, Tiwari V. Dermorphin [D-Arg2, Lys4] (1-4) Amide Alleviates Frostbite-Induced Pain by Regulating TRP Channel-Mediated Microglial Activation and Neuroinflammation. Mol Neurobiol 2024; 61:6089-6100. [PMID: 38277118 DOI: 10.1007/s12035-024-03949-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/02/2024] [Indexed: 01/27/2024]
Abstract
Cold injury or frostbite is a common medical condition that causes serious clinical complications including sensory abnormalities and chronic pain ultimately affecting overall well-being. Opioids are the first-choice drug for the treatment of frostbite-induced chronic pain; however, their notable side effects, including sedation, motor incoordination, respiratory depression, and drug addiction, present substantial obstacle to their clinical utility. To address this challenge, we have exploited peripheral mu-opioid receptors as potential target for the treatment of frostbite-induced chronic pain. In this study, we investigated the effect of dermorphin [D-Arg2, Lys4] (1-4) amide (DALDA), a peripheral mu-opioid receptor agonist, on frostbite injury and hypersensitivity induced by deep freeze magnet exposure in rats. Animals with frostbite injury displayed significant hypersensitivity to mechanical, thermal, and cold stimuli which was significant ameliorated on treatment with different doses of DALDA (1, 3, and 10 mg/kg) and ibuprofen (100 mg/kg). Further, molecular biology investigations unveiled heightened oxido-nitrosative stress, coupled with a notable upregulation in the expression of TRP channels (TRPA1, TRPV1, and TRPM8), glial cell activation, and neuroinflammation (TNF-α, IL-1β) in the sciatic nerve, dorsal root ganglion (DRG), and spinal cord of frostbite-injured rats. Treatment with DALDA leads to substantial reduction in TRP channels, microglial activation, and suppression of the inflammatory cascade in the ipsilateral L4-L5 DRG and spinal cord of rats. Overall, findings from the present study suggest that activation of peripheral mu-opioid receptors mitigates chronic pain in rats by modulating the expression of TRP channels and suppressing glial cell activation and neuroinflammation.
Collapse
Affiliation(s)
- Obulapathi Ummadisetty
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, 221005, India
| | - Akhilesh
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, 221005, India
| | - Anagha Gadepalli
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, 221005, India
| | - Deepak Chouhan
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, 221005, India
| | - Utkarsh Patil
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, 221005, India
| | - Surya Pratap Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Sanjay Singh
- Baba Saheb Bhim Rao Ambedkar Central University (BBAU), Lucknow, Uttar Pradesh, 226025, India
| | - Vinod Tiwari
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, 221005, India.
| |
Collapse
|
6
|
Malik JA, Affan Khan M, Lamba T, Adeel Zafar M, Nanda S, Owais M, Agrewala JN. Immunosuppressive effects of morphine on macrophage polarization and function. Eur J Pharmacol 2024; 975:176637. [PMID: 38729416 DOI: 10.1016/j.ejphar.2024.176637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/03/2024] [Accepted: 05/06/2024] [Indexed: 05/12/2024]
Abstract
Macrophages play a pivotal role in safeguarding against a broad spectrum of infections, from viral, bacterial, fungal to parasitic threats and contributing to the immune defense against cancer. While morphine's immunosuppressive effects on immune cells are extensively documented, a significant knowledge gap exists regarding its influence on macrophage polarization and differentiation. Hence, we conducted a study that unveils that prior exposure to morphine significantly impedes the differentiation of bone marrow cells into macrophages. Furthermore, the polarization of macrophages toward the M1 phenotype under M1-inducing conditions experiences substantial impairment, as evidenced by the diminished expression of CD80, CD86, CD40, iNOS, and MHCII. This correlates with reduced expression of M1 phenotypical markers such as iNOS, IL-1β, and IL-6, accompanied by noticeable morphological, size, and phagocytic alterations. Further, we also observed that morphine affected M2 macrophages. These findings emphasize the necessity for a more comprehensive understanding of the impact of morphine on compromising macrophage function and its potential ramifications for therapeutic approaches.
Collapse
Affiliation(s)
- Jonaid Ahmad Malik
- Immunology Laboratory, Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, 140001, India
| | - Mohammad Affan Khan
- Immunology Laboratory, Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, 140001, India
| | - Taruna Lamba
- Immunology Laboratory, Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, 140001, India
| | - Mohammad Adeel Zafar
- Immunology Laboratory, Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, 140001, India
| | - Sidhanta Nanda
- Immunology Laboratory, Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, 140001, India
| | - Mohammad Owais
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, India
| | - Javed N Agrewala
- Immunology Laboratory, Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, 140001, India.
| |
Collapse
|
7
|
Chen S, Liu J, Huang S. Effect of repeated intraperitoneal injections of different concentrations of oxycodone on immune function in mice. Front Pharmacol 2024; 15:1370663. [PMID: 38953110 PMCID: PMC11215192 DOI: 10.3389/fphar.2024.1370663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/22/2024] [Indexed: 07/03/2024] Open
Abstract
Background The effect of oxycodone as an opioid receptor agonist on immune function is still controversial. In this study, we investigated the possible effects of oxycodone on immune function in mice and its possible mechanisms of action. Methods By repeated intraperitoneal injections of 25 mg/kg morphine and 5 mg/kg, 20 mg/kg, and 60 mg/kg oxycodone, we assessed possible changes in the number of splenic lymphocytes and inflammatory cytokines in the serum of mice. CD4+ T cells and CD8+ T cells were sorted from the spleen to observe whether the expression levels of opioid receptors and downstream signals were altered. Results Repeated administration of oxycodone at a dose above 20 mg/kg resulted in significant weight loss. Repeated administration of oxycodone exhibits significant dose-dependent reduction in CD4+ T cells, with little effect on CD8+ T cells and little effect on inflammatory cytokine levels. Low- and intermediate-dose oxycodone increased the mRNA expression level of MOR, KOR, and DOR to varying degrees. Moreover, oxycodone increases the mRNA expression levels of the TLR4 signaling pathway to varying degrees. Conclusion Repeated intraperitoneal injection of oxycodone induces immunosuppression in mice.
Collapse
Affiliation(s)
| | | | - Shaoqiang Huang
- Department of Anesthesia, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| |
Collapse
|
8
|
Gard F, Flad LM, Weißer T, Ammer H, Deeg CA. Effects of A1 Milk, A2 Milk and the Opioid-like Peptide β-Casomorphin-7 on the Proliferation of Human Peripheral Blood Mononuclear Cells. Biomolecules 2024; 14:690. [PMID: 38927093 PMCID: PMC11201611 DOI: 10.3390/biom14060690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 06/05/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Special attention is given to cow's milk and its variants, with ongoing discussions about health-related impacts primarily focusing on the A1 variant in contrast to the A2 variant. The difference between these variants lies in a single amino acid alteration at position 67 of β-casein. This alteration is presumed to make the A1 variant more susceptible to enzymatic breakdown during milk digestion, leading to an increased release of the peptide β-casomorphin-7 (BCM-7). BCM-7 is hypothesized to interact with µ-opioid receptors on immune cells in humans. Although BCM-7 has demonstrated both immunosuppressive and inflammatory effects, its direct impact on the immune system remains unclear. Thus, we examined the influence of A1 and A2 milk on Concanavalin A (ConA)-stimulated human peripheral blood mononuclear cells (PBMCs), as well as the effect of experimentally digested A1 and A2 milk, containing different amounts of free BCM-7 from β-casein cleavage. Additionally, we evaluated the effects of pure BCM-7 on the proliferation of ConA-stimulated PBMCs and purified CD4+ T cells. Milk fundamentally inhibited PBMC proliferation, independent of the β-casein variant. In contrast, experimentally digested milk of both variants and pure BCM-7 showed no influence on the proliferation of PBMCs or isolated CD4+ T cells. Our results indicate that milk exerts an anti-inflammatory effect on PBMCs, regardless of the A1 or A2 β-casein variant, which is nullified after in vitro digestion. Consequently, we deem BCM-7 unsuitable as a biomarker for food-induced inflammation.
Collapse
Affiliation(s)
- Felix Gard
- Chair of Animal Physiology, Department of Veterinary Sciences, Ludwig Maximilian University of Munich, D-82152 Martinsried, Germany
| | - Lili M. Flad
- Chair of Animal Physiology, Department of Veterinary Sciences, Ludwig Maximilian University of Munich, D-82152 Martinsried, Germany
| | - Tanja Weißer
- Chair of Animal Physiology, Department of Veterinary Sciences, Ludwig Maximilian University of Munich, D-82152 Martinsried, Germany
| | - Hermann Ammer
- Chair of Pharmacology, Toxicology and Pharmacy, Department of Veterinary Sciences, Ludwig Maximilian University of Munich, D-80539 Munich, Germany
| | - Cornelia A. Deeg
- Chair of Animal Physiology, Department of Veterinary Sciences, Ludwig Maximilian University of Munich, D-82152 Martinsried, Germany
| |
Collapse
|
9
|
Sarkar S, Hill DD, Rosenberg AF, Eaton EF, Kutsch O, Kobie JJ. Injection Drug Use Alters Plasma Regulation of the B Cell Response. Cells 2024; 13:1011. [PMID: 38920641 PMCID: PMC11202061 DOI: 10.3390/cells13121011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/27/2024] Open
Abstract
The opioid epidemic continues to be a major public health issue that includes millions of people who inject drugs (PWID). PWID have increased incidence of serious infections, including HIV as well as metabolic and inflammatory sequelae. We sought to discern the extent of systemic alterations in humoral immunity associated with injection drug use, including alterations in the plasma proteome and its regulation of B cell responsiveness. Comprehensive plasma proteomics analysis of HIV negative/hepatitis C negative individuals with a history of recent injection heroin use was performed using mass spectrometry and ELISA. The effects of plasma from PWID and healthy controls on the in vitro proliferation and transcriptional profile of B cell responses to stimulation were determined by flow cytometry and RNA-Seq. The plasma proteome of PWID was distinct from healthy control individuals, with numerous immune-related analytes significantly altered in PWID, including complement (C3, C5, C9), immunoglobulin (IgD, IgM, kappa light chain), and other inflammatory mediators (CXCL4, LPS binding protein, C-reactive protein). The plasma of PWID suppressed the in vitro proliferation of B cells. Transcriptome analysis indicated that PWID plasma treatment increased B cell receptor and CD40 signaling and shifted B cell differentiation from plasma cell-like toward germinal center B cell-like transcriptional profiles. These results indicate that the systemic inflammatory milieu is substantially altered in PWID and may impact their B cell responses.
Collapse
Affiliation(s)
- Sanghita Sarkar
- Infectious Diseases Division, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35249, USA
| | - Dave D. Hill
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35249, USA
| | - Alexander F. Rosenberg
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35249, USA
| | - Ellen F. Eaton
- Infectious Diseases Division, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35249, USA
| | - Olaf Kutsch
- Infectious Diseases Division, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35249, USA
| | - James J. Kobie
- Infectious Diseases Division, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35249, USA
| |
Collapse
|
10
|
Sasso EM, Muraki K, Eaton-Fitch N, Smith P, Jeremijenko A, Griffin P, Marshall-Gradisnik S. Investigation into the restoration of TRPM3 ion channel activity in post-COVID-19 condition: a potential pharmacotherapeutic target. Front Immunol 2024; 15:1264702. [PMID: 38765011 PMCID: PMC11099221 DOI: 10.3389/fimmu.2024.1264702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 04/09/2024] [Indexed: 05/21/2024] Open
Abstract
Introduction Recently, we reported that post COVID-19 condition patients also have Transient Receptor Potential Melastatin 3 (TRPM3) ion channel dysfunction, a potential biomarker reported in natural killer (NK) cells from Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) patients. As there is no universal treatment for post COVID-19 condition, knowledge of ME/CFS may provide advances to investigate therapeutic targets. Naltrexone hydrochloride (NTX) has been demonstrated to be beneficial as a pharmacological intervention for ME/CFS patients and experimental investigations have shown NTX restored TRPM3 function in NK cells. This research aimed to: i) validate impaired TRPM3 ion channel function in post COVID-19 condition patients compared with ME/CFS; and ii) investigate NTX effects on TRPM3 ion channel activity in post COVID-19 condition patients. Methods Whole-cell patch-clamp was performed to characterize TRPM3 ion channel activity in freshly isolated NK cells of post COVID-19 condition (N = 9; 40.56 ± 11.26 years), ME/CFS (N = 9; 39.33 ± 9.80 years) and healthy controls (HC) (N = 9; 45.22 ± 9.67 years). NTX effects were assessed on post COVID-19 condition (N = 9; 40.56 ± 11.26 years) and HC (N = 7; 45.43 ± 10.50 years) where NK cells were incubated for 24 hours in two protocols: treated with 200 µM NTX, or non-treated; TRPM3 channel function was assessed with patch-clamp protocol. Results This investigation confirmed impaired TRPM3 ion channel function in NK cells from post COVID-19 condition and ME/CFS patients. Importantly, PregS-induced TRPM3 currents were significantly restored in NTX-treated NK cells from post COVID-19 condition compared with HC. Furthermore, the sensitivity of NK cells to ononetin was not significantly different between post COVID-19 condition and HC after treatment with NTX. Discussion Our findings provide further evidence identifying similarities of TRPM3 ion channel dysfunction between ME/CFS and post COVID-19 condition patients. This study also reports, for the first time, TRPM3 ion channel activity was restored in NK cells isolated from post COVID-19 condition patients after in vitro treatment with NTX. The TRPM3 restoration consequently may re-establish TRPM3-dependent calcium (Ca2+) influx. This investigation proposes NTX as a potential therapeutic intervention and TRPM3 as a treatment biomarker for post COVID-19 condition.
Collapse
Affiliation(s)
- Etianne Martini Sasso
- The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
- Consortium Health International for Myalgic Encephalomyelitis, National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD, Australia
| | - Katsuhiko Muraki
- Consortium Health International for Myalgic Encephalomyelitis, National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
- Laboratory of Cellular Pharmacology, School of Pharmacy, Aichi-Gakuin University, Nagoya, Japan
| | - Natalie Eaton-Fitch
- The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
- Consortium Health International for Myalgic Encephalomyelitis, National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - Peter Smith
- Consortium Health International for Myalgic Encephalomyelitis, National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
- Clinical Medicine, Griffith University, Gold Coast, QLD, Australia
| | - Andrew Jeremijenko
- The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
- Consortium Health International for Myalgic Encephalomyelitis, National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - Paul Griffin
- Department of Medicine and Infectious Diseases, Mater Hospital and Mater Medical Research Institute, Brisbane, QLD, Australia
| | - Sonya Marshall-Gradisnik
- The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
- Consortium Health International for Myalgic Encephalomyelitis, National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| |
Collapse
|
11
|
Bi K, Lei Y, Kong D, Li Y, Fan X, Luo X, Yang J, Wang G, Li X, Xu Y, Luo H. Progress in the study of intestinal microbiota involved in morphine tolerance. Heliyon 2024; 10:e27187. [PMID: 38533077 PMCID: PMC10963202 DOI: 10.1016/j.heliyon.2024.e27187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 01/09/2024] [Accepted: 02/26/2024] [Indexed: 03/28/2024] Open
Abstract
Morphine is a widely used opioid for treatment of pain. The attendant problems including morphine tolerance and morphine dependence pose a major public health challenge. In recent years, there has been increasing interest in the gastrointestinal microbiota in many physiological and pathophysiological processes. The connectivity network between the gut microbiota and the brain is involved in multiple biological systems, and bidirectional communication between them is critical in gastrointestinal tract homeostasis, the central nervous system, and the microbial system. Many research have previously shown that morphine has a variety of effects on the gastrointestinal tract, but none have determined the function of intestinal microbiota in morphine tolerance. This study reviewed the mechanisms of morphine tolerance from the perspective of dysregulation of microbiota-gut-brain axis homeostasis, by summarizing the possible mechanisms originating from the gut that may affect morphine tolerance and the improvement of morphine tolerance through the gut microbiota.
Collapse
Affiliation(s)
- Ke Bi
- Department of Gastrointestinal and Hernia Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
- Yunnan Technological Innovation Centre of Drug Addiction Medicine, Yunnan University, Kunming, 650032, China
| | - Yi Lei
- Department of Gastrointestinal and Hernia Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Deshenyue Kong
- Department of Gastrointestinal and Hernia Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
- Yunnan Technological Innovation Centre of Drug Addiction Medicine, Yunnan University, Kunming, 650032, China
| | - Yuansen Li
- Department of Gastrointestinal and Hernia Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
- Yunnan Technological Innovation Centre of Drug Addiction Medicine, Yunnan University, Kunming, 650032, China
| | - Xuan Fan
- Department of Gastrointestinal and Hernia Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
- Yunnan Technological Innovation Centre of Drug Addiction Medicine, Yunnan University, Kunming, 650032, China
| | - Xiao Luo
- Department of Gastrointestinal and Hernia Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
- Yunnan Technological Innovation Centre of Drug Addiction Medicine, Yunnan University, Kunming, 650032, China
| | - Jiqun Yang
- Third People's Hospital of Kunming City/Drug Rehabilitation Hospital of Kunming City, Kunming, 650041, China
| | - Guangqing Wang
- Drug Rehabilitation Administration of Yunnan Province, Kunming, 650032, China
| | - Xuejun Li
- Drug Rehabilitation Administration of Yunnan Province, Kunming, 650032, China
| | - Yu Xu
- Department of Gastrointestinal and Hernia Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Huayou Luo
- Department of Gastrointestinal and Hernia Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| |
Collapse
|
12
|
Pandey V, Yadav V, Srivastava A, Gaglani P, Singh R, Subhashini. Blocking μ-opioid receptor by naltrexone exaggerates oxidative stress and airway inflammation via the MAPkinase pathway in a murine model of asthma. Free Radic Biol Med 2024; 212:94-116. [PMID: 38142953 DOI: 10.1016/j.freeradbiomed.2023.12.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/15/2023] [Accepted: 12/16/2023] [Indexed: 12/26/2023]
Abstract
Opioids regulate various physiological and pathophysiological functions, including cell proliferation, immune function, obesity, and neurodegenerative disorders. They have been used for centuries as a treatment for severe pain, binding to opioid receptors a specific G protein-coupled receptor. Common opioids, like β-endorphin, [D-Ala2, N-MePhe4, Gly-ol]-enkephalin (DAMGO), and dynorphins, have analgesic effects. The use of a potent antagonist, like naltrexone hydrochloride, to block the effects of mu Opioid Receptor (μOR) may result in the withdrawal of physiological effects and could potentially impact immune responses in many diseases including respiratory disease. Asthma is a respiratory disease characterized by airway hyperresponsiveness, inflammation, bronchoconstriction, chest tightness, stress generation and release of various cytokines. Airway inflammation leads recruitment and activation of immune cells releasing mediators, including opioids, which may modulate inflammatory response by binding to their respective receptors. The study aims to explore the role of μOR antagonist (naltrexone) in regulating asthma pathophysiology, as the regulation of immune and inflammatory responses in asthma remains unclear. Balb/c mice were sensitized intranasally by 1% TDI and challenged with 2.5% TDI. Naltrexone hydrochloride (1 mg/kg body weight) was administered through intraperitoneal route 1 h before TDI induction. Blocking μOR by naltrexone exacerbates airway inflammation by recruiting inflammatory cells (lymphocytes and neutrophils), enhancing intracellular Reactive oxygen species in bronchoalveolar lavage fluid (BALF), and inflammatory mediator (histamine, Eosinophil peroxidase and neutrophil elastase) in lungs. Naltrexone administration modulated inflammatory cytokines (TNF-α, IL-4, IL-5, IL-6, IL-10, and IL-17A), and enhanced IgE and CRP levels. Naltrexone administration also increased the expression of NF-κB, and phosphorylated p-P38, p-Erk, p-JNK and NF-κB by inhibiting the μOR. Docking study revealed good binding affinity of naltrexone with μOR compared to δ and κ receptors. In future it might elucidate potential therapeutic against many respiratory pathological disorders. In conclusion, μOR blocking by naltrexone regulates and implicates inflammation, bronchoconstriction, and lung physiology.
Collapse
Affiliation(s)
- Vinita Pandey
- Department of Zoology, Mahila Mahavidyalaya, Banaras Hindu University, Varanasi, 221005, India
| | - Vandana Yadav
- Department of Zoology, Mahila Mahavidyalaya, Banaras Hindu University, Varanasi, 221005, India
| | - Atul Srivastava
- Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Pratikkumar Gaglani
- Department of Zoology, Mahila Mahavidyalaya, Banaras Hindu University, Varanasi, 221005, India
| | - Rashmi Singh
- Department of Zoology, Mahila Mahavidyalaya, Banaras Hindu University, Varanasi, 221005, India
| | - Subhashini
- Department of Zoology, Mahila Mahavidyalaya, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
13
|
Bettinger JJ, Friedman BC. Opioids and Immunosuppression: Clinical Evidence, Mechanisms of Action, and Potential Therapies. Palliat Med Rep 2024; 5:70-80. [PMID: 38435086 PMCID: PMC10908329 DOI: 10.1089/pmr.2023.0049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2023] [Indexed: 03/05/2024] Open
Abstract
Background In addition to the more well-known adverse effects of opioids, such as constipation, mounting evidence supports underlying immunosuppressive effects as well. Methods In this study, we provide a narrative review of preclinical and clinical evidence of opioid suppression of the immune system as well as possible considerations for therapies. Results In vitro and animal studies have shown clear effects of opioids on inflammatory cytokine expression, immune cell activity, and pathogen susceptibility. Observational data in humans have so far supported preclinical findings, with multiple reports of increased rates of infections in various settings of opioid use. However, the extent to which this risk is due to the impact of opioids on the immune system compared with other risk factors associated with opioid use remains uncertain. Considering the data showing immunosuppression and increased risk of infection with opioid use, measures are needed to mitigate this risk in patients who require ongoing treatment with opioids. In preclinical studies, administration of opioid receptor antagonists blocked the immunomodulatory effects of opioids. Conclusions As selective antagonists of peripheral opioid receptors, peripherally acting mu-opioid receptor (MOR) antagonists may be able to protect against immune impairment while still allowing for opioid analgesia. Future research is warranted to further investigate the relationship between opioids and infection risk as well as the potential application of peripherally acting MOR antagonists to counteract these risks.
Collapse
Affiliation(s)
- Jeffrey J. Bettinger
- Pain Management, Saratoga Hospital Medical Group, Saratoga Springs, New York, USA
| | - Bruce C. Friedman
- JM Still Burn Center, Doctors Hospital of Augusta, Augusta, Georgia, USA
| |
Collapse
|
14
|
Jelen LA, Young AH, Mehta MA. Opioid Mechanisms and the Treatment of Depression. Curr Top Behav Neurosci 2024; 66:67-99. [PMID: 37923934 DOI: 10.1007/7854_2023_448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2023]
Abstract
Opioid receptors are widely expressed in the brain, and the opioid system has a key role in modulating mood, reward processing and stress responsivity. There is mounting evidence that the endogenous opioid system may be dysregulated in depression and that drug treatments targeting mu, delta and kappa opioid receptors may show antidepressant potential. The mechanisms underlying the therapeutic effects of opioid system engagement are complex and likely multi-factorial. This chapter explores various pathways through which the modulation of the opioid system may influence depression. These include impacts on monoaminergic systems, the regulation of stress and the hypothalamic-pituitary-adrenal axis, the immune system and inflammation, brain-derived neurotrophic factors, neurogenesis and neuroplasticity, social pain and social reward, as well as expectancy and placebo effects. A greater understanding of the diverse mechanisms through which opioid system modulation may improve depressive symptoms could ultimately aid in the development of safe and effective alternative treatments for individuals with difficult-to-treat depression.
Collapse
Affiliation(s)
- Luke A Jelen
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
- South London and Maudsley NHS Foundation Trust, London, UK.
| | - Allan H Young
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- South London and Maudsley NHS Foundation Trust, London, UK
| | - Mitul A Mehta
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
15
|
Du W. Interactions Between Endogenous Opioids and the Immune System. ADVANCES IN NEUROBIOLOGY 2024; 35:27-43. [PMID: 38874717 DOI: 10.1007/978-3-031-45493-6_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
The endogenous opioid system, which consists of opioid receptors and their ligands, is widely expressed in the nervous system and also found in the immune system. As a part of the body's defense machinery, the immune system is heavily regulated by endogenous opioid peptides. Many types of immune cells, including macrophages, dendritic cells, neutrophils, and lymphocytes are influenced by endogenous opioids, which affect cell activation, differentiation, proliferation, apoptosis, phagocytosis, and cytokine production. Additionally, immune cells also synthesize and secrete endogenous opioid peptides and participate peripheral analgesia. This chapter is structured into two sections. Part one focuses on immunoregulatory functions of central endogenous opioids; and part two describes how opioid peptide-containing immune cells participate in local analgesia.
Collapse
Affiliation(s)
- Wei Du
- Clinical Sciences Research, CAMC Institute for Academic Medicine, Charleston, WV, USA.
| |
Collapse
|
16
|
Swierczynski M, Kasprzak Z, Makaro A, Salaga M. Regulators of G-Protein Signaling (RGS) in Sporadic and Colitis-Associated Colorectal Cancer. Int J Mol Sci 2024; 25:577. [PMID: 38203748 PMCID: PMC10778579 DOI: 10.3390/ijms25010577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/21/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Colorectal cancer (CRC) is one of the most common neoplasms worldwide. Among the risk factors of CRC, inflammatory bowel disease (IBD) is one of the most important ones leading to the development of colitis-associated CRC (CAC). G-protein coupled receptors (GPCR) are transmembrane receptors that orchestrate a multitude of signaling cascades in response to external stimuli. Because of their functionality, they are promising targets in research on new strategies for CRC diagnostics and treatment. Recently, regulators of G-proteins (RGS) have been attracting attention in the field of oncology. Typically, they serve as negative regulators of GPCR responses to both physiological stimuli and medications. RGS activity can lead to both beneficial and harmful effects depending on the nature of the stimulus. However, the atypical RGS-AXIN uses its RGS domain to antagonize key signaling pathways in CRC development through the stabilization of the β-catenin destruction complex. Since AXIN does not limit the efficiency of medications, it seems to be an even more promising pharmacological target in CRC treatment. In this review, we discuss the current state of knowledge on RGS significance in sporadic CRC and CAC with particular emphasis on the regulation of GPCR involved in IBD-related inflammation comprising opioid, cannabinoid and serotonin receptors.
Collapse
Affiliation(s)
| | | | | | - Maciej Salaga
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland; (M.S.); (Z.K.); (A.M.)
| |
Collapse
|
17
|
Jin Y, Yu X, Li J, Su M, Li X. Causal effects and immune cell mediators between prescription analgesic use and risk of infectious diseases: a Mendelian randomization study. Front Immunol 2023; 14:1319127. [PMID: 38193081 PMCID: PMC10772142 DOI: 10.3389/fimmu.2023.1319127] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/04/2023] [Indexed: 01/10/2024] Open
Abstract
Introduction Clinical observations have found that prolonged use of analgesics increases the incidence of infection. However, the direct causal relationship between prescription analgesic use (PAU) and risk of infection (ROI) remains unclear. Methods This study used Mendelian randomization (MR) design to estimate the causal effect of PAU on ROI, as well as their mediating factors. Genetic data on prescription analgesics use and immune cells were obtained from published GWAS. Additionally, data on ROI were extracted from the FinnGen database. Two-sample MR analysis and multivariate MR (MVMR) analysis were performed using inverse variance weighting (IVW) to ascertain the causal association between PAU and ROI. Finally, 731 immune cell phenotypes were analyzed for their mediating role between analgesics and infection. Results Using two-sample MR, IVW modeling showed that genetically predicted opioid use was associated with increased risk of pulmonary infection (PI) (OR = 1.13, 95% CI: 1.05-1.21, p< 0.001) and upper respiratory infection (URI) (OR = 1.18, 95% CI: 1.08-1.30, p< 0.001); non-steroidal anti-inflammatory drugs (NSAIDs) were related to increased risk of skin and subcutaneous tissue infection (OR = 1.21, 95% CI: 1.05-1.39, p = 0.007), and antimigraine preparations were linked to a reduced risk of virus hepatitis (OR = 0.79, 95% CI: 0.69-0.91, p< 0.001). In MVMR, the association of opioids with URI and PI remained after accounting for cancer conditions. Even with a stricter threshold (p< 0.05/30), we found a significant causal association between opioids and respiratory infections (URI/PI). Finally, mediation analyses found that analgesics influence the ROI through different phenotypes of immune cells as mediators. Conclusion This MR study provides new genetic evidence for the causal relationship between PAU and ROI, and the mediating role of immune cells was demonstrated.
Collapse
Affiliation(s)
- Yi Jin
- The Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Pharmacy, Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu, China
| | - Xinghao Yu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu, China
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Jun Li
- The Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Pharmacy, Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu, China
| | - Mingzhu Su
- The Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu, China
- Department of Pharmacy, Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu, China
| | - Xiaomin Li
- The Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Pharmacy, Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu, China
| |
Collapse
|
18
|
Kim HS, Kim HJ, Hong YD, Son ED, Cho SY. β-endorphin suppresses ultraviolet B irradiation-induced epidermal barrier damage by regulating inflammation-dependent mTORC1 signaling. Sci Rep 2023; 13:22357. [PMID: 38102220 PMCID: PMC10724221 DOI: 10.1038/s41598-023-49886-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 12/13/2023] [Indexed: 12/17/2023] Open
Abstract
Solar ultraviolet B (UVB) radiation triggers excessive inflammation, disrupting the epidermal barrier, and can eventually cause skin cancer. A previous study reported that under UVB irradiation, epidermal keratinocytes synthesize the proopiomelanocortin-derived peptide β-endorphin, which is known for its analgesic effect. However, little is known about the role of β-endorphin in UVB-exposed skin. Therefore, in this study, we aimed to explore the protective role of β-endorphin against UVB irradiation-induced damage to the skin barrier in normal human keratinocytes (NHKs) and on a human skin equivalent model. Treatment with β-endorphin reduced inflammatory responses in UVB-irradiated NHKs by inactivating the NF-κB signaling pathway. Additionally, we found that β-endorphin treatment reversed UVB-induced abnormal epidermal proliferation and differentiation in NHKs and, thus, repaired the skin barrier in UVB-treated skin equivalents. The observed effects of β-endorphin on UVB-irradiated NHKs were mediated via blockade of the Akt/mTOR signaling pathway. These results reveal that β-endorphin might be useful against UVB-induced skin injury, including the disruption of the skin barrier function.
Collapse
Affiliation(s)
- Hyung-Su Kim
- Amorepacific Research and Innovation Center, Yongin, Gyeonggi-do, 17074, Korea
| | - Hyoung-June Kim
- Amorepacific Research and Innovation Center, Yongin, Gyeonggi-do, 17074, Korea
| | - Yong-Deog Hong
- Amorepacific Research and Innovation Center, Yongin, Gyeonggi-do, 17074, Korea
| | - Eui Dong Son
- Amorepacific Research and Innovation Center, Yongin, Gyeonggi-do, 17074, Korea.
| | - Si-Young Cho
- Amorepacific Research and Innovation Center, Yongin, Gyeonggi-do, 17074, Korea.
| |
Collapse
|
19
|
Didik S, Golosova D, Xu B, Staruschenko A. Opioids and the Kidney: A Compendium. KIDNEY360 2023; 4:1816-1823. [PMID: 37927032 PMCID: PMC10758516 DOI: 10.34067/kid.0000000000000291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/19/2023] [Indexed: 11/07/2023]
Abstract
Opioids are a class of medications used in pain management. Unfortunately, long-term use, overprescription, and illicit opioid use have led to one of the greatest threats to mankind: the opioid crisis. Accompanying the classical analgesic properties of opioids, opioids produce a myriad of effects including euphoria, immunosuppression, respiratory depression, and organ damage. It is essential to ascertain the physiological role of the opioid/opioid receptor axis to gain an in-depth understanding of the effects of opioid use. This knowledge will aid in the development of novel therapeutic interventions to combat the increasing mortality rate because of opioid misuse. This review describes the current knowledge of opioids, including the opioid epidemic and opioid/opioid receptor physiology. Furthermore, this review intricately relates opioid use to kidney damage, navigates kidney structure and physiology, and proposes potential ways to prevent opioid-induced kidney damage.
Collapse
Affiliation(s)
- Steven Didik
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida
- James A. Haley Veteran's Hospital, Tampa, Florida
| | - Daria Golosova
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Biyang Xu
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida
| | - Alexander Staruschenko
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida
- James A. Haley Veteran's Hospital, Tampa, Florida
- Hypertension and Kidney Research Center, University of South Florida, Tampa, Florida
| |
Collapse
|
20
|
Bataduwaarachchi VR, Hansanie SMN, Rockwood N, D'Cruz LG. Immunomodulatory properties of morphine and the hypothesised role of long-term opioid use in the immunopathogenesis of tuberculosis. Front Immunol 2023; 14:1265511. [PMID: 37942336 PMCID: PMC10628761 DOI: 10.3389/fimmu.2023.1265511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 09/25/2023] [Indexed: 11/10/2023] Open
Abstract
Epidemiological studies have shown high tuberculosis (TB) prevalence among chronic opioid users. Opioid receptors are found on multiple immune cells and immunomodulatory properties of opioids could be a contributory factor for ensuing immunosuppression and development or reactivation of TB. Toll-like receptors (TLR) mediate an immune response against microbial pathogens, including Mycobacterium tuberculosis. Mycobacterial antigens and opioids co-stimulate TLRs 2/4/9 in immune cells, with resulting receptor cross-talk via multiple cytosolic secondary messengers, leading to significant immunomodulatory downstream effects. Blockade of specific immune pathways involved in the host defence against TB by morphine may play a critical role in causing tuberculosis among chronic morphine users despite multiple confounding factors such as socioeconomic deprivation, Human immunodeficiency virus co-infection and malnutrition. In this review, we map out immune pathways involved when immune cells are co-stimulated with mycobacterial antigens and morphine to explore a potential immunopathological basis for TB amongst long-term opioid users.
Collapse
Affiliation(s)
- Vipula R. Bataduwaarachchi
- Department of Pharmacology, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
- Research and Innovation Department, Portsmouth Hospitals University NHS Trust, Portsmouth, United Kingdom
| | - SMN Hansanie
- Department of Pharmacology, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | - Neesha Rockwood
- Department of Microbiology, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
- Department of Infectious Diseases, Imperial College London, London, United Kingdom
| | - Leon Gerard D'Cruz
- Research and Innovation Department, Portsmouth Hospitals University NHS Trust, Portsmouth, United Kingdom
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
| |
Collapse
|
21
|
Kalkman HO. Activation of σ1-Receptors by R-Ketamine May Enhance the Antidepressant Effect of S-Ketamine. Biomedicines 2023; 11:2664. [PMID: 37893038 PMCID: PMC10604479 DOI: 10.3390/biomedicines11102664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/14/2023] [Accepted: 09/19/2023] [Indexed: 10/29/2023] Open
Abstract
Ketamine is a racemic mixture composed of two enantiomers, S-ketamine and R-ketamine. In preclinical studies, both enantiomers have exhibited antidepressant effects, but these effects are attributed to distinct pharmacological activities. The S-enantiomer acts as an NMDA-channel blocker and as an opioid μ-receptor agonist, whereas the R-enantiomer binds to σ1-receptors and is believed to act as an agonist. As racemate, ketamine potentially triggers four biochemical pathways involving the AGC-kinases, PKA, Akt (PKB), PKC and RSK that ultimately lead to inhibitory phosphorylation of GSK3β in microglia. In patients with major depressive disorder, S-ketamine administered as a nasal spray has shown clear antidepressant activity. However, when compared to intravenously infused racemic ketamine, the response rate, duration of action and anti-suicidal activity of S-ketamine appear to be less pronounced. The σ1-protein interacts with μ-opioid and TrkB-receptors, whereas in preclinical experiments σ1-agonists reduce μ-receptor desensitization and improve TrkB signal transduction. TrkB activation occurs as a response to NMDA blockade. So, the σ1-activity of R-ketamine may not only enhance two pathways via which S-ketamine produces an antidepressant response, but it furthermore provides an antidepressant activity in its own right. These two factors could explain the apparently superior antidepressant effect observed with racemic ketamine compared to S-ketamine alone.
Collapse
Affiliation(s)
- Hans O Kalkman
- Retired Pharmacologist, Gänsbühlgartenweg 7, 4132 Muttenz, Switzerland
| |
Collapse
|
22
|
Constance JE, McFarland MM, Casucci T, Deininger MW, Enioutina EY, Job K, Lemons RS, Lim CS, Ward RM, Yellepeddi V, Watt KM. Mapping the Evidence for Opioid-Mediated Changes in Malignancy and Chemotherapeutic Efficacy: Protocol for a Scoping Review. JMIR Res Protoc 2023; 12:e38167. [PMID: 37213193 PMCID: PMC10242459 DOI: 10.2196/38167] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 03/19/2023] [Accepted: 04/05/2023] [Indexed: 04/08/2023] Open
Abstract
BACKGROUND Numerous reports contend opioids can augment or inhibit malignancy. At present, there is no consensus on the risk or benefit posed by opioids on malignancy or chemotherapeutic activity. Distinguishing the consequences of opioid use from pain and its management is challenging. Additionally, opioid concentration data is often lacking in clinical studies. A scoping review approach inclusive of preclinical and clinical data will improve our understanding of the risk-benefit relationship concerning commonly prescribed opioids and cancer and cancer treatment. OBJECTIVE The aim of the study is to map diverse studies spanning from preclinical to clinical regarding opioids with malignancy and its treatment. METHODS This scoping review will use the Arksey six stages framework to (1) identify the research question; (2) identify relevant studies; (3) select studies meeting criteria; (4) extract and chart data; (5) collate, summarize, and report results; and (6) conduct expert consultation. An initial pilot study was undertaken to (1) parameterize the extent and scale of existing data for an evidence review, (2) identify key factors to be extracted in systematic charting efforts, and (3) assess opioid concentration as a variable for its relevance to the central hypothesis. Six databases will be searched with no filters: MEDLINE, Embase, CINAHL Complete, Cochrane Library, Biological Sciences Collection, and International Pharmaceutical Abstracts. Trial registries will include ClinicalTrials.gov, Cochrane CENTRAL, International Standard Randomised Controlled Trial Number Registry, European Union Clinical Trials Register, and World Health Organization International Clinical Trials Registry. Eligibility criteria will include preclinical and clinical study data on opioids effects on tumor growth or survival, or alteration on the antineoplastic activity of chemotherapeutics. We will chart data on (1) opioid concentration from human subjects with cancer, yielding a "physiologic range" to better interpret available preclinical data; (2) patterns of opioid exposure with disease and treatment-related patient outcomes; and (3) the influence of opioids on cancer cell survival, as well as opioid-related changes to cancer cell susceptibility for chemotherapeutics. RESULTS This scoping review will present results in narrative forms as well as with the use of tables and diagrams. Initiated in February 2021 at the University of Utah, this protocol is anticipated to generate a scoping review by August 2023. The results of the scoping review will be disseminated through scientific conference proceedings and presentations, stakeholder meetings, and by publication in a peer-reviewed journal. CONCLUSIONS The findings of this scoping review will provide a comprehensive description of the consequences of prescription opioids on malignancy and its treatment. By incorporating preclinical and clinical data, this scoping review will invite novel comparisons across study types that could inform new basic, translational, and clinical studies regarding risks and benefits of opioid use among patients with cancer. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) PRR1-10.2196/38167.
Collapse
Affiliation(s)
- Jonathan E Constance
- Division of Clinical Pharmacology, Department of Pediatrics, University of Utah, Salt Lake City, UT, United States
| | - Mary M McFarland
- Spencer S. Eccles Health Science Library, University of Utah, Salt Lake City, UT, United States
| | - Tallie Casucci
- J Willard Marriott Library, University of Utah, Salt Lake City, UT, United States
| | - Michael W Deininger
- Versiti Blood Research Institute, Milwaukee, WI, United States
- Division of Hematology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Elena Y Enioutina
- Division of Clinical Pharmacology, Department of Pediatrics, University of Utah, Salt Lake City, UT, United States
| | - Kathleen Job
- Division of Clinical Pharmacology, Department of Pediatrics, University of Utah, Salt Lake City, UT, United States
| | - Richard S Lemons
- Division of Hematology and Oncology, Department of Pediatrics, University of Utah, Salt Lake City, UT, United States
| | - Carol S Lim
- Department of Molecular Pharmaceutics, College of Pharmacy, University of Utah, Salt Lake City, UT, United States
| | - Robert M Ward
- Division of Clinical Pharmacology, Department of Pediatrics, University of Utah, Salt Lake City, UT, United States
| | - Venkata Yellepeddi
- Division of Clinical Pharmacology, Department of Pediatrics, University of Utah, Salt Lake City, UT, United States
| | - Kevin M Watt
- Division of Clinical Pharmacology, Department of Pediatrics, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
23
|
Inhibition of Microglial GSK3β Activity Is Common to Different Kinds of Antidepressants: A Proposal for an In Vitro Screen to Detect Novel Antidepressant Principles. Biomedicines 2023; 11:biomedicines11030806. [PMID: 36979785 PMCID: PMC10045655 DOI: 10.3390/biomedicines11030806] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/17/2023] [Accepted: 03/04/2023] [Indexed: 03/09/2023] Open
Abstract
Depression is a major public health concern. Unfortunately, the present antidepressants often are insufficiently effective, whilst the discovery of more effective antidepressants has been extremely sluggish. The objective of this review was to combine the literature on depression with the pharmacology of antidepressant compounds, in order to formulate a conceivable pathophysiological process, allowing proposals how to accelerate the discovery process. Risk factors for depression initiate an infection-like inflammation in the brain that involves activation microglial Toll-like receptors and glycogen synthase kinase-3β (GSK3β). GSK3β activity alters the balance between two competing transcription factors, the pro-inflammatory/pro-oxidative transcription factor NFκB and the neuroprotective, anti-inflammatory and anti-oxidative transcription factor NRF2. The antidepressant activity of tricyclic antidepressants is assumed to involve activation of GS-coupled microglial receptors, raising intracellular cAMP levels and activation of protein kinase A (PKA). PKA and similar kinases inhibit the enzyme activity of GSK3β. Experimental antidepressant principles, including cannabinoid receptor-2 activation, opioid μ receptor agonists, 5HT2 agonists, valproate, ketamine and electrical stimulation of the Vagus nerve, all activate microglial pathways that result in GSK3β-inhibition. An in vitro screen for NRF2-activation in microglial cells with TLR-activated GSK3β activity, might therefore lead to the detection of totally novel antidepressant principles with, hopefully, an improved therapeutic efficacy.
Collapse
|
24
|
Sun Q, Li Z, Wang Z, Wang Q, Qin F, Pan H, Lin W, Mu X, Wang Y, Jiang Y, Ji J, Lu Z. Immunosuppression by opioids: Mechanisms of action on innate and adaptive immunity. Biochem Pharmacol 2023; 209:115417. [PMID: 36682388 DOI: 10.1016/j.bcp.2023.115417] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/22/2023]
Abstract
Opioids are excellent analgesics for the clinical treatment of various types of acute and chronic pain, particularly cancer-related pain. Nevertheless, it is well known that opioids have some nasty side effects, including immunosuppression, which is commonly overlooked. As a result, the incidence of opportunistic bacterial and viral infections increases in patients with long-term opioid use. Nowadays, there are no effective medications to alleviate opioid-induced immunosuppression. Understanding the underlying molecular mechanism of opioids in immunosuppression can enable researchers to devise effective therapeutic interventions. This review comprehensively summarized the exogenous opioids-induced immunosuppressive effects and their underlying mechanisms, the regulatory roles of endogenous opioids on the immune system, the potential link between opioid immunosuppressive effect and the function of the central nervous system (CNS), and the future perspectives in this field.
Collapse
Affiliation(s)
- Qinmei Sun
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhonghao Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China; Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zijing Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China; Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Qisheng Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China; Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Fenfen Qin
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China; Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Haotian Pan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China; Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Weixin Lin
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China; Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xinru Mu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China; Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yuxuan Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China; Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yongwei Jiang
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jianjian Ji
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhigang Lu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China; Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
25
|
Coluzzi F, LeQuang JAK, Sciacchitano S, Scerpa MS, Rocco M, Pergolizzi J. A Closer Look at Opioid-Induced Adrenal Insufficiency: A Narrative Review. Int J Mol Sci 2023; 24:ijms24054575. [PMID: 36902007 PMCID: PMC10003084 DOI: 10.3390/ijms24054575] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 02/24/2023] [Indexed: 03/03/2023] Open
Abstract
Among several opioid-associated endocrinopathies, opioid-associated adrenal insufficiency (OIAI) is both common and not well understood by most clinicians, particularly those outside of endocrine specialization. OIAI is secondary to long-term opioid use and differs from primary adrenal insufficiency. Beyond chronic opioid use, risk factors for OIAI are not well known. OIAI can be diagnosed by a variety of tests, such as the morning cortisol test, but cutoff values are not well established and it is estimated that only about 10% of patients with OIAI will ever be properly diagnosed. This may be dangerous, as OIAI can lead to a potentially life-threatening adrenal crisis. OIAI can be treated and for patients who must continue opioid therapy, it can be clinically managed. OIAI resolves with opioid cessation. Better guidance for diagnosis and treatment is urgently needed, particularly in light of the fact that 5% of the United States population has a prescription for chronic opioid therapy.
Collapse
Affiliation(s)
- Flaminia Coluzzi
- Department Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, Polo Pontino, 04100 Latina, Italy
- Unit of Anaesthesia, Intensive Care, and Pain Medicine, Sant’Andrea University Hospital, 00189 Rome, Italy
- Correspondence:
| | | | - Salvatore Sciacchitano
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, 00189 Rome, Italy
- Laboratory of Biomedical Research, Niccolò Cusano University Foundation, 00166 Rome, Italy
| | - Maria Sole Scerpa
- Unit of Anaesthesia, Intensive Care, and Pain Medicine, Sant’Andrea University Hospital, 00189 Rome, Italy
| | - Monica Rocco
- Unit of Anaesthesia, Intensive Care, and Pain Medicine, Sant’Andrea University Hospital, 00189 Rome, Italy
- Department of Surgical and Medical Science and Translational Medicine, Sapienza University of Rome, 00189 Rome, Italy
| | | |
Collapse
|
26
|
Yu PC, Hao CY, Fan YZ, Liu D, Qiao YF, Yao JB, Li CZ, Yu Y. Altered Membrane Expression and Function of CD11b Play a Role in the Immunosuppressive Effects of Morphine on Macrophages at the Nanomolar Level. Pharmaceuticals (Basel) 2023; 16:282. [PMID: 37259426 PMCID: PMC9963077 DOI: 10.3390/ph16020282] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/31/2023] [Accepted: 02/08/2023] [Indexed: 11/17/2023] Open
Abstract
Morphine, one of the most efficacious analgesics, is effective in severe pain, especially in patients with concomitant painful cancers. The clinical use of morphine may be accompanied by increased immunosuppression, susceptibility to infection and postoperative tumor metastatic recurrence, and the specific mechanisms and clinical strategies to alleviate this suppression remain to be investigated. Expression of CD11b is closely associated with the macrophage phagocytosis of xenobiotic particles, bacteria or tumor cells. Here, we find that morphine at 0.1-10 nM levels inhibited CD11b expression and function on macrophages via a μ-opioid receptor (MOR)-dependent mechanism, thereby reducing macrophage phagocytosis of tumor cells, a process that can be reversed by thymopentin (TP5), a commonly used immune-enhancing adjuvant in clinical practice. By knocking down or overexpressing MOR on macrophages and using naloxone, an antagonist of the MOR receptor, and LA1, a molecule that promotes macrophage CD11b activation, we suggest that morphine may regulate macrophage phagocytosis by inhibiting the surface expression and function of macrophage CD11b through the membrane expression and activation of MOR. The CD47/SIRPα axis, which is engaged in macrophage-tumor immune escape, was not significantly affected by morphine. Notably, TP5, when combined with morphine, reversed the inhibition of macrophage phagocytosis by morphine through mechanisms that promote membrane expression of CD11b and modulate its downstream signaling (e.g., NOS2, IFNG, IL1B and TNFA, as well as AGR1, PDGFB, IL6, STAT3, and MYC). Thus, altered membrane expression and function of CD11b may mediate the inhibition of macrophage phagocytosis by therapeutic doses of morphine, and the reversal of this process by TP5 may provide an effective palliative option for clinical immunosuppression by morphine.
Collapse
Affiliation(s)
- Peng-Cheng Yu
- School of Basic Medicine and Clinical Pharmacy and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Cui-Yun Hao
- School of Basic Medicine and Clinical Pharmacy and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Ying-Zhe Fan
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Di Liu
- School of Basic Medicine and Clinical Pharmacy and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Yi-Fan Qiao
- School of Basic Medicine and Clinical Pharmacy and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Jia-Bao Yao
- School of Basic Medicine and Clinical Pharmacy and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Chang-Zhu Li
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410004, China
| | - Ye Yu
- School of Basic Medicine and Clinical Pharmacy and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
27
|
Zhang Y, Lu J, Qin M, Xu M, Luo W, Li B, Song X, Zhou X. Effects of different anesthesia methods on postoperative immune function in patients undergoing gastrointestinal tumor resection. Sci Rep 2023; 13:243. [PMID: 36604521 PMCID: PMC9816306 DOI: 10.1038/s41598-023-27499-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023] Open
Abstract
To investigate the effects of different anesthetic methods on postoperative immune function in patients undergoing gastrointestinal tumor resection. Ninety patients undergoing laparoscopic gastrointestinal tumor resection were divided into 3 groups. Patients in the GA group were anesthetized by total intravenous anesthesia. The GE group was anesthetized by general anesthesia combined with epidural anesthesia. The GN group was anesthetized by general anesthesia combined with bilateral Transversus Abdominis Plane block (TAP) and rectus sheath nerve blocks. General anesthesia is total intravenous anesthesia in all three groups. Blood samples were taken to test the changes of peripheral lymphocyte subtype analysis, and levels of plasma cortisol, epinephrine, norepinephrine. Also, the dosage of anesthetic drugs, recovery time, and visual analog scale (VAS) scores were recorded. Postoperative immune indexes, including CD4 count, CD8 count, B, and NK cells, in the GE group were significantly higher than those in NA and GA groups (P < 0.01). Perioperative stress indices, including epinephrine levels, norepinephrine level and aldosterone level, in the GE group were significantly lower than in the GA group and GN group (P < 0.01). The intraoperative/total sufentanil dosage and remifentanil dosage in the GE group were significantly lower than those in the GA and GN groups (P < 0.01). The VAS scores in the GE group were significantly better than those in GA and GN groups (P < 0.01). General anesthesia combined with epidural anesthesia attenuates the increase in inflammatory mediators. Its possible mechanisms include reducing perioperative stress response and reducing perioperative opioid use.
Collapse
Affiliation(s)
- Yan Zhang
- grid.417279.eDepartment of Anesthesiology, General Hospital of Central Theater Command of PLA, Wuhan, 430070 China
| | - JunJun Lu
- grid.417279.eDepartment of Anesthesiology, General Hospital of Central Theater Command of PLA, Wuhan, 430070 China
| | - MingZhe Qin
- grid.417279.eDepartment of Anesthesiology, General Hospital of Central Theater Command of PLA, Wuhan, 430070 China
| | - MengDa Xu
- grid.417279.eDepartment of Anesthesiology, General Hospital of Central Theater Command of PLA, Wuhan, 430070 China
| | - WenJun Luo
- grid.417279.eDepartment of Anesthesiology, General Hospital of Central Theater Command of PLA, Wuhan, 430070 China
| | - BiXi Li
- grid.417279.eDepartment of Anesthesiology, General Hospital of Central Theater Command of PLA, Wuhan, 430070 China
| | - XiaoYang Song
- grid.417279.eDepartment of Anesthesiology, General Hospital of Central Theater Command of PLA, Wuhan, 430070 China
| | - Xiang Zhou
- Department of Anesthesiology, General Hospital of Central Theater Command of PLA, Wuhan, 430070, China.
| |
Collapse
|
28
|
Kurexi S, Wang K, Chen T. Knowledge Mapping of Opioids and Immunomodulation: A Bibliometric Analysis (2000-2022). J Pain Res 2023; 16:1499-1515. [PMID: 37179815 PMCID: PMC10171226 DOI: 10.2147/jpr.s401326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Background Increasing evidence indicates that opioids markedly affect the immune system. However, there are few studies on opioids and immunomodulation using bibliometric analysis. Purpose We aimed to provide a comprehensive overview of the research status and trends of the influence of opioids on immunomodulation using a bibliometric approach. Methods Articles related to opioids and immunomodulation published from 2000 to 2022 were obtained from the Science Citation Index Expanded of the Web of Science Core Collection by searching keywords related to opioids and immunomodulation. Bibliometric analyses and visualizations were conducted using the CiteSpace and VOSviewer software programs. Results From 2000 to 2022, a total of 3242 research articles on opioids and immunomodulation were published in 1126 academic journals by 16,555 authors in 3368 institutions from 102 countries/regions. A majority of publications were from the US and China, and the University of Minnesota System and Chinese Academy of Sciences were the most active institutions. Tsong-long Hwang had published the most papers, while Sabita Roy had the most cocitations. The Journal of Ethnopharmacology published the most papers on opioids and immunomodulation, the Journal of Immunology was the top cocited journal, and the major area of these publications were molecular, biological, and genetic. The top three keywords were "expression", "activation", and "inflammation." Conclusion The number of studies on opioids and immunomodulation has increased sharply all over the world in the last two decades. This is the first bibliometric study to comprehensively summarize the collaboration network in this field. It will help scholars to understand not only the basic knowledge structure but also potential collaborations, research trend topics, and hot directions.
Collapse
Affiliation(s)
- Subinuer Kurexi
- Department of Cardiothoracic Surgery, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Ke Wang
- Acupuncture Anesthesia Clinical Research Institute, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Ke Wang, Acupuncture Anesthesia Clinical Research Institute, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, People’s Republic of China, Email
| | - Tongyu Chen
- Department of Cardiothoracic Surgery, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Correspondence: Tongyu Chen, Department of Cardiothoracic Surgery, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, People’s Republic of China, Email
| |
Collapse
|
29
|
Li Z, Sun Q, Liu Q, Mu X, Wang H, Zhang H, Qin F, Wang Q, Nie D, Liu A, Li Q, Ji J, Jiang Y, Lu S, Wang Q, Lu Z. Compound 511 ameliorates MRSA-induced lung injury by attenuating morphine-induced immunosuppression in mice via PI3K/AKT/mTOR pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 108:154475. [PMID: 36252465 DOI: 10.1016/j.phymed.2022.154475] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 09/08/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Opioids are widely used in clinical practice. However, their long-term administration causes respiratory depression, addiction, tolerance, and severe immunosuppression. Traditional Chinese medicine (TCM) can alleviate opioid-induced adverse effects. Compound 511 is particularly developed for treating opioid addiction, based on Jiumi Liangfang, an ancient Chinese drug treatment and rehabilitation monograph completed in 1833 A.D. It is an herbal formula containing eight plants, each of them contributing to the overall pharmacological effect of the product: Panax ginseng C. A. Meyer (8.8%), Astragalus membranaceus (Fisch.) (18.2%), Datura metel Linn. (10.95%), Corydalis yanhusuo W. T. Wang (14.6%), Acanthopanar gracilistμlus W. W. Smith (10.95%), Ophiopogon japonicus (Linn. f.) Ker-Gawl. (10.95%), Gynostemma pentaphyllum (Thunb.) Makino (10.95%), Polygala arvensis Willd. (14.6%). This formula effectively ameliorates opioid-induced immunosuppression. However, the underlying mechanism remains unclear. PURPOSE To reveal the effects of Compound 511 on the immune response of morphine-induced immunosuppressive mice and their potential underlying molecular mechanism. This study provides information for a better clinical approach and scientific use of opioids. METHODS Immunosuppression was induced in mice by repeated morphine administration. Th1/Th2/Th17/Treg cell levels were measured using flow cytometry. Splenic transcription factors of Th1/Th2/Th17/Treg and outputs of the regulatory PI3K/AKT/mTOR signaling pathway were determined. Subsequently, methicillin-resistant Staphylococcus aureus (MRSA) was administered intranasally to morphine-induced immunosuppressive mice pretreated with Compound 511. Their lung inflammatory status was assessed using micro-computer tomography (CT), hematoxylin and eosin (H&E) staining, and enzyme-linked immunosorbent assay (ELISA). RESULTS Compared to morphine, Compound 511 significantly decreased the immune organ indexes of mice, corrected the Th1/Th2 and Treg/Th17 imbalance in the immune organs and peripheral blood, reduced the mRNA levels of FOXP3 and GATA3, and increased those of STAT3 and T-bet in the spleen. It improved immune function and reduced MRSA-induced lung inflammation. CONCLUSION Compound 511 ameliorates opioid-induced immunosuppression by regulating the balance of Th1/Th2 and Th17/Treg via PI3K/AKT/mTOR signaling pathway. Thus, it effectively reduces susceptibility of morphine-induced immunosuppressive mice to MRSA infection.
Collapse
Affiliation(s)
- Zhonghao Li
- Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, Nanjing 210022, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Qinmei Sun
- Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, Nanjing 210022, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Qingyang Liu
- Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, Nanjing 210022, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xinru Mu
- Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, Nanjing 210022, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Hui Wang
- Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, Nanjing 210022, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Han Zhang
- Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, Nanjing 210022, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Fenfen Qin
- Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, Nanjing 210022, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Qisheng Wang
- Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, Nanjing 210022, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Dengyun Nie
- Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, Nanjing 210022, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Anlong Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Qian Li
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jianjian Ji
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yongwei Jiang
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Shengfeng Lu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Qian Wang
- College of International Education, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhigang Lu
- Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, Nanjing 210022, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
30
|
Yan J, Nie DH, Bai CS, Rehman A, Yang A, Mou XL, Zhang YQ, Xu YQ, Xiang QQ, Ren YT, Xu JL, Wang MR, Feng Y, Chen XP, Xiong Y, Hu HT, Xiong HR, Hou W. Fentanyl enhances HIV infection in vitro. Virology 2022; 577:43-50. [PMID: 36279602 DOI: 10.1016/j.virol.2022.10.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/30/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022]
Abstract
Acquired immunodeficiency syndrome (AIDS) caused by Human immunodeficiency virus type 1 (HIV-1) has a high tendency among illicit drug abusers. Recently, it is reported that abuse of fentanyl, a potent synthetic μ receptor-stimulating opioid, is an independent risk factor for HIV-1 infection. However, the mechanism of action in augmenting HIV-1 infection still remains elusive. In this study, we found that fentanyl enhanced infection of HIV-1 in MT2 cells, primary macrophages and Jurkat C11 cells. Fentanyl up-regulated CXCR4 and CCR5 receptor expression, which facilitated the entry of virion into host cells. In addition, it down-regulated interferon-β (IFN-β) and interferon-stimulated genes (APOBEC3F, APOBEC3G and MxB) expression in MT2 cells. Our findings identify an essential role of fentanyl in the positive regulation of HIV-1 infection via the upregulation of co-receptors (CXCR4/CCR5) and downregulation of IFN-β and ISGs, and it may have an important role in HIV-1 immunopathogenesis.
Collapse
Affiliation(s)
- Jie Yan
- State Key Laboratory of Virology, Institute of Medical Virology/ Department of Infectious Diseases, School of Basic Medical Sciences/Zhongnan Hospital, Wuhan University, Wuhan, 430071, Hubei Province, China
| | - Dong-Hang Nie
- Blood Center of Wuhan, Wuhan, 430030, Hubei Province, China
| | - Cheng-Si Bai
- State Key Laboratory of Virology, Institute of Medical Virology/ Department of Infectious Diseases, School of Basic Medical Sciences/Zhongnan Hospital, Wuhan University, Wuhan, 430071, Hubei Province, China
| | - Abdul Rehman
- State Key Laboratory of Virology, Institute of Medical Virology/ Department of Infectious Diseases, School of Basic Medical Sciences/Zhongnan Hospital, Wuhan University, Wuhan, 430071, Hubei Province, China
| | - An Yang
- State Key Laboratory of Virology, Institute of Medical Virology/ Department of Infectious Diseases, School of Basic Medical Sciences/Zhongnan Hospital, Wuhan University, Wuhan, 430071, Hubei Province, China
| | - Xiao-Li Mou
- State Key Laboratory of Virology, Institute of Medical Virology/ Department of Infectious Diseases, School of Basic Medical Sciences/Zhongnan Hospital, Wuhan University, Wuhan, 430071, Hubei Province, China
| | - Yu-Qing Zhang
- State Key Laboratory of Virology, Institute of Medical Virology/ Department of Infectious Diseases, School of Basic Medical Sciences/Zhongnan Hospital, Wuhan University, Wuhan, 430071, Hubei Province, China
| | - Ying-Qi Xu
- State Key Laboratory of Virology, Institute of Medical Virology/ Department of Infectious Diseases, School of Basic Medical Sciences/Zhongnan Hospital, Wuhan University, Wuhan, 430071, Hubei Province, China
| | - Qing-Qing Xiang
- State Key Laboratory of Virology, Institute of Medical Virology/ Department of Infectious Diseases, School of Basic Medical Sciences/Zhongnan Hospital, Wuhan University, Wuhan, 430071, Hubei Province, China
| | - Yu-Ting Ren
- State Key Laboratory of Virology, Institute of Medical Virology/ Department of Infectious Diseases, School of Basic Medical Sciences/Zhongnan Hospital, Wuhan University, Wuhan, 430071, Hubei Province, China
| | - Jia-le Xu
- State Key Laboratory of Virology, Institute of Medical Virology/ Department of Infectious Diseases, School of Basic Medical Sciences/Zhongnan Hospital, Wuhan University, Wuhan, 430071, Hubei Province, China
| | - Mei-Rong Wang
- State Key Laboratory of Virology, Institute of Medical Virology/ Department of Infectious Diseases, School of Basic Medical Sciences/Zhongnan Hospital, Wuhan University, Wuhan, 430071, Hubei Province, China
| | - Yong Feng
- State Key Laboratory of Virology, Institute of Medical Virology/ Department of Infectious Diseases, School of Basic Medical Sciences/Zhongnan Hospital, Wuhan University, Wuhan, 430071, Hubei Province, China
| | - Xiao-Ping Chen
- State Key Laboratory of Virology, Institute of Medical Virology/ Department of Infectious Diseases, School of Basic Medical Sciences/Zhongnan Hospital, Wuhan University, Wuhan, 430071, Hubei Province, China
| | - Yong Xiong
- State Key Laboratory of Virology, Institute of Medical Virology/ Department of Infectious Diseases, School of Basic Medical Sciences/Zhongnan Hospital, Wuhan University, Wuhan, 430071, Hubei Province, China
| | - Hai-Tao Hu
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Hai-Rong Xiong
- State Key Laboratory of Virology, Institute of Medical Virology/ Department of Infectious Diseases, School of Basic Medical Sciences/Zhongnan Hospital, Wuhan University, Wuhan, 430071, Hubei Province, China.
| | - Wei Hou
- State Key Laboratory of Virology, Institute of Medical Virology/ Department of Infectious Diseases, School of Basic Medical Sciences/Zhongnan Hospital, Wuhan University, Wuhan, 430071, Hubei Province, China; Wuhan University Shenzhen Research Institute, South Keyuan Road, Scien&Tech Garden, Nanshan District, Shenzhen, Guangdong, China.
| |
Collapse
|
31
|
Miller NW, Seman BG, Akers SM, Povroznik JM, Brundage K, Fang W, Robinson CM. The impact of opioid exposure during pregnancy on the human neonatal immune profile. Pediatr Res 2022; 92:1566-1574. [PMID: 35288639 PMCID: PMC8920062 DOI: 10.1038/s41390-022-02014-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/19/2022] [Accepted: 02/04/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND The increasing magnitude of the opioid crisis and rising rates of neonatal abstinence syndrome (NAS) diagnoses highlight the need for increased research into how maternal substance use during pregnancy can impact the neonatal immune profile and its functionality. We hypothesized that neonates with opioid exposure would have reduced proportions of some immune cells, an anti-inflammatory cytokine profile, reduced T cell proliferation, and monocyte bacterial killing activity compared to the control population. METHODS The present study compares immune cell populations, inflammatory and anti-inflammatory cytokine and chemokine levels in the serum, and monocyte and T cell functional activity using umbilical cord samples from neonates with known opioid exposure during gestation and from control neonates without known exposure. RESULTS Our findings demonstrated a significant reduction in neutrophils, decreased levels of inflammatory cytokines in the serum, and reduced IL-2 production during in vitro CD4+ T cell proliferation in neonates exposed to opioids compared to controls. The neutrophil findings were supported by retrospective analysis of an extended network of deidentified patient records. CONCLUSIONS This study is the first of its kind to evaluate differences in neonatal immunity as a result of opioid exposure in the human population that will inform continued mechanistic studies. IMPACT The opioid epidemic has become a public health crisis in the United States, and the corresponding incidence of neonatal abstinence syndrome (NAS) have risen accordingly. New research is required to understand the short and long-term health impacts of opioid exposure to the neonate. This is the first human study to investigate the immunologic profile and functionality in neonates with known opioid exposure in utero. The abundance of neutrophils and the ratio of neutrophils to lymphocytes is significantly reduced along with inflammatory cytokines and chemokines following opioid exposure during pregnancy. The immune profile in opioid-exposed neonates may promote susceptibility to infection.
Collapse
Affiliation(s)
- Nicholas W Miller
- Department of Microbiology, Immunology, & Cell Biology, West Virginia University School of Medicine, Morgantown, WV, 26506, USA
| | - Brittany G Seman
- Department of Microbiology, Immunology, & Cell Biology, West Virginia University School of Medicine, Morgantown, WV, 26506, USA
| | - Stephen M Akers
- Department of Pediatrics, West Virginia University School of Medicine, Morgantown, WV, 26506, USA
| | - Jessica M Povroznik
- Department of Microbiology, Immunology, & Cell Biology, West Virginia University School of Medicine, Morgantown, WV, 26506, USA
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, 26506, USA
| | - Kathleen Brundage
- Department of Microbiology, Immunology, & Cell Biology, West Virginia University School of Medicine, Morgantown, WV, 26506, USA
| | - Wei Fang
- West Virginia Clinical and Translational Science Institute, Morgantown, WV, 26506, USA
| | - Cory M Robinson
- Department of Microbiology, Immunology, & Cell Biology, West Virginia University School of Medicine, Morgantown, WV, 26506, USA.
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, 26506, USA.
| |
Collapse
|
32
|
Rahmadi M, Ardianto C, Nurhan AD, Chasanah RA, Krismonika DI, Puspitasari AD, Suprapti B, Segaran S, Phan CW, Khotib J. Bisacodyl overcomes morphine-induced constipation by decreasing colonic Aquaporin-3 and Aquaporin-4 expression. RESEARCH RESULTS IN PHARMACOLOGY 2022. [DOI: 10.3897/rrpharmacology.8.82242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Introduction: Morphine is an opioid prescribed to treat aches and pains. However, morphine often causes opioid-induced constipation (OIC). Aquaporin (AQP) transporters, especially AQP3 and AQP4, play an essential role in mediating constipation. Bisacodyl is a common laxative used to treat constipation. To date, the effects of bisacodyl on AQP3 and AQP4 expression and the role this interaction plays in constipation are unclear. This study aimed to determine the effects of bisacodyl on AQP3 and AQP4 expression in mice after induction of constipation with morphine.
Materials and methods: The laxative effects of bisacodyl on both acute and chronic morphine-induced constipation were determined. Fecal water content, colonic bead expulsion, and colonic mRNA levels for AQP3 and AQP4 mRNA were measured.
Results and discussion: The administration of morphine to mice resulted in decreased fecal water content, longer bead expulsion times, and increased AQP3 and AQP4 mRNA levels in the colon. Meanwhile, bisacodyl administration prevented the morphine-induced changes in fecal water content, bead expulsion time, and AQP3 and AQP4 mRNA levels in the colons of mice.
Conclusion: This study suggests that bisacodyl may prevent morphine-induced constipation by preventing morphine-induced increases in AQP3 and AQP4 expression in the colon.
Graphical abstract:
Collapse
|
33
|
Quan J, Chen X, Tang X, Liu X, Li J, Yi B, Li P, Lu K, Gu J. Effects of General Anesthesia on Changes of Serum Hepatitis B Virus-DNA Levels in Infected Patients Underwent Non-Hepatobiliary Minimally Invasive Surgery: A Pilot Observational Study. Infect Drug Resist 2022; 15:6631-6640. [DOI: 10.2147/idr.s379350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 10/21/2022] [Indexed: 11/12/2022] Open
|
34
|
Azzoni L, Giron LB, Vadrevu S, Zhao L, Lalley-Chareczko L, Hiserodt E, Fair M, Lynn K, Trooskin S, Mounzer K, Abdel-Mohsen M, Montaner LJ. Methadone use is associated with increased levels of sCD14, immune activation, and inflammation during suppressed HIV infection. J Leukoc Biol 2022; 112:733-744. [PMID: 35916053 DOI: 10.1002/jlb.4a1221-678rr] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 07/10/2022] [Accepted: 07/11/2022] [Indexed: 11/10/2022] Open
Abstract
Opioid use has negative effects on immune responses and may impair immune reconstitution in persons living with HIV (PLWH) infection undergoing antiretroviral treatment (ART). The effects of treatment with μ opioid receptor (MOR) agonists (e.g., methadone, MET) and antagonists (e.g., naltrexone, NTX) on immune reconstitution and immune activation in ART-suppressed PLWH have not been assessed in-depth. We studied the effects of methadone or naltrexone on measures of immune reconstitution and immune activation in a cross-sectional community cohort of 30 HIV-infected individuals receiving suppressive ART and medications for opioid use disorder (MOUD) (12 MET, 8 NTX and 10 controls). Plasma markers of inflammation and immune activation were measured using ELISA, Luminex, or Simoa. Plasma IgG glycosylation was assessed using capillary electrophoresis. Cell subsets and activation were studied using whole blood flow cytometry. Individuals in the MET group, but no in the NTX group, had higher plasma levels of inflammation and immune activation markers than controls. These markers include soluble CD14 (an independent predictor of morbidity and mortality during HIV infection), proinflammatory cytokines, and proinflammatory IgG glycans. This effect was independent of time on treatment. Our results indicate that methadone-based MOUD regimens may sustain immune activation and inflammation in ART-treated HIV-infected individuals. Our pilot study provides the foundation and rationale for future longitudinal functional studies of the impact of MOUD regimens on immune reconstitution and residual activation after ART-mediated suppression.
Collapse
Affiliation(s)
- Livio Azzoni
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Leila B Giron
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Surya Vadrevu
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Ling Zhao
- Perelman School of Medicine - University of PA, Philadelphia, Pennsylvania, USA
| | | | - Emily Hiserodt
- Philadelphia FIGHT Community Health Centers, Philadelphia, Pennsylvania, USA
| | - Matthew Fair
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Kenneth Lynn
- Perelman School of Medicine - University of PA, Philadelphia, Pennsylvania, USA
| | - Stacey Trooskin
- Philadelphia FIGHT Community Health Centers, Philadelphia, Pennsylvania, USA
| | - Karam Mounzer
- Philadelphia FIGHT Community Health Centers, Philadelphia, Pennsylvania, USA
| | - Mohamed Abdel-Mohsen
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Luis J Montaner
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, Pennsylvania, USA
| |
Collapse
|
35
|
Leibrand CR, Paris JJ, Jones AM, Ohene-Nyako M, Rademeyer KM, Nass SR, Kim WK, Knapp PE, Hauser KF, McRae M. Independent actions by HIV-1 Tat and morphine to increase recruitment of monocyte-derived macrophages into the brain in a region-specific manner. Neurosci Lett 2022; 788:136852. [PMID: 36028004 PMCID: PMC9845733 DOI: 10.1016/j.neulet.2022.136852] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 08/07/2022] [Accepted: 08/18/2022] [Indexed: 01/21/2023]
Abstract
Despite advances in the treatment of human immunodeficiency virus (HIV), approximately one-half of people infected with HIV (PWH) experience neurocognitive impairment. Opioid use disorder (OUD) can exacerbate the cognitive and pathological changes seen in PWH. HIV increases inflammation and immune cell trafficking into the brain; however, less is known about how opioid use disorder affects the recruitment of immune cells. Accordingly, we examined the temporal consequences of HIV-1 Tat and/or morphine on the recruitment of endocytic cells (predominantly perivascular macrophages and microglia) in the dorsal striatum and hippocampus by infusing multi-colored, fluorescently labeled dextrans before and after exposure. To address this question, transgenic mice that conditionally expressed HIV-1 Tat (Tat+), or their control counterparts (Tat-), received three sequential intracerebroventricular (i.c.v.) infusions of Cascade Blue-, Alexa Fluor 488-, and Alexa Fluor 594-labeled dextrans, respectively infused 1 day before, 1-day after, or 13-days after morphine and/or Tat exposure. At the end of the study, the number of cells labeled with each fluorescent dextran were counted. The data demonstrated a significantly higher influx of newly-labeled cells into the perivascular space than into the parenchyma. In the striatum, Tat or morphine exposure increased the number of endocytic cells in the perivascular space, while only morphine increased the recruitment of endocytic cells into the parenchyma. In the hippocampus, morphine (but not Tat) increased the influx of dextran-labeled cells into the perivascular space, but there were too few labeled cells within the hippocampal parenchyma to analyze. Collectively, these data suggest that HIV-1 Tat and morphine act independently to increase the recruitment of endocytic cells into the brain in a region-specific manner.
Collapse
Affiliation(s)
- Crystal R Leibrand
- Department of Pharmacotherapy and Outcomes Science, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, United States
| | - Jason J Paris
- Department of BioMolecular Sciences, School of Pharmacy, The University of Mississippi, University, MS 38677, United States
| | - Austin M Jones
- Department of Pharmacotherapy and Outcomes Science, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, United States
| | - Michael Ohene-Nyako
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, United States
| | - Kara M Rademeyer
- Department of Pharmacotherapy and Outcomes Science, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, United States
| | - Sara R Nass
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, United States
| | - Woong-Ki Kim
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA 23507, United States
| | - Pamela E Knapp
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, United States; Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, United States; Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA 23298, United States
| | - Kurt F Hauser
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, United States; Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, United States; Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA 23298, United States
| | - MaryPeace McRae
- Department of Pharmacotherapy and Outcomes Science, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, United States.
| |
Collapse
|
36
|
Brogi E, Forfori F. Anesthesia and cancer recurrence: an overview. JOURNAL OF ANESTHESIA, ANALGESIA AND CRITICAL CARE (ONLINE) 2022; 2:33. [PMID: 37386584 DOI: 10.1186/s44158-022-00060-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/05/2022] [Indexed: 07/01/2023]
Abstract
Several perioperative factors are responsible for the dysregulation or suppression of the immune system with a possible impact on cancer cell growth and the development of new metastasis. These factors have the potential to directly suppress the immune system and activate hypothalamic-pituitary-adrenal axis and the sympathetic nervous system with a consequent further immunosuppressive effect.Anesthetics and analgesics used during the perioperative period may modulate the innate and adaptive immune system, inflammatory system, and angiogenesis, with a possible impact on cancer recurrence and long-term outcome. Even if the current data are controversial and contrasting, it is crucial to increase awareness about this topic among healthcare professionals for a future better and conscious choice of anesthetic techniques.In this article, we aimed to provide an overview regarding the relationship between anesthesia and cancer recurrence. We reviewed the effects of surgery, perioperative factors, and anesthetic agents on tumor cell survival and tumor recurrence.
Collapse
Affiliation(s)
- Etrusca Brogi
- Department of Anesthesia and Intensive Care, University of Pisa, Via Paradisa 2, 56124, Pisa, Italy.
| | - Francesco Forfori
- Department of Anesthesia and Intensive Care, University of Pisa, Via Paradisa 2, 56124, Pisa, Italy
| |
Collapse
|
37
|
Shircliff K, Liu M, Prestigiacomo C, Fry M, Ladd K, Gilbert MK, Rattermann MJ, Cyders MA. Mixed methods prospective findings of the initial effects of the U.S. COVID-19 pandemic on individuals in recovery from substance use disorder. PLoS One 2022; 17:e0270582. [PMID: 35776699 PMCID: PMC9249176 DOI: 10.1371/journal.pone.0270582] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 06/14/2022] [Indexed: 11/18/2022] Open
Abstract
The beginning of the U.S. COVID-19 pandemic interrupted integral services and supports for those in recovery from substance use disorders. The current study used qualitative and quantitative data to identify 1) pandemic-related barriers/stressors, 2) coping strategies employed, and 3) how the stressors and strategies predicted subsequent substance use frequency. Participants were 48 adults (40.5% female; 90.2% White) between 26 and 60 years old (M = 42.66, SD = 8.44) who were part of a larger, multi-year longitudinal study of individuals in recovery from substance use disorders. Individuals completed two interviews, one during the six weeks of initial stay-at-home orders in the state in which data were collected and the second within six to twelve months of their initial interview. Common barriers to recovery included cancelled support meetings, changes in job format (i.e., being fired or furloughed), and lack of social support. Common coping strategies included self-care, leisure activities/hobbies, taking caution against exposure, and strengthening personal relationships. The relationship between cravings at baseline and substance use at follow up was stronger for those who experienced worsening of their mental health (B = 21.80, p < .01) than for those who did not (B = 5.45, p = 0.09), and for those who were taking caution against exposure (B = 24.57, p < .01) than for those who were not (B = 1.87, p = 0.53). Those who engaged in self-care (B = 0.00, p>.99) had lower rates of substance use at follow-up than those who did not employ self-care as a coping mechanism (B = 16.10, p < .01). These findings inform research priorities regarding prospective effects of the pandemic on treatment endeavors, particularly emphasizing treating mental health and encouraging self-care strategies.
Collapse
Affiliation(s)
- Katherine Shircliff
- Department of Psychology, Indiana University Purdue University Indianapolis, Indianapolis, Indiana, United States of America
| | - Melissa Liu
- Department of Psychology, Indiana University Purdue University Indianapolis, Indianapolis, Indiana, United States of America
| | - Christiana Prestigiacomo
- Department of Psychology, Indiana University Purdue University Indianapolis, Indianapolis, Indiana, United States of America
| | - Melissa Fry
- Department of Sociology, Indiana University Southeast, Indianapolis, Indiana, United States of America
| | - Kevin Ladd
- Department of Psychology, Indiana University South Bend, Indianapolis, Indiana, United States of America
| | | | - Mary Jo Rattermann
- Research & Evaluation Resources LLC, Indianapolis, Indiana, United States of America
- Community Fairbanks Recovery Center, Indianapolis, Indiana, United States of America
| | - Melissa A. Cyders
- Department of Psychology, Indiana University Purdue University Indianapolis, Indianapolis, Indiana, United States of America
| |
Collapse
|
38
|
Opioid receptor activation suppresses the neuroinflammatory response by promoting microglial M2 polarization. Mol Cell Neurosci 2022; 121:103744. [PMID: 35660086 DOI: 10.1016/j.mcn.2022.103744] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 05/02/2022] [Accepted: 05/29/2022] [Indexed: 11/20/2022] Open
Abstract
Activation of microglia is considered the most important component of neuroinflammation. Microglia can adopt a pro-inflammatory (M1) or anti-inflammatory (M2) phenotype. Opioid receptors (ORs) have been shown to control neurotransmission of various peptidergic neurons, but their potential role in regulating microglial function is largely unknown. Here, we aimed to investigate the effect of the OR agonists DAMGO, DADLE and U-50488 on the polarization of C8-B4 microglial cells. We observed that opioids suppressed lipopolysaccharide (LPS)-triggered M1 polarization and promoted M2 polarization. This was reflected in lower phagocytic activity, lower production of NO, lower expression of TNF-α, IL-1β, IL-6, IL-86 and IL-12 beta p40 together with higher migration rate, and increased expression of IL-4, IL-10, arginase 1 and CD 206 in microglia, compared to cells affected by LPS. We demonstrated that the effect of opioids on microglial polarization is mediated by the TREM2/NF-κB signaling pathway. These results provide new insights into the anti-inflammatory and neuroprotective effects of opioids and highlight their potential in combating neurodegenerative diseases.
Collapse
|
39
|
da Silva A, Lepetre-Mouelhi S, Couvreur P. Micro- and nanocarriers for pain alleviation. Adv Drug Deliv Rev 2022; 187:114359. [PMID: 35654211 DOI: 10.1016/j.addr.2022.114359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/10/2022] [Accepted: 05/20/2022] [Indexed: 12/28/2022]
Abstract
Acute or chronic pain is a major source of impairment in quality of life and affects a substantial part of the population. To date, pain is alleviated by a limited range of treatments with significant toxicity, increased risk of misuse and inconsistent efficacy, owing, in part, to lack of specificity and/or unfavorable pharmacokinetic properties. Thanks to the unique properties of nanoscaled drug carriers, nanomedicine may enhance drug biodistribution and targeting, thus contributing to improved bioavailability and lower off-target toxicity. After a brief overview of the current situation and the main critical issues regarding pain alleviation, this review will examine the most advanced approaches using nanomedicine of each drug class, from the preclinical stage to approved nanomedicines.
Collapse
|
40
|
Ketamine Does Not Change Natural Killer Cell Cytotoxicity in Patients Undergoing Cancer Surgery: Basic Experiment and Clinical Trial. JOURNAL OF ONCOLOGY 2022; 2022:8946269. [PMID: 35432531 PMCID: PMC9012621 DOI: 10.1155/2022/8946269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/28/2022] [Accepted: 03/15/2022] [Indexed: 12/12/2022]
Abstract
Background. The natural killer cell cytotoxicity (NKCC) suppressed by nociceptive stimuli, systemic inflammation, and drugs used during cancer surgery may be associated with poor outcomes. We investigated the potential modulation of ketamine on NKCC in vitro and in a clinical setting during cancer surgery. Subjects and Methods. The NK cell line KHYG1 was cultured for the in vitro experiments. The NK cells were treated with 3 and 10 μM ketamine (the ketamine groups) or without ketamine (the control) for 4, 24, and 48 h. The posttreatment NKCC was measured with a lactate dehydrogenase assay and compared among the treatment groups. For the clinical study, lung cancer patients (
) and prostate cancer patients (
) who underwent radical cancer surgeries at a teaching hospital were recruited. The patients received propofol and remifentanil superposed with or without ketamine (ketamine group,
; control group,
). The primary outcome was the difference in NKCC between these groups. Results. In the in vitro experiment, the cytotoxicity of NK cells was similar with or without ketamine at all of the incubation periods. The patients’ NKCC was also not significantly different between the patients who received ketamine and those who did not, at the baseline (
% vs.
%,
) and at 24 h (
% vs.
%, respectively,
). Conclusion. Ketamine does not change NKCC in vitro or in the clinical setting of patients who undergo cancer surgery. This trial is registered with UMIN000021231.
Collapse
|
41
|
Rogers TJ, Roy S. Editorial: The Role of Opioid Receptors in Immune System Function. Front Immunol 2022; 12:832292. [PMID: 35082800 PMCID: PMC8784803 DOI: 10.3389/fimmu.2021.832292] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 12/20/2021] [Indexed: 11/26/2022] Open
Affiliation(s)
| | - Sabita Roy
- University of Miami Health System, Miami, FL, United States
| |
Collapse
|
42
|
Dafny N. Immunotherapy as a treatment to confront the ongoing opioid epidemic- A review. JOURNAL OF CELLULAR AND MOLECULAR IMMUNOLOGY 2022; 1:20-27. [PMID: 36624866 PMCID: PMC9825804 DOI: 10.46439/immunol.1.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Substance use disorders continue to be major medical and social problems worldwide. The use of opiate has grown substantially over the past three decades reaching the dimensions of a global epidemic. Current drug treatments have many limitations: long treatment times, dependency on treatment medications, relapses after treatment, high costs of treatment, and non-adherence by affected persons. Most of the available drug treatments for opiate addiction belong to the opioid family. Some worry that the availability of the drugs may simply cause substituting one opioid medication for another. Immunotherapy has a great potential of becoming an additional therapeutic strategy in the treatment of addiction. Immunotherapy also prevents overdose of treatment drugs. This monograph reviews preclinical studies of immunotherapy and experiments using treatments with three different immunomodifiers that were able to significantly attenuate the severity of opioid withdrawal symptoms in morphine dependent animals. These immunotherapy treatments are short, and will prevent relapse of opioid dependency and toxicity.
Collapse
|
43
|
Cho JS, Seon K, Kim MY, Kim SW, Yoo YC. Effects of Perioperative Dexmedetomidine on Immunomodulation in Uterine Cancer Surgery: A Randomized, Controlled Trial. Front Oncol 2021; 11:749003. [PMID: 34868950 PMCID: PMC8635094 DOI: 10.3389/fonc.2021.749003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/28/2021] [Indexed: 01/20/2023] Open
Abstract
Objective Dexmedetomidine has sympatholytic, anti-inflammatory, and analgesic effects and may exert anti-tumor effect by acting on α2A adrenoreceptor. We investigated whether perioperative dexmedetomidine preserves immune function in patients undergoing uterine cancer surgery. Methods One hundred patients were randomly assigned to the control or dexmedetomidine groups (50 patients each). Dexmedetomidine was infused at rates of 0.4 μg/kg/h intraoperatively and 0.15 μg/kg/h during the first 24 h postoperatively. The primary outcome was natural killer (NK) cell activity, which was measured preoperatively and 1, 3, and 5 days postoperatively. The inflammatory response was measured by interleukin-6, interferon-γ, and neutrophil/lymphocyte ratio, and pain scores and opioid consumption were assessed. Cancer recurrence or metastasis and death were evaluated 2 years postoperatively. Results NK cell activity decreased postoperatively in both groups and changes over time were not different between groups (P=0.496). Interferon-γ increased postoperatively in the dexmedetomidine group, whereas it maintained at the baseline value in the control group. Change in interferon-γ differed significantly between groups (P=0.003). Changes in interleukin-6 and neutrophil-lymphocyte ratio were comparable between groups. Both pain score with activity during the first 1 h and opioid consumption during the first 1–24 h postoperatively were lower in the dexmedetomidine group. Rates of cancer recurrence/metastasis (16.3% vs. 8.7%, P=0.227) and death within 2 years postoperatively (6.7% vs. 2.2%, P=0.318) were not different between groups. Conclusions Perioperative dexmedetomidine had no favorable impacts on NK cell activity, inflammatory responses, or prognosis, whereas it increased interferon-γ and reduced early postoperative pain severity and opioid consumption in uterine cancer surgery patients.
Collapse
Affiliation(s)
- Jin Sun Cho
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul, South Korea.,Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Kieun Seon
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Institute of Women's Life Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Min-Yu Kim
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Sang Wun Kim
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Institute of Women's Life Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Young Chul Yoo
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul, South Korea.,Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
44
|
Dworsky-Fried Z, Chadwick CI, Kerr BJ, Taylor AMW. Multiple Sclerosis and the Endogenous Opioid System. Front Neurosci 2021; 15:741503. [PMID: 34602975 PMCID: PMC8484329 DOI: 10.3389/fnins.2021.741503] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 08/26/2021] [Indexed: 01/10/2023] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disease characterized by chronic inflammation, neuronal degeneration and demyelinating lesions within the central nervous system. The mechanisms that underlie the pathogenesis and progression of MS are not fully known and current therapies have limited efficacy. Preclinical investigations using the murine experimental autoimmune encephalomyelitis (EAE) model of MS, as well as clinical observations in patients with MS, provide converging lines of evidence implicating the endogenous opioid system in the pathogenesis of this disease. In recent years, it has become increasingly clear that endogenous opioid peptides, binding μ- (MOR), κ- (KOR) and δ-opioid receptors (DOR), function as immunomodulatory molecules within both the immune and nervous systems. The endogenous opioid system is also well known to play a role in the development of chronic pain and negative affect, both of which are common comorbidities in MS. As such, dysregulation of the opioid system may be a mechanism that contributes to the pathogenesis of MS and associated symptoms. Here, we review the evidence for a connection between the endogenous opioid system and MS. We further explore the mechanisms by which opioidergic signaling might contribute to the pathophysiology and symptomatology of MS.
Collapse
Affiliation(s)
- Zoë Dworsky-Fried
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
| | - Caylin I. Chadwick
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Bradley J. Kerr
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
- Department of Anesthesiology and Pain Medicine, University of Alberta, Edmonton, AB, Canada
| | - Anna M. W. Taylor
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
- Department of Anesthesiology and Pain Medicine, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
45
|
Abstract
PURPOSE OF REVIEW Opioids are administered to cancer patients although concerns have been raised that they may promote tumour growth or metastasis owing to their ability to suppress anti-cancer immunity. Tramadol has been reported to preserve or promote the immune response and may therefore be preferred to other opioids in cancer patients. We reviewed the literature documenting the immunomodulatory effects of tramadol. RECENT FINDINGS Recent clinical evidence appears to confirm that tramadol possesses anti-inflammatory properties, and preserves some signalling cascades of the immune system relevant to anti-cancer defence. Tramadol is reported to promote or preserve immunity including natural killer cell activity which is important in anti-cancer defences.
Collapse
|
46
|
Cabanas H, Muraki K, Eaton-Fitch N, Staines DR, Marshall-Gradisnik S. Potential Therapeutic Benefit of Low Dose Naltrexone in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: Role of Transient Receptor Potential Melastatin 3 Ion Channels in Pathophysiology and Treatment. Front Immunol 2021; 12:687806. [PMID: 34326841 PMCID: PMC8313851 DOI: 10.3389/fimmu.2021.687806] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/28/2021] [Indexed: 12/12/2022] Open
Abstract
Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a debilitating multi-systemic chronic condition of unknown aetiology classified as an immune dysfunction syndrome and neurological disorder. The discovery of the widely expressed Transient Receptor Potential Melastatin 3 (TRPM3) as a nociceptor channel substantially targeted by certain opioid receptors, and its implication in calcium (Ca2+)-dependent Natural Killer (NK) cell immune functions has raised the possibility that TRPM3 may be pharmacologically targeted to treat characteristic symptoms of ME/CFS. Naltrexone hydrochloride (NTX) acts as an antagonist to the mu (μ)-opioid receptor thus negating its inhibitory function on TRPM3. Based on the benefits reported by patients on their symptoms, low dose NTX (LDN, 3.0-5.0 mg/day) treatment seems to offer some potential benefit suggesting that its effect may be targeted towards the pathomechanism of ME/CFS. As there is no literature confirming the efficacy of LDN for ME/CFS patients in vitro, this study investigates the potential therapeutic effect of LDN in ME/CFS patients. TRPM3 ion channel activity was measured after modulation with Pregnenolone sulfate (PregS) and ononetin in NK cells on 9 ME/CFS patients taking LDN and 9 age- and sex-matched healthy controls using whole-cell patch-clamp technique. We report that ME/CFS patients taking LDN have restored TRPM3-like ionic currents in NK cells. Small ionic currents with a typical TRPM3-like outward rectification were measured after application of PregS, a TRPM3-agonist, in NK cells from patients taking LDN. Additionally, PregS-evoked ionic currents through TRPM3 were significantly modulated by ononetin, a TRPM3-antagonist, in NK cells from ME/CFS patients taking LDN. These data support the hypothesis that LDN may have potential as a treatment for ME/CFS by characterising the underlying regulatory mechanisms of LDN treatment involving TRPM3 and opioid receptors in NK cells. Finally, this study may serve for the repurpose of marketed drugs, as well as support the approval of prospective randomized clinical studies on the role and dose of NTX in treating ME/CFS patients.
Collapse
Affiliation(s)
- Helene Cabanas
- The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia.,Consortium Health International for Myalgic Encephalomyelitis, National Centre for Neuroimmunology and Emerging Diseases, Griffith University, Gold Coast, QLD, Australia
| | - Katsuhiko Muraki
- Consortium Health International for Myalgic Encephalomyelitis, National Centre for Neuroimmunology and Emerging Diseases, Griffith University, Gold Coast, QLD, Australia.,Laboratory of Cellular Pharmacology, School of Pharmacy, Aichi-Gakuin University, Nagoya, Japan
| | - Natalie Eaton-Fitch
- The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia.,Consortium Health International for Myalgic Encephalomyelitis, National Centre for Neuroimmunology and Emerging Diseases, Griffith University, Gold Coast, QLD, Australia
| | - Donald Ross Staines
- The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia.,Consortium Health International for Myalgic Encephalomyelitis, National Centre for Neuroimmunology and Emerging Diseases, Griffith University, Gold Coast, QLD, Australia
| | - Sonya Marshall-Gradisnik
- The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia.,Consortium Health International for Myalgic Encephalomyelitis, National Centre for Neuroimmunology and Emerging Diseases, Griffith University, Gold Coast, QLD, Australia
| |
Collapse
|
47
|
Berthézène CD, Rabiller L, Jourdan G, Cousin B, Pénicaud L, Casteilla L, Lorsignol A. Tissue Regeneration: The Dark Side of Opioids. Int J Mol Sci 2021; 22:7336. [PMID: 34298954 PMCID: PMC8307464 DOI: 10.3390/ijms22147336] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 12/13/2022] Open
Abstract
Opioids are regarded as among the most effective analgesic drugs and their use for the management of pain is considered standard of care. Despite their systematic administration in the peri-operative period, their impact on tissue repair has been studied mainly in the context of scar healing and is only beginning to be documented in the context of true tissue regeneration. Indeed, in mammals, growing evidence shows that opioids direct tissue repair towards scar healing, with a loss of tissue function, instead of the regenerative process that allows for recovery of both the morphology and function of tissue. Here, we review recent studies that highlight how opioids may prevent a regenerative process by silencing nociceptive nerve activity and a powerful anti-inflammatory effect. These data open up new perspectives for inducing tissue regeneration and argue for opioid-restricted strategies for managing pain associated with tissue injury.
Collapse
Affiliation(s)
- Cécile Dromard Berthézène
- RESTORE Research Center, INSERM, CNRS, EFS, ENVT, Université P. Sabatier, 31000 Toulouse, France; (C.D.B.); (G.J.); (B.C.); (L.P.); (L.C.)
| | - Lise Rabiller
- Alan Edwards Center for Research on Pain, Department of Physiology and Cell Information Systems, McGill University, Montreal, QC H3A 0G1, Canada;
| | - Géraldine Jourdan
- RESTORE Research Center, INSERM, CNRS, EFS, ENVT, Université P. Sabatier, 31000 Toulouse, France; (C.D.B.); (G.J.); (B.C.); (L.P.); (L.C.)
| | - Béatrice Cousin
- RESTORE Research Center, INSERM, CNRS, EFS, ENVT, Université P. Sabatier, 31000 Toulouse, France; (C.D.B.); (G.J.); (B.C.); (L.P.); (L.C.)
| | - Luc Pénicaud
- RESTORE Research Center, INSERM, CNRS, EFS, ENVT, Université P. Sabatier, 31000 Toulouse, France; (C.D.B.); (G.J.); (B.C.); (L.P.); (L.C.)
| | - Louis Casteilla
- RESTORE Research Center, INSERM, CNRS, EFS, ENVT, Université P. Sabatier, 31000 Toulouse, France; (C.D.B.); (G.J.); (B.C.); (L.P.); (L.C.)
| | - Anne Lorsignol
- RESTORE Research Center, INSERM, CNRS, EFS, ENVT, Université P. Sabatier, 31000 Toulouse, France; (C.D.B.); (G.J.); (B.C.); (L.P.); (L.C.)
| |
Collapse
|
48
|
Nozu T, Miyagishi S, Nozu R, Ishioh M, Takakusaki K, Okumura T. EMA401, an angiotensin II type 2 receptor antagonist blocks visceral hypersensitivity and colonic hyperpermeability in rat model of irritable bowel syndrome. J Pharmacol Sci 2021; 146:121-124. [PMID: 34030794 DOI: 10.1016/j.jphs.2021.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/03/2021] [Accepted: 04/07/2021] [Indexed: 10/21/2022] Open
Abstract
Visceral hypersensitivity and impaired gut barrier are crucial pathophysiology of irritable bowel syndrome (IBS), and injection of lipopolysaccharide or corticotropin-releasing factor, and repeated water avoidance stress simulate these gastrointestinal changes in rat (IBS models). We previously demonstrated that losartan, an angiotensin II type 1 (AT1) receptor antagonist prevented these changes, and we attempted to determine the effects of EMA401, an AT2 receptor antagonist in the current study. EMA401 blocked visceral hypersensitivity and colonic hyperpermeability in these models, and naloxone reversed the effects by EMA401. These results suggest that EMA401 may improve gut function via opioid signaling in IBS.
Collapse
Affiliation(s)
- Tsukasa Nozu
- Department of Regional Medicine and Education, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido, 078-8510, Japan; Center for Medical Education, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido, 078-8510, Japan.
| | - Saori Miyagishi
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido, 078-8510, Japan
| | - Rintaro Nozu
- Department of Regional Medicine and Education, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido, 078-8510, Japan
| | - Masatomo Ishioh
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido, 078-8510, Japan
| | - Kaoru Takakusaki
- Division of Neuroscience, Department of Physiology, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido, 078-8510, Japan
| | - Toshikatsu Okumura
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido, 078-8510, Japan; Department of General Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido, 078-8510, Japan
| |
Collapse
|
49
|
Das S, Mahintamani T, Ghosh A. Pleural Effusion in a Patient with Injection Heroin Use: An Unusual Presentation with an Unusual Pathogen. Indian J Psychol Med 2021; 43:369-371. [PMID: 34385738 PMCID: PMC8327866 DOI: 10.1177/0253717620934200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 05/25/2020] [Indexed: 11/30/2022] Open
Affiliation(s)
- Sauvik Das
- Dept. of Psychiatry, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Tathagata Mahintamani
- Dept. of Psychiatry, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Abhishek Ghosh
- Dept. of Psychiatry, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
50
|
Abstract
PURPOSE OF REVIEW Anesthetics are known to have immunomodulatory effects. These can be detrimental, inducing immunosuppression and facilitating the development of opportunistic infections, especially when used at high doses, for prolonged periods, or in patients with preexisting immune deficiency; or beneficial, modulating the inflammatory response, particularly in critical illness and systemic hyperinflammatory states. RECENT FINDINGS Anesthetics can have microbicidal properties, and both anti- and pro-inflammatory effects. They can act directly on immune cells as well as modulate immunity through indirect pathways, acting on the neuroimmune stress response, and have recently been described to interact with the gut microbiota. SUMMARY Anesthesiologists should take into consideration the immunomodulatory properties of anesthetic agents in addition to their hemodynamic, neuroprotective, and other impacts. In future, patient stratification according to the perioperative assessment of serum biomarkers associated with postoperative complications may be used to guide anesthetic agent selection based on their immunomodulatory properties.
Collapse
Affiliation(s)
- Fernanda F Cruz
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paolo Pelosi
- Department of Surgical Sciences and Intergrated Diagnostics, University of Genoa, Genoa, Italy
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy
| |
Collapse
|