1
|
Amina EE, Adisa JO, Gamde SM, Omoruyi EB, Kwaambwa HM, Mwapagha LM. Hypoglycemic Assessment of Aqueous Leaf Extract of Moringa oleifera on Diabetic Wistar Rats. Biochem Res Int 2024; 2024:9779021. [PMID: 39478982 PMCID: PMC11524682 DOI: 10.1155/2024/9779021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 09/04/2024] [Accepted: 09/19/2024] [Indexed: 11/02/2024] Open
Abstract
Background: Moringa oleifera leaf is used for diabetes due to its pharmacologic effects. Patients with hyperglycemia experience beta cell destruction. However, no research on risk awareness has been done to ascertain its safety. The present study describes the antidiabetic effect of Moringa oleifera leaf, such as the protection of pancreatic beta cells and the induction of glycogen synthesis, before addressing the secondary effects of diabetes, such as hepatic and renal toxicity. Methods: Forty-five Wistar rats weighed 160 ± 10 g were divided into nine groups. All animal operations complied with the National Institute of Health (NIH) guidelines for the care and use of laboratory animals as approved by the Animal Ethical Committee, University of Jos. Group I was normal control and Group II was diabetic animals induced with alloxan. Insulin and extract doses of 200, 400, and 800 mg/kg were given to diabetic Groups III-VI. Normal animals in Groups VII-IX were given extract at doses of 200, 400, and 800 mg/kg for 28 days. Tissues were retrieved for biochemical and histological investigations using standard techniques. Results: There was decrease relative body weight of diabetic animals (95.50 ± 5.50) when compared to normal control (142.75 ± 20.08) with increased levels of urea (control 6.13 ± 0.523 and diabetes 29.23 ± 1.267) and creatinine (control 0.70 ± 0.057 and diabetes 2.13 ± 0.185). Histology of the liver and pancreas also points to organ damage due to hyperglycemia. However, oral administration of extract showed antidiabetic effect with protection of pancreatic beta cells and the induction of glycogen synthesis, no glycogen was deposited in the liver, addressing the secondary effects of diabetes, such as hepatic and renal toxicity. Further discovery revealed that extract elevated antioxidant enzyme expression. Conclusion: Leaf extract from Moringa oleifera reduces blood sugar and lessens the damage caused by hyperglycemia in the pancreas and liver.
Collapse
Affiliation(s)
- Egbujo Ejike Amina
- Department of Medical Laboratory Science, University of Jos, Plateau, Nigeria
| | - James O. Adisa
- Department of Medical Laboratory Science, University of Jos, Plateau, Nigeria
| | - Solomon Matthias Gamde
- Department of Medical Laboratory Science, Bingham University Karu, New Karu, Nasarawa, Nigeria
| | - Etinosa Beauty Omoruyi
- Applied Microbial and Health Biotechnology Institute, Cape Peninsula University of Technology, Cape Town, South Africa
| | - Habauka M. Kwaambwa
- Department of Biology, Chemistry and Physics, Faculty of Health, Natural Resources and Applied Sciences, Namibia University of Science and Technology, Private Bag 13388, 13 Jackson Kaujeua Street, Windhoek, Namibia
| | - Lamech M. Mwapagha
- Department of Biology, Chemistry and Physics, Faculty of Health, Natural Resources and Applied Sciences, Namibia University of Science and Technology, Private Bag 13388, 13 Jackson Kaujeua Street, Windhoek, Namibia
| |
Collapse
|
2
|
Guo X, Ou T, Yang X, Song Q, Zhu L, Mi S, Zhang J, Zhang Y, Chen W, Guo J. Untargeted metabolomics based on ultra-high performance liquid chromatography-mass spectrometry/MS reveals the lipid-lowering mechanism of taurine in hyperlipidemia mice. Front Nutr 2024; 11:1367589. [PMID: 38706565 PMCID: PMC11066166 DOI: 10.3389/fnut.2024.1367589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/03/2024] [Indexed: 05/07/2024] Open
Abstract
Introduction Taurine has a prominent lipid-lowering effect on hyperlipidemia. However, a comprehensive analysis of the effects of taurine on endogenous metabolites in hyperlipidemia has not been documented. This study aimed to explore the impact of taurine on multiple metabolites associated with hyperlipidemia. Methods The hyperlipidemic mouse model was induced by high-fat diet (HFD). Taurine was administered via oral gavage at doses of 700 mg/kg/day for 14 weeks. Evaluation of body weight, serum lipid levels, and histopathology of the liver and adipose tissue was performed to confirm the lipid-lowering effect of taurine. Ultra-high performance liquid chromatography-mass spectrometry (UPLC-MS)-based metabonomics analyses of serum, urine, feces, and liver, coupled with multivariate data analysis, were conducted to assess changes in the endogenous metabolites. Results and discussion Biochemical and histological examinations demonstrated that taurine administration prevented weight gain and dyslipidemia, and alleviated lipid deposition in the liver and adipose tissue in hyperlipidemic mice. A total of 76 differential metabolites were identified by UPLC-MS-based metabolomics approach, mainly involving BAs, GPs, SMs, DGs, TGs, PUFAs and amino acids. Taurine was found to partially prevent HFDinduced abnormalities in the aforementioned metabolites. Using KEGG database and MetaboAnalyst software, it was determined that taurine effectively alleviates metabolic abnormalities caused by HFD, including fatty acid metabolism, sphingolipid metabolism, glycerophospholipid metabolism, diacylglycerol metabolism, amino acid metabolism, bile acid and taurine metabolism, taurine and hypotaurine metabolism. Moreover, DGs, GPs and SMs, and taurine itself may serve as active metabolites in facilitating various anti-hyperlipidemia signal pathways associated with taurine. This study provides new evidence for taurine to prevent hyperlipidemia.
Collapse
Affiliation(s)
- Xinzhe Guo
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, China
| | - Tong Ou
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, China
- China National Center for Food Safety Risk Assessment, Beijing, China
| | - Xinyu Yang
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, China
| | - Qi Song
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, China
| | - Lin Zhu
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, China
| | - Shengquan Mi
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, China
| | - Jing Zhang
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, China
| | - Yanzhen Zhang
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, China
| | - Wen Chen
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, China
| | - Junxia Guo
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, China
| |
Collapse
|
3
|
Liu Z, Li X, Wang T, Zhang H, Li X, Xu J, Zhang Y, Zhao Z, Yang P, Zhou C, Ge Q, Zhao L. SAH and SAM/SAH ratio associate with acute kidney injury in critically ill patients: A case-control study. Clin Chim Acta 2024; 553:117726. [PMID: 38110027 DOI: 10.1016/j.cca.2023.117726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/12/2023] [Accepted: 12/15/2023] [Indexed: 12/20/2023]
Abstract
BACKGROUND Acute kidney injury (AKI) is a serious clinical emergency with an acute onset, rapid progression and poor prognosis, which has high morbidity and mortality in hospitalized patients. DNA methylation plays an important role in the occurrence and progression of kidney disease, and aberrant methylation and certain altered methylation-related metabolites have been reported in AKI patients. However, the specific alterations of methylation-related metabolites in the AKI patients were not investigated clearly. METHOD In this study, 61 AKI and 61 matched non-AKI inpatients were recruited after propensity score matching the age and hypertension. And 11 methylation-related metabolites in the plasma and urine of the two groups were quantified by using UHPLC-MS/MS method. RESULTS Certain methylation-relate intermediates were up-regulated in the plasma (choline, trimethylamine N-oxide (TMAO), trimethyl lysine (TML), S-adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH)) and down-regulated in the urine of AKI inpatients (choline, betaine, TMAO, dimethylglycine (DMG), SAM and taurine). The correlation analysis revealed a relatively strong correlation between plasma SAH, SAM/SAH ratio and renal function index (serum creatinine (SCr) and estimated glomerular filtration rate (eGFR), r = 0.523-0.616), and the correlation of urinary intermediates with renal function index was weaker than that in the plasma. Furthermore, receiver operating characteristic (ROC) analysis showed that plasma SAH and urinary SAM/SAH ratio represented the best distinguishing efficiency with AUC 0.844 and 0.794, respectively. Moreover, the findings of binary regression analysis demonstrated plasma choline, TMAO, TML, SAM and SAH were the risk markers of AKI (up-regulation in plasma, OR > 1), urinary choline, betaine, TMAO, DMG and SAM were protective markers of AKI (down-regulation in urine, OR < 1), and SAM/SAH ratio was a protective marker in plasma and urine (down-regulation in both two biofluids, OR = 0.510, 0.383-0.678 in plasma, OR = 0.904, 0.854-0.968 in urine), indicating the increased risk of AKI when combined with the alteration of plasma and urinary levels. CONCLUSION The comprehensive analysis of plasma and urine samples from AKI inpatients offers a more extensive assessment of methylated metabolic alterations, suggesting a close relationship between AKI stress and altered methylation ability. The plasma level of SAH and SAM/SAH ratio and urinary SAM/SAH ratio both showed a strong correlation with renal function (SCr and eGFR) and good accuracy for distinguishing AKI in the two biomatrices, which exhibited promising prospects in predicting renal function decline and providing further information for the pathogenesis of AKI.
Collapse
Affiliation(s)
- Zhini Liu
- Department of Pharmacy, Peking University Third Hospital, Beijing 100191, China; School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province 211198, China; Therapeutic Drug Monitoring and Clinical Toxicology Center of Peking University, Beijing 100191, China
| | - Xiaona Li
- Department of Pharmacy, Peking University Third Hospital, Beijing 100191, China; Therapeutic Drug Monitoring and Clinical Toxicology Center of Peking University, Beijing 100191, China; NMPA Key Laboratory for Research and Evaluation of Generic Drugs, Beijing 100191, China.
| | - Tiehua Wang
- Department of Intensive Care Unit, Peking University Third Hospital, Beijing, China
| | - Hua Zhang
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing, China
| | - Xiaoxiao Li
- Department of Pharmacy, Peking University Third Hospital, Beijing 100191, China
| | - Jiamin Xu
- Department of Pharmacy, Peking University Third Hospital, Beijing 100191, China; Therapeutic Drug Monitoring and Clinical Toxicology Center of Peking University, Beijing 100191, China; NMPA Key Laboratory for Research and Evaluation of Generic Drugs, Beijing 100191, China
| | - Yuanyuan Zhang
- Department of Pharmacy, Peking University Third Hospital, Beijing 100191, China; Therapeutic Drug Monitoring and Clinical Toxicology Center of Peking University, Beijing 100191, China; NMPA Key Laboratory for Research and Evaluation of Generic Drugs, Beijing 100191, China
| | - Zhiling Zhao
- Department of Intensive Care Unit, Peking University Third Hospital, Beijing, China
| | - Ping Yang
- Department of Pharmacy, Peking University Third Hospital, Beijing 100191, China; Therapeutic Drug Monitoring and Clinical Toxicology Center of Peking University, Beijing 100191, China; NMPA Key Laboratory for Research and Evaluation of Generic Drugs, Beijing 100191, China
| | - Congya Zhou
- Department of Pharmacy, Peking University Third Hospital, Beijing 100191, China; Therapeutic Drug Monitoring and Clinical Toxicology Center of Peking University, Beijing 100191, China; NMPA Key Laboratory for Research and Evaluation of Generic Drugs, Beijing 100191, China
| | - Qinggang Ge
- Department of Intensive Care Unit, Peking University Third Hospital, Beijing, China.
| | - Libo Zhao
- Department of Pharmacy, Peking University Third Hospital, Beijing 100191, China; Therapeutic Drug Monitoring and Clinical Toxicology Center of Peking University, Beijing 100191, China; NMPA Key Laboratory for Research and Evaluation of Generic Drugs, Beijing 100191, China.
| |
Collapse
|
4
|
Muhammed TM, Jalil AT, Taher WM, Aminov Z, Alsaikhan F, Ramírez-Coronel AA, Ramaiah P, Farhood B. The Effects of Apigenin in the Treatment of Diabetic Nephropathy: A Systematic Review of Non-clinical Studies. Mini Rev Med Chem 2024; 24:341-354. [PMID: 38282447 DOI: 10.2174/1389557523666230811092423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/10/2023] [Accepted: 07/13/2023] [Indexed: 01/30/2024]
Abstract
PURPOSE Diabetes is one of the important and growing diseases in the world. Among the most common diabetic complications are renal adverse effects. The use of apigenin may prevent the development and progression of diabetes-related injuries. The current study aims to review the effects of apigenin in the treatment of diabetic nephropathy. METHODS In this review, a systematic search was performed based on PRISMA guidelines for obtaining all relevant studies on "the effects of apigenin against diabetic nephropathy" in various electronic databases up to September 2022. Ninety-one articles were obtained and screened in accordance with the predefined inclusion and exclusion criteria. Seven eligible articles were finally included in this review. RESULTS The experimental findings revealed that hyperglycemia led to the decreased cell viability of kidney cells and body weight loss and an increased kidney weight of rats; however, apigenin administration had a reverse effect on these evaluated parameters. It was also found that hyperglycemia could induce alterations in the biochemical and renal function-related parameters as well as histopathological injuries in kidney cells or tissue; in contrast, the apigenin administration could ameliorate the hyperglycemia-induced renal adverse effects. CONCLUSION The results indicated that the use of apigenin could mitigate diabetes-induced renal adverse effects, mainly through its antioxidant, anti-apoptotic, and anti-inflammatory activities. Since the findings of this study are based on experimental studies, suggesting the use of apigenin (as a nephroprotective agent) against diabetic nephropathy requires further clinical studies.
Collapse
Affiliation(s)
- Thikra Majid Muhammed
- Department of Biotechnology, College of Applied Sciences, University of Fallujah, Al-anbar, Iraq
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, 51001, Iraq
| | - Waam Mohammed Taher
- National University of Science and Technology, Thi Qar University, Dhi Qar, Iraq
| | - Zafar Aminov
- Department of Public Health and Healthcare management, Samarkand State Medical University, 18 Amir Temur Street, Samarkand, Uzbekistan
- Department of Scientific Affairs, Tashkent State Dental Institute, 103 Makhtumkuli Str., Tashkent, Uzbekistan
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Andrés Alexis Ramírez-Coronel
- Azogues Campus Nursing Career, Health and Behavior Research Group (HBR), Psychometry and Ethology Laboratory, Catholic University of Cuenca, Cuenca, Ecuador
- Epidemiology and Biostatistics Research Group, CES University, Medellín, Antioquia, 4440555, Colombia
- Educational Statistics Research Group (GIEE), National University of Education, Cvenca, Ecuador
| | | | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
5
|
Alsulaim AK, Almutaz TH, Albati AA, Rahmani AH. Therapeutic Potential of Curcumin, a Bioactive Compound of Turmeric, in Prevention of Streptozotocin-Induced Diabetes through the Modulation of Oxidative Stress and Inflammation. Molecules 2023; 29:128. [PMID: 38202711 PMCID: PMC10779985 DOI: 10.3390/molecules29010128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 01/12/2024] Open
Abstract
This study evaluates the anti-diabetic potential and underlying mechanisms of curcumin in streptozotocin (STZ)-induced type 2 diabetes mellitus (T2DM) rats. The rats were randomly divided into four groups: normal control, negative control (diabetic group), diabetic group receiving glibenclamide (positive control group), and curcumin plus STZ (treatment group). The anti-diabetic activities of curcumin were examined at a dose of 50 mg/kg body weight through physiological, biochemical, and histopathological analysis. Compared to the normal control group rats, elevated levels of glucose, creatinine, urea, triglycerides (TG), and total cholesterol (TC) and low levels of insulin were found in the negative control rats. Curcumin treatment showed a significant decrease in these parameters and an increase in insulin level as compared to negative control rats. In negative control rats, a reduced level of antioxidant enzymes and an increased level of lipid peroxidation and inflammatory marker levels were noticed. Oral administration of curcumin significantly ameliorated such changes. From histopathological findings, it was noted that diabetic rats showed changes in the kidney tissue architecture, including the infiltration of inflammatory cells, congestion, and fibrosis, while oral administration of curcumin significantly reduced these changes. Expression of IL-6 and TNF-α protein was high in diabetic rats as compared to the curcumin treatment groups. Hence, based on biochemical and histopathological findings, this study delivers a scientific suggestion that curcumin could be a suitable remedy in the management of diabetes mellitus.
Collapse
Affiliation(s)
| | | | | | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (A.K.A.); (T.H.A.); (A.A.A.)
| |
Collapse
|
6
|
Ural C, Celik A, Ozbal S, Guneli E, Arslan S, Ergur BU, Cavdar C, Akdoğan G, Cavdar Z. The renoprotective effects of taurine against diabetic nephropathy via the p38 MAPK and TGF-β/Smad2/3 signaling pathways. Amino Acids 2023; 55:1665-1677. [PMID: 37805666 DOI: 10.1007/s00726-023-03342-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 09/20/2023] [Indexed: 10/09/2023]
Abstract
Diabetic nephropathy (DN), a severe diabetes complication, causes kidney morphological and structural changes due to extracellular matrix accumulation. This accumulation is caused mainly by oxidative stress. Semi-essential amino acid derivative taurine has powerful antioxidant and antifibrotic effects. The aim of this study was to investigate the renoprotective effects of taurine through its possible roles in oxidative stress, extracellular matrix proteins, and the signaling pathways associated with the accumulation of extracellular matrix proteins in DN rats. 29 Wistar albino rats were randomly separated into control, taurine, diabetes, and diabetes + taurine groups. Diabetes animals were injected 45 mg/kg streptozosine. Taurine is given by adding to drinking water as 1% (w/v). Urine, serum, and kidney tissue were collected from rats for biochemical and histological analysis after 12 weeks. According to the studies, taurine significantly reduces the levels of malondialdehyde (MDA), total oxidant status (TOS), and protein expression of NADPH oxidase 4 (NOX4) that increase in diabetic kidney tissue. Also, decreased superoxide dismutase (SOD) activity levels significantly increased with taurine in diabetic rats. Moreover, increased mRNA and protein levels of fibronectin decreased with taurine. The matrix metalloproteinase (MMP)-2 and MMP-9 activities and their mRNA levels increased significantly, and this increase was significantly summed with taurine. There was a decrease in mRNA expression of Extracellular matrix metalloproteinase inducer (EMMPRIN). Taurine significantly increased this decrease. Diabetes increased mRNA expressions of transforming growth factor (TGF)-β and Smad2/3. Taurine significantly reduced this induction. TGF-β protein expression, p38, and Smad2/3 activations were also inhibited, but taurine was suppressed significantly. All these findings indicate that taurine may be an effective practical strategy to prevent renal diabetic injury.
Collapse
Affiliation(s)
- Cemre Ural
- Department of Molecular Medicine, Health Sciences Institute, Dokuz Eylul University, 35340, Izmir, Turkey
| | - Asli Celik
- Multidisciplinary Experimental Animal Laboratory, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Seda Ozbal
- Department of Histology and Embryology, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Ensari Guneli
- Multidisciplinary Experimental Animal Laboratory, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
- Department of Laboratory Animal Science, Health Sciences Institute, Dokuz Eylul University, Izmir, Turkey
| | - Sevki Arslan
- Department of Biology, Faculty of Science, Pamukkale University, Denizli, Turkey
| | - Bekir Ugur Ergur
- Department of Histology and Embryology, University of Kyrenia, Kyrenia, Northern Cyprus
| | - Caner Cavdar
- Department of Nephrology, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Gül Akdoğan
- Department of Medical Biochemistry, School of Medicine, Izmir University of Economics, Izmir, Turkey
| | - Zahide Cavdar
- Department of Molecular Medicine, Health Sciences Institute, Dokuz Eylul University, 35340, Izmir, Turkey.
| |
Collapse
|
7
|
Wang YL, Lin SX, Wang Y, Liang T, Jiang T, Liu P, Li XY, Lang DQ, Liu Q, Shen CY. p-Synephrine ameliorates alloxan-induced diabetes mellitus through inhibiting oxidative stress and inflammation via suppressing the NF-kappa B and MAPK pathways. Food Funct 2023; 14:1971-1988. [PMID: 36723106 DOI: 10.1039/d2fo03003a] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Oxidative stress and inflammation play important roles in the development of diabetes mellitus. p-Synephrine, the primary pharmacologically active protoalkaloid in Citrus species, has been popularly consumed as a dietary supplement for weight loss management. However, the effects of p-synephrine on diabetes mellitus and the action mechanisms have not been clearly elucidated. In this study, the in vitro antioxidant effects of p-synephrine were evaluated. The data showed that p-synephrine treatment exhibited significant scavenging effects against DPPH, ABTS and OH radicals and showed high reducing power. Diabetic mice were developed by alloxan injection, followed by p-synephrine administration to investigate its hypoglycemic effects in vivo. The results showed that p-synephrine intervention significantly prevented alloxan-induced alteration in body weight, organ indexes, serum uric acid content and serum creatinine content. Meanwhile, p-synephrine application significantly improved the lipid profiles, superoxide dismutase (SOD) and catalase (CAT) activities and glutathione (GSH) contents in the serum and kidneys of diabetic mice and reduced the malondialdehyde (MDA) content in the serum of diabetic mice. Further assays suggested that p-synephrine treatment improved alloxan-induced decreases of glucose tolerance and insulin sensitivity. Also, p-synephrine supplementation altered histopathological changes in the kidneys and interscapular brown adipose tissues in diabetic mice. In addition, p-synephrine administration inhibited renal inflammation through suppressing tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and interleukin-1β (IL-1β) gene expression levels, as well as CD45 expression levels. The anti-inflammatory effects were probably involved in the regulation of nuclear factor-κB (NF-κB) activation and mitogen-activated protein kinase (MAPK) phosphorylation. In conclusion, p-synephrine application significantly ameliorated alloxan-induced diabetes mellitus by inhibiting oxidative stress via suppressing the NF-κB and MAPK pathways.
Collapse
Affiliation(s)
- Ya-Li Wang
- School of Public Health, Southern Medical University, Guangzhou 510515, P. R. China. .,School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, P. R. China. .,Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou 510515, P. R. China.,Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Guangzhou 510515, P. R. China
| | - Song-Xia Lin
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, P. R. China. .,Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou 510515, P. R. China.,Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Guangzhou 510515, P. R. China
| | - Yuan Wang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, P. R. China. .,Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou 510515, P. R. China.,Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Guangzhou 510515, P. R. China
| | - Tao Liang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, P. R. China. .,Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou 510515, P. R. China.,Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Guangzhou 510515, P. R. China
| | - Tao Jiang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, P. R. China. .,Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou 510515, P. R. China.,Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Guangzhou 510515, P. R. China
| | - Peng Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, P. R. China. .,Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou 510515, P. R. China.,Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Guangzhou 510515, P. R. China
| | - Xiao-Yi Li
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, P. R. China. .,Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou 510515, P. R. China.,Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Guangzhou 510515, P. R. China
| | - Deng-Qin Lang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, P. R. China. .,Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou 510515, P. R. China.,Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Guangzhou 510515, P. R. China
| | - Qiang Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, P. R. China. .,Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou 510515, P. R. China.,Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Guangzhou 510515, P. R. China
| | - Chun-Yan Shen
- School of Public Health, Southern Medical University, Guangzhou 510515, P. R. China. .,School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, P. R. China. .,Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou 510515, P. R. China.,Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Guangzhou 510515, P. R. China
| |
Collapse
|
8
|
Liu P, Chen Y, Xiao J, Zhu W, Yan X, Chen M. Protective effect of natural products in the metabolic-associated kidney diseases via regulating mitochondrial dysfunction. Front Pharmacol 2023; 13:1093397. [PMID: 36712696 PMCID: PMC9877617 DOI: 10.3389/fphar.2022.1093397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/28/2022] [Indexed: 01/13/2023] Open
Abstract
Metabolic syndrome (MS) is a complex group of metabolic disorders syndrome with hypertension, hyperuricemia and disorders of glucose or lipid metabolism. As an important organ involved in metabolism, the kidney is inevitably attacked by various metabolic disorders, leading to abnormalities in kidney structure and function. Recently, an increasing number of studies have shown that mitochondrial dysfunction is actively involved in the development of metabolic-associated kidney diseases. Mitochondrial dysfunction can be used as a potential therapeutic strategy for the treatment of metabolic-associated kidney diseases. Many natural products have been widely used to improve the treatment of metabolic-associated kidney diseases by inhibiting mitochondrial dysfunction. In this paper, by searching several authoritative databases such as PubMed, Web of Science, Wiley Online Library, and Springer Link. We summarize the Natural Products Protect Against Metabolic-Associated Kidney Diseases by Regulating Mitochondrial Dysfunction. In this review, we sought to provide an overview of the mechanisms by which mitochondrial dysfunction impaired metabolic-associated kidney diseases, with particular attention to the role of mitochondrial dysfunction in diabetic nephropathy, gouty nephropathy, hypertensive kidney disease, and obesity-related nephropathy, and then the protective role of natural products in the kidney through inhibition of mitochondrial disorders, thus providing a systematic understanding of the targets of mitochondrial dysfunction in metabolic-associated kidney diseases, and finally a review of promising therapeutic targets and herbal candidates for metabolic-associated kidney diseases through inhibition of mitochondrial dysfunction.
Collapse
Affiliation(s)
- Peng Liu
- Shunyi Hospital, Beijing Traditional Chinese Medicine Hospital, Beijing, China
| | - Yao Chen
- Department of Medicine, Renal Division, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Jing Xiao
- Department of Medicine, Renal Division, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Wenhui Zhu
- Department of Medicine, Renal Division, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Xiaoming Yan
- Department of Medicine, Digestive Division, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Ming Chen
- Department of Medicine, Renal Division, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| |
Collapse
|
9
|
Kryszczuk M, Kowalczuk O. Significance of NRF2 in physiological and pathological conditions an comprehensive review. Arch Biochem Biophys 2022; 730:109417. [DOI: 10.1016/j.abb.2022.109417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/22/2022] [Accepted: 09/24/2022] [Indexed: 11/30/2022]
|
10
|
Sutradhar S, Deb A, Singh SS. Melatonin attenuates diabetes-induced oxidative stress in spleen and suppression of splenocyte proliferation in laboratory mice. Arch Physiol Biochem 2022; 128:1401-1412. [PMID: 32501767 DOI: 10.1080/13813455.2020.1773506] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Hyperglycaemic condition induced oxidative stress in diabetic individuals caused oxidative damages of internal organs, including immune organ spleen. We studied the effects of low doses of melatonin (25, 50, and 100 µg/100g. B.wt./day) on histoarchitecture, oxidative stress, and splenocyte proliferation in streptozotocin-induced diabetic mice. Melatonin significantly resisted the increase in blood glucose levels and showed a dose-dependent effect on circulatory melatonin, body weight, and relative spleen weight in diabetic mice. Exogenous melatonin suppressed the diabetes-induced lipid peroxidation and increased the activity of the antioxidant enzymes and antioxidant GSH in the spleen tissue of diabetic mice in a dose-dependent manner. Melatonin improved the reactivity of Nrf-2 and HO-1 in the spleen of diabetic mice. Melatonin treatment normalised the splenic cellularity and increased the splenocyte proliferation in a dose-dependent manner. The present study may suggest the dose-dependent effect of melatonin in attenuation of oxidative stress and suppression of splenocyte proliferation in diabetic mice.
Collapse
Affiliation(s)
- Sangita Sutradhar
- Molecular Endocrine Research Lab, Department of Zoology, Tripura University, Tripura, India
| | - Anindita Deb
- Molecular Endocrine Research Lab, Department of Zoology, Tripura University, Tripura, India
| | - Shiv Shankar Singh
- Molecular Endocrine Research Lab, Department of Zoology, Tripura University, Tripura, India
| |
Collapse
|
11
|
Oxidative Stress Induces Bovine Endometrial Epithelial Cell Damage through Mitochondria-Dependent Pathways. Animals (Basel) 2022; 12:ani12182444. [PMID: 36139304 PMCID: PMC9495185 DOI: 10.3390/ani12182444] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/30/2022] Open
Abstract
Simple Summary Polymorphonuclear neutrophil (PMN) count is the main diagnostic method of bovine endometritis. High neutrophil PMN counts in the endometrium of cows affected by endometritis suggest the involvement of oxidative stress among the causes of impaired fertility. The damage mechanism of oxidative stress on bovine endometrial epithelial cells (BEECs) is still unelucidated. The objective of this experiment was to investigate the relationship between oxidative stress and graded endometritis in dairy uteri and the molecular mechanism of oxidative stress injury to BEECs. Our research showed that there was an imbalance of antioxidant stress in dairy cow uterine with endometritis, oxidative stress damaged dairy cow endometrial epithelial cells through mitochondria-dependent pathways. These findings may provide new insight into the therapeutic target of bovine endometrial cell injury. Abstract Bovine endometritis is a mucosal inflammation that is characterized by sustained polymorphonuclear neutrophil (PMN) infiltration. Elevated PMN counts in the uterine discharge of dairy cows affected by endometritis suggest that oxidative stress may be among the causes of impaired fertility due to the condition. Nevertheless, the effects of oxidative stress-mediated endometritis in dairy cows largely remain uninvestigated. Therefore, fresh uterine tissue and uterine discharge samples were collected to diagnose the severity of endometritis according to the numbers of inflammatory cells in the samples. Twenty-six fresh uteri were classified into healthy, mild, moderate, and severe endometritis groups based on hematoxylin and eosin stain characteristics and the percentage of PMNs in discharge. BEECs were treated with graded concentrations of H2O2 from 50 μM to 200 μM in vitro as a model to explore the mechanism of oxidative stress during bovine graded endometritis. The expressions of antioxidant stress kinases were detected by quantitative fluorescence PCR to verify the oxidative stress level in uteri with endometritis. Reactive oxygen species were detected by fluorescence microscope, and inflammation-related mRNA expression increased significantly after H2O2 stimulation. Moreover, mRNA expression levels of antioxidant oxidative stress-related enzymes (glutathione peroxidase, superoxide dismutase, and catalase) and mitochondrial membrane potential both decreased. Further investigation revealed that expression of the apoptosis regulator Bcl-2/Bax decreased, whereas expression of the mitochondrial apoptosis-related proteins cytochrome c and caspase-3 increased in response to oxidative stress. Our results indicate that an imbalance exists between oxidation and antioxidation during bovine endometritis. Moreover, apoptosis induced in vitro by oxidative stress was characterized by mitochondrial damage in BEECs.
Collapse
|
12
|
Badr G, Sayed LH, Omar HEDM, ِAbd Elghaffar SK, Menshawy MM. Bee gomogenat rescues lymphoid organs from degeneration by regulating the crosstalk between apoptosis and autophagy in streptozotocin-induced diabetic mice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:68990-69007. [PMID: 35554836 PMCID: PMC9508069 DOI: 10.1007/s11356-022-20457-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 04/21/2022] [Indexed: 06/15/2023]
Abstract
Diabetes mellitus (DM) is a metabolic disorder that causes severe complications in several tissues due to redox imbalances, which in turn cause defective angiogenesis in response to ischemia and activate a number of proinflammatory pathways. Our study aimed to investigate the effect of bee gomogenat (BG) dietary supplementation on the architecture of immune organs in a streptozotocin (STZ)-induced type 1 diabetes (T1D) mouse model. Three animal groups were used: the control non-diabetic, diabetic, and BG-treated diabetic groups. STZ-induced diabetes was associated with increased levels of blood glucose, ROS, and IL-6 and decreased levels of IL-2, IL-7, IL-4, and GSH. Moreover, diabetic mice showed alterations in the expression of autophagy markers (LC3, Beclin-1, and P62) and apoptosis markers (Bcl-2 and Bax) in the thymus, spleen, and lymph nodes. Most importantly, the phosphorylation level of AKT (a promoter of cell survival) was significantly decreased, but the expression levels of MCP-1 and HSP-70 (markers of inflammation) were significantly increased in the spleen and lymph nodes in diabetic mice compared to control animals. Interestingly, oral supplementation with BG restored the levels of blood glucose, ROS, IL-6, IL-2, IL-4, IL-7, and GSH in diabetic mice. Treatment with BG significantly abrogated apoptosis and autophagy in lymphoid organs in diabetic mice by restoring the expression levels of LC3, Beclin-1, P62, Bcl-2, and Bax; decreasing inflammatory signals by downregulating the expression of MCP-1 and HSP-70; and promoting cell survival by enhancing the phosphorylation of AKT. Our data were the first to reveal the therapeutic potential of BG on the architecture of lymphoid organs and enhancing the immune system during T1D.
Collapse
Affiliation(s)
- Gamal Badr
- Zoology Department, Faculty of Science, Assiut University, Assiut, 71516, Egypt.
- Laboratory of Immunology, Zoology Department, Faculty of Science, Assiut University, Assiut, 71516, Egypt.
| | - Leila H Sayed
- Zoology Department, Faculty of Science, Assiut University, Assiut, 71516, Egypt
- Laboratory of Immunology, Zoology Department, Faculty of Science, Assiut University, Assiut, 71516, Egypt
| | | | - Sary Khaleel ِAbd Elghaffar
- Pathology and clinical pathology Department, Faculty of Veterinary Medicine, Assiut University, Assiut, 71516, Egypt
| | - Medhat M Menshawy
- Department of Biology, Misr University of Science and Technology, 6th October City, Egypt
| |
Collapse
|
13
|
Chen W, Fan Z, Huang C, Liu J. Poricoic Acid A Inhibits the NF- κB/MAPK Pathway to Alleviate Renal Fibrosis in Rats with Cardiorenal Syndrome. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:8644353. [PMID: 35754696 PMCID: PMC9217574 DOI: 10.1155/2022/8644353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/18/2022] [Accepted: 05/25/2022] [Indexed: 11/17/2022]
Abstract
Objective To explore the potential and mechanism of action of poricoic acid A (PAA) in treatment of cardiorenal injury and fibrosis due to cardiorenal syndrome (CRS). Materials and Methods A CRS rat model was established by transabdominal subtotal nephrectomy (STNx). The experimental group was treated by gavage of PAA (10 mg/kg/day). After 8 weeks of treatment, echocardiography was utilized for detecting heart-related indexes in rats. HE and Masson staining were conducted to detect the degree of pathological damage and fibrosis in rat kidney tissue, respectively. In addition, serum blood urea nitrogen (BUN), serum creatinine (SCr), and 24-hour urine protein were measured biochemically. Also, the levels of inflammatory factors (IL-1β, IL-6, and IL-10) in rat kidneys were measured using ELISA. Western blot was used to examine the expression of NF-κB/MAPK pathway-related proteins. Results In this study, a CRS rat model was successfully established by STNx surgery. PAA treatment could significantly alleviate the damage of heart and kidney function in CRS rats and reduce the pathological damage of kidney tissue and renal fibrosis. Meanwhile, PAA could also inhibit the renal inflammatory response through downregulating IL-1β and IL-6 levels in the kidney tissue and upregulating IL-10 level. Further mechanism exploration showed that the NF-κB/MAPK signaling pathway was significantly activated in CRS rats, while PAA treatment could markedly inhibit the NF-κB/MAPK signaling pathway activity in CRS rats. Conclusion PAA can obviously improve the pathological damage and fibrosis of renal tissue in CRS rats and maintain the function of the heart and kidney. The above functions of PAA may be achieved by inhibiting the NF-κB/MAPK signaling pathway activity. Briefly speaking, PAA can serve as a potential drug for CRS treatment.
Collapse
Affiliation(s)
- Wenzhong Chen
- Department of Cardiovascular Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, China
| | - Zhiwen Fan
- Department of Cardiology, The PLA 74th Group Army Hospital, Guangzhou, Guangdong 510300, China
| | - Canhui Huang
- Department of Cardiovascular Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, China
| | - Junying Liu
- Department of Endocrinology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, Shenzhen, Guangdong 518000, China
| |
Collapse
|
14
|
Taurine Ameliorates Streptozotocin-Induced Diabetes by Modulating Hepatic Glucose Metabolism and Oxidative Stress in Mice. Metabolites 2022; 12:metabo12060524. [PMID: 35736457 PMCID: PMC9228042 DOI: 10.3390/metabo12060524] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/25/2022] [Accepted: 05/31/2022] [Indexed: 12/30/2022] Open
Abstract
Taurine is a sulfated amino acid derivative that plays an important role in maintaining the cell function of the living body. Although taurine has been shown to ameliorate diabetes, its mechanism of action has not yet been fully elucidated. The present study investigated the effects of taurine on diabetes focusing on glucose metabolism and oxidative stress. Type 1 diabetes was induced by the administration of streptozotocin (STZ) to male C57BL/6J mice. Taurine was dissolved in drinking water at 3% (w/v) and allowed to be freely ingested by diabetic mice. The weight and blood glucose levels were measured weekly. After nine weeks, mice were sacrificed and their serum, liver, and kidney were removed and used for biochemical and histological analyses. A microarray analysis was also performed in normal mice. Taurine alleviated STZ-induced hyperglycemia and hyperketonemia, accompanied by the suppression of the decrease in hepatic glycogen and upregulation of the mRNA expression of hepatic glucose transporter GLUT-2. Furthermore, STZ-induced elevation of oxidative stress in the liver and kidney was suppressed by taurine treatment. These results showed that taurine ameliorated diabetes and diabetic complications by improving hepatic glucose metabolism and reducing oxidative stress.
Collapse
|
15
|
Ali SN, Arif A, Ansari FA, Mahmood R. Cytoprotective effect of taurine against sodium chlorate-induced oxidative damage in human red blood cells: an ex vivo study. Amino Acids 2022; 54:33-46. [DOI: 10.1007/s00726-021-03121-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 12/27/2021] [Indexed: 11/24/2022]
|
16
|
Ma J, Yang Z, Jia S, Yang R. A systematic review of preclinical studies on the taurine role during diabetic nephropathy: focused on anti-oxidative, anti-inflammation, and anti-apoptotic effects. Toxicol Mech Methods 2022; 32:420-430. [PMID: 34933643 DOI: 10.1080/15376516.2021.2021579] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Diabetic nephropathy is one of the most important and growing diseases globally and the leading cause of cardiovascular mortality in these patients. Taurine is an amino acid that has pleiotropic protective properties on some diseases. This study aimed to investigate the potential role of taurine in the treatment of diabetes-induced nephropathy. To achieve the aim of the present study, a comprehensive systematic search based on PRISMA guidelines has been conducted up to August 2021. A total of 382 articles were found in the electronic databases based on search keywords. After doing the screening, 14 articles were included in the present systematic review. The dated demonstrated elevation of oxidative stress, inflammatory and apoptotic pathways, and changes in other molecules' function plays an essential role in diabetes-induced renal tissue damage. Due to its multiple protective effects, taurine significantly prevented the activation of the pathways mentioned above and altered the function of molecules involved in these pathways, resulting in alleviating diabetic nephropathy. According to the obtained results, it was found that taurine can mitigate diabetes-induced nephropathy, mainly through its anti-oxidant activity, which is an essential factor in activating inflammation and apoptosis pathways.
Collapse
Affiliation(s)
- Jingru Ma
- Clinical Laboratory, The Second Hospital of Jilin University, Changchun, China
| | - Zecheng Yang
- Department of Gastrointestinal Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Shengnan Jia
- Department of Hepatopancreatobiliary Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Rui Yang
- Department of Gastroenterology, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
17
|
Zhang B, Zeng M, Wang Y, Li M, Wu Y, Xu R, Zhang Q, Jia J, Huang Y, Zheng X, Feng W. Oleic acid alleviates LPS-induced acute kidney injury by restraining inflammation and oxidative stress via the Ras/MAPKs/PPAR-γ signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 94:153818. [PMID: 34798521 DOI: 10.1016/j.phymed.2021.153818] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/27/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Rehmannia Glutinosa Libosch. is applied for the treatment of renal and inflammatory-related diseases, and oleic acid (OA) is a compound isolated from Rehmannia Glutinosa Libosch.. Unfortunately, the pharmacological activity of OA on LPS treated acute kidney injury (AKI) has not been investigated. AIMS The research is aiming to probe the activities of OA on LPS-induced AKI. METHODS Information of OA effect on AKI were from network pharmacology. H&E staining, creatinine (CRE) and urea nitrogen (UN) were performed to evaluate the activities of OA on kidney function. Inflammatory factors in serum were measured by cytometric bead array. Increased ratio of reactive oxygen species (ROS) in kidney and immune cells in the peripheral blood were determined by flow cytometry (FCM). PPAR-γ, MAPK and apoptotic signaling pathways were measured by Western blot. Then, a metabolomics approach was utilized to investigate OA's response to AKI. The role of salirasib (FTS, Ras inhibitor) in OA acted on ROS, Ca2+, MMP and Ras signaling pathway in LPS treated NRK-52e cells were investigated by FCM and In-cell western. RESULTS It is proved that OA effetively ameliorated renal function, alleviated inflammatory response and oxidative stress, and transformed apoptotic, MAPK and PPAR-γ signaling pathways in mice with AKI, regulated phenylalanine metabolism, purine metabolism, sphingolipid metabolism, taurine and hypotaurine metabolism, moreover, the role of OA in injury of NRK-52e was blocked by FTS. CONCLUSION In a word, OA could alleviate AKI by restraining inflammation and oxidative stress via regulating the Ras/MAPKs/PPAR-γ signaling pathway, phenylalanine metabolism, purine metabolism, sphingolipid metabolism and taurine and hypotaurine metabolism, which might be a useful strategy for treating AKI.
Collapse
Affiliation(s)
- Beibei Zhang
- 156 Jinshui East Road, Henan University of Chinese Medicine, Zhengzhou 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, 156 Jinshui East Road, Zhengzhou 450046, China
| | - Mengnan Zeng
- 156 Jinshui East Road, Henan University of Chinese Medicine, Zhengzhou 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, 156 Jinshui East Road, Zhengzhou 450046, China
| | - Yangyang Wang
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Meng Li
- 156 Jinshui East Road, Henan University of Chinese Medicine, Zhengzhou 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, 156 Jinshui East Road, Zhengzhou 450046, China
| | - Yuanyuan Wu
- 156 Jinshui East Road, Henan University of Chinese Medicine, Zhengzhou 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, 156 Jinshui East Road, Zhengzhou 450046, China
| | - Ruiqi Xu
- 156 Jinshui East Road, Henan University of Chinese Medicine, Zhengzhou 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, 156 Jinshui East Road, Zhengzhou 450046, China
| | - Qinqin Zhang
- 156 Jinshui East Road, Henan University of Chinese Medicine, Zhengzhou 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, 156 Jinshui East Road, Zhengzhou 450046, China
| | - Jufang Jia
- 156 Jinshui East Road, Henan University of Chinese Medicine, Zhengzhou 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, 156 Jinshui East Road, Zhengzhou 450046, China
| | - Yanjie Huang
- 156 Jinshui East Road, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Xiaoke Zheng
- 156 Jinshui East Road, Henan University of Chinese Medicine, Zhengzhou 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, 156 Jinshui East Road, Zhengzhou 450046, China.
| | - Weisheng Feng
- 156 Jinshui East Road, Henan University of Chinese Medicine, Zhengzhou 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, 156 Jinshui East Road, Zhengzhou 450046, China.
| |
Collapse
|
18
|
Surai PF, Earle-Payne K, Kidd MT. Taurine as a Natural Antioxidant: From Direct Antioxidant Effects to Protective Action in Various Toxicological Models. Antioxidants (Basel) 2021; 10:1876. [PMID: 34942978 PMCID: PMC8698923 DOI: 10.3390/antiox10121876] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 11/21/2021] [Accepted: 11/23/2021] [Indexed: 12/18/2022] Open
Abstract
Natural antioxidants have received tremendous attention over the last 3 decades. At the same time, the attitude to free radicals is slowly changing, and their signalling role in adaptation to stress has recently received a lot of attention. Among many different antioxidants in the body, taurine (Tau), a sulphur-containing non-proteinogenic β-amino acid, is shown to have a special place as an important natural modulator of the antioxidant defence networks. Indeed, Tau is synthesised in most mammals and birds, and the Tau requirement is met by both synthesis and food/feed supply. From the analysis of recent data, it could be concluded that the direct antioxidant effect of Tau due to scavenging free radicals is limited and could be expected only in a few mammalian/avian tissues (e.g., heart and eye) with comparatively high (>15-20 mM) Tau concentrations. The stabilising effects of Tau on mitochondria, a prime site of free radical formation, are characterised and deserve more attention. Tau deficiency has been shown to compromise the electron transport chain in mitochondria and significantly increase free radical production. It seems likely that by maintaining the optimal Tau status of mitochondria, it is possible to control free radical production. Tau's antioxidant protective action is of great importance in various stress conditions in human life, and is related to commercial animal and poultry production. In various in vitro and in vivo toxicological models, Tau showed AO protective effects. The membrane-stabilizing effects, inhibiting effects on ROS-producing enzymes, as well as the indirect AO effects of Tau via redox balance maintenance associated with the modulation of various transcription factors (e.g., Nrf2 and NF-κB) and vitagenes could also contribute to its protective action in stress conditions, and thus deserve more attention.
Collapse
Affiliation(s)
- Peter F. Surai
- Vitagene and Health Research Centre, Bristol BS4 2RS, UK
- Department of Microbiology and Biochemistry, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria
- Biochemistry and Physiology Department, Saint-Petersburg State University of Veterinary Medicine, 196084 St. Petersburg, Russia
- Department of Animal Nutrition, Faculty of Agricultural and Environmental Sciences, Szent Istvan University, H-2103 Gödöllo, Hungary
| | - Katie Earle-Payne
- NHS Greater Glasgow and Clyde, Renfrewshire Health and Social Care Centre, 10 Ferry Road, Renfrew PA4 8RU, UK;
| | - Michael T. Kidd
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA;
| |
Collapse
|
19
|
Sapian S, Budin SB, Taib IS, Mariappan V, Zainalabidin S, Chin KY. Role of Polyphenol in Regulating Oxidative Stress, Inflammation, Fibrosis, and Apoptosis in Diabetic Nephropathy. Endocr Metab Immune Disord Drug Targets 2021; 22:453-470. [PMID: 34802412 DOI: 10.2174/1871530321666211119144309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/27/2021] [Accepted: 10/20/2021] [Indexed: 11/22/2022]
Abstract
Diabetic nephropathy (DN) is known as one of the driving sources of end-stage renal disease (ESRD). DN prevalence continues to increase in every corner of the world andthat has been a major concern to healthcare professionals as DN is the key driver of diabetes mellitus (DM) morbidity and mortality. Hyperglycaemia is closely connected with the production of reactive oxygen species (ROS) that cause oxidative stress response as well as numerous cellular and molecular modifications. Oxidative stress is a significant causative factor to renal damage, as it can activate other immunological pathways, such as inflammatory, fibrosis, and apoptosis pathways. These pathways can lead to cellular impairment and death as well as cellular senescence. Natural substances containing bioactive compounds, such as polyphenols, have been reported to exert valuable effects on various pathological conditions, including DM. The role of polyphenols in alleviating DN conditions has been documented in many studies. In this review, the potential of polyphenols in ameliorating the progression of DN via modulation of oxidative stress, inflammation, fibrosis, and apoptosis, as well as cellular senescence, has been addressed. This information may be used as the strategies for the management of DN and development as nutraceutical products to overcome DN development.
Collapse
Affiliation(s)
- Syaifuzah Sapian
- Center for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur. Malaysia
| | - Siti Balkis Budin
- Center for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur. Malaysia
| | - Izatus Shima Taib
- Center for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur. Malaysia
| | - Vanitha Mariappan
- Centre for Toxicology and Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur. Malaysia
| | - Satirah Zainalabidin
- Centre for Toxicology and Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur. Malaysia
| | - Kok Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000. Malaysia
| |
Collapse
|
20
|
Fan XX, Cao ZY, Liu MX, Liu WJ, Xu ZL, Tu PF, Wang ZZ, Cao L, Xiao W. Diterpene Ginkgolides Meglumine Injection inhibits apoptosis induced by optic nerve crush injury via modulating MAPKs signaling pathways in retinal ganglion cells. JOURNAL OF ETHNOPHARMACOLOGY 2021; 279:114371. [PMID: 34181957 DOI: 10.1016/j.jep.2021.114371] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/02/2021] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Diterpene Ginkgolides Meglumine Injection (DGMI) is made of extracts from Ginkgo biloba L, including Ginkgolides A, B, and K and some other contents, and has been widely used as the treatment of cerebral ischemic stroke in clinic. It can be learned from the "Compendium of Materia Medica" that Ginkgo possesses the effect of "dispersing toxin". The ancient Chinese phrase "dispersing toxin" is now explained as elimination of inflammation and oxidative state in human body. And it led to the original ideas for today's anti-oxidation studies of Ginkgo in apoptosis induced by optic nerve crush injury. AIM OF THE STUDY To investigate the underlying molecular mechanism of the DGMI in retinal ganglion cells (RGCs) apoptosis. MATERIALS AND METHODS TUNEL staining was used to observe the anti-apoptotic effects of DGMI on the adult rat optic nerve injury (ONC) model, and flow cytometry and hoechst 33,342 staining were used to observe the anti-apoptotic effects of DGMI on the oxygen glucose deprivation (OGD) induced RGC-5 cells injury model. The regulation of apoptosis and MAPKs pathways were investigated with Immunohistochemistry and Western blotting. RESULTS This study demonstrated that DGMI is able to decrease the conduction time of F-VEP and ameliorate histological features induced by optic nerve crush injury in rats. Immunohistochemistry and TUNEL staining results indicated that DGMI can also inhibit cell apoptosis via modulating MAPKs signaling pathways. In addition, treatment with DGMI markedly improved the morphological structures and decreased the apoptotic index in RGC-5 cells. Mechanistically, DGMI could significantly inhibit cell apoptosis by inhibiting p38, JNK and Erk1/2 activation. CONCLUSION The study shows that DGMI and ginkgolides inhibit RGCs apoptosis by impeding the activation of MAPKs signaling pathways in vivo and in vitro. Therefore, the present study provided scientific evidence for the underlying mechanism of DGMI and ginkgolides on optic nerve crush injury.
Collapse
Affiliation(s)
- Xiao-Xue Fan
- Jiangsu Kanion Pharmaceutical Co.Ltd., Lianyungang, 222001, China; State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Lianyungang, 222001, China; Modern Chinese Medicine Innovation Cluster and Digital Pharmaceutical Technology Platform, Lianyungang, 222001, China
| | - Ze-Yu Cao
- Jiangsu Kanion Pharmaceutical Co.Ltd., Lianyungang, 222001, China; State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Lianyungang, 222001, China; Modern Chinese Medicine Innovation Cluster and Digital Pharmaceutical Technology Platform, Lianyungang, 222001, China
| | - Min-Xuan Liu
- Jiangsu Kanion Pharmaceutical Co.Ltd., Lianyungang, 222001, China; State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Lianyungang, 222001, China; Modern Chinese Medicine Innovation Cluster and Digital Pharmaceutical Technology Platform, Lianyungang, 222001, China
| | - Wen-Jun Liu
- Jiangsu Kanion Pharmaceutical Co.Ltd., Lianyungang, 222001, China; State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Lianyungang, 222001, China; Modern Chinese Medicine Innovation Cluster and Digital Pharmaceutical Technology Platform, Lianyungang, 222001, China
| | - Zhi-Liang Xu
- Jiangsu Kanion Pharmaceutical Co.Ltd., Lianyungang, 222001, China; State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Lianyungang, 222001, China; Modern Chinese Medicine Innovation Cluster and Digital Pharmaceutical Technology Platform, Lianyungang, 222001, China
| | - Peng-Fei Tu
- Jiangsu Kanion Pharmaceutical Co.Ltd., Lianyungang, 222001, China; Peking University, Beijing, 100871, China
| | - Zhen-Zhong Wang
- Jiangsu Kanion Pharmaceutical Co.Ltd., Lianyungang, 222001, China; State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Lianyungang, 222001, China; Modern Chinese Medicine Innovation Cluster and Digital Pharmaceutical Technology Platform, Lianyungang, 222001, China
| | - Liang Cao
- Jiangsu Kanion Pharmaceutical Co.Ltd., Lianyungang, 222001, China; State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Lianyungang, 222001, China; Modern Chinese Medicine Innovation Cluster and Digital Pharmaceutical Technology Platform, Lianyungang, 222001, China.
| | - Wei Xiao
- Jiangsu Kanion Pharmaceutical Co.Ltd., Lianyungang, 222001, China; State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Lianyungang, 222001, China; Modern Chinese Medicine Innovation Cluster and Digital Pharmaceutical Technology Platform, Lianyungang, 222001, China.
| |
Collapse
|
21
|
Ghanim A, Farag M, Anwar M, Ali N, Hawas M, Elsallab H, Elhendawy W, Basyouni L, Refaey O, Zaki K, Ali N, Metwaly H. Taurine alleviates kidney injury in a thioacetamide rat model by mediating Nrf2/HO-1, NQO-1 and MAPK/ NF-κB signaling pathways. Can J Physiol Pharmacol 2021; 100:352-360. [PMID: 34695366 DOI: 10.1139/cjpp-2021-0488] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study aimed to investigate the molecular mechanisms by which taurine exerts its reno-protective effects in thioacetamide (TAA)-induced kidney injury in rats. Rats received taurine (100 mg/kg daily, intraperitoneally) either from day 1 of TAA injection (250 mg/kg twice weekly for 6 weeks) or after 6 weeks of TAA administration. Taurine treatment, either concomitant or later as a therapy, restored kidney functions, reduced BUN, creatinine, MDA, and increased renal levels of SOD and reversed the increase of KIM-1 and NGAL caused by TAA. Taurine treatment also led to a significant rise in Nrf2, HO-1, and NQO-1 levels, with significant suppression of ERK 1/2, NF-κB, and TNFα gene expressions, and IL-18 and TNFα protein levels compared to those in TAA kidney-injured rats. Taurine exhibited reno-protective potential in TAA-induced kidney injury through its anti-oxidant and anti-inflammatory effects. Taurine anti-oxidant activity is accredited to its effect on Nrf-2 induction and subsequent activation of HO-1 and NQO-1. In addition, taurine exerts its anti-inflammatory effect via regulating NF-κB transcription and subsequent production of pro-inflammatory mediators via MAPK signaling regulation.
Collapse
Affiliation(s)
- Amal Ghanim
- Fayoum University, 158401, Biochemistry, Fayoum University, Fayoum, Egypt, 63514.,Fayoum University, 158401, biochemistry, Fayoum University, Fayoum, Egypt, 63514;
| | - Mahmoud Farag
- Delta University for Science and Technology, 501253, Pharmacology, Belkas, Dakahlia, Egypt;
| | - Mahitab Anwar
- Delta University for Science and Technology, 501253, Pharmacology, Belkas, Dakahlia, Egypt;
| | - Nada Ali
- Delta University for Science and Technology, 501253, Pharmacology, Belkas, Dakahlia, Egypt;
| | - Mohammed Hawas
- Delta University for Science and Technology, 501253, Pharmacology, Belkas, Dakahlia, Egypt;
| | - Hend Elsallab
- Delta University for Science and Technology, 501253, Pharmacology, Belkas, Dakahlia, Egypt;
| | - Walaa Elhendawy
- Delta University for Science and Technology, 501253, Pharmacology, Belkas, Dakahlia, Egypt;
| | - Lina Basyouni
- Delta University for Science and Technology, 501253, Clinical Pharmacy, Belkas, Dakahlia, Egypt;
| | - Ola Refaey
- Delta University for Science and Technology, 501253, Clinical Pharmacy, Belkas, Dakahlia, Egypt;
| | - Khaled Zaki
- Delta University for Science and Technology, 501253, Clinical Pharmacy, Belkas, Dakahlia, Egypt;
| | - Noha Ali
- Delta University for Science and Technology, 501253, Pharmaceutical Chemistry, Belkas, Dakahlia, Egypt;
| | - Heba Metwaly
- Delta University for Science and Technology, 501253, Biochemistry, Belkas, Dakahlia, Egypt.,Alexandria University, 54562, Pharmaceutical Biochemistry, Alexandria, Egypt;
| |
Collapse
|
22
|
Madbouly N, Azmy A, Salama A, El-Amir A. The nephroprotective properties of taurine-amikacin treatment in rats are mediated through HSP25 and TLR-4 regulation. J Antibiot (Tokyo) 2021; 74:580-592. [PMID: 34253885 DOI: 10.1038/s41429-021-00441-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 06/15/2021] [Indexed: 02/06/2023]
Abstract
Amikacin (AMK) is one of the most effective aminoglycoside antibiotics. However, nephrotoxicity is a major deleterious and dose-limiting side effect associated with its clinical use especially in high dose AMK-treated patients. The present study assessed the ability of taurine (TAU) to alleviate or prevent AMK-induced nephrotoxicity if co-administrated with AMK focusing on inflammation, apoptosis, and fibrosis. Male Sprague Dawley rats were assigned to six equal groups. Group 1: rats received saline (normal control), group 2: normal rats received 50 mg kg-1 TAU intraperitoneally (i.p.). Groups 3 and 4: received AMK (25 or 50 mg kg-1; i.p.). Groups 5 and 6: received TAU (50 mg kg-1; i.p.) concurrently with AMK (25 or 50 mg kg-1; i.p.) for 3 weeks. AMK-induced nephrotoxicity is evidenced by elevated levels of serum creatinine (CRE), blood urea nitrogen (BUN), and uric acid (UA). Histopathological investigations provoked damaging changes in the renal tissues. Heat shock proteins (HSP)25 and Toll-like receptor-4 (TLR-4) elevated levels were involved in the induction of inflammatory reactions and focal fibrosis. The improved activation of TLR-4 may stimulate monocytes to upgrade Interleukin (IL)-18 production rather than IL-10. TAU proved therapeutic effectiveness against AMK-induced renal toxicity through downregulation of HSP25, TLR-4, caspase-3, and IL-18 with up-regulation of IL-10 levels.
Collapse
Affiliation(s)
- Neveen Madbouly
- Zoology Department, Faculty of Science, Cairo University, Cairo, Egypt.
| | - Ayman Azmy
- Zoology Department, Faculty of Science, Cairo University, Cairo, Egypt
| | - Abeer Salama
- Pharmacology Department, National Research Centre, Cairo, Egypt
| | - Azza El-Amir
- Zoology Department, Faculty of Science, Cairo University, Cairo, Egypt
| |
Collapse
|
23
|
Baliou S, Adamaki M, Ioannou P, Pappa A, Panayiotidis MI, Spandidos DA, Christodoulou I, Kyriakopoulos AM, Zoumpourlis V. Protective role of taurine against oxidative stress (Review). Mol Med Rep 2021; 24:605. [PMID: 34184084 PMCID: PMC8240184 DOI: 10.3892/mmr.2021.12242] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/03/2021] [Indexed: 12/14/2022] Open
Abstract
Taurine is a fundamental mediator of homeostasis that exerts multiple roles to confer protection against oxidant stress. The development of hypertension, muscle/neuro‑associated disorders, hepatic cirrhosis, cardiac dysfunction and ischemia/reperfusion are examples of some injuries that are linked with oxidative stress. The present review gives a comprehensive description of all the underlying mechanisms of taurine, with the aim to explain its anti‑oxidant actions. Taurine is regarded as a cytoprotective molecule due to its ability to sustain normal electron transport chain, maintain glutathione stores, upregulate anti‑oxidant responses, increase membrane stability, eliminate inflammation and prevent calcium accumulation. In parallel, the synergistic effect of taurine with other potential therapeutic modalities in multiple disorders are highlighted. Apart from the results derived from research findings, the current review bridges the gap between bench and bedside, providing mechanistic insights into the biological activity of taurine that supports its potential therapeutic efficacy in clinic. In the future, further clinical studies are required to support the ameliorative effect of taurine against oxidative stress.
Collapse
Affiliation(s)
- Stella Baliou
- National Hellenic Research Foundation, 11635 Athens, Greece
| | - Maria Adamaki
- National Hellenic Research Foundation, 11635 Athens, Greece
| | - Petros Ioannou
- Department of Internal Medicine and Infectious Diseases, University Hospital of Heraklion, 71110 Heraklion, Greece
| | - Aglaia Pappa
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Mihalis I. Panayiotidis
- Department of Cancer Genetics, Therapeutics and Ultrastructural Pathology, The Cyprus Institute of Neurology and Genetics, 2371 Nicosia, Cyprus
- The Cyprus School of Molecular Medicine, 2371 Nicosia, Cyprus
| | - Demetrios A. Spandidos
- Department of Internal Medicine and Infectious Diseases, University Hospital of Heraklion, 71110 Heraklion, Greece
| | | | | | | |
Collapse
|
24
|
Owumi SE, Popoola O, Otunla MT, Okuu UA, Najophe ES. Benzo-a-pyrene-induced reproductive toxicity was abated in rats co-treated with taurine. TOXIN REV 2021. [DOI: 10.1080/15569543.2021.1949617] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Solomon E. Owumi
- ChangeLab, Cancer Research and Molecular Biology Laboratory, Department of Biochemistry, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria
| | - Opeoluwa Popoola
- ChangeLab, Cancer Research and Molecular Biology Laboratory, Department of Biochemistry, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria
| | - Moses T. Otunla
- ChangeLab, Cancer Research and Molecular Biology Laboratory, Department of Biochemistry, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria
| | - Uche A. Okuu
- Cancer Immunology and Biotechnology, The University of Nottingham, Nottingham, UK
| | - Eseroghene S. Najophe
- Nutrition and Industrial Biochemistry Research Laboratory, Department of Biochemistry, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
25
|
Owumi SE, Adeniyi G, Oyelere AK. The modulatory effect of taurine on benzo (a) pyrene-induced hepatorenal toxicity. Toxicol Res (Camb) 2021; 10:389-398. [PMID: 34141152 DOI: 10.1093/toxres/tfab016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/01/2021] [Accepted: 02/04/2021] [Indexed: 01/03/2023] Open
Abstract
Toxicities linked with Benzo (a) pyrene B[a]P exposure, particularly in liver and kidney have been reported in both animals and humans. Taurine (2-aminoethane sulfonic acid) is an intracellular β-amino acid reported to elicit hepatorenal protective functions. However, the modulatory effect of taurine on hepatorenal toxicity associated with exposure to B[a]P has not been reported. This study evaluated the effects of taurine on the hepatorenal toxicities induced in cohorts of rats exposed to B[a]P. Experimental rats were treated as follows: B[a]P (10 mg/kg); co-treated cohorts -B[a]P (10 mg/kg) plus taurine (100 or 200 mg/kg) for 4 successive weeks. Results show that co-dosing with taurine significantly (P < 0.05) improved B[a]P-induced distortion of oxidative stress markers (catalase, superoxide dismutase, glutathione S-transferase, glutathione peroxidase, total sulphydryl, reduced glutathione, lipid peroxidation and xanthine oxidase), renal function (urea and creatinine) and liver function marker enzymes (alkaline phosphatase, aspartate aminotransferase, alanine aminotransferase and gamma glutamyl transferase). Moreover, taurine effectively mitigated increase in myeloperoxidase activity, levels of reactive oxygen and nitrogen species, nitric oxide and interleukin-1β in kidney and liver of rats treated with B[a]P. In conclusion, taurine modulates hepatorenal toxicity in B[a]P-exposed rats by suppressing hepatic and renal damage indices, oxidative injury and inflammatory stress.
Collapse
Affiliation(s)
- Solomon E Owumi
- CRMB Laboratory, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Oyo State, 200004, Nigeria
| | - Gideon Adeniyi
- CRMB Laboratory, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Oyo State, 200004, Nigeria
| | - Adegboyega K Oyelere
- School of Chemistry and Biochemistry, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332-0400, USA
| |
Collapse
|
26
|
Mueed Z, Mehta D, Rai PK, Kamal MA, Poddar NK. Cross-Interplay between Osmolytes and mTOR in Alzheimer's Disease Pathogenesis. Curr Pharm Des 2021; 26:4699-4711. [PMID: 32418522 DOI: 10.2174/1381612826666200518112355] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/15/2020] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease, categorized by the piling of amyloid-β (Aβ), hyperphosphorylated tau, PHFs, NFTs and mTOR hyperactivity, is a neurodegenerative disorder, affecting people across the globe. Osmolytes are known for osmoprotectants and play a pivotal role in protein folding, function and protein stability, thus, preventing proteins aggregation, and counteracting effects of denaturing solutes on proteins. Osmolytes (viz., sorbitol, inositol, and betaine) perform a pivotal function of maintaining homeostasis during hyperosmotic stress. The selective advantage of utilising osmolytes over inorganic ions by cells is in maintaining cell volume without compromising cell function, which is important for organs such as the brain. Osmolytes have been documented not only as neuroprotectors but they also seem to act as neurodegenerators. Betaine, sucrose and trehalose supplementation has been seen to induce autophagy thereby inhibiting the accumulation of Aβ. In contrast, sucrose has also been associated with mTOR hyperactivity, a hallmark of AD pathology. The neuroprotective action of taurine is revealed when taurine supplementation is seen to inhibit neural damage, apoptosis and oxidative damage. Inositol stereoisomers (viz., scyllo-inositol and myo-inositol) have also been seen to inhibit Aβ production and plaque formation in the brain, inhibiting AD pathogenesis. However, TMAO affects the aging process adversely by deregulating the mTOR signalling pathway and then kindling cognitive dysfunction via degradation of chemical synapses and synaptic plasticity. Thus, it can be concluded that osmolytes may act as a probable therapeutic approach for neurodevelopmental disorders. Here, we have reviewed and focussed upon the impact of osmolytes on mTOR signalling pathway and thereby its role in AD pathogenesis.
Collapse
Affiliation(s)
- Zeba Mueed
- Department of Biotechnology, Invertis University, Bareilly, Uttar Pradesh, India
| | - Devanshu Mehta
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, India
| | - Pankaj K Rai
- Department of Biotechnology, Invertis University, Bareilly, Uttar Pradesh, India
| | - Mohammad A Kamal
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia,Enzymoics; Novel Global Community Educational Foundation, 7 Peterlee Place, Hebersham, NSW 2770, Australia
| | - Nitesh K Poddar
- Department of Biosciences, Manipal University Jaipur, Rajasthan, India
| |
Collapse
|
27
|
Yu Y, Gao J, Jiang L, Wang J. Antidiabetic nephropathy effects of synthesized gold nanoparticles through mitigation of oxidative stress. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
28
|
Di Gregorio E, Miolo G, Saorin A, Muraro E, Cangemi M, Revelant A, Minatel E, Trovò M, Steffan A, Corona G. Radical Hemithoracic Radiotherapy Induces Systemic Metabolomics Changes That Are Associated with the Clinical Outcome of Malignant Pleural Mesothelioma Patients. Cancers (Basel) 2021; 13:cancers13030508. [PMID: 33572739 PMCID: PMC7866164 DOI: 10.3390/cancers13030508] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/19/2021] [Accepted: 01/25/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Radical hemithoracic radiotherapy represents a promising new advance in the field of radiation oncology and encouraging results have been achieved in the treatment of malignant pleural mesothelioma patients. This study showed that this radiotherapy modality produces significant changes in serum metabolomics profile mainly affecting arginine and polyamine biosynthesis pathways. Interestingly, individual metabolomics alterations were found associated with the clinical overall survival outcome of the radiotherapy treatment. These results highlight metabolomics profile analysis as a powerful prognostic tool useful to better understand the mechanisms underlying the interpatients variability and to identify patients who may receive the best benefit from this specific radiotherapy treatment. Abstract Radical hemithoracic radiotherapy (RHRT) represents an advanced therapeutic option able to improve overall survival of malignant pleural mesothelioma patients. This study aims to investigate the systemic effects of this radiotherapy modality on the serum metabolome and their potential implications in determining the individual clinical outcome. Nineteen patients undergoing RHRT at the dose of 50 Gy in 25 fractions were enrolled. Serum targeted metabolomics profiles were investigated at baseline and the end of radiotherapy by liquid chromatography and tandem mass spectrometry. Univariate and multivariate OPLS-DA analyses were applied to study the serum metabolomics changes induced by RHRT while PLS regression analysis to evaluate the association between such changes and overall survival. RHRT was found to affect almost all investigated metabolites classes, in particular, the amino acids citrulline and taurine, the C14, C18:1 and C18:2 acyl-carnitines as well as the unsaturated long chain phosphatidylcholines PC ae 42:5, PC ae 44:5 and PC ae 44:6 were significantly decreased. The enrichment analysis showed arginine metabolism and the polyamine biosynthesis as the most perturbed pathways. Moreover, specific metabolic changes encompassing the amino acids and acyl-carnitines resulted in association with the clinical outcome accounting for about 60% of the interpatients overall survival variability. This study highlighted that RHRT can induce profound systemic metabolic effects some of which may have a significant prognostic value. The integration of metabolomics in the clinical assessment of the malignant pleural mesothelioma could be useful to better identify the patients who can achieve the best benefit from the RHRT treatment.
Collapse
Affiliation(s)
- Emanuela Di Gregorio
- Immunopathology and Cancer Biomarkers Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (E.D.G.); (A.S.); (E.M.); (M.C.); (A.S.)
| | - Gianmaria Miolo
- Medical Oncology and Cancer Prevention Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy;
| | - Asia Saorin
- Immunopathology and Cancer Biomarkers Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (E.D.G.); (A.S.); (E.M.); (M.C.); (A.S.)
| | - Elena Muraro
- Immunopathology and Cancer Biomarkers Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (E.D.G.); (A.S.); (E.M.); (M.C.); (A.S.)
| | - Michela Cangemi
- Immunopathology and Cancer Biomarkers Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (E.D.G.); (A.S.); (E.M.); (M.C.); (A.S.)
| | - Alberto Revelant
- Radiation Oncology Department, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (A.R.); (E.M.)
| | - Emilio Minatel
- Radiation Oncology Department, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (A.R.); (E.M.)
| | - Marco Trovò
- Radiation Oncology Department, Azienda Sanitaria Integrata, 33100 Udine, Italy;
| | - Agostino Steffan
- Immunopathology and Cancer Biomarkers Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (E.D.G.); (A.S.); (E.M.); (M.C.); (A.S.)
| | - Giuseppe Corona
- Immunopathology and Cancer Biomarkers Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (E.D.G.); (A.S.); (E.M.); (M.C.); (A.S.)
- Correspondence: ; Tel.: +39-0434-659-666
| |
Collapse
|
29
|
Sekiou O, Boumendjel M, Taibi F, Tichati L, Boumendjel A, Messarah M. Nephroprotective effect of Artemisia herba alba aqueous extract in alloxan-induced diabetic rats. J Tradit Complement Med 2021; 11:53-61. [PMID: 33511062 PMCID: PMC7817709 DOI: 10.1016/j.jtcme.2020.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 01/02/2020] [Accepted: 01/05/2020] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND AND AIM In the present study, we investigate the phytochemical composition and the nephroprotective effects as well as the antioxidant properties of Artemisia herba alba aqueous extract in alloxan-induced experimental diabetes in rats. EXPERIMENTAL PROCEDURE Wistar rats were divided into four groups of seven rats each: Group I: Normal control (NC) received saline solution at 9‰ given by intraperitoneal way; Group II: Diabetic control (DC) received alloxan (150 mg/kg b.w) intraperitoneally; Group III: Normal control (NC + AHA) received saline solution at 9‰ and treated orally by AHA aqueous extract (400 mg/kg/b.w); Group IV: Diabetic control (DC + AHA) received alloxan solution (150 mg/kg b.w) intraperitoneally and treated by aqueous extract of AHA (400 mg/kg/b.w/day) orally after one week of alloxan administration. After 30 days, blood and tissue samples were collected for biochemical and histopathological analysis, respectively. Glomerular damage markers, including creatinine, serum urea, urine creatinine and urine urea levels were estimated. Creatinine clearance was also assessed. Oxidative stress parameters were assessed in the kidney homogenate. RESULTS AND CONCLUSION Alloxan-exposure resulted in significant increase in blood glucose and serum level of glomerular damage markers. The antioxidant enzyme activities were significantly downregulated associated with an increase in malondialdehyde (MDA) level over the baseline values. Artemisia herba alba aqueous extract supplementation significantly improved the studied parameters. In concluding, the results obtained suggests that Artemisia herbs-alba aqueous extract supplementation reduces alloxan-induced free radical generation, potentiates the antioxidant defense system and alleviates renal sensitivity to oxidative stress.
Collapse
Key Words
- AHA, Artemisia herba-alba
- AlCl3, Aluminum trichloride
- Artemisia herba alba
- CAT, catalase
- DC, Diabetic control
- DPPH, 1,1-diphenyl-2-picrylhydrazyl
- DTNB, 5,5-dithiobis (2-nitrobenzoic acid)
- Diabetes
- Free radicals
- GPx, glutathione peroxidase
- GSH, reduced glutathione
- GST, glutathione-S-transferase
- H2O2, hydrogen peroxide
- MDA, malondialdehyde
- NBT, Nitro-blue tetrazolium
- Nephroprotection
- Oxidative stress
- RFC, Folin-Ciocalteu
- ROS, reactive oxygen species
- SOD, superoxide dismutase
- STZ, streptozotocin
- TBA, thiobarbituric acid
- TCA, trichloroacetic acid
Collapse
Affiliation(s)
- Omar Sekiou
- Laboratory of Biochemistry and Environmental Toxicology, Faculty of Sciences, University of Badji Mokhtar, BP 12 Sidi Amar, Annaba, Algeria
| | - Mahieddine Boumendjel
- Laboratory of Biochemistry and Environmental Toxicology, Faculty of Sciences, University of Badji Mokhtar, BP 12 Sidi Amar, Annaba, Algeria
| | - Faiza Taibi
- Laboratory of Biochemistry and Environmental Toxicology, Faculty of Sciences, University of Badji Mokhtar, BP 12 Sidi Amar, Annaba, Algeria
| | - Lazhari Tichati
- Laboratory of Biochemistry and Environmental Toxicology, Faculty of Sciences, University of Badji Mokhtar, BP 12 Sidi Amar, Annaba, Algeria
| | - Amel Boumendjel
- Laboratory of Biochemistry and Environmental Toxicology, Faculty of Sciences, University of Badji Mokhtar, BP 12 Sidi Amar, Annaba, Algeria
| | - Mahfoud Messarah
- Laboratory of Biochemistry and Environmental Toxicology, Faculty of Sciences, University of Badji Mokhtar, BP 12 Sidi Amar, Annaba, Algeria
| |
Collapse
|
30
|
Xu H, Huang L, Jin E, Liang Z, Zhao M. Plasma metabolomic profiling of central serous chorioretinopathy. Exp Eye Res 2020; 203:108401. [PMID: 33326810 DOI: 10.1016/j.exer.2020.108401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/27/2020] [Accepted: 12/11/2020] [Indexed: 01/05/2023]
Abstract
Our study aimed to investigate metabolites alterations in the blood plasma of central serous chorioretinopathy (CSC) patients and to identify the key biomarkers to increase the understanding of the mechanism of CSC at the molecular level. Quantitative and targeted metabolomics using liquid chromatography tandem-mass spectrometry (LCMS, Biocrates P500) assays were performed on plasma samples from the 42 subjects(CSC patients = 30, control = 12) enrolled at the Department of Ophthalmology of People's Hospital Peking University. A total of 61 altered metabolites were distinguished between CSC patients and controls. Taurine was selected as a candidate biomarker for CSC among 6 potential metobolites: taurine, glutamic acid, sarcosine, lactic acid, glutamine and C18_1. The P values of these potential metabolites were 1.01E-06, 7.35E-08, 1.27E-24, and 1.85E-10, 1.02E-05 and 8.59E-08, and the areas under the curve for them were 0.926, 0.991, 1.000, 0.900, 0.897 and 0.841, respectively. This study is the first to identify that taurine may be a biologically relevant biomarker for CSC and to provide a novel understanding of CSC.
Collapse
Affiliation(s)
- Hui Xu
- Department of Ophthalmology, Peking University People's Hospital, Eye Diseases and Optometry Institute, Beijing Key Laboratory of Diagnosis and Therapy of Retina and Choroid Diseases, College of Optometry, Peking University Health Science Centre, China.
| | - Lvzhen Huang
- Department of Ophthalmology, Peking University People's Hospital, Eye Diseases and Optometry Institute, Beijing Key Laboratory of Diagnosis and Therapy of Retina and Choroid Diseases, College of Optometry, Peking University Health Science Centre, China.
| | - Enzhong Jin
- Department of Ophthalmology, Peking University People's Hospital, Eye Diseases and Optometry Institute, Beijing Key Laboratory of Diagnosis and Therapy of Retina and Choroid Diseases, College of Optometry, Peking University Health Science Centre, China
| | - Zhiqiao Liang
- Department of Ophthalmology, Peking University People's Hospital, Eye Diseases and Optometry Institute, Beijing Key Laboratory of Diagnosis and Therapy of Retina and Choroid Diseases, College of Optometry, Peking University Health Science Centre, China
| | - Mingwei Zhao
- Department of Ophthalmology, Peking University People's Hospital, Eye Diseases and Optometry Institute, Beijing Key Laboratory of Diagnosis and Therapy of Retina and Choroid Diseases, College of Optometry, Peking University Health Science Centre, China.
| |
Collapse
|
31
|
Król E, Okulicz M, Kupsz J. The Influence of Taurine Supplementation on Serum and Tissular Fe, Zn and Cu Levels in Normal and Diet-Induced Insulin-Resistant Rats. Biol Trace Elem Res 2020; 198:592-601. [PMID: 32172503 PMCID: PMC7561555 DOI: 10.1007/s12011-020-02100-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 02/26/2020] [Indexed: 11/17/2022]
Abstract
Taurine (Tau) is a β-sulphonated amino acid postulated to improve glucose homeostasis in insulin resistance and diabetes. Changes in carbohydrate metabolism are accompanied by oxidative stress, which may disturb the mineral balance. Therefore, the aim of this study was to assess the effect of Tau supplementation on the levels of trace elements in rats fed either a standard (AIN-93M, 4% fat) diet or a modified high-fat diet (30% fat). For 8 weeks, male Wistar rats were fed these diets supplemented with 3% Tau. Taurine supplementation normalized increased serum insulin concentration and insulin resistance index; however, it did not improve serum CRP concentration in high-fat diet fed rats. The high-fat diet supplemented with Tau decreased the renal and splenic Zn levels, but the tissular Fe content did not change. The effect of Tau supplementation on the mineral balance to some extent depended on the fat content in the rats' diet. The high-fat diet supplemented with Tau decreased the rats' splenic Zn levels but increased their femur levels. In the group fed the standard diet, Tau reduced the rats' femur Zn level, whereas their splenic Zn level was comparable. Tau supplementation decreased the renal Cu level and serum ceruloplasmin concentration in the rats fed the standard diet, but this effect was not observed in the rats fed the high-fat diet. In conclusion, supplementary taurine failed to ameliorate disturbances in mineral homeostasis caused by high-fat diet feeding and led to tissular redistribution of Zn and Cu in the rat.
Collapse
Affiliation(s)
- Ewelina Król
- Institute of Human Nutrition and Dietetics, Poznań University of Life Sciences, ul Wojska Polskiego 31, 60-624, Poznan, Poland.
| | - Monika Okulicz
- Department of Animal Physiology and Biochemistry, Poznań University of Life Sciences, ul Wołyńska, Poznan, Poland
| | - Justyna Kupsz
- Department of Physiology, Poznań University of Medical Sciences, ul, ul Święcickiego 6, 61-781, Poznan, Poland
| |
Collapse
|
32
|
Esmaeili F, Maleki V, Kheirouri S, Alizadeh M. The Effects of Taurine Supplementation on Metabolic Profiles, Pentosidine, Soluble Receptor of Advanced Glycation End Products and Methylglyoxal in Adults With Type 2 Diabetes: A Randomized, Double-Blind, Placebo-Controlled Trial. Can J Diabetes 2020; 45:39-46. [PMID: 32861603 DOI: 10.1016/j.jcjd.2020.05.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/16/2020] [Accepted: 05/06/2020] [Indexed: 12/19/2022]
Abstract
OBJECTIVES Advanced glycation end products, along with methylglyoxal (MGO) as their precursor, play a major role in increased complications of type 2 diabetes mellitus (T2DM). Taurine (2-aminoethanesulphonic acid), a conditionally essential amino acid, is found in most mammalian tissues. Taurine is known as an antiglycation compound. This study was designed to investigate the effects of taurine supplementation on metabolic profiles, pentosidine, MGO and soluble receptors for advanced glycation end products in patients with T2DM. METHODS In this double-blind randomized controlled trial, 46 patients with T2DM were randomly allocated into taurine and placebo groups. Participants received either 3,000 mg/day taurine or placebo for 8 weeks. Metabolic profiles, pentosidine, MGO and soluble receptors for advanced glycation end products levels were assessed after 12 h of fasting at baseline and completion of the clinical trial. Independent t test, paired t test, Pearson correlation and analysis of covariance were used for analysis. RESULTS The mean serum levels of fasting blood sugar (p=0.01), glycated hemoglobin (p=0.04), insulin (p=0.03), homeostasis model assessment-insulin resistance (p=0.004), total cholesterol (p=0.01) and low-density lipoprotein cholesterol (p=0.03) significantly were reduced in the taurine group at completion compared with the placebo group. In addition, after completion of the study, pentosidine (p=0.004) and MGO (p=0.006) were significantly reduced in the taurine group compared with the placebo group. CONCLUSIONS The results of this trial show that taurine supplementation may decrease diabetes complications through improving glycemic control and advanced glycation end products.
Collapse
Affiliation(s)
- Fatemeh Esmaeili
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahid Maleki
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sorayya Kheirouri
- Department of Nutrition, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Alizadeh
- Nutrition Research Center, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
33
|
From Xanthine Oxidase Inhibition to In Vivo Hypouricemic Effect: An Integrated Overview of In Vitro and In Vivo Studies with Focus on Natural Molecules and Analogues. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:9531725. [PMID: 32184901 PMCID: PMC7060854 DOI: 10.1155/2020/9531725] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 12/10/2019] [Accepted: 12/24/2019] [Indexed: 01/05/2023]
Abstract
Hyperuricemia is characterized by elevated uric acid (UA) levels on blood, which can lead to gout, a common pathology. These high UA levels are associated with increased purine ingestion and metabolization and/or its decreased excretion. In this field, xanthine oxidase (XO), by converting hypoxanthine and xanthine to UA, plays an important role in hyperuricemia control. Based on limitations and adverse effects associated with the use of allopurinol and febuxostat, the most known approved drugs with XO inhibitory effect, the search for new molecules with XO activity is growing. However, despite the high number of studies, it was found that the majority of tested products with relevant XO inhibition were left out, and no further pharmacological evaluation was performed. Thus, in the present review, available information published in the past six years concerning isolated molecules with in vitro XO inhibition complemented with cytotoxicity evaluation as well as other relevant studies, including in vivo hypouricemic effect, and pharmacokinetic/pharmacodynamic profile was compiled. Interestingly, the analysis of data collected demonstrated that molecules from natural sources or their mimetics and semisynthetic derivatives constitute the majority of compounds being explored at the moment by means of in vitro and in vivo animal studies. Therefore, several of these molecules can be useful as lead compounds and some of them can even have the potential to be considered in the future clinical candidates for the treatment of hyperuricemia.
Collapse
|
34
|
Broughton-Neiswanger LE, Rivera-Velez SM, Suarez MA, Slovak JE, Piñeyro PE, Hwang JK, Villarino NF. Urinary chemical fingerprint left behind by repeated NSAID administration: Discovery of putative biomarkers using artificial intelligence. PLoS One 2020; 15:e0228989. [PMID: 32053695 PMCID: PMC7018043 DOI: 10.1371/journal.pone.0228989] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 01/28/2020] [Indexed: 02/07/2023] Open
Abstract
Prediction and early detection of kidney damage induced by nonsteroidal anti-inflammatories (NSAIDs) would provide the best chances of maximizing the anti-inflammatory effects while minimizing the risk of kidney damage. Unfortunately, biomarkers for detecting NSAID-induced kidney damage in cats remain to be discovered. To identify potential urinary biomarkers for monitoring NSAID-based treatments, we applied an untargeted metabolomics approach to urine collected from cats treated repeatedly with meloxicam or saline for up to 17 days. Applying multivariate analysis, this study identified a panel of seven metabolites that discriminate meloxicam treated from saline treated cats. Combining artificial intelligence machine learning algorithms and an independent testing urinary metabolome data set from cats with meloxicam-induced kidney damage, a panel of metabolites was identified and validated. The panel of metabolites including tryptophan, tyrosine, taurine, threonic acid, pseudouridine, xylitol and lyxitol, successfully distinguish meloxicam-treated and saline-treated cats with up to 75–100% sensitivity and specificity. This panel of urinary metabolites may prove a useful and non-invasive diagnostic tool for monitoring potential NSAID induced kidney injury in feline patients and may act as the framework for identifying urine biomarkers of NSAID induced injury in other species.
Collapse
Affiliation(s)
- Liam E. Broughton-Neiswanger
- Program in Individualized Medicine, Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, WA, United States of America
| | - Sol M. Rivera-Velez
- Program in Individualized Medicine, Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, WA, United States of America
| | - Martin A. Suarez
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, WA, United States of America
| | | | - Pablo E. Piñeyro
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Iowa State University, Ames, IA, United States of America
| | - Julianne K. Hwang
- Program in Individualized Medicine, Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, WA, United States of America
| | - Nicolas F. Villarino
- Program in Individualized Medicine, Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, WA, United States of America
- * E-mail:
| |
Collapse
|
35
|
|
36
|
Noshahr ZS, Salmani H, Khajavi Rad A, Sahebkar A. Animal Models of Diabetes-Associated Renal Injury. J Diabetes Res 2020; 2020:9416419. [PMID: 32566684 PMCID: PMC7256713 DOI: 10.1155/2020/9416419] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 04/28/2020] [Indexed: 12/29/2022] Open
Abstract
Diabetic nephropathy (DN) is the main factor leading to end-stage renal disease (ESRD) and subsequent morbidity and mortality. Importantly, the prevalence of DN is continuously increasing in developed countries. Many rodent models of type 1 and type 2 diabetes have been established to elucidate the pathogenesis of diabetes and examine novel therapies against DN. These models are developed by chemical, surgical, genetic, drug, and diet/nutrition interventions or combination of two or more methods. The main characteristics of DN including a decrease in renal function, albuminuria and mesangiolysis, mesangial expansion, and nodular glomerulosclerosis should be exhibited by an animal model of DN. However, a rodent model possessing all of the abovementioned features of human DN has not yet been developed. Furthermore, mice of different genetic backgrounds and strains show different levels of susceptibility to DN with respect to albuminuria and development of glomerular and tubulointerstitial lesions. Therefore, the type of diabetes, development of nephropathy, duration of the study, cost of maintaining and breeding, and animals' mortality rate are important factors that might be affected by the type of DN model. In this review, we discuss the pros and cons of different rodent models of diabetes that are being used to study DN.
Collapse
Affiliation(s)
- Zahra Samadi Noshahr
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Salmani
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abolfazl Khajavi Rad
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Halal Research Center of IRI, FDA, Tehran, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
37
|
Wu P, Shi X, Luo M, Inam-U-Llah, Li K, Zhang M, Ma J, Li Y, Liu Y, Zhang C, Liu X, Li S, Li Q, Chen X, Che X, Piao F. Taurine inhibits neuron apoptosis in hippocampus of diabetic rats and high glucose exposed HT-22 cells via the NGF-Akt/Bad pathway. Amino Acids 2019; 52:87-102. [PMID: 31875259 DOI: 10.1007/s00726-019-02810-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 11/28/2019] [Indexed: 01/23/2023]
Abstract
Type 2 Diabetes causes learning and memory deficits that might be mediated by hippocampus neuron apoptosis. Studies found that taurine might improve cognitive deficits under diabetic condition because of its ability to prevent hippocampus neuron apoptosis. However, the effect and mechanism is not clear. In this study, we explore the effect and mechanism of taurine on inhibiting hippocampus neuron apoptosis. Sixty male Sprague-Dawley rats were randomly divided into control, T2D, taurine treatment (giving 0.5%, 1%, and 2% taurine in drinking water) groups. Streptozotocin was used to establish the diabetes model. HT-22 cell (hippocampus neurons line) was used for in vitro experiments. Morris Water Maze test was used to check the learning and memory ability, TUNEL assay was used to measure apoptosis and nerve growth factor (NGF); Akt/Bad pathway relevant protein was detected by western blot. Taurine improved learning and memory ability and significantly decreased apoptosis of the hippocampus neurons in T2D rats. Moreover, taurine supplement also inhibited high glucose-induced apoptosis in HT-22 cell in vitro. Mechanistically, taurine increased the expression of NGF, phosphorylation of Trka, Akt, and Bad, as well as reduced cytochrome c release from mitochondria to cytosol. However, beneficial effects of taurine were blocked in the presence of anti-NGF antibody or Akt inhibitor. Taurine could inhibit hippocampus neuron apoptosis via NGF-Akt/Bad pathway. These results provide some clues that taurine might be efficient and feasible candidate for improvement of learning and memory ability in T2D rats.
Collapse
Affiliation(s)
- Pingan Wu
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian, China
| | - Xiaoxia Shi
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian, China
| | - Mengxin Luo
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian, China
| | - Inam-U-Llah
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian, China
| | - Kaixin Li
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian, China
| | - Mengren Zhang
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian, China
| | - Jingran Ma
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian, China
| | - Yuan Li
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian, China
| | - Yanqing Liu
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian, China
| | - Cong Zhang
- Department of Food Nutrition and Safety, Dalian Medical University, Dalian, China
| | - Xiaofang Liu
- Department of Food Nutrition and Safety, Dalian Medical University, Dalian, China
| | - Shuangyue Li
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian, China
| | - Qiujuan Li
- Department of Experimental Teaching Center of Public Health, Dalian Medical University, Dalian, China
| | - Xiaochi Chen
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, China
| | - Xiangyu Che
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, China.
| | - Fengyuan Piao
- Integrative Laboratory, Affiliated Zhong Shan Hospital of Dalian University, Dalian, 116001, China.
| |
Collapse
|
38
|
Li K, Shi X, Luo M, Inam-U-Llah, Wu P, Zhang M, Zhang C, Li Q, Wang Y, Piao F. Taurine protects against myelin damage of sciatic nerve in diabetic peripheral neuropathy rats by controlling apoptosis of schwann cells via NGF/Akt/GSK3β pathway. Exp Cell Res 2019; 383:111557. [PMID: 31415759 DOI: 10.1016/j.yexcr.2019.111557] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 07/30/2019] [Accepted: 08/10/2019] [Indexed: 12/19/2022]
Abstract
Diabetic peripheral neuropathy is a common complications of Type 2 Diabetes and its main pathological feature is myelin sheath damage of peripheral nerve that was induced by Schwann cells (SCs) apoptosis. Increasing evidence suggested that taurine might play a role in improving DPN because of its ability to prevent SCs apoptosis. In this study, we explore the effect of taurine on preventing SCs apoptosis and its underlying mechanism. Sprague Dawley rats were treated with streptozotocin to establish the diabetes model. Rats were randomly divided into control, diabetes, taurine treatment (as giving 0.5%, 1% and 2% taurine in drinking water) groups. RSC96 cell (a rat SCs line) was used for intervention experiments in vitro. Results showed that taurine significantly corrected morphology of damaged myelin sheath and inhibited SCs apoptosis in sciatic nerve of diabetic rats. Moreover, taurine prevented apoptosis of RSC96 cells exposed to high glucose. Mechanistically, taurine up-regulated NGF expression and phosphorylation levels of Akt and GSK3β, while, blocking activation of NGF and phosphorylation of Akt and GSK3β increased apoptosis of high glucose-exposed RSC96 cells with taurine supplement. These results revealed taurine improved the myelin sheath damage of sciatic nerve in diabetic rats by controlling SCs apoptosis via NGF/Akt/GSK3β signaling pathways, which provides some clues that taurine might be effective and feasible candidate for the treatment of DPN.
Collapse
Affiliation(s)
- Kaixin Li
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian, China
| | - Xiaoxia Shi
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian, China
| | - Mengxin Luo
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian, China
| | - Inam-U-Llah
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian, China
| | - Pingan Wu
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian, China
| | - Mengren Zhang
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian, China
| | - Cong Zhang
- Department of Food Nutrition and Safety, Dalian Medical University, Dalian, China
| | - Qiujuan Li
- Department of Experimental Teaching Center of Public Health, Dalian Medical University, Dalian, China
| | - Yachen Wang
- Department of Regenerative Medicine Center and Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Fengyuan Piao
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian, China; Comprehensive Laboratory, Affiliated Zhong Shan Hospital of Dalian University, Dalian, 116001, China.
| |
Collapse
|
39
|
Karim N, Rahman A, Chanudom L, Thongsom M, Tangpong J. Mangosteen Vinegar Rind from Garcinia mangostana Prevents High-Fat Diet and Streptozotocin-Induced Type II Diabetes Nephropathy and Apoptosis. J Food Sci 2019; 84:1208-1215. [PMID: 31012974 DOI: 10.1111/1750-3841.14511] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 01/23/2019] [Accepted: 02/14/2019] [Indexed: 12/28/2022]
Abstract
Type II diabetes (T2D) nephropathy, a major cause of end-stage kidney disease, progresses and develops from oxidative stress. Natural polyphenols can protect the kidney from diabetic nephropathy exerting antioxidant activities. The present approach enumerates the reno-protective and anti-apoptotic effects of mangosteen vinegar rind (MVR, a phenolic aqueous extract) against high-fat diet (5 g/day up to five weeks)-/streptozotocin (single ip, dose 30 mg/kgBW)-induced T2D nephropathy of albino mice. In vitro total phenolic content, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) activity, 2,2-diphenyl-1-picrylhydrazyl (DPPH) antioxidant capacity, and α-amylase inhibition activity as antidiabetic assay of MVR were performed. In vivo mice body weight, oral glucose, and maltose tolerance test, metabolic parameters (plasma glucose, insulin level, omeostasis model assessment-estimated insulin resistance), biochemical parameters (kidney hypertrophy, blood urea nitrogen, creatinine), oxidative stress parameters (malondialdehyde, superoxide dismutase, catalase) were estimated in an intervention study. Additionally, renal morphology and early apoptosis were observed following the H & E staining and TUNEL assay of the tissue frozen section. We found that the aqueous extract of MVR possesses potent in vitro antioxidative and antidiabetic activities. Animal intervention results showed that MVR 100, 200 mg/kgBW, and Glibenclamide 60 mg/kgBW treatments significantly improved (P < 0.05) the abovementioned parameters compared to the diabetic control group. Furthermore, treatments also significantly restored (P < 0.05) kidney histological alterations and reduced cellular apoptosis compared to the diabetic control group. These findings concluded that MVR treatments significantly modulated the glucose intolerance, metabolic alterations, and oxidative stress-induced pathological alterations and cellular apoptosis of diabetic kidney. PRACTICAL APPLICATION: Garcinia mangostana, a polyphenol rich natural product, is obtained from the tropical rain forest area of Southeast Asian countries and processes diverse biological activities including antioxidant, anti-proliferative, anti-inflammatory, anti-carcinogenic, and so on. This research first time focuses on the nephro-protective and anti-apoptotic effects of mangosteen vinegar rind (MVR) from the mangosteen fruit pericarp. Our study provides the efficient data to prove the beneficial effect of MVR as a dietary supplement for the prevention and management of diabetic nephropathy.
Collapse
Affiliation(s)
- Naymul Karim
- Biomedical Sciences, School of Allied Health Sciences, Walailak Univ., Nakhon Si Thammarat, 80161, Thailand
| | - Atiar Rahman
- Dept. of Biochemistry and Molecular Biology, Univ. of Chittagong, Chittagong, 80280, Bangladesh
| | - Lanchakon Chanudom
- Biology Program, Faculty of Science and Technology, Nakhonsithammarat Rajabhat University, Nakhon Si Thammarat, Thailand
| | - Montakarn Thongsom
- Biology Program, Faculty of Science and Technology, Nakhonsithammarat Rajabhat University, Nakhon Si Thammarat, Thailand
| | - Jitbanjong Tangpong
- Biomedical Sciences, School of Allied Health Sciences, Walailak Univ., Nakhon Si Thammarat, 80161, Thailand
| |
Collapse
|
40
|
Chowdhury S, Ghosh S, Das AK, Sil PC. Ferulic Acid Protects Hyperglycemia-Induced Kidney Damage by Regulating Oxidative Insult, Inflammation and Autophagy. Front Pharmacol 2019; 10:27. [PMID: 30804780 PMCID: PMC6371841 DOI: 10.3389/fphar.2019.00027] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 01/10/2019] [Indexed: 12/31/2022] Open
Abstract
Oxidative insult, inflammation, apoptosis and autophagy play a pivotal role in the etiology of diabetic nephropathy, a global health concern. Ferulic acid, a phytochemical, is reported to protect against varied diseased conditions. However, the ameliorative role and mechanisms of ferulic acid in averting STZ-mediated nephrotoxicity largely remains unknown. For in vivo study, a single intraperitoneal injection of streptozotocin (50 mg kg-1 body wt.) was administered in experimental rats to induce diabetes. The diabetic rats exhibited a rise in blood glucose level as well as kidney to body weight ratio, a decrease in serum insulin level, severe kidney tissue damage and dysfunction. Elevation of intracellular ROS level, altered mitochondrial membrane potential and cellular redox balance impairment shown the participation of oxidative stress in hyperglycemia-triggered renal injury. Treatment with ferulic acid (50 mg kg-1 body wt., orally for 8 weeks), post-diabetic induction, could markedly ameliorate kidney injury, renal cell apoptosis, inflammation and defective autophagy in the kidneys. The underlying mechanism for such protection involved the modulation of AGEs, MAPKs (p38, JNK, and ERK 1/2), NF-κB mediated inflammatory pathways, mitochondria-dependent and -independent apoptosis as well as autophagy induction. In cultured NRK-52E cells, ferulic acid (at an optimum dose of 75 μM) could counter excessive ROS generation, induce autophagy and inhibit apoptotic death of cells under high glucose environment. Blockade of autophagy could significantly eradicate the protective effect of ferulic acid in high glucose-mediated cell death. Together, the study confirmed that ferulic acid, exhibiting hypoglycemic, antioxidant, anti-inflammatory, anti-apoptotic activities and role in autophagy, could circumvent oxidative stress-mediated renal cell damage.
Collapse
Affiliation(s)
| | - Sumit Ghosh
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| | | | - Parames C Sil
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| |
Collapse
|
41
|
Modification by Ethanol and Taurine, Singly and in Combination, of Changes in Indices of Renal Dysfunction Caused by Diabetes in Rats. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1155:369-380. [DOI: 10.1007/978-981-13-8023-5_35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
42
|
Inam-U-Llah, Shi X, Zhang M, Li K, Wu P, Suleman R, Shahbaz M, Taj A, Piao F. Protective Effect of Taurine on Apoptosis of Spinal Cord Cells in Diabetic Neuropathy Rats. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1155:875-887. [PMID: 31468454 DOI: 10.1007/978-981-13-8023-5_74] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Diabetes mellitus (DM) is a condition characterized by chronic hyperglycemia, which leads to diabetic neuropathy and apoptosis in the spinal cord. Taurine has been found to ameliorate the diabetic neuropathy and control apoptosis in various tissues. However, there are few reports that discuss the direct relationship between spinal cord and anti-apoptotic effect of taurine. In this study, DM was induced in male SD rats with STZ @ 25 mg/Kg of body weight in combination with high fat diet. After 2 weeks, they were divided into four groups as DM: diabetic rats, T1 (0.5%), T2 (1%) and T3 (2%) taurine solution, while control group was non-diabetic rats (no treatment). The results showed that DM increased apoptosis, decreased phosphorylated Akt and Bad. DM decreased expression of Bcl-2 and increased the Bax. Moreover, the release of cytochrome c into cytosol was increased in DM and activation of caspase-3 was also increased. However, taurine reversed all these abnormal changes in a dose dependent manner. Our results suggested the involvement of Akt/Bad signaling pathway and mitochondrial apoptosis pathway in protective effect of taurine against apoptosis in the spinal cord of diabetic rats. Therefore, taurine may be a potential medicine against diabetic neuropathy by controlling apoptosis.
Collapse
Affiliation(s)
- Inam-U-Llah
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian, China
| | - Xiaoxia Shi
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian, China
| | - Mengren Zhang
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian, China
| | - Kaixin Li
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian, China
| | - Pingan Wu
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian, China
| | - Raheel Suleman
- Institute of Food Science and Technology, Chinese Academy of Agricultural Science, Beijing, China
| | - Muhammad Shahbaz
- Department of Food Science and Technology, Muhammad Nawaz Sharif University of Agriculture, Multan, Pakistan
| | - Ayaz Taj
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian, China
| | - Fengyuan Piao
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian, China
| |
Collapse
|
43
|
Wu P, Chen X, Shi X, Zhang M, Li K, Suleman R, Shahbaz M, Alam S, Piao F. Taurine Ameliorates High Glucose Induced Apoptosis in HT-22 Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1155:889-903. [PMID: 31468455 DOI: 10.1007/978-981-13-8023-5_75] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Diabetes causes memory loss. Hippocampus is responsible for memory and increased apoptosis was found in diabetes patients. Taurine improved memory in diabetes condition. However, mechanism is unclear. In current study, hippocampal cell line HT-22 cells were subjected to analysis as five groups i.e. Control, High glucose (HG) at concentration of 150 mM, HG + 10 mM (T1), 20 mM (T2) and 40 mM (T3) taurine solution. TUNEL assay showed that HG increased the number of apoptotic cell significantly while taurine reduced apoptosis. Taurine increased phosphorylation of Akt in HT-22 cell treated with HG, and increased phosphorylation of Bad (p-Bad) was seen suggesting involvement of Akt/Bad signaling pathway. Expression of Bcl-2 was reduced in HG group but taurine improved this. Bax expression showed opposite trend. This indicated that taurine may reduce apoptosis by controlling balance of Bcl-2 and Bax. When the activation of Akt was blocked by using of perifosine, the effect of taurine disappears either partially or altogether. Thus, it was clear that taurine reduces apoptosis via Akt/Bad pathway in HT-22 cells exposed to HG which further improves downstream balance of Bcl-2 and Bax. This mechanism may be involved in apoptosis of hippocampus cells in diabetic condition.
Collapse
Affiliation(s)
- Pingan Wu
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian, China
| | - Xiaochi Chen
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiaoxia Shi
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian, China
| | - Mengren Zhang
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian, China
| | - Kaixin Li
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian, China
| | - Raheel Suleman
- Institute of Food Science and Technology, Graduate School of Chinese Academy of Agriculture Science, Beijing, China
| | - Muhammad Shahbaz
- Department of Food Science and Technology, Muhammad Nawaz Sharif University of Agriculture, Multan, Pakistan
| | - Shahid Alam
- Department of Anatomy, Dalian Medical University, Dalian, China
| | - Fengyuan Piao
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian, China
| |
Collapse
|
44
|
Ma N, Kato T, Isogai T, Gu Y, Yamashita T. The Potential Effects of Taurine in Mitigation of Radiation Nephropathy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1155:497-505. [PMID: 31468426 DOI: 10.1007/978-981-13-8023-5_46] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Taurine (2-aminoethanesulfonic acid) is a sulfur-containing organic acid possessing several important effects, including antioxidant and anti-inflammatory ones. Exposure to ionizing radiation generates free radicals and reactive oxygen species (ROS) in irradiated cells, and free radical generation leads to oxidative stress. It is known that radiation nephropathy includes an inflammation-based process in which ROS and cytokines are responsible. Different doses of explored radiation can cause apoptosis, inflammation and a profound oxidative stress in kidneys. Oxidative stress is involved in renal injury after exposure to both ionizing radiation and inflammation. In this review, we describe the protective effect of taurine against several kidney diseases and the potential effects of taurine in the mitigation of radiation nephropathy. We also report that X-irradiation decreased the expression of taurine and TauT in the kidney. Taurine administration suppressed the decrease in the expression of taurine and TauT in the kidney after radiation exposure. Taurine might contribute to the mitigation of kidney injury induced by radiation.
Collapse
Affiliation(s)
- Ning Ma
- Division of Health Science, Graduate School of Health Science, Suzuka University, Suzuka, Mie, Japan
| | - Toshihiro Kato
- Department of Rehabilitation, Suzuka Kaisei Hospital, Suzuka, Japan
| | - Tamami Isogai
- Faculty of Health Science, Suzuka University of Medical Science, Suzuka, Japan
| | - Yeunhwa Gu
- Faculty of Health Science, Junshin Gakuen University, Fukuoka, Japan
| | - Takenori Yamashita
- Faculty of Health Science, Suzuka University of Medical Science, Suzuka, Japan. .,Division of Health Science, Graduate School of Health Science, Suzuka University of Medical Science, Suzuka, Mie, Japan.
| |
Collapse
|
45
|
Pandya K, Clark GJ, Lau-Cam CA. Investigation of the Role of a Supplementation with Taurine on the Effects of Hypoglycemic-Hypotensive Therapy Against Diabetes-Induced Nephrotoxicity in Rats. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 975 Pt 1:371-400. [PMID: 28849470 DOI: 10.1007/978-94-024-1079-2_32] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
This study has examined the role of supplementing a treatment of diabetic rats with captopril (CAP), metformin (MET) or CAP-MET with the antioxidant amino acid taurine (TAU) on biochemical indices of diabetes-induced metabolic changes, oxidative stress and nephropathy. To this end, groups of 6 male Sprague-Dawley rats (250-375 g) were made diabetic with a single, 60 mg/kg, intraperitoneal dose of streptozotocin (STZ) in 10 mM citrate buffer pH 4.5 and, after 14 days, treated daily for up to 42 days with either a single oral dose of CAP (0.15 mM/kg), MET (2.4 mM/kg) or TAU (2.4 mM/kg), or with a binary or tertiary combination of these agents. Rats receiving only 10 mM citrate buffer pH 4.5 or only STZ served as negative and positive controls, respectively. All rats were sacrificed by decapitation on day 57 and their blood and kidneys collected. In addition, a 24 h urine sample was collected starting on day 56. Compared to normal rats, untreated diabetic ones exhibited frank hyperglycemia (+313%), hypoinsulinemia (-76%) and elevation of the glycated hemoglobin value (HbA1c, +207%). Also they showed increased plasma levels of Na+ (+35%), K+ (+56%), creatinine (+232%), urea nitrogen (+158%), total protein (-53%) and transforming growth factor-β1 (TGF-β1, 12.4-fold) values. These changes were accompanied by increases in the renal levels of malondialdehyde (MDA, +42%), by decreases in the renal glutathione redox state (-71%), and activities of catalase (-70%), glutathione peroxidase (-71%) and superoxide dismutase (-85%), and by moderate decreases of the urine Na+ (-33%) and K+ (-39%) values. Following monotherapy, MET generally showed a greater attenuating effect than CAP or TAU on the changes in circulating glucose, insulin and HbA1c levels, urine total protein, and renal SOD activity; and CAP appeared more potent than TAU and MET, in that order, in antagonizing the changes in plasma creatinine and urea nitrogen levels. On the other hand, TAU generally provided a greater protection against changes in glutathione redox state and in CAT and GPx activities, with other actions falling in potency between those of CAP and MET. Adding TAU to a treatment with CAP, but not to one with MET, led to an increase in protective action relative to a treatment with drug alone. On the other hand, the actions of CAP-MET, which were about equipotent with those of MET, became enhanced in the presence of TAU, particularly against the changes of the glutathione redox state and activities of antioxidant enzymes. In short, the present results suggest that the addition of TAU to a treatment of diabetes with CAP or CAP-MET, and sometimes to one with MET, will lead to a gain in protective potency against changes in indices of glucose metabolism and of renal functional impairment and oxidative stress.
Collapse
Affiliation(s)
- Kashyap Pandya
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Jamaica, NY, 11439, USA
| | - George J Clark
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Jamaica, NY, 11439, USA
| | - Cesar A Lau-Cam
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Jamaica, NY, 11439, USA.
| |
Collapse
|
46
|
Liu L, Guo L, Xie X, Fan N, Li Y, Li Y, Zhang X. Taurine Alleviate Hexabromocyclododecane-Induced Cytotoxicity in PC12 Cells via Inhibiting Oxidative Stress. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 975 Pt 1:107-117. [PMID: 28849448 DOI: 10.1007/978-94-024-1079-2_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hexabromocyclododecane (HBCD) is a widely used brominated flame retardant. Its adverse effects on brain had been observed. Taurine, a sulfur amino acid, take part in many brain physiological functions and exhibits protective effects on a variety of detrimental situations. In this paper, we explored the protections of taurine on cytotoxicity induced by HBCD in PC12 cells. PC12 cells were pretreated with taurine (1 mM, 3 mM and 9 mM) for 30 min before 10 μM HBCD treatment for 24 h. Then, the cell survival was assayed by the lactate dehydrogenase (LDH) release and trypan blue dyeing method. The formation of reactive oxygen species (ROS) and a collapse of mitochondrial membrane potential (MMP) were evaluated with a fluorescence microplate reader using the non-fluorescent probe 2'7'-dichlorofluorescin diacetate (DCFH-DA) and the fluorescent cationic dyestuff Rhodamine 123 (Rh 123), respectively. Further, the activity of many antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and the content of glutathione (GSH) were tested by kits. Our results displayed that taurine significantly decreased the cell death induced by HBCD, prevented ROS production and disruption of mitochondrial membrane potential, and reversed the decline of SOD, CAT, GPx activity and GSH content induced by HBCD. These results suggested that taurine could alleviate cytotoxicity induced by HBCD in PC12 cells through inhibition of oxidative stress.
Collapse
Affiliation(s)
- Lu Liu
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Lianying Guo
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Xizhe Xie
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Ning Fan
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Yan Li
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Yachen Li
- School of Public Health, Dalian Medical University, No. 9 Western Section of Lushun South Road, Dalian, Liaoning, 116044, China.
| | - Xiuli Zhang
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, China.
| |
Collapse
|
47
|
Zhang Q, Olatunji OJ, Chen H, Tola AJ, Oluwaniyi OO. Evaluation of the Anti-Diabetic Activity of Polysaccharide from Cordyceps cicadae in Experimental Diabetic Rats. Chem Biodivers 2018; 15:e1800219. [PMID: 29874416 DOI: 10.1002/cbdv.201800219] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 06/05/2018] [Indexed: 02/06/2023]
Abstract
Cordyceps cicadae is a medicinal fungus used in treating night sweat, childhood convulsions, vision improvement and pain. This study was designed to evaluate the anti-diabetic activity of the crude polysaccharide (SHF) from the mycelium and body portion of C. cicadae. Diabetes mellitus was induced in the rat with a single intravenous injection of alloxan monohydrate (150 mg/kg). In other to evaluate the anti-diabetic effects of C. cicadae polysaccharide in alloxan-induced diabetic rats, the crude polysaccharide (SHF at 100, 200 and 400 mg/kg body weight) and glibenclamide were administered orally to diabetic rats for 30 days. Blood glucose level, total cholesterol (TC), triglyceride (TG), low density lipoprotein (LDL), high density lipoprotein (HDL), alanine transaminase (ALT), aspartate aminotransferase (AST), alkaline phosphate (ALP), creatinine (CREA), urea, malondialdehyde (MDA), superoxide dismutase (SOD), glutathione peroxidase (GSH) were determined. SHF showed significant reduction in blood glucose in diabetic rats. Treatment of diabetic rats also resulted an improvement in body weights, increased HDL, SOD and GSH, as well as decreased TC, TG, LDL, MDA, urea, CREA, ALT, AST and ALP. These results suggested that C. cicadae polysaccharide displayed anti-hyperglycemic, anti-hyperlipidemic and antioxidant activities and could be a promising therapeutic source in managing diabetes mellitus and its associated complications.
Collapse
Affiliation(s)
- Qianping Zhang
- Department of Endocrinology, Dezhou Municipal Hospital, Dezhou, 253000, P. R. China
| | - Opeyemi J Olatunji
- Faculty of Thai Traditional Medicine, Prince of Songkla University, Hat Yai, 90112, Thailand
| | - Hongxia Chen
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, R. P. China
| | - Adesola J Tola
- Department of Biochemistry, Faculty of Science, Prince of Songkla University, Hat Yai, 90112, Thailand
| | - Omolara O Oluwaniyi
- Department of Industrial Chemistry, Faculty of Science, University of Ilorin, P.M.B 1515, Ilorin, Kwara State, Nigeria
| |
Collapse
|
48
|
Schaffer S, Kim HW. Effects and Mechanisms of Taurine as a Therapeutic Agent. Biomol Ther (Seoul) 2018; 26:225-241. [PMID: 29631391 PMCID: PMC5933890 DOI: 10.4062/biomolther.2017.251] [Citation(s) in RCA: 196] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 01/29/2018] [Accepted: 01/31/2018] [Indexed: 01/16/2023] Open
Abstract
Taurine is an abundant, β-amino acid with diverse cytoprotective activity. In some species, taurine is an essential nutrient but in man it is considered a semi-essential nutrient, although cells lacking taurine show major pathology. These findings have spurred interest in the potential use of taurine as a therapeutic agent. The discovery that taurine is an effective therapy against congestive heart failure led to the study of taurine as a therapeutic agent against other disease conditions. Today, taurine has been approved for the treatment of congestive heart failure in Japan and shows promise in the treatment of several other diseases. The present review summarizes studies supporting a role of taurine in the treatment of diseases of muscle, the central nervous system, and the cardiovascular system. In addition, taurine is extremely effective in the treatment of the mitochondrial disease, mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes (MELAS), and offers a new approach for the treatment of metabolic diseases, such as diabetes, and inflammatory diseases, such as arthritis. The review also addresses the functions of taurine (regulation of antioxidation, energy metabolism, gene expression, ER stress, neuromodulation, quality control and calcium homeostasis) underlying these therapeutic actions.
Collapse
Affiliation(s)
- Stephen Schaffer
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36688,
USA
| | - Ha Won Kim
- Department of Life Science, University of Seoul, Seoul 02504,
Republic of Korea
| |
Collapse
|
49
|
Roles of osmolytes in protein folding and aggregation in cells and their biotechnological applications. Int J Biol Macromol 2018; 109:483-491. [DOI: 10.1016/j.ijbiomac.2017.12.100] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 12/19/2017] [Indexed: 12/19/2022]
|
50
|
Piao F, Aadil RM, Suleman R, Li K, Zhang M, Wu P, Shahbaz M, Ahmed Z. Ameliorative effects of taurine against diabetes: a review. Amino Acids 2018; 50:487-502. [PMID: 29492671 DOI: 10.1007/s00726-018-2544-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 02/19/2018] [Indexed: 01/01/2023]
Abstract
Diets in rats and humans have shown promising results. Taurine improved glucagon activity, promoted glycemic stability, modified glucose levels, successfully addressed hyperglycemia via advanced glycation end-product control, improved insulin secretion and had a beneficial effect on insulin resistance. Taurine treatment performed well against oxidative stress in brain, increased the secretion of required hormones and protected against neuropathy, retinopathy and nephropathy in diabetes compared with the control. Taurine has been observed to be effective in treatments against diabetic hepatotoxicity, vascular problems and heart injury in diabetes. Taurine was shown to be effective against oxidative stress. The mechanism of action of taurine cannot be explained by one pathway, as it has many effects. Several of the pathways are the advanced glycation end-product pathway, PI3-kinase/AKT pathway and mitochondrial apoptosis pathway. The worldwide threat of diabetes underscores the urgent need for novel therapeutic measures against this disorder. Taurine (2-aminoethane sulfonic acid) is a natural compound that has been studied in diabetes and diabetes-induced complications.
Collapse
Affiliation(s)
- Fengyuan Piao
- School of Public Health, Dalian Medical University, Dalian, 116044, China.
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture Faisalabad, Faislabad, Pakistan
| | - Raheel Suleman
- Institute of Food Science and Technology, Graduate School of Chinese Academy of Agriculture Science, Beijing, China
| | - Kaixin Li
- School of Public Health, Dalian Medical University, Dalian, 116044, China
| | - Mengren Zhang
- School of Public Health, Dalian Medical University, Dalian, 116044, China
| | - Pingan Wu
- School of Public Health, Dalian Medical University, Dalian, 116044, China
| | - Muhammad Shahbaz
- Department of Food Science and Technology, Muhammad Nawaz Sharif University of Agriculture, Multan, Pakistan
| | - Zulfiqar Ahmed
- Department of Food Science and Technology, College of Environmental and Agricultural Sciences, Islamia University Bahawalpur, Bhawalpur, Pakistan
| |
Collapse
|