1
|
Martinez Aguirre-Betolaza A, Cacicedo J, Castañeda-Babarro A. Creatine Supplementation and Resistance Training in Patients With Breast Cancer (CaRTiC Study): Protocol for a Randomized Controlled Trial. Am J Clin Oncol 2024; 47:161-168. [PMID: 38018533 DOI: 10.1097/coc.0000000000001070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
BACKGROUND Creatine supplementation is an effective ergogenic nutrient for athletes, as well as for people starting a health or fitness program. Resistance training has previously been identified as an important method of increasing muscle mass and strength, especially in people with cancer to avoid sarcopenia. The potential of creatine supplementation for adaptations produced by resistance training in patients with cancer is still unknown. The primary aim of this study is to evaluate the effectiveness of a supervised resistance training program intervention with and without creatine supplementation in patients with breast cancer. METHODS Is a multicentre, randomized, blind, placebo-controlled study. Patients will be randomly assigned to a control group and 2 experimental groups. The first training resistance group (RG) will perform resistance training, while the second experimental resistance-creatine group will perform the same resistance training as the RG and will also receive a 5 g/d creatine supplementation during the intervention. RG participants will follow the same daily dosing protocol, but in their case, with dextrose/maltodextrin. Resistance training will be a 16-week supervised workout that will consist of a series of resistance exercises (leg press, knee extension, knee bends, chest press, sit-ups, back extensions, pull-ups, and shoulder press) that involve the largest muscle groups, performed 3 times a week on nonconsecutive days. Both the RG and the resistance-creatine group will receive a supplement of soluble protein powder (20 to 30 g) daily. CONCLUSION This intervention will help to better understand the potential of nonpharmacological treatment for improving strength and well-being values in patients with breast cancer with and without creatine supplementation.
Collapse
Affiliation(s)
| | - Jon Cacicedo
- Department of Radiation Oncology, Group for Radiology and Physical Medicine in Oncology, Cruces University Hospital/Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Arkaitz Castañeda-Babarro
- Department of Physical Activity and Sport Sciences, Faculty of Education and Sport, University of Deusto, Bilbao, Spain
| |
Collapse
|
2
|
Delpino FM, Figueiredo LM. Does creatine supplementation improve glycemic control and insulin resistance in healthy and diabetic patients? A systematic review and meta-analysis. Clin Nutr ESPEN 2022; 47:128-134. [PMID: 35063192 DOI: 10.1016/j.clnesp.2021.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 10/19/2021] [Accepted: 11/03/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND & AIMS Creatine supplementation shows promising effects on diabetes, especially in glucose management and insulin secretion. This study aimed to review the literature on studies that evaluated the effects of creatine supplementation on parameters of diabetes in humans. METHODS We conducted a systematic review and meta-analysis, until December 2020, in the following databases: Pubmed, Lilacs, Scielo, Scopus, SPORTDiscus, Web of Science, Embase, and Cochrane. It included experimental studies that investigated the effects of creatine supplementation on diabetes treatment or prevention and its relationship with fasting blood glucose and insulin resistance. RESULTS Nine studies were included in the review, from which five showed some benefit of creatine supplementation in at least one diabetes parameter. In diabetic individuals (n = 2), creatine was beneficial. In the meta-analysis, there are no significant effect on fasting blood glucose [SMD: 0.05; CI95%: -0.53, 0.63; p = 0.28; I2 = 22%] and insulin resistance [SMD: -0.38; 95% CI: -0.90, 0.14; p = 0.22; I2 = 33%]. CONCLUSION Our results demonstrated an insufficient basis to state that creatine can positively affect diabetes parameters. Future studies should be conducted with diabetic individuals due to the potential of creatine on diabetes parameters.
Collapse
Affiliation(s)
- Felipe Mendes Delpino
- Postgraduate Program in Nursing, Federal University of Pelotas, Rio Grande do Sul, Brazil; Faculty of Nursing, Federal University of Pelotas.
| | | |
Collapse
|
3
|
Gonçalves MG, Medeiros MA, de Lemos LIC, de Fátima Campos Pedrosa L, de Andrade Santos PP, Abreu BJ, Lima JPMS. Effects of Creatine Supplementation on Histopathological and Biochemical Parameters in the Kidney and Pancreas of Streptozotocin-Induced Diabetic Rats. Nutrients 2022; 14:nu14030431. [PMID: 35276790 PMCID: PMC8840440 DOI: 10.3390/nu14030431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 12/29/2021] [Accepted: 12/29/2021] [Indexed: 12/15/2022] Open
Abstract
Diabetes mellitus (DM) is a worldwide health concern, and projections state that cases will reach 578 million by 2030. Adjuvant therapies that can help the standard treatment and mitigate DM effects are necessary, especially those using nutritional supplements to improve glycemic control. Previous studies suggest creatine supplementation as a possible adjuvant therapy for DM, but they lack the evaluation of potential morphological parameters alterations and tissue injury caused by this compound. The present study aimed to elucidate clinical, histomorphometric, and histopathological consequences and the cellular oxidative alterations of creatine supplementation in streptozotocin (STZ)-induced type 1 DM rats. We could estimate whether the findings are due to DM or the supplementation from a factorial experimental design. Although creatine supplementation attenuated some biochemical parameters, the morphological analyses of pancreatic and renal tissues made clear that the supplementation did not improve the STZ-induced DM1 injuries. Moreover, creatine-supplemented non-diabetic animals were diagnosed with pancreatitis and showed renal tubular necrosis. Therefore, even in the absence of clinical symptoms and unaltered biochemical parameters, creatine supplementation as adjuvant therapy for DM should be carefully evaluated.
Collapse
Affiliation(s)
- Meline Gomes Gonçalves
- Biochemistry and Molecular Biology Graduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil;
| | - Matheus Anselmo Medeiros
- Bioinformatics Graduate Program, Digital Metropolis Institute, Federal University of Rio Grande do Norte, Natal 59078-400, RN, Brazil;
| | | | - Lucia de Fátima Campos Pedrosa
- Graduate Program in Nutrition, Federal University of Rio Grande do Norte, Natal 59.078-970, RN, Brazil; (L.I.C.d.L.); (L.d.F.C.P.)
| | - Pedro Paulo de Andrade Santos
- Structural and Functional Biology Graduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil;
- Biosciences Center, Morphology Department, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil;
| | - Bento João Abreu
- Biosciences Center, Morphology Department, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil;
| | - João Paulo Matos Santos Lima
- Biochemistry and Molecular Biology Graduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil;
- Bioinformatics Graduate Program, Digital Metropolis Institute, Federal University of Rio Grande do Norte, Natal 59078-400, RN, Brazil;
- Correspondence:
| |
Collapse
|
4
|
Benton MJ, Spicher JM, McCormick S. Community-Based Survey Exploring Use of the Dietary Supplement Creatine by Adult Non-Athletes. Nutrients 2021; 13:nu13082529. [PMID: 34444689 PMCID: PMC8401943 DOI: 10.3390/nu13082529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/21/2021] [Accepted: 07/21/2021] [Indexed: 11/16/2022] Open
Abstract
Creatine is classified as a “sports supplement”, but it also has health benefits. The purpose of this study was to assess use of creatine as a dietary supplement in adult non-athletes. Three hundred ninety-nine adults (19–89 years) completed an online survey. Among the respondents, 77% (n = 307) were regularly active, including participation in weightlifting (34%), running (34%), and cycling (21%). Twenty-eight percent (n = 111) reported use of creatine with an average dose of 6.4 ± 4.5 g. Daily creatine use was reported by 45%, and 38% reported using creatine 2–6 times weekly. Primary sources of information about creatine were trainers/coaches (29%), friends/family (32%), and internet (28%). Forty percent (n = 44) of creatine users were female. When compared by age, 46% of young, 32% of midlife, and 6% of old respondents reported creatine use with no differences in dose or frequency. Young and midlife respondents reported primarily trainers/coaches, friends/family, and internet as sources of information about creatine, but old respondents limited their sources to friends/family and fitness magazines. Although creatine is widely used by adult non-athletes who regularly exercise, dietitians and other healthcare providers are not the primary source of information. Fitness trainers can appropriately provide guidance and education regarding safe and effective use of creatine.
Collapse
|
5
|
The Potential Role of Creatine in Vascular Health. Nutrients 2021; 13:nu13030857. [PMID: 33807747 PMCID: PMC7999364 DOI: 10.3390/nu13030857] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/24/2021] [Accepted: 03/04/2021] [Indexed: 12/11/2022] Open
Abstract
Creatine is an organic compound, consumed exogenously in the diet and synthesized endogenously via an intricate inter-organ process. Functioning in conjunction with creatine kinase, creatine has long been known for its pivotal role in cellular energy provision and energy shuttling. In addition to the abundance of evidence supporting the ergogenic benefits of creatine supplementation, recent evidence suggests a far broader application for creatine within various myopathies, neurodegenerative diseases, and other pathologies. Furthermore, creatine has been found to exhibit non-energy related properties, contributing as a possible direct and in-direct antioxidant and eliciting anti-inflammatory effects. In spite of the new clinical success of supplemental creatine, there is little scientific insight into the potential effects of creatine on cardiovascular disease (CVD), the leading cause of mortality. Taking into consideration the non-energy related actions of creatine, highlighted in this review, it can be speculated that creatine supplementation may serve as an adjuvant therapy for the management of vascular health in at-risk populations. This review, therefore, not only aims to summarize the current literature surrounding creatine and vascular health, but to also shed light onto the potential mechanisms in which creatine may be able to serve as a beneficial supplement capable of imparting vascular-protective properties and promoting vascular health.
Collapse
|
6
|
Solis MY, Artioli GG, Gualano B. Potential of Creatine in Glucose Management and Diabetes. Nutrients 2021; 13:nu13020570. [PMID: 33572228 PMCID: PMC7915263 DOI: 10.3390/nu13020570] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 01/28/2021] [Accepted: 02/03/2021] [Indexed: 12/13/2022] Open
Abstract
Creatine is one of the most popular supplements worldwide, and it is frequently used by both athletic and non-athletic populations to improve power, strength, muscle mass and performance. A growing body of evidence has been identified potential therapeutic effects of creatine in a wide variety of clinical conditions, such as cancer, muscle dystrophy and neurodegenerative disorders. Evidence has suggested that creatine supplementation alone, and mainly in combination with exercise training, may improve glucose metabolism in health individuals and insulin-resistant individuals, such as in those with type 2 diabetes mellitus. Creatine itself may stimulate insulin secretion in vitro, improve muscle glycogen stores and ameliorate hyperglycemia in animals. In addition, exercise induces numerous metabolic benefits, including increases in insulin-independent muscle glucose uptake and insulin sensitivity. It has been speculated that creatine supplementation combined with exercise training could result in additional improvements in glucose metabolism when compared with each intervention separately. The possible mechanism underlying the effects of combined exercise and creatine supplementation is an enhanced glucose transport into muscle cell by type 4 glucose transporter (GLUT-4) translocation to sarcolemma. Although preliminary findings from small-scale trials involving patients with type 2 diabetes mellitus are promising, the efficacy of creatine for improving glycemic control is yet to be confirmed. In this review, we aim to explore the possible therapeutic role of creatine supplementation on glucose management and as a potential anti-diabetic intervention, summarizing the current knowledge and highlighting the research gaps.
Collapse
|
7
|
Antonio J, Candow DG, Forbes SC, Gualano B, Jagim AR, Kreider RB, Rawson ES, Smith-Ryan AE, VanDusseldorp TA, Willoughby DS, Ziegenfuss TN. Common questions and misconceptions about creatine supplementation: what does the scientific evidence really show? J Int Soc Sports Nutr 2021; 18:13. [PMID: 33557850 PMCID: PMC7871530 DOI: 10.1186/s12970-021-00412-w] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 01/28/2021] [Indexed: 01/01/2023] Open
Abstract
Supplementing with creatine is very popular amongst athletes and exercising individuals for improving muscle mass, performance and recovery. Accumulating evidence also suggests that creatine supplementation produces a variety of beneficial effects in older and patient populations. Furthermore, evidence-based research shows that creatine supplementation is relatively well tolerated, especially at recommended dosages (i.e. 3-5 g/day or 0.1 g/kg of body mass/day). Although there are over 500 peer-refereed publications involving creatine supplementation, it is somewhat surprising that questions regarding the efficacy and safety of creatine still remain. These include, but are not limited to: 1. Does creatine lead to water retention? 2. Is creatine an anabolic steroid? 3. Does creatine cause kidney damage/renal dysfunction? 4. Does creatine cause hair loss / baldness? 5. Does creatine lead to dehydration and muscle cramping? 6. Is creatine harmful for children and adolescents? 7. Does creatine increase fat mass? 8. Is a creatine 'loading-phase' required? 9. Is creatine beneficial for older adults? 10. Is creatine only useful for resistance / power type activities? 11. Is creatine only effective for males? 12. Are other forms of creatine similar or superior to monohydrate and is creatine stable in solutions/beverages? To answer these questions, an internationally renowned team of research experts was formed to perform an evidence-based scientific evaluation of the literature regarding creatine supplementation.
Collapse
Affiliation(s)
- Jose Antonio
- Department of Health and Human Performance, Nova Southeastern University, Davie, Florida, USA.
| | - Darren G Candow
- Faculty of Kinesiology and Health Studies, University of Regina, Regina, Canada
| | - Scott C Forbes
- Department of Physical Education, Faculty of Education, Brandon University, Brandon, MB, Canada
| | - Bruno Gualano
- Applied Physiology & Nutrition Research Group; School of Medicine, FMUSP, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Andrew R Jagim
- Sports Medicine Department, Mayo Clinic Health System, La Crosse, WI, USA
| | - Richard B Kreider
- Exercise & Sport Nutrition Lab, Human Clinical Research Facility, Department of Health & Kinesiology, Texas A&M University, College Station, USA
| | - Eric S Rawson
- Department of Health, Nutrition, and Exercise Science, Messiah University, Mechanicsburg, PA, USA
| | - Abbie E Smith-Ryan
- Department of Exercise and Sport Science, University of North Carolina, Chapel Hill, NC, USA
| | - Trisha A VanDusseldorp
- Department of Exercise Science and Sport Management, Kennesaw State University, Kennesaw, GA, USA
| | - Darryn S Willoughby
- School of Exercise and Sport Science, University of Mary Hardin-Baylor, Belton, TX, USA
| | | |
Collapse
|
8
|
Kreider RB, Stout JR. Creatine in Health and Disease. Nutrients 2021; 13:nu13020447. [PMID: 33572884 PMCID: PMC7910963 DOI: 10.3390/nu13020447] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/22/2021] [Accepted: 01/27/2021] [Indexed: 12/14/2022] Open
Abstract
Although creatine has been mostly studied as an ergogenic aid for exercise, training, and sport, several health and potential therapeutic benefits have been reported. This is because creatine plays a critical role in cellular metabolism, particularly during metabolically stressed states, and limitations in the ability to transport and/or store creatine can impair metabolism. Moreover, increasing availability of creatine in tissue may enhance cellular metabolism and thereby lessen the severity of injury and/or disease conditions, particularly when oxygen availability is compromised. This systematic review assesses the peer-reviewed scientific and medical evidence related to creatine's role in promoting general health as we age and how creatine supplementation has been used as a nutritional strategy to help individuals recover from injury and/or manage chronic disease. Additionally, it provides reasonable conclusions about the role of creatine on health and disease based on current scientific evidence. Based on this analysis, it can be concluded that creatine supplementation has several health and therapeutic benefits throughout the lifespan.
Collapse
Affiliation(s)
- Richard B. Kreider
- Human Clinical Research Facility, Exercise & Sport Nutrition Lab, Department of Health & Kinesiology, Texas A&M University, College Station, TX 77843, USA
- Correspondence:
| | - Jeffery R. Stout
- Physiology of Work and Exercise Response (POWER) Laboratory, Institute of Exercise Physiology and Rehabilitation Science, School of Kinesiology and Physical Therapy, University of Central Florida, 12494 University Blvd., Orlando, FL 32816, USA;
| |
Collapse
|
9
|
Domingues WJR, Ritti-Dias RM, Cucato GG, Wolosker N, Zerati AE, Puech-Leão P, Coelho DB, Nunhes PM, Moliterno AA, Avelar A. Effect of Creatine Supplementation on Functional Capacity and Muscle Oxygen Saturation in Patients with Symptomatic Peripheral Arterial Disease: A Pilot Study of a Randomized, Double-Blind Placebo-Controlled Clinical Trial. Nutrients 2021; 13:E149. [PMID: 33466233 PMCID: PMC7824795 DOI: 10.3390/nu13010149] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/24/2020] [Accepted: 12/08/2020] [Indexed: 12/17/2022] Open
Abstract
The aim of the study was to verify the effects of creatine (Cr) supplementation on functional capacity (walking capacity; primary outcome) and calf muscle oxygen saturation (StO2) (secondary outcome) in symptomatic peripheral arterial disease (PAD) patients. Twenty-nine patients, of both sexes, were randomized (1:1) in a double-blind manner for administration of placebo (PLA, n = 15) or creatine monohydrate (Cr, n = 14). The supplementation protocol consisted of 20 g/day for 1 week divided into four equal doses (loading phase), followed by single daily doses of 5 g in the subsequent 7 weeks (maintenance phase). Functional capacity (total walking distance) was assessed by the 6 min walk test, and calf muscle StO2 was assessed through near infrared spectroscopy. The measurements were collected before and after loading and after the maintenance phase. The level of significance was p < 0.05. No significant differences were found for function capacity (total walking distance (PLA: pre 389 ± 123 m vs. post loading 413 ± 131 m vs. post maintenance 382 ± 99 m; Cr: pre 373 ± 149 m vs. post loading 390 ± 115 m vs. post maintenance 369 ± 115 m, p = 0.170) and the calf muscle StO2 parameters (p > 0.05). Short- and long-term Cr supplementation does not influence functional capacity and calf muscle StO2 parameters in patients with symptomatic PAD.
Collapse
Affiliation(s)
| | - Raphael Mendes Ritti-Dias
- Postgraduate Program in Rehabilitation Sciences, Nove de Julho University, Sao Paulo 03155-000, Brazil;
| | - Gabriel Grizzo Cucato
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle upon Tyne NE1 8PP, UK;
| | - Nelson Wolosker
- Hospital Israelita Albert Einstein, Sao Paulo 05652-900, Brazil;
| | | | - Pedro Puech-Leão
- Faculty of Medicine Sao Paulo University, Sao Paulo 04021-001, Brazil;
| | - Daniel Boari Coelho
- Center for Engineering, Modeling and Applied Social Sciences (CECS), Federal University of ABC, São Bernardo do Campo 09606-070, Brazil;
| | - Pollyana Mayara Nunhes
- Department of Physical Education, State University of Maringa, Maringa 87020-900, Brazil; (P.M.N.); (A.A.M.); (A.A.)
| | - André Alberto Moliterno
- Department of Physical Education, State University of Maringa, Maringa 87020-900, Brazil; (P.M.N.); (A.A.M.); (A.A.)
| | - Ademar Avelar
- Department of Physical Education, State University of Maringa, Maringa 87020-900, Brazil; (P.M.N.); (A.A.M.); (A.A.)
| |
Collapse
|
10
|
Connell NJ, Doligkeit D, Andriessen C, Kornips-Moonen E, Bruls YMH, Schrauwen-Hinderling VB, van de Weijer T, van Marken-Lichtenbelt WD, Havekes B, Kazak L, Spiegelman BM, Hoeks J, Schrauwen P. No evidence for brown adipose tissue activation after creatine supplementation in adult vegetarians. Nat Metab 2021; 3:107-117. [PMID: 33462512 DOI: 10.1038/s42255-020-00332-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/10/2020] [Indexed: 11/09/2022]
Abstract
Creatine availability in adipose tissue has been shown to have profound effects on thermogenesis and energy balance in mice. However, whether dietary creatine supplementation affects brown adipose tissue (BAT) activation in humans is unclear. In the present study, we report the results of a double-blind, randomized, placebo-controlled, cross-over trial (NCT04086381) in which 14 young, healthy, vegetarian adults, who are characterized by low creatine levels, received 20 g of creatine monohydrate per day or placebo. Participants were eligible if they met the following criteria: male or female, white, aged 18-30 years, consuming a vegetarian diet (≥6 months) and body mass index 20-25 kg m-2. BAT activation after acute cold exposure was determined by calculating standard uptake values (SUVs) acquired by [18F]fluorodeoxyglucose positron emission tomography-magnetic resonance imaging. BAT volume (-31.32 (19.32) SUV (95% confidence interval (CI) -73.06, 10.42; P = 0.129)), SUVmean (-0.34 (0.29) SUV (95% CI -0.97, 0.28; P = 0.254)) and SUVmax (-2.49 (2.64) SUV (95% CI -8.20, 3.21; P = 0.362)) following acute cold exposure were similar between placebo and creatine supplementation. No side effects of creatine supplementation were reported; one participant experienced bowel complaints during placebo, which resolved without intervention. Our data show that creatine monohydrate supplementation in young, healthy, lean, vegetarian adults does not enhance BAT activation after acute cold exposure.
Collapse
Affiliation(s)
- Niels J Connell
- Department of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands
| | - Daniel Doligkeit
- Department of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands
| | - Charlotte Andriessen
- Department of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands
| | - Esther Kornips-Moonen
- Department of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands
| | - Yvonne M H Bruls
- Department of Radiology and Nuclear Medicine, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Vera B Schrauwen-Hinderling
- Department of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands
- Department of Radiology and Nuclear Medicine, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Tineke van de Weijer
- Department of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands
- Department of Radiology and Nuclear Medicine, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Wouter D van Marken-Lichtenbelt
- Department of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands
| | - Bas Havekes
- Department of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands
- Division of Endocrinology, Department of Internal Medicine, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Lawrence Kazak
- Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Bruce M Spiegelman
- Department of Cell Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Joris Hoeks
- Department of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands
| | - Patrick Schrauwen
- Department of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
11
|
Nagata JM, Ganson KT, Cunningham ML, Mitchison D, Lavender JM, Blashill AJ, Gooding HC, Murray SB. Associations between legal performance-enhancing substance use and future cardiovascular disease risk factors in young adults: A prospective cohort study. PLoS One 2020; 15:e0244018. [PMID: 33320903 PMCID: PMC7737961 DOI: 10.1371/journal.pone.0244018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 12/01/2020] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Legal performance-enhancing substances (PES), such as creatine, are commonly used by adolescents and young adults. As PES are mostly unregulated by the US Food and Drug Administration, there has been limited empirical attention devoted to examining their long-term safety and health outcomes. Preliminary studies have demonstrated associations between PES use and severe medical events, including hospitalizations and death. PES could be linked to cardiovascular disease (CVD), the most common cause of mortality in the US, by altering the myocardium, vasculature, or metabolism. The objective of this study was to examine prospective associations between the use of legal PES in young adulthood and CVD risk factors at seven-year follow-up. MATERIALS AND METHODS Nationally representative longitudinal cohort data from the National Longitudinal Study of Adolescent to Adult Health, Waves III (2001-2002) and IV (2008), were analyzed. Regression models determined the prospective association between the use of legal PES (e.g. creatine monohydrate) and CVD risk factors (e.g. body mass index, diabetes, hypertension, hyperlipidemia), adjusting for relevant covariates. RESULTS Among the diverse sample of 11,996 male and female participants, no significant differences by PES use in body mass index, diabetes, hypertension, or hyperlipidemia were noted at Wave III. In unadjusted comparisons, legal PES users (versus non-users) were more likely to be White, be male, be college educated, drink alcohol, and engage in weightlifting, exercise, individual sports, team sports, and other strength training. There were no significant prospective associations between legal PES use at Wave III and body mass index, hemoglobin A1c, systolic and diastolic blood pressure, and cholesterol (total, HDL, LDL, triglycerides) deciles at seven-year follow-up (Wave IV), adjusting for demographics, health behaviors, and Wave III CVD risk factors. Similarly, there were no significant prospective associations between legal PES use and diabetes, hypertension, or hyperlipidemia based on objective measures or self-reported medications and diagnoses, adjusting for demographics, health behaviors, and Wave III CVD risk. CONCLUSIONS We do not find evidence for a prospective association between legal PES use and CVD risk factors in young adults over seven years of follow-up, including BMI, diabetes, hypertension, or hyperlipidemia. It should be noted that legal PES use was operationalized dichotomously and as one broad category, which did not account for frequency, amount, or duration of use. Given the lack of regulation and clinical trials data, observational studies can provide much needed data to inform the safety and long-term health associations of legal PES use and, in turn, inform clinical guidance and policy.
Collapse
Affiliation(s)
- Jason M. Nagata
- Department of Pediatrics, University of California, San Francisco, San Francisco, California, United States of America
| | - Kyle T. Ganson
- Factor-Inwentash Faculty of Social Work, University of Toronto, Toronto, Ontario, Canada
| | | | - Deborah Mitchison
- Translational Health Research Institute, School of Medicine, Western Sydney University, Sydney, New South Wales, Australia
- Department of Psychology, Macquarie University, Sydney, New South Wales, Australia
| | - Jason M. Lavender
- Military Cardiovascular Outcomes Research Program (MiCOR), Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
- The Metis Foundation, San Antonio, Texas, United States of America
| | - Aaron J. Blashill
- Department of Psychology, San Diego State University, San Diego, California, United States of America
- San Diego Joint Doctoral Program in Clinical Psychology, San Diego State University, San Diego, California, United States of America
- San Diego Joint Doctoral Program in Clinical Psychology, University of California, San Diego, California, United States of America
| | - Holly C. Gooding
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Stuart B. Murray
- Department of Psychiatry & Behavioral Sciences, University of Southern California, Los Angeles, California, United States of America
| |
Collapse
|
12
|
Oliveira CLP, Antunes BDMM, Gomes AC, Lira FS, Pimentel GD, Boulé NG, Mota JF. Creatine supplementation does not promote additional effects on inflammation and insulin resistance in older adults: A pilot randomized, double-blind, placebo-controlled trial. Clin Nutr ESPEN 2020; 38:94-98. [PMID: 32690185 DOI: 10.1016/j.clnesp.2020.05.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 05/02/2020] [Accepted: 05/29/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND A chronic, low-grade inflammation is commonly present in older adults and has been associated with the onset of age-related chronic diseases. Resistance training (RT) and creatine (CR) supplementation emerged as promising strategies to reduce circulating pro-inflammatory cytokines. This study aimed to investigate the effects of CR supplementation combined with RT on markers of inflammation and insulin resistance in community-dwelling older adults. METHODS In a pilot randomized, double-blind, placebo-controlled trial, participants were allocated to one of the following groups: 1) Creatine supplementation and resistance training (CR + RT, n = 13); 2) Placebo and resistance training (PL + RT, n = 14). While engaged in a 12-week RT program, participants from CR + RT group received 5 g/day of CR monohydrate and participants from PL + RT group received the same dose of maltodextrin. At baseline and at week 12, blood samples were collected for glucose, insulin, adiponectin, leptin, interleukin 6, interleukin 10, monocyte chemo-attractant protein-1 and C-reactive protein analysis. RESULTS After 12 weeks of intervention, there were no differences between groups in any of the variables analyzed. Monocyte chemoattractant protein-1 was reduced in both groups (CR + RT: -55.66 ± 48.93 pg/mL, p < 0.01, dz = 1.13; PL + RT: -46.52 ± 55.21 pg/mL, p < 0.01, dz = 0.84). CONCLUSION Resistance training, regardless of CR supplementation, decreased MCP-1 concentration in older adults.
Collapse
Affiliation(s)
- Camila L P Oliveira
- Human Nutrition Research Unit, Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Barbara de Moura Mello Antunes
- Exercise and Immunometabolism Research Group, Department of Physical Education, Sao Paulo State University, Presidente Prudente, SP, 19060-900, Brazil
| | - Aline Corado Gomes
- Clinical and Sports Nutrition Research Laboratory, Faculty of Nutrition, Goiás Federal University, 227 Street, Block 68, Setor Leste Universitario, Goiania, GO, 74.605-080, Brazil
| | - Fábio Santos Lira
- Exercise and Immunometabolism Research Group, Department of Physical Education, Sao Paulo State University, Presidente Prudente, SP, 19060-900, Brazil
| | - Gustavo Duarte Pimentel
- Clinical and Sports Nutrition Research Laboratory, Faculty of Nutrition, Goiás Federal University, 227 Street, Block 68, Setor Leste Universitario, Goiania, GO, 74.605-080, Brazil
| | - Normand G Boulé
- Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, AB, T6G 2H9, Canada
| | - João Felipe Mota
- Clinical and Sports Nutrition Research Laboratory, Faculty of Nutrition, Goiás Federal University, 227 Street, Block 68, Setor Leste Universitario, Goiania, GO, 74.605-080, Brazil.
| |
Collapse
|
13
|
de Guingand DL, Palmer KR, Snow RJ, Davies-Tuck ML, Ellery SJ. Risk of Adverse Outcomes in Females Taking Oral Creatine Monohydrate: A Systematic Review and Meta-Analysis. Nutrients 2020; 12:E1780. [PMID: 32549301 PMCID: PMC7353222 DOI: 10.3390/nu12061780] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/09/2020] [Accepted: 06/11/2020] [Indexed: 12/13/2022] Open
Abstract
Creatine Monohydrate (CrM) is a dietary supplement routinely used as an ergogenic aid for sport and training, and as a potential therapeutic aid to augment different disease processes. Despite its increased use in recent years, studies reporting potential adverse outcomes of CrM have been mostly derived from male or mixed sex populations. A systematic search was conducted, which included female participants on CrM, where adverse outcomes were reported, with meta-analysis performed where appropriate. Six hundred and fifty-six studies were identified where creatine supplementation was the primary intervention; fifty-eight were female only studies (9%). Twenty-nine studies monitored for adverse outcomes, with 951 participants. There were no deaths or serious adverse outcomes reported. There were no significant differences in total adverse events, (risk ratio (RR) 1.24 (95% CI 0.51, 2.98)), gastrointestinal events, (RR 1.09 (95% CI 0.53, 2.24)), or weight gain, (mean difference (MD) 1.24 kg pre-intervention, (95% CI -0.34, 2.82)) to 1.37 kg post-intervention (95% CI -0.50, 3.23)), in CrM supplemented females, when stratified by dosing regimen and subject to meta-analysis. No statistically significant difference was reported in measures of renal or hepatic function. In conclusion, mortality and serious adverse events are not associated with CrM supplementation in females. Nor does the use of creatine supplementation increase the risk of total adverse outcomes, weight gain or renal and hepatic complications in females. However, all future studies of creatine supplementation in females should consider surveillance and comprehensive reporting of adverse outcomes to better inform participants and health professionals involved in future trials.
Collapse
Affiliation(s)
- Deborah L. de Guingand
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne 3168, Australia; (M.L.D.-T.); (S.J.E.)
| | - Kirsten R. Palmer
- Department of Obstetrics and Gynaecology, Monash University, Melbourne 3168, Australia;
- Monash Health, Monash Medical Centre, Melbourne 3168, Australia
| | - Rodney J. Snow
- Institute of Physical Activity and Nutrition, Deakin University, Melbourne 3125, Australia;
| | - Miranda L. Davies-Tuck
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne 3168, Australia; (M.L.D.-T.); (S.J.E.)
| | - Stacey J. Ellery
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne 3168, Australia; (M.L.D.-T.); (S.J.E.)
- Department of Obstetrics and Gynaecology, Monash University, Melbourne 3168, Australia;
| |
Collapse
|
14
|
Vangipurapu J, Fernandes Silva L, Kuulasmaa T, Smith U, Laakso M. Microbiota-Related Metabolites and the Risk of Type 2 Diabetes. Diabetes Care 2020; 43:1319-1325. [PMID: 32295805 DOI: 10.2337/dc19-2533] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/18/2020] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Recent studies have highlighted the significance of the microbiome in human health and disease. Changes in the metabolites produced by microbiota have been implicated in several diseases. Our objective was to identify microbiome metabolites that are associated with type 2 diabetes. RESEARCH DESIGN AND METHODS Our study included 5,181 participants from the cross-sectional Metabolic Syndrome in Men (METSIM) study that included Finnish men (age 57 ± 7 years, BMI 26.5 ± 3.5 kg/m2) having metabolomics data available. Metabolomics analysis was performed based on fasting plasma samples. On the basis of an oral glucose tolerance test, Matsuda ISI and disposition index values were calculated as markers of insulin sensitivity and insulin secretion. A total of 4,851 participants had a 7.4-year follow-up visit, and 522 participants developed type 2 diabetes. RESULTS Creatine, 1-palmitoleoylglycerol (16:1), urate, 2-hydroxybutyrate/2-hydroxyisobutyrate, xanthine, xanthurenate, kynurenate, 3-(4-hydroxyphenyl)lactate, 1-oleoylglycerol (18:1), 1-myristoylglycerol (14:0), dimethylglycine, and 2-hydroxyhippurate (salicylurate) were significantly associated with an increased risk of type 2 diabetes. These metabolites were associated with decreased insulin secretion or insulin sensitivity or both. Among the metabolites that were associated with a decreased risk of type 2 diabetes, 1-linoleoylglycerophosphocholine (18:2) significantly reduced the risk of type 2 diabetes. CONCLUSIONS Several novel and previously reported microbial metabolites related to the gut microbiota were associated with an increased risk of incident type 2 diabetes, and they were also associated with decreased insulin secretion and insulin sensitivity. Microbial metabolites are important biomarkers for the risk of type 2 diabetes.
Collapse
Affiliation(s)
| | | | - Teemu Kuulasmaa
- Institute of Biomedicine, Bioinformatics Center, University of Eastern Finland, Kuopio, Finland
| | - Ulf Smith
- Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Markku Laakso
- Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland .,Department of Medicine, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
15
|
Papukashvili D, Rcheulishvili N, Deng Y. Beneficial Impact of Semicarbazide-Sensitive Amine Oxidase Inhibition on the Potential Cytotoxicity of Creatine Supplementation in Type 2 Diabetes Mellitus. Molecules 2020; 25:molecules25092029. [PMID: 32349282 PMCID: PMC7248702 DOI: 10.3390/molecules25092029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/16/2020] [Accepted: 04/24/2020] [Indexed: 02/06/2023] Open
Abstract
Creatine supplementation of the population with type 2 diabetes mellitus (T2DM) combined with an exercise program is known to be a possible therapy adjuvant with hypoglycemic effects. However, excessive administration of creatine leads to the production of methylamine which is deaminated by the enzyme semicarbazide-sensitive amine oxidase (SSAO) and as a result, cytotoxic compounds are produced. SSAO activity and reaction products are increased in the serum of T2DM patients. Creatine supplementation by diabetics will further augment the activity of SSAO. The current review aims to find a feasible way to ameliorate T2DM for patients who exercise and desire to consume creatine. Several natural agents present in food which are involved in the regulation of SSAO activity directly or indirectly are reviewed. Particularly, zinc-α2-glycoprotein (ZAG), zinc (Zn), copper (Cu), histamine/histidine, caffeine, iron (Fe), and vitamin D are discussed. Inhibiting SSAO activity by natural agents might reduce the potential adverse effects of creatine metabolism in population of T2DM.
Collapse
Affiliation(s)
- Dimitri Papukashvili
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China; (D.P.); (N.R.)
| | - Nino Rcheulishvili
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China; (D.P.); (N.R.)
| | - Yulin Deng
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China; (D.P.); (N.R.)
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, Beijing 100081, China
- Correspondence: ; Tel./Fax: +86-10-68914907
| |
Collapse
|
16
|
Kopriva I, Jerić I, Hadžija MP, Hadžija M, Lovrenčić MV, Brkljačić L. Library-assisted nonlinear blind separation and annotation of pure components from a single 1H nuclear magnetic resonance mixture spectra. Anal Chim Acta 2019; 1080:55-65. [PMID: 31409475 DOI: 10.1016/j.aca.2019.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/27/2019] [Accepted: 07/02/2019] [Indexed: 01/07/2023]
Abstract
Due to its capability for high-throughput screening 1H nuclear magnetic resonance (NMR) spectroscopy is commonly used for metabolite research. The key problem in 1H NMR spectroscopy of multicomponent mixtures is overlapping of component signals and that is increasing with the number of components, their complexity and structural similarity. It makes metabolic profiling, that is carried out through matching acquired spectra with metabolites from the library, a hard problem. Here, we propose a method for nonlinear blind separation of highly correlated components spectra from a single 1H NMR mixture spectra. The method transforms a single nonlinear mixture into multiple high-dimensional reproducible kernel Hilbert Spaces (mRKHSs). Therein, highly correlated components are separated by sparseness constrained nonnegative matrix factorization in each induced RKHS. Afterwards, metabolites are identified through comparison of separated components with the library comprised of 160 pure components. Thereby, a significant number of them are expected to be related with diabetes type 2. Conceptually similar methodology for nonlinear blind separation of correlated components from two or more mixtures is presented in the Supplementary material. Single-mixture blind source separation is exemplified on: (i) annotation of five components spectra separated from one 1H NMR model mixture spectra; (ii) annotation of fifty five metabolites separated from one 1H NMR mixture spectra of urine of subjects with and without diabetes type 2. Arguably, it is for the first time a method for blind separation of a large number of components from a single nonlinear mixture has been proposed. Moreover, the proposed method pinpoints urinary creatine, glutamic acid and 5-hydroxyindoleacetic acid as the most prominent metabolites in samples from subjects with diabetes type 2, when compared to healthy controls.
Collapse
Affiliation(s)
- Ivica Kopriva
- Division of Electronics, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000, Zagreb, Croatia.
| | - Ivanka Jerić
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000, Zagreb, Croatia
| | - Marijana Popović Hadžija
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000, Zagreb, Croatia
| | - Mirko Hadžija
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000, Zagreb, Croatia
| | - Marijana Vučić Lovrenčić
- Department of Medical Biochemistry and Laboratory Medicine, University Hospital Merkur, Zajčeva 19, HR-10000, Zagreb, Croatia
| | - Lidija Brkljačić
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000, Zagreb, Croatia
| |
Collapse
|
17
|
Changing to a vegetarian diet reduces the body creatine pool in omnivorous women, but appears not to affect carnitine and carnosine homeostasis: a randomised trial. Br J Nutr 2018; 119:759-770. [DOI: 10.1017/s000711451800017x] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
AbstractBalanced vegetarian diets are popular, although they are nearly absent in creatine and carnosine and contain considerably less carnitine than non-vegetarian diets. Few longitudinal intervention studies investigating the effect of a vegetarian diet on the availability of these compounds currently exist. We aimed to investigate the effect of transiently switching omnivores onto a vegetarian diet for 6 months on muscle and plasma creatine, carnitine and carnosine homeostasis. In a 6-month intervention, forty omnivorous women were ascribed to three groups: continued omnivorous diet (control,n10), vegetarian diet without supplementation (Veg+Pla,n15) and vegetarian diet combined with dailyβ-alanine (0·8–0·4 g/d) and creatine supplementation (1 g creatine monohydrate/d) (Veg+Suppl,n15). Before (0 months; 0M), after 3 months (3M) and 6 months (6M), a fasted venous blood sample and 24-h urine was collected, and muscle carnosine content was determined by proton magnetic resonance spectroscopy (1H-MRS). Muscle biopsies were obtained at 0M and 3M. Plasma creatine and muscle total creatine content declined from 0M to 3M in Veg+Pla (P=0·013 andP=0·009, respectively), whereas plasma creatine increased from 0M in Veg+Suppl (P=0·004). None of the carnitine-related compounds in plasma or muscle showed a significant time×group interaction effect.1H-MRS-determined muscle carnosine content was unchanged over 6M in control and Veg+Pla, but increased in Veg+Suppl in soleus (P<0·001) and gastrocnemius (P=0·001) muscle. To conclude, the body creatine pool declined over a 3-month vegetarian diet in omnivorous women, which was ameliorated when accompanied by low-dose dietary creatine supplementation. Carnitine and carnosine homeostasis was unaffected by a 3- or 6-month vegetarian diet, respectively.
Collapse
|
18
|
Guanidinoacetic Acid and Creatine are Associated with Cardiometabolic Risk Factors in Healthy Men and Women: A Cross-Sectional Study. Nutrients 2018; 10:nu10010087. [PMID: 29342866 PMCID: PMC5793315 DOI: 10.3390/nu10010087] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 01/02/2018] [Accepted: 01/10/2018] [Indexed: 11/27/2022] Open
Abstract
Guanidinoacetic acid (GAA) conversion to creatine is thought to be involved in cardiometabolic disturbances through its role in biological methylation and insulin secretion. We evaluated the association of serum GAA and creatine with cardiometabolic risk factors in a cohort of 151 apparently healthy adults (82 women and 69 men) aged 18–63 years. Serum levels of GAA and creatine were measured with liquid chromatography-tandem mass spectrometry. A multiple linear regression model adjusted for age and sex was employed to examine the relationship of serum GAA and creatine with cardiometabolic risk factors. Higher GAA levels were associated with an unfavorable cardiometabolic risk profile (higher insulin, higher total homocysteine, and higher body fat percentage), while having elevated serum creatine levels (≥31.1 µmol/L) was associated with being overweight (body mass index ≥ 25.0 kg/m). The results from our study suggest a possible role of the GAA–creatine axis in the pathogenesis of cardiovascular and metabolic diseases.
Collapse
|
19
|
Wallimann T, Riek U, Möddel M. Intradialytic creatine supplementation: A scientific rationale for improving the health and quality of life of dialysis patients. Med Hypotheses 2017; 99:1-14. [DOI: 10.1016/j.mehy.2016.12.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 12/03/2016] [Indexed: 12/19/2022]
|