1
|
Aiswarya N, Tabraiz S, Taneja H, Ahmed A, Aravinda Narayanan R. Nonlinear viscoelasticity of filamentous fungal biofilms of Neurospora discreta. Biofilm 2024; 8:100227. [PMID: 39430296 PMCID: PMC11490880 DOI: 10.1016/j.bioflm.2024.100227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/22/2024] Open
Abstract
The picture of bacterial biofilms as a colloidal gel composed of rigid bacterial cells protected by extracellular crosslinked polymer matrix has been pivotal in understanding their ability to adapt their microstructure and viscoelasticity to environmental assaults. This work explores if an analogous perspective exists in fungal biofilms with long filamentous cells. To this end, we consider biofilms of the fungus Neurospora discreta formed on the air-liquid interface, which has shown an ability to remove excess nitrogen and phosphorous from wastewater effectively. We investigated the changes to the viscoelasticity and the microstructure of these biofilms when the biofilms uptake varying concentrations of nitrogen and phosphorous, using large amplitude oscillatory shear flow rheology (LAOS) and field-emission scanning electron microscopy (FESEM), respectively. A distinctive peak in the loss modulus (G″) at 30-50 % shear strain is observed, indicating the transition from an elastic to plastic deformation state. Though a peak in G″ has been observed in several soft materials, including bacterial biofilms, it has eluded interpretation in terms of quantifiable microstructural features. The central finding of this work is that the intensity of the G″ peak, signifying resistance to large deformations, correlates directly with the protein and polysaccharide concentrations per unit biomass in the extracellular matrix and inversely with the shear-induced changes in filament orientation in the hyphal network. These correlations have implications for the rational design of fungal biofilms with tuneable mechanical properties.
Collapse
Affiliation(s)
- N.M. Aiswarya
- Department of Physics, Birla Institute of Technology and Science Pilani, Hyderabad Campus, India
| | - Shamas Tabraiz
- Section of Natural and Applied Sciences, Canterbury Christ Church University, UK
- Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, Imperial College Road, SW7 2BU, London, UK
| | - Himani Taneja
- Section of Natural and Applied Sciences, Canterbury Christ Church University, UK
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA UK
| | - Asma Ahmed
- Section of Natural and Applied Sciences, Canterbury Christ Church University, UK
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK
| | - R. Aravinda Narayanan
- Department of Physics, Birla Institute of Technology and Science Pilani, Hyderabad Campus, India
| |
Collapse
|
2
|
Zhou L, Wang X, Cao T, Li Y, Jiang S, Huang L. Repeated high-dose esketamine in early postnatal rats leads to behavioural deficits with long-term modifications in white matter microstructural integrity. Brain Res 2024; 1847:149311. [PMID: 39510384 DOI: 10.1016/j.brainres.2024.149311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/20/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
Esketamine is commonly used for sedation or general anaesthesia in infants and young children. However, repeated esketamine administration during periods of rapid brain growth and development may result in various pathophysiological and cognitive changes. Therefore, this study aimed to investigate the influence of recurrent esketamine exposure on long-term behavioural and white matter consequences. Seven-day-old (P7) male rats were allocated to control, high-, and low-dose groups. Behavioural paradigm assessment was conducted at P25-29. Diffusion tensor imaging revealed long-term effects on water diffusivity in the splenium and cingulum white matter of the corpus callosum at P30. Subsequent two-dimensional structure-tensor analysis of brain tissue sections stained with Luxol fast blue (LFB) showed marked changes in the white matter microstructure in rats after multiple exposures to varying esketamine doses. High-dose esketamine significantly reduced activity time and total distance in the open-field experiment. High-dose esketamine exposure might lead to impaired short-term memory in rats. Additionally, the high-dose group showed prolonged immobility time during the forced swimming test. On the balance beam, the high-dose group displayed more right turns and right-foot slips and lower time spent on the rotating bar, indicating motor defects, than did the other groups. Diffusion tensor imaging demonstrated a decreased water molecule diffusion ability in the corpus callosum in the high-dose group. LFB staining indicated microstructural differences in the white matter of animals in the high-dose group. These findings suggest that behavioural deficits in high-dose esketamine-treated rats are at least partially attributed to changes in the white matter microstructure.
Collapse
Affiliation(s)
- Lijie Zhou
- Department of Anesthesiology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China; Department of Anesthesiology, The First Hospital of Qinhuangdao, Qinhuangdao 066000, China
| | - Xianlei Wang
- Department of Anesthesiology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China; Department of Anesthesiology, The First Hospital of Qinhuangdao, Qinhuangdao 066000, China
| | - Tianyu Cao
- Department of Anesthesiology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Yibo Li
- Department of Human Anatomy, Neuroscience Research Center, Hebei Medical University, Shijiazhuang 050017, China
| | - Sufang Jiang
- Department of Anesthesiology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Lining Huang
- Department of Anesthesiology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China; Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Shijiazhuang 050000, China; Key Laboratory of Clinical Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang 050000, China.
| |
Collapse
|
3
|
Romani P, Benedetti G, Cusan M, Arboit M, Cirillo C, Wu X, Rouni G, Kostourou V, Aragona M, Giampietro C, Grumati P, Martello G, Dupont S. Mitochondrial mechanotransduction through MIEF1 coordinates the nuclear response to forces. Nat Cell Biol 2024:10.1038/s41556-024-01527-3. [PMID: 39433949 DOI: 10.1038/s41556-024-01527-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/12/2024] [Indexed: 10/23/2024]
Abstract
Tissue-scale architecture and mechanical properties instruct cell behaviour under physiological and diseased conditions, but our understanding of the underlying mechanisms remains fragmentary. Here we show that extracellular matrix stiffness, spatial confinements and applied forces, including stretching of mouse skin, regulate mitochondrial dynamics. Actomyosin tension promotes the phosphorylation of mitochondrial elongation factor 1 (MIEF1), limiting the recruitment of dynamin-related protein 1 (DRP1) at mitochondria, as well as peri-mitochondrial F-actin formation and mitochondrial fission. Strikingly, mitochondrial fission is also a general mechanotransduction mechanism. Indeed, we found that DRP1- and MIEF1/2-dependent fission is required and sufficient to regulate three transcription factors of broad relevance-YAP/TAZ, SREBP1/2 and NRF2-to control cell proliferation, lipogenesis, antioxidant metabolism, chemotherapy resistance and adipocyte differentiation in response to mechanical cues. This extends to the mouse liver, where DRP1 regulates hepatocyte proliferation and identity-hallmark YAP-dependent phenotypes. We propose that mitochondria fulfil a unifying signalling function by which the mechanical tissue microenvironment coordinates complementary cell functions.
Collapse
Affiliation(s)
- Patrizia Romani
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Giada Benedetti
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Martina Cusan
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Mattia Arboit
- Department of Biology, University of Padova, Padova, Italy
| | - Carmine Cirillo
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | - Xi Wu
- Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | - Georgia Rouni
- Institute for Bioinnovation, Biomedical Sciences Research Centre "Alexander Fleming", Athens, Greece
| | - Vassiliki Kostourou
- Institute for Bioinnovation, Biomedical Sciences Research Centre "Alexander Fleming", Athens, Greece
| | - Mariaceleste Aragona
- Novo Nordisk Foundation Center for Stem Cell Medicine (ReNEW), University of Copenhagen, Copenhagen, Denmark
| | - Costanza Giampietro
- Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
- Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
| | - Paolo Grumati
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | | | - Sirio Dupont
- Department of Molecular Medicine, University of Padova, Padova, Italy.
| |
Collapse
|
4
|
Sheng H, Bouwmeester HJ, Munnik T. Phosphate promotes Arabidopsis root skewing and circumnutation through reorganisation of the microtubule cytoskeleton. THE NEW PHYTOLOGIST 2024. [PMID: 39360424 DOI: 10.1111/nph.20152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 09/05/2024] [Indexed: 10/04/2024]
Abstract
Phosphate (Pi) plays a key role in plant growth and development. Hence, plants display a range of adaptations to acquire it, including changes in root system architecture (RSA). Whether Pi triggers directional root growth is unknown. We investigated whether Arabidopsis roots sense Pi and grow towards it, that is whether they exhibit phosphotropism. While roots did exhibit a clear Pi-specific directional growth response, it was, however, always to the left, independent of the direction of the Pi gradient. We discovered that increasing concentrations of KH2PO4, trigger a dose-dependent skewing response, in both primary and lateral roots. This phenomenon is Pi-specific - other nutrients do not trigger this - and involves the reorganisation of the microtubule cytoskeleton in epidermal cells of the root elongation zone. Higher Pi levels promote left-handed cell file rotation that results in right-handed, clockwise, root growth and leftward skewing as a result of the helical movement of roots (circumnutation). Our results shed new light on the role of Pi in root growth, and may provide novel insights for crop breeding to optimise RSA and P-use efficiency.
Collapse
Affiliation(s)
- Hui Sheng
- Plant Cell Biology, Green Life Sciences Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, the Netherlands
- Plant Hormone Biology Group, Green Life Sciences Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, the Netherlands
| | - Harro J Bouwmeester
- Plant Hormone Biology Group, Green Life Sciences Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, the Netherlands
| | - Teun Munnik
- Plant Cell Biology, Green Life Sciences Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, the Netherlands
| |
Collapse
|
5
|
Nunez-Alvarez L, Ledwon JK, Applebaum S, Progri B, Han T, Laudo J, Tac V, Gosain AK, Tepole AB. Tissue expansion mitigates radiation-induced skin fibrosis in a porcine model. Acta Biomater 2024:S1742-7061(24)00551-8. [PMID: 39326692 DOI: 10.1016/j.actbio.2024.09.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 09/13/2024] [Accepted: 09/19/2024] [Indexed: 09/28/2024]
Abstract
Tissue expansion (TE) is the primary method for breast reconstruction after mastectomy. In many cases, mastectomy patients undergo radiation treatment (XR). Radiation is known to induce skin fibrosis and is one of the main causes for complications during post-mastectomy breast reconstruction. TE, on the other hand, induces a pro-regenerative response that culminates in growth of new skin. However, the combined effect of XR and TE on skin mechanics is unknown. Here we used the porcine model of TE to study the effect of radiation on skin fibrosis through biaxial testing, histological analysis, and kinematic analysis of skin deformation over time. We found that XR leads to stiffening of skin compared to control based on a shift in the transition stretch (transition between a low stiffness and an exponential stress-strain region characteristic of collagenous tissue) and an increase in the high modulus (modulus computed with stress-stretch data past the transition point). The change in transition stretch can be explained by thicker, more aligned collagen fiber bundles measured in histology images. Skin subjected to both XR+TE showed similar microstructure to controls as well as similar biaxial response, suggesting that physiological remodeling of collagen induced by TE partially counteracts pro-fibrotic XR effects. Skin growth was indirectly assessed with a kinematic approach that quantified increase in permanent area changes without reduction in thickness, suggesting production of new tissue driven by TE even in the presence of radiation treatment. Future work will focus on the detailed biological mechanisms by which TE counteracts radiation induced fibrosis. STATEMENT OF SIGNIFICANCE: Breast cancer is the most prevalent in women and its treatment often results in total breast removal (mastectomy), followed by reconstruction using tissue expanders. Radiation, which is used in about a third of breast reconstruction cases, can lead to significant complications. The timing of radiation treatment remains controversial. Radiation is known to cause immediate skin damage and long-term fibrosis. Tissue expansion leads to a pro-regenerative response involving collagen remodeling. Here we show that tissue expansion immediately prior to radiation can reduce the level of radiation-induced fibrosis. Thus, we anticipate that this new evidence will open up new avenues of investigation into how the collagen remodeling and pro-regenerative effects of tissue expansion can be leverage to prevent radiation-induced fibrosis.
Collapse
Affiliation(s)
| | | | | | | | - Tianhong Han
- School of Mechanical Engineering, Purdue University United States
| | - Joel Laudo
- School of Mechanical Engineering, Purdue University United States
| | - Vahidullah Tac
- School of Mechanical Engineering, Purdue University United States
| | - Arun K Gosain
- Lurie Children's Hospital United States; Department of Plastic and Reconstructive Surgery, Northwestern School of Medicine United States
| | - Adrian Buganza Tepole
- Weldon School of Biomedical Engineering, Purdue University United States; School of Mechanical Engineering, Purdue University United States.
| |
Collapse
|
6
|
Liao Y, Liu H, Huang J, Wang Z, Zhang T, Hu X, He Q, Wang Z, Fei Y, Zhang Y, Cai F, Ruan D, Zhang H, Jiang L, Yin Z, Ouyang H, Chen X, Shen W. Tissue-engineered Bicipital Autologous Tendon Patch Enhances Massive Rotator Cuff Defect Repair in a Rabbit Infraspinatus Tendon Defect Model. Clin Orthop Relat Res 2024; 482:00003086-990000000-01740. [PMID: 39467146 PMCID: PMC11557051 DOI: 10.1097/corr.0000000000003218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 07/18/2024] [Indexed: 10/30/2024]
Abstract
BACKGROUND Massive rotator cuff defects represent an important source of shoulder pain and functional debilitation, substantially diminishing patients' quality of life. The primary treatment of massive rotator cuff defects includes complete or partial repair and patch augmentation. However, because of the tendon's limited regenerative ability, the tendon retear risk after rotator cuff defect repair is still high. Thus, a new therapy is needed to promote tendon regeneration for repair of massive rotator cuff defects. QUESTIONS/PURPOSES Using an in vitro analysis, we first asked: (1) What is the biocompatibility and collagen synthesis ability of fibrin glue, and what is the cell growth of tissue-engineered bicipital tendon patches, which is comprised of fibrin glue and biceps tendon tissue particles? Then, using an in vivo animal model of full-thickness defects in the infraspinatus tendon in New Zealand White rabbits, we asked: (2) What is the potential of the tissue-engineered bicipital autologous tendon patch to promote tendon regeneration? METHODS In vitro experiments were conducted to assess the survival, proliferation, and collagen synthesis ability of tendon stem/progenitor cells cultured in fibrin glue. This was achieved through an assay of live/dead cell viability, cell counting kit-8 (CCK-8) assay, and Sirius red staining, respectively. The in vivo animal study was conducted using 8- to 12-week-old New Zealand White rabbits. The left shoulder of each animal was operated on, with equal numbers of males and females. There were 12 rabbits in the control group and 15 rabbits each in the gel and patch groups. Six rabbits were allocated to each of the three groups at the 1- and 3-month time points and three rabbits each were in the gel and patch groups at 2-month time point. Through an infraspinatus tendon defect model, the effectiveness of tissue-engineered bicipital autologous tendon patches (patch group) in tendon repair was assessed compared with untreated (control group) and fibrin glue (gel group) treatments in vivo. This assessment included histological evaluation of repaired tissue morphology, transmission electron microscopy (TEM) evaluation of regenerated collagen fibrils, and RNA sequencing to explore the potential mechanisms of tissue-engineered bicipital autologous tendon patches in tendon regeneration. RESULTS In vitro experiments demonstrated that fibrin glue enhanced the collagen synthesis ability of tendon stem/progenitor cells (0.38 ± 0.02) compared with standard cell culture alone (0.27 ± 0.02, mean difference 0.11 [95% CI 0.07 to 0.14]; p < 0.001). With prolonged cultivation, the cell growth area of tissue-engineered bicipital tendon patches showed a notable increase after culturing for 14 days (78.13% ± 3.68%) compared with 11 days (13.05% ± 8.78%, mean difference -65.08% [95% CI -77.99% to -52.15%]; p<0.001), 7 days (2.67% ± 2.62%, mean difference -75.46% [95% CI -88.37% to -62.53%]; p<0.001), and 1 day (0.33% ± 0.30%, mean difference -77.80% [95% CI -90.71% to -64.87%]; p<0.001). At 3 months after transplantation, in vivo experiments revealed that compared with the control and gel groups, the patch group displayed improved repair outcomes. This was evidenced by better histological scores in the patch group (3.83 ± 2.01) compared with the gel group (10.67 ± 0.58, mean difference 6.84 [95% CI 3.67 to 10.00]; p = 0.001) and control group (10.75 ± 0.66, mean difference 6.92 [95% CI 3.75 to 10.08]; p = 0.001), and by regular alignment and larger diameters of newly formed collagen fibrils in the patch group (77.52 ± 44.41 nm) compared with the control group (53.34 ± 6.64 nm, mean difference 24.18 [95% CI 22.24 to 26.11]; p < 0.001). RNA sequencing analysis revealed that a tissue-engineered bicipital autologous tendon patch facilitated tendon regeneration by modulating the immune response, promoting collagen fibril organization, and alleviating vasoconstriction. CONCLUSION This animal study demonstrates that the tissue-engineered bicipital autologous tendon patch effectively modulates an immune response and collagen fibril organization, leading to the promotion of tendon regeneration. CLINICAL RELEVANCE The tissue-engineered bicipital autologous tendon patch represents a promising strategy for tendon regeneration, offering potential in the repair of massive rotator cuff defects during clinical rotator cuff surgery. Subsequent research could focus on large animal experiments using a tissue-engineered bicipital autologous tendon patch to explore their feasibility for clinical translation.
Collapse
Affiliation(s)
- Youguo Liao
- Dr. Li Dak Sum-Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
- Institute of Sports Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Zhejiang, PR China
- Department of Sports Medicine and Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China
| | - Hengzhi Liu
- Dr. Li Dak Sum-Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
- Institute of Sports Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Zhejiang, PR China
- Department of Sports Medicine and Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China
| | - Jiayun Huang
- Dr. Li Dak Sum-Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
- Institute of Sports Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Zhejiang, PR China
- Department of Sports Medicine and Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China
| | - Zetao Wang
- Dr. Li Dak Sum-Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
- Institute of Sports Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Zhejiang, PR China
- Department of Sports Medicine and Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China
- Department of Orthopedics, Huzhou Central Hospital, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, Zhejiang, PR China
| | - Tao Zhang
- Dr. Li Dak Sum-Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
- Institute of Sports Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Zhejiang, PR China
- Department of Sports Medicine and Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China
| | - Xiangjun Hu
- Dr. Li Dak Sum-Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
- School of Stomatology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China
| | - Qiulin He
- Hangzhou Singclean Medical Products Co Ltd, Hangzhou, Zhejiang, PR China
| | - Zichen Wang
- Dr. Li Dak Sum-Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
- Department of Orthopedics, Huzhou Central Hospital, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, Zhejiang, PR China
| | - Yang Fei
- Dr. Li Dak Sum-Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
- Institute of Sports Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Zhejiang, PR China
- Department of Sports Medicine and Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China
| | - Yuxiang Zhang
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
| | - Fangyuan Cai
- Dr. Li Dak Sum-Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
- School of Stomatology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China
| | - Dengfeng Ruan
- Dr. Li Dak Sum-Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
- Institute of Sports Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Zhejiang, PR China
- Department of Sports Medicine and Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China
| | - Hong Zhang
- Dr. Li Dak Sum-Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
- China Orthopedic Regenerative Medicine Group, CORMed, Hangzhou, Zhejiang, PR China
| | - Luyong Jiang
- Dr. Li Dak Sum-Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
- Institute of Sports Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Zhejiang, PR China
- Department of Sports Medicine and Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China
- Ningbo No.2 Hospital, Ningbo, Zhejiang, PR China
| | - Zi Yin
- Dr. Li Dak Sum-Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
- Institute of Sports Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China
- China Orthopedic Regenerative Medicine Group, CORMed, Hangzhou, Zhejiang, PR China
| | - Hongwei Ouyang
- Dr. Li Dak Sum-Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
- Institute of Sports Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China
- China Orthopedic Regenerative Medicine Group, CORMed, Hangzhou, Zhejiang, PR China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China
| | - Xiao Chen
- Dr. Li Dak Sum-Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
- Institute of Sports Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China
- Department of Sports Medicine and Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China
- China Orthopedic Regenerative Medicine Group, CORMed, Hangzhou, Zhejiang, PR China
| | - Weiliang Shen
- Dr. Li Dak Sum-Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
- Institute of Sports Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Zhejiang, PR China
- Department of Sports Medicine and Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China
- China Orthopedic Regenerative Medicine Group, CORMed, Hangzhou, Zhejiang, PR China
| |
Collapse
|
7
|
Iwanski JB, Pappas CT, Mayfield RM, Farman GP, Ahrens-Nicklas R, Churko JM, Gregorio CC. Leiomodin 2 neonatal dilated cardiomyopathy mutation results in altered actin gene signatures and cardiomyocyte dysfunction. NPJ Regen Med 2024; 9:21. [PMID: 39285234 PMCID: PMC11405699 DOI: 10.1038/s41536-024-00366-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 08/23/2024] [Indexed: 09/19/2024] Open
Abstract
Neonatal dilated cardiomyopathy (DCM) is a poorly understood muscular disease of the heart. Several homozygous biallelic variants in LMOD2, the gene encoding the actin-binding protein Leiomodin 2, have been identified to result in severe DCM. Collectively, LMOD2-related cardiomyopathies present with cardiac dilation and decreased heart contractility, often resulting in neonatal death. Thus, it is evident that Lmod2 is essential to normal human cardiac muscle function. This study aimed to understand the underlying pathophysiology and signaling pathways related to the first reported LMOD2 variant (c.1193 G > A, p.Trp398*). Using patient-specific human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) and a mouse model harboring the homologous mutation to the patient, we discovered dysregulated actin-thin filament lengths, altered contractility and calcium handling properties, as well as alterations in the serum response factor (SRF)-dependent signaling pathway. These findings reveal that LMOD2 may be regulating SRF activity in an actin-dependent manner and provide a potential new strategy for the development of biologically active molecules to target LMOD2-related cardiomyopathies.
Collapse
Grants
- R01HL123078 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R00 HL128906 NHLBI NIH HHS
- R01 HL164644 NHLBI NIH HHS
- R01 GM120137 NIGMS NIH HHS
- F30HL151139 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- T32HL007249 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- T32 HL007249 NHLBI NIH HHS
- R01 HL123078 NHLBI NIH HHS
- R01HL164644 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- F30 HL151139 NHLBI NIH HHS
- R01GM120137 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
Collapse
Affiliation(s)
- Jessika B Iwanski
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ, 85724, USA
| | - Christopher T Pappas
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ, 85724, USA
| | - Rachel M Mayfield
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ, 85724, USA
| | - Gerrie P Farman
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ, 85724, USA
| | - Rebecca Ahrens-Nicklas
- Department of Pediatrics and Division of Human Genetics and Metabolism, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Jared M Churko
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ, 85724, USA.
| | - Carol C Gregorio
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ, 85724, USA.
- Department of Medicine and Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
8
|
Garcia M, Landi G, Covan B, Caro D, Khak M, Razavi AH, DeAngelis JP, Ramappa AJ, Nazarian A. Effect of Tear Size and Location on Supraspinatus Tendon Strain During Activities of Daily Living and Physiotherapy. Ann Biomed Eng 2024; 52:2496-2508. [PMID: 39033199 DOI: 10.1007/s10439-024-03538-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 05/06/2024] [Indexed: 07/23/2024]
Abstract
The supraspinatus tendon plays a crucial role in shoulder abduction, making it one of the common structures affected by injury. Clinically, crescent-shaped tears are the most commonly seen tear shape. By developing six specimen-specific, three-dimensional, supraspinatus-infraspinatus finite element model with heterogeneous material properties, this study aimed to examine the changes in tissue deformation (maximum principal strain) of the supraspinatus tendon due to specimen-specific material properties and rotator cuff tear size. FE models with small- and medium-sized full-thickness crescent-shaped tears were subjected to loads seen during activities of daily living and physiotherapy. Six fresh-frozen cadaveric shoulders were dissected to mechanically test the supraspinatus tendon and develop and validate FE models that can be used to assess changes in strain due to small (< 1 cm, equivalent to 20-30% of the tendon width) and medium-sized (1-3 cm, equivalent to 40-50% of the tendon width) tears that are located in the middle and posterior regions of the supraspinatus tendon. FE predictions of maximum principal strain at the tear tips were examined to determine whether failure strain was reached during activities of daily living (drinking and brushing teeth) and physiotherapy exercises (prone abduction and external rotation at 90° abduction). No significant differences were observed between the middle and posterior tear failure loads for small- and medium-sized tears. For prone abduction, there was a potential risk for tear progression (exceeded failure strain) for medium-sized tears in the supraspinatus tendon's middle and posterior regions. For external rotation at 90° abduction, one model with a middle tear and two with posterior tears experienced failure. For all daily activity loads, the strain never exceeded the failure strain. Our three-dimensional supraspinatus-infraspinatus FE model shows that small tears appear unlikely to progress based on the regional strain response; however, medium-sized tears are at higher risk during more strenuous physiotherapy exercises. Furthermore, differences in patient-specific tendon material properties are important in determining whether the tear will progress. Therefore, patient-specific management plans based on tear size may be beneficial to improve clinical outcomes.
Collapse
Affiliation(s)
- Mason Garcia
- Musculoskeletal Translational Innovation Initiative, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, RN123, Boston, MA, 02115, USA
- Mechanical Engineering Department, Boston University, Boston, MA, USA
| | - Gabriel Landi
- Musculoskeletal Translational Innovation Initiative, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, RN123, Boston, MA, 02115, USA
| | - Bailee Covan
- Musculoskeletal Translational Innovation Initiative, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, RN123, Boston, MA, 02115, USA
| | - Daniela Caro
- Musculoskeletal Translational Innovation Initiative, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, RN123, Boston, MA, 02115, USA
| | - Mohammad Khak
- Musculoskeletal Translational Innovation Initiative, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, RN123, Boston, MA, 02115, USA
- Carl J. Shapiro Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Ahmad Hedayatzadeh Razavi
- Musculoskeletal Translational Innovation Initiative, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, RN123, Boston, MA, 02115, USA
- Mechanical Engineering Department, Boston University, Boston, MA, USA
| | - Joseph P DeAngelis
- Musculoskeletal Translational Innovation Initiative, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, RN123, Boston, MA, 02115, USA
- Carl J. Shapiro Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Arun J Ramappa
- Musculoskeletal Translational Innovation Initiative, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, RN123, Boston, MA, 02115, USA
- Carl J. Shapiro Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Ara Nazarian
- Musculoskeletal Translational Innovation Initiative, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, RN123, Boston, MA, 02115, USA.
- Mechanical Engineering Department, Boston University, Boston, MA, USA.
- Carl J. Shapiro Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
- Department of Orthopaedic Surgery, Yerevan State Medical University, Yerevan, Armenia.
| |
Collapse
|
9
|
Zhao W, von Kroge S, Jadzic J, Milovanovic P, Sihota P, Luther J, Brylka L, von Brackel FN, Bockamp E, Busse B, Amling M, Schinke T, Yorgan TA. Osteomodulin deficiency in mice causes a specific reduction of transversal cortical bone size. J Bone Miner Res 2024; 39:1025-1041. [PMID: 38722812 PMCID: PMC11301521 DOI: 10.1093/jbmr/zjae072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/26/2024] [Accepted: 05/08/2024] [Indexed: 08/07/2024]
Abstract
Skeletal growth, modeling, and remodeling are regulated by various molecules, one of them being the recently identified osteoanabolic factor WNT1. We have previously reported that WNT1 transcriptionally activates the expression of Omd, encoding Osteomodulin (OMD), in a murine mesenchymal cell line, which potentially explained the skeletal fragility of mice with mutational WNT1 inactivation, since OMD has been shown to regulate type I collagen fibril formation in vitro. In this study we confirmed the strong induction of Omd expression in a genome-wide expression analysis of transfected cells, and we obtained further evidence for Omd being a direct target gene of WNT1. To assess the in vivo relevance of this regulation, we crossed Omd-deficient mice with a mouse line harboring an inducible, osteoblast-specific Wnt1 transgene. After induction of Wnt1 expression for 1 or 3 weeks, the osteoanabolic potency of WNT1 was not impaired despite the Omd deficiency. Since current knowledge regarding the in vivo physiological function of OMD is limited, we next focused on skeletal phenotyping of wild-type and Omd-deficient littermates, in the absence of a Wnt1 transgene. Here we did not observe an impact of Omd deficiency on trabecular bone parameters by histomorphometry and μCT either. Importantly, however, male and female Omd-deficient mice at the ages of 12 and 24 weeks displayed a slender bone phenotype with significantly smaller long bones in the transversal dimension, while the longitudinal bone growth remained unaffected. Although mechanical testing revealed no significant changes explained by impaired bone material properties, atomic force microscopy of the femoral bone surface of Omd-deficient mice revealed moderate changes at the nanostructural level, indicating altered regulation of collagen fibril formation and aggregation. Taken together, our data demonstrate that, although OMD is dispensable for the osteoanabolic effect of WNT1, its deficiency in mice specifically modulates transversal cortical bone morphology.
Collapse
Affiliation(s)
- Wenbo Zhao
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Simon von Kroge
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Jelena Jadzic
- Center of Bone Biology, Institute of Anatomy, Faculty of Medicine, University of Belgrade, Belgrade 11000, Serbia
| | - Petar Milovanovic
- Center of Bone Biology, Institute of Anatomy, Faculty of Medicine, University of Belgrade, Belgrade 11000, Serbia
| | - Praveer Sihota
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Julia Luther
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Laura Brylka
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Felix N von Brackel
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Ernesto Bockamp
- Institute of Translational Immunology (TIM), University Medical Center, Johannes Gutenberg-University Mainz, D-55131 Mainz, Germany
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Michael Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Thorsten Schinke
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Timur A Yorgan
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| |
Collapse
|
10
|
Al-Nuaimi DA, Rütsche D, Abukar A, Hiebert P, Zanetti D, Cesarovic N, Falk V, Werner S, Mazza E, Giampietro C. Hydrostatic pressure drives sprouting angiogenesis via adherens junction remodelling and YAP signalling. Commun Biol 2024; 7:940. [PMID: 39097636 PMCID: PMC11297954 DOI: 10.1038/s42003-024-06604-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 07/17/2024] [Indexed: 08/05/2024] Open
Abstract
Endothelial cell physiology is governed by its unique microenvironment at the interface between blood and tissue. A major contributor to the endothelial biophysical environment is blood hydrostatic pressure, which in mechanical terms applies isotropic compressive stress on the cells. While other mechanical factors, such as shear stress and circumferential stretch, have been extensively studied, little is known about the role of hydrostatic pressure in the regulation of endothelial cell behavior. Here we show that hydrostatic pressure triggers partial and transient endothelial-to-mesenchymal transition in endothelial monolayers of different vascular beds. Values mimicking microvascular pressure environments promote proliferative and migratory behavior and impair barrier properties that are characteristic of a mesenchymal transition, resulting in increased sprouting angiogenesis in 3D organotypic model systems ex vivo and in vitro. Mechanistically, this response is linked to differential cadherin expression at the adherens junctions, and to an increased YAP expression, nuclear localization, and transcriptional activity. Inhibition of YAP transcriptional activity prevents pressure-induced sprouting angiogenesis. Together, this work establishes hydrostatic pressure as a key modulator of endothelial homeostasis and as a crucial component of the endothelial mechanical niche.
Collapse
Affiliation(s)
| | - Dominic Rütsche
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Experimental Continuum Mechanics, Dübendorf, 8600, Switzerland
| | - Asra Abukar
- ETH Zürich, DMAVT, Experimental Continuum Mechanics, Zürich, 8092, Switzerland
| | - Paul Hiebert
- Department of Biology, ETH Zürich, Institute of Molecular Health Sciences, 8093, Zürich, Switzerland
- Centre for Biomedicine, Hull York Medical School, The University of Hull, Hull, HU6 7RX, UK
| | - Dominik Zanetti
- Department of Biology, ETH Zürich, Institute of Molecular Health Sciences, 8093, Zürich, Switzerland
| | - Nikola Cesarovic
- Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, 13353, Berlin, Germany
- Department of Health Sciences and Technology, ETH Zürich, 8093, Zürich, Switzerland
| | - Volkmar Falk
- Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, 13353, Berlin, Germany
- Department of Health Sciences and Technology, ETH Zürich, 8093, Zürich, Switzerland
| | - Sabine Werner
- Department of Biology, ETH Zürich, Institute of Molecular Health Sciences, 8093, Zürich, Switzerland
| | - Edoardo Mazza
- ETH Zürich, DMAVT, Experimental Continuum Mechanics, Zürich, 8092, Switzerland.
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Experimental Continuum Mechanics, Dübendorf, 8600, Switzerland.
| | - Costanza Giampietro
- ETH Zürich, DMAVT, Experimental Continuum Mechanics, Zürich, 8092, Switzerland.
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Experimental Continuum Mechanics, Dübendorf, 8600, Switzerland.
| |
Collapse
|
11
|
Llopis-Grimalt M, Munar-Bestard M, Ramis-Munar G, Smith D, Starborg T, Kadler KE, Monjo M, Ramis JM. Nanostructured Implant-Tissue Interface Assessment Using a Three-Dimensional Gingival Tissue Equivalent. ACS OMEGA 2024; 9:30534-30543. [PMID: 39035935 PMCID: PMC11256113 DOI: 10.1021/acsomega.4c02253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/30/2024] [Accepted: 06/12/2024] [Indexed: 07/23/2024]
Abstract
Improved soft tissue integration (STI) around dental implants is key for implant success. The formation of an early and long-lasting transmucosal seal around the implant abutment might help to prevent peri-implantitis, one of the major causes of late implant failure. In natural teeth, collagen fibers are firmly inserted and fixed in the cementum of the tooth and emerge perpendicular to the gingival tissue. In contrast, around dental implants, collagen fibers run predominantly parallel to the implant surface, allowing bacterial migration into the peri-implant interface that might lead to peri-implantitis. Previous studies have shown that nanostructured Ti surfaces improve gingival cell response in monolayer cell cultures. Here, we aimed at evaluating the implant-tissue interface using a 3D gingival tissue equivalent (GTE). First, we evaluated the GTE response to a nanostructured (NN) and machined Ti surface after the stimulation with Porphyromonas gingivalis lipopolysaccharide (LPS), to simulate peri-implantitis conditions. Thus, GTE viability, through MTT assay, the release of metalloproteinase-1 (MMP1) and its inhibitor (TIMP1) through ELISA, and the gene expression of extracellular matrix turnover genes by real-time RT-PCR were analyzed. Second, GTE-implant interaction was characterized by serial block face scanning electron microscopy, and collagen-1 orientation at the tissue-implant interface was analyzed by immunofluorescence. While a similar GTE response to LPS stimulation was found for both implant surfaces, a higher proportion of collagen oriented perpendicular to the implant was observed on the NN implant surface. Thus, our results indicate that the nanostructuration of titanium dental implant abutments could allow the correct orientation of collagen fibers and greater soft tissue sealing, while keeping biocompatibility levels and LPS response comparable.
Collapse
Affiliation(s)
- Maria
Antonia Llopis-Grimalt
- Group
of Cell Therapy and Tissue Engineering, Department of Fundamental
Biology and Health Sciences, Research Institute of Health Sciences
(IUNICS), University of the Balearic Islands, Palma 07122, Spain
- Health
Research Institute of the Balearic Islands, IdISBa, Palma 07010, Spain
| | - Marta Munar-Bestard
- Group
of Cell Therapy and Tissue Engineering, Department of Fundamental
Biology and Health Sciences, Research Institute of Health Sciences
(IUNICS), University of the Balearic Islands, Palma 07122, Spain
- Health
Research Institute of the Balearic Islands, IdISBa, Palma 07010, Spain
| | - Guillem Ramis-Munar
- Cellomics
Unit, Research Institute of Health Sciences (IUNICS), University of the Balearic Islands, Palma 07122, Spain
| | - David Smith
- Wellcome
Centre for Cell-Matrix Research, Faculty of Biology, Medicine and
Health, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, United Kingdom
| | - Tobias Starborg
- Wellcome
Centre for Cell-Matrix Research, Faculty of Biology, Medicine and
Health, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, United Kingdom
| | - Karl E. Kadler
- Wellcome
Centre for Cell-Matrix Research, Faculty of Biology, Medicine and
Health, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, United Kingdom
| | - Marta Monjo
- Group
of Cell Therapy and Tissue Engineering, Department of Fundamental
Biology and Health Sciences, Research Institute of Health Sciences
(IUNICS), University of the Balearic Islands, Palma 07122, Spain
- Health
Research Institute of the Balearic Islands, IdISBa, Palma 07010, Spain
| | - Joana M. Ramis
- Group
of Cell Therapy and Tissue Engineering, Department of Fundamental
Biology and Health Sciences, Research Institute of Health Sciences
(IUNICS), University of the Balearic Islands, Palma 07122, Spain
- Health
Research Institute of the Balearic Islands, IdISBa, Palma 07010, Spain
| |
Collapse
|
12
|
Garibyan M, Hoffman T, Makaske T, Do SK, Wu Y, Williams BA, March AR, Cho N, Pedroncelli N, Lima RE, Soto J, Jackson B, Santoso JW, Khademhosseini A, Thomson M, Li S, McCain ML, Morsut L. Engineering programmable material-to-cell pathways via synthetic notch receptors to spatially control differentiation in multicellular constructs. Nat Commun 2024; 15:5891. [PMID: 39003263 PMCID: PMC11246427 DOI: 10.1038/s41467-024-50126-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 07/02/2024] [Indexed: 07/15/2024] Open
Abstract
Synthetic Notch (synNotch) receptors are genetically encoded, modular synthetic receptors that enable mammalian cells to detect environmental signals and respond by activating user-prescribed transcriptional programs. Although some materials have been modified to present synNotch ligands with coarse spatial control, applications in tissue engineering generally require extracellular matrix (ECM)-derived scaffolds and/or finer spatial positioning of multiple ligands. Thus, we develop here a suite of materials that activate synNotch receptors for generalizable engineering of material-to-cell signaling. We genetically and chemically fuse functional synNotch ligands to ECM proteins and ECM-derived materials. We also generate tissues with microscale precision over four distinct reporter phenotypes by culturing cells with two orthogonal synNotch programs on surfaces microcontact-printed with two synNotch ligands. Finally, we showcase applications in tissue engineering by co-transdifferentiating fibroblasts into skeletal muscle or endothelial cell precursors in user-defined micropatterns. These technologies provide avenues for spatially controlling cellular phenotypes in mammalian tissues.
Collapse
Affiliation(s)
- Mher Garibyan
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
- Eli and Edythe Broad Center, University of Southern California, Los Angeles, CA, 90033, USA
- Alfred E. Mann Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Tyler Hoffman
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
| | - Thijs Makaske
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
- Eli and Edythe Broad Center, University of Southern California, Los Angeles, CA, 90033, USA
- Utrecht University in the lab of Prof. Dr. Lukas Kapitein, Los Angeles, CA, 90024, USA
| | - Stephanie K Do
- Alfred E. Mann Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Yifan Wu
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
| | - Brian A Williams
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Alexander R March
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
- Eli and Edythe Broad Center, University of Southern California, Los Angeles, CA, 90033, USA
| | - Nathan Cho
- Alfred E. Mann Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Nicolas Pedroncelli
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
| | - Ricardo Espinosa Lima
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
| | - Jennifer Soto
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
| | - Brooke Jackson
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
| | - Jeffrey W Santoso
- Alfred E. Mann Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Ali Khademhosseini
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA, 90024, USA
| | - Matt Thomson
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Song Li
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
- Broad Stem Cell Center, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Megan L McCain
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA.
- Alfred E. Mann Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA.
| | - Leonardo Morsut
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA.
- Eli and Edythe Broad Center, University of Southern California, Los Angeles, CA, 90033, USA.
- Alfred E. Mann Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
13
|
Ghisleni A, Bonilla-Quintana M, Crestani M, Lavagnino Z, Galli C, Rangamani P, Gauthier NC. Mechanically induced topological transition of spectrin regulates its distribution in the mammalian cell cortex. Nat Commun 2024; 15:5711. [PMID: 38977673 PMCID: PMC11231315 DOI: 10.1038/s41467-024-49906-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 06/24/2024] [Indexed: 07/10/2024] Open
Abstract
The cell cortex is a dynamic assembly formed by the plasma membrane and underlying cytoskeleton. As the main determinant of cell shape, the cortex ensures its integrity during passive and active deformations by adapting cytoskeleton topologies through yet poorly understood mechanisms. The spectrin meshwork ensures such adaptation in erythrocytes and neurons by adopting different organizations. Erythrocytes rely on triangular-like lattices of spectrin tetramers, whereas in neurons they are organized in parallel, periodic arrays. Since spectrin is ubiquitously expressed, we exploited Expansion Microscopy to discover that, in fibroblasts, distinct meshwork densities co-exist. Through biophysical measurements and computational modeling, we show that the non-polarized spectrin meshwork, with the intervention of actomyosin, can dynamically transition into polarized clusters fenced by actin stress fibers that resemble periodic arrays as found in neurons. Clusters experience lower mechanical stress and turnover, despite displaying an extension close to the tetramer contour length. Our study sheds light on the adaptive properties of spectrin, which participates in the protection of the cell cortex by varying its densities in response to key mechanical features.
Collapse
Affiliation(s)
- Andrea Ghisleni
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Mayte Bonilla-Quintana
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA, USA
| | - Michele Crestani
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milan, Italy
- Laboratory of Applied Mechanobiology, Department for Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - Zeno Lavagnino
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Camilla Galli
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milan, Italy
- Humanitas Cardio Center, IRCCS Humanitas Research Hospital, Rozzano (Milan, Italy
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA, USA.
| | - Nils C Gauthier
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milan, Italy.
| |
Collapse
|
14
|
Forouharshad M, Raspa A, Fortino G, Ciulla MG, Farazdaghi A, Stolojan V, Stendardo L, Bracco S, Gelain F. Biomimetic electrospun PVDF/self-assembling peptide piezoelectric scaffolds for neural stem cell transplantation in neural tissue engineering. RSC Adv 2024; 14:21277-21291. [PMID: 38974226 PMCID: PMC11225063 DOI: 10.1039/d4ra02309a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/29/2024] [Indexed: 07/09/2024] Open
Abstract
Piezoelectric materials can provide in situ electrical stimulation without external chemical or physical support, opening new frontiers for future bioelectric therapies. Polyvinylidene fluoride (PVDF) possesses piezoelectricity and biocompatibility, making it an electroactive biomaterial capable of enhancing bioactivity through instantaneous electrical stimulation, which indicates significant potential in tissue engineering. In this study, we developed electroactive and biomimetic scaffolds made of electrospun PVDF and self-assembling peptides (SAPs) to enhance stem cell transplantation for spinal cord injury regeneration. We investigated the morphology and crystalline polymorphs of the electrospun scaffolds. Morphological studies demonstrated the benefit of using mixed sodium dodecyl sulfate (SDS) and SAPs as additives to form thinner, uniform, and defect-free fibers. Regarding electroactive phases, β and γ phases-evidence of electroactivity-were predominant in aligned scaffolds and scaffolds modified with SDS and SAPs. In vitro studies showed that neural stem cells (NSCs) seeded on electrospun PVDF with additives exhibited desirable proliferation and differentiation compared to the gold standard. Furthermore, the orientation of the fibers influenced scaffold topography, resulting in a higher degree of cell orientation in fiber-aligned scaffolds compared to randomly oriented ones.
Collapse
Affiliation(s)
- Mahdi Forouharshad
- Center for Nanomedicine and Tissue Engineering (CNTE), ASST Grande Ospedale Metropolitano Niguarda 20162 Milan Italy
- Institute for Stem-Cell Biology, Regenerative Medicine and Innovative Therapies, IRCCS Casa Sollievo della Sofferenza 71013 San Giovanni Rotondo Italy
| | - Andrea Raspa
- Institute for Stem-Cell Biology, Regenerative Medicine and Innovative Therapies, IRCCS Casa Sollievo della Sofferenza 71013 San Giovanni Rotondo Italy
| | - Giuseppe Fortino
- Department of Biotechnology and Bioscience, University of Milano - Bicocca via R. Cozzi 55 20125 Milano Italy
| | - Maria Gessica Ciulla
- Center for Nanomedicine and Tissue Engineering (CNTE), ASST Grande Ospedale Metropolitano Niguarda 20162 Milan Italy
| | - Arman Farazdaghi
- Chemical and Biomolecular Engineering Department, Whiting School of Engineering, Johns Hopkins University MD USA
| | - Vlad Stolojan
- Advanced Technology Institute, Electrical and Electronic Engineering, University of Surrey Guildford GU2 7XH UK
| | - Luca Stendardo
- Department of Materials Science, University of Milano - Bicocca via R. Cozzi 55 20125 Milano Italy
| | - Silvia Bracco
- Department of Materials Science, University of Milano - Bicocca via R. Cozzi 55 20125 Milano Italy
| | - Fabrizio Gelain
- Center for Nanomedicine and Tissue Engineering (CNTE), ASST Grande Ospedale Metropolitano Niguarda 20162 Milan Italy
- Institute for Stem-Cell Biology, Regenerative Medicine and Innovative Therapies, IRCCS Casa Sollievo della Sofferenza 71013 San Giovanni Rotondo Italy
| |
Collapse
|
15
|
Mujica R, Augustine A, Pauly M, Battie Y, Decher G, Houérou VL, Felix O. Nature-Inspired Helicoidal Nanocellulose-Based Multi-Compartment Assemblies with Tunable Chiroptical Properties. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401742. [PMID: 38635929 DOI: 10.1002/adma.202401742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/05/2024] [Indexed: 04/20/2024]
Abstract
Cellulose-based nanocomposites are highly appealing for the development of next-generation sustainable functional materials. Although many advances have been made in this direction, the true potential of fibrillar nanocomposites has yet to be realized because available fabrication approaches are inadequate for achieving precise structural control at the sub-micrometer scale. Here a spray-assisted alignment methodology of cellulose nanofibrils is combined with the layer-by-layer assembly into an additive manufacturing process in which the alignment direction of each cellulose layer is rationally selected to achieve thin films with a helicoidal arrangement of the nanofibrils. The helicoidal structure of the films is verified by measuring the circular dichroism (CD) of the samples. The sign and position of the structural CD peak show that the handedness and the pitch of the chiral structures can be easily tuned by deliberately selecting simple parameters, such as the number of consecutive cellulose layers sprayed in the same direction, and the angle of rotation between successive stacks of layers. To the authors' knowledge, this approach is unique as it offers the possibility to prepare complex nanocomposite architectures with various nanoscale-controlled sub-structures from different anisometric objects, which is enabling novel designs of composite films with damage-resistant and/or optical filtering functionalities.
Collapse
Affiliation(s)
- Randy Mujica
- Université de Strasbourg, CNRS, Institut Charles Sadron UPR22, Strasbourg, F-67000, France
| | - Anusree Augustine
- Université de Strasbourg, CNRS, Institut Charles Sadron UPR22, Strasbourg, F-67000, France
| | - Matthias Pauly
- Université de Strasbourg, CNRS, Institut Charles Sadron UPR22, Strasbourg, F-67000, France
- International Center for Materials Nanoarchitectonics, Tsukuba, Ibaraki, 305-0044, Japan
| | - Yann Battie
- Université de Lorraine, LCP-A2MC, Metz, F-57078, France
| | - Gero Decher
- Université de Strasbourg, CNRS, Institut Charles Sadron UPR22, Strasbourg, F-67000, France
- International Center for Materials Nanoarchitectonics, Tsukuba, Ibaraki, 305-0044, Japan
- International Center for Frontier Research in Chemistry, Strasbourg, F-67083, France
| | - Vincent Le Houérou
- Université de Strasbourg, CNRS, Institut Charles Sadron UPR22, Strasbourg, F-67000, France
- Université de Strasbourg, CNRS, ICube UMR 7357, Illkirch, F-67412, France
| | - Olivier Felix
- Université de Strasbourg, CNRS, Institut Charles Sadron UPR22, Strasbourg, F-67000, France
- International Center for Materials Nanoarchitectonics, Tsukuba, Ibaraki, 305-0044, Japan
| |
Collapse
|
16
|
Hidalgo-Ogalde B, Pinto-Ramos D, Clerc MG, Tlidi M. Nonreciprocal feedback induces migrating oblique and horizontal banded vegetation patterns in hyperarid landscapes. Sci Rep 2024; 14:14635. [PMID: 38918448 PMCID: PMC11199605 DOI: 10.1038/s41598-024-63820-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 06/03/2024] [Indexed: 06/27/2024] Open
Abstract
In hyperarid environments, vegetation is highly fragmented, with plant populations exhibiting non-random biphasic structures where regions of high biomass density are separated by bare soil. In the Atacama Desert of northern Chile, rainfall is virtually nonexistent, but fog pushed in from the interior sustains patches of vegetation in a barren environment. Tillandsia landbeckii, a plant with no functional roots, survives entirely on fog corridors as a water source. Their origin is attributed to interaction feedback among the ecosystem agents, which have different spatial scales, ultimately generating banded patterns as a self-organising response to resource scarcity. The interaction feedback between the plants can be nonreciprocal due to the fact that the fog flows in a well-defined direction. Using remote sensing analysis and mathematical modelling, we characterise the orientation angle of banded vegetation patterns with respect to fog direction and topographic slope gradient. We show that banded vegetation patterns can be either oblique or horizontal to the fog flow rather than topography. The initial and boundary conditions determine the type of the pattern. The bifurcation diagram for both patterns is established. The theoretical predictions are in agreement with observations from remote sensing image analysis.
Collapse
Affiliation(s)
- Belén Hidalgo-Ogalde
- Departamento de Física and Millennium Institute for Research in Optics, FCFM, Universidad de Chile, Casilla 487-3, Santiago, Chile.
| | - David Pinto-Ramos
- Departamento de Física and Millennium Institute for Research in Optics, FCFM, Universidad de Chile, Casilla 487-3, Santiago, Chile
- Center for Advanced Systems Understanding (CASUS), Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Görlitz, Germany
| | - Marcel G Clerc
- Departamento de Física and Millennium Institute for Research in Optics, FCFM, Universidad de Chile, Casilla 487-3, Santiago, Chile
| | - Mustapha Tlidi
- Département de Physique, Faculté des Sciences, Université Libre de Bruxelles (U.L.B), CP 231, Campus Plaine, 1050, Brussels, Belgium
| |
Collapse
|
17
|
Van Gordon K, Ni B, Girod R, Mychinko M, Bevilacqua F, Bals S, Liz-Marzán LM. Single Crystal and Pentatwinned Gold Nanorods Result in Chiral Nanocrystals with Reverse Handedness. Angew Chem Int Ed Engl 2024; 63:e202403116. [PMID: 38646964 DOI: 10.1002/anie.202403116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/22/2024] [Accepted: 04/22/2024] [Indexed: 04/25/2024]
Abstract
Handedness is an essential attribute of chiral nanocrystals, having a major influence on their properties. During chemical growth, the handedness of nanocrystals is usually tuned by selecting the corresponding enantiomer of chiral molecules involved in asymmetric growth, often known as chiral inducers. We report that, even using the same chiral inducer enantiomer, the handedness of chiral gold nanocrystals can be reversed by using Au nanorod seeds with either single crystalline or pentatwinned structure. This effect holds for chiral growth induced both by amino acids and by chiral micelles. Although it was challenging to discern the morphological handedness for L-cystine-directed particles, even using electron tomography, both cases showed circular dichroism bands of opposite sign, with nearly mirrored chiroptical signatures for chiral micelle-directed growth, along with quasi-helical wrinkles of inverted handedness. These results expand the chiral growth toolbox with an effect that might be exploited to yield a host of interesting morphologies with tunable optical properties.
Collapse
Affiliation(s)
- Kyle Van Gordon
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014, Donostia-San Sebastián, Spain
- Department of Applied Chemistry, University of the Basque Country (UPV-EHU), 20018, Donostia-San Sebastián, Spain
| | - Bing Ni
- Physical Chemistry, University of Konstanz, 78457, Konstanz, Germany
- Present address: Department of Chemical Engineering, University of Michigan, MI, 48109-2102, Ann Arbor, USA
| | - Robin Girod
- EMAT and NANOlab Center of Excellence, University of Antwerp, B-2020, Antwerp, Belgium
| | - Mikhail Mychinko
- EMAT and NANOlab Center of Excellence, University of Antwerp, B-2020, Antwerp, Belgium
| | - Francisco Bevilacqua
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014, Donostia-San Sebastián, Spain
- Department of Applied Chemistry, University of the Basque Country (UPV-EHU), 20018, Donostia-San Sebastián, Spain
| | - Sara Bals
- EMAT and NANOlab Center of Excellence, University of Antwerp, B-2020, Antwerp, Belgium
| | - Luis M Liz-Marzán
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014, Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48009, Bilbao, Spain
- Biomedical Research Networking Center, Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 20014, Donostia-San Sebastián, Spain
- Cinbio, Universidade de Vigo, 36310, Vigo, Spain
| |
Collapse
|
18
|
Du W, Verma A, Ye Q, Du W, Lin S, Yamanaka A, Klein OD, Hu JK. Myosin II mediates Shh signals to shape dental epithelia via control of cell adhesion and movement. PLoS Genet 2024; 20:e1011326. [PMID: 38857279 PMCID: PMC11192418 DOI: 10.1371/journal.pgen.1011326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 06/21/2024] [Accepted: 05/29/2024] [Indexed: 06/12/2024] Open
Abstract
The development of ectodermal organs begins with the formation of a stratified epithelial placode that progressively invaginates into the underlying mesenchyme as the organ takes its shape. Signaling by secreted molecules is critical for epithelial morphogenesis, but how that information leads to cell rearrangement and tissue shape changes remains an open question. Using the mouse dentition as a model, we first establish that non-muscle myosin II is essential for dental epithelial invagination and show that it functions by promoting cell-cell adhesion and persistent convergent cell movements in the suprabasal layer. Shh signaling controls these processes by inducing myosin II activation via AKT. Pharmacological induction of AKT and myosin II can also rescue defects caused by the inhibition of Shh. Together, our results support a model in which the Shh signal is transmitted through myosin II to power effective cellular rearrangement for proper dental epithelial invagination.
Collapse
Affiliation(s)
- Wei Du
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- School of Dentistry, University of California Los Angeles, Los Angeles, California, United States of America
| | - Adya Verma
- Department of Orofacial Sciences, University of California San Francisco, San Francisco, California, United States of America
| | - Qianlin Ye
- School of Dentistry, University of California Los Angeles, Los Angeles, California, United States of America
| | - Wen Du
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Sandy Lin
- School of Dentistry, University of California Los Angeles, Los Angeles, California, United States of America
| | - Atsushi Yamanaka
- Department of Oral Anatomy and Cell Biology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Ophir D. Klein
- Department of Orofacial Sciences, University of California San Francisco, San Francisco, California, United States of America
- Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Jimmy K. Hu
- School of Dentistry, University of California Los Angeles, Los Angeles, California, United States of America
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, California, United States of America
| |
Collapse
|
19
|
Schaart JM, Kea-Te Lindert M, Roverts R, Nijhuis WH, Sommerdijk N, Akiva A. Cell-induced collagen alignment in a 3D in vitro culture during extracellular matrix production. J Struct Biol 2024; 216:108096. [PMID: 38697586 DOI: 10.1016/j.jsb.2024.108096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/24/2024] [Accepted: 04/27/2024] [Indexed: 05/05/2024]
Abstract
The bone extracellular matrix consists of a highly organized collagen matrix that is mineralized with carbonated hydroxyapatite. Even though the structure and composition of bone have been studied extensively, the mechanisms underlying collagen matrix organization remain elusive. In this study, we used a 3D cell culture system in which osteogenic cells deposit and orient the collagen matrix that is subsequently mineralized. Using live fluorescence imaging combined with volume electron microscopy, we visualize the organization of the cells and collagen in the cell culture. We show that the osteogenically induced cells are organizing the collagen matrix during development. Based on the observation of tunnel-like structures surrounded by aligned collagen in the center of the culture, we propose that osteoblasts organize the deposited collagen during migration through the culture. Overall, we show that cell-matrix interactions are involved in collagen alignment during early-stage osteogenic differentiation and that the matrix is organized by the osteoblasts in the absence of osteoclast activity.
Collapse
Affiliation(s)
- Judith M Schaart
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein Zuid 28, 6525GA Nijmegen, The Netherlands
| | - Mariska Kea-Te Lindert
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein Zuid 28, 6525GA Nijmegen, The Netherlands; Electron Microscopy Center, Radboudumc Technology Center Microscopy, Radboud University Medical Center, Geert Grooteplein Noord 29, 6525EZ Nijmegen, The Netherlands
| | - Rona Roverts
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein Zuid 28, 6525GA Nijmegen, The Netherlands; Electron Microscopy Center, Radboudumc Technology Center Microscopy, Radboud University Medical Center, Geert Grooteplein Noord 29, 6525EZ Nijmegen, The Netherlands
| | - Wouter H Nijhuis
- Department of Orthopaedic Surgery, University Medical Centre Utrecht, Wilhelmina Children's Hospital, 3508GA Utrecht, The Netherlands
| | - Nico Sommerdijk
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein Zuid 28, 6525GA Nijmegen, The Netherlands; Electron Microscopy Center, Radboudumc Technology Center Microscopy, Radboud University Medical Center, Geert Grooteplein Noord 29, 6525EZ Nijmegen, The Netherlands.
| | - Anat Akiva
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein Zuid 28, 6525GA Nijmegen, The Netherlands; Electron Microscopy Center, Radboudumc Technology Center Microscopy, Radboud University Medical Center, Geert Grooteplein Noord 29, 6525EZ Nijmegen, The Netherlands.
| |
Collapse
|
20
|
Skillin NP, Kirkpatrick BE, Herbert KM, Nelson BR, Hach GK, Günay KA, Khan RM, DelRio FW, White TJ, Anseth KS. Stiffness anisotropy coordinates supracellular contractility driving long-range myotube-ECM alignment. SCIENCE ADVANCES 2024; 10:eadn0235. [PMID: 38820155 PMCID: PMC11141631 DOI: 10.1126/sciadv.adn0235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 04/30/2024] [Indexed: 06/02/2024]
Abstract
The ability of cells to organize into tissues with proper structure and function requires the effective coordination of proliferation, migration, polarization, and differentiation across length scales. Skeletal muscle is innately anisotropic; however, few biomaterials can emulate mechanical anisotropy to determine its influence on tissue patterning without introducing confounding topography. Here, we demonstrate that substrate stiffness anisotropy coordinates contractility-driven collective cellular dynamics resulting in C2C12 myotube alignment over millimeter-scale distances. When cultured on mechanically anisotropic liquid crystalline polymer networks (LCNs) lacking topography, C2C12 myoblasts collectively polarize in the stiffest direction. Cellular coordination is amplified through reciprocal cell-ECM dynamics that emerge during fusion, driving global myotube-ECM ordering. Conversely, myotube alignment was restricted to small local domains with no directional preference on mechanically isotropic LCNs of the same chemical formulation. These findings provide valuable insights for designing biomaterials that mimic anisotropic microenvironments and underscore the importance of stiffness anisotropy in orchestrating tissue morphogenesis.
Collapse
Affiliation(s)
- Nathaniel P. Skillin
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80303, USA
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
- Medical Scientist Training Program, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Bruce E. Kirkpatrick
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80303, USA
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
- Medical Scientist Training Program, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Katie M. Herbert
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Benjamin R. Nelson
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80303, USA
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Grace K. Hach
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80303, USA
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Kemal Arda Günay
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80303, USA
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Ryan M. Khan
- Material, Physical, and Chemical Sciences Center, Sandia National Laboratories, Albuquerque, NM 87185, USA
| | - Frank W. DelRio
- Material, Physical, and Chemical Sciences Center, Sandia National Laboratories, Albuquerque, NM 87185, USA
| | - Timothy J. White
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Kristi S. Anseth
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80303, USA
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| |
Collapse
|
21
|
Zimmermann P, Schletz D, Hoffmann M, Probst PT, Fery A, Nagel J. Molding Process Retaining Gold Nanoparticle Assembly Structures during Transfer to a Polycarbonate Surface. Polymers (Basel) 2024; 16:1553. [PMID: 38891499 PMCID: PMC11174599 DOI: 10.3390/polym16111553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
The immobilization of gold nanoparticle (AuNP) linear surface assemblies on polycarbonate (PC) melt surface via molding is investigated. The order of the particle assemblies is preserved during the molding process. The assemblies on PC exhibit plasmonic coupling features and dichroic properties. The structure of the assemblies is quantified based on Scanning Electron Microscopy (SEM) and image analysis data using an orientational order parameter. The transfer process from mold to melt shows high structural fidelity. The order parameter of around 0.98 reflects the orientation of the lines and remains unaffected, independent of the injection direction of the melt relative to the particle lines. This is discussed in the frame of fountain flow during injection molding. The particles were permanently fixed and withstood the injection molding process, detachment of the substrate, and extraction in boiling ethanol. The plasmonic particles coupled strongly within the dense nanoparticle lines to produce anisotropic optical properties, as quantified by dichroic ratios of 0.28 and 0.52 using ultraviolet-visible-near-infrared (UV-Vis-NIR) spectroscopy. AuNP line assemblies on a polymer surface may be a basis for plasmonic devices like surface-enhanced Raman scattering (SERS) sensors or a precursor for nanowires. Their embedding via injection molding constitutes an important link between particle-self-assembly approaches for optically functional surfaces and polymer processing techniques.
Collapse
Affiliation(s)
- Philipp Zimmermann
- Institut für Polymerwerkstoffe, Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, D-01069 Dresden, Germany;
| | - Daniel Schletz
- Institut für Physikalische Chemie und Physik der Polymere, Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, D-01069 Dresden, Germany; (D.S.); (P.T.P.)
| | - Marisa Hoffmann
- Institut für Physikalische Chemie und Physik der Polymere, Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, D-01069 Dresden, Germany; (D.S.); (P.T.P.)
| | - Patrick T. Probst
- Institut für Physikalische Chemie und Physik der Polymere, Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, D-01069 Dresden, Germany; (D.S.); (P.T.P.)
- Department of Electrical and Electronic Engineering, Graduate School of Engineering, Kobe University, Kobe 657-8501, Japan
| | - Andreas Fery
- Institut für Physikalische Chemie und Physik der Polymere, Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, D-01069 Dresden, Germany; (D.S.); (P.T.P.)
| | - Jürgen Nagel
- Institut für Polymerwerkstoffe, Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, D-01069 Dresden, Germany;
| |
Collapse
|
22
|
Kim J, Lee K, Kim S, Sohn BH. Orientation and stretching of supracolloidal chains of diblock copolymer micelles by spin-coating process. NANOSCALE 2024; 16:10377-10387. [PMID: 38739015 DOI: 10.1039/d4nr00663a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Supracolloidal chains consisting of nano- or micro-scale particles exhibit anisotropic properties not observed in individual particles. The orientation of the chains is necessary to manifest such characteristics on a macroscopic scale. In this study, we demonstrate the orientation of supracolloidal chains composed of nano-scale micelles of a diblock copolymer through spin-coating. We observed separate chains coated on a substrate with electron microscopy, and analyzed the orientation and stretching of the chains quantitatively with image analysis software. In drop-casting, the chains were coated randomly with no preferred orientation, and the degree of stretching exhibited an intrinsic semi-flexible nature. In contrast, spin-coated chains were aligned in the radial direction, and the apparent persistence length of the chain increased, confirming the stretching of the chain quantitatively. Furthermore, by incorporating fluorophores into supracolloidal chains and confirming the oriented chains with confocal fluorescence microscopy, it is demonstrated that oriented chains can be utilized as a template to align functional materials.
Collapse
Affiliation(s)
- Jaemin Kim
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea.
| | - Kyunghyeon Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea.
| | - Sangyoon Kim
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea.
| | - Byeong-Hyeok Sohn
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
23
|
Vendramini-Costa DB, Francescone R, Franco-Barraza J, Luong T, Graves M, de Aquino AM, Steele N, Gardiner JC, Dos Santos SAA, Ogier C, Malloy E, Borghaei L, Martinez E, Zhigarev DI, Tan Y, Lee H, Zhou Y, Cai KQ, Klein-Szanto AJ, Wang H, Andrake M, Dunbrack RL, Campbell K, Cukierman E. Netrin G1 Ligand is a new stromal immunomodulator that promotes pancreatic cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.15.594354. [PMID: 38798370 PMCID: PMC11118300 DOI: 10.1101/2024.05.15.594354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Understanding pancreatic cancer biology is fundamental for identifying new targets and for developing more effective therapies. In particular, the contribution of the stromal microenvironment to pancreatic cancer tumorigenesis requires further exploration. Here, we report the stromal roles of the synaptic protein Netrin G1 Ligand (NGL-1) in pancreatic cancer, uncovering its pro-tumor functions in cancer-associated fibroblasts and in immune cells. We observed that the stromal expression of NGL-1 inversely correlated with patients' overall survival. Moreover, germline knockout (KO) mice for NGL-1 presented decreased tumor burden, with a microenvironment that is less supportive of tumor growth. Of note, tumors from NGL-1 KO mice produced less immunosuppressive cytokines and displayed an increased percentage of CD8 + T cells than those from control mice, while preserving the physical structure of the tumor microenvironment. These effects were shown to be mediated by NGL-1 in both immune cells and in the local stroma, in a TGF-β-dependent manner. While myeloid cells lacking NGL-1 decreased the production of immunosuppressive cytokines, NGL-1 KO T cells showed increased proliferation rates and overall polyfunctionality compared to control T cells. CAFs lacking NGL-1 were less immunosuppressive than controls, with overall decreased production of pro-tumor cytokines and compromised ability to inhibit CD8 + T cells activation. Mechanistically, these CAFs downregulated components of the TGF-β pathway, AP-1 and NFAT transcription factor families, resulting in a less tumor-supportive phenotype. Finally, targeting NGL-1 genetically or using a functionally antagonistic small peptide phenocopied the effects of chemotherapy, while modulating the immunosuppressive tumor microenvironment (TME), rather than eliminating it. We propose NGL-1 as a new local stroma and immunomodulatory molecule, with pro-tumor roles in pancreatic cancer. Statement of Significance Here we uncovered the pro-tumor roles of the synaptic protein NGL-1 in the tumor microenvironment of pancreatic cancer, defining a new target that simultaneously modulates tumor cell, fibroblast, and immune cell functions. This study reports a new pathway where NGL-1 controls TGF-β, AP-1 transcription factor members and NFAT1, modulating the immunosuppressive microenvironment in pancreatic cancer. Our findings highlight NGL-1 as a new stromal immunomodulator in pancreatic cancer.
Collapse
|
24
|
Puiggalí-Jou A, Rizzo R, Bonato A, Fisch P, Ponta S, Weber DM, Zenobi-Wong M. FLight Biofabrication Supports Maturation of Articular Cartilage with Anisotropic Properties. Adv Healthc Mater 2024; 13:e2302179. [PMID: 37867457 DOI: 10.1002/adhm.202302179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Indexed: 10/24/2023]
Abstract
Tissue engineering approaches that recapitulate cartilage biomechanical properties are emerging as promising methods to restore the function of injured or degenerated tissue. However, despite significant progress in this research area, the generation of engineered cartilage constructs akin to native counterparts still represents an unmet challenge. In particular, the inability to accurately reproduce cartilage zonal architecture with different collagen fibril orientations is a significant limitation. The arrangement of the extracellular matrix (ECM) plays a fundamental role in determining the mechanical and biological functions of the tissue. In this study, it is shown that a novel light-based approach, Filamented Light (FLight) biofabrication, can be used to generate highly porous, 3D cell-instructive anisotropic constructs that lead to directional collagen deposition. Using a photoclick-based photoresin optimized for cartilage tissue engineering, a significantly improved maturation of the cartilaginous tissues with zonal architecture and remarkable native-like mechanical properties is demonstrated.
Collapse
Affiliation(s)
- Anna Puiggalí-Jou
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences & Technology, ETH Zürich, Otto-Stern-Weg 7, Zürich, 8093, Switzerland
| | - Riccardo Rizzo
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences & Technology, ETH Zürich, Otto-Stern-Weg 7, Zürich, 8093, Switzerland
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, 52 Oxford Street, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Angela Bonato
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences & Technology, ETH Zürich, Otto-Stern-Weg 7, Zürich, 8093, Switzerland
| | - Philipp Fisch
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences & Technology, ETH Zürich, Otto-Stern-Weg 7, Zürich, 8093, Switzerland
| | - Simone Ponta
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences & Technology, ETH Zürich, Otto-Stern-Weg 7, Zürich, 8093, Switzerland
| | - Daniel M Weber
- Division of Hand Surgery, University Children's Hospital Zürich, University of Zürich, Zürich, 8032, Switzerland
| | - Marcy Zenobi-Wong
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences & Technology, ETH Zürich, Otto-Stern-Weg 7, Zürich, 8093, Switzerland
| |
Collapse
|
25
|
Thornton MA, Futia GL, Stockton ME, Budoff SA, Ramirez AN, Ozbay B, Tzang O, Kilborn K, Poleg-Polsky A, Restrepo D, Gibson EA, Hughes EG. Long-term in vivo three-photon imaging reveals region-specific differences in healthy and regenerative oligodendrogenesis. Nat Neurosci 2024; 27:846-861. [PMID: 38539013 PMCID: PMC11104262 DOI: 10.1038/s41593-024-01613-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/26/2024] [Indexed: 04/09/2024]
Abstract
The generation of new myelin-forming oligodendrocytes in the adult central nervous system is critical for cognitive function and regeneration following injury. Oligodendrogenesis varies between gray and white matter regions, suggesting that local cues drive regional differences in myelination and the capacity for regeneration. However, the layer- and region-specific regulation of oligodendrocyte populations is unclear due to the inability to monitor deep brain structures in vivo. Here we harnessed the superior imaging depth of three-photon microscopy to permit long-term, longitudinal in vivo three-photon imaging of the entire cortical column and subcortical white matter in adult mice. We find that cortical oligodendrocyte populations expand at a higher rate in the adult brain than those of the white matter. Following demyelination, oligodendrocyte replacement is enhanced in the white matter, while the deep cortical layers show deficits in regenerative oligodendrogenesis and the restoration of transcriptional heterogeneity. Together, our findings demonstrate that regional microenvironments regulate oligodendrocyte population dynamics and heterogeneity in the healthy and diseased brain.
Collapse
Affiliation(s)
- Michael A Thornton
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Gregory L Futia
- Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Michael E Stockton
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Samuel A Budoff
- Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Alexandra N Ramirez
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Baris Ozbay
- Intelligent Imaging Innovations, Denver, CO, USA
| | - Omer Tzang
- Intelligent Imaging Innovations, Denver, CO, USA
| | - Karl Kilborn
- Intelligent Imaging Innovations, Denver, CO, USA
| | - Alon Poleg-Polsky
- Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Diego Restrepo
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Emily A Gibson
- Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Ethan G Hughes
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
26
|
Tanaka HY, Nakazawa T, Miyazaki T, Cabral H, Masamune A, Kano MR. Targeting ROCK2 improves macromolecular permeability in a 3D fibrotic pancreatic cancer microenvironment model. J Control Release 2024; 369:283-295. [PMID: 38522816 DOI: 10.1016/j.jconrel.2024.03.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/11/2024] [Accepted: 03/21/2024] [Indexed: 03/26/2024]
Abstract
Pancreatic cancer is characterized by a densely fibrotic stroma. The fibrotic stroma hinders the intratumoral penetration of nanomedicine and diminishes therapeutic efficacy. Fibrosis is characterized by an abnormal organization of extracellular matrix (ECM) components, namely the abnormal deposition and/or orientation of collagen and fibronectin. Abnormal ECM organization is chiefly driven by pathological signaling in pancreatic stellate cells (PSCs), the main cell type involved in fibrogenesis. However, whether targeting signaling pathways involved in abnormal ECM organization improves the intratumoral penetration of nanomedicines is unknown. Here, we show that targeting transforming growth factor-β (TGFβ)/Rho-associated kinase (ROCK) 1/2 signaling in PSCs normalizes ECM organization and concomitantly improves macromolecular permeability of the fibrotic stroma. Using a 3-dimensional cell culture model of the fibrotic pancreatic cancer microenvironment, we found that pharmacological inhibition of TGFβ or ROCK1/2 improves the permeation of various macromolecules. By using an isoform-specific pharmacological inhibitor and siRNAs, we show that targeting ROCK2, but not ROCK1, alone is sufficient to normalize ECM organization and improve macromolecular permeability. Moreover, we found that ROCK2 inhibition/knockdown attenuates Yes-associated protein (YAP) nuclear localization in fibroblasts co-cultured with pancreatic cancer cells in 3D. Finally, pharmacological inhibition or siRNA-mediated knockdown of YAP normalized ECM organization and improved macromolecular permeability. Our results together suggest that the TGFβ/ROCK2/YAP signaling axis may be therapeutically targeted to normalize ECM organization and improve macromolecular permeability to augment therapeutic efficacy of nanomedicines in pancreatic cancer.
Collapse
Affiliation(s)
- Hiroyoshi Y Tanaka
- Department of Pharmaceutical Biomedicine, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama-shi, Okayama 700-8530, Japan
| | - Takuya Nakazawa
- Department of Pharmaceutical Biomedicine, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama-shi, Okayama 700-8530, Japan
| | - Takuya Miyazaki
- Kanagawa Institute of Industrial Science and Technology (KISTEC), 705-1 Shimoimaizumi, Ebina-shi, Kanagawa 243-0435, Japan
| | - Horacio Cabral
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Atsushi Masamune
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai-shi, Miyagi 980-8574, Japan
| | - Mitsunobu R Kano
- Department of Pharmaceutical Biomedicine, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama-shi, Okayama 700-8530, Japan.
| |
Collapse
|
27
|
Fischer J, Heidrová A, Hermanová M, Bednařík Z, Joukal M, Burša J. Structural parameters defining distribution of collagen fiber directions in human carotid arteries. J Mech Behav Biomed Mater 2024; 153:106494. [PMID: 38507995 DOI: 10.1016/j.jmbbm.2024.106494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/16/2024] [Accepted: 03/01/2024] [Indexed: 03/22/2024]
Abstract
Collagen fiber arrangement is decisive for constitutive description of anisotropic mechanical response of arterial wall. In this study, their orientation in human common carotid artery was investigated using polarized light microscopy and an automated algorithm giving more than 4·106 fiber angles per slice. In total 113 slices acquired from 18 arteries taken from 14 cadavers were used for fiber orientation in the circumferential-axial plane. All histograms were approximated with unimodal von Mises distribution to evaluate dominant direction of fibers and their concentration parameter. 10 specimens were analyzed also in circumferential-radial and axial-radial planes (2-4 slices per specimen in each plane); the portion of radially oriented fibers was found insignificant. In the circumferential-axial plane, most specimens showed a pronounced unimodal distribution with angle to circumferential direction μ = 0.7° ± 9.4° and concentration parameter b = 3.4 ± 1.9. Suitability of the unimodal fit was confirmed by high values of coefficient of determination (mean R2 = 0.97, median R2 = 0.99). Differences between media and adventitia layers were not found statistically significant. The results are directly applicable as structural parameters in the GOH constitutive model of arterial wall if the postulated two fiber families are unified into one with circumferential orientation.
Collapse
Affiliation(s)
- Jiří Fischer
- Brno University of Technology, Faculty of Mechanical Engineering, Institute of Solid Mechanics, Mechatronics and Biomechanics, Technická 2896/2, Brno, 616 69, Czech Republic.
| | - Aneta Heidrová
- Brno University of Technology, Faculty of Mechanical Engineering, Institute of Solid Mechanics, Mechatronics and Biomechanics, Technická 2896/2, Brno, 616 69, Czech Republic
| | - Markéta Hermanová
- 1st Department of Pathology, St. Anne's University Hospital Brno and Faculty of Medicine, Masaryk University, Pekařská 664/53, 656 91, Brno, Czech Republic
| | - Zdeněk Bednařík
- 1st Department of Pathology, St. Anne's University Hospital Brno and Faculty of Medicine, Masaryk University, Pekařská 664/53, 656 91, Brno, Czech Republic
| | - Marek Joukal
- Department of Anatomy, Faculty of Medicine, Masaryk University, Kamenice 126/3, 625 00, Brno, Czech Republic
| | - Jiří Burša
- Brno University of Technology, Faculty of Mechanical Engineering, Institute of Solid Mechanics, Mechatronics and Biomechanics, Technická 2896/2, Brno, 616 69, Czech Republic
| |
Collapse
|
28
|
Heras-Sádaba A, Pérez-Ruiz A, Martins P, Ederra C, de Solórzano CO, Abizanda G, Pons-Villanueva J, Calvo B, Grasa J. Exploring the muscle architecture effect on the mechanical behaviour of mouse rotator cuff muscles. Comput Biol Med 2024; 174:108401. [PMID: 38603897 DOI: 10.1016/j.compbiomed.2024.108401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/15/2024] [Accepted: 04/01/2024] [Indexed: 04/13/2024]
Abstract
Incorporating detailed muscle architecture aspects into computational models can enable researchers to gain deeper insights into the complexity of muscle function, movement, and performance. In this study, we employed histological, multiphoton image processing, and finite element method techniques to characterise the mechanical dependency on the architectural behaviour of supraspinatus and infraspinatus mouse muscles. While mechanical tests revealed a stiffer passive behaviour in the supraspinatus muscle, the collagen content was found to be two times higher in the infraspinatus. This effect was unveiled by analysing the alignment of fibres during muscle stretch with the 3D models and the parameters obtained in the fitting. Therefore, a strong dependence of muscle behaviour, both active and passive, was found on fibre orientation rather than collagen content.
Collapse
Affiliation(s)
- A Heras-Sádaba
- Aragón Institute of Engineering Research (i3A), Universidad de Zaragoza, Spain
| | - A Pérez-Ruiz
- Technological Innovation Division, Foundation for Applied Medical Research (FIMA), University of Navarra (UNAV), Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - P Martins
- Aragón Institute of Engineering Research (i3A), Universidad de Zaragoza, Spain
| | - C Ederra
- Technological Innovation Division, Foundation for Applied Medical Research (FIMA), University of Navarra (UNAV), Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - C Ortiz de Solórzano
- Technological Innovation Division, Foundation for Applied Medical Research (FIMA), University of Navarra (UNAV), Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - G Abizanda
- Technological Innovation Division, Foundation for Applied Medical Research (FIMA), University of Navarra (UNAV), Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - J Pons-Villanueva
- Technological Innovation Division, Foundation for Applied Medical Research (FIMA), University of Navarra (UNAV), Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain; Orthopedic Department, Clínica Universidad de Navarra, Pamplona, Spain
| | - B Calvo
- Aragón Institute of Engineering Research (i3A), Universidad de Zaragoza, Spain; Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - J Grasa
- Aragón Institute of Engineering Research (i3A), Universidad de Zaragoza, Spain; Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain.
| |
Collapse
|
29
|
Buchweitz N, Sun Y, Cisewski Porto S, Kelley J, Niu Y, Wang S, Meng Z, Reitman C, Slate E, Yao H, Wu Y. Regional structure-function relationships of lumbar cartilage endplates. J Biomech 2024; 169:112131. [PMID: 38739987 PMCID: PMC11182561 DOI: 10.1016/j.jbiomech.2024.112131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/17/2024] [Accepted: 05/02/2024] [Indexed: 05/16/2024]
Abstract
Cartilage endplates (CEPs) act as protective mechanical barriers for intervertebral discs (IVDs), yet their heterogeneous structure-function relationships are poorly understood. This study addressed this gap by characterizing and correlating the regional biphasic mechanical properties and biochemical composition of human lumbar CEPs. Samples from central, lateral, anterior, and posterior portions of the disc (n = 8/region) were mechanically tested under confined compression to quantify swelling pressure, equilibrium aggregate modulus, and hydraulic permeability. These properties were correlated with CEP porosity and glycosaminoglycan (s-GAG) content, which were obtained by biochemical assays of the same specimens. Both swelling pressure (142.79 ± 85.89 kPa) and aggregate modulus (1864.10 ± 1240.99 kPa) were found to be regionally dependent (p = 0.0001 and p = 0.0067, respectively) in the CEP and trended lowest in the central location. No significant regional dependence was observed for CEP permeability (1.35 ± 0.97 * 10-16 m4/Ns). Porosity measurements correlated significantly with swelling pressure (r = -0.40, p = 0.0227), aggregate modulus (r = -0.49, p = 0.0046), and permeability (r = 0.36, p = 0.0421), and appeared to be the primary indicator of CEP biphasic mechanical properties. Second harmonic generation microscopy also revealed regional patterns of collagen fiber anchoring, with fibers inserting the CEP perpendicularly in the central region and at off-axial directions in peripheral regions. These results suggest that CEP tissue has regionally dependent mechanical properties which are likely due to the regional variation in porosity and matrix structure. This work advances our understanding of healthy baseline endplate biomechanics and lays a groundwork for further understanding the role of CEPs in IVD degeneration.
Collapse
Affiliation(s)
- Nathan Buchweitz
- Department of Bioengineering, Clemson University, Clemson, SC, USA.
| | - Yi Sun
- Department of Orthopaedics, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Sarah Cisewski Porto
- Department of Bioengineering, Clemson University, Clemson, SC, USA; School of Health Sciences, College of Charleston, Charleston, SC, USA.
| | - Joshua Kelley
- Department of Bioengineering, Clemson University, Clemson, SC, USA.
| | - Yipeng Niu
- College of Art and Science, New York University, New York City, NY, USA.
| | - Shangping Wang
- Department of Bioengineering, Clemson University, Clemson, SC, USA.
| | - Zhaoxu Meng
- Department of Mechanical Engineering, Clemson University, Clemson, SC, USA.
| | - Charles Reitman
- Department of Orthopaedics and Physical Medicine, Medical University of South Carolina, Charleston, SC, USA.
| | - Elizabeth Slate
- Department of Statistics, Florida State University, Tallahassee, FL, USA.
| | - Hai Yao
- Department of Bioengineering, Clemson University, Clemson, SC, USA; Department of Orthopaedics and Physical Medicine, Medical University of South Carolina, Charleston, SC, USA.
| | - Yongren Wu
- Department of Bioengineering, Clemson University, Clemson, SC, USA; Department of Orthopaedics and Physical Medicine, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
30
|
Karimi A, Aga M, Khan T, D'costa SD, Thaware O, White E, Kelley MJ, Gong H, Acott TS. Comparative analysis of traction forces in normal and glaucomatous trabecular meshwork cells within a 3D, active fluid-structure interaction culture environment. Acta Biomater 2024; 180:206-229. [PMID: 38641184 PMCID: PMC11095374 DOI: 10.1016/j.actbio.2024.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/26/2024] [Accepted: 04/11/2024] [Indexed: 04/21/2024]
Abstract
This study presents a 3D in vitro cell culture model, meticulously 3D printed to replicate the conventional aqueous outflow pathway anatomical structure, facilitating the study of trabecular meshwork (TM) cellular responses under glaucomatous conditions. Glaucoma affects TM cell functionality, leading to extracellular matrix (ECM) stiffening, enhanced cell-ECM adhesion, and obstructed aqueous humor outflow. Our model, reconstructed from polyacrylamide gel with elastic moduli of 1.5 and 21.7 kPa, is based on serial block-face scanning electron microscopy images of the outflow pathway. It allows for quantifying 3D, depth-dependent, dynamic traction forces exerted by both normal and glaucomatous TM cells within an active fluid-structure interaction (FSI) environment. In our experimental design, we designed two scenarios: a control group with TM cells observed over 20 hours without flow (static setting), focusing on intrinsic cellular contractile forces, and a second scenario incorporating active FSI to evaluate its impact on traction forces (dynamic setting). Our observations revealed that active FSI results in higher traction forces (normal: 1.83-fold and glaucoma: 2.24-fold) and shear strains (normal: 1.81-fold and glaucoma: 2.41-fold), with stiffer substrates amplifying this effect. Glaucomatous cells consistently exhibited larger forces than normal cells. Increasing gel stiffness led to enhanced stress fiber formation in TM cells, particularly in glaucomatous cells. Exposure to active FSI dramatically altered actin organization in both normal and glaucomatous TM cells, particularly affecting cortical actin stress fiber arrangement. This model while preliminary offers a new method in understanding TM cell biomechanics and ECM stiffening in glaucoma, highlighting the importance of FSI in these processes. STATEMENT OF SIGNIFICANCE: This pioneering project presents an advanced 3D in vitro model, meticulously replicating the human trabecular meshwork's anatomy for glaucoma research. It enables precise quantification of cellular forces in a dynamic fluid-structure interaction, a leap forward from existing 2D models. This advancement promises significant insights into trabecular meshwork cell biomechanics and the stiffening of the extracellular matrix in glaucoma, offering potential pathways for innovative treatments. This research is positioned at the forefront of ocular disease study, with implications that extend to broader biomedical applications.
Collapse
Affiliation(s)
- Alireza Karimi
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, United States; Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, United States.
| | - Mini Aga
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, United States
| | - Taaha Khan
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, United States
| | - Siddharth Daniel D'costa
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, United States
| | - Omkar Thaware
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, United States; Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, United States
| | - Elizabeth White
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, United States
| | - Mary J Kelley
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, United States; Department Integrative Biosciences, School of Dentistry, Oregon Health & Science University, Portland, OR, United States
| | - Haiyan Gong
- Department of Ophthalmology, Boston University School of Medicine, Boston, MA, United States; Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, United States
| | - Ted S Acott
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, United States; Department Chemical Physiology & Biochemistry, School of Medicine, Oregon Health & Science University, Portland, OR, United States
| |
Collapse
|
31
|
Aggarwal N, Marsh R, Marcotti S, Shaw TJ, Stramer B, Cox S, Culley S. Characterisation and correction of polarisation effects in fluorescently labelled fibres. J Microsc 2024. [PMID: 38682883 DOI: 10.1111/jmi.13308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/27/2024] [Accepted: 04/17/2024] [Indexed: 05/01/2024]
Abstract
Many biological structures take the form of fibres and filaments, and quantitative analysis of fibre organisation is important for understanding their functions in both normal physiological conditions and disease. In order to visualise these structures, fibres can be fluorescently labelled and imaged, with specialised image analysis methods available for quantifying the degree and strength of fibre alignment. Here we show that fluorescently labelled fibres can display polarised emission, with the strength of this effect varying depending on structure and fluorophore identity. This can bias automated analysis of fibre alignment and mask the true underlying structural organisation. We present a method for quantifying and correcting these polarisation effects without requiring polarisation-resolved microscopy and demonstrate its efficacy when applied to images of fluorescently labelled collagen gels, allowing for more reliable characterisation of fibre microarchitecture.
Collapse
Affiliation(s)
- Nandini Aggarwal
- Randall Centre for Cell & Molecular Biophysics, King's College London, London, UK
| | - Richard Marsh
- Randall Centre for Cell & Molecular Biophysics, King's College London, London, UK
| | - Stefania Marcotti
- Randall Centre for Cell & Molecular Biophysics, King's College London, London, UK
| | - Tanya J Shaw
- Centre for Inflammation Biology & Cancer Immunology, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Brian Stramer
- Randall Centre for Cell & Molecular Biophysics, King's College London, London, UK
| | - Susan Cox
- Randall Centre for Cell & Molecular Biophysics, King's College London, London, UK
| | - Siân Culley
- Randall Centre for Cell & Molecular Biophysics, King's College London, London, UK
| |
Collapse
|
32
|
Sanchaniya JV, Lasenko I, Vijayan V, Smogor H, Gobins V, Kobeissi A, Goljandin D. A Novel Method to Enhance the Mechanical Properties of Polyacrylonitrile Nanofiber Mats: An Experimental and Numerical Investigation. Polymers (Basel) 2024; 16:992. [PMID: 38611250 PMCID: PMC11013617 DOI: 10.3390/polym16070992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/03/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
This study addresses the challenge of enhancing the transverse mechanical properties of oriented polyacrylonitrile (PAN) nanofibers, which are known for their excellent longitudinal tensile strength, without significantly compromising their inherent porosity, which is essential for effective filtration. This study explores the effects of doping PAN nanofiber composites with varying concentrations of polyvinyl alcohol (PVA) (0.5%, 1%, and 2%), introduced into the PAN matrix via a dip-coating method. This approach ensured a random distribution of PVA within the nanofiber mat, aiming to leverage the synergistic interactions between PAN fibers and PVA to improve the composite's overall performance. This synergy is primarily manifested in the structural and functional augmentation of the PAN nanofiber mats through localized PVA agglomerations, thin films between fibers, and coatings on the fibers themselves. Comprehensive evaluation techniques were employed, including scanning electron microscopy (SEM) for morphological insights; transverse and longitudinal mechanical testing; a thermogravimetric analysis (TGA) for thermal stability; and differential scanning calorimetry (DSC) for thermal behavior analyses. Additionally, a finite element method (FEM) analysis was conducted on a numerical simulation of the composite. Using our novel method, the results demonstrated that a minimal concentration of the PVA solution effectively preserved the porosity of the PAN matrix while significantly enhancing its mechanical strength. Moreover, the numerical simulations showed strong agreement with the experimental results, validating the effectiveness of PVA doping in enhancing the mechanical properties of PAN nanofiber mats without sacrificing their functional porosity.
Collapse
Affiliation(s)
- Jaymin Vrajlal Sanchaniya
- Institute of Mechanics and Mechanical Engineering, Faculty of Civil and Mechanical Engineering, Riga Technical University, 6B Kipsala Street, LV-1048 Riga, Latvia; (I.L.)
| | - Inga Lasenko
- Institute of Mechanics and Mechanical Engineering, Faculty of Civil and Mechanical Engineering, Riga Technical University, 6B Kipsala Street, LV-1048 Riga, Latvia; (I.L.)
| | - Vishnu Vijayan
- Institute of Mechanics and Mechanical Engineering, Faculty of Civil and Mechanical Engineering, Riga Technical University, 6B Kipsala Street, LV-1048 Riga, Latvia; (I.L.)
| | - Hilary Smogor
- NETZSCH Instrumenty, Halicka 9, 31-036 Krakow, Poland;
| | - Valters Gobins
- Laboratory of Environmental Genetics, Institute of Biology, Faculty of Biology, Latvian University, Jelgavas Street 1, LV-1004 Riga, Latvia;
| | - Alaa Kobeissi
- Université de Technologie de Compiègne, Roberval (Mechanics, Energy and Electricity), Centre de Recherche Royallieu—CS 60319, 60203 Compiègne Cedex, France;
| | - Dmitri Goljandin
- Department of Mechanical and Industrial Engineering, Tallinn University of Technology, Ehitajate Tee 5, 19086 Tallinn, Estonia;
| |
Collapse
|
33
|
Fromager B, Cambedouzou J, Marhuenda E, Iskratsch T, Pinault M, Bakalara N, Cornu D. Tunable electrospun scaffolds of polyacrylonitrile loaded with carbon nanotubes: from synthesis to biological applications. Chembiochem 2024; 25:e202300768. [PMID: 38353030 DOI: 10.1002/cbic.202300768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/03/2024] [Indexed: 03/13/2024]
Abstract
Growing cells in a biomimetic environment is critical for tissue engineering as well as for studying the cell biology underlying disease mechanisms. To this aim a range of 3D matrices have been developed, from hydrogels to decellularized matrices. They need to mimic the extracellular matrix to ensure the optimal growth and function of cells. Electrospinning has gained in popularity due to its capacity to individually tune chemistry and mechanical properties and as such influence cell attachment, differentiation or maturation. Polyacrylonitrile (PAN) derived electrospun fibres scaffolds have shown exciting potential due to reports of mechanical tunability and biocompatibility. Building on previous work we fabricate here a range of PAN fibre scaffolds with different concentrations of carbon nanotubes. We characterize them in-depth in respect to their structure, surface chemistry and mechanical properties, using scanning electron microscopy, image processing, ultramicrotomic transmission electron microscopy, x-ray nanotomography, infrared spectroscopy, atomic force microscopy and nanoindentation. Together the data demonstrate this approach to enable finetuning the mechanical properties, while keeping the structure and chemistry unaltered and hence offering ideal properties for comparative studies of the cellular mechanobiology. Finally, we confirm the biocompatibility of the scaffolds using primary rat cardiomyocytes, vascular smooth muscle (A7r5) and myoblast (C2C12) cell lines.
Collapse
Affiliation(s)
- Bénédicte Fromager
- IEM, Univ Montpellier, CNRS, ENSCM, cc047 Pl. E. Bataillon, 34095, Montpellier, France
| | - Julien Cambedouzou
- IEM, Univ Montpellier, CNRS, ENSCM, cc047 Pl. E. Bataillon, 34095, Montpellier, France
| | - Emilie Marhuenda
- School of Engineering and Materials Science, Queen Mary University Of London, 327 Mile End Rd, Bethnal Green, London, E1 4NS, Royaume-Uni
| | - Thomas Iskratsch
- School of Engineering and Materials Science, Queen Mary University Of London, 327 Mile End Rd, Bethnal Green, London, E1 4NS, Royaume-Uni
| | - Mathieu Pinault
- Univ Paris Saclay, CEA, CNRS, NIMBE,LEDNA, F-91191, Gif Sur Yvette, France
| | - Norbert Bakalara
- CNRS, ENSTBB-Bordeaux INP, Université de Bordeaux, 146 rue Léo Saignat, 33076, Bordeaux, France
| | - David Cornu
- IEM, Univ Montpellier, CNRS, ENSCM, cc047 Pl. E. Bataillon, 34095, Montpellier, France
| |
Collapse
|
34
|
Ramachandra AB, Cavinato C, Humphrey JD. A Systematic Comparison of Normal Structure and Function of the Greater Thoracic Vessels. Ann Biomed Eng 2024; 52:958-966. [PMID: 38227167 DOI: 10.1007/s10439-023-03432-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 12/23/2023] [Indexed: 01/17/2024]
Abstract
The greater thoracic vessels are central to a well-functioning circulatory system and are often targeted in congenital heart surgeries, yet the structure and function of these vessels have not been well studied. Here we use consistent methods to quantify and compare microstructural features and biaxial biomechanical properties of the following six greater thoracic vessels in wild-type mice: ascending thoracic aorta, descending thoracic aorta, right subclavian artery, right pulmonary artery, thoracic inferior vena cava, and superior vena cava. Specifically, we determine volume fractions and orientations of the structurally significant wall constituents (i.e., collagen, elastin, and cell nuclei) using multiphoton imaging, and we quantify vasoactive responses and mechanobiologically relevant mechanical quantities (e.g., stress, stiffness) using computer-controlled biaxial mechanical testing. Similarities and differences across systemic, pulmonary, and venous circulations highlight underlying design principles of the vascular system. Results from this study represent another step towards understanding growth and remodeling of greater thoracic vessels in health, disease, and surgical interventions by providing baseline information essential for developing and validating predictive computational models.
Collapse
Affiliation(s)
- Abhay B Ramachandra
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06520, USA.
- Department of Mechanical Engineering, Iowa State University, Ames, IA, USA.
| | - Cristina Cavinato
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06520, USA
- Laboratoire de Mécanique et Génie Civile, Université Montpellier, Montpellier, France
| | - Jay D Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06520, USA.
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
35
|
Arora B, Kulkarni A, Markus MA, Ströbel P, Bohnenberger H, Alves F, Ramos-Gomes F. Label-free quantification of imaging features in the extracellular matrix of left and right-sided colon cancer tissues. Sci Rep 2024; 14:7510. [PMID: 38553551 PMCID: PMC10980747 DOI: 10.1038/s41598-024-58231-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 03/26/2024] [Indexed: 04/02/2024] Open
Abstract
The molecular pathogenesis of colorectal cancer is known to differ between the right and left side of the colon. Several previous studies have focussed on the differences in clinicopathological features, proteomic and genetic biomarkers, the composition of gut microbiota, response to therapy, and the characteristics of the tumour microenvironment. However, the morphology and density of collagen in the extracellular matrix (ECM) have not been studied intensively. In this study, we employed 2-photon laser scanning microscopy (2PLSM) to visualise the intrinsic second-harmonic generation (SHG) signal emitted by collagen fibres in the heterogeneous ECM of human colon tumour tissues. Through texture analysis of the SHG signal, we quantitatively distinguished the imaging features generated by structural differences of collagen fibres in healthy colon and cancers and found marked differences. The fibres inside of tumours exhibited a loss of organisation, particularly pronounced in right-sided colon cancer (RSCC), where the chaotic regions were significantly increased. In addition, a higher collagen content was found in left-sided colon cancer (LSCC). In future, this might aid in subclassification and therapeutic decisions or even in designing new therapy regimens by taking into account the differences between collagen fibres features between colon tumours located at different sides.
Collapse
Affiliation(s)
- B Arora
- Translational Molecular Imaging, Max-Planck-Institute for Multidisciplinary Sciences, Hermann Rein-Straße 3, 37075, Göttingen, Germany
| | - A Kulkarni
- Translational Molecular Imaging, Max-Planck-Institute for Multidisciplinary Sciences, Hermann Rein-Straße 3, 37075, Göttingen, Germany
| | - M A Markus
- Translational Molecular Imaging, Max-Planck-Institute for Multidisciplinary Sciences, Hermann Rein-Straße 3, 37075, Göttingen, Germany
| | - P Ströbel
- Institute of Pathology, University Medical Center Göttingen, Robert-Koch-Straβe 40, 37075, Göttingen, Germany
| | - H Bohnenberger
- Institute of Pathology, University Medical Center Göttingen, Robert-Koch-Straβe 40, 37075, Göttingen, Germany
| | - F Alves
- Translational Molecular Imaging, Max-Planck-Institute for Multidisciplinary Sciences, Hermann Rein-Straße 3, 37075, Göttingen, Germany
- Clinic for Haematology and Medical Oncology, Institute of Interventional and Diagnostic Radiology, University Medical Center Göttingen, Robert-Koch-Straβe 40, 37075, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Goettingen, Göttingen, Germany
| | - F Ramos-Gomes
- Translational Molecular Imaging, Max-Planck-Institute for Multidisciplinary Sciences, Hermann Rein-Straße 3, 37075, Göttingen, Germany.
| |
Collapse
|
36
|
Makhija E, Zheng Y, Wang J, Leong HR, Othman RB, Ng EX, Lee EH, Kellogg LT, Lee YH, Yu H, Poon Z, Van Vliet KJ. Topological defects in self-assembled patterns of mesenchymal stromal cells in vitro are predictive attributes of condensation and chondrogenesis. PLoS One 2024; 19:e0297769. [PMID: 38547243 PMCID: PMC10977694 DOI: 10.1371/journal.pone.0297769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 01/11/2024] [Indexed: 04/02/2024] Open
Abstract
Mesenchymal stromal cells (MSCs) are promising therapeutic agents for cartilage regeneration, including the potential of cells to promote chondrogenesis in vivo. However, process development and regulatory approval of MSCs as cell therapy products benefit from facile in vitro approaches that can predict potency for a given production run. Current standard in vitro approaches include a 21 day 3D differentiation assay followed by quantification of cartilage matrix proteins. We propose a novel biophysical marker that is cell population-based and can be measured from in vitro monolayer culture of MSCs. We hypothesized that the self-assembly pattern that emerges from collective-cell behavior would predict chondrogenesis motivated by our observation that certain features in this pattern, namely, topological defects, corresponded to mesenchymal condensations. Indeed, we observed a strong predictive correlation between the degree-of-order of the pattern at day 9 of the monolayer culture and chondrogenic potential later estimated from in vitro 3D chondrogenic differentiation at day 21. These findings provide the rationale and the proof-of-concept for using self-assembly patterns to monitor chondrogenic commitment of cell populations. Such correlations across multiple MSC donors and production batches suggest that self-assembly patterns can be used as a candidate biophysical attribute to predict quality and efficacy for MSCs employed therapeutically for cartilage regeneration.
Collapse
Affiliation(s)
- Ekta Makhija
- Critical Analytics for Manufacturing Personalized-medicine (CAMP) Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology (SMART), Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, Singapore
| | - Yang Zheng
- Critical Analytics for Manufacturing Personalized-medicine (CAMP) Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology (SMART), Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, Singapore
- NUS Tissue Engineering Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
- Department of Orthopaedic Surgery, National University of Singapore, Singapore, Singapore
| | - Jiahao Wang
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Han Ren Leong
- Critical Analytics for Manufacturing Personalized-medicine (CAMP) Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology (SMART), Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, Singapore
- Engineering Science Programme, College of Design and Engineering, National University of Singapore, Singapore, Singapore
| | - Rashidah Binte Othman
- Critical Analytics for Manufacturing Personalized-medicine (CAMP) Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology (SMART), Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, Singapore
| | - Ee Xien Ng
- Critical Analytics for Manufacturing Personalized-medicine (CAMP) Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology (SMART), Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, Singapore
| | - Eng Hin Lee
- Critical Analytics for Manufacturing Personalized-medicine (CAMP) Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology (SMART), Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, Singapore
- NUS Tissue Engineering Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
- Department of Orthopaedic Surgery, National University of Singapore, Singapore, Singapore
| | - Lisa Tucker Kellogg
- Critical Analytics for Manufacturing Personalized-medicine (CAMP) Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology (SMART), Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, Singapore
- Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Yie Hou Lee
- Critical Analytics for Manufacturing Personalized-medicine (CAMP) Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology (SMART), Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, Singapore
- Obstetrics and Gynaecology Academic Clinical Programme, SingHealth Duke-NUS, Singapore, Singapore
- SingHealth Duke-NUS Cell Therapy Centre, Singapore, Singapore
| | - Hanry Yu
- Critical Analytics for Manufacturing Personalized-medicine (CAMP) Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology (SMART), Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, Singapore
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
- Department of Physiology, National University of Singapore, Singapore, Singapore
- Institute of Bioengineering and Bioimaging, Agency for Science, Technology and Research, Singapore, Singapore
| | - Zhiyong Poon
- Critical Analytics for Manufacturing Personalized-medicine (CAMP) Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology (SMART), Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, Singapore
- SingHealth Duke-NUS Cell Therapy Centre, Singapore, Singapore
- Department of Haematology, Singapore General Hospital, Singapore, Singapore
| | - Krystyn J. Van Vliet
- Critical Analytics for Manufacturing Personalized-medicine (CAMP) Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology (SMART), Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, Singapore
- Department of Materials Science and Engineering, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| |
Collapse
|
37
|
Li Y, Zarei Z, Tran PN, Wang Y, Baskaran A, Fraden S, Hagan MF, Hong P. A machine learning approach to robustly determine director fields and analyze defects in active nematics. SOFT MATTER 2024; 20:1869-1883. [PMID: 38318759 DOI: 10.1039/d3sm01253k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Active nematics are dense systems of rodlike particles that consume energy to drive motion at the level of the individual particles. They exist in natural systems like biological tissues and artificial materials such as suspensions of self-propelled colloidal particles or synthetic microswimmers. Active nematics have attracted significant attention in recent years due to their spectacular nonequilibrium collective spatiotemporal dynamics, which may enable applications in fields such as robotics, drug delivery, and materials science. The director field, which measures the direction and degree of alignment of the local nematic orientation, is a crucial characteristic of active nematics and is essential for studying topological defects. However, determining the director field is a significant challenge in many experimental systems. Although director fields can be derived from images of active nematics using traditional imaging processing methods, the accuracy of such methods is highly sensitive to the settings of the algorithms. These settings must be tuned from image to image due to experimental noise, intrinsic noise of the imaging technology, and perturbations caused by changes in experimental conditions. This sensitivity currently limits automatic analysis of active nematics. To address this, we developed a machine learning model for extracting reliable director fields from raw experimental images, which enables accurate analysis of topological defects. Application of the algorithm to experimental data demonstrates that the approach is robust and highly generalizable to experimental settings that are different from those in the training data. It could be a promising tool for investigating active nematics and may be generalized to other active matter systems.
Collapse
Affiliation(s)
- Yunrui Li
- Computer Science Department, Brandeis University, USA.
| | - Zahra Zarei
- Physics Department, Brandeis University, USA
| | - Phu N Tran
- Physics Department, Brandeis University, USA
| | - Yifei Wang
- Computer Science Department, Brandeis University, USA.
| | | | - Seth Fraden
- Physics Department, Brandeis University, USA
| | | | - Pengyu Hong
- Computer Science Department, Brandeis University, USA.
| |
Collapse
|
38
|
Lin CY, Sugerman GP, Kakaletsis S, Meador WD, Buganza AT, Rausch MK. Sex- and age-dependent skin mechanics-A detailed look in mice. Acta Biomater 2024; 175:106-113. [PMID: 38042263 DOI: 10.1016/j.actbio.2023.11.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/28/2023] [Accepted: 11/21/2023] [Indexed: 12/04/2023]
Abstract
Skin aging is of immense societal and, thus, scientific interest. Because mechanics play a critical role in skin's function, a plethora of studies have investigated age-induced changes in skin mechanics. Nonetheless, much remains to be learned about the mechanics of aging skin. This is especially true when considering sex as a biological variable. In our work, we set out to answer some of these questions using mice as a model system. Specifically, we combined mechanical testing, histology, collagen assays, and two-photon microscopy to identify age- and sex-dependent changes in skin mechanics and to relate them to structural, microstructural, and compositional factors. Our work revealed that skin stiffness, thickness, and collagen content all decreased with age and were sex dependent. Interestingly, sex differences in stiffness were age induced. We hope our findings not only further our fundamental understanding of skin aging but also highlight both age and sex as important variables when conducting studies on skin mechanics. STATEMENT OF SIGNIFICANCE: Our work addresses the question, "How do sex and age affect the mechanics of skin?" Answering this question is of both scientific and societal importance. We do so in mice as a model system. Thereby, we hope to add clarity to a body of literature that appears divided on the effect of both factors. Our findings have important implications for those studying age and sex differences, especially in mice as a model system.
Collapse
Affiliation(s)
- Chien-Yu Lin
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Gabriella P Sugerman
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Sotirios Kakaletsis
- Department of Aerospace Engineering & Engineering Mechanics, The University of Texas at Austin, Austin, TX, USA
| | - William D Meador
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Adrian T Buganza
- Department of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
| | - Manuel K Rausch
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA; Department of Aerospace Engineering & Engineering Mechanics, The University of Texas at Austin, Austin, TX, USA; Oden Institute for Computational Engineering & Sciences, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
39
|
Skacel P, Bursa J. Need for transverse strain data for fitting constitutive models of arterial tissue to uniaxial tests. J Mech Behav Biomed Mater 2024; 150:106194. [PMID: 38091922 DOI: 10.1016/j.jmbbm.2023.106194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/02/2023] [Accepted: 10/13/2023] [Indexed: 01/09/2024]
Abstract
The study deals with the process of estimation of material parameters from uniaxial test data of arterial tissue and focuses on the role of transverse strains. Two fitting strategies are analyzed and their impact on the predictive and descriptive capabilities of the resulting model is evaluated. The standard fitting procedure (strategy A) based on longitudinal stress-strain curves is compared with the enhanced approach (strategy B) taking also the transverse strain test data into account. The study is performed on a large set of material data adopted from literature and for a variety of constitutive models developed for fibrous soft tissues. The standard procedure (A) ignoring the transverse strain test data is found rather hazardous, leading often to unrealistic predictions of the model exhibiting auxetic behaviour. In contrast, the alternative fitting method (B) ensures a realistic strain response of the model and is proved to be superior since it does not require any significant demands of computational effort or additional testing. The results presented in this paper show that even the artificial transverse strain data (i.e., not measured during testing but generated ex post based on assumed Poisson's ratio) are much less hazardous than total disregard of the transverse strain response.
Collapse
Affiliation(s)
- Pavel Skacel
- Institute of Solid Mechanics, Mechatronics and Biomechanics, Brno University of Technology, Technicka 2896/2, 616 69, Brno, Czech Republic.
| | - Jiri Bursa
- Institute of Solid Mechanics, Mechatronics and Biomechanics, Brno University of Technology, Technicka 2896/2, 616 69, Brno, Czech Republic
| |
Collapse
|
40
|
Sekine S, Tarama M, Wada H, Sami MM, Shibata T, Hayashi S. Emergence of periodic circumferential actin cables from the anisotropic fusion of actin nanoclusters during tubulogenesis. Nat Commun 2024; 15:464. [PMID: 38267421 PMCID: PMC10808230 DOI: 10.1038/s41467-023-44684-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 12/29/2023] [Indexed: 01/26/2024] Open
Abstract
The periodic circumferential cytoskeleton supports various tubular tissues. Radial expansion of the tube lumen causes anisotropic tensile stress, which can be exploited as a geometric cue. However, the molecular machinery linking anisotropy to robust circumferential patterning is poorly understood. Here, we aim to reveal the emergent process of circumferential actin cable formation in a Drosophila tracheal tube. During luminal expansion, sporadic actin nanoclusters emerge and exhibit circumferentially biased motion and fusion. RNAi screening reveals the formin family protein, DAAM, as an essential component responding to tissue anisotropy, and non-muscle myosin II as a component required for nanocluster fusion. An agent-based model simulation suggests that crosslinkers play a crucial role in nanocluster formation and cluster-to-cable transition occurs in response to mechanical anisotropy. Altogether, we propose that an actin nanocluster is an organizational unit that responds to stress in the cortical membrane and builds a higher-order cable structure.
Collapse
Affiliation(s)
- Sayaka Sekine
- Laboratory for Morphogenetic Signaling, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan.
- Laboratory for Histogenetic Dynamics, Graduate School of Life Sciences, Tohoku University, Sendai, Japan.
| | - Mitsusuke Tarama
- Laboratory for Physical Biology, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan.
- Department of Physics, Faculty of Science, Kyushu University, Fukuoka, Japan.
| | - Housei Wada
- Laboratory for Morphogenetic Signaling, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Mustafa M Sami
- Laboratory for Morphogenetic Signaling, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
- Physics and Biology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Tatsuo Shibata
- Laboratory for Physical Biology, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Shigeo Hayashi
- Laboratory for Morphogenetic Signaling, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
- Kobe University Graduate School of Science, Kobe, Japan
| |
Collapse
|
41
|
Alberini R, Spagnoli A, Sadeghinia MJ, Skallerud B, Terzano M, Holzapfel GA. Fourier transform-based method for quantifying the three-dimensional orientation distribution of fibrous units. Sci Rep 2024; 14:1999. [PMID: 38263352 PMCID: PMC11222475 DOI: 10.1038/s41598-024-51550-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 01/06/2024] [Indexed: 01/25/2024] Open
Abstract
Several materials and tissues are characterized by a microstructure composed of fibrous units embedded in a ground matrix. In this paper, a novel three-dimensional (3D) Fourier transform-based method for quantifying the distribution of fiber orientations is presented. The method allows for an accurate identification of individual fiber families, their in-plane and out-of-plane dispersion, and showed fast computation times. We validated the method using artificially generated 3D images, in terms of fiber dispersion by considering the error between the standard deviation of the reconstructed and the prescribed distributions of the artificial fibers. In addition, we considered the measured mean orientation angles of the fibers and validated the robustness using a measure of fiber density. Finally, the method is employed to reconstruct a full 3D view of the distribution of collagen fiber orientations based on in vitro second harmonic generation microscopy of collagen fibers in human and mouse skin. The dispersion parameters of the reconstructed fiber network can be used to inform mechanical models of soft fiber-reinforced materials and biological tissues that account for non-symmetrical fiber dispersion.
Collapse
Affiliation(s)
- Riccardo Alberini
- Department of Engineering and Architecture, University of Parma, Parma, Italy
| | - Andrea Spagnoli
- Department of Engineering and Architecture, University of Parma, Parma, Italy.
| | - Mohammad Javad Sadeghinia
- Department of Structural Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Bjørn Skallerud
- Department of Structural Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
| | - Michele Terzano
- Institute of Biomechanics, Graz University of Technology, Graz, Austria
| | - Gerhard A Holzapfel
- Department of Structural Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Institute of Biomechanics, Graz University of Technology, Graz, Austria
| |
Collapse
|
42
|
Phillips TA, Marcotti S, Cox S, Parsons M. Imaging actin organisation and dynamics in 3D. J Cell Sci 2024; 137:jcs261389. [PMID: 38236161 PMCID: PMC10906668 DOI: 10.1242/jcs.261389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024] Open
Abstract
The actin cytoskeleton plays a critical role in cell architecture and the control of fundamental processes including cell division, migration and survival. The dynamics and organisation of F-actin have been widely studied in a breadth of cell types on classical two-dimensional (2D) surfaces. Recent advances in optical microscopy have enabled interrogation of these cytoskeletal networks in cells within three-dimensional (3D) scaffolds, tissues and in vivo. Emerging studies indicate that the dimensionality experienced by cells has a profound impact on the structure and function of the cytoskeleton, with cells in 3D environments exhibiting cytoskeletal arrangements that differ to cells in 2D environments. However, the addition of a third (and fourth, with time) dimension leads to challenges in sample preparation, imaging and analysis, necessitating additional considerations to achieve the required signal-to-noise ratio and spatial and temporal resolution. Here, we summarise the current tools for imaging actin in a 3D context and highlight examples of the importance of this in understanding cytoskeletal biology and the challenges and opportunities in this domain.
Collapse
Affiliation(s)
- Thomas A. Phillips
- Randall Centre for Cell and Molecular Biophysics, King's College London, New Hunts House, Guys Campus, London SE1 1UL, UK
| | - Stefania Marcotti
- Randall Centre for Cell and Molecular Biophysics, King's College London, New Hunts House, Guys Campus, London SE1 1UL, UK
- Microscopy Innovation Centre, King's College London, Guys Campus, London SE1 1UL, UK
| | - Susan Cox
- Randall Centre for Cell and Molecular Biophysics, King's College London, New Hunts House, Guys Campus, London SE1 1UL, UK
| | - Maddy Parsons
- Randall Centre for Cell and Molecular Biophysics, King's College London, New Hunts House, Guys Campus, London SE1 1UL, UK
| |
Collapse
|
43
|
Gkousioudi A, Razzoli M, Moreira JD, Wainford RD, Zhang Y. Renal denervation restores biomechanics of carotid arteries in a rat model of hypertension. Sci Rep 2024; 14:495. [PMID: 38177257 PMCID: PMC10767006 DOI: 10.1038/s41598-023-50816-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/26/2023] [Indexed: 01/06/2024] Open
Abstract
The prevalence of hypertension increases with aging and is associated with increased arterial stiffness. Resistant hypertension is presented when drug treatments fail to regulate a sustained increased blood pressure. Given that the mechanisms between the sympathetic nervous system and the kidney play an important role in blood regulation, renal denervation (RDN) has emerged as a therapeutic potential in resistant hypertension. In this study, we investigated the effects of RDN on the biomechanical response and microstructure of elastic arteries. Common carotid arteries (CCA) excised from 3-month, 8-month, and 8-month denervated rats were subjected to biaxial extension-inflation test. Our results showed that hypertension developed in the 8-month-old rats. The sustained elevated blood pressure resulted in arterial remodeling which was manifested as a significant stress increase in both axial and circumferential directions after 8 months. RDN had a favorable impact on CCAs with a restoration of stresses in values similar to control arteries at 3 months. After biomechanical testing, arteries were imaged under a multi-photon microscope to identify microstructural changes in extracellular matrix (ECM). Quantification of multi-photon images showed no significant alterations of the main ECM components, elastic and collagen fibers, indicating that arteries remained intact after RDN. Regardless of the experimental group, our microstructural analysis of the multi-photon images revealed that reorientation of the collagen fibers might be the main microstructural mechanism taking place during pressurization with their straightening happening during axial stretching.
Collapse
Affiliation(s)
- Anastasia Gkousioudi
- Department of Mechanical Engineering, Boston University, 110 Cummington Mall, Boston, MA, 02215, USA
| | - Margherita Razzoli
- Department of Biomedical Engineering, Boston University, 110 Cummington Mall, Boston, MA, 02215, USA
| | - Jesse D Moreira
- Department of Pharmacology & Experimental Therapeutics, School of Medicine, Boston University Avedisian and Chobanian, Boston, MA, USA
| | - Richard D Wainford
- Department of Pharmacology & Experimental Therapeutics, School of Medicine, Boston University Avedisian and Chobanian, Boston, MA, USA.
- Division of Cardiology, School of Medicine, HSRB II, Emory University, 1750 Haygood Drive, Atlanta, GA, 30322, USA.
| | - Yanhang Zhang
- Department of Mechanical Engineering, Boston University, 110 Cummington Mall, Boston, MA, 02215, USA.
- Department of Biomedical Engineering, Boston University, 110 Cummington Mall, Boston, MA, 02215, USA.
- Division of Materials Science & Engineering, Boston University, 110 Cummington Mall, Boston, MA, 02215, USA.
| |
Collapse
|
44
|
Cetera M, Sharan R, Hayward-Lara G, Devenport D. Evaluating Planar Cell Polarity in the Developing Mouse Epidermis. Methods Mol Biol 2024; 2805:187-201. [PMID: 39008183 DOI: 10.1007/978-1-0716-3854-5_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Epidermal tissues are among the most striking examples of planar polarity. Insect bristles, fish scales, and mammalian fur are all uniformly oriented along an animal's body axis. The collective alignment of epidermal structures provides a valuable system to interrogate the signaling mechanisms that coordinate cellular behaviors at both local and tissue-levels. Here, we provide methods to analyze the planar organization of hair follicles within the mouse epidermis. Hair follicles are specified and bud into the underlying dermis during embryonic development. Shortly after, follicle cells dynamically rearrange to orient each follicle toward the anterior of the animal. When directional signaling is disrupted, hair follicles become misoriented. In this chapter, we describe how to create a spatial map of hair follicle orientations to reveal tissue-scale patterns in both embryonic and postnatal skin. Additionally, we provide a live imaging protocol that can be used to monitor cell movements in embryonic skin explants to reveal the cellular behaviors that polarize the hair follicle itself.
Collapse
Affiliation(s)
- Maureen Cetera
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA.
| | - Rishabh Sharan
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | | | - Danelle Devenport
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| |
Collapse
|
45
|
Burdis R, Gallostra XB, Kelly DJ. Temporal Enzymatic Treatment to Enhance the Remodeling of Multiple Cartilage Microtissues into a Structurally Organized Tissue. Adv Healthc Mater 2024; 13:e2300174. [PMID: 37858935 PMCID: PMC11468768 DOI: 10.1002/adhm.202300174] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 08/29/2023] [Indexed: 10/21/2023]
Abstract
Scaffold-free tissue engineering aims to recapitulate key aspects of normal developmental processes to generate biomimetic grafts. Although functional cartilaginous tissues are engineered using such approaches, considerable challenges remain. Herein, the benefits of engineering cartilage via the fusion of multiple cartilage microtissues compared to using (millions of) individual cells to generate a cartilaginous graft are demonstrated. Key advantages include the generation of a richer extracellular matrix, more hyaline-like cartilage phenotype, and superior shape fidelity. A major drawback of aggregate engineering is that individual microtissues do not completely (re)model and remnants of their initial architectures remain throughout the macrotissue. To address this, a temporal enzymatic (chondroitinase-ABC) treatment is implemented to accelerate structural (re)modeling and shown to support robust fusion between adjacent microtissues, enhance microtissue (re)modeling, and enable the development of a more biomimetic tissue with a zonally organized collagen network. Additionally, enzymatic treatment is shown to modulate matrix composition, tissue phenotype, and to a lesser extent, tissue mechanics. This work demonstrates that microtissue self-organization is an effective method for engineering scaled-up cartilage grafts with a predefined geometry and near-native levels of matrix accumulation. Importantly, key limitations associated with using biological building blocks can be alleviated by temporal enzymatic treatment during graft development.
Collapse
Affiliation(s)
- Ross Burdis
- Trinity Centre for Biomedical EngineeringTrinity Biomedical Sciences InstituteTrinity College DublinDublinD02 PN40Ireland
- Department of MechanicalManufacturing and Biomedical EngineeringSchool of EngineeringTrinity College DublinDublinD02 PN40Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER)Royal College of Surgeons in Ireland and Trinity College DublinDublinD02 PN40Ireland
| | - Xavier Barceló Gallostra
- Trinity Centre for Biomedical EngineeringTrinity Biomedical Sciences InstituteTrinity College DublinDublinD02 PN40Ireland
- Department of MechanicalManufacturing and Biomedical EngineeringSchool of EngineeringTrinity College DublinDublinD02 PN40Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER)Royal College of Surgeons in Ireland and Trinity College DublinDublinD02 PN40Ireland
| | - Daniel J. Kelly
- Trinity Centre for Biomedical EngineeringTrinity Biomedical Sciences InstituteTrinity College DublinDublinD02 PN40Ireland
- Department of MechanicalManufacturing and Biomedical EngineeringSchool of EngineeringTrinity College DublinDublinD02 PN40Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER)Royal College of Surgeons in Ireland and Trinity College DublinDublinD02 PN40Ireland
- Department of Anatomy and Regenerative MedicineRoyal College of Surgeons in IrelandDublinD02 YN77Ireland
| |
Collapse
|
46
|
Varnaitė-Žuravliova S, Savest N, Baltušnikaitė-Guzaitienė J, Abraitienė A, Krumme A. The Investigation of the Production of Salt-Added Polyethylene Oxide/Chitosan Nanofibers. MATERIALS (BASEL, SWITZERLAND) 2023; 17:132. [PMID: 38203986 PMCID: PMC10779878 DOI: 10.3390/ma17010132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/21/2023] [Accepted: 12/24/2023] [Indexed: 01/12/2024]
Abstract
The influence of different concentrations of salt-added polyethylene oxide (PEO) on the spinnability of chitosan (CS)/PEO + NaCl blends that could be used as a component part of filters for water treatment or nanofiber membranes as well as for medical applications was investigated in this study. The morphological properties of manufactured nanofibers were analyzed as well. It was determined that an increase of PEO concentration resulted mostly in thin and round nanofibers formed during electrospinning, but the manufacturing process became complex, because many wet fibers reached the collector while spinning. Also, it was noticed that the salt was not dissolved completely in the polymer solutions and some crystals were seen in the SEM images of manufactured fiber mats. However, the addition of salt resulted in lower viscosity and better conductivity of solution and fiber mats as well. The opposite effect was observed as the concentration of PEO was increased. The orientation of produced nanofibers as well as their diameter were analyzed with commercially available software. It was determined that the results obtained by software and microscopically are repeatable. The difference among the results of diameter calculated with software and taken by microscope varied from 0% to approximately 12%. The FTIR analyses indicated that alterations in polymer concentrations or the addition of salt did not induce any discernible changes in the chemical composition or nature of the materials under investigation. The sodium chloride present in the solutions enhanced electrical properties and increased conductivity values more than 50 times for PEO solutions and six times for CS/PEO blend solutions, compared to conductivity values of solutions without salt. To assess the thermal characteristics of the PEO/CS blend nanofibers, measurements using a differential scanning calorimeter (DSC) to determine melting (Tm) and crystallization (Tc) temperatures, as well as specific heat capacities were conducted. These parameters were derived from the analysis of endothermic and exothermic peaks observed in the DSC data. It showed that all produced nanofibers were semicrystalline.
Collapse
Affiliation(s)
- Sandra Varnaitė-Žuravliova
- Department of Textile Technologies, Center for Physical Sciences and Technology, Demokratų Str. 53, LT-48485 Kaunas, Lithuania; (J.B.-G.)
| | - Natalja Savest
- Department of Materials and Environmental Technology, Tallinn University of Technology, Ehitajate Tee 5, EE-19086 Tallinn, Estonia; (N.S.); (A.K.)
| | - Julija Baltušnikaitė-Guzaitienė
- Department of Textile Technologies, Center for Physical Sciences and Technology, Demokratų Str. 53, LT-48485 Kaunas, Lithuania; (J.B.-G.)
| | - Aušra Abraitienė
- Department of Textile Technologies, Center for Physical Sciences and Technology, Demokratų Str. 53, LT-48485 Kaunas, Lithuania; (J.B.-G.)
| | - Andres Krumme
- Department of Materials and Environmental Technology, Tallinn University of Technology, Ehitajate Tee 5, EE-19086 Tallinn, Estonia; (N.S.); (A.K.)
| |
Collapse
|
47
|
Polzer S, Thompson S, Vittalbabu S, Ulu A, Carter D, Nordgren T, Eskandari M. MATLAB-Based Algorithm and Software for Analysis of Wavy Collagen Fibers. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2023; 29:2108-2126. [PMID: 37992253 DOI: 10.1093/micmic/ozad117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 09/15/2023] [Accepted: 09/25/2023] [Indexed: 11/24/2023]
Abstract
Knowledge of soft tissue fiber structure is necessary for accurate characterization and modeling of their mechanical response. Fiber configuration and structure informs both our understanding of healthy tissue physiology and of pathological processes resulting from diseased states. This study develops an automatic algorithm to simultaneously estimate fiber global orientation, abundance, and waviness in an investigated image. To our best knowledge, this is the first validated algorithm which can reliably separate fiber waviness from its global orientation for considerably wavy fibers. This is much needed feature for biological tissue characterization. The algorithm is based on incremental movement of local regions of interest (ROI) and analyzes two-dimensional images. Pixels belonging to the fiber are identified in the ROI, and ROI movement is determined according to local orientation of fiber within the ROI. The algorithm is validated with artificial images and ten images of porcine trachea containing wavy fibers. In each image, 80-120 fibers were tracked manually to serve as verification. The coefficient of determination R2 between curve lengths and histograms documenting the fiber waviness and global orientation were used as metrics for analysis. Verification-confirmed results were independent of image rotation and degree of fiber waviness, with curve length accuracy demonstrated to be below 1% of fiber curved length. Validation-confirmed median and interquartile range of R2, respectively, were 0.90 and 0.05 for curved length, 0.92 and 0.07 for waviness, and 0.96 and 0.04 for global orientation histograms. Software constructed from the proposed algorithm was able to track one fiber in about 1.1 s using a typical office computer. The proposed algorithm can reliably and accurately estimate fiber waviness, curve length, and global orientation simultaneously, moving beyond the limitations of prior methods.
Collapse
Affiliation(s)
- Stanislav Polzer
- Department of Applied Mechanics, VSB-Technical University of Ostrava, 17.listopadu 2172/15, 708 00 Ostrava, Czech Republic
| | - Sarah Thompson
- Department of Mechanical Engineering, University of California at Riverside, 3401 Watkins Drive, Riverside CA 92521, USA
| | - Swathi Vittalbabu
- Department of Mechanical Engineering, University of California at Riverside, 3401 Watkins Drive, Riverside CA 92521, USA
| | - Arzu Ulu
- BREATHE Center School of Medicine, University of California at Riverside, 3401 Watkins Drive, Riverside CA 92521USA
| | - David Carter
- Molecular Cell and Systems Biology, University of California at Riverside, 900 University Ave, Riverside CA 92521, USA
| | - Tara Nordgren
- BREATHE Center School of Medicine, University of California at Riverside, 3401 Watkins Drive, Riverside CA 92521USA
| | - Mona Eskandari
- Department of Mechanical Engineering, University of California at Riverside, 3401 Watkins Drive, Riverside CA 92521, USA
- BREATHE Center School of Medicine, University of California at Riverside, 3401 Watkins Drive, Riverside CA 92521USA
| |
Collapse
|
48
|
Park H, Li B, Liu Y, Nelson MS, Wilson HM, Sifakis E, Eliceiri KW. Collagen fiber centerline tracking in fibrotic tissue via deep neural networks with variational autoencoder-based synthetic training data generation. Med Image Anal 2023; 90:102961. [PMID: 37802011 PMCID: PMC10591913 DOI: 10.1016/j.media.2023.102961] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 10/08/2023]
Abstract
The role of fibrillar collagen in the tissue microenvironment is critical in disease contexts ranging from cancers to chronic inflammations, as evidenced by many studies. Quantifying fibrillar collagen organization has become a powerful approach for characterizing the topology of collagen fibers and studying the role of collagen fibers in disease progression. We present a deep learning-based pipeline to quantify collagen fibers' topological properties in microscopy-based collagen images from pathological tissue samples. Our method leverages deep neural networks to extract collagen fiber centerlines and deep generative models to create synthetic training data, addressing the current shortage of large-scale annotations. As a part of this effort, we have created and annotated a collagen fiber centerline dataset, with the hope of facilitating further research in this field. Quantitative measurements such as fiber orientation, alignment, density, and length can be derived based on the centerline extraction results. Our pipeline comprises three stages. Initially, a variational autoencoder is trained to generate synthetic centerlines possessing controllable topological properties. Subsequently, a conditional generative adversarial network synthesizes realistic collagen fiber images from the synthetic centerlines, yielding a synthetic training set of image-centerline pairs. Finally, we train a collagen fiber centerline extraction network using both the original and synthetic data. Evaluation using collagen fiber images from pancreas, liver, and breast cancer samples collected via second-harmonic generation microscopy demonstrates our pipeline's superiority over several popular fiber centerline extraction tools. Incorporating synthetic data into training further enhances the network's generalizability. Our code is available at https://github.com/uw-loci/collagen-fiber-metrics.
Collapse
Affiliation(s)
- Hyojoon Park
- Department of Computer Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA; Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison, Madison, WI 53706, USA; Morgridge Institute for Research, Madison, WI 53706, USA.
| | - Bin Li
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison, Madison, WI 53706, USA; Morgridge Institute for Research, Madison, WI 53706, USA.
| | - Yuming Liu
- Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Michael S Nelson
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Helen M Wilson
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Eftychios Sifakis
- Department of Computer Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Kevin W Eliceiri
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison, Madison, WI 53706, USA; Morgridge Institute for Research, Madison, WI 53706, USA.
| |
Collapse
|
49
|
Turčanová M, Fischer J, Hermanová M, Bednařík Z, Skácel P, Burša J. Biaxial stretch can overcome discrepancy between global and local orientations of wavy collagen fibres. J Biomech 2023; 161:111868. [PMID: 37976938 DOI: 10.1016/j.jbiomech.2023.111868] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 09/20/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
Most frequently used structure-based constitutive models of arterial wall apply assumptions on two symmetric helical (and dispersed) fibre families which, however, are not well supported with histological findings where two collagen fibre families are seldom found. Moreover, bimodal distributions of fibre directions may originate also from their waviness combined with ignoring differences between local and global fibre orientations. In contrast, if the model parameters are identified without histological information on collagen fibre directions, the resulting mean angles of both fibre families are close to ±45°, which contradicts nearly all histologic findings. The presented study exploited automated polarized light microscopy for detection of collagen fibre directions in porcine aorta under different biaxial extensions and approximated the resulting histograms with unimodal and bimodal von Mises distributions. Their comparison showed dominantly circumferential orientation of collagen fibres. Their concentration parameter for unimodal distributions increased with circumferential load, no matter if acting uniaxially or equibiaxially. For bimodal distributions, the angle between both dominant fibre directions (chosen as measure of fibre alignment) decreased similarly for both uniaxial and equibiaxial loads. These results indicate the existence of a single family of wavy circumferential collagen fibres in all layers of the aortic wall. Bimodal distributions of fibre directions presented sometimes in literature may come rather from waviness of circumferentially arranged fibres than from two symmetric families of helical fibres. To obtain a final evidence, the fibre orientation should be analysed together with their waviness.
Collapse
Affiliation(s)
- Michaela Turčanová
- Brno University of Technology, Faculty of Mechanical Engineering, Institute of Solid Mechanics, Mechatronics and Biomechanics, Technická 2896/2, Brno 616 69, Czech Republic.
| | - Jiří Fischer
- Brno University of Technology, Faculty of Mechanical Engineering, Institute of Solid Mechanics, Mechatronics and Biomechanics, Technická 2896/2, Brno 616 69, Czech Republic
| | - Markéta Hermanová
- 1st Department of Pathology, St. Anne's University Hospital Brno and Faculty of Medicine, Masaryk University, Pekařská 664/53, 656 91 Brno, Czech Republic
| | - Zdeněk Bednařík
- 1st Department of Pathology, St. Anne's University Hospital Brno and Faculty of Medicine, Masaryk University, Pekařská 664/53, 656 91 Brno, Czech Republic
| | - Pavel Skácel
- Brno University of Technology, Faculty of Mechanical Engineering, Institute of Solid Mechanics, Mechatronics and Biomechanics, Technická 2896/2, Brno 616 69, Czech Republic
| | - Jiří Burša
- Brno University of Technology, Faculty of Mechanical Engineering, Institute of Solid Mechanics, Mechatronics and Biomechanics, Technická 2896/2, Brno 616 69, Czech Republic
| |
Collapse
|
50
|
Böhringer D, Bauer A, Moravec I, Bischof L, Kah D, Mark C, Grundy TJ, Görlach E, O'Neill GM, Budday S, Strissel PL, Strick R, Malandrino A, Gerum R, Mak M, Rausch M, Fabry B. Fiber alignment in 3D collagen networks as a biophysical marker for cell contractility. Matrix Biol 2023; 124:39-48. [PMID: 37967726 PMCID: PMC10872942 DOI: 10.1016/j.matbio.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/14/2023] [Accepted: 11/09/2023] [Indexed: 11/17/2023]
Abstract
Cells cultured in 3D fibrous biopolymer matrices exert traction forces on their environment that induce deformations and remodeling of the fiber network. By measuring these deformations, the traction forces can be reconstructed if the mechanical properties of the matrix and the force-free matrix configuration are known. These requirements limit the applicability of traction force reconstruction in practice. In this study, we test whether force-induced matrix remodeling can instead be used as a proxy for cellular traction forces. We measure the traction forces of hepatic stellate cells and different glioblastoma cell lines and quantify matrix remodeling by measuring the fiber orientation and fiber density around these cells. In agreement with simulated fiber networks, we demonstrate that changes in local fiber orientation and density are directly related to cell forces. By resolving Rho-kinase (ROCK) inhibitor-induced changes of traction forces, fiber alignment, and fiber density in hepatic stellate cells, we show that the method is suitable for drug screening assays. We conclude that differences in local fiber orientation and density, which are easily measurable, can be used as a qualitative proxy for changes in traction forces. The method is available as an open-source Python package with a graphical user interface.
Collapse
Affiliation(s)
- David Böhringer
- Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; Novartis Institutes for BioMedical Research, Basel, Switzerland.
| | - Andreas Bauer
- Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Ivana Moravec
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Lars Bischof
- Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Delf Kah
- Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Christoph Mark
- Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Thomas J Grundy
- Children's Cancer Research Unit, The Children's Hospital at Westmead, University of Sydney, Australia
| | | | - Geraldine M O'Neill
- Children's Cancer Research Unit, The Children's Hospital at Westmead, University of Sydney, Australia
| | - Silvia Budday
- Department of Mechanical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Pamela L Strissel
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; Department of Pathology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Reiner Strick
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Andrea Malandrino
- Department of Materials Science and Engineering, Universitat Politécnica de Catalunya, Barcelona, Spain
| | - Richard Gerum
- Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; Department of Physics and Astronomy, York University, Toronto, Canada
| | - Michael Mak
- Department of Biomedical Engineering, Yale University, New Haven, USA.
| | - Martin Rausch
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Ben Fabry
- Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|