1
|
Du SX, Wang LL, Yu WP, Xu SX, Chen L, Huang W. Appropriate induction of TOC1 ensures optimal MYB44 expression in ABA signaling and stress response in Arabidopsis. PLANT, CELL & ENVIRONMENT 2024; 47:3046-3062. [PMID: 38654596 DOI: 10.1111/pce.14922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/19/2024] [Accepted: 04/09/2024] [Indexed: 04/26/2024]
Abstract
Plants possess the remarkable ability to integrate the circadian clock with various signalling pathways, enabling them to quickly detect and react to both external and internal stress signals. However, the interplay between the circadian clock and biological processes in orchestrating responses to environmental stresses remains poorly understood. TOC1, a core component of the plant circadian clock, plays a vital role in maintaining circadian rhythmicity and participating in plant defences. Here, our study reveals a direct interaction between TOC1 and the promoter region of MYB44, a key gene involved in plant defence. TOC1 rhythmically represses MYB44 expression, thereby ensuring elevated MYB44 expression at dawn to help the plant in coping with lowest temperatures during diurnal cycles. Additionally, both TOC1 and MYB44 can be induced by cold stress in an Abscisic acid (ABA)-dependent and independent manner. TOC1 demonstrates a rapid induction in response to lower temperatures compared to ABA treatment, suggesting timely flexible regulation of TOC1-MYB44 regulatory module by the circadian clock in ensuring a proper response to diverse stresses and maintaining a balance between normal physiological processes and energy-consuming stress responses. Our study elucidates the role of TOC1 in effectively modulating expression of MYB44, providing insights into the regulatory network connecting the circadian clock, ABA signalling, and stress-responsive genes.
Collapse
Affiliation(s)
- Shen-Xiu Du
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Lu-Lu Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Wei-Peng Yu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Shu-Xuan Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Liang Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Wei Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| |
Collapse
|
2
|
Ando E, Taki K, Suzuki T, Kinoshita T. A novel semi-dominant mutation in brassinosteroid signaling kinase1 increases stomatal density. FRONTIERS IN PLANT SCIENCE 2024; 15:1377352. [PMID: 38628368 PMCID: PMC11019013 DOI: 10.3389/fpls.2024.1377352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 02/27/2024] [Indexed: 04/19/2024]
Abstract
Stomata play a pivotal role in balancing CO2 uptake for photosynthesis and water loss via transpiration. Thus, appropriate regulation of stomatal movement and its formation are crucial for plant growth and survival. Red and blue light induce phosphorylation of the C-terminal residue of the plasma membrane (PM) H+-ATPase, threonine, in guard cells, generating the driving force for stomatal opening. While significant progress has been made in understanding the regulatory mechanism of PM H+-ATPase in guard cells, the regulatory components for the phosphorylation of PM H+-ATPase have not been fully elucidated. Recently, we established a new immunohistochemical technique for detecting guard-cell PM H+-ATPase phosphorylation using leaves, which was expected to facilitate investigations with a single leaf. In this study, we applied the technique to genetic screening experiment to explore novel regulators for the phosphorylation of PM H+-ATPase in guard cells, as well as stomatal development. We successfully performed phenotyping using a single leaf. During the experiment, we identified a mutant exhibiting high stomatal density, jozetsu (jzt), named after a Japanese word meaning 'talkative'. We found that a novel semi-dominant mutation in BRASSINOSTEROID SIGNALING KINASE1 (BSK1) is responsible for the phenotype in jzt mutant. The present results demonstrate that the new immunohistochemical technique has a wide range of applications, and the novel mutation would provide genetic tool to expand our understanding of plant development mediated by brassinosteroid signaling.
Collapse
Affiliation(s)
- Eigo Ando
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
| | - Kyomi Taki
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Aichi, Japan
| | - Takamasa Suzuki
- Department of Biological Chemistry, College of Bioscience and Biotechnology, Chubu University, Kasugai, Aichi, Japan
| | - Toshinori Kinoshita
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Aichi, Japan
| |
Collapse
|
3
|
Fan L, Hou Y, Zheng L, Shi H, Liu Z, Wang Y, Li S, Liu L, Guo M, Yang Z, Liu J. Characterization and fine mapping of a yellow leaf gene regulating chlorophyll biosynthesis and chloroplast development in cotton (Gossypium arboreum). Gene 2023; 885:147712. [PMID: 37579958 DOI: 10.1016/j.gene.2023.147712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/20/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
Chlorophyll biosynthesis and chloroplast development are essential for photosynthesis and plant growth. Gossypium arboreum, a valuable source of genetic variation for cotton improvement, remains poorly studied for the mechanisms regulating chlorophyll biosynthesis and chloroplast development. Here we created a G. arboreum etiolated leaf and stuntedness (els) mutant that displayed a distinct yellow color of leaves, bracts and stems throughout the whole growth, where chlorophyll accumulation in leaves was reduced and chloroplast development was delayed. The GaCHLH gene, which encodes the H subunit of magnesium chelatase (Mg-chelatase), was screened by MutMap and KASP analysis. Compared to GaCHLH, the gene Gachlh of the mutant had a single nucleotide transition (G to A) at 1549 bp, which causes the substitution of a glycine (G) by a serine (S) at the 517th amino acid, resulting in an abnormal secondary structure of the Gachlh protein. GaCHLH-silenced SXY1 and ZM24 plants exhibited a lower GaCHLH expression level, a lower chlorophyll content, and the yellow-leaf phenotype. Gachlh expression affected the expression of key genes in the tetrapyrrole pathway. GaCHLH and Gachlh were located in the chloroplasts and that alteration of the mutation site did not affect the final target position. The BiFC assay result indicated that Gachlh could not bind to GaCHLD properly, which prevented the assembly of Mg-chelatase and thus led to the failure of chlorophyll synthesis. In this study, the Gachlh gene of G. arboreum els was finely localized and identified for the first time, providing new insights into the chlorophyll biosynthesis pathway in cotton.
Collapse
Affiliation(s)
- Liqiang Fan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - Yan Hou
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Lei Zheng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China; Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Beijing 100081, China
| | - Huiyun Shi
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Zhao Liu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yuxuan Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Shengdong Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Le Liu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Mengzhen Guo
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Zuoren Yang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; Key Laboratory of China Northwestern Inland Region, Ministry of Agriculture and Rural Affairs, Cotton Research Institute, Xinjiang Academy Agricultural and Reclamation Science, Shihezi 832003, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China.
| | - Ji Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| |
Collapse
|
4
|
Yang X, Cai J, Xue J, Luo X, Zhu W, Xiao X, Xue M, An F, Li K, Chen S. Magnesium chelatase subunit D is not only required for chlorophyll biosynthesis and photosynthesis, but also affecting starch accumulation in Manihot esculenta Crantz. BMC PLANT BIOLOGY 2023; 23:258. [PMID: 37189053 DOI: 10.1186/s12870-023-04224-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023]
Abstract
BACKGROUND Magnesium chelatase plays an important role in photosynthesis, but only a few subunits have been functionally characterized in cassava. RESULTS Herein, MeChlD was successfully cloned and characterized. MeChlD encodes a magnesium chelatase subunit D, which has ATPase and vWA conservative domains. MeChlD was highly expressed in the leaves. Subcellular localization suggested that MeChlD:GFP was a chloroplast-localized protein. Furthermore, the yeast two-hybrid system and BiFC analysis indicated that MeChlD interacts with MeChlM and MePrxQ, respectively. VIGS-induce silencing of MeChlD resulted in significantly decreased chlorophyll content and reduction the expression of photosynthesis-related nuclear genes. Furthermore, the storage root numbers, fresh weight and the total starch content in cassava storage roots of VIGS-MeChlD plants was significantly reduced. CONCLUSION Taken together, MeChlD located at the chloroplast is not only required for chlorophyll biosynthesis and photosynthesis, but also affecting the starch accumulation in cassava. This study expands our understanding of the biological functions of ChlD proteins.
Collapse
Affiliation(s)
- Xingai Yang
- Key Laboratory of Ministry of Agriculture for Germplasm Resources Conservation and Utilization of Cassava, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Science, Haikou, 571101, China
| | - Jie Cai
- Key Laboratory of Ministry of Agriculture for Germplasm Resources Conservation and Utilization of Cassava, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Science, Haikou, 571101, China
| | - Jingjing Xue
- Key Laboratory of Ministry of Agriculture for Germplasm Resources Conservation and Utilization of Cassava, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Science, Haikou, 571101, China
| | - Xiuqin Luo
- Key Laboratory of Ministry of Agriculture for Germplasm Resources Conservation and Utilization of Cassava, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Science, Haikou, 571101, China
| | - Wenli Zhu
- Key Laboratory of Ministry of Agriculture for Germplasm Resources Conservation and Utilization of Cassava, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Science, Haikou, 571101, China
| | - Xinhui Xiao
- Key Laboratory of Ministry of Agriculture for Germplasm Resources Conservation and Utilization of Cassava, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Science, Haikou, 571101, China
| | - Maofu Xue
- Key Laboratory of Ministry of Agriculture for Germplasm Resources Conservation and Utilization of Cassava, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Science, Haikou, 571101, China
| | - Feifei An
- Key Laboratory of Ministry of Agriculture for Germplasm Resources Conservation and Utilization of Cassava, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Science, Haikou, 571101, China.
| | - Kaimian Li
- Key Laboratory of Ministry of Agriculture for Germplasm Resources Conservation and Utilization of Cassava, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Science, Haikou, 571101, China.
| | - Songbi Chen
- Key Laboratory of Ministry of Agriculture for Germplasm Resources Conservation and Utilization of Cassava, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Science, Haikou, 571101, China.
| |
Collapse
|
5
|
Padilla YG, Gisbert-Mullor R, Bueso E, Zhang L, Forment J, Lucini L, López-Galarza S, Calatayud Á. New Insights Into Short-term Water Stress Tolerance Through Transcriptomic and Metabolomic Analyses on Pepper Roots. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 333:111731. [PMID: 37196901 DOI: 10.1016/j.plantsci.2023.111731] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/02/2023] [Accepted: 05/13/2023] [Indexed: 05/19/2023]
Abstract
In the current climate change scenario, water stress is a serious threat to limit crop growth and yields. It is necessary to develop tolerant plants that cope with water stress and, for this purpose, tolerance mechanisms should be studied. NIBER® is a proven water stress- and salt-tolerant pepper hybrid rootstock (Gisbert-Mullor et al., 2020; López-Serrano et al., 2020), but tolerance mechanisms remain unclear. In this experiment, NIBER® and A10 (a sensitive pepper accession (Penella et al., 2014)) response to short-term water stress at 5 h and 24 h was studied in terms of gene expression and metabolites content in roots. GO terms and gene expression analyses evidenced constitutive differences in the transcriptomic profile of NIBER® and A10, associated with detoxification systems of reactive oxygen species (ROS). Upon water stress, transcription factors like DREBs and MYC are upregulated and the levels of auxins, abscisic acid and jasmonic acid are increased in NIBER®. NIBER® tolerance mechanisms involve an increase in osmoprotectant sugars (i.e., trehalose, raffinose) and in antioxidants (spermidine), but lower contents of oxidized glutathione compared to A10, which indicates less oxidative damage. Moreover, the gene expression for aquaporins and chaperones is enhanced. These results show the main NIBER® strategies to overcome water stress.
Collapse
Affiliation(s)
- Yaiza Gara Padilla
- Centro de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias, CV-315, Km 10,7, Moncada, 46113 Valencia, Spain
| | - Ramón Gisbert-Mullor
- Departamento de Producción Vegetal, CVER, Universitat Politècnica de València, Camí de Vera s/n, 46022 Valencia, Spain
| | - Eduardo Bueso
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València-C.S.I.C., Valencia, Spain
| | - Leilei Zhang
- Department for Sustainable Food Process, Research Centre for Nutrigenomics and Proteomics, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - Javier Forment
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València-C.S.I.C., Valencia, Spain
| | - Luigi Lucini
- Department for Sustainable Food Process, Research Centre for Nutrigenomics and Proteomics, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - Salvador López-Galarza
- Departamento de Producción Vegetal, CVER, Universitat Politècnica de València, Camí de Vera s/n, 46022 Valencia, Spain
| | - Ángeles Calatayud
- Centro de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias, CV-315, Km 10,7, Moncada, 46113 Valencia, Spain.
| |
Collapse
|
6
|
Tran LH, Kim JG, Jung S. Expression of the Arabidopsis Mg-chelatase H subunit alleviates iron deficiency-induced stress in transgenic rice. FRONTIERS IN PLANT SCIENCE 2023; 14:1098808. [PMID: 36938029 PMCID: PMC10017980 DOI: 10.3389/fpls.2023.1098808] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 02/20/2023] [Indexed: 06/12/2023]
Abstract
The most common symptom of iron (Fe) deficiency in plants is leaf chlorosis caused by impairment of chlorophyll biosynthesis. Magnesium (Mg)-chelatase H subunit (CHLH) is a key component in both chlorophyll biosynthesis and plastid signaling, but its role in Fe deficiency is poorly understood. Heterologous expression of the Arabidopsis thaliana Mg-chelatase H subunit gene (AtCHLH) increased Mg-chelatase activity by up to 6-fold and abundance of its product, Mg-protoporphyrin IX (Mg-Proto IX), by 60-75% in transgenic rice (Oryza sativa) seedlings compared to wild-type (WT) controls. Noticeably, the transgenic seedlings showed alleviation of Fe deficiency symptoms, as evidenced by their less pronounced leaf chlorosis and lower declines in shoot growth, chlorophyll contents, and photosynthetic efficiency, as indicated by F v/F m and electron transport rate, compared to those in WT seedlings under Fe deficiency. Porphyrin metabolism was differentially regulated by Fe deficiency between WT and transgenic seedlings, particularly with a higher level of Mg-Proto IX in transgenic lines, showing that overexpression of AtCHLH reprograms porphyrin metabolism in transgenic rice. Leaves of Fe-deficient transgenic seedlings exhibited greater upregulation of deoxymugineic acid biosynthesis-related genes (i.e., NAS, NAS2, and NAAT1), YSL2 transporter gene, and Fe-related transcription factor genes IRO2 and IDEF2 than those of WT, which may also partly contribute to alleviating Fe deficiency. Although AtCHLH was postulated to act as a receptor for abscisic acid (ABA), exogenous ABA did not alter the phenotypes of Fe-deficient WT or transgenic seedlings. Our study demonstrates that modulation of porphyrin biosynthesis through expression of AtCHLH in transgenic rice alleviates Fe deficiency-induced stress, suggesting a possible role for CHLH in Fe deficiency responses.
Collapse
|
7
|
Soda MN, Hayashi Y, Takahashi K, Kinoshita T. Tryptophan synthase ß subunit 1 affects stomatal phenotypes in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2022; 13:1011360. [PMID: 36518509 PMCID: PMC9743989 DOI: 10.3389/fpls.2022.1011360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/11/2022] [Indexed: 06/17/2023]
Abstract
Stomata open in response to several environmental stimuli, such as light and low CO2. Plasma membrane (PM) H+-ATPase in guard cells plays a pivotal role for light-induced stomatal opening. In contrast, stomata close in response to the dark or plant hormone abscisic acid (ABA). However, molecular mechanisms of stomatal movements remain unclear. To elucidate the molecular mechanism of stomatal movements, we performed a genetic screen based on stomatal aperture-dependent weight decrease of detached leaves from EMS-treated Arabidopsis thaliana and isolated a rapid transpiration in detached leaves 2 (rtl2). The rtl2 mutant showed constitutive open-stomata phenotype with lower leaf temperature. ABA had no effect on stomatal aperture in rtl2. The rtl2 mutant also showed increased stomatal density, severe dwarf phenotype with pale green leaves and dark veins. Map-based analysis of the RTL2 locus revealed that the rtl2 mutant possesses a single nucleotide substitution, which induces amino acid substitution Gly162 to Glu in the tryptophan synthase ß subunit 1 (TSB1). The TSB1 encodes an enzyme in tryptophan (Trp) biosynthetic pathway. Amount of TSB1 protein was drastically reduced in rtl2 mutant. A different allele of tsb1 mutant (tsb1-1) also showed constitutive open-stomata phenotype with reduced TSB1 protein as in rtl2. Analyses of test-crossed plants of rtl2 and tsb1-1 showed open-stomata and dwarf phenotypes. These results indicate that a responsible gene for rtl2 is TSB1. We further investigated stomatal phenotype in mutants from Trp biosynthetic pathway, such as wei2-1 wei7-1, trp3-1, and tsb2-1. The trp3-1 mutant showed significant wider stomatal aperture as well as tsb1-1. Trp biosynthetic pathway closely relates to auxin biosynthesis. Then, we investigated auxin responsible genes and found that an expression of AUR3 was up in rtl2. In contrast, auxin had no effect on stomatal aperture in Arabidopsis and the phosphorylation status of PM H+-ATPase in guard cell protoplasts from Vicia faba. In addition, auxin antagonist had no effect on stomatal aperture. Interestingly, tsb1-1 grown under hydroponic culture system showed normal stomatal aperture by exogenously application of Trp. These results suggest that open stomata phenotype in tsb1-1 is due to Trp deficiency but not auxin.
Collapse
Affiliation(s)
- Midori N. Soda
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya, Japan
| | - Yuki Hayashi
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya, Japan
| | - Koji Takahashi
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya, Japan
| | - Toshinori Kinoshita
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, Japan
| |
Collapse
|
8
|
Transcriptome analysis of response strategy in Hemerocallis fulva under drought stress. Genes Genomics 2022; 45:593-610. [PMID: 36348249 DOI: 10.1007/s13258-022-01335-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 10/20/2022] [Indexed: 11/11/2022]
Abstract
BACKGROUND Hemerocallis fulva is an important ground cover plant widely used in urban greening. The analysis of the molecular mechanism underlying the drought response of H. fulva can lay a foundation for improving its adaptability and expanding its planting area. OBJECTIVE To reveal the drought response mechanisms of H. fulva, identify candidate unigenes associated with drought response, and lay a foundation for further unigenes functional study and drought resistance improvement of H. fulva via genetic engineering. METHODS RNA was isolated from H. fulva under different experimental conditions. De novo transcriptomic analysis of the samples was performed to screen drought response unigenes. The transcriptional changes of candidate drought response unigenes were verified by quantitative real-time PCR. RESULTS The differentially expressed unigenes and their functions were analyzed after H. fulva treated by PEG-simulated drought stress and rewatering. The candidate unigenes, associated with H. fulva drought response, were identified after transcriptome analysis. Then, the transcription level of drought response unigenes of H. fulva under different conditions was further verified. Abscisic acid, protein phosphorylation, sterol biosynthesis and ion transport were involved in drought response with quick restore in H. fulva. The response unigenes, involved in hormone (ABA, JA, CK and GA) signaling pathways, defense response, high light response, karrikin response and leaf shaping, can maintain at changed expression levels even after stress withdraw. CONCLUSION Hemerocallis fulva has unique drought response mechanism. Negative regulation mechanism may play more important roles in drought response of H. fulva. The analysis of candidate unigenes, associated with drought response, lays a foundation for further drought resistance improvement of H. fulva.
Collapse
|
9
|
Yu Y, Portolés S, Ren Y, Sun G, Wang XF, Zhang H, Guo S. The key clock component ZEITLUPE (ZTL) negatively regulates ABA signaling by degradation of CHLH in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2022; 13:995907. [PMID: 36176682 PMCID: PMC9513469 DOI: 10.3389/fpls.2022.995907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 08/18/2022] [Indexed: 06/16/2023]
Abstract
Ubiquitination-mediated protein degradation plays important roles in ABA signal transduction and delivering responses to chloroplast stress signals in plants, but additional E3 ligases of protein ubiquitination remain to be identified to understand the complex signaling network. Here we reported that ZEITLUPE (ZTL), an F-box protein, negatively regulates abscisic acid (ABA) signaling during ABA-inhibited early seedling growth and ABA-induced stomatal closure in Arabidopsis thaliana. Using molecular biology and biochemistry approaches, we demonstrated that ZTL interacts with and ubiquitinates its substrate, CHLH/ABAR (Mg-chelatase H subunit/putative ABA receptor), to modulate CHLH stability via the 26S proteasome pathway. CHLH acts genetically downstream of ZTL in ABA and drought stress signaling. Interestingly, ABA conversely induces ZTL phosphorylation, and high levels of ABA also induce CHLH proteasomal degradation, implying that phosphorylated ZTL protein may enhance the affinity to CHLH, leading to the increased degradation of CHLH after ABA treatment. Taken together, our results revealed a possible mechanism of reciprocal regulation between ABA signaling and the circadian clock, which is thought to be essential for plant fitness and survival.
Collapse
Affiliation(s)
- Yongtao Yu
- National Watermelon and Melon Improvement Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, China
| | - Sergi Portolés
- MOE Key Lab of Bioinformatics, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yi Ren
- National Watermelon and Melon Improvement Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, China
| | - Guangyu Sun
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Xiao-Fang Wang
- MOE Key Lab of Bioinformatics, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Huihui Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Shaogui Guo
- National Watermelon and Melon Improvement Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, China
| |
Collapse
|
10
|
Fan KT, Hsu Y, Yeh CF, Chang CH, Chang WH, Chen YR. Quantitative Proteomics Reveals the Dynamic Regulation of the Tomato Proteome in Response to Phytophthora infestans. Int J Mol Sci 2021; 22:ijms22084174. [PMID: 33920680 PMCID: PMC8073981 DOI: 10.3390/ijms22084174] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/14/2021] [Accepted: 04/14/2021] [Indexed: 11/21/2022] Open
Abstract
Late blight (LB) disease is a major threat to potato and tomato production. It is caused by the hemibiotrophic pathogen, Phytophthora infestans. P. infestans can destroy all of the major organs in plants of susceptible crops and result in a total loss of productivity. At the early pathogenesis stage, this hemibiotrophic oomycete pathogen causes an asymptomatic biotrophic infection in hosts, which then progresses to a necrotrophic phase at the later infection stage. In this study, to examine how the tomato proteome is regulated by P. infestans at different stages of pathogenesis, a data-independent acquisition (DIA) proteomics approach was used to trace the dynamics of the protein regulation. A comprehensive picture of the regulation of tomato proteins functioning in the immunity, signaling, defense, and metabolism pathways at different stages of P. infestans infection is revealed. Among the regulated proteins, several involved in mediating plant defense responses were found to be differentially regulated at the transcriptional or translational levels across different pathogenesis phases. This study increases understanding of the pathogenesis of P. infestans in tomato and also identifies key transcriptional and translational events possibly targeted by the pathogen during different phases of its life cycle, thus providing novel insights for developing a new strategy towards better control of LB disease in tomato.
Collapse
Affiliation(s)
- Kai-Ting Fan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan; (K.-T.F.); (Y.H.); (C.-F.Y.); (C.-H.C.); (W.-H.C.)
| | - Yang Hsu
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan; (K.-T.F.); (Y.H.); (C.-F.Y.); (C.-H.C.); (W.-H.C.)
| | - Ching-Fang Yeh
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan; (K.-T.F.); (Y.H.); (C.-F.Y.); (C.-H.C.); (W.-H.C.)
| | - Chi-Hsin Chang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan; (K.-T.F.); (Y.H.); (C.-F.Y.); (C.-H.C.); (W.-H.C.)
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 402, Taiwan
| | - Wei-Hung Chang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan; (K.-T.F.); (Y.H.); (C.-F.Y.); (C.-H.C.); (W.-H.C.)
| | - Yet-Ran Chen
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan; (K.-T.F.); (Y.H.); (C.-F.Y.); (C.-H.C.); (W.-H.C.)
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 402, Taiwan
- Correspondence: ; Tel.: +886-02-2787-2050
| |
Collapse
|
11
|
Shi Y, He Y, Lv X, Wei Y, Zhang X, Xu X, Li L, Wu JL. Chloroplast SRP54s are Essential for Chloroplast Development in Rice. RICE (NEW YORK, N.Y.) 2020; 13:54. [PMID: 32761436 PMCID: PMC7410889 DOI: 10.1186/s12284-020-00415-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/29/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND The chloroplast signal recognition particle 54 (cpSRP54) is known for targeting the light-harvesting complex proteins to thylakoids and plays a critical role for chloroplast development in Arabidopsis, but little is known in rice. Here, we reported two homologous cpSRP54s that affect chloroplast development and plant survival in rice. RESULTS Two rice cpSRP54 homologues, OscpSRP54a and OscpSRP54b, were identified in present study. The defective OscpSRP54a (LOC_Os11g05552) was responsible for the pale green leaf phenotype of the viable pale green leaf 14 (pgl14) mutant. A single nucleotide substitution from G to A at the position 278, the first intron splicing site, was detected in LOC_Os11g05552 in pgl14. The wild type allele could rescue the mutant phenotype. Knockout lines of OscpSRP54b (LOC_Os11g05556) exhibited similar pale green phenotype to pgl14 with reduced chlorophyll contents and impaired chloroplast development, but showed apparently arrested-growth and died within 3 weeks. Both OscpSRP54a and OscpSRP54b were constitutively expressed mainly in shoots and leaves at the vegetative growth stage. Subcellular location indicated that both OscpSRP54a and OscpSRP54b were chloroplast-localized. Both OscpSRP54a and OscpSRP54b were able to interact with OscpSRP43, respectively. The transcript level of OscpSRP43 was significantly reduced while the transcript level of OscpSRP54b was apparently increased in pgl14. In contrast, the transcript levels of OscpSRP54a, OscpSRP43 and OscpSRP54b were all significantly decreased in OscpSRP54b knockout lines. CONCLUSION Our study demonstrated that both OscpSRP54a and OscpSRP54b were essential for normal chloroplast development by interacting with OscpSRP43 in rice. OscpSRP54a and OscpSRP54b might play distinct roles in transporting different chloroplast proteins into thylakoids through cpSRP-mediated pathway.
Collapse
Affiliation(s)
- Yongfeng Shi
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006 China
| | - Yan He
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006 China
| | - Xiangguang Lv
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006 China
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Yanlin Wei
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006 China
| | - Xiaobo Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006 China
| | - Xia Xu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006 China
| | - Liangjian Li
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006 China
| | - Jian-li Wu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006 China
| |
Collapse
|
12
|
Postiglione AE, Muday GK. The Role of ROS Homeostasis in ABA-Induced Guard Cell Signaling. FRONTIERS IN PLANT SCIENCE 2020; 11:968. [PMID: 32695131 PMCID: PMC7338657 DOI: 10.3389/fpls.2020.00968] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 06/12/2020] [Indexed: 05/19/2023]
Abstract
The hormonal and environmental regulation of stomatal aperture is mediated by a complex signaling pathway found within the guard cells that surround stomata. Abscisic acid (ABA) induces stomatal closure in response to drought stress by binding to its guard cell localized receptor, initiating a signaling cascade that includes synthesis of reactive oxygen species (ROS). Genetic evidence in Arabidopsis indicates that ROS produced by plasma membrane respiratory burst oxidase homolog (RBOH) enzymes RBOHD and RBOHF modulate guard cell signaling and stomatal closure. However, ABA-induced ROS accumulates in many locations such as the cytoplasm, chloroplasts, nucleus, and endomembranes, some of which do not coincide with plasma membrane localized RBOHs. ABA-induced guard cell ROS accumulation has distinct spatial and temporal patterns that drive stomatal closure. Productive ROS signaling requires both rapid increases in ROS, as well as the ability of cells to prevent ROS from reaching damaging levels through synthesis of antioxidants, including flavonols. The relationship between locations of ROS accumulation and ABA signaling and the role of enzymatic and small molecule ROS scavengers in maintaining ROS homeostasis in guard cells are summarized in this review. Understanding the mechanisms of ROS production and homeostasis and the role of ROS in guard cell signaling can provide a better understanding of plant response to stress and could provide an avenue for the development of crop plants with increased stress tolerance.
Collapse
|
13
|
Lu K, Zhang YD, Zhao CF, Zhou LH, Zhao QY, Chen T, Wang CL. The Arabidopsis kinase-associated protein phosphatase KAPP, interacting with protein kinases SnRK2.2/2.3/2.6, negatively regulates abscisic acid signaling. PLANT MOLECULAR BIOLOGY 2020; 102:199-212. [PMID: 31813113 DOI: 10.1007/s11103-019-00941-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 11/29/2019] [Indexed: 05/28/2023]
Abstract
KEY MESSAGE The kinase-associated protein phosphatase, KAPP, is negatively involved in abscisic acid (ABA) signaling. KAPP interacts physically with SnRK2.2, SnRK2.3 and SnRK2.6, and functionally acts upstream of SnRK2.2 and SnRK2.3. The kinase-associated protein phosphatase (KAPP) has been reported to be involved in the regulation of many developmental and signaling events, but it remains unknown whether KAPP is involved in ABA signaling. Here, we report that KAPP is negatively involved in ABA-mediated seed germination and early seedling growth in Arabidopsis thaliana. The two loss-of-function mutants of KAPP, kapp-1 and kapp-2, exhibit increased ABA sensitivity in ABA-induced seed germination inhibition and post-germination growth arrest. The three closely-related protein kinase, (SNF1)-related protein kinase SnRK2.2, SnRK2.3 and SnRK2.6, which play critical roles in ABA signaling, interact and co-localize with KAPP. Genetic evidence showed that the ABA-hypersensitive phenotypes caused by KAPP mutation were suppressed by the double mutation of SnRK2.2 and SnRK2.3, indicating that KAPP functions upstream of SnRK2.2 and SnRK2.3 in ABA signaling. RNA-sequencing analysis revealed that KAPP mutation affects expression of multiple ABA-responsive genes. These results demonstrated that KAPP is negatively involved in plant response to ABA, which help to understand the complicated ABA signaling mechanism.
Collapse
Affiliation(s)
- Kai Lu
- Institute of Food Crops, Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences/ Jiangsu High Quality Rice Research and Development Center / Nanjing Branch of China National Center for Rice Improvement, Nanjing, 210014, China
| | - Ya-Dong Zhang
- Institute of Food Crops, Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences/ Jiangsu High Quality Rice Research and Development Center / Nanjing Branch of China National Center for Rice Improvement, Nanjing, 210014, China
| | - Chun-Fang Zhao
- Institute of Food Crops, Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences/ Jiangsu High Quality Rice Research and Development Center / Nanjing Branch of China National Center for Rice Improvement, Nanjing, 210014, China
| | - Li-Hui Zhou
- Institute of Food Crops, Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences/ Jiangsu High Quality Rice Research and Development Center / Nanjing Branch of China National Center for Rice Improvement, Nanjing, 210014, China
| | - Qing-Yong Zhao
- Institute of Food Crops, Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences/ Jiangsu High Quality Rice Research and Development Center / Nanjing Branch of China National Center for Rice Improvement, Nanjing, 210014, China
| | - Tao Chen
- Institute of Food Crops, Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences/ Jiangsu High Quality Rice Research and Development Center / Nanjing Branch of China National Center for Rice Improvement, Nanjing, 210014, China
| | - Cai-Lin Wang
- Institute of Food Crops, Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences/ Jiangsu High Quality Rice Research and Development Center / Nanjing Branch of China National Center for Rice Improvement, Nanjing, 210014, China.
| |
Collapse
|
14
|
Ameztoy K, Baslam M, Sánchez-López ÁM, Muñoz FJ, Bahaji A, Almagro G, García-Gómez P, Baroja-Fernández E, De Diego N, Humplík JF, Ugena L, Spíchal L, Doležal K, Kaneko K, Mitsui T, Cejudo FJ, Pozueta-Romero J. Plant responses to fungal volatiles involve global posttranslational thiol redox proteome changes that affect photosynthesis. PLANT, CELL & ENVIRONMENT 2019; 42:2627-2644. [PMID: 31222760 DOI: 10.1111/pce.13601] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/31/2019] [Accepted: 06/03/2019] [Indexed: 05/22/2023]
Abstract
Microorganisms produce volatile compounds (VCs) that promote plant growth and photosynthesis through complex mechanisms involving cytokinin (CK) and abscisic acid (ABA). We hypothesized that plants' responses to microbial VCs involve posttranslational modifications of the thiol redox proteome through action of plastidial NADPH-dependent thioredoxin reductase C (NTRC), which regulates chloroplast redox status via its functional relationship with 2-Cys peroxiredoxins. To test this hypothesis, we analysed developmental, metabolic, hormonal, genetic, and redox proteomic responses of wild-type (WT) plants and a NTRC knockout mutant (ntrc) to VCs emitted by the phytopathogen Alternaria alternata. Fungal VC-promoted growth, changes in root architecture, shifts in expression of VC-responsive CK- and ABA-regulated genes, and increases in photosynthetic capacity were substantially weaker in ntrc plants than in WT plants. As in WT plants, fungal VCs strongly promoted growth, chlorophyll accumulation, and photosynthesis in ntrc-Δ2cp plants with reduced 2-Cys peroxiredoxin expression. OxiTRAQ-based quantitative and site-specific redox proteomic analyses revealed that VCs promote global reduction of the thiol redox proteome (especially of photosynthesis-related proteins) of WT leaves but its oxidation in ntrc leaves. Our findings show that NTRC is an important mediator of plant responses to microbial VCs through mechanisms involving global thiol redox proteome changes that affect photosynthesis.
Collapse
Affiliation(s)
- Kinia Ameztoy
- Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas/Gobierno de Navarra, Avenida Pamplona 123, Mutilva, Navarra, 31192, Spain
| | - Marouane Baslam
- Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata, 950-2181, Japan
| | - Ángela María Sánchez-López
- Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas/Gobierno de Navarra, Avenida Pamplona 123, Mutilva, Navarra, 31192, Spain
| | - Francisco José Muñoz
- Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas/Gobierno de Navarra, Avenida Pamplona 123, Mutilva, Navarra, 31192, Spain
| | - Abdellatif Bahaji
- Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas/Gobierno de Navarra, Avenida Pamplona 123, Mutilva, Navarra, 31192, Spain
| | - Goizeder Almagro
- Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas/Gobierno de Navarra, Avenida Pamplona 123, Mutilva, Navarra, 31192, Spain
| | - Pablo García-Gómez
- Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas/Gobierno de Navarra, Avenida Pamplona 123, Mutilva, Navarra, 31192, Spain
| | - Edurne Baroja-Fernández
- Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas/Gobierno de Navarra, Avenida Pamplona 123, Mutilva, Navarra, 31192, Spain
| | - Nuria De Diego
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, CZ-78371, Czech Republic
| | - Jan F Humplík
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, CZ-78371, Czech Republic
| | - Lydia Ugena
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, CZ-78371, Czech Republic
| | - Lukáš Spíchal
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, CZ-78371, Czech Republic
| | - Karel Doležal
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, CZ-78371, Czech Republic
| | - Kentaro Kaneko
- Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata, 950-2181, Japan
| | - Toshiaki Mitsui
- Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata, 950-2181, Japan
| | - Francisco Javier Cejudo
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and Consejo Superior de Investigaciones Científicas, Seville, 41092, Spain
| | - Javier Pozueta-Romero
- Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas/Gobierno de Navarra, Avenida Pamplona 123, Mutilva, Navarra, 31192, Spain
| |
Collapse
|
15
|
Toh S, Inoue S, Toda Y, Yuki T, Suzuki K, Hamamoto S, Fukatsu K, Aoki S, Uchida M, Asai E, Uozumi N, Sato A, Kinoshita T. Identification and Characterization of Compounds that Affect Stomatal Movements. PLANT & CELL PHYSIOLOGY 2018; 59:1568-1580. [PMID: 29635388 DOI: 10.1093/pcp/pcy061] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 03/13/2018] [Indexed: 05/09/2023]
Abstract
Regulation of stomatal aperture is essential for plant growth and survival in response to environmental stimuli. Opening of stomata induces uptake of CO2 for photosynthesis and transpiration, which enhances uptake of nutrients from roots. Light is the most important stimulus for stomatal opening. Under drought stress, the plant hormone ABA induces stomatal closure to prevent water loss. However, the molecular mechanisms of stomatal movements are not fully understood. In this study, we screened chemical libraries to identify compounds that affect stomatal movements in Commelina benghalensis and characterize the underlying molecular mechanisms. We identified nine stomatal closing compounds (SCL1-SCL9) that suppress light-induced stomatal opening by >50%, and two compounds (temsirolimus and CP-100356) that induce stomatal opening in the dark. Further investigations revealed that SCL1 and SCL2 had no effect on autophosphorylation of phototropin or the activity of the inward-rectifying plasma membrane (PM) K+ channel, KAT1, but suppressed blue light-induced phosphorylation of the penultimate residue, threonine, in PM H+-ATPase, which is a key enzyme for stomatal opening. SCL1 and SCL2 had no effect on ABA-dependent responses, including seed germination and expression of ABA-induced genes. These results suggest that SCL1 and SCL2 suppress light-induced stomatal opening at least in part by inhibiting blue light-induced activation of PM H+-ATPase, but not by the ABA signaling pathway. Interestingly, spraying leaves onto dicot and monocot plants with SCL1 suppressed wilting of leaves, indicating that inhibition of stomatal opening by these compounds confers tolerance to drought stress in plants.
Collapse
Affiliation(s)
- Shigeo Toh
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya, Japan
| | - Shinpei Inoue
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya, Japan
| | - Yosuke Toda
- JST PRESTO, 7 Gobancho, Chiyoda, Tokyo, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, Japan
| | - Takahiro Yuki
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya, Japan
| | - Kyota Suzuki
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aobayama 6-6-07, Sendai, Japan
| | - Shin Hamamoto
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aobayama 6-6-07, Sendai, Japan
| | - Kohei Fukatsu
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya, Japan
| | - Saya Aoki
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya, Japan
| | - Mami Uchida
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya, Japan
| | - Eri Asai
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya, Japan
| | - Nobuyuki Uozumi
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aobayama 6-6-07, Sendai, Japan
| | - Ayato Sato
- JST PRESTO, 7 Gobancho, Chiyoda, Tokyo, Japan
| | - Toshinori Kinoshita
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya, Japan
- JST PRESTO, 7 Gobancho, Chiyoda, Tokyo, Japan
| |
Collapse
|
16
|
Nishimura N, Tsuchiya W, Moresco JJ, Hayashi Y, Satoh K, Kaiwa N, Irisa T, Kinoshita T, Schroeder JI, Yates JR, Hirayama T, Yamazaki T. Control of seed dormancy and germination by DOG1-AHG1 PP2C phosphatase complex via binding to heme. Nat Commun 2018; 9:2132. [PMID: 29875377 PMCID: PMC5989226 DOI: 10.1038/s41467-018-04437-9] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 05/01/2018] [Indexed: 12/23/2022] Open
Abstract
Abscisic acid (ABA) regulates abiotic stress and developmental responses including regulation of seed dormancy to prevent seeds from germinating under unfavorable environmental conditions. ABA HYPERSENSITIVE GERMINATION1 (AHG1) encoding a type 2C protein phosphatase (PP2C) is a central negative regulator of ABA response in germination; however, the molecular function and regulation of AHG1 remain elusive. Here we report that AHG1 interacts with DELAY OF GERMINATION1 (DOG1), which is a pivotal positive regulator in seed dormancy. DOG1 acts upstream of AHG1 and impairs the PP2C activity of AHG1 in vitro. Furthermore, DOG1 has the ability to bind heme. Binding of DOG1 to AHG1 and heme are independent processes, but both are essential for DOG1 function in vivo. Our study demonstrates that AHG1 and DOG1 constitute an important regulatory system for seed dormancy and germination by integrating multiple environmental signals, in parallel with the PYL/RCAR ABA receptor-mediated regulatory system. The hormone abscisic acid (ABA) prevents seeds from germination when conditions are not suitable. Here the authors show that DOG1, a positive regulator of germination, impairs ABA signaling via genetic and physical interactions with the AHG1 phosphatase and that DOG1 binding to heme is required for this activity.
Collapse
Affiliation(s)
- Noriyuki Nishimura
- Radiation Breeding Division, Institute of Crop Science, National Agriculture and Food Research Organization, 2425 Kamimurata, Hitachiohmiya, Ibaraki, 319-2293, Japan. .,Division of Basic Research, Institute of Crop Science, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8518, Japan.
| | - Wataru Tsuchiya
- Structural Biology Team, Advanced Analysis Center, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, 305-8602, Japan
| | - James J Moresco
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Yuki Hayashi
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, 464-8602, Japan
| | - Kouji Satoh
- Radiation Breeding Division, Institute of Crop Science, National Agriculture and Food Research Organization, 2425 Kamimurata, Hitachiohmiya, Ibaraki, 319-2293, Japan
| | - Nahomi Kaiwa
- Radiation Breeding Division, Institute of Crop Science, National Agriculture and Food Research Organization, 2425 Kamimurata, Hitachiohmiya, Ibaraki, 319-2293, Japan
| | - Tomoko Irisa
- Radiation Breeding Division, Institute of Crop Science, National Agriculture and Food Research Organization, 2425 Kamimurata, Hitachiohmiya, Ibaraki, 319-2293, Japan
| | - Toshinori Kinoshita
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, 464-8602, Japan.,Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Julian I Schroeder
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0116, USA
| | - John R Yates
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Takashi Hirayama
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama, 710-0046, Japan
| | - Toshimasa Yamazaki
- Structural Biology Team, Advanced Analysis Center, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, 305-8602, Japan
| |
Collapse
|
17
|
Hou BZ, Xu C, Shen YY. A leu-rich repeat receptor-like protein kinase, FaRIPK1, interacts with the ABA receptor, FaABAR, to regulate fruit ripening in strawberry. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:1569-1582. [PMID: 29281111 PMCID: PMC5888985 DOI: 10.1093/jxb/erx488] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Strawberry (Fragaria×ananassa) is a model plant for studying non-climacteric fruit ripening regulated by abscisic acid (ABA); however, its exact molecular mechanisms are yet not fully understood. In this study, a predicted leu-rich repeat (LRR) receptor-like kinase in strawberry, red-initial protein kinase 1 (FaRIPK1), was screened and, using a yeast two-hybrid assay, was shown to interact with a putative ABA receptor, FaABAR. This association was confirmed by bimolecular fluorescence complementation and co-immunoprecipitation assays, and shown to occur in the nucleus. Expression analysis by real-time PCR showed that FaRIPK1 is expressed in roots, stems, leaves, flowers, and fruit, with a particularly high expression in white fruit at the onset of coloration. Down-regulation of FaRIPK1 expression in strawberry fruit, using Tobacco rattle virus-induced gene silencing, inhibited ripening, as evidenced by suppression of ripening-related physiological changes and reduced expression of several genes involved in softening, sugar content, pigmentation, and ABA biosynthesis and signaling. The yeast-expressed LRR and STK (serine/threonine protein kinase) domains of FaRIPK1 bound ABA and showed kinase activity, respectively. A fruit disc-incubation test revealed that FaRIPK1 expression was induced by ABA and ethylene. The synergistic action of FaRIPK1 with FaABAR in regulation of strawberry fruit ripening is discussed.
Collapse
Affiliation(s)
- Bing-Zhu Hou
- State Key Laboratory of Plant Physiology and Biochemistry, Beijing, P. R. China
- National Plant Gene Research Center, College of Biological Sciences, China Agricultural University, Beijing, P. R. China
- Beijing Key Laboratory of New Technology in Agricultural Application, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, P. R. China
| | - Cheng Xu
- Beijing Key Laboratory of New Technology in Agricultural Application, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, P. R. China
| | - Yuan-Yue Shen
- Beijing Key Laboratory of New Technology in Agricultural Application, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, P. R. China
- Correspondence:
| |
Collapse
|
18
|
Slattery RA, VanLoocke A, Bernacchi CJ, Zhu XG, Ort DR. Photosynthesis, Light Use Efficiency, and Yield of Reduced-Chlorophyll Soybean Mutants in Field Conditions. FRONTIERS IN PLANT SCIENCE 2017; 8:549. [PMID: 28458677 PMCID: PMC5394119 DOI: 10.3389/fpls.2017.00549] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 03/27/2017] [Indexed: 05/20/2023]
Abstract
Reducing chlorophyll (chl) content may improve the conversion efficiency of absorbed photosynthetically active radiation into biomass and therefore yield in dense monoculture crops by improving light penetration and distribution within the canopy. The effects of reduced chl on leaf and canopy photosynthesis and photosynthetic efficiency were studied in two reportedly robust reduced-chl soybean mutants, Y11y11 and y9y9, in comparison to the wild-type (WT) "Clark" cultivar. Both mutants were characterized during the 2012 growing season whereas only the Y11y11 mutant was characterized during the 2013 growing season. Chl deficiency led to greater rates of leaf-level photosynthesis per absorbed photon early in the growing season when mutant chl content was ∼35% of the WT, but there was no effect on photosynthesis later in the season when mutant leaf chl approached 50% of the WT. Transient benefits of reduced chl at the leaf level did not translate to improvements in canopy-level processes. Reduced pigmentation in these mutants was linked to lower water use efficiency, which may have dampened any photosynthetic benefits of reduced chl, especially since both growing seasons experienced significant drought conditions. These results, while not confirming our hypothesis or an earlier published study in which the Y11y11 mutant significantly outyielded the WT, do demonstrate that soybean significantly overinvests in chl. Despite a >50% chl reduction, there was little negative impact on biomass accumulation or yield, and the small negative effects present were likely due to pleiotropic effects of the mutation. This outcome points to an opportunity to reinvest nitrogen and energy resources that would otherwise be used in pigment-proteins into increasing biochemical photosynthetic capacity, thereby improving canopy photosynthesis and biomass production.
Collapse
Affiliation(s)
- Rebecca A. Slattery
- Department of Plant Biology, University of Illinois at Urbana-Champaign, UrbanaIL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, UrbanaIL, USA
| | - Andy VanLoocke
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, UrbanaIL, USA
- Global Change and Photosynthesis Research Unit, United States Department of Agriculture, UrbanaIL, USA
| | - Carl J. Bernacchi
- Department of Plant Biology, University of Illinois at Urbana-Champaign, UrbanaIL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, UrbanaIL, USA
- Global Change and Photosynthesis Research Unit, United States Department of Agriculture, UrbanaIL, USA
| | - Xin-Guang Zhu
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, UrbanaIL, USA
- Chinese Academy of Sciences–German Max Planck Society Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of SciencesShanghai, China
| | - Donald R. Ort
- Department of Plant Biology, University of Illinois at Urbana-Champaign, UrbanaIL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, UrbanaIL, USA
- Global Change and Photosynthesis Research Unit, United States Department of Agriculture, UrbanaIL, USA
| |
Collapse
|
19
|
Sussmilch FC, Brodribb TJ, McAdam SAM. What are the evolutionary origins of stomatal responses to abscisic acid in land plants? JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2017; 59:240-260. [PMID: 28093875 DOI: 10.1111/jipb.12523] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 01/15/2017] [Indexed: 05/20/2023]
Abstract
The evolution of active stomatal closure in response to leaf water deficit, mediated by the hormone abscisic acid (ABA), has been the subject of recent debate. Two different models for the timing of the evolution of this response recur in the literature. A single-step model for stomatal control suggests that stomata evolved active, ABA-mediated control of stomatal aperture, when these structures first appeared, prior to the divergence of bryophyte and vascular plant lineages. In contrast, a gradualistic model for stomatal control proposes that the most basal vascular plant stomata responded passively to changes in leaf water status. This model suggests that active ABA-driven mechanisms for stomatal responses to water status instead evolved after the divergence of seed plants, culminating in the complex, ABA-mediated responses observed in modern angiosperms. Here we review the findings that form the basis for these two models, including recent work that provides critical molecular insights into resolving this intriguing debate, and find strong evidence to support a gradualistic model for stomatal evolution.
Collapse
Affiliation(s)
- Frances C Sussmilch
- School of Biological Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | - Timothy J Brodribb
- School of Biological Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | - Scott A M McAdam
- School of Biological Sciences, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
20
|
Simm S, Scharf KD, Jegadeesan S, Chiusano ML, Firon N, Schleiff E. Survey of Genes Involved in Biosynthesis, Transport, and Signaling of Phytohormones with Focus on Solanum lycopersicum. Bioinform Biol Insights 2016; 10:185-207. [PMID: 27695302 PMCID: PMC5038615 DOI: 10.4137/bbi.s38425] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 08/15/2016] [Accepted: 08/16/2016] [Indexed: 12/19/2022] Open
Abstract
Phytohormones control the development and growth of plants, as well as their response to biotic and abiotic stress. The seven most well-studied phytohormone classes defined today are as follows: auxins, ethylene, cytokinin, abscisic acid, jasmonic acid, gibberellins, and brassinosteroids. The basic principle of hormone regulation is conserved in all plants, but recent results suggest adaptations of synthesis, transport, or signaling pathways to the architecture and growth environment of different plant species. Thus, we aimed to define the extent to which information from the model plant Arabidopsis thaliana is transferable to other plants such as Solanum lycopersicum. We extracted the co-orthologues of genes coding for major pathway enzymes in A. thaliana from the translated genomes of 12 species from the clade Viridiplantae. Based on predicted domain architecture and localization of the identified proteins from all 13 species, we inspected the conservation of phytohormone pathways. The comparison was complemented by expression analysis of (co-) orthologous genes in S. lycopersicum. Altogether, this information allowed the assignment of putative functional equivalents between A. thaliana and S. lycopersicum but also pointed to some variations between the pathways in eudicots, monocots, mosses, and green algae. These results provide first insights into the conservation of the various phytohormone pathways between the model system A. thaliana and crop plants such as tomato. We conclude that orthologue prediction in combination with analysis of functional domain architecture and intracellular localization and expression studies are sufficient tools to transfer information from model plants to other plant species. Our results support the notion that hormone synthesis, transport, and response for most part of the pathways are conserved, and species-specific variations can be found.
Collapse
Affiliation(s)
- Stefan Simm
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany.; Cluster of Excellence Macromolecular Complexes, Institute for Molecular Cell Biology of Plants, Frankfurt am Main, Germany
| | - Klaus-Dieter Scharf
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany.; Cluster of Excellence Macromolecular Complexes, Institute for Molecular Cell Biology of Plants, Frankfurt am Main, Germany
| | - Sridharan Jegadeesan
- Department of Vegetable Research, Institute for Plant Sciences, Agricultural Research Organization, Volcani Centre, Bet Dagan, Israel.; The Robert H. Smith Faculty of Agriculture, Food and Environment, The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Maria Luisa Chiusano
- Department of Soil, Plants Environmental and Animal Production Sciences, Laboratory of Computer Aided Biosciences, University of Studies of Naples Federico II, Portici, Naples, Italy
| | - Nurit Firon
- Department of Vegetable Research, Institute for Plant Sciences, Agricultural Research Organization, Volcani Centre, Bet Dagan, Israel
| | - Enrico Schleiff
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany.; Cluster of Excellence Macromolecular Complexes, Institute for Molecular Cell Biology of Plants, Frankfurt am Main, Germany
| |
Collapse
|
21
|
Slattery RA, Grennan AK, Sivaguru M, Sozzani R, Ort DR. Light sheet microscopy reveals more gradual light attenuation in light-green versus dark-green soybean leaves. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:4697-709. [PMID: 27329746 PMCID: PMC4973739 DOI: 10.1093/jxb/erw246] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Light wavelengths preferentially absorbed by chlorophyll (chl) often display steep absorption gradients. This over-saturates photosynthesis in upper chloroplasts and deprives lower chloroplasts of blue and red light. Reducing chl content could create a more even leaf light distribution and thereby increase leaf light-use efficiency and overall canopy photosynthesis. This was tested on soybean cultivar 'Clark' (WT) and a near-isogenic chl b deficient mutant, Y11y11, grown in controlled environment chambers and in the field. Light attenuation was quantified using a novel approach involving light sheet microscopy. Leaf adaxial and abaxial surfaces were illuminated separately with blue, red, and green wavelengths, and chl fluorescence was detected orthogonally to the illumination plane. Relative fluorescence was significantly greater in deeper layers of the Y11y11 mesophyll than in WT, with the greatest differences in blue, then red, and finally green light when illuminated from the adaxial surface. Modeled relative photosynthesis based on chlorophyll profiles and Beer's Law predicted less steep gradients in mutant relative photosynthesis rates compared to WT. Although photosynthetic light-use efficiency was greater in the field-grown mutant with ~50% lower chl, light-use efficiency was lower in the mutant when grown in chambers where chl was ~80% reduced. This difference is probably due to pleiotropic effects of the mutation that accompany very severe reductions in chlorophyll and may warrant further testing in other low-chl lines.
Collapse
Affiliation(s)
- Rebecca A Slattery
- Department of Plant Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, IL 61801, USA Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, IL 61801, USA
| | - Aleel K Grennan
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, IL 61801, USA
| | - Mayandi Sivaguru
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, IL 61801, USA
| | - Rosangela Sozzani
- Department of Plant and Microbial Biology, North Carolina State University, 2115 Gardner Hall, Box 7612, Raleigh, NC 27695, USA
| | - Donald R Ort
- Department of Plant Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, IL 61801, USA Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, IL 61801, USA Global Change and Photosynthesis Research Unit, United States Department of Agriculture, 1206 West Gregory Drive, Urbana, IL 61801, USA
| |
Collapse
|
22
|
Verslues PE. ABA and cytokinins: challenge and opportunity for plant stress research. PLANT MOLECULAR BIOLOGY 2016; 91:629-640. [PMID: 26910054 DOI: 10.1007/s11103-016-0458-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 02/19/2016] [Indexed: 06/05/2023]
Abstract
Accumulation of the stress hormone abscisic acid (ABA) induces many cellular mechanisms associated with drought resistance. Recent years have seen a rapid advance in our knowledge of how increased ABA levels are perceived by ABA receptors, particularly the PYL/RCAR receptors, but there has been relatively less new information about how ABA accumulation is controlled and matched to stress severity. ABA synthesis and catabolism, conjugation and deconjugation to glucose, and ABA transport all are involved in controlling ABA levels. This highly buffered system of ABA metabolism represents both a challenge and opportunity in developing a mechanistic understanding of how plants detect and respond to drought. Recent data have also shown that direct manipulation of cytokinin levels in transgenic plants has dramatic effect on drought phenotypes and prompted new interest in the role of cytokinins and cytokinin signaling in drought. Both ABA and cytokinins will continue to be major foci of drought research but likely with different trajectories both in terms of basic research and in translational research aimed at increasing plant performance during drought.
Collapse
Affiliation(s)
- Paul E Verslues
- Institute of Plant and Microbial Biology, Academia Sinica, No. 128 Sec. 2 Academia Rd, Nankang Dist., Taipei, 11529, Taiwan.
| |
Collapse
|
23
|
Abstract
The phytohormone abscisic acid (ABA) plays crucial roles in numerous physiological processes during plant growth and abiotic stress responses. The endogenous ABA level is controlled by complex regulatory mechanisms involving biosynthesis, catabolism, transport and signal transduction pathways. This complex regulatory network may target multiple levels, including transcription, translation and post-translational regulation of genes involved in ABA responses. Most of the genes involved in ABA biosynthesis, catabolism and transport have been characterized. The local ABA concentration is critical for initiating ABA-mediated signalling during plant development and in response to environmental changes. In this chapter we discuss the mechanisms that regulate ABA biosynthesis, catabolism, transport and homoeostasis. We also present the findings of recent research on ABA perception by cellular receptors, and ABA signalling in response to cellular and environmental conditions.
Collapse
|
24
|
Kmiecik P, Leonardelli M, Teige M. Novel connections in plant organellar signalling link different stress responses and signalling pathways. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:3793-807. [PMID: 27053718 DOI: 10.1093/jxb/erw136] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
To coordinate growth, development and responses to environmental stimuli, plant cells need to communicate the metabolic state between different sub-compartments of the cell. This requires signalling pathways, including protein kinases, secondary messengers such as Ca(2+) ions or reactive oxygen species (ROS) as well as metabolites and plant hormones. The signalling networks involved have been intensively studied over recent decades and have been elaborated more or less in detail. However, it has become evident that these signalling networks are also tightly interconnected and often merge at common targets such as a distinct group of transcription factors, most prominently ABI4, which are amenable to regulation by phosphorylation, potentially also in a Ca(2+)- or ROS-dependent fashion. Moreover, the signalling pathways connect several organelles or subcellular compartments, not only in functional but also in physical terms, linking for example chloroplasts to the nucleus or peroxisomes to chloroplasts thereby enabling physical routes for signalling by metabolite exchange or even protein translocation. Here we briefly discuss these novel findings and try to connect them in order to point out the remaining questions and emerging developments in plant organellar signalling.
Collapse
Affiliation(s)
- Przemyslaw Kmiecik
- Department of Ecogenomics and Systems Biology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Manuela Leonardelli
- Department of Ecogenomics and Systems Biology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Markus Teige
- Department of Ecogenomics and Systems Biology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| |
Collapse
|
25
|
Ibata H, Nagatani A, Mochizuki N. CHLH/GUN5 Function in Tetrapyrrole Metabolism Is Correlated with Plastid Signaling but not ABA Responses in Guard Cells. FRONTIERS IN PLANT SCIENCE 2016; 7:1650. [PMID: 27872634 PMCID: PMC5098175 DOI: 10.3389/fpls.2016.01650] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 10/20/2016] [Indexed: 05/20/2023]
Abstract
Expression of Photosynthesis-Associated Nuclear Genes (PhANGs) is controlled by environmental stimuli and plastid-derived signals ("plastid signals") transmitting the developmental and functional status of plastids to the nucleus. Arabidopsis genomes uncoupled (gun) mutants exhibit defects in plastid signaling, leading to ectopic expression of PhANGs in the absence of chloroplast development. GUN5 encodes the plastid-localized Mg-chelatase enzyme subunit (CHLH), and recent studies suggest that CHLH is a multifunctional protein involved in tetrapyrrole biosynthesis, plastid signaling and ABA responses in guard cells. To understand the basis of CHLH multifunctionality, we investigated 15 gun5 missense mutant alleles and transgenic lines expressing a series of truncated CHLH proteins in a severe gun5 allele (cch) background (tCHLHs, 10 different versions). Here, we show that Mg-chelatase function and plastid signaling are generally correlated; in contrast, based on the analysis of the gun5 missense mutant alleles, ABA-regulated stomatal control is distinct from these two other functions. We found that none of the tCHLHs could restore plastid-signaling or Mg-chelatase functions. Additionally, we found that both the C-terminal half and N-terminal half of CHLH function in ABA-induced stomatal movement.
Collapse
|
26
|
Liang S, Lu K, Wu Z, Jiang SC, Yu YT, Bi C, Xin Q, Wang XF, Zhang DP. A link between magnesium-chelatase H subunit and sucrose nonfermenting 1 (SNF1)-related protein kinase SnRK2.6/OST1 in Arabidopsis guard cell signalling in response to abscisic acid. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:6355-69. [PMID: 26175350 PMCID: PMC4588886 DOI: 10.1093/jxb/erv341] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Magnesium-chelatase H subunit [CHLH/putative abscisic acid (ABA) receptor ABAR] positively regulates guard cell signalling in response to ABA, but the molecular mechanism remains largely unknown. A member of the sucrose nonfermenting 1 (SNF1)-related protein kinase 2 family, SnRK2.6/open stomata 1 (OST1)/SRK2E, which plays a critical role in ABA signalling in Arabidopsis guard cells, interacts with ABAR/CHLH. Neither mutation nor over-expression of the ABAR gene affects significantly ABA-insensitive phenotypes of stomatal movement in the OST1 knockout mutant allele srk2e. However, OST1 over-expression suppresses ABA-insensitive phenotypes of the ABAR mutant allele cch in stomatal movement. These genetic data support that OST1 functions downstream of ABAR in ABA signalling in guard cells. Consistent with this, ABAR protein is phosphorylated, but independently of the OST1 protein kinase. Two ABAR mutant alleles, cch and rtl1, show ABA insensitivity in ABA-induced reactive oxygen species and nitric oxide production, as well as in ABA-activated phosphorylation of a K(+) inward channel KAT1 in guard cells, which is consistent with that observed in the pyr1 pyl1 pyl2 pyl4 quadruple mutant of the well-characterized ABA receptor PYR/PYL/RCAR family acting upstream of OST1. These findings suggest that ABAR shares, at least in part, downstream signalling components with PYR/PYL/RCAR receptors for ABA in guard cells; though cch and rtl1 show strong ABA-insensitive phenotypes in both ABA-induced stomatal closure and inhibition of stomatal opening, while the pyr1 pyl1 pyl2 pyl4 quadruple mutant shows strong ABA insensitivity only in ABA-induced stomatal closure. These data establish a link between ABAR/CHLH and SnRK2.6/OST1 in guard cell signalling in response to ABA.
Collapse
Affiliation(s)
- Shan Liang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Kai Lu
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zhen Wu
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Shang-Chuan Jiang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yong-Tao Yu
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Chao Bi
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qi Xin
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiao-Fang Wang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Da-Peng Zhang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
27
|
Jiang SC, Mei C, Liang S, Yu YT, Lu K, Wu Z, Wang XF, Zhang DP. Crucial roles of the pentatricopeptide repeat protein SOAR1 in Arabidopsis response to drought, salt and cold stresses. PLANT MOLECULAR BIOLOGY 2015; 88:369-85. [PMID: 26093896 PMCID: PMC4486114 DOI: 10.1007/s11103-015-0327-9] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 04/29/2015] [Indexed: 05/07/2023]
Abstract
Whereas several mitochondrial/chloroplast pentatricopeptide repeat (PPR) proteins have been reported to regulate plant responses to abiotic stresses, no nucleus-localized PPR protein has been found to play role in these processes. In the present experiment, we provide evidence that a cytosol-nucleus dual-localized PPR protein SOAR1, functioning to negatively regulate abscisic acid (ABA) signaling in seed germination and postgermination growth, is a crucial, positive regulator of plant response to abiotic stresses. Downregulation of SOAR1 expression reduces, but upregulation of SOAR1 expression enhances, ABA sensitivity in ABA-induced promotion of stomatal closure and inhibition of stomatal opening, and plant tolerance to multiple, major abiotic stresses including drought, high salinity and low temperature. Interestingly and importantly, the SOAR1-overexpression lines display strong abilities to tolerate drought, salt and cold stresses, with surprisingly high resistance to salt stress in germination and postgermination growth of seeds that are able to potentially germinate in seawater, while no negative effect on plant growth and development was observed. So, the SOAR1 gene is likely useful for improvement of crops by transgenic manipulation to enhance crop productivity in stressful conditions. Further experimental data suggest that SOAR1 likely regulates plant stress responses at least partly by integrating ABA-dependent and independent signaling pathways, which is different from the ABI2/ABI1 type 2C protein phosphatase-mediated ABA signaling. These findings help to understand highly complicated stress and ABA signalling network.
Collapse
Affiliation(s)
- Shang-Chuan Jiang
- MOE Systems Biology and Bioinformatics Laboratory, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084 China
| | - Chao Mei
- MOE Systems Biology and Bioinformatics Laboratory, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084 China
| | - Shan Liang
- MOE Systems Biology and Bioinformatics Laboratory, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084 China
| | - Yong-Tao Yu
- MOE Systems Biology and Bioinformatics Laboratory, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084 China
| | - Kai Lu
- MOE Systems Biology and Bioinformatics Laboratory, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084 China
| | - Zhen Wu
- MOE Systems Biology and Bioinformatics Laboratory, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084 China
| | - Xiao-Fang Wang
- MOE Systems Biology and Bioinformatics Laboratory, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084 China
| | - Da-Peng Zhang
- MOE Systems Biology and Bioinformatics Laboratory, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084 China
| |
Collapse
|
28
|
Zhang XL, Jiang L, Xin Q, Liu Y, Tan JX, Chen ZZ. Structural basis and functions of abscisic acid receptors PYLs. FRONTIERS IN PLANT SCIENCE 2015; 6:88. [PMID: 25745428 PMCID: PMC4333806 DOI: 10.3389/fpls.2015.00088] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Accepted: 02/02/2015] [Indexed: 05/17/2023]
Abstract
Abscisic acid (ABA) plays a key role in many developmental processes and responses to adaptive stresses in plants. Recently, a new family of nucleocytoplasmic PYR/PYL/RCAR (PYLs) has been identified as bona fide ABA receptors. PYLs together with protein phosphatases type-2C (PP2Cs), Snf1 (Sucrose-non-fermentation 1)-related kinases subfamily 2 (SnRK2s) and downstream substrates constitute the core ABA signaling network. Generally, PP2Cs inactivate SnRK2s kinases by physical interaction and direct dephosphorylation. Upon ABA binding, PYLs change their conformations and then contact and inhibit PP2Cs, thus activating SnRK2s. Here, we reviewed the recent progress in research regarding the structures of the core signaling pathways of ABA, including the (+)-ABA, (-)-ABA and ABA analogs pyrabactin as well as 6AS perception by PYLs, SnRK2s mimicking PYLs in binding PP2Cs. PYLs inhibited PP2Cs in both the presence and absence of ABA and activated SnRK2s. The present review elucidates multiple ABA signal perception and transduction by PYLs, which might shed light on how to design small chemical compounds for improving plant performance in the future.
Collapse
Affiliation(s)
- Xing L. Zhang
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical CollegeZhanjiang, China
- *Correspondence: Xing L. Zhang, Department of Pediatrics, Affiliated Hospital of Guangdong Medical College, Zhanjiang 524001, China e-mail:
| | - Lun Jiang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural UniversityBeijing, China
| | - Qi Xin
- National Center for Nanoscience and TechnologyBeijing, China
| | - Yang Liu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural UniversityBeijing, China
| | - Jian X. Tan
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical CollegeZhanjiang, China
| | - Zhong Z. Chen
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural UniversityBeijing, China
- Zhong Z. Chen, State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China e-mail:
| |
Collapse
|
29
|
Mei C, Jiang SC, Lu YF, Wu FQ, Yu YT, Liang S, Feng XJ, Portoles Comeras S, Lu K, Wu Z, Wang XF, Zhang DP. Arabidopsis pentatricopeptide repeat protein SOAR1 plays a critical role in abscisic acid signalling. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:5317-30. [PMID: 25005137 PMCID: PMC4157714 DOI: 10.1093/jxb/eru293] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
A dominant suppressor of the ABAR overexpressor, soar1-1D, from CHLH/ABAR [coding for Mg-chelatase H subunit/putative abscisic acid (ABA) receptor (ABAR)] overexpression lines was screened to explore the mechanism of the ABAR-mediated ABA signalling. The SOAR1 gene encodes a pentatricopeptide repeat (PPR) protein which localizes to both the cytosol and nucleus. Down-regulation of SOAR1 strongly enhances, but up-regulation of SOAR1 almost completely impairs, ABA responses, revealing that SOAR1 is a critical, negative, regulator of ABA signalling. Further genetic evidence supports that SOAR1 functions downstream of ABAR and probably upstream of an ABA-responsive transcription factor ABI5. Changes in the SOAR1 expression alter expression of a subset of ABA-responsive genes including ABI5. These findings provide important information to elucidate further the functional mechanism of PPR proteins and the complicated ABA signalling network.
Collapse
Affiliation(s)
- Chao Mei
- MOE Systems Biology and Bioinformatics Laboratory, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Shang-Chuan Jiang
- MOE Systems Biology and Bioinformatics Laboratory, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yan-Fen Lu
- MOE Systems Biology and Bioinformatics Laboratory, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Fu-Qing Wu
- MOE Systems Biology and Bioinformatics Laboratory, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yong-Tao Yu
- MOE Systems Biology and Bioinformatics Laboratory, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Shan Liang
- MOE Systems Biology and Bioinformatics Laboratory, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiu-Jing Feng
- MOE Systems Biology and Bioinformatics Laboratory, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Sergi Portoles Comeras
- MOE Systems Biology and Bioinformatics Laboratory, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Kai Lu
- MOE Systems Biology and Bioinformatics Laboratory, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zhen Wu
- MOE Systems Biology and Bioinformatics Laboratory, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiao-Fang Wang
- MOE Systems Biology and Bioinformatics Laboratory, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Da-Peng Zhang
- MOE Systems Biology and Bioinformatics Laboratory, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
30
|
Mittal A, Balasubramanian R, Cao J, Singh P, Subramanian S, Hicks G, Nothnagel EA, Abidi N, Janda J, Galbraith DW, Rock CD. TOPOISOMERASE 6B is involved in chromatin remodelling associated with control of carbon partitioning into secondary metabolites and cell walls, and epidermal morphogenesis in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:4217-39. [PMID: 24821950 PMCID: PMC4112631 DOI: 10.1093/jxb/eru198] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Plant growth is continuous and modular, a combination that allows morphogenesis by cell division and elongation and serves to facilitate adaptation to changing environments. The pleiotropic phenotypes of the harlequin (hlq) mutant, isolated on the basis of ectopic expression of the abscisic acid (ABA)- and auxin-inducible proDc3:GUS reporter gene, were previously characterized. Mutants are skotomorphogenic, have deformed and collapsed epidermal cells which accumulate callose and starch, cell walls abundant in pectins and cell wall proteins, and abnormal and reduced root hairs and leaf trichomes. hlq and two additional alleles that vary in their phenotypic severity of starch accumulation in the light and dark have been isolated, and it is shown that they are alleles of bin3/hyp6/rhl3/Topoisomerase6B. Mutants and inhibitors affecting the cell wall phenocopy several of the traits displayed in hlq. A microarray analysis was performed, and coordinated expression of physically adjacent pairs/sets of genes was observed in hlq, suggesting a direct effect on chromatin. Histones, WRKY and IAA/AUX transcription factors, aquaporins, and components of ubiquitin-E3-ligase-mediated proteolysis, and ABA or biotic stress response markers as well as proteins involved in cellular processes affecting carbon partitioning into secondary metabolites were also identified. A comparative analysis was performed of the hlq transcriptome with other previously published TopoVI mutant transcriptomes, namely bin3, bin5, and caa39 mutants, and limited concordance between data sets was found, suggesting indirect or genotype-specific effects. The results shed light on the molecular mechanisms underlying the det/cop/fus-like pleiotropic phenotypes of hlq and support a broader role for TopoVI regulation of chromatin remodelling to mediate development in response to environmental and hormonal signals.
Collapse
Affiliation(s)
- Amandeep Mittal
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409-3131, USA
| | - Rajagopal Balasubramanian
- Tamil Nadu Agricultural University, Department of Plant Breeding and Genetics, Agricultural College and Research Institute, Madurai-625 104, India
| | - Jin Cao
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409-3131, USA
| | - Prabhjeet Singh
- Department of Biotechnology, Guru Nanak Dev University, Amritsar-143 005, Punjab, India
| | - Senthil Subramanian
- South Dakota State University, Department of Plant Science, Brookings, SD 57007, USA
| | - Glenn Hicks
- Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, USA Department of Botany and Plant Sciences, University of California, Riverside CA 92521-0124, USA
| | - Eugene A Nothnagel
- Department of Botany and Plant Sciences, University of California, Riverside CA 92521-0124, USA
| | - Noureddine Abidi
- Texas Tech University, Department of Plant and Soil Science and Fiber and Biopolymer Research Institute, 1001 East Loop 289, Lubbock, TX 79409-5019, USA
| | - Jaroslav Janda
- University of Arizona, Department of Plant Sciences and BIO5 Institute, 341 Keating Bldg, Tucson, AZ 85721, USA
| | - David W Galbraith
- University of Arizona, Department of Plant Sciences and BIO5 Institute, 341 Keating Bldg, Tucson, AZ 85721, USA
| | - Christopher D Rock
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409-3131, USA
| |
Collapse
|
31
|
Tomiyama M, Inoue SI, Tsuzuki T, Soda M, Morimoto S, Okigaki Y, Ohishi T, Mochizuki N, Takahashi K, Kinoshita T. Mg-chelatase I subunit 1 and Mg-protoporphyrin IX methyltransferase affect the stomatal aperture in Arabidopsis thaliana. JOURNAL OF PLANT RESEARCH 2014; 127:553-63. [PMID: 24840863 PMCID: PMC4683165 DOI: 10.1007/s10265-014-0636-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 03/26/2014] [Indexed: 05/23/2023]
Abstract
To elucidate the molecular mechanisms of stomatal opening and closure, we performed a genetic screen using infrared thermography to isolate stomatal aperture mutants. We identified a mutant designated low temperature with open-stomata 1 (lost1), which exhibited reduced leaf temperature, wider stomatal aperture, and a pale green phenotype. Map-based analysis of the LOST1 locus revealed that the lost1 mutant resulted from a missense mutation in the Mg-chelatase I subunit 1 (CHLI1) gene, which encodes a subunit of the Mg-chelatase complex involved in chlorophyll synthesis. Transformation of the wild-type CHLI1 gene into lost1 complemented all lost1 phenotypes. Stomata in lost1 exhibited a partial ABA-insensitive phenotype similar to that of rtl1, a Mg-chelatase H subunit missense mutant. The Mg-protoporphyrin IX methyltransferase (CHLM) gene encodes a subsequent enzyme in the chlorophyll synthesis pathway. We examined stomatal movement in a CHLM knockdown mutant, chlm, and found that it also exhibited an ABA-insensitive phenotype. However, lost1 and chlm seedlings all showed normal expression of ABA-induced genes, such as RAB18 and RD29B, in response to ABA. These results suggest that the chlorophyll synthesis enzymes, Mg-chelatase complex and CHLM, specifically affect ABA signaling in the control of stomatal aperture and have no effect on ABA-induced gene expression.
Collapse
Affiliation(s)
- Masakazu Tomiyama
- />Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602 Japan
| | - Shin-ichiro Inoue
- />Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602 Japan
| | - Tomo Tsuzuki
- />Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602 Japan
| | - Midori Soda
- />Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602 Japan
| | - Sayuri Morimoto
- />Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602 Japan
| | - Yukiko Okigaki
- />Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602 Japan
| | - Takaya Ohishi
- />Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602 Japan
| | - Nobuyoshi Mochizuki
- />Department of Botany, Graduate School of Science, Kyoto University, Kitashirakawa, Kyoto, 606-8502 Japan
| | - Koji Takahashi
- />Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602 Japan
| | - Toshinori Kinoshita
- />Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602 Japan
- />Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, 464-8602 Japan
| |
Collapse
|
32
|
Müller AH, Sawicki A, Zhou S, Tabrizi ST, Luo M, Hansson M, Willows RD. Inducing the oxidative stress response in Escherichia coli improves the quality of a recombinant protein: magnesium chelatase ChlH. Protein Expr Purif 2014; 101:61-7. [PMID: 24931499 DOI: 10.1016/j.pep.2014.06.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 05/27/2014] [Accepted: 06/04/2014] [Indexed: 11/16/2022]
Abstract
The ∼150kDa ChlH subunit of magnesium chelatase from Oryza sativa, Hordeum vulgare and Chlamydomonas reinhardtii have been heterologously expressed in Escherichiacoli. The active soluble protein is found as both a multimeric and a monomeric form. The multimeric ChlH appears to be oxidatively damaged but monomer production is favoured in growth conditions that are known to cause an oxidative stress response in E.coli. Inducing an oxidative stress response may be of general utility to improve the quality of proteins expressed in E. coli. The similar responses of ChlH's from the three different species suggest that oligomerization of oxidatively damaged ChlH may have a functional role in the chloroplast, possibly as a signal of oxidative stress or damage.
Collapse
Affiliation(s)
- André H Müller
- Department of Chemistry and Biomolecular Sciences, Macquarie University, NSW 2109, Australia; Carlsberg Laboratory, Gamle Carlsberg Vej 10, 1799 Copenhagen V, Denmark
| | - Artur Sawicki
- Department of Chemistry and Biomolecular Sciences, Macquarie University, NSW 2109, Australia
| | - Shuaixiang Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Shabnam Tarahi Tabrizi
- Department of Chemistry and Biomolecular Sciences, Macquarie University, NSW 2109, Australia
| | - Meizhong Luo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Mats Hansson
- Carlsberg Laboratory, Gamle Carlsberg Vej 10, 1799 Copenhagen V, Denmark
| | - Robert D Willows
- Department of Chemistry and Biomolecular Sciences, Macquarie University, NSW 2109, Australia.
| |
Collapse
|
33
|
Deng XJ, Zhang HQ, Wang Y, He F, Liu JL, Xiao X, Shu ZF, Li W, Wang GH, Wang GL. Mapped clone and functional analysis of leaf-color gene Ygl7 in a rice hybrid (Oryza sativa L. ssp. indica). PLoS One 2014; 9:e99564. [PMID: 24932524 PMCID: PMC4059691 DOI: 10.1371/journal.pone.0099564] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 05/15/2014] [Indexed: 01/06/2023] Open
Abstract
Leaf-color is an effective marker to identify the hybridization of rice. Leaf-color related genes function in chloroplast development and the photosynthetic pigment biosynthesis of higher plants. The ygl7 (yellow-green leaf 7) is a mutant with spontaneous yellow-green leaf phenotype across the whole lifespan but with no change to its yield traits. We cloned gene Ygl7 (Os03g59640) which encodes a magnesium-chelatase ChlD protein. Expression of ygl7 turns green-leaves to yellow, whereas RNAi-mediated silence of Ygl7 causes a lethal phenotype of the transgenic plants. This indicates the importance of the gene for rice plant. On the other hand, it corroborates that ygl7 is a non-null mutants. The content of photosynthetic pigment is lower in Ygl7 than the wild type, but its light efficiency was comparatively high. All these results indicated that the mutational YGL7 protein does not cause a complete loss of original function but instead acts as a new protein performing a new function. This new function partially includes its preceding function and possesses an additional feature to promote photosynthesis. Chl1, Ygl98, and Ygl3 are three alleles of the OsChlD gene that have been documented previously. However, mutational sites of OsChlD mutant gene and their encoded protein products were different in the three mutants. The three mutants have suppressed grain output. In our experiment, plant materials of three mutants (ygl7, chl1, and ygl98) all exhibited mutational leaf-color during the whole growth period. This result was somewhat different from previous studies. We used ygl7 as female crossed with chl1 and ygl98, respectively. Both the F1 and F2 generation display yellow-green leaf phenotype with their chlorophyll and carotenoid content falling between the values of their parents. Moreover, we noted an important phenomenon: ygl7-NIL's leaf-color is yellow, not yellowy-green, and this is also true of all back-crossed offspring with ygl7.
Collapse
Affiliation(s)
- Xiao-juan Deng
- College of Agronomy, Hunan Agricultural University, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha, Hunan, China
| | - Hai-qing Zhang
- College of Agronomy, Hunan Agricultural University, Changsha, Hunan, China
- State Key Laboratory of Hybrid Rice, Hunan, China
- * E-mail:
| | - Yue Wang
- College of Agronomy, Hunan Agricultural University, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha, Hunan, China
| | - Feng He
- College of Agronomy, Hunan Agricultural University, Changsha, Hunan, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jin-ling Liu
- College of Agronomy, Hunan Agricultural University, Changsha, Hunan, China
| | - Xiao Xiao
- College of Agronomy, Hunan Agricultural University, Changsha, Hunan, China
| | - Zhi-feng Shu
- College of Agronomy, Hunan Agricultural University, Changsha, Hunan, China
| | - Wei Li
- College of Plant Preservation, Hunan Agricultural University, Changsha, Hunan, China
| | - Guo-huai Wang
- College of Agronomy, Hunan Agricultural University, Changsha, Hunan, China
| | - Guo-liang Wang
- College of Agronomy, Hunan Agricultural University, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha, Hunan, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Department of Plant Pathology, Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
34
|
Characterization of the magnesium chelatase from Thermosynechococcus elongatus. Biochem J 2014; 457:163-70. [PMID: 24138165 DOI: 10.1042/bj20130834] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The first committed step in chlorophyll biosynthesis is catalysed by magnesium chelatase (E.C. 6.6.1.1), which uses the free energy of ATP hydrolysis to insert an Mg(2+) ion into the ring of protoporphyrin IX. We have characterized magnesium chelatase from the thermophilic cyanobacterium Thermosynechococcus elongatus. This chelatase is thermostable, with subunit melting temperatures between 55 and 63°C and optimal activity at 50°C. The T. elongatus chelatase (kcat of 0.16 μM/min) shows a Michaelis-Menten-type response to both Mg(2+) (Km of 2.3 mM) and MgATP(2-) (Km of 0.8 mM). The response to porphyrin is more complex; porphyrin inhibits at high concentrations of ChlH, but when the concentration of ChlH is comparable with the other two subunits the response is of a Michaelis-Menten type (at 0.4 μM ChlH, Km is 0.2 μM). Hybrid magnesium chelatases containing a mixture of subunits from the mesophilic Synechocystis and Thermosynechococcus enzymes are active. We generated all six possible hybrid magnesium chelatases; the hybrid chelatase containing Thermosynechococcus ChlD and Synechocystis ChlI and ChlH is not co-operative towards Mg(2+), in contrast with the Synechocystis magnesium chelatase. This loss of co-operativity reveals the significant regulatory role of Synechocystis ChlD.
Collapse
|
35
|
|
36
|
Abstract
The plasma membrane H(+)-ATPase is the pump that provides the driving force for transport of numerous solutes in plant cells, and plays an essential role for the growth and maintenance of cell homeostasis. Recent investigations using guard cells with respect to blue-light-induced stomatal opening uncovered the regulatory mechanisms of the H(+)-ATPase, and revealed that the phosphorylation status of penultimate threonine in the C-terminus of H(+)-ATPase is key step for the activity regulation. The same regulatory mechanisms for the H(+)-ATPase were evidenced in hypocotyl elongation in response to ABA and auxin, suggesting that the phosphorylation of the penultimate threonine is a common regulatory mechanism for the H(+)-ATPase. We also present the data that the activity of the H(+)-ATPase limits the plant growth. Typical structure of the H(+)-ATPase in the C-terminus was acquired in the transition of plants from water to the terrestrial land.
Collapse
Affiliation(s)
- Yin Wang
- Institute for Advanced Research, Nagoya University, Nagoya, Japan; Institute of Transformative Bio-Molecules (WPI-ITbM) Nagoya, Japan
| | | | | |
Collapse
|
37
|
Deng XJ, Zhang HQ, Wang Y, He F, Liu JL, Xiao X, Shu ZF, Li W, Wang GH, Wang GL. Mapped clone and functional analysis of leaf-color gene Ygl7 in a rice hybrid (Oryza sativa L. ssp. indica). PLoS One 2014. [PMID: 24932524 DOI: 10.1371/journal.pone.00] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023] Open
Abstract
Leaf-color is an effective marker to identify the hybridization of rice. Leaf-color related genes function in chloroplast development and the photosynthetic pigment biosynthesis of higher plants. The ygl7 (yellow-green leaf 7) is a mutant with spontaneous yellow-green leaf phenotype across the whole lifespan but with no change to its yield traits. We cloned gene Ygl7 (Os03g59640) which encodes a magnesium-chelatase ChlD protein. Expression of ygl7 turns green-leaves to yellow, whereas RNAi-mediated silence of Ygl7 causes a lethal phenotype of the transgenic plants. This indicates the importance of the gene for rice plant. On the other hand, it corroborates that ygl7 is a non-null mutants. The content of photosynthetic pigment is lower in Ygl7 than the wild type, but its light efficiency was comparatively high. All these results indicated that the mutational YGL7 protein does not cause a complete loss of original function but instead acts as a new protein performing a new function. This new function partially includes its preceding function and possesses an additional feature to promote photosynthesis. Chl1, Ygl98, and Ygl3 are three alleles of the OsChlD gene that have been documented previously. However, mutational sites of OsChlD mutant gene and their encoded protein products were different in the three mutants. The three mutants have suppressed grain output. In our experiment, plant materials of three mutants (ygl7, chl1, and ygl98) all exhibited mutational leaf-color during the whole growth period. This result was somewhat different from previous studies. We used ygl7 as female crossed with chl1 and ygl98, respectively. Both the F1 and F2 generation display yellow-green leaf phenotype with their chlorophyll and carotenoid content falling between the values of their parents. Moreover, we noted an important phenomenon: ygl7-NIL's leaf-color is yellow, not yellowy-green, and this is also true of all back-crossed offspring with ygl7.
Collapse
Affiliation(s)
- Xiao-juan Deng
- College of Agronomy, Hunan Agricultural University, Changsha, Hunan, China; Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha, Hunan, China
| | - Hai-qing Zhang
- College of Agronomy, Hunan Agricultural University, Changsha, Hunan, China; State Key Laboratory of Hybrid Rice, Hunan, China
| | - Yue Wang
- College of Agronomy, Hunan Agricultural University, Changsha, Hunan, China; Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha, Hunan, China
| | - Feng He
- College of Agronomy, Hunan Agricultural University, Changsha, Hunan, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jin-ling Liu
- College of Agronomy, Hunan Agricultural University, Changsha, Hunan, China
| | - Xiao Xiao
- College of Agronomy, Hunan Agricultural University, Changsha, Hunan, China
| | - Zhi-feng Shu
- College of Agronomy, Hunan Agricultural University, Changsha, Hunan, China
| | - Wei Li
- College of Plant Preservation, Hunan Agricultural University, Changsha, Hunan, China
| | - Guo-huai Wang
- College of Agronomy, Hunan Agricultural University, Changsha, Hunan, China
| | - Guo-liang Wang
- College of Agronomy, Hunan Agricultural University, Changsha, Hunan, China; Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha, Hunan, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China; Department of Plant Pathology, Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
38
|
Arabidopsis co-chaperonin CPN20 antagonizes Mg-chelatase H subunit to derepress ABA-responsive WRKY40 transcription repressor. SCIENCE CHINA-LIFE SCIENCES 2013; 57:11-21. [DOI: 10.1007/s11427-013-4587-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 11/20/2013] [Indexed: 10/25/2022]
|
39
|
Zhang ZW, Feng LY, Cheng J, Tang H, Xu F, Zhu F, Zhao ZY, Yuan M, Chen YE, Wang JH, Yuan S, Lin HH. The roles of two transcription factors, ABI4 and CBFA, in ABA and plastid signalling and stress responses. PLANT MOLECULAR BIOLOGY 2013; 83:445-58. [PMID: 23832569 DOI: 10.1007/s11103-013-0102-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 06/27/2013] [Indexed: 05/08/2023]
Abstract
Genetic and physiological studies have revealed evidences for multiple signaling pathways by which the plastid exerts retrograde control over photosynthesis-associated-nuclear-genes. In this study we have examined the mechanisms of control of transcription by plastid signals, focusing on transcription factors. We have also further addressed the physical nature of plastid signals and the physiological role, in stress acclimation of this regulatory pathway. ABI4, a master Apetala 2 (AP2)-type transcription factor (TF), is targeted by multiple signalling pathways in plant cells, such as abscisic acid (ABA) signals, sugar signals and plastid signals derived from reactive oxygen species (ROS) and chlorophyll intermediates. ABI4 binds the promoter of target genes to prevent their transcription by competing with other competitive TFs. However, we found that once ABI4 bound the element (CCACGT), it may not be bound by other TFs, therefore making the signalling long-lasting. Downstream of ABI4, CBFA (CCAAT binding factor A) is a subunit of the HAP2/HAP3/HAP5 (Heme activator protein) trimeric transcription complex. CBFA however is a redundant HAP3 subunit. When emergency occurs (such as herbicide treatments or environmental stresses followed by ABA and ROS accumulation), the master transcription factor ABI4 down-regulates some TFs, like CBFA, and then some other TF subunits enter the transcription complex and transcriptional efficiency of stress-responsive genes (including the transcription co-factor CBP) is improved instantaneously. abi4, cbfA and cbp mutants showed weaker drought-tolerance after a herbicide norflurazon treatment, which indicated the physiological role of these key transcription factors.
Collapse
Affiliation(s)
- Zhong-Wei Zhang
- College of Resources and Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Zhang XF, Jiang T, Wu Z, Du SY, Yu YT, Jiang SC, Lu K, Feng XJ, Wang XF, Zhang DP. Cochaperonin CPN20 negatively regulates abscisic acid signaling in Arabidopsis. PLANT MOLECULAR BIOLOGY 2013; 83:205-18. [PMID: 23783410 PMCID: PMC3777161 DOI: 10.1007/s11103-013-0082-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 05/26/2013] [Indexed: 05/08/2023]
Abstract
Previous study showed that the magnesium-protoporphyrin IX chelatase H subunit (CHLH/ABAR) positively regulates abscisic acid (ABA) signaling. Here, we investigated the functions of a CHLH/ABAR interaction protein, the chloroplast co-chaperonin 20 (CPN20) in ABA signaling in Arabidopsis thaliana. We showed that down-expression of the CPN20 gene increases, but overexpression of the CPN20 gene reduces, ABA sensitivity in the major ABA responses including ABA-induced seed germination inhibition, postgermination growth arrest, promotion of stomatal closure and inhibition of stomatal opening. Genetic evidence supports that CPN20 functions downstream or at the same node of CHLH/ABAR, but upstream of the WRKY40 transcription factor. The other CPN20 interaction partners CPN10 and CPN60 are not involved in ABA signaling. Our findings show that CPN20 functions negatively in the ABAR-WRKY40 coupled ABA signaling independently of its co-chaperonin role, and provide a new insight into the role of co-chaperones in the regulation of plant responses to environmental cues.
Collapse
Affiliation(s)
- Xiao-Feng Zhang
- MOE Systems Biology and Bioinformatics Laboratory, School of Life Sciences, Tsinghua University, Beijing, 100084 China
| | - Tao Jiang
- MOE Systems Biology and Bioinformatics Laboratory, School of Life Sciences, Tsinghua University, Beijing, 100084 China
| | - Zhen Wu
- MOE Systems Biology and Bioinformatics Laboratory, School of Life Sciences, Tsinghua University, Beijing, 100084 China
| | - Shu-Yuan Du
- MOE Systems Biology and Bioinformatics Laboratory, School of Life Sciences, Tsinghua University, Beijing, 100084 China
| | - Yong-Tao Yu
- MOE Systems Biology and Bioinformatics Laboratory, School of Life Sciences, Tsinghua University, Beijing, 100084 China
| | - Shang-Chuan Jiang
- MOE Systems Biology and Bioinformatics Laboratory, School of Life Sciences, Tsinghua University, Beijing, 100084 China
| | - Kai Lu
- MOE Systems Biology and Bioinformatics Laboratory, School of Life Sciences, Tsinghua University, Beijing, 100084 China
| | - Xiu-Jing Feng
- MOE Systems Biology and Bioinformatics Laboratory, School of Life Sciences, Tsinghua University, Beijing, 100084 China
| | - Xiao-Fang Wang
- MOE Systems Biology and Bioinformatics Laboratory, School of Life Sciences, Tsinghua University, Beijing, 100084 China
| | - Da-Peng Zhang
- MOE Systems Biology and Bioinformatics Laboratory, School of Life Sciences, Tsinghua University, Beijing, 100084 China
| |
Collapse
|
41
|
Golldack D, Li C, Mohan H, Probst N. Gibberellins and abscisic acid signal crosstalk: living and developing under unfavorable conditions. PLANT CELL REPORTS 2013; 32:1007-16. [PMID: 23525744 DOI: 10.1007/s00299-013-1409-2] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 02/27/2013] [Accepted: 03/01/2013] [Indexed: 05/08/2023]
Abstract
Plants adapt to adverse environments by integrating growth and development to environmentally activated cues. Within the adaptive signaling networks, plant hormones tightly control convergent developmental and stress adaptive processes and coordinate cellular responses to external and internal conditions. Recent studies have uncovered novel antagonizing roles of the plant hormones gibberellin (GA) and abscisic acid (ABA) in integrating growth and development in plants with environmental signaling. According to current concepts, GRAS transcription factors of the DELLA and SCARECROW-LIKE (SCL) types have a key role as major growth regulators and have pivotal functions in modulating GA signaling. Significantly, current models emphasize a function of DELLA proteins as central regulators in GA homeostasis. DELLA proteins interact with the cellular GA receptor GID1 (GA-INSENSITIVE DWARF1) and degradation of DELLAs activates the function of GA. Supplementary to the prevailing view of a pivotal role of GRAS family transcriptional factors in plant growth regulation, recent work has suggested that the DELLA and SCL proteins integrate generic GA responses into ABA-controlled abiotic stress tolerance. Here, we review and discuss how GRAS type proteins influence plant development and versatile adaptation as hubs in GA and ABA triggered signaling pathways.
Collapse
Affiliation(s)
- Dortje Golldack
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany.
| | | | | | | |
Collapse
|
42
|
Kharenko OA, Choudhary P, Loewen MC. Abscisic acid binds to recombinant Arabidopsis thaliana G-protein coupled receptor-type G-protein 1 in Sacaromycese cerevisiae and in vitro. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 68:32-36. [PMID: 23624020 DOI: 10.1016/j.plaphy.2013.03.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 03/29/2013] [Indexed: 06/02/2023]
Abstract
The G-protein coupled receptor-type G-proteins (GTG) 1 and 2 from Arabidopsis thaliana have been proposed to function in the modulation of abscisic acid (ABA) mediated responses to stress and development. In particular it has been suggested that they function as ABA receptors based on in planta and in vitro analyses. However a recent independent report was inconsistent with this, suggesting that there is no link between the GTGs and ABA in planta. Here we provide an independent assessment of the ability of ABA to bind to recombinant GTG1 in vitro and in vivo in Sacaromycese cerevisiae. Radio-labelled binding assays on enriched lipid-reconstituted recombinant GTG1, demonstrated specific concentration dependent binding of [(3)H]-ABA with a dissociation constant (KD) of 80 nM, corroborating previous reports. Assessment of the binding of [(3)H]-ABA to intact GTG1 expressing yeast, showed GTG1-dependent binding in vivo, yielding a physiologically relevant KD of 0.6 μM. Together these results provide independent evidence of a binding-interaction between ABA and GTG1 in vitro and in vivo, in support of the previously proposed possibility of a biologically relevant interaction between GTG1 and ABA.
Collapse
Affiliation(s)
- Olesya A Kharenko
- National Research Council of Canada, 110 Gymnasium Place, Saskatoon, SK S7N 0W9, Canada
| | | | | |
Collapse
|
43
|
Luo X, Bai X, Sun X, Zhu D, Liu B, Ji W, Cai H, Cao L, Wu J, Hu M, Liu X, Tang L, Zhu Y. Expression of wild soybean WRKY20 in Arabidopsis enhances drought tolerance and regulates ABA signalling. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:2155-69. [PMID: 23606412 DOI: 10.1093/jxb/ert073] [Citation(s) in RCA: 158] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The WRKY-type transcription factors are involved in plant development and stress responses, but how the regulation of stress tolerance is related to plant development is largely unknown. GsWRKY20 was initially identified as a stress response gene using large-scale Glycine soja microarrays. Quantitative reverse transcription-PCR (qRT-PCR) showed that the expression of this gene was induced by abscisic acid (ABA), salt, cold, and drought. Overexpression of GsWRKY20 in Arabidopsis resulted in a decreased sensitivity to ABA during seed germination and early seedling growth. However, compared with the wild type, GsWRKY20 overexpression lines were more sensitive to ABA in stomatal closure, and exhibited a greater tolerance to drought stress, a decreased water loss rate, and a decreased stomatal density. Moreover, microarray and qRT-PCR assays showed that GsWRKY20 mediated ABA signalling by promoting the expression of negative regulators of ABA signalling, such as AtWRKY40, ABI1, and ABI2, while repressing the expression of the positive regulators of ABA, for example ABI5, ABI4, and ABF4. Interestingly, GsWRKY20 also positively regulates the expression of a group of wax biosynthetic genes. Further, evidence is provided to support that GsWRKY20 overexpression lines have more epicuticular wax crystals and a much thicker cuticle, which contribute to less chlorophyll leaching compared with the wild type. Taken together, the findings reveal an important role for GsWRKY20 in enhancing drought tolerance and regulating ABA signalling.
Collapse
Affiliation(s)
- Xiao Luo
- Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin 150030, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Plastid Signaling During the Plant Life Cycle. PLASTID DEVELOPMENT IN LEAVES DURING GROWTH AND SENESCENCE 2013. [DOI: 10.1007/978-94-007-5724-0_22] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
45
|
Abstract
Abscisic acid (ABA) is one of the "classical" plant hormones, i.e. discovered at least 50 years ago, that regulates many aspects of plant growth and development. This chapter reviews our current understanding of ABA synthesis, metabolism, transport, and signal transduction, emphasizing knowledge gained from studies of Arabidopsis. A combination of genetic, molecular and biochemical studies has identified nearly all of the enzymes involved in ABA metabolism, almost 200 loci regulating ABA response, and thousands of genes regulated by ABA in various contexts. Some of these regulators are implicated in cross-talk with other developmental, environmental or hormonal signals. Specific details of the ABA signaling mechanisms vary among tissues or developmental stages; these are discussed in the context of ABA effects on seed maturation, germination, seedling growth, vegetative stress responses, stomatal regulation, pathogen response, flowering, and senescence.
Collapse
Affiliation(s)
- Ruth Finkelstein
- Department of Molecular, Cellular and Developmental Biology, University of California at Santa Barbara, Santa Barbara, CA 93106 Address
- correspondence to e-mail:
| |
Collapse
|
46
|
Tsuzuki T, Takahashi K, Tomiyama M, Inoue SI, Kinoshita T. Overexpression of the Mg-chelatase H subunit in guard cells confers drought tolerance via promotion of stomatal closure in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2013; 4:440. [PMID: 24198823 PMCID: PMC3812566 DOI: 10.3389/fpls.2013.00440] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 10/15/2013] [Indexed: 05/04/2023]
Abstract
The Mg-chelatase H subunit (CHLH) has been shown to mediate chlorophyll biosynthesis, as well as plastid-to-nucleus and abscisic acid (ABA)-mediated signaling. A recent study using a novel CHLH mutant, rtl1, indicated that CHLH specifically affects ABA-induced stomatal closure, but also that CHLH did not serve as an ABA receptor in Arabidopsis thaliana. However, the molecular mechanism by which CHLH engages in ABA-mediated signaling in guard cells remains largely unknown. In the present study, we examined CHLH function in guard cells and explored whether CHLH expression might influence stomatal aperture. Incubation of rtl1 guard cell protoplasts with ABA induced expression of the ABA-responsive genes RAB18 and RD29B, as also observed in wild-type (WT) cells, indicating that CHLH did not affect the expression of ABA-responsive genes. Earlier, ABA was reported to inhibit blue light (BL)-mediated stomatal opening, at least in part through dephosphorylating/inhibiting guard cell H(+)-ATPase (which drives opening). Therefore, we immunohistochemically examined the phosphorylation status of guard cell H(+)-ATPase. Notably, ABA inhibition of BL-induced phosphorylation of H(+)-ATPase was impaired in rtl1 cells, suggesting that CHLH influences not only ABA-induced stomatal closure but also inhibition of BL-mediated stomatal opening by ABA. Next, we generated CHLH-GFP-overexpressing plants using CER6 promoter, which induces gene expression in the epidermis including guard cells. CHLH-transgenic plants exhibited a closed stomata phenotype even when brightly illuminated. Moreover, plant growth experiments conducted under water-deficient conditions showed that CHLH transgenic plants were more tolerant of drought than WT plants. In summary, we show that CHLH is involved in the regulation of stomatal aperture in response to ABA, but not in ABA-induced gene expression, and that manipulation of stomatal aperture via overexpression of CHLH in guard cells improves plant drought tolerance.
Collapse
Affiliation(s)
- Tomo Tsuzuki
- Division of Biological Science, Graduate School of Science, Nagoya UniversityNagoya, Japan
| | - Koji Takahashi
- Division of Biological Science, Graduate School of Science, Nagoya UniversityNagoya, Japan
| | - Masakazu Tomiyama
- Division of Biological Science, Graduate School of Science, Nagoya UniversityNagoya, Japan
| | - Shin-ichiro Inoue
- Division of Biological Science, Graduate School of Science, Nagoya UniversityNagoya, Japan
| | - Toshinori Kinoshita
- Division of Biological Science, Graduate School of Science, Nagoya UniversityNagoya, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya UniversityNagoya, Japan
- *Correspondence: Toshinori Kinoshita, Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8602, Japan e-mail:
| |
Collapse
|
47
|
Du SY, Zhang XF, Lu Z, Xin Q, Wu Z, Jiang T, Lu Y, Wang XF, Zhang DP. Roles of the different components of magnesium chelatase in abscisic acid signal transduction. PLANT MOLECULAR BIOLOGY 2012; 80:519-37. [PMID: 23011401 PMCID: PMC3472068 DOI: 10.1007/s11103-012-9965-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 08/26/2012] [Indexed: 05/12/2023]
Abstract
The H subunit of Mg-chelatase (CHLH) was shown to regulate abscisic acid (ABA) signaling and the I subunit (CHLI) was also reported to modulate ABA signaling in guard cells. However, it remains essentially unknown whether and how the Mg-chelatase-catalyzed Mg-protoporphyrin IX-production differs from ABA signaling. Using a newly-developed surface plasmon resonance system, we showed that ABA binds to CHLH, but not to the other Mg-chelatase components/subunits CHLI, CHLD (D subunit) and GUN4. A new rtl1 mutant allele of the CHLH gene in Arabidopsis thaliana showed ABA-insensitive phenotypes in both stomatal movement and seed germination. Upregulation of CHLI1 resulted in ABA hypersensitivity in seed germination, while downregulation of CHLI conferred ABA insensitivity in stomatal response in Arabidopsis. We showed that CHLH and CHLI, but not CHLD, regulate stomatal sensitivity to ABA in tobacco (Nicotiana benthamiana). The overexpression lines of the CHLD gene showed wild-type ABA sensitivity in Arabidopsis. Both the GUN4-RNA interference and overexpression lines of Arabidopsis showed wild-type phenotypes in the major ABA responses. These findings provide clear evidence that the Mg-chelatase-catalyzed Mg-ProtoIX production is distinct from ABA signaling, giving information to understand the mechanism by which the two cellular processes differs at the molecular level.
Collapse
Affiliation(s)
- Shu-Yuan Du
- MOE Systems Biology and Bioinformatics Laboratory, School of Life Sciences, Tsinghua University, Beijing, 100084 China
| | - Xiao-Feng Zhang
- MOE Systems Biology and Bioinformatics Laboratory, School of Life Sciences, Tsinghua University, Beijing, 100084 China
| | - Zekuan Lu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Qi Xin
- College of Biological Sciences, China Agricultural University, Beijing, 100094 China
| | - Zhen Wu
- MOE Systems Biology and Bioinformatics Laboratory, School of Life Sciences, Tsinghua University, Beijing, 100084 China
| | - Tao Jiang
- College of Biological Sciences, China Agricultural University, Beijing, 100094 China
| | - Yan Lu
- College of Biological Sciences, China Agricultural University, Beijing, 100094 China
| | - Xiao-Fang Wang
- MOE Systems Biology and Bioinformatics Laboratory, School of Life Sciences, Tsinghua University, Beijing, 100084 China
| | - Da-Peng Zhang
- MOE Systems Biology and Bioinformatics Laboratory, School of Life Sciences, Tsinghua University, Beijing, 100084 China
| |
Collapse
|
48
|
Jaffé FW, Freschet GEC, Valdes BM, Runions J, Terry MJ, Williams LE. G protein-coupled receptor-type G proteins are required for light-dependent seedling growth and fertility in Arabidopsis. THE PLANT CELL 2012; 24:3649-68. [PMID: 23001037 PMCID: PMC3480293 DOI: 10.1105/tpc.112.098681] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 07/13/2012] [Accepted: 08/28/2012] [Indexed: 05/20/2023]
Abstract
G protein-coupled receptor-type G proteins (GTGs) are highly conserved membrane proteins in plants, animals, and fungi that have eight to nine predicted transmembrane domains. They have been classified as G protein-coupled receptor-type G proteins that function as abscisic acid (ABA) receptors in Arabidopsis thaliana. We cloned Arabidopsis GTG1 and GTG2 and isolated new T-DNA insertion alleles of GTG1 and GTG2 in both Wassilewskija and Columbia backgrounds. These gtg1 gtg2 double mutants show defects in fertility, hypocotyl and root growth, and responses to light and sugars. Histological studies of shoot tissue reveal cellular distortions that are particularly evident in the epidermal layer. Stable expression of GTG1(pro):GTG1-GFP (for green fluorescent protein) in Arabidopsis and transient expression in tobacco (Nicotiana tabacum) indicate that GTG1 is localized primarily to Golgi bodies and to the endoplasmic reticulum. Microarray analysis comparing gene expression profiles in the wild type and double mutant revealed differences in expression of genes important for cell wall function, hormone response, and amino acid metabolism. The double mutants isolated here respond normally to ABA in seed germination assays, root growth inhibition, and gene expression analysis. These results are inconsistent with their proposed role as ABA receptors but demonstrate that GTGs are fundamentally important for plant growth and development.
Collapse
Affiliation(s)
- Felix W. Jaffé
- Centre for Biological Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Gian-Enrico C. Freschet
- Centre for Biological Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Billy M. Valdes
- Centre for Biological Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - John Runions
- Oxford Brookes University, Department of Biological and Medical Sciences, Oxford OX3 0BP, United Kingdom
| | - Matthew J. Terry
- Centre for Biological Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Lorraine E. Williams
- Centre for Biological Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
| |
Collapse
|
49
|
Luo X, Cui N, Zhu Y, Cao L, Zhai H, Cai H, Ji W, Wang X, Zhu D, Li Y, Bai X. Over-expression of GsZFP1, an ABA-responsive C2H2-type zinc finger protein lacking a QALGGH motif, reduces ABA sensitivity and decreases stomata size. JOURNAL OF PLANT PHYSIOLOGY 2012; 169:1192-202. [PMID: 22705253 DOI: 10.1016/j.jplph.2012.03.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 03/26/2012] [Accepted: 03/27/2012] [Indexed: 05/21/2023]
Abstract
A cDNA of the gene GsZFP1 was cloned from Glycine soja. GsZFP1 encodes a protein with one C2H2-type zinc finger motif. The QALGGH motif, which exists in most plant C2H2-type zinc finger proteins (ZFPs), does not exist in GsZFP1. Real-time RT-PCR revealed that GsZFP1 expression was significantly up-regulated by exogenous ABA, both in leaves and roots. Over-expression of this gene, in Arabidopsis thaliana, resulted in a reduced sensitivity to ABA during seed germination and seedling growth. Transcript levels of some stress and ABA marker genes, including RD29A, RD22, NCED3, COR47, COR15A and KIN1 were increased, in the GsZFP1 over-expression lines, when plants were treated with exogenous ABA. We further studied the effects of GsZFP1 over-expression on the regulation of genes involved in ABA signaling. Negative ABA signaling regulators, such as ABI1 and ABI2, were up-regulated in over-expression lines, while positive ABA signaling regulators, such as ABF4, ABI5, GTG1, GTG2, PYR1/RCAR11, PYL2/RCAR13, SnRK2.2 and SnRK2.3, were down-regulated, in comparison to wild type plants. GsZFP1 over-expression lines also exhibited small stomata, impairment of ABA-induced stomata closure. The data presented, herein, suggests that GsZFP1 plays a crucial role in ABA signaling in A. thaliana, GsZFP1 may be a promising gene for negative regulating ABA signaling. Our findings broaden our understanding of this C2H2 ZFP subtype's function, and add to the body of evidence that has been developed in earlier studies.
Collapse
Affiliation(s)
- Xiao Luo
- Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin 150030, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Seung D, Risopatron JPM, Jones BJ, Marc J. Circadian clock-dependent gating in ABA signalling networks. PROTOPLASMA 2012; 249:445-57. [PMID: 21773710 DOI: 10.1007/s00709-011-0304-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 07/01/2011] [Indexed: 05/08/2023]
Abstract
Plant growth and development are intimately attuned to fluctuations in environmental variables such as light, temperature and water availability. A broad range of signalling and dynamic response mechanisms allows them to adjust their physiology so that growth and reproductive capacity are optimised for the prevailing conditions. Many of the response mechanisms are mediated by the plant hormones. The hormone abscisic acid (ABA) plays a dominant role in fundamental processes such as seed dormancy and germination, regulation of stomatal movements and enhancing drought tolerance in response to the osmotic stresses that result from water deficit, salinity and freezing. Whereas plants maintain a constant vigilance, there is emerging evidence that the capacity to respond is gated by the circadian clock so that it varies with diurnal fluctuations in light, temperature and water status. Clock regulation enables plants to anticipate regular diurnal fluctuations and thereby presumably to maximise metabolic efficiency. Circadian clock-dependent gating appears to regulate the ABA signalling network at numerous points, including metabolism, transport, perception and activity of the hormone. In this review, we summarise the basic principles and recent progress in elucidating the molecular mechanisms of circadian gating of the ABA response network and how it can affect fundamental processes in plant growth and development.
Collapse
Affiliation(s)
- David Seung
- School of Biological Sciences, The University of Sydney, Sydney, Australia
| | | | | | | |
Collapse
|