1
|
Vieira Junior MG, de Almeida Côrtes AM, Gonçalves Carneiro FR, Carels N, Silva FABD. A method for in silico exploration of potential glioblastoma multiforme attractors using single-cell RNA sequencing. Sci Rep 2024; 14:26003. [PMID: 39472601 PMCID: PMC11522675 DOI: 10.1038/s41598-024-74985-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/30/2024] [Indexed: 11/02/2024] Open
Abstract
We presented a method to find potential cancer attractors using single-cell RNA sequencing (scRNA-seq) data. We tested our method in a Glioblastoma Multiforme (GBM) dataset, an aggressive brain tumor presenting high heterogeneity. Using the cancer attractor concept, we argued that the GBM's underlying dynamics could partially explain the observed heterogeneity, with the dataset covering a representative region around the attractor. Exploratory data analysis revealed promising GBM's cellular clusters within a 3-dimensional marker space. We approximated the clusters' centroid as stable states and each cluster covariance matrix as defining confidence regions. To investigate the presence of attractors inside the confidence regions, we constructed a GBM gene regulatory network, defined a model for the dynamics, and prepared a framework for parameter estimation. An exploration of hyperparameter space allowed us to sample time series intending to simulate myriad variations of the tumor microenvironment. We obtained different densities of stable states across gene expression space and parameters displaying multistability across different clusters. Although we used our methodological approach in studying GBM, we would like to highlight its generality to other types of cancer. Therefore, this report contributes to an advance in the simulation of cancer dynamics and opens avenues to investigate potential therapeutic targets.
Collapse
Affiliation(s)
- Marcos Guilherme Vieira Junior
- Graduate Program in Computational and Systems Biology, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, 21040-900, Brazil.
| | - Adriano Maurício de Almeida Côrtes
- Department of Applied Mathematics, Institute of Mathematics, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, 21941-909, Brazil
- Systems Engineering and Computer Science Program, Coordination of Postgraduate Programs in Engineering (COPPE), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, 21941-972, Brazil
| | - Flávia Raquel Gonçalves Carneiro
- Center of Technological Development in Health (CDTS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, 21040-361, Brazil
- Laboratório Interdisciplinar de Pesquisas Médicas, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, 21040-900, Brazil
- Program of Immunology and Tumor Biology, Brazilian National Cancer Institute (INCA), Rio de Janeiro, 20231-050, Brazil
| | - Nicolas Carels
- Laboratory of Biological System Modeling, Center of Technological Development in Health (CDTS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, 21040-361, Brazil
| | | |
Collapse
|
2
|
Khalili G, Zargoush M, Huang K, Ghazalbash S. Exploring trajectories of functional decline and recovery among older adults: a data-driven approach. Sci Rep 2024; 14:6340. [PMID: 38491130 PMCID: PMC10943109 DOI: 10.1038/s41598-024-56606-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 03/08/2024] [Indexed: 03/18/2024] Open
Abstract
Independently performing activities of daily living (ADLs) is vital for maintaining one's quality of life. Losing this ability can significantly impact an individual's overall health status, including their mental health and social well-being. Aging is an important factor contributing to the loss of ADL abilities, and our study focuses on investigating the trajectories of functional decline and recovery in older adults. Employing trajectory analytics methodologies, this research delves into the intricate dynamics of ADL pathways, unveiling their complexity, diversity, and inherent characteristics. The study leverages a substantial dataset encompassing ADL assessments of nursing home residents with diverse disability profiles in the United States. The investigation begins by transforming these assessments into sequences of disability combinations, followed by applying various statistical measures, indicators, and visual analytics. Valuable insights are gained into the typical disability states, transitions, and patterns over time. The results also indicate that while predicting the progression of ADL disabilities presents manageable challenges, the duration of these states proves more complicated. Our findings hold significant potential for improving healthcare decision-making by enabling clinicians to anticipate possible patterns, develop targeted and effective interventions that support older patients in preserving their independence, and enhance overall care quality.
Collapse
Affiliation(s)
- Ghazal Khalili
- DeGroote School of Business, McMaster University, Hamilton, ON, L8S 4L8, Canada
| | - Manaf Zargoush
- DeGroote School of Business, McMaster University, Hamilton, ON, L8S 4L8, Canada.
| | - Kai Huang
- DeGroote School of Business, McMaster University, Hamilton, ON, L8S 4L8, Canada
| | - Somayeh Ghazalbash
- Smith School of Business, Queen's University, Kingston, ON, K7L 2P3, Canada
| |
Collapse
|
3
|
Turner CD, Ramos CM, Curran SP. Disrupting the SKN-1 homeostat: mechanistic insights and phenotypic outcomes. FRONTIERS IN AGING 2024; 5:1369740. [PMID: 38501033 PMCID: PMC10944932 DOI: 10.3389/fragi.2024.1369740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 02/15/2024] [Indexed: 03/20/2024]
Abstract
The mechanisms that govern maintenance of cellular homeostasis are crucial to the lifespan and healthspan of all living systems. As an organism ages, there is a gradual decline in cellular homeostasis that leads to senescence and death. As an organism lives into advanced age, the cells within will attempt to abate age-related decline by enhancing the activity of cellular stress pathways. The regulation of cellular stress responses by transcription factors SKN-1/Nrf2 is a well characterized pathway in which cellular stress, particularly xenobiotic stress, is abated by SKN-1/Nrf2-mediated transcriptional activation of the Phase II detoxification pathway. However, SKN-1/Nrf2 also regulates a multitude of other processes including development, pathogenic stress responses, proteostasis, and lipid metabolism. While this process is typically tightly regulated, constitutive activation of SKN-1/Nrf2 is detrimental to organismal health, this raises interesting questions surrounding the tradeoff between SKN-1/Nrf2 cryoprotection and cellular health and the ability of cells to deactivate stress response pathways post stress. Recent work has determined that transcriptional programs of SKN-1 can be redirected or suppressed to abate negative health outcomes of constitutive activation. Here we will detail the mechanisms by which SKN-1 is controlled, which are important for our understanding of SKN-1/Nrf2 cytoprotection across the lifespan.
Collapse
Affiliation(s)
- Chris D. Turner
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States
| | - Carmen M. Ramos
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States
- Dornsife College of Letters, Arts, and Sciences, Department of Molecular and Computational Biology, University of Southern California, Los Angeles, CA, United States
| | - Sean P. Curran
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
4
|
Li Q, Legault V, Hermann Honfo S, Milot E, Jia Q, Wang F, Ferrucci L, Bandinelli S, Cohen AA. Physiological Dysregulation Proceeds and Predicts Health Outcomes Similarly in Chinese and Western Populations. J Gerontol A Biol Sci Med Sci 2024; 79:glad146. [PMID: 37313838 PMCID: PMC11491748 DOI: 10.1093/gerona/glad146] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Indexed: 06/15/2023] Open
Abstract
BACKGROUND A decade ago, we proposed an index of physiological dysregulation based on Mahalanobis distance (DM) that measures how far from the norm an individual biomarker profile is. While extensive validation has been performed, focus was mostly on Western populations with little comparison to developing countries, particularly at a physiological system level. The degree to which the approach would work in other sociocultural contexts and the similarity of dysregulation signatures across diverse populations are still open questions. METHODS Using 2 data sets from China and 3 from Western countries (United States, United Kingdom, and Italy), we calculated DM globally and per physiological system. We assessed pairwise correlations among systems, difference with age, prediction of mortality and age-related diseases, and sensitivity to interchanging data sets with one another as the reference in DM calculation. RESULTS Overall, results were comparable across all data sets. Different physiological systems showed distinct dysregulation processes. Association with age was moderate and often nonlinear, similarly for all populations. Mahalanobis distance predicted most health outcomes, although differently by physiological system. Using a Chinese population as the reference when calculating DM for Western populations, or vice versa, led to similar associations with health outcomes, with a few exceptions. CONCLUSIONS While small differences were noticeable, they did not systematically emerge between Chinese and Western populations, but rather diffusively across all data sets. These findings suggest that DM presents similar properties, notwithstanding sociocultural backgrounds, and that it is equally effective in capturing the loss of homeostasis that occurs during aging in diverse industrial human populations.
Collapse
Affiliation(s)
- Qing Li
- Center for Innovation Management Research of Xinjiang, Urumqi 830046, China
- School of Economics and Management, Xinjiang University, Urumqi 830046, China
| | - Véronique Legault
- PRIMUS Research Group, Department of Family Medicine, University of Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Sewanou Hermann Honfo
- PRIMUS Research Group, Department of Family Medicine, University of Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Emmanuel Milot
- Department of Chemistry, Biochemistry, and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, Quebec G9A 5H7, Canada
| | - Qingzhou Jia
- School of Economics and Management, Xinjiang University, Urumqi 830046, China
| | - Fuqing Wang
- School of Economics and Management, Xinjiang University, Urumqi 830046, China
| | - Luigi Ferrucci
- Translational Gerontology Branch, Longitudinal Studies Section, National Institute on Aging, National Institutes of Health, MedStar Harbor Hospital, Baltimore, Maryland 21225, USA
| | | | - Alan A Cohen
- PRIMUS Research Group, Department of Family Medicine, University of Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
- Research Center on Aging, Sherbrooke, Quebec J1H 4C4, Canada
- Research Center of Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| |
Collapse
|
5
|
Fernandez ME, Martinez-Romero J, Aon MA, Bernier M, Price NL, de Cabo R. How is Big Data reshaping preclinical aging research? Lab Anim (NY) 2023; 52:289-314. [PMID: 38017182 DOI: 10.1038/s41684-023-01286-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 10/10/2023] [Indexed: 11/30/2023]
Abstract
The exponential scientific and technological progress during the past 30 years has favored the comprehensive characterization of aging processes with their multivariate nature, leading to the advent of Big Data in preclinical aging research. Spanning from molecular omics to organism-level deep phenotyping, Big Data demands large computational resources for storage and analysis, as well as new analytical tools and conceptual frameworks to gain novel insights leading to discovery. Systems biology has emerged as a paradigm that utilizes Big Data to gain insightful information enabling a better understanding of living organisms, visualized as multilayered networks of interacting molecules, cells, tissues and organs at different spatiotemporal scales. In this framework, where aging, health and disease represent emergent states from an evolving dynamic complex system, context given by, for example, strain, sex and feeding times, becomes paramount for defining the biological trajectory of an organism. Using bioinformatics and artificial intelligence, the systems biology approach is leading to remarkable advances in our understanding of the underlying mechanism of aging biology and assisting in creative experimental study designs in animal models. Future in-depth knowledge acquisition will depend on the ability to fully integrate information from different spatiotemporal scales in organisms, which will probably require the adoption of theories and methods from the field of complex systems. Here we review state-of-the-art approaches in preclinical research, with a focus on rodent models, that are leading to conceptual and/or technical advances in leveraging Big Data to understand basic aging biology and its full translational potential.
Collapse
Affiliation(s)
- Maria Emilia Fernandez
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Jorge Martinez-Romero
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
- Laboratory of Epidemiology and Population Science, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Miguel A Aon
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Michel Bernier
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Nathan L Price
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Rafael de Cabo
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA.
| |
Collapse
|
6
|
Chaney C, Wiley KS. The variable associations between PFASs and biological aging by sex and reproductive stage in NHANES 1999-2018. ENVIRONMENTAL RESEARCH 2023; 227:115714. [PMID: 36965790 DOI: 10.1016/j.envres.2023.115714] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/31/2023] [Accepted: 03/16/2023] [Indexed: 05/08/2023]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFASs) are endocrine disrupting chemicals that have myriad effects on human physiology. Estrogenic PFASs may influence biological aging by mimicking the activity of endogenous estrogens, which can decrease inflammation and oxidative stress and enhance telomerase activity. We hypothesized that PFAS exposure would be differentially associated with measures of biological aging based on biological sex and reproductive stage. METHODS We analyzed associations between serum PFAS levels and measures of biological aging for pre- and postmenopausal women and men (n = 3193) using data from the 2003 to 2018 waves of the National Health and Nutrition Examination Survey. Examining PFASs both individually and in mixture models, we investigated four measures of clinical aging (Homeostatic Dysregulation, the Klemera-Doubal Method, Phenotypic Age Acceleration, and Allostatic Load), oxidative stress, and telomere length. RESULTS PFOA and PFOS were negatively associated with Phenotypic Age Acceleration (e.g. decelerated aging) for men B = -0.22, 95% CI: -0.32, -0.12; B = -0.04, 95% CI: -0.06, -0.03) , premenopausal women (B = -0.58, 95% CI: -0.83, -0.32; B = -0.15, 95% CI: -0.20, -0.09), and postmenopausal women (B= -0.22, 95% CI: -0.43, -0.01; B = -0.05, 95% CI: -0.08, -0.02). In mixture models, we found net negative effects for Phenotypic Age Acceleration and Allostatic Load for men, premenopausal women, and postmenopausal women. We also found significant mixture effects for the antioxidants bilirubin and albumin among the three sample groups. We found no evidence to support effects on telomere length. DISCUSSION Our findings suggest that PFAS exposure may be inversely associated with some measures of biological aging at the relatively low levels of exposure in this sample, regardless of reproductive stage and sex, which does not support our hypothesis. This research provides insights into how PFAS exposure may variably influence aging measures depending on the physiological process investigated.
Collapse
Affiliation(s)
- C Chaney
- Department of Anthropology, Yale University, New Haven, CT, USA.
| | - K S Wiley
- Department of Anthropology, University of California, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| |
Collapse
|
7
|
Abstract
The inflammaging concept was introduced in 2000 by Prof. Franceschi. This was an evolutionary or rather a revolutionary conceptualization of the immune changes in response to a lifelong stress. This conceptualization permitted to consider the lifelong proinflammatory process as an adaptation which could eventually lead to either beneficial or detrimental consequences. This dichotomy is influenced by both the genetics and the environment. Depending on which way prevails in an individual, the outcome may be healthy longevity or pathological aging burdened with aging-related diseases. The concept of inflammaging has also revealed the complex, systemic nature of aging. Thus, this conceptualization opens the way to consider age-related processes in their complexity, meaning that not only the process but also all counter-processes should be considered. It has also opened the way to add new concepts to the original one, leading to better understanding of the nature of inflammaging and of aging itself. Finally, it showed the way towards potential multimodal interventions involving a holistic approach to optimize the aging process towards a healthy longevity.
Collapse
|
8
|
Stoeger T. The Road Less Traveled: Uncovering the Convergence Toward Specific Pleiotropic Phenotypes in Aging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.28.534472. [PMID: 37034589 PMCID: PMC10081180 DOI: 10.1101/2023.03.28.534472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Aging is a complex process influenced by a wide range of environmental and molecular factors. Despite this complexity, individuals tend to age in highly similar ways, leading to the question of what drives this convergence. Recent research, including my own discoveries, suggests that the length of transcript molecules plays a crucial role in age-dependent changes to the transcriptome. Drawing inspiration from the road trip analogy of cellular transcription, I propose that a non-linear scaling law drives convergence towards specific pleiotropic phenotypes in biological aging. This scaling law is based on the notion that molecular changes observed during aging may reflect unspecific damage to cellular physiology. By validating this hypothesis, I can improve our understanding of biological aging and identify new candidate compounds for anti-aging interventions, as well as re-identify one known intervention. This work has actionable implications for improving human health and extending lifespans.
Collapse
Affiliation(s)
- Thomas Stoeger
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA
| |
Collapse
|
9
|
Olivieri F, Prattichizzo F, Lattanzio F, Bonfigli AR, Spazzafumo L. Antifragility and antiinflammaging: Can they play a role for a healthy longevity? Ageing Res Rev 2023; 84:101836. [PMID: 36574863 DOI: 10.1016/j.arr.2022.101836] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/14/2022] [Accepted: 12/21/2022] [Indexed: 12/25/2022]
Abstract
One of the most exciting challenges of the research on aging is to explain how the environmental factors interact with the genetic background to modulate the chances to reach the extreme limit of human life in healthy conditions. The complex epigenetic mechanisms can explain both the interaction between DNA and environmental factors, and the long-distance persistence of lifestyle effects, due to the so called "epigenetic memory". One of the most extensively investigated theories on aging focuses on the inflammatory responses, suggesting that the age-related progression of low-grade and therefore for long time subclinical, chronic, systemic, inflammatory process, named "inflammaging", could be the most relevant risk factor for the development and progression of the most common age-related diseases and ultimately of death. The results of many studies on long-lived people, especially on centenarians, suggested that healthy old people can cope with inflammaging upregulating the antiinflammaging responses. Overall, a genetic make-up coding for a strong antiinflammaging response and an age-related ability to remodel key metabolic pathways to cope with a plethora of antigens and stressors seem to be the best ways for reach the extreme limit of human lifespan in health status. In this scenario, we wondered if the antifragility concept, recently developed in the framework of business and risk analysis, could add some information to disentangle the heterogeneous nature of the aging process in human. The antifragility is the property of the complex systems to increase their performances because of high stress. Based on this theory we were wondering if some subjects could be able to modulate faster than others their epigenome to cope with a plethora of stressors during life, probably modulating the inflammatory and anti-inflammatory responses. In this framework, antifragility could share some common mechanisms with anti-inflammaging, modulating the ability to restrain the inflammatory responses, so that antifragility and antiinflammaging could be viewed as different pieces of the same puzzle, both impinging upon the chances to travel along the healthy aging trajectory.
Collapse
Affiliation(s)
- Fabiola Olivieri
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica Delle Marche, Ancona, Italy; Clinica di Medicina di Laboratorio e di Precisione, IRCCS INRCA, Ancona, Italy.
| | | | | | | | | |
Collapse
|
10
|
Sturm G, Monzel AS, Karan KR, Michelson J, Ware SA, Cardenas A, Lin J, Bris C, Santhanam B, Murphy MP, Levine ME, Horvath S, Belsky DW, Wang S, Procaccio V, Kaufman BA, Hirano M, Picard M. A multi-omics longitudinal aging dataset in primary human fibroblasts with mitochondrial perturbations. Sci Data 2022; 9:751. [PMID: 36463290 PMCID: PMC9719499 DOI: 10.1038/s41597-022-01852-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 11/17/2022] [Indexed: 12/05/2022] Open
Abstract
Aging is a process of progressive change. To develop biological models of aging, longitudinal datasets with high temporal resolution are needed. Here we report a multi-omics longitudinal dataset for cultured primary human fibroblasts measured across their replicative lifespans. Fibroblasts were sourced from both healthy donors (n = 6) and individuals with lifespan-shortening mitochondrial disease (n = 3). The dataset includes cytological, bioenergetic, DNA methylation, gene expression, secreted proteins, mitochondrial DNA copy number and mutations, cell-free DNA, telomere length, and whole-genome sequencing data. This dataset enables the bridging of mechanistic processes of aging as outlined by the "hallmarks of aging", with the descriptive characterization of aging such as epigenetic age clocks. Here we focus on bridging the gap for the hallmark mitochondrial metabolism. Our dataset includes measurement of healthy cells, and cells subjected to over a dozen experimental manipulations targeting oxidative phosphorylation (OxPhos), glycolysis, and glucocorticoid signaling, among others. These experiments provide opportunities to test how cellular energetics affect the biology of cellular aging. All data are publicly available at our webtool: https://columbia-picard.shinyapps.io/shinyapp-Lifespan_Study/.
Collapse
Affiliation(s)
- Gabriel Sturm
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
| | - Anna S Monzel
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Kalpita R Karan
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Jeremy Michelson
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Sarah A Ware
- University of Pittsburgh, School of Medicine, Division of Cardiology, Center for Metabolism and Mitochondrial Medicine and Vascular Medicine Institute, Pittsburgh, PA, USA
| | - Andres Cardenas
- Department of Epidemiology and Population Health, Stanford University, Stanford, CA, 94305, USA
| | - Jue Lin
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
| | - Céline Bris
- UMR CNRS 6015, INSERM U1083, MITOVASC, SFR ICAT, Université d'Angers, Angers, F-49000, France
- Department of Genetics, CHU Angers, Angers, F-49000, France
| | - Balaji Santhanam
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Michael P Murphy
- MRC-Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Morgan E Levine
- Department of Pathology, Yale University School of Medicine, New Haven, CT, 06520, USA
- Altos Labs, San Diego, USA
| | - Steve Horvath
- Altos Labs, San Diego, USA
- Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Daniel W Belsky
- Department of Epidemiology & Butler Columbia Aging Center, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Shuang Wang
- Department of Biostatistics, Columbia University Irving Medical Center, New York, NY, USA
| | - Vincent Procaccio
- UMR CNRS 6015, INSERM U1083, MITOVASC, SFR ICAT, Université d'Angers, Angers, F-49000, France
- Department of Genetics, CHU Angers, Angers, F-49000, France
| | - Brett A Kaufman
- University of Pittsburgh, School of Medicine, Division of Cardiology, Center for Metabolism and Mitochondrial Medicine and Vascular Medicine Institute, Pittsburgh, PA, USA
| | - Michio Hirano
- Merritt Center and Columbia Translational Neuroscience Initiative, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Martin Picard
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA.
- Merritt Center and Columbia Translational Neuroscience Initiative, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA.
- New York State Psychiatric Institute, New York, NY, USA.
| |
Collapse
|
11
|
Compounds in Indonesian Ginger Rhizome Extracts and Their Potential for Anti-Skin Aging Based on Molecular Docking. COSMETICS 2022. [DOI: 10.3390/cosmetics9060128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Skin aging is a condition caused by reactive oxygen species (ROS) and advanced glycation end products (AGEs). Indonesian gingers (Zingiber officinale), which consists of Gajah (GG), Red (MM), and Emprit (EE) ginger, are thought to produce anti-skin aging compounds through enzyme inhibition. The enzymes used in the molecular docking study were collagenase, hyaluronidase, elastase, and tyrosinase. This study aimed to determine the compounds contained in Indonesian ginger rhizome ethanolic extracts using liquid chromatography–mass spectrometry/mass spectrometry to differentiate metabolites contained in the different Indonesian ginger rhizome extracts. A principal component analysis (PCA) and a heat map analysis were used in order to determine which compounds and extracts contained potential anti-skin aging properties based on a molecular docking study. Ascorbic acid was used as a control ligand in the molecular docking study. Ninety-eight compounds were identified in three different ginger rhizomes extracts and were grouped into three separate quadrants. The most potent compound for anti-skin aging in the Indonesian ginger rhizome extracts was octinoxate. Octinoxate showed a high abundance in the EE ginger rhizome extract. Therefore, the EE ginger extract was the Indonesian ginger rhizome extract with the greatest potential for anti-skin aging.
Collapse
|
12
|
Fraile M, Eiro N, Costa LA, Martín A, Vizoso FJ. Aging and Mesenchymal Stem Cells: Basic Concepts, Challenges and Strategies. BIOLOGY 2022; 11:1678. [PMID: 36421393 PMCID: PMC9687158 DOI: 10.3390/biology11111678] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/08/2022] [Accepted: 11/15/2022] [Indexed: 08/27/2023]
Abstract
Aging and frailty are complex processes implicating multifactorial mechanisms, such as replicative senescence, oxidative stress, mitochondrial dysfunction, or autophagy disorder. All of these mechanisms drive dramatic changes in the tissue environment, such as senescence-associated secretory phenotype factors and inflamm-aging. Thus, there is a demand for new therapeutic strategies against the devastating effects of the aging and associated diseases. Mesenchymal stem cells (MSC) participate in a "galaxy" of tissue signals (proliferative, anti-inflammatory, and antioxidative stress, and proangiogenic, antitumor, antifibrotic, and antimicrobial effects) contributing to tissue homeostasis. However, MSC are also not immune to aging. Three strategies based on MSC have been proposed: remove, rejuvenate, or replace the senescent MSC. These strategies include the use of senolytic drugs, antioxidant agents and genetic engineering, or transplantation of younger MSC. Nevertheless, these strategies may have the drawback of the adverse effects of prolonged use of the different drugs used or, where appropriate, those of cell therapy. In this review, we propose the new strategy of "Exogenous Restitution of Intercellular Signalling of Stem Cells" (ERISSC). This concept is based on the potential use of secretome from MSC, which are composed of molecules such as growth factors, cytokines, and extracellular vesicles and have the same biological effects as their parent cells. To face this cell-free regenerative therapy challenge, we have to clarify key strategy aspects, such as establishing tools that allow us a more precise diagnosis of aging frailty in order to identify the therapeutic requirements adapted to each case, identify the ideal type of MSC in the context of the functional heterogeneity of these cellular populations, to optimize the mass production and standardization of the primary materials (cells) and their secretome-derived products, to establish the appropriate methods to validate the anti-aging effects and to determine the most appropriate route of administration for each case.
Collapse
Affiliation(s)
- Maria Fraile
- Research Unit, Fundación Hospital de Jove, Avda. Eduardo Castro, 161, 33920 Gijon, Spain
| | - Noemi Eiro
- Research Unit, Fundación Hospital de Jove, Avda. Eduardo Castro, 161, 33920 Gijon, Spain
| | - Luis A. Costa
- Research Unit, Fundación Hospital de Jove, Avda. Eduardo Castro, 161, 33920 Gijon, Spain
| | - Arancha Martín
- Research Unit, Fundación Hospital de Jove, Avda. Eduardo Castro, 161, 33920 Gijon, Spain
- Department of Emergency, Hospital Universitario de Cabueñes, Los Prados, 395, 33394 Gijon, Spain
| | - Francisco J. Vizoso
- Research Unit, Fundación Hospital de Jove, Avda. Eduardo Castro, 161, 33920 Gijon, Spain
- Department of Surgery, Fundación Hospital de Jove, Avda. Eduardo Castro, 161, 33920 Gijon, Spain
| |
Collapse
|
13
|
Vellasamy DM, Lee SJ, Goh KW, Goh BH, Tang YQ, Ming LC, Yap WH. Targeting Immune Senescence in Atherosclerosis. Int J Mol Sci 2022; 23:13059. [PMID: 36361845 PMCID: PMC9658319 DOI: 10.3390/ijms232113059] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 10/29/2023] Open
Abstract
Atherosclerosis is one of the main underlying causes of cardiovascular diseases (CVD). It is associated with chronic inflammation and intimal thickening as well as the involvement of multiple cell types including immune cells. The engagement of innate or adaptive immune response has either athero-protective or atherogenic properties in exacerbating or alleviating atherosclerosis. In atherosclerosis, the mechanism of action of immune cells, particularly monocytes, macrophages, dendritic cells, and B- and T-lymphocytes have been discussed. Immuno-senescence is associated with aging, viral infections, genetic predispositions, and hyperlipidemia, which contribute to atherosclerosis. Immune senescent cells secrete SASP that delays or accelerates atherosclerosis plaque growth and associated pathologies such as aneurysms and coronary artery disease. Senescent cells undergo cell cycle arrest, morphological changes, and phenotypic changes in terms of their abundances and secretome profile including cytokines, chemokines, matrix metalloproteases (MMPs) and Toll-like receptors (TLRs) expressions. The senescence markers are used in therapeutics and currently, senolytics represent one of the emerging treatments where specific targets and clearance of senescent cells are being considered as therapy targets for the prevention or treatment of atherosclerosis.
Collapse
Affiliation(s)
- Danusha Michelle Vellasamy
- School of Biosciences, Faculty of Medical and Health Sciences, Taylor’s University, Subang Jaya 47500, Malaysia
| | - Sin-Jye Lee
- School of Biosciences, Faculty of Medical and Health Sciences, Taylor’s University, Subang Jaya 47500, Malaysia
| | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, Nilai 71800, Malaysia
| | - Bey-Hing Goh
- Biofunctional Molecule Exploratory (BMEX) Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway 47500, Malaysia
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Yin-Quan Tang
- School of Biosciences, Faculty of Medical and Health Sciences, Taylor’s University, Subang Jaya 47500, Malaysia
- Centre for Drug Discovery and Molecular Pharmacology, Faculty of Medical and Health Sciences, Taylor’s University, Subang Jaya 47500, Malaysia
| | - Long Chiau Ming
- PAP Rashidah Sa’adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong BE1410, Brunei
| | - Wei Hsum Yap
- School of Biosciences, Faculty of Medical and Health Sciences, Taylor’s University, Subang Jaya 47500, Malaysia
- Centre for Drug Discovery and Molecular Pharmacology, Faculty of Medical and Health Sciences, Taylor’s University, Subang Jaya 47500, Malaysia
| |
Collapse
|
14
|
Kim YJ, Cho MJ, Yu WD, Kim MJ, Kim SY, Lee JH. Links of Cytoskeletal Integrity with Disease and Aging. Cells 2022; 11:cells11182896. [PMID: 36139471 DOI: 10.3390/cells11182896] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/09/2022] [Accepted: 09/10/2022] [Indexed: 11/16/2022] Open
Abstract
Aging is a complex feature and involves loss of multiple functions and nonreversible phenotypes. However, several studies suggest it is possible to protect against aging and promote rejuvenation. Aging is associated with many factors, such as telomere shortening, DNA damage, mitochondrial dysfunction, and loss of homeostasis. The integrity of the cytoskeleton is associated with several cellular functions, such as migration, proliferation, degeneration, and mitochondrial bioenergy production, and chronic disorders, including neuronal degeneration and premature aging. Cytoskeletal integrity is closely related with several functional activities of cells, such as aging, proliferation, degeneration, and mitochondrial bioenergy production. Therefore, regulation of cytoskeletal integrity may be useful to elicit antiaging effects and to treat degenerative diseases, such as dementia. The actin cytoskeleton is dynamic because its assembly and disassembly change depending on the cellular status. Aged cells exhibit loss of cytoskeletal stability and decline in functional activities linked to longevity. Several studies reported that improvement of cytoskeletal stability can recover functional activities. In particular, microtubule stabilizers can be used to treat dementia. Furthermore, studies of the quality of aged oocytes and embryos revealed a relationship between cytoskeletal integrity and mitochondrial activity. This review summarizes the links of cytoskeletal properties with aging and degenerative diseases and how cytoskeletal integrity can be modulated to elicit antiaging and therapeutic effects.
Collapse
Affiliation(s)
- Yu Jin Kim
- CHA Fertility Center Seoul Station, Jung-gu, Seoul 04637, Korea
| | - Min Jeong Cho
- CHA Fertility Center Seoul Station, Jung-gu, Seoul 04637, Korea
| | - Won Dong Yu
- Department of Biomedical Sciences, College of Life Science, CHA University, Pochen 11160, Korea
| | - Myung Joo Kim
- CHA Fertility Center Seoul Station, Jung-gu, Seoul 04637, Korea
| | - Sally Yunsun Kim
- National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK
| | - Jae Ho Lee
- CHA Fertility Center Seoul Station, Jung-gu, Seoul 04637, Korea
- Department of Biomedical Sciences, College of Life Science, CHA University, Pochen 11160, Korea
| |
Collapse
|
15
|
Senior AM, Legault V, Lavoie FB, Presse N, Gaudreau P, Turcot V, Raubenheimer D, Le Couteur DG, Simpson SJ, Cohen AA. Multidimensional associations between nutrient intake and healthy ageing in humans. BMC Biol 2022; 20:196. [PMID: 36050730 PMCID: PMC9438070 DOI: 10.1186/s12915-022-01395-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 08/23/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Little is known about how normal variation in dietary patterns in humans affects the ageing process. To date, most analyses of the problem have used a unidimensional paradigm, being concerned with the effects of a single nutrient on a single outcome. Perhaps then, our ability to understand the problem has been complicated by the fact that both nutrition and the physiology of ageing are highly complex and multidimensional, involving a high number of functional interactions. Here we apply the multidimensional geometric framework for nutrition to data on biological ageing from 1560 older adults followed over four years to assess on a large-scale how nutrient intake associates with the ageing process. RESULTS Ageing and age-related loss of homeostasis (physiological dysregulation) were quantified via the integration of blood biomarkers. The effects of diet were modelled using the geometric framework for nutrition, applied to macronutrients and 19 micronutrients/nutrient subclasses. We observed four broad patterns: (1) The optimal level of nutrient intake was dependent on the ageing metric used. Elevated protein intake improved/depressed some ageing parameters, whereas elevated carbohydrate levels improved/depressed others; (2) There were non-linearities where intermediate levels of nutrients performed well for many outcomes (i.e. arguing against a simple more/less is better perspective); (3) There is broad tolerance for nutrient intake patterns that don't deviate too much from norms ('homeostatic plateaus'). (4) Optimal levels of one nutrient often depend on levels of another (e.g. vitamin E and vitamin C). Simpler linear/univariate analytical approaches are insufficient to capture such associations. We present an interactive tool to explore the results in the high-dimensional nutritional space. CONCLUSION Using multidimensional modelling techniques to test the effects of nutrient intake on physiological dysregulation in an aged population, we identified key patterns of specific nutrients associated with minimal biological ageing. Our approach presents a roadmap for future studies to explore the full complexity of the nutrition-ageing landscape.
Collapse
Affiliation(s)
- Alistair M Senior
- University of Sydney, Charles Perkins Centre, Camperdown, New South Wales, 2006, Australia. .,University of Sydney, School of Life and Environmental Science, Camperdown, New South Wales, 2006, Australia. .,University of Sydney, School of Mathematics and Statistics, Camperdown, New South Wales, 2006, Australia.
| | - Véronique Legault
- Department of Family Medicine, Groupe de recherche PRIMUS, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Francis B Lavoie
- Department of Family Medicine, Groupe de recherche PRIMUS, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Nancy Presse
- Research Center on Aging, CIUSSS-de-l'Estrie-CHUS, Sherbrooke, QC, Canada.,Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Montréal, QC, Canada.,Department of Community Health Sciences, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Pierrette Gaudreau
- Department of Medicine, Université de Montréal, Montréal, QC, Canada.,Centre de recherche du centre hospitalier de l'Université de Montréal, Montréal, QC, Canada
| | - Valérie Turcot
- Research Center on Aging, CIUSSS-de-l'Estrie-CHUS, Sherbrooke, QC, Canada
| | - David Raubenheimer
- University of Sydney, Charles Perkins Centre, Camperdown, New South Wales, 2006, Australia.,University of Sydney, School of Life and Environmental Science, Camperdown, New South Wales, 2006, Australia
| | - David G Le Couteur
- University of Sydney, Charles Perkins Centre, Camperdown, New South Wales, 2006, Australia.,University of Sydney, School of Medicine, Camperdown, New South Wales, 2006, Australia.,Ageing and Alzheimers Institute and ANZAC Research Institute, Concord Hospital, Concord, New South Wales, 2139, Australia
| | - Stephen J Simpson
- University of Sydney, Charles Perkins Centre, Camperdown, New South Wales, 2006, Australia.,University of Sydney, School of Life and Environmental Science, Camperdown, New South Wales, 2006, Australia
| | - Alan A Cohen
- Department of Family Medicine, Groupe de recherche PRIMUS, University of Sherbrooke, Sherbrooke, QC, Canada.,Research Center on Aging, CIUSSS-de-l'Estrie-CHUS, Sherbrooke, QC, Canada.,Centre de recherche du centre hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada.,Butler Columbia Aging Center, Mailman School of Public Health, Columbia University, New York, NY, USA.,Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| |
Collapse
|
16
|
Cohen AA, Ferrucci L, Fülöp T, Gravel D, Hao N, Kriete A, Levine ME, Lipsitz LA, Olde Rikkert MGM, Rutenberg A, Stroustrup N, Varadhan R. A complex systems approach to aging biology. NATURE AGING 2022; 2:580-591. [PMID: 37117782 DOI: 10.1038/s43587-022-00252-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 06/08/2022] [Indexed: 04/30/2023]
Abstract
Having made substantial progress understanding molecules, cells, genes and pathways, aging biology research is now moving toward integration of these parts, attempting to understand how their joint dynamics may contribute to aging. Such a shift of perspective requires the adoption of a formal complex systems framework, a transition being facilitated by large-scale data collection and new analytical tools. Here, we provide a theoretical framework to orient researchers around key concepts for this transition, notably emergence, interaction networks and resilience. Drawing on evolutionary theory, network theory and principles of homeostasis, we propose that organismal function is accomplished by the integration of regulatory mechanisms at multiple hierarchical scales, and that the disruption of this ensemble causes the phenotypic and functional manifestations of aging. We present key examples at scales ranging from sub-organismal biology to clinical geriatrics, outlining how this approach can potentially enrich our understanding of aging.
Collapse
Affiliation(s)
- Alan A Cohen
- PRIMUS Research Group, Department of Family Medicine, University of Sherbrooke, Sherbrooke, Quebec, Canada.
- Research Center on Aging and Research Center of Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Quebec, Canada.
- Butler Columbia Aging Center and Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA.
| | - Luigi Ferrucci
- Intramural Research Program of the National Institute on Aging, Baltimore, MD, USA
| | - Tamàs Fülöp
- Research Center on Aging and Research Center of Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Quebec, Canada
- Department of Medicine, Geriatric Division, University of Sherbrooke, Sherbrooke, Quebec, Canada
| | - Dominique Gravel
- Department of Biology, University of Sherbrooke, Sherbrooke, Quebec, Canada
| | - Nan Hao
- Section of Molecular Biology, Division of Biological Sciences, University of California, San Diego, San Diego, CA, USA
| | - Andres Kriete
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Morgan E Levine
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Lewis A Lipsitz
- Beth Israel Deaconess Medical Center, Hebrew SeniorLife, Hinda and Arthur Marcus Institute for Aging Research, and Harvard Medical School, Boston, MA, USA
| | | | - Andrew Rutenberg
- Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Nicholas Stroustrup
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Ravi Varadhan
- Department of Oncology, Quantitative Sciences Division, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
17
|
Cohen AA, Leung DL, Legault V, Gravel D, Blanchet FG, Côté AM, Fülöp T, Lee J, Dufour F, Liu M, Nakazato Y. Synchrony of biomarker variability indicates a critical transition: Application to mortality prediction in hemodialysis. iScience 2022; 25:104385. [PMID: 35620427 PMCID: PMC9127602 DOI: 10.1016/j.isci.2022.104385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/22/2022] [Accepted: 05/05/2022] [Indexed: 12/03/2022] Open
Abstract
Critical transition theory suggests that complex systems should experience increased temporal variability just before abrupt state changes. We tested this hypothesis in 763 patients on long-term hemodialysis, using 11 biomarkers collected every two weeks and all-cause mortality as a proxy for critical transitions. We find that variability-measured by coefficients of variation (CVs)-increases before death for all 11 clinical biomarkers, and is strikingly synchronized across all biomarkers: the first axis of a principal component analysis on all CVs explains 49% of the variance. This axis then generates powerful predictions of mortality (HR95 = 9.7, p < 0.0001, where HR95 is a scale-invariant metric of hazard ratio; AUC up to 0.82) and starts to increase markedly ∼3 months prior to death. Our results provide an early warning sign of physiological collapse and, more broadly, a quantification of joint system dynamics that opens questions of how system modularity may break down before critical transitions.
Collapse
Affiliation(s)
- Alan A. Cohen
- PRIMUS Research Group, Department of Family Medicine, University of Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
- Research Center on Aging, Sherbrooke, Quebec J1H 4C4, Canada
- Research Center of Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Diana L. Leung
- PRIMUS Research Group, Department of Family Medicine, University of Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Véronique Legault
- PRIMUS Research Group, Department of Family Medicine, University of Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Dominique Gravel
- Département de Biologie, Université de Sherbrooke, Sherbrooke, Quebec J1K 2R1, Canada
| | - F. Guillaume Blanchet
- Research Center on Aging, Sherbrooke, Quebec J1H 4C4, Canada
- Département de Biologie, Université de Sherbrooke, Sherbrooke, Quebec J1K 2R1, Canada
- Département de mathématique, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
- Département des Sciences de la Santé Communautaires, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Anne-Marie Côté
- Department of Medicine, Nephrology Division, University of Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Tamàs Fülöp
- Research Center on Aging, Sherbrooke, Quebec J1H 4C4, Canada
- Department of Medicine, Geriatric Division, University of Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Juhong Lee
- InfoCentre, Centre intégré universitaire de santé et de services sociaux de l’Estrie – Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Frédérik Dufour
- PRIMUS Research Group, Department of Family Medicine, University of Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
- Département de Biologie, Université de Sherbrooke, Sherbrooke, Quebec J1K 2R1, Canada
| | - Mingxin Liu
- PRIMUS Research Group, Department of Family Medicine, University of Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Yuichi Nakazato
- Division of Nephrology, Hakuyukai Medical Corporation, Yuai Nisshin Clinic, 2-1914-6 Nisshin-cho, Kita-ku, Saitama-City, Saitama 331-0823, Japan
| |
Collapse
|
18
|
Fulop T, Larbi A, Pawelec G, Cohen AA, Provost G, Khalil A, Lacombe G, Rodrigues S, Desroches M, Hirokawa K, Franceschi C, Witkowski JM. Immunosenescence and Altered Vaccine Efficiency in Older Subjects: A Myth Difficult to Change. Vaccines (Basel) 2022; 10:vaccines10040607. [PMID: 35455356 PMCID: PMC9030923 DOI: 10.3390/vaccines10040607] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/05/2022] [Accepted: 04/08/2022] [Indexed: 12/14/2022] Open
Abstract
Organismal ageing is associated with many physiological changes, including differences in the immune system of most animals. These differences are often considered to be a key cause of age-associated diseases as well as decreased vaccine responses in humans. The most often cited vaccine failure is seasonal influenza, but, while it is usually the case that the efficiency of this vaccine is lower in older than younger adults, this is not always true, and the reasons for the differential responses are manifold. Undoubtedly, changes in the innate and adaptive immune response with ageing are associated with failure to respond to the influenza vaccine, but the cause is unclear. Moreover, recent advances in vaccine formulations and adjuvants, as well as in our understanding of immune changes with ageing, have contributed to the development of vaccines, such as those against herpes zoster and SARS-CoV-2, that can protect against serious disease in older adults just as well as in younger people. In the present article, we discuss the reasons why it is a myth that vaccines inevitably protect less well in older individuals, and that vaccines represent one of the most powerful means to protect the health and ensure the quality of life of older adults.
Collapse
Affiliation(s)
- Tamas Fulop
- Research Center on Aging, Geriatric Division, Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (A.K.); (G.L.)
- Correspondence: (T.F.); (S.R.)
| | - Anis Larbi
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, Singapore 138648, Singapore;
| | - Graham Pawelec
- Department of Immunology, University of Tübingen, 72072 Tübingen, Germany;
- Health Sciences North Research Institute, Sudbury, ON P3E 2H2, Canada
| | - Alan A. Cohen
- Groupe de Recherche PRIMUS, Department of Family Medicine, University of Sherbrooke, 3001 12e Ave N, Sherbrooke, QC J1H 5N4, Canada;
| | | | - Abedelouahed Khalil
- Research Center on Aging, Geriatric Division, Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (A.K.); (G.L.)
| | - Guy Lacombe
- Research Center on Aging, Geriatric Division, Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (A.K.); (G.L.)
| | - Serafim Rodrigues
- Ikerbasque, The Basque Foundation for Science, 48009 Bilbao, Spain;
- BCAM—The Basque Center for Applied Mathematics, 48009 Bilbao, Spain
- Correspondence: (T.F.); (S.R.)
| | - Mathieu Desroches
- MathNeuro Team, Inria Sophia Antipolis Méditerranée, CEDEX, 06902 Sophia Antipolis, France;
- The Jean Alexandre Dieudonné Laboratory, Université Côte d’Azur, CEDEX 2, 06108 Nice, France
| | - Katsuiku Hirokawa
- Institute of Health and Life Science, Tokyo Medical and Dental University, Tokyo 113-8510, Japan;
| | - Claudio Franceschi
- IRCCS Institute of Neurological Sciences of Bologna, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy;
- Department of Applied Mathematics and Laboratory of Systems Biology of Healthy Aging, Lobachevsky State University, 603000 Nizhny Novgorod, Russia
| | - Jacek M. Witkowski
- Department of Pathophysiology, Medical University of Gdansk, 80-210 Gdansk, Poland;
| |
Collapse
|
19
|
Chen Z, Raj A, Prateek GV, Di Francesco A, Liu J, Keyes BE, Kolumam G, Jojic V, Freund A. Automated, high-dimensional evaluation of physiological aging and resilience in outbred mice. eLife 2022; 11:e72664. [PMID: 35404230 PMCID: PMC9000950 DOI: 10.7554/elife.72664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 03/29/2022] [Indexed: 02/06/2023] Open
Abstract
Behavior and physiology are essential readouts in many studies but have not benefited from the high-dimensional data revolution that has transformed molecular and cellular phenotyping. To address this, we developed an approach that combines commercially available automated phenotyping hardware with a systems biology analysis pipeline to generate a high-dimensional readout of mouse behavior/physiology, as well as intuitive and health-relevant summary statistics (resilience and biological age). We used this platform to longitudinally evaluate aging in hundreds of outbred mice across an age range from 3 months to 3.4 years. In contrast to the assumption that aging can only be measured at the limits of animal ability via challenge-based tasks, we observed widespread physiological and behavioral aging starting in early life. Using network connectivity analysis, we found that organism-level resilience exhibited an accelerating decline with age that was distinct from the trajectory of individual phenotypes. We developed a method, Combined Aging and Survival Prediction of Aging Rate (CASPAR), for jointly predicting chronological age and survival time and showed that the resulting model is able to predict both variables simultaneously, a behavior that is not captured by separate age and mortality prediction models. This study provides a uniquely high-resolution view of physiological aging in mice and demonstrates that systems-level analysis of physiology provides insights not captured by individual phenotypes. The approach described here allows aging, and other processes that affect behavior and physiology, to be studied with improved throughput, resolution, and phenotypic scope.
Collapse
Affiliation(s)
- Zhenghao Chen
- Calico Life Sciences LLC, South San FranciscoSouth San FranciscoUnited States
| | - Anil Raj
- Calico Life Sciences LLC, South San FranciscoSouth San FranciscoUnited States
| | - GV Prateek
- Calico Life Sciences LLC, South San FranciscoSouth San FranciscoUnited States
| | - Andrea Di Francesco
- Calico Life Sciences LLC, South San FranciscoSouth San FranciscoUnited States
| | - Justin Liu
- Calico Life Sciences LLC, South San FranciscoSouth San FranciscoUnited States
| | - Brice E Keyes
- Calico Life Sciences LLC, South San FranciscoSouth San FranciscoUnited States
| | - Ganesh Kolumam
- Calico Life Sciences LLC, South San FranciscoSouth San FranciscoUnited States
| | - Vladimir Jojic
- Calico Life Sciences LLC, South San FranciscoSouth San FranciscoUnited States
| | - Adam Freund
- Calico Life Sciences LLC, South San FranciscoSouth San FranciscoUnited States
| |
Collapse
|
20
|
Li Q, Legault V, Girard VD, Ferrucci L, Fried LP, Cohen AA. An objective metric of individual health and aging for population surveys. Popul Health Metr 2022; 20:11. [PMID: 35361249 PMCID: PMC8974028 DOI: 10.1186/s12963-022-00289-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 03/21/2022] [Indexed: 09/18/2023] Open
Abstract
BACKGROUND We have previously developed and validated a biomarker-based metric of overall health status using Mahalanobis distance (DM) to measure how far from the norm of a reference population (RP) an individual's biomarker profile is. DM is not particularly sensitive to the choice of biomarkers; however, this makes comparison across studies difficult. Here we aimed to identify and validate a standard, optimized version of DM that would be highly stable across populations, while using fewer and more commonly measured biomarkers. METHODS Using three datasets (the Baltimore Longitudinal Study of Aging, Invecchiare in Chianti and the National Health and Nutrition Examination Survey), we selected the most stable sets of biomarkers in all three populations, notably when interchanging RPs across populations. We performed regression models, using a fourth dataset (the Women's Health and Aging Study), to compare the new DM sets to other well-known metrics [allostatic load (AL) and self-assessed health (SAH)] in their association with diverse health outcomes: mortality, frailty, cardiovascular disease (CVD), diabetes, and comorbidity number. RESULTS A nine- (DM9) and a seventeen-biomarker set (DM17) were identified as highly stable regardless of the chosen RP (e.g.: mean correlation among versions generated by interchanging RPs across dataset of r = 0.94 for both DM9 and DM17). In general, DM17 and DM9 were both competitive compared with AL and SAH in predicting aging correlates, with some exceptions for DM9. For example, DM9, DM17, AL, and SAH all predicted mortality to a similar extent (ranges of hazard ratios of 1.15-1.30, 1.21-1.36, 1.17-1.38, and 1.17-1.49, respectively). On the other hand, DM9 predicted CVD less well than DM17 (ranges of odds ratios of 0.97-1.08, 1.07-1.85, respectively). CONCLUSIONS The metrics we propose here are easy to measure with data that are already available in a wide array of panel, cohort, and clinical studies. The standardized versions here lose a small amount of predictive power compared to more complete versions, but are nonetheless competitive with existing metrics of overall health. DM17 performs slightly better than DM9 and should be preferred in most cases, but DM9 may still be used when a more limited number of biomarkers is available.
Collapse
Affiliation(s)
- Qing Li
- School of Economics and Management, Xinjiang University, 666 Shengli Road, Urumqi, 830046, China
| | - Véronique Legault
- PRIMUS Research Group, Department of Family Medicine, University of Sherbrooke, 3001 12e Ave N, Sherbrooke, QC, J1H 5N4, Canada
| | - Vincent-Daniel Girard
- PRIMUS Research Group, Department of Family Medicine, University of Sherbrooke, 3001 12e Ave N, Sherbrooke, QC, J1H 5N4, Canada
| | - Luigi Ferrucci
- Translational Gerontology Branch, Longitudinal Studies Section, National Institute on Aging, National Institutes of Health, MedStar Harbor Hospital, 3001 S. Hanover Street, Baltimore, MD, 21225, USA
| | - Linda P Fried
- Mailman School of Public Health, Columbia University, 722 W. 168th Street, New York, NY, R140810032, USA
| | - Alan A Cohen
- PRIMUS Research Group, Department of Family Medicine, University of Sherbrooke, 3001 12e Ave N, Sherbrooke, QC, J1H 5N4, Canada.
- Research Center on Aging, 1036 Belvédère S, Sherbrooke, QC, J1H 4C4, Canada.
- Research Center of Centre Hospitalier Universitaire de Sherbrooke, 3001 12e Ave N, Sherbrooke, QC, J1H 5N4, Canada.
| |
Collapse
|
21
|
Abstract
The classical evolutionary theories of aging suggest that aging evolves due to insufficient selective pressure against it. In these theories, declining selection pressure with age leads to aging through genes or resource allocations, implying that aging could potentially be stalled were genes, resource allocation, or selection pressure somewhat different. While these classical evolutionary theories are undeniably part of a description of the evolution of aging, they do not explain the diversity of aging patterns, and they do not constitute the only possible evolutionary explanation. Without denying selection pressure a role in the evolution of aging, we argue that the origin and diversity of aging should also be sought in the nature and evolution of organisms that are, from their very physiological make up, unmaintainable. Drawing on advances in developmental biology, genetics, biochemistry, and complex systems theory since the classical theories emerged, we propose a fresh evolutionary-mechanistic theory of aging, the Danaid theory. We argue that, in complex forms of life like humans, various restrictions on maintenance and repair may be inherent, and we show how such restrictions are laid out during development. We further argue that there is systematic variation in these constraints across taxa, and that this is a crucial factor determining variation in aging and lifespan across the tree of life. Accordingly, the core challenge for the field going forward is to map and understand the mosaic of constraints, trade-offs, chance events, and selective pressures that shape aging in diverse ways across diverse taxa.
Collapse
Affiliation(s)
- Maarten J Wensink
- Interdisciplinary Center on Population Dynamics, University of Southern Denmark, Odense, Denmark
| | - Alan A Cohen
- Department of Family Medicine, Research Centre on Aging, CHUS Research Centre, University of Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
22
|
A toolkit for quantification of biological age from blood chemistry and organ function test data: BioAge. GeroScience 2021; 43:2795-2808. [PMID: 34725754 DOI: 10.1007/s11357-021-00480-5] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 10/22/2021] [Indexed: 10/19/2022] Open
Abstract
Methods to quantify biological aging are emerging as new measurement tools for epidemiology and population science and have been proposed as surrogate measures for healthy lifespan extension in geroscience clinical trials. Publicly available software packages to compute biological aging measurements from DNA methylation data have accelerated dissemination of these measures and generated rapid gains in knowledge about how different measures perform in a range of datasets. Biological age measures derived from blood chemistry data were introduced at the same time as the DNA methylation measures and, in multiple studies, demonstrate superior performance to these measures in prediction of healthy lifespan. However, their dissemination has been slow by comparison, resulting in a significant gap in knowledge. We developed a software package to help address this knowledge gap. The BioAge R package, available for download at GitHub ( http://github.com/dayoonkwon/BioAge ), implements three published methods to quantify biological aging based on analysis of chronological age and mortality risk: Klemera-Doubal biological age, PhenoAge, and homeostatic dysregulation. The package allows users to parametrize measurement algorithms using custom sets of biomarkers, to compare the resulting measurements to published versions of the Klemera-Doubal method and PhenoAge algorithms, and to score the measurements in new datasets. We applied BioAge to safety lab data from the CALERIE™ randomized controlled trial, the first-ever human trial of long-term calorie restriction in healthy, non-obese adults, to test effects of intervention on biological aging. Results contribute evidence that CALERIE intervention slowed biological aging. BioAge is a toolkit to facilitate measurement of biological age for geroscience.
Collapse
|
23
|
Kraushaar LE, Bauer P. Dismantling Anti-Ageing Medicine: Why Age-Relatedness of Cardiovascular Disease is Proof of Robustness Rather Than of Ageing-Associated Vulnerability. Heart Lung Circ 2021; 30:1702-1709. [PMID: 34244067 DOI: 10.1016/j.hlc.2021.05.105] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/23/2021] [Accepted: 05/18/2021] [Indexed: 12/29/2022]
Abstract
Ageing is perceived to be the common culprit behind the most prevalent noncommunicable chronic diseases (NCD) such as cardiovascular disease (CVD). Treating ageing as a means to prevent its downstream pathologies has become the logical extension of this idea, and the defining criterion of anti-ageing medicine (evidence-based early detection, prevention, and treatment of age-related diseases). Challenging the underlying rationale, we here argue that the disease's late-in-life occurrence is proof of a genetically conserved robustness that helps us resist disease long enough for it to masquerade as a consequence of living long rather than of living wrong. Robustness is an acknowledged hallmark phenomenon of all complex systems (while there exists no universally adopted definition, a hallmark of complex systems is that they consist of many networked components whose interactions may give rise to system behaviors which cannot be derived or predicted from a reductionist knowledge of the interacting parts, even if this knowledge is complete) and a key concept in the complexity sciences (a relatively new branch of science that attempts to find and understand the common mechanisms and patterns shared by all complex systems). To reconceptualise the age-relatedness of chronic diseases in this sense has important implications for medical research and practice. The goal of our essay is to open a discussion that may enhance the overall understanding of robustness and prevent a misguided redirection of funding away from established disease specific research and towards anti-ageing medicine. This essay is timely, as the forthcoming 11th version of the International Classification of Diseases (ICD) will be the first to recognise ageing as a condition, thereby legitimising anti-ageing medical research. On a more pragmatic note, and for the benefit of people alive today, we propose a practical strategy to remedy the mismatch between heritable robustness and the lifestyle challenges that gradually overwhelm it.
Collapse
Affiliation(s)
- Lutz E Kraushaar
- Adiphea Alliance for Disease Prevention & Healthy Aging GmbH, Werbach, Germany.
| | - Pascal Bauer
- Department of Cardiology and Angiology, Justus- Liebig University Giessen, Geissen, Germany
| |
Collapse
|
24
|
AlSafar H, Grant WB, Hijazi R, Uddin M, Alkaabi N, Tay G, Mahboub B, Al Anouti F. COVID-19 Disease Severity and Death in Relation to Vitamin D Status among SARS-CoV-2-Positive UAE Residents. Nutrients 2021; 13:1714. [PMID: 34069412 PMCID: PMC8159141 DOI: 10.3390/nu13051714] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/16/2021] [Accepted: 05/17/2021] [Indexed: 12/14/2022] Open
Abstract
Insufficient blood levels of the neurohormone vitamin D are associated with increased risk of COVID-19 severity and mortality. Despite the global rollout of vaccinations and promising preliminary results, the focus remains on additional preventive measures to manage COVID-19. Results conflict on vitamin D's plausible role in preventing and treating COVID-19. We examined the relation between vitamin D status and COVID-19 severity and mortality among the multiethnic population of the United Arab Emirates. Our observational study used data for 522 participants who tested positive for SARS-CoV-2 at one of the main hospitals in Abu Dhabi and Dubai. Only 464 of those patients were included for data analysis. Demographic and clinical data were retrospectively analyzed. Serum samples immediately drawn at the first hospital visit were used to measure serum 25-hydroxyvitamin D [25(OH)D] concentrations through automated electrochemiluminescence. Levels < 12 ng/mL were significantly associated with higher risk of severe COVID-19 infection and of death. Age was the only other independent risk factor, whereas comorbidities and smoking did not contribute to the outcomes upon adjustment. Sex of patients was not an important predictor for severity or death. Our study is the first conducted in the UAE to measure 25(OH)D levels in SARS-CoV-2-positive patients and confirm the association of levels < 12 ng/mL with COVID-19 severity and mortality.
Collapse
Affiliation(s)
- Habiba AlSafar
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates; (H.A.); (G.T.)
- Department of Biomedical Engineering, College of Engineering, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
- Department of Genetics and Molecular Biology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| | - William B. Grant
- Sunlight, Nutrition and Health Research Center, P.O. Box 641603, San Francisco, CA 94164-1603, USA;
| | - Rafiq Hijazi
- Department of Mathematics and Statistics, College of Natural and Health Sciences, Zayed University, Abu Dhabi 144534, United Arab Emirates;
| | - Maimunah Uddin
- Department of Pediatric Infectious Disease, Sheikh Khalifa Medical City, Abu Dhabi 51900, United Arab Emirates; (M.U.); (N.A.)
| | - Nawal Alkaabi
- Department of Pediatric Infectious Disease, Sheikh Khalifa Medical City, Abu Dhabi 51900, United Arab Emirates; (M.U.); (N.A.)
| | - Guan Tay
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates; (H.A.); (G.T.)
- Division of Psychiatry, Faculty of Health and Medical Sciences, University of Western Australia, Crawley, Western Australia, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Bassam Mahboub
- Dubai Health Authority, Rashid Hospital, Dubai, United Arab Emirates;
| | - Fatme Al Anouti
- Department of Health Sciences, College of Natural and Health Sciences, Zayed University, Abu Dhabi 144534, United Arab Emirates
| |
Collapse
|
25
|
Graber TG, Maroto R, Fry CS, Brightwell CR, Rasmussen BB. Measuring Exercise Capacity and Physical Function in Adult and Older Mice. J Gerontol A Biol Sci Med Sci 2021; 76:819-824. [PMID: 32822475 PMCID: PMC8087272 DOI: 10.1093/gerona/glaa205] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Indexed: 11/12/2022] Open
Abstract
The inability of older adults to maintain independence is a consequence of sarcopenia and frailty. In order to identify the molecular mechanisms responsible for decreased physical function, it will be critical to utilize a small animal model. The main purpose of this study was to develop a composite Comprehensive Functional Assessment Battery (CFAB) of well-validated tests to determine physical function and exercise capacity in 3 age groups of male C57BL/6 mice (6 months old, n = 29; 24 months old, n = 24; 28+ months old, n = 28). To measure physical function in mice, we used rotarod (overall motor function), grip meter (forelimb strength), treadmill (endurance), inverted cling (strength/endurance), voluntary wheel running (volitional exercise and activity rate), and muscle performance with in vivo contractile physiology (dorsiflexor torque). We hypothesized that CFAB would be a valid means to assess the physical function of a given mouse across the life span. In addition, we proposed that CFAB could be used to determine relationships between different parameters associated with sarcopenia. We found that there was an overall age-related significant decline (p < .05) in all measurements, and the CFAB score demonstrated that some individual mice (the upper quartile) retained the functional capacity of average mice 1 cohort younger. We conclude that the CFAB is a powerful, repeatable, and noninvasive tool to assess and compare physical function and assess complex motor task ability in mice, which will enable researchers to easily track performance at the individual mouse level.
Collapse
Affiliation(s)
- Ted G Graber
- Department of Physical Therapy, East Carolina University, Greenville, North Carolina
| | - Rosario Maroto
- Department of Nutrition and Metabolism, University of Texas Medical Branch, Galveston
| | - Christopher S Fry
- Department of Nutrition and Metabolism, University of Texas Medical Branch, Galveston
- Department of Athletic Training and Clinical Nutrition, University of Kentucky, Lexington
| | - Camille R Brightwell
- Department of Athletic Training and Clinical Nutrition, University of Kentucky, Lexington
- Cell Biology PhD Program, University of Texas Medical Branch, Galveston
| | - Blake B Rasmussen
- Department of Nutrition and Metabolism, University of Texas Medical Branch, Galveston
| |
Collapse
|
26
|
Liu M, Legault V, Fülöp T, Côté AM, Gravel D, Blanchet FG, Leung DL, Lee SJ, Nakazato Y, Cohen AA. Prediction of Mortality in Hemodialysis Patients Using Moving Multivariate Distance. Front Physiol 2021; 12:612494. [PMID: 33776784 PMCID: PMC7993059 DOI: 10.3389/fphys.2021.612494] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 02/22/2021] [Indexed: 11/14/2022] Open
Abstract
There is an increasingly widespread use of biomarkers in network physiology to evaluate an organism’s physiological state. A recent study showed that albumin variability increases before death in chronic hemodialysis patients. We hypothesized that a multivariate statistical approach would better allow us to capture signals of impending physiological collapse/death. We proposed a Moving Multivariate Distance (MMD), based on the Mahalanobis distance, to quantify the variability of the multivariate biomarker profile as a whole from one visit to the next. Biomarker profiles from a visit were used as the reference to calculate MMD at the subsequent visit. We selected 16 biomarkers (of which 11 are measured every 2 weeks) from blood samples of 763 chronic kidney disease patients hemodialyzed at the CHUS hospital in Quebec, who visited the hospital regularly (∼every 2 weeks) to perform routine blood tests. MMD tended to increase markedly preceding death, indicating an increasing intraindividual multivariate variability presaging a critical transition. In survival analysis, the hazard ratio between the 97.5th percentile and the 2.5th percentile of MMD reached as high as 21.1 [95% CI: 14.3, 31.2], showing that higher variability indicates substantially higher mortality risk. Multivariate approaches to early warning signs of critical transitions hold substantial clinical promise to identify early signs of critical transitions, such as risk of death in hemodialysis patients; future work should also explore whether the MMD approach works in other complex systems (i.e., ecosystems, economies), and should compare it to other multivariate approaches to quantify system variability.
Collapse
Affiliation(s)
- Mingxin Liu
- PRIMUS Research Group, Department of Family Medicine, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Véronique Legault
- PRIMUS Research Group, Department of Family Medicine, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Tamàs Fülöp
- Research Center on Aging, Sherbrooke, QC, Canada.,Department of Medicine, Geriatric Division, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Anne-Marie Côté
- Department of Medicine, Nephrology Division, University of Sherbrooke, Sherbrooke, QC, Canada.,Research Center of Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Dominique Gravel
- Département de Biologie, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - F Guillaume Blanchet
- Research Center on Aging, Sherbrooke, QC, Canada.,Département de Biologie, Université de Sherbrooke, Sherbrooke, QC, Canada.,Département de Mathématique, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Diana L Leung
- Department of Pathology, Yale University, New Haven, CT, United States
| | - Sylvia Juhong Lee
- InfoCentre, Centre Intégré Universitaire de Santé et de Services Sociaux de l'Estrie - Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Yuichi Nakazato
- Division of Nephrology, Yuai Nisshin Clinic, Hakuyukai Medical Corporation, Saitama, Japan
| | - Alan A Cohen
- PRIMUS Research Group, Department of Family Medicine, University of Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
27
|
Cohen AA, Leblanc S, Roucou X. Robust Physiological Metrics From Sparsely Sampled Networks. Front Physiol 2021; 12:624097. [PMID: 33643068 PMCID: PMC7902772 DOI: 10.3389/fphys.2021.624097] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/12/2021] [Indexed: 12/14/2022] Open
Abstract
Physiological and biochemical networks are highly complex, involving thousands of nodes as well as a hierarchical structure. True network structure is also rarely known. This presents major challenges for applying classical network theory to these networks. However, complex systems generally share the property of having a diffuse or distributed signal. Accordingly, we should predict that system state can be robustly estimated with sparse sampling, and with limited knowledge of true network structure. In this review, we summarize recent findings from several methodologies to estimate system state via a limited sample of biomarkers, notably Mahalanobis distance, principal components analysis, and cluster analysis. While statistically simple, these methods allow novel characterizations of system state when applied judiciously. Broadly, system state can often be estimated even from random samples of biomarkers. Furthermore, appropriate methods can detect emergent underlying physiological structure from this sparse data. We propose that approaches such as these are a powerful tool to understand physiology, and could lead to a new understanding and mapping of the functional implications of biological variation.
Collapse
Affiliation(s)
- Alan A. Cohen
- Groupe de Recherche PRIMUS, Département de Médecine de Famille et de Médecine d’Urgence, Université de Sherbrooke, Sherbrooke, QC, Canada
- Centre de Recherche, Centre Hospitalier Universitaire de Sherbrooke (CRCHUS), Sherbrooke, QC, Canada
- Research Center on Aging, CIUSSS-de-l’Estrie-CHUS, Sherbrooke, QC, Canada
| | - Sebastien Leblanc
- Département de Biochimie et de Génomique Fonctionnelle, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Xavier Roucou
- Département de Biochimie et de Génomique Fonctionnelle, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
28
|
Klasa K, Galaitsi S, Wister A, Linkov I. System models for resilience in gerontology: application to the COVID-19 pandemic. BMC Geriatr 2021; 21:51. [PMID: 33446109 PMCID: PMC7807229 DOI: 10.1186/s12877-020-01965-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 12/15/2020] [Indexed: 01/10/2023] Open
Abstract
The care needs for aging adults are increasing burdens on health systems around the world. Efforts minimizing risk to improve quality of life and aging have proven moderately successful, but acute shocks and chronic stressors to an individual's systemic physical and cognitive functions may accelerate their inevitable degradations. A framework for resilience to the challenges associated with aging is required to complement on-going risk reduction policies, programs and interventions. Studies measuring resilience among the elderly at the individual level have not produced a standard methodology. Moreover, resilience measurements need to incorporate external structural and system-level factors that determine the resources that adults can access while recovering from aging-related adversities. We use the National Academies of Science conceptualization of resilience for natural disasters to frame resilience for aging adults. This enables development of a generalized theory of resilience for different individual and structural contexts and populations, including a specific application to the COVID-19 pandemic.
Collapse
Affiliation(s)
- Katarzyna Klasa
- University of Michigan School of Public Health, Ann Arbor, USA
| | - Stephanie Galaitsi
- United States Army Corps of Engineers, Engineering Research and Development Center, Vicksburg, USA
| | - Andrew Wister
- Gerontology Research Centre, Simon Fraser University, Burnaby, Canada.
| | - Igor Linkov
- United States Army Corps of Engineers, Engineering Research and Development Center, Vicksburg, USA
| |
Collapse
|
29
|
Abstract
Abstract
Biological ageing can be tentatively defined as an intrinsic and inevitable degradation of biological function that accumulates over time at every level of biological organisation from molecules to populations. Senescence is characterised by a progressive loss of physiological integrity, leading to impaired function and increased vulnerability to death. With advancing age, all components of the human body undergo these cumulative, universal, progressive, intrinsic and deleterious (CUPID) changes. Although ageing is not a disease per se, age is the main risk factor for the development of a panoply of age-related diseases. From a mechanistic perspective, a myriad of molecular processes and components of ageing can be studied. Some of them seem especially important and they are referred to as the hallmarks of ageing. There is compelling evidence that senescence has evolved as an emergent metaphenomenon that originates in the difficulty in maintaining homeodynamics in biological systems. From an evolutionary perspective, senescence is the inevitable outcome of an evolutionarily derived equilibrium between the amount of resources devoted to somatic maintenance and the amount of resources devoted to sexual reproduction. Single-target, single-molecule and disease-oriented approaches to ageing are severely limited because they neglect the dynamic, interactive and networking nature of life. These limitations notwithstanding, many authors promote single-target and disease-oriented approaches to senescence, e.g. repurposed drugs, claiming that these methods can enhance human health and longevity. Senescence is neither a disease nor a monolithic process. In this review, the limitations of these methods are discussed. The current state of biogerontology is also summarised.
Collapse
|
30
|
Fülöp T, Desroches M, A Cohen A, Santos FAN, Rodrigues S. Why we should use topological data analysis in ageing: Towards defining the “topological shape of ageing”. Mech Ageing Dev 2020; 192:111390. [DOI: 10.1016/j.mad.2020.111390] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 10/17/2020] [Accepted: 10/20/2020] [Indexed: 12/26/2022]
|
31
|
Cohen AA, Legault V, Fülöp T. What if there’s no such thing as “aging”? Mech Ageing Dev 2020; 192:111344. [DOI: 10.1016/j.mad.2020.111344] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/17/2020] [Accepted: 08/26/2020] [Indexed: 12/14/2022]
|
32
|
Emery Thompson M, Rosati AG, Snyder-Mackler N. Insights from evolutionarily relevant models for human ageing. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190605. [PMID: 32951550 PMCID: PMC7540954 DOI: 10.1098/rstb.2019.0605] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2020] [Indexed: 02/07/2023] Open
Abstract
As the world confronts the health challenges of an ageing population, there has been dramatically increased interest in the science of ageing. This research has overwhelmingly focused on age-related disease, particularly in industrialized human populations and short-lived laboratory animal models. However, it has become clear that humans and long-lived primates age differently than many typical model organisms, and that many of the diseases causing death and disability in the developed world are greatly exacerbated by modern lifestyles. As such, research on how the human ageing process evolved is vital to understanding the origins of prolonged human lifespan and factors increasing vulnerability to degenerative disease. In this issue, we highlight emerging comparative research on primates, highlighting the physical, physiological, behavioural and cognitive processes of ageing. This work comprises data and theory on non-human primates, as well as under-represented data on humans living in small-scale societies, which help elucidate how environment shapes senescence. Component papers address (i) the critical processes that comprise senescence in long-lived primates; (ii) the social, ecological or individual characteristics that predict variation in the pace of ageing; and (iii) the complicated relationship between ageing trajectories and disease outcomes. Collectively, this work provides essential comparative, evolutionary data on ageing and demonstrates its unique potential to inform our understanding of the human ageing process. This article is part of the theme issue 'Evolution of the primate ageing process'.
Collapse
Affiliation(s)
- Melissa Emery Thompson
- Department of Anthropology, University of New Mexico, 500 University Boulevard NE, Albuquerque, NM 87131, USA
| | - Alexandra G. Rosati
- Department of Psychology and Anthropology, University of Michigan, 530 Church Street, Ann Arbor, MI 48109, USA
| | - Noah Snyder-Mackler
- Center for Evolution and Medicine, Arizona State University, 427 East Tyler Mall, Tempe, AZ 85281, USA
- School of Life Sciences, Arizona State University, 427 East Tyler Mall, Tempe, AZ 85281, USA
| |
Collapse
|
33
|
Kraft TS, Stieglitz J, Trumble BC, Garcia AR, Kaplan H, Gurven M. Multi-system physiological dysregulation and ageing in a subsistence population. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190610. [PMID: 32951553 PMCID: PMC7540955 DOI: 10.1098/rstb.2019.0610] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2020] [Indexed: 12/12/2022] Open
Abstract
Humans have the longest post-reproductive lifespans and lowest rates of actuarial ageing among primates. Understanding the links between slow actuarial ageing and physiological change is critical for improving the human 'healthspan'. Physiological dysregulation may be a key feature of ageing in industrialized populations with high burdens of chronic 'diseases of civilization', but little is known about age trajectories of physiological condition in subsistence populations with limited access to public health infrastructure. To better characterize human physiological dysregulation, we examined age trajectories of 40 biomarkers spanning the immune (n = 13 biomarkers), cardiometabolic (n = 14), musculoskeletal (n = 6) and other (n = 7) systems among Tsimane forager-horticulturalists of the Bolivian Amazon using mixed cross-sectional and longitudinal data (n = 22 115 observations). We characterized age-related changes using a multi-system statistical index of physiological dysregulation (Mahalanobis distance; Dm) that increases with age in both humans and other primates. Although individual biomarkers showed varied age profiles, we found a robust increase in age-related dysregulation for Tsimane (β = 0.17-0.18) that was marginally faster than that reported for an industrialized Western sample (β = 0.14-0.16), but slower than that of other non-human primates. We found minimal sex differences in the pace or average level of dysregulation for Tsimane. Our findings highlight some conserved patterns of physiological dysregulation in humans, consistent with the notion that somatic ageing exhibits species-typical patterns, despite cross-cultural variation in environmental exposures, lifestyles and mortality. This article is part of the theme issue 'Evolution of the primate ageing process'.
Collapse
Affiliation(s)
- Thomas S. Kraft
- Integrative Anthropological Sciences Unit, Department of Anthropology, University of California-Santa Barbara, Santa Barbara, CA 93106, USA
| | | | - Benjamin C. Trumble
- Center for Evolution and Medicine, School of Human Evolution and Social Change, Arizona State University, Tempe, AZ 85287, USA
| | - Angela R. Garcia
- Integrative Anthropological Sciences Unit, Department of Anthropology, University of California-Santa Barbara, Santa Barbara, CA 93106, USA
- Center for Evolution and Medicine, School of Human Evolution and Social Change, Arizona State University, Tempe, AZ 85287, USA
| | - Hillard Kaplan
- Economic Science Institute, Chapman University, One University Drive, Orange, CA 92866, USA
| | - Michael Gurven
- Integrative Anthropological Sciences Unit, Department of Anthropology, University of California-Santa Barbara, Santa Barbara, CA 93106, USA
| |
Collapse
|
34
|
Evidence from two cohorts for the frailty syndrome as an emergent state of parallel dysregulation in multiple physiological systems. Biogerontology 2020; 22:63-79. [PMID: 33064226 PMCID: PMC8557952 DOI: 10.1007/s10522-020-09903-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/12/2020] [Indexed: 12/23/2022]
Abstract
Frailty is a clinical syndrome often present in older adults and characterized by a heightened vulnerability to stressors. The biological antecedents and etiology of frailty are unclear despite decades of research: frailty is associated with dysregulation in a wide range of physiological systems, but no specific cause has been identified. Here, we test predictions stemming from the hypothesis that there is no specific cause: that frailty is an emergent property arising from the complex systems dynamics of the broad loss of organismal homeostasis. Specifically, we use dysregulation of six physiological systems using the Mahalanobis distance approach in two cohorts of older adults to test the breadth, diffuseness, and nonlinearity of associations between frailty and system-specific dysregulation. We find clear support for the breadth of associations between frailty and physiological dysregulation: positive associations of all systems with frailty in at least some analyses. We find partial support for diffuseness: the number of systems or total amount of dysregulation is more important than the identity of the systems dysregulated, but results only partially replicate across cohorts. We find partial support for nonlinearity: trends are exponential but not always significantly so, and power is limited for groups with very high levels of dysregulation. Overall, results are consistent with-but not definitive proof of-frailty as an emergent property of complex systems dynamics. Substantial work remains to understand how frailty relates to underlying physiological dynamics across systems.
Collapse
|
35
|
Fulop T, Larbi A, Hirokawa K, Cohen AA, Witkowski JM. Immunosenescence is both functional/adaptive and dysfunctional/maladaptive. Semin Immunopathol 2020; 42:521-536. [PMID: 32930852 PMCID: PMC7490574 DOI: 10.1007/s00281-020-00818-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/24/2020] [Indexed: 01/08/2023]
Abstract
Alterations in the immune system with aging are considered to underlie many age-related diseases. However, many elderly individuals remain healthy until even a very advanced age. There is also an increase in numbers of centenarians and their apparent fitness. We should therefore change our unilaterally detrimental consideration of age-related immune changes. Recent data taking into consideration the immunobiography concept may allow for meaningful distinctions among various aging trajectories. This implies that the aging immune system has a homeodynamic characteristic balanced between adaptive and maladaptive aspects. The survival and health of an individual depends from the equilibrium of this balance. In this article, we highlight which parts of the aging of the immune system may be considered adaptive in contrast to those that may be maladaptive.
Collapse
Affiliation(s)
- T Fulop
- Department of Geriatrics, Faculty of Medicine, Research Center on Aging, University of Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada.
- Research Center on Aging, Faculty of Medicine and Health Sciences, University of Sherbrooke, 3001, 12th Avenue North, Sherbrooke, Quebec, J1H 5N4, Canada.
| | - A Larbi
- Biology of Aging Program and Immunomonitoring Platform, Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, Biopolis, Singapore, 138648, Singapore
| | - K Hirokawa
- Institute of Health and Life Science, Tokyo and Nito-memory Nakanosogo Hospital, Department of Pathology, Tokyo Med. Dent. University, Tokyo, Japan
| | - A A Cohen
- Department of Family Medicine, Faculty of Medicine, Research Center on Aging, University of Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada
| | - J M Witkowski
- Department of Pathophysiology, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
36
|
Abstract
Abstract
Ageing is distinct from a disease. Sound arguments have been adduced to explain that senescence cannot be understood as a pathological process. Nevertheless, this distinction is believed to be artificial (Holliday 1995), and other eminent researchers argue that the senescence-pathology dichotomy is also misleading. Recently, it has been suggested that ageing should be classified as a complex pathological syndrome or a ‘pre-disease’ that is treatable. Proponents of this new paradigm argue that: (i) modern evolutionary theory predicts that ‘although organismal senescence is not an adaptation, it is genetically programmed’, (ii) ‘insofar as it is genetically determined, organismal senescence is a form of genetic disease’ (Janac et al. 2017) and (iii) ‘ageing is something very much like a genetic disease: it is a set of pathologies resulting from the action of pleiotropic gene mutations’ (Gems 2015). Also new generations of researchers, free of these traditional shackles, come with the belief that it is time to classify ageing as a disease, as the distinction between normal dysfunction and abnormal dysfunction is not completely clear and should be abandoned. Although they marshal their arguments in a convincing manner, persuasive counterarguments can be mounted. Here, the senescence-pathology dichotomy is critically discussed. A deeper analysis of this subject reveals the underlying problem of undefined terminology in science.
Collapse
|
37
|
Cohen AA, Kennedy BK, Anglas U, Bronikowski AM, Deelen J, Dufour F, Ferbeyre G, Ferrucci L, Franceschi C, Frasca D, Friguet B, Gaudreau P, Gladyshev VN, Gonos ES, Gorbunova V, Gut P, Ivanchenko M, Legault V, Lemaître JF, Liontis T, Liu GH, Liu M, Maier AB, Nóbrega OT, Olde Rikkert MGM, Pawelec G, Rheault S, Senior AM, Simm A, Soo S, Traa A, Ukraintseva S, Vanhaelen Q, Van Raamsdonk JM, Witkowski JM, Yashin AI, Ziman R, Fülöp T. Lack of consensus on an aging biology paradigm? A global survey reveals an agreement to disagree, and the need for an interdisciplinary framework. Mech Ageing Dev 2020; 191:111316. [PMID: 32693105 DOI: 10.1016/j.mad.2020.111316] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/29/2020] [Accepted: 07/13/2020] [Indexed: 02/07/2023]
Abstract
At a recent symposium on aging biology, a debate was held as to whether or not we know what biological aging is. Most of the participants were struck not only by the lack of consensus on this core question, but also on many basic tenets of the field. Accordingly, we undertook a systematic survey of our 71 participants on key questions that were raised during the debate and symposium, eliciting 37 responses. The results confirmed the impression from the symposium: there is marked disagreement on the most fundamental questions in the field, and little consensus on anything other than the heterogeneous nature of aging processes. Areas of major disagreement included what participants viewed as the essence of aging, when it begins, whether aging is programmed or not, whether we currently have a good understanding of aging mechanisms, whether aging is or will be quantifiable, whether aging will be treatable, and whether many non-aging species exist. These disagreements lay bare the urgent need for a more unified and cross-disciplinary paradigm in the biology of aging that will clarify both areas of agreement and disagreement, allowing research to proceed more efficiently. We suggest directions to encourage the emergence of such a paradigm.
Collapse
Affiliation(s)
- Alan A Cohen
- Groupe De Recherche PRIMUS, Department of Family Medicine, University of Sherbrooke, 3001 12e Ave N, Sherbrooke, QC, J1H 5N4, Canada.
| | - Brian K Kennedy
- Departments of Biochemistry and Physiology, Yong Loo Lin School of Medicine, National University of Singapore, MD 7, 8 Medical Drive, 117596, Singapore; National University Health System (NUHS) Centre for Healthy Longevity, 1E Kent Ridge Road, 119228, Singapore; Singapore Institute of Clinical Sciences, A⁎STAR, Brenner Center for Molecular Medicine, 30 Medical Dr., 117609, Singapore; Buck Institute for Research on Ageing, 8001 Redwood Blvd, Novato, CA, 94945, United States.
| | - Ulrich Anglas
- Department of Neurology and Neurosurgery, McGill University, 3801 University Street, Montreal, QC, H3A 2B4, Canada; Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, 1001 Decarie Boulevard, Montreal, Quebec, H4A 3J1, Canada.
| | - Anne M Bronikowski
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, 50011, United States.
| | - Joris Deelen
- Max Planck Institute for Biology of Ageing, PO Box 41 06 23, 50866, Cologne, Germany; Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, the Netherlands.
| | - Frédérik Dufour
- Groupe De Recherche PRIMUS, Department of Family Medicine, University of Sherbrooke, 3001 12e Ave N, Sherbrooke, QC, J1H 5N4, Canada.
| | - Gerardo Ferbeyre
- Centre De Recherche Du Centre Hospitalier De l'Université De Montréal (CRCHUM), 900 Saint-Denis St, Montréal, QC, H2X 0A9, Canada.
| | - Luigi Ferrucci
- Translational Gerontology Branch, Longitudinal Studies Section, National Institute on Aging, National Institutes of Health, MedStar Harbor Hospital, 3001 S. Hanover Street, Baltimore, MD, 21225, United States.
| | - Claudio Franceschi
- Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum, University of Bologna, 33 Via Zamboni, Bologna, 40126 BO, Italy; IRCCS Istituto Delle Scienze Neurologiche Di Bologna, Padiglione G, 3 Via Altura, Bologna, 40139, BO, Italy; Department of Applied Mathematics, Institute of Information Technology, Mathematics and Mechanics (ITMM), Lobachevsky State University of Nizhny Novgorod-National Research University (UNN), 23 Gagarin Avenue, 603950, Nizhnij Novgorod, Russia.
| | - Daniela Frasca
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, 1600 NW 10th Ave, Miami, FL, 33136, United States.
| | - Bertrand Friguet
- Sorbonne Université, CNRS, INSERM, Institut De Biologie Paris-Seine, Biological Adaptation and Aging, B2A-IBPS, F-75005, Paris, France.
| | - Pierrette Gaudreau
- Centre De Recherche Du Centre Hospitalier De l'Université De Montréal (CRCHUM), 900 Saint-Denis St, Montréal, QC, H2X 0A9, Canada; Department of Medicine, Université De Montréal, 2900, Boul. Édouard-Montpetit, Montréal, QC, H3T 1J4, Canada.
| | - Vadim N Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, United States.
| | - Efstathios S Gonos
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., Athens, 11635, Greece.
| | - Vera Gorbunova
- University of Rochester, Department of Biology, Rochester, NY, 14627, United States.
| | - Philipp Gut
- Nestlé Research, Nestlé Institute of Health Sciences, EPFL Innovation Park, 1015, Lausanne, Switzerland.
| | - Mikhail Ivanchenko
- Department of Applied Mathematics, Lobachevsky State University of Nizhny Novgorod, 603950, Nizhny Novgorod, Russia.
| | - Véronique Legault
- Groupe De Recherche PRIMUS, Department of Family Medicine, University of Sherbrooke, 3001 12e Ave N, Sherbrooke, QC, J1H 5N4, Canada.
| | - Jean-François Lemaître
- Université de Lyon, Université Lyon 1; CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR5558, F-69622 Villeurbanne, France.
| | - Thomas Liontis
- Department of Neurology and Neurosurgery, McGill University, 3801 University Street, Montreal, QC, H3A 2B4, Canada; Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, 1001 Decarie Boulevard, Montreal, Quebec, H4A 3J1, Canada.
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China.
| | - Mingxin Liu
- Groupe De Recherche PRIMUS, Department of Family Medicine, University of Sherbrooke, 3001 12e Ave N, Sherbrooke, QC, J1H 5N4, Canada.
| | - Andrea B Maier
- Department of Medicine and Aged Care, @AgeMelbourne, Royal Melbourne Hospital, University of Melbourne, 34-54 Poplar Rd, Parkville, VIC, 3052, Australia; Department of Human Movement Sciences, @AgeAmsterdam, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit, Van Der Boechorststraat 7, 1081 BT, Amsterdam, the Netherlands.
| | - Otávio T Nóbrega
- Medical Centre for the Elderly, University Hospital, University of Brasília (UnB), 70910-900, Brasília, DF, Brazil; Centre De Recherche De l'Institut Universitaire De Gériatrie De Montréal (CRIUGM), 4545 Chemin Queen-Mary, Montreal, Qc, H3W 1W5, Canada.
| | - Marcel G M Olde Rikkert
- Department of Geriatrics, Radboud University Medical Centre, Reinier Postlaan 4, 6525 GC, Nijmegen, the Netherlands.
| | - Graham Pawelec
- Department of Immunology, University of Tübingen, Auf Der Morgenstelle 15, 72076 Tübingen, Germany; Health Sciences North Research Institute, 56 Walford Rd, Sudbury, ON, P3E 2H2, Canada.
| | - Sylvie Rheault
- Département De Neurosciences, Université De Montréal, 2960 Chemin De La Tour, Montréal, QC, H3T 1J4, Canada; Centre De Recherche De l'Institut Universitaire De Gériatrie De Montréal, 4545 Chemin Queen-Mary, Montréal, QC, H3W 1W4, Canada.
| | - Alistair M Senior
- Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, 2006, Australia; School of Life and Environmental Sciences, The University of Sydney, Camperdown, New South Wales, 2006, Australia.
| | - Andreas Simm
- University Clinic and Outpatient Clinic for Cardiac Surgery, Middle German Heart Centre, University Hospital Halle (Saale), Ernst-Grube Str. 40, D-06120 Halle (Saale), Germany.
| | - Sonja Soo
- Department of Neurology and Neurosurgery, McGill University, 3801 University Street, Montreal, QC, H3A 2B4, Canada; Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, 1001 Decarie Boulevard, Montreal, Quebec, H4A 3J1, Canada.
| | - Annika Traa
- Department of Neurology and Neurosurgery, McGill University, 3801 University Street, Montreal, QC, H3A 2B4, Canada; Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, 1001 Decarie Boulevard, Montreal, Quebec, H4A 3J1, Canada.
| | - Svetlana Ukraintseva
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, 2024W. Main St, Durham, NC, 27705, United States.
| | - Quentin Vanhaelen
- Insilico Medicine Hong Kong Ltd., 307A, Core Building 1, 1 Science Park East Avenue, Hong Kong Science Park, Pak Shek Kok, Hong Kong.
| | - Jeremy M Van Raamsdonk
- Department of Neurology and Neurosurgery, McGill University, 3801 University Street, Montreal, QC, H3A 2B4, Canada; Division of Experimental Medicine, Department of Medicine, McGill University, 1001 Decarie Boulevard, Montreal, Quebec, H4A 3J1, Canada; Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, United States.
| | - Jacek M Witkowski
- Department of Pathophysiology, Medical University of Gdansk, M. Skłodowskiej-Curie 3a Street, 80-210, Gdańsk, Poland.
| | - Anatoliy I Yashin
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, 2024W. Main St, Durham, NC, 27705, United States.
| | - Robert Ziman
- Groupe De Recherche PRIMUS, Department of Family Medicine, University of Sherbrooke, 3001 12e Ave N, Sherbrooke, QC, J1H 5N4, Canada.
| | - Tamàs Fülöp
- Department of Medicine, Geriatric Division, University of Sherbrooke, 3001 12 Ave N, Sherbrooke, QC, J1H 5N4, Canada; Research Center on Aging, 1036 Rue Belvédère S, Sherbrooke, QC, J1H 4C4, Canada.
| |
Collapse
|
38
|
Curtsinger JW. Reproductive Homeostasis and Senescence in Drosophila melanogaster. J Gerontol A Biol Sci Med Sci 2020; 74:1533-1538. [PMID: 30521013 DOI: 10.1093/gerona/gly274] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Indexed: 02/07/2023] Open
Abstract
The homeostatic properties of reproduction in aging female Drosophila melanogaster are investigated. Classic studies based on cohort analysis suggest that homeostatic capacity declines gradually as daily oviposition rates decline in aging flies. Analysis at the level of individuals gives a very different picture: reproductive homeostasis remains relatively constant for most of adult life until a critical point when oviposition either ceases entirely or continues in dysregulated fashion. The collapse of homeostatic capacity is abrupt. Enhanced homeostasis is associated with increased lifetime fecundity and improved prospects for survival. The fractal concept of lacunarity can be used to parameterize the "roughness" of individual fecundity trajectories and is inversely related to homeostatic capacity.
Collapse
Affiliation(s)
- James W Curtsinger
- Department of Ecology, Evolution, & Behavior, University of Minnesota-Twin Cities, St. Paul
| |
Collapse
|
39
|
The dynamic nature of ageing: novel findings, therapeutic avenues and medical interventions. ANTHROPOLOGICAL REVIEW 2020. [DOI: 10.2478/anre-2020-0001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Ageing is one of the most complex and difficult problems for humans to face and for science to solve. Although human senescence was viewed as a passive and uncontrollable process of deterioration over time with little or no genetic regulation, the concept that ageing is caused by both genetic and environmental factors is now generally accepted, even though it remains difficult to distinguish between ageing sensu stricto and the effects of age-related diseases. Empirical data show that mechanisms of ageing are highly conserved during evolution. Moreover, it has been established that there are specific molecular ‘instructions’ for ageing, which suggests that a better understanding of the molecular biology of ageing will open new possibilities regarding future interventions. The complexity of ageing diminishes the possibility that any general theory will completely explain this metaphenomenon. Likewise, it is highly unlikely that any medication can stop or reverse human senescence. Nevertheless, ageing as a dynamic and malleable metaphenomenon can be modulated by a variety of influences. The concept of the shrinkage of the homeodynamic space with age, i.e. homeostenosis, is especially interesting and intriguing as it shows that novel therapeutic approaches and rational strategies can help delay the onset of the ageing-associated pathologies by enhancing the homeodynamic capabilities of the body. The aim of this article is to present current data from evolutionary and molecular gerontology and discuss them within the ambit of this review which is devoted to the dynamic, emergent and plastic nature of human ageing and implications for future interventions.
Collapse
|
40
|
Kim MJ, Choi KH, Seo DW, Lee HR, Kong HS, Lee CH, Lee WS, Lee HT, Ko JJ, Kim JH, Lee SJ, Lee JH. Association Between Functional Activity of Mitochondria and Actin Cytoskeleton Instability in Oocytes from Advanced Age Mice. Reprod Sci 2020; 27:1037-1046. [PMID: 32026305 DOI: 10.1007/s43032-020-00145-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 08/29/2019] [Indexed: 01/21/2023]
Abstract
Mitochondrial dysfunction is strongly associated with the oocyte quality and aging, wherein the aged oocytes are related to the actin cytoskeleton integrity; however, whether this integrity is associated with mitochondrial dysfunction in oocytes from aged mice remains unclear. In the present study, we investigated the relationship between mitochondrial dysfunction and actin cytoskeleton instability in oocytes from the aged mice. We performed comparable analysis of mitochondrial motility between young, 1.5 μM cytochalasin B (CB)-treated young oocytes, and aged oocytes by confocal live imaging. Moreover, we analyzed the relationships between mitochondrial motility and maturation ratios, including ATP production ratio of the young, CB-treated young, and aged oocytes. Actin cytoskeleton instability in the aged oocytes and CB-treated young oocytes led to a significant decrease in the mitochondrial motility and low ATP productive ratios compared to those in the young group. Our data suggest that the actin cytoskeleton instability is presumably the primary cause for the loss of mitochondrial function in the aged murine oocytes.
Collapse
Affiliation(s)
- Myung Joo Kim
- CHA Fertility Center Seoul Station, CHA University School of Medicine, Seoul, 04637, South Korea
| | - Kyoung Hee Choi
- CHA Fertility Center Seoul Station, CHA University School of Medicine, Seoul, 04637, South Korea.,Department of Animal Biotechnology, Konkuk University, Seoul, 05029, South Korea
| | - Dong Woo Seo
- CHA Fertility Center Seoul Station, CHA University School of Medicine, Seoul, 04637, South Korea
| | - Hye Ran Lee
- CHA Fertility Center Seoul Station, CHA University School of Medicine, Seoul, 04637, South Korea
| | - Hyun Seok Kong
- Department of Animal Biotechnology & Resource, Sahmyook University, Seoul, 01795, South Korea
| | - Chan Hee Lee
- Department of Animal Biotechnology & Resource, Sahmyook University, Seoul, 01795, South Korea
| | - Woo Sik Lee
- Department of Obstetrics and Gynecology, Fertility Center of CHA Gangnam Medical Center, CHA University School of Medicine, Seoul, 06135, South Korea
| | - Hoon Taek Lee
- Department of Animal Biotechnology, Konkuk University, Seoul, 05029, South Korea
| | - Jung Jae Ko
- Department of Biomedical Science, College of Life Science, CHA University, Pocheon, 11160, South Korea
| | - Ji Hyang Kim
- Department of Obstetrics and Gynecology, Fertility Center of CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, 13496, South Korea.
| | - Sang Jin Lee
- Department of Animal Biotechnology & Resource, Sahmyook University, Seoul, 01795, South Korea
| | - Jae Ho Lee
- CHA Fertility Center Seoul Station, CHA University School of Medicine, Seoul, 04637, South Korea. .,Department of Biomedical Science, College of Life Science, CHA University, Pocheon, 11160, South Korea.
| |
Collapse
|
41
|
Bernard C, Compagnoni A, Salguero‐Gómez R. Testing Finch's hypothesis: The role of organismal modularity on the escape from actuarial senescence. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13486] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Aldo Compagnoni
- Martin Luther University Halle‐Wittenberg German Centre for Integrative Biodiversity Research Leipzig Germany
| | - Roberto Salguero‐Gómez
- Department of Zoology University of Oxford Oxford UK
- Centre for Biodiversity and Conservation Science University of Queensland St. Lucia QLD Australia
- Evolutionary Demography laboratory Max Plank Institute for Demographic Research Rostock Germany
| |
Collapse
|
42
|
Abstract
Understanding the proximate and ultimate causes of ageing is one of the key challenges in current biology and medicine. These problems are so important that they are sometimes referred to as the Holy Grail of biology and the Great Conundrum in biogerontology. From an evolutionary perspective, ageing is due to a failure of selection that is caused either by declining strength of selection after the onset of sexual reproduction (Medawar’s theory and Charlesworth’s model) or pleiotropic constraints (Williams’ theory). According to the disposable soma theory, which was proposed by Kirkwood and Holliday, ageing is driven by the accumulation of damage during life and failures of defensive and repair mechanisms as the more an animal expends on sexual reproduction, the less it can expend on bodily maintenance, and vice versa. Although these standard models rule out the possibility that ageing is programmed, there is no consensus about the nature of ageing within the life history in current biogerontology. Interestingly, empirical studies show that there are molecular instructions for ageing and evolutionarily conserved mechanisms for ageing, which seems inconsistent with the idea that ageing is a matter of neglect or a consequence of a failure of selection due to pleiotropic constraints. Here, selected arguments for programmed (i.e. either determined and adaptive or prearranged but non-adaptive) and non-programmed ageing are discussed. Recent advances in biogerontology that cast new light on these problems are outlined here in the context of the idea that the pace of ageing can act as an adaptation in nature, even though ageing is non-programmed and non-adaptive.
Collapse
|
43
|
Affiliation(s)
- Matthias Galipaud
- Department of evolutionary biology and environmental studies University of Zurich Zurich Switzerland
| | - Hanna Kokko
- Department of evolutionary biology and environmental studies University of Zurich Zurich Switzerland
| |
Collapse
|
44
|
Chmielewski PP. Human ageing as a dynamic, emergent and malleable process: from disease-oriented to health-oriented approaches. Biogerontology 2019; 21:125-130. [PMID: 31595371 PMCID: PMC6942601 DOI: 10.1007/s10522-019-09839-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 09/28/2019] [Indexed: 12/22/2022]
Abstract
Over the decades, biogerontology has matured as a scientific discipline. Currently, a number of theoretical frameworks are available to researchers when interpreting empirical data. Despite the great progress that has been made, a comprehensive understanding of biological processes that shape ageing is lacking. Senescence is a dynamic, plastic and highly complex metaphenomenon whose aetiology remains unclear. The paucity of information notwithstanding, some researchers promote ‘anti-ageing’ drugs and formulae every now and again. The rationale behind this concept is that ageing can be reduced to a mixture of biochemical reactions. Furthermore, the distinction between ageing and disease has been questioned on the grounds that ageing is the root of age-related diseases. It has been claimed that disease-oriented approaches can help delay ageing and prevent age-related diseases. Although these methods seem incongruous from an evolutionary standpoint, they become popular amongst the public. Moreover, if ageing is classified as a disease, this situation is likely to be exacerbated. Therefore, it is important to recognise the limitations of these reductionist and disease-oriented approaches. Only holistic and evidence-based strategies might be useful in slowing down ageing and preventing age-related diseases in the future.
Collapse
Affiliation(s)
- Piotr Paweł Chmielewski
- Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, 6a Chałubińskiego Street, 50-368, Wrocław, Poland.
| |
Collapse
|
45
|
Riascos AP, Wang-Michelitsch J, Michelitsch TM. Aging in transport processes on networks with stochastic cumulative damage. Phys Rev E 2019; 100:022312. [PMID: 31574734 DOI: 10.1103/physreve.100.022312] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Indexed: 11/07/2022]
Abstract
In this paper we explore the evolution of transport capacity on networks with stochastic incidence of damage and accumulation of faults in their connections. For each damaged configuration of the network, we analyze a Markovian random walker that hops over weighted links that quantify the capacity of transport of each connection. The weights of the links in the network evolve due to randomly occurring damage effects that reduce gradually the transport capacity of the structure. We introduce a global measure to determine the functionality of each configuration and how the system ages due to the accumulation of damage that cannot be repaired completely. Then, by assuming a minimum value of the functionality required for the system to be "alive," we explore the statistics of the lifetimes for several realizations of this process in different types of networks. Finally, we analyze the characteristic longevity of such a system and its relation with the "complexity" of the network structure. One finding is that systems with greater complexity live longer. Our approach introduces a model of aging processes relating the reduction of functionality with the accumulation of "misrepairs" and the lifetime of a complex system.
Collapse
Affiliation(s)
- A P Riascos
- Instituto de Física, Universidad Nacional Autónoma de México, Apartado Postal 20-364, 01000 Ciudad de México, Mexico
| | | | - T M Michelitsch
- Sorbonne Université, Institut Jean le Rond d'Alembert, CNRS UMR 7190,4 place Jussieu, 75252 Paris cedex 05, France
| |
Collapse
|
46
|
Cohen AA, Coste CFD, Li X, Bourg S, Pavard S. Are trade‐offs really the key drivers of ageing and life span? Funct Ecol 2019. [DOI: 10.1111/1365-2435.13444] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Alan A. Cohen
- Groupe de recherche PRIMUS Department of Family Medicine University of Sherbrooke Sherbrooke QC Canada
| | - Christophe F. D. Coste
- Center for Biodiversity Dynamics Norwegian University of Science and Technology Trondheim Norway
- Unité Eco‐anthropologie (EA) Muséum National d'Histoire Naturelle CNRS 7206 Université Paris Diderot Paris France
| | - Xiang‐Yi Li
- Institute of Biology University of Neuchâtel Neuchâtel Switzerland
- Department of Evolutionary Biology and Environmental Studies University of Zurich Zurich Switzerland
| | - Salomé Bourg
- CNRS Laboratoire de Biométrie et Biologie Évolutive UMR5558 Université Lyon 1 Villeurbanne France
| | - Samuel Pavard
- Unité Eco‐anthropologie (EA) Muséum National d'Histoire Naturelle CNRS 7206 Université Paris Diderot Paris France
| |
Collapse
|
47
|
Marron MM, Wojczynski MK, Minster RL, Boudreau RM, Sebastiani P, Cosentino S, Thyagarajan B, Ukraintseva SV, Schupf N, Christensen K, Feitosa M, Perls T, Zmuda JM, Newman AB. Heterogeneity of healthy aging: comparing long-lived families across five healthy aging phenotypes of blood pressure, memory, pulmonary function, grip strength, and metabolism. GeroScience 2019; 41:383-393. [PMID: 31332674 PMCID: PMC6815318 DOI: 10.1007/s11357-019-00086-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 07/08/2019] [Indexed: 02/04/2023] Open
Abstract
Five healthy aging phenotypes were developed in the Long Life Family Study to uncover longevity pathways and determine if healthy aging across multiple systems clustered in a subset of long-lived families. Using blood pressure, memory, pulmonary function, grip strength, and metabolic measures (body mass index, waist circumference and fasting levels of glucose, insulin, triglycerides, lipids, and inflammatory markers), offspring were ranked according to relative health using gender-, age-, and relevant confounder-adjusted z-scores. Based on our prior work, families met a healthy aging phenotype if ≥ 2 and ≥ 50% of their offspring were exceptionally healthy for that respective phenotype. Among 426 families, only two families met criteria for three healthy aging phenotypes and none met criteria for four or more healthy aging phenotypes. Using Spearman correlation, the proportion of offspring within families with exceptionally healthy pulmonary function was correlated with the proportion of offspring within families with exceptional strength (r = 0.19, p = 0.002). The proportion of offspring within families meeting the healthy blood pressure and metabolic phenotypes were also correlated (r = 0.14, p = 0.006), and more families were classified as meeting healthy blood pressure and metabolic phenotypes (Kappa = 0.10, p = 0.02), as well as the healthy pulmonary and blood pressure phenotypes than expected by chance (Kappa = 0.09, p = 0.03). Other phenotypes were weakly correlated (|r| ≤ 0.07) with low pairwise agreement (Kappa ≤ 0.06). Among these families selected for familial longevity, correspondence between healthy aging phenotypes was weak, supporting the heterogeneous nature of longevity and suggesting biological underpinnings of each individual phenotype should be examined separately to determine their shared and unique determinants.
Collapse
Affiliation(s)
- Megan M Marron
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, 5126 Public Health, 130 DeSoto Street, Pittsburgh, PA, 15261, USA
| | - Mary K Wojczynski
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Ryan L Minster
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Robert M Boudreau
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, 5126 Public Health, 130 DeSoto Street, Pittsburgh, PA, 15261, USA
| | - Paola Sebastiani
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Stephanie Cosentino
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY, USA
| | - Bharat Thyagarajan
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | | | - Nicole Schupf
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY, USA
| | - Kaare Christensen
- The Danish Aging Research Center, Department of Public Health, University of Southern Denmark, Odense, Denmark
| | - Mary Feitosa
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Thomas Perls
- Department of Medicine, Geriatrics Section, Boston Medical Center, Boston University School of Medicine, Boston, MA, USA
| | - Joseph M Zmuda
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, 5126 Public Health, 130 DeSoto Street, Pittsburgh, PA, 15261, USA
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Anne B Newman
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, 5126 Public Health, 130 DeSoto Street, Pittsburgh, PA, 15261, USA.
- Departments of Medicine and Clinical and Translational Science, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
48
|
Peters A, Delhey K, Nakagawa S, Aulsebrook A, Verhulst S. Immunosenescence in wild animals: meta‐analysis and outlook. Ecol Lett 2019; 22:1709-1722. [DOI: 10.1111/ele.13343] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 05/30/2019] [Accepted: 06/18/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Anne Peters
- School of Biological Sciences Monash University Clayton Vic. 3800 Australia
| | - Kaspar Delhey
- School of Biological Sciences Monash University Clayton Vic. 3800 Australia
| | - Shinichi Nakagawa
- School of Biological, Earth and Environmental Sciences University of New South Wales Sydney NSW 2052 Australia
| | - Anne Aulsebrook
- School of Biological Sciences Monash University Clayton Vic. 3800 Australia
- School of BioSciences University of Melbourne Parkville Vic. 3010 Australia
| | - Simon Verhulst
- Groningen Institute for Evolutionary Life Sciences University of Groningen 9747 AGGroningen The Netherlands
| |
Collapse
|
49
|
Olde Rikkert MGM, Melis RJF. Rerouting Geriatric Medicine by Complementing Static Frailty Measures With Dynamic Resilience Indicators of Recovery Potential. Front Physiol 2019; 10:723. [PMID: 31275157 PMCID: PMC6593159 DOI: 10.3389/fphys.2019.00723] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 05/27/2019] [Indexed: 01/14/2023] Open
Abstract
Medicine is still very inadequate in forecasting recovery of tipping points in health and disease, especially in older adults. However, increasingly, diseases and invasive treatments unexpectedly push older patients with low resilience over their tipping points (TPs). These TPs are the points in human physiology that separate more healthy conditions from disease conditions or malfunctioning of the older human’s subsystems or organs, such as delirium, syncope and falls in old age, which threaten the functioning of the older person as a whole. Either the person may recover from the perturbation induced by such a subsystem TP and the balance of the whole system is restored, or the TP may set in motion a cascade of events driving the system down to a state of more decline, ultimately leading to death. A main unanswered question here is how to predict whether these older persons will recover or not. To improve this TP-recovery-forecasting, intriguing findings on measures of resilience found in other complex biological systems may be translated to humans. New dynamic resilience biomarkers for resilience can enrich clinical prediction for pathophysiological recovery and could test interventions for their effectiveness in improving resilience. Therefore, we hypothesize that dynamic, stimulus-response measures of recovery rate over time, observed after having received a minor stressor in a healthy condition, can be used to quantify recovery potential following subsystem TPs in disease and following invasive treatments in humans and thus the person’s resilience. Current static frailty prognostics can predict risks for death, institutionalization, delirium, falls, and other TP transitions, but it has not been proven that they can predict recovery. Our hypothesis on dynamic indicators of recovery is logical and timely, as it can now be studied with sensor technology to create a fundamentally different approach of variables that may be validated to forecast recovery potential. By generating dynamic measures of systemic resilience over various organ systems, we may subsequently model resilience generically across many chronic diseases, affecting different organ systems. Next, quantifying systemic resilience may reroute scientific and clinical pathways by predicting and preventing irreversible tipping points and by improving recovery by older adults.
Collapse
Affiliation(s)
- Marcel G M Olde Rikkert
- Department of Geriatrics, Radboudumc Alzheimer Center, Radboud University Medical Center, Nijmegen, Netherlands
| | - René J F Melis
- Department of Geriatrics, Radboudumc Alzheimer Center, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
50
|
Kaczmarek Ł, Roszkowska M, Fontaneto D, Jezierska M, Pietrzak B, Wieczorek R, Poprawa I, Kosicki JZ, Karachitos A, Kmita H. Staying young and fit? Ontogenetic and phylogenetic consequences of animal anhydrobiosis. J Zool (1987) 2019. [DOI: 10.1111/jzo.12677] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Ł. Kaczmarek
- Department of Animal Taxonomy and Ecology Faculty of Biology Adam Mickiewicz University in Poznan Poznań Poland
| | - M. Roszkowska
- Department of Animal Taxonomy and Ecology Faculty of Biology Adam Mickiewicz University in Poznan Poznań Poland
- Department of Bioenergetics Institute of Molecular Biology and Biotechnology Faculty of Biology Adam Mickiewicz University in Poznan Poznań Poland
| | - D. Fontaneto
- National Research Council Water Research Institute (CNR‐IRSA) Verbania Italy
| | - M. Jezierska
- Department of Animal Histology and Embryology University of Silesia in Katowice Katowice Poland
| | - B. Pietrzak
- Department of Hydrobiology Faculty of Biology Biological and Chemical Research Centre University of Warsaw Warszawa Poland
| | - R. Wieczorek
- Faculty of Chemistry University of Warsaw Warsaw Poland
| | - I. Poprawa
- Department of Animal Histology and Embryology University of Silesia in Katowice Katowice Poland
| | - J. Z. Kosicki
- Department of Avian Biology and Ecology Faculty of Biology Adam Mickiewicz University Poznan Poznań Poland
| | - A. Karachitos
- Department of Bioenergetics Institute of Molecular Biology and Biotechnology Faculty of Biology Adam Mickiewicz University in Poznan Poznań Poland
| | - H. Kmita
- Department of Bioenergetics Institute of Molecular Biology and Biotechnology Faculty of Biology Adam Mickiewicz University in Poznan Poznań Poland
| |
Collapse
|