1
|
Muñoz-Jurado A, Escribano BM. Presence of melatonin in foods of daily consumption: The benefit of this hormone for health. Food Chem 2024; 458:140172. [PMID: 38943958 DOI: 10.1016/j.foodchem.2024.140172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/01/2024]
Abstract
Melatonin (MLT) is a hormone that exists in all living organisms, including bacteria, yeast, fungi, animals, and plants, many of which are ingested daily in the diet. However, the exact concentrations of melatonin in each of the foods and the effect on health of the intake of foods rich in MLT are not known. Therefore, the aim of this review was to gather the available information on the melatonin content of different foods and to evaluate the effect that this hormone has on different pathologies. The amount of MLT may vary depending on the variety, origin, heat treatment, processing, and analysis technique, among other factors. Dietary interventions with foods rich in MLT report health benefits, but there is no evidence that hormone is partially responsible for the clinical improvement. Therefore, it is necessary to evaluate the MLT content in more foods, as well as the effect that cooking/processing has on the amount of MLT, to estimate its total intake in a typical diet and better explore its potential impact on the health.
Collapse
Affiliation(s)
- Ana Muñoz-Jurado
- Department of Cell Biology, Physiology and Immunology, Faculty of Veterinary Medicine, University of Cordoba, Spain.; Maimonides Institute for Research in Biomedicine of Cordoba, (IMIBIC), Cordoba, Spain..
| | - Begoña M Escribano
- Department of Cell Biology, Physiology and Immunology, Faculty of Veterinary Medicine, University of Cordoba, Spain.; Maimonides Institute for Research in Biomedicine of Cordoba, (IMIBIC), Cordoba, Spain..
| |
Collapse
|
2
|
Rajabi A, Safaralizadeh R, Saber A, Pourmahdi M, Teimourian S, Montazeri V, Fakhrjou A, Hosseinpourfeizi M. Apoptotic effect of melatonin on ER-positive breast cancer cell lines: ADGRL4 gene expression and promoter methylation. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03383-2. [PMID: 39177783 DOI: 10.1007/s00210-024-03383-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/14/2024] [Indexed: 08/24/2024]
Abstract
Breast cancer (BC) is the second most common malignancy worldwide. ADGRL4, as a modulator of angiogenesis, undergoes various epigenetic modifications affecting its biological functions. In this study, we aimed to assess ADGRL4 promoter methylation status and its expression levels in primary breast tumors and to evaluate its potency as a plausible prognostic biomarker in BC. Furthermore, we evaluated the effect of melatonin on ADGRL4 expression and viability of BC cells in vitro. One hundred breast tumor tissue samples and adjacent non-tumor tissues were collected, followed by DNA isolation, bisulfite conversion, qRT-PCR, qMSP assay, and immunoblotting. In addition, four BC cell lines were treated with melatonin and subjected to ADGRL4 expression analysis and apoptosis assay. We found a significant correlation between ADGRL4 expression levels and HER2 status and stage of disease (P < 0.05). We observed a substantial attenuation in ADGRL4 promoter methylation in tumor samples compared to marginal non-tumor samples. A significantly lower expression of ADGRL4 was detected in two BC cell lines in the presence of melatonin. MCF-7 and BT474 melatonin-treated cell lines showed a significantly higher number of apoptotic cells than non-treated cells (P < 0.0001). Based on the receiver operating characteristic (ROC) curve analysis, ADGRL4 expression and ADGRL4 promoter methylation status showed moderate prognostic value. We found that melatonin has anti-cancer effects on BC cells. In addition, ADGRL4 expression can potentially be used as a prognostic biomarker in BC.
Collapse
Affiliation(s)
- Ali Rajabi
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Reza Safaralizadeh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
| | - Ali Saber
- Dr. Saber Medical Genetics Laboratory, Almas Complex, Namaz Blvd, Rasht, Gilan, Iran
| | - Mahsa Pourmahdi
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Shahram Teimourian
- Department of Medical Genetics, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Vahid Montazeri
- Department of Thoracic Surgery, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ashraf Fakhrjou
- Department of Pathology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
3
|
Linowiecka K, Slominski AT, Reiter RJ, Böhm M, Steinbrink K, Paus R, Kleszczyński K. Melatonin: A Potential Regulator of DNA Methylation. Antioxidants (Basel) 2023; 12:1155. [PMID: 37371885 PMCID: PMC10295183 DOI: 10.3390/antiox12061155] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/17/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
The pineal gland-derived indoleamine hormone, melatonin, regulates multiple cellular processes, ranging from chronobiology, proliferation, apoptosis, and oxidative damage to pigmentation, immune regulation, and mitochondrial metabolism. While melatonin is best known as a master regulator of the circadian rhythm, previous studies also have revealed connections between circadian cycle disruption and genomic instability, including epigenetic changes in the pattern of DNA methylation. For example, melatonin secretion is associated with differential circadian gene methylation in night shift workers and the regulation of genomic methylation during embryonic development, and there is accumulating evidence that melatonin can modify DNA methylation. Since the latter one impacts cancer initiation, and also, non-malignant diseases development, and that targeting DNA methylation has become a novel intervention target in clinical therapy, this review discusses the potential role of melatonin as an under-investigated candidate epigenetic regulator, namely by modulating DNA methylation via changes in mRNA and the protein expression of DNA methyltransferases (DNMTs) and ten-eleven translocation (TET) proteins. Furthermore, since melatonin may impact changes in the DNA methylation pattern, the authors of the review suggest its possible use in combination therapy with epigenetic drugs as a new anticancer strategy.
Collapse
Affiliation(s)
- Kinga Linowiecka
- Department of Human Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń, Poland
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33125, USA
| | - Andrzej T. Slominski
- Department of Dermatology, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Pathology and Laboratory Medicine Service, VA Medical Center, Birmingham, AL 35294, USA
| | - Russel J. Reiter
- Department of Cell Systems and Anatomy, UT Health, Long School of Medicine, San Antonio, TX 78229, USA
| | - Markus Böhm
- Department of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48149 Münster, Germany
| | - Kerstin Steinbrink
- Department of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48149 Münster, Germany
| | - Ralf Paus
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33125, USA
| | - Konrad Kleszczyński
- Department of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48149 Münster, Germany
| |
Collapse
|
4
|
Targhazeh N, Hutt KJ, Winship AL, Reiter R, Yousefi B. Melatonin as an oncostatic agent: Review of the modulation of tumor microenvironment and overcoming multidrug resistance. Biochimie 2022; 202:71-84. [PMID: 36116742 DOI: 10.1016/j.biochi.2022.09.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/01/2022] [Accepted: 09/12/2022] [Indexed: 11/25/2022]
Abstract
Multi drug resistance (MDR) generally limits the efficacy of chemotherapy in cancer patients and can be categorized into primary or acquired resistance. Melatonin (MLT), a lipophilic hormone released from pineal gland, is a molecule with oncostatic effects. Here, we will briefly review the contribution of different microenvironmental components including fibroblasts, immune and inflammatory cells, stem cells and vascular endothelial cells in tumor initiation, progression and development. Then, the mechanisms by which MLT can potentially affect these elements and regulate drug resistance will be presented. Finally, we will explain how different studies have used novel strategies incorporating MLT to suppress cancer resistance against therapeutics.
Collapse
Affiliation(s)
- Niloufar Targhazeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Karla J Hutt
- Development and Stem Cell Program and Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Amy L Winship
- Development and Stem Cell Program and Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Russel Reiter
- Department of Cellular and Structural Biology, The University of Texas Health Science Center, San Antonio, TX, USA.
| | - Bahman Yousefi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
5
|
Targhazeh N, Reiter RJ, Rahimi M, Qujeq D, Yousefi T, Shahavi MH, Mir SM. Oncostatic activities of melatonin: Roles in cell cycle, apoptosis, and autophagy [Biochimie 200 (2022) 44-59]. Biochimie 2022; 200:44-59. [PMID: 35618158 DOI: 10.1016/j.biochi.2022.05.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/14/2022] [Accepted: 05/17/2022] [Indexed: 12/11/2022]
Affiliation(s)
- Niloufar Targhazeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, University of Texas Health Science Center, San Antonio, TX, USA
| | - Mahdi Rahimi
- Lodz University of Technology, Institute of Polymer and Dye Technology, Stefanowskiego 16, 90-537, Lodz, Poland; International Center for Research on Innovative Biobased Materials (ICRI-BioM)-International Research Agenda, Lodz University of Technology, Lodz, Poland
| | - Durdi Qujeq
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Department of Clinical Biochemistry, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Tooba Yousefi
- Department of Clinical Biochemistry, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Iran
| | - Mohammad Hassan Shahavi
- Department of Nanotechnology, Faculty of Engineering Modern Technologies, Amol University of Special Modern Technologies, Amol, Iran
| | - Seyed Mostafa Mir
- Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran; Department of Clinical Biochemistry, Faculty of Medicine, Golestan University of Medical Sciences, Babol, Iran.
| |
Collapse
|
6
|
Sardoiwala MN, Mohanbhai SJ, Kushwaha AC, Dev A, Biswal L, Sharma SS, Choudhury SR, Karmakar S. Melatonin mediated inhibition of EZH2-NOS2 crosstalk attenuates inflammatory bowel disease in preclinical in vitro and in vivo models. Life Sci 2022; 302:120655. [PMID: 35598656 DOI: 10.1016/j.lfs.2022.120655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 05/16/2022] [Accepted: 05/16/2022] [Indexed: 11/24/2022]
Abstract
AIMS Inflammatory Bowel Disease is characterised by abdominal pain, diarrhoea, rectal bleeding and weight loss. Sometimes it may leads to severe health complications resulting in death of an individual. Current research efforts to highlight the role of melatonin in regulating EZH2, a master epigenetic regulator and its beneficiary effect in case of IBD management. MATERIAL METHODS Murine macrophages (RAW 264.7) were treated with lipopolysaccharides (LPS) to activate them for generating inflammatory response to investigate efficacy of melatonin in-vitro models. Similarly, for developing in vivo models, Dextran sodium sulphate (36-50 kDa) was used. Evaluations of anti-inflammatory activities were carried out by nitrite assay, western blotting, q-PCR, immunofluorescence, and histological studies. KEY FINDINGS Reduction of epigenetic target, EZH2 by melatonin significantly improves the clinical symptoms of dextran sodium sulphate induced colitis and may be implicated as a potential therapeutic target in IBD management. The present study evaluates the efficacy of melatonin by epigenetic regulation in IBD models. Down regulation of EZH2 by melatonin reduced the chemical induced inflammatory insults in in vitro and in vivo models. Exploration of molecular pathways has revealed interlink of EZH2 and NOS2, a hallmark of inflammation. Molecular mechanistic action of melatonin is attributed to inhibition of the expression and physical interaction of EZH2 and NOS2. SIGNIFICANCE Our study highlights melatonin therapeutic effect via attenuating interaction between EZH2 and NOS2 which is beneficial in managing IBD treatment.
Collapse
Affiliation(s)
- Mohammed Nadim Sardoiwala
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, SAS Nagar, Punjab 140306, India
| | - Soni Jignesh Mohanbhai
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, SAS Nagar, Punjab 140306, India
| | - Avinash Chandra Kushwaha
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, SAS Nagar, Punjab 140306, India
| | - Atul Dev
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, SAS Nagar, Punjab 140306, India
| | - Liku Biswal
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, SAS Nagar, Punjab 140306, India
| | - Shyam Sunder Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, SAS, Nagar, Punjab, 160062, India
| | - Subhasree Roy Choudhury
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, SAS Nagar, Punjab 140306, India.
| | - Surajit Karmakar
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, SAS Nagar, Punjab 140306, India.
| |
Collapse
|
7
|
Abstract
Melatonin, the major secretory product of the pineal gland, not only regulates circadian rhythms, mood, and sleep but also has actions in neoplastic processes which are being intensively investigated. Melatonin is a promising molecule which considered a differentiating agent in some cancer cells at both physiological and pharmacological concentrations. It can also reduce invasive and metastatic status through receptors MT1 and MT2 cytosolic binding sites, including calmodulin and quinone reductase II enzyme, and nuclear receptors related to orphan members of the superfamily RZR/ROR. Melatonin exerts oncostatic functions in numerous human malignancies. An increasing number of studies report that melatonin reduces the invasiveness of several human cancers such as prostate cancer, breast cancer, liver cancer, oral cancer, lung cancer, ovarian cancer, etc. Moreover, melatonin's oncostatic activities are exerted through different biological processes including antiproliferative actions, stimulation of anti-cancer immunity, modulation of the cell cycle, apoptosis, autophagy, the modulation of oncogene expression, and via antiangiogenic effects. This review focuses on the oncostatic activities of melatonin that targeted cell cycle control, with special attention to its modulatory effects on the key regulators of the cell cycle, apoptosis, and telomerase activity.
Collapse
|
8
|
Molecular epigenetic dynamics in breast carcinogenesis. Arch Pharm Res 2021; 44:741-763. [PMID: 34392501 DOI: 10.1007/s12272-021-01348-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 08/03/2021] [Indexed: 12/12/2022]
Abstract
Breast cancer has become one of the most common dreadful diseases that target women across the globe. The most obvious reasons we associate with it are either genetic mutations or dysregulation of pathways. However, there is yet another domain that has a significant role in influencing the genetic mutations and pathways. Epigenetic mechanisms influence these pathways either independently or in association with genetic mutations, thereby expediting the process of breast carcinogenesis. Breast cancer is governed by various transduction pathways such as PI3K/AKT/mTOR, NOTCH, β Catenin, NF-kB, Hedgehog, etc. There are many proteins as well that serve to be tumor suppressors but somehow lose their ability to function. This may be because of either genetic mutation or a process that represses their function. Apart from these, there are a lot of individual factors like puberty, breastfeeding, abortion, parity, circadian rhythm, alcohol consumption, pollutants, and obesity that drive these mutations and hence alter the pathways. Epigenetic mechanisms like DNA methylation, histone modifications, and lncRNAs directly or indirectly bring alterations in the proteins that are involved in the pathways. They do this by either promoting the transcription of genes or by repressing it at the ground genetic level that advances breast carcinogenesis. Epigenetics precedes genetic mutation in driving carcinogenesis and so, it needs to be explored further to diversify the possibilities of target specific treatments. In this review, the general role of DNA methylation, histone modification, and lncRNAs in breast cancer and their role in influencing the oncogenic signaling pathways along with the various factors governing them have been discussed for a better understanding of the role of epigenetics in breast carcinogenesis.
Collapse
|
9
|
Bonmati-Carrion MA, Tomas-Loba A. Melatonin and Cancer: A Polyhedral Network Where the Source Matters. Antioxidants (Basel) 2021; 10:antiox10020210. [PMID: 33535472 PMCID: PMC7912767 DOI: 10.3390/antiox10020210] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/24/2021] [Accepted: 01/25/2021] [Indexed: 12/11/2022] Open
Abstract
Melatonin is one of the most phylogenetically conserved signals in biology. Although its original function was probably related to its antioxidant capacity, this indoleamine has been “adopted” by multicellular organisms as the “darkness signal” when secreted in a circadian manner and is acutely suppressed by light at night by the pineal gland. However, melatonin is also produced by other tissues, which constitute its extrapineal sources. Apart from its undisputed chronobiotic function, melatonin exerts antioxidant, immunomodulatory, pro-apoptotic, antiproliferative, and anti-angiogenic effects, with all these properties making it a powerful antitumor agent. Indeed, this activity has been demonstrated to be mediated by interfering with various cancer hallmarks, and different epidemiological studies have also linked light at night (melatonin suppression) with a higher incidence of different types of cancer. In 2007, the World Health Organization classified night shift work as a probable carcinogen due to circadian disruption, where melatonin plays a central role. Our aim is to review, from a global perspective, the role of melatonin both from pineal and extrapineal origin, as well as their possible interplay, as an intrinsic factor in the incidence, development, and progression of cancer. Particular emphasis will be placed not only on those mechanisms related to melatonin’s antioxidant nature but also on the recently described novel roles of melatonin in microbiota and epigenetic regulation.
Collapse
Affiliation(s)
- Maria-Angeles Bonmati-Carrion
- Chronobiology Laboratory, Department of Physiology, IMIB-Arrixaca, University of Murcia, 30100 Murcia, Spain
- Ciber Fragilidad y Envejecimiento Saludable, 28090 Madrid, Spain
- Correspondence: (M.-A.B.-C.); (A.T.-L.)
| | - Antonia Tomas-Loba
- Circadian Rhythm and Cancer Laboratory, Department of Physiology, IMIB-Arrixaca, University of Murcia, 30120 Murcia, Spain
- Correspondence: (M.-A.B.-C.); (A.T.-L.)
| |
Collapse
|
10
|
Moloudizargari M, Moradkhani F, Hekmatirad S, Fallah M, Asghari MH, Reiter RJ. Therapeutic targets of cancer drugs: Modulation by melatonin. Life Sci 2020; 267:118934. [PMID: 33385405 DOI: 10.1016/j.lfs.2020.118934] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/27/2020] [Accepted: 12/14/2020] [Indexed: 12/14/2022]
Abstract
The biological functions of melatonin range beyond the regulation of the circadian rhythm. With regard to cancer, melatonin's potential to suppress cancer initiation, progression, angiogenesis and metastasis as well as sensitizing malignant cells to conventional chemo- and radiotherapy are among its most interesting effects. The targets at which melatonin initiates its anti-cancer effects are in common with those of a majority of existing anti-cancer agents, giving rise to the notion that this molecule is a pleiotropic agent sharing many features with other antineoplastic drugs in terms of their mechanisms of action. Among these common mechanisms of action are the regulation of several major intracellular pathways including mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinase (ERK) and protein kinase B (AKT/PKB) signaling. The important mediators affected by melatonin include cyclins, nuclear factor-κB (NF-κB), heat shock proteins (HSPs) and c-Myc, all of which can serve as potential targets for cancer drugs. Melatonin also exerts some of its anti-cancer effects via inducing epigenetic modifications, DNA damage and mitochondrial disruption in malignant cells. The regulation of these mediators by melatonin mitigates tumor growth and invasiveness via modulating their downstream responsive genes, housekeeping enzymes, telomerase reverse transcriptase, apoptotic gene expression, angiogenic factors and structural proteins involved in metastasis. Increasing our knowledge on how melatonin affects its target sites will help find ways of exploiting the beneficial effects of this ubiquitously-acting molecule in cancer therapy. Acknowledging this, here we reviewed the most studied target pathways attributed to the anti-cancer effects of melatonin, highlighting their therapeutic potential.
Collapse
Affiliation(s)
- Milad Moloudizargari
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Moradkhani
- Department of Medical Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Shirin Hekmatirad
- Department of Pharmacology and Toxicology, School of Medicine, Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Marjan Fallah
- Medicinal Plant Research Centre, Faculty of Pharmacy, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
| | - Mohammad Hossein Asghari
- Department of Pharmacology and Toxicology, School of Medicine, Babol University of Medical Sciences, Babol, Iran.
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, Long School of Medicine, UT Health, San Antonio, TX, USA.
| |
Collapse
|
11
|
Socaciu AI, Ionuţ R, Socaciu MA, Ungur AP, Bârsan M, Chiorean A, Socaciu C, Râjnoveanu AG. Melatonin, an ubiquitous metabolic regulator: functions, mechanisms and effects on circadian disruption and degenerative diseases. Rev Endocr Metab Disord 2020; 21:465-478. [PMID: 32691289 DOI: 10.1007/s11154-020-09570-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The last four decades, we assist to an increasing scientific interest on melatonin, a circadian hormone, a metabolic regulator which influences not only plants' metabolism and their defense against pathogens but mostly the animals and humans' metabolic pathways, their response to circadian disruption, stress and burnout syndrome. In humans, as a hormonal regulator, produced in the pineal grand as well in mitochondria, melatonin is involved in different, complex intracellular signaling pathways, with antioxidant and immune stimulating effects, proving to act as a circadian synchronizer, as a preventive and therapeutic agent in many degenerative diseases, and especially in hormone-dependent cancers. Preclinical or clinical studies showed recently the mechanisms involved in regulating the cellular activity, its role in aging and circadian disturbances and impact on degenerative diseases. Melatonin proved to have an anti-inflammatory, antiapoptotic and powerful antioxidant effect by subtle mechanisms in mitochondrial metabolic pathways. This overview includes recent and relevant literature data related to the impact of endogenous and exogeneous melatonin on the prevention of cancer progression and treatment of various degenerative diseases. Metabolomics, an emerging new omics' technology, based on high performance liquid chromatography coupled with mass spectrometry is presented as an encouraging technique to fingerprint and realize a precise evaluation and monitoring of the turnover of melatonin and its metabolites in different pathological circumstances.
Collapse
Affiliation(s)
- Andreea Iulia Socaciu
- Department of Occupational Health, University of Medicine and Pharmacy "Iuliu Haţieganu", Cluj-Napoca, Romania
| | - Răzvan Ionuţ
- Department of Occupational Health, University of Medicine and Pharmacy "Iuliu Haţieganu", Cluj-Napoca, Romania
| | - Mihai Adrian Socaciu
- Department of Medical Imaging, University of Medicine and Pharmacy "Iuliu Haţieganu", Cluj-Napoca, Romania
| | - Andreea Petra Ungur
- Department of Occupational Health, University of Medicine and Pharmacy "Iuliu Haţieganu", Cluj-Napoca, Romania
| | - Maria Bârsan
- Department of Occupational Health, University of Medicine and Pharmacy "Iuliu Haţieganu", Cluj-Napoca, Romania
| | - Angelica Chiorean
- Department of Radiology, University of Medicine and Pharmacy "Iuliu Haţieganu", Cluj-Napoca, Romania
| | - Carmen Socaciu
- Department of Biochemistry, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania.
| | - Armand Gabriel Râjnoveanu
- Department of Occupational Health, University of Medicine and Pharmacy "Iuliu Haţieganu", Cluj-Napoca, Romania
| |
Collapse
|
12
|
Reiter RJ, Sharma R, Ma Q, Rorsales-Corral S, de Almeida Chuffa LG. Melatonin inhibits Warburg-dependent cancer by redirecting glucose oxidation to the mitochondria: a mechanistic hypothesis. Cell Mol Life Sci 2020; 77:2527-2542. [PMID: 31970423 PMCID: PMC11104865 DOI: 10.1007/s00018-019-03438-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/16/2019] [Accepted: 12/23/2019] [Indexed: 12/16/2022]
Abstract
Melatonin has the ability to intervene in the initiation, progression and metastasis of some experimental cancers. A large variety of potential mechanisms have been advanced to describe the metabolic and molecular events associated with melatonin's interactions with cancer cells. There is one metabolic perturbation that is common to a large number of solid tumors and accounts for the ability of cancer cells to actively proliferate, avoid apoptosis, and readily metastasize, i.e., they use cytosolic aerobic glycolysis (the Warburg effect) to rapidly generate the necessary ATP required for the high metabolic demands of the cancer cells. There are several drugs, referred to as glycolytic agents, that cause cancer cells to abandon aerobic glycolysis and shift to the more conventional mitochondrial oxidative phosphorylation for ATP synthesis as in normal cells. In doing so, glycolytic agents also inhibit cancer growth. Herein, we hypothesize that melatonin also functions as an inhibitor of cytosolic glycolysis in cancer cells using mechanisms, i.e., downregulation of the enzyme (pyruvate dehydrogenase kinase) that interferes with the conversion of pyruvate to acetyl CoA in the mitochondria, as do other glycolytic drugs. In doing so, melatonin halts the proliferative activity of cancer cells, reduces their metastatic potential and causes them to more readily undergo apoptosis. This hypothesis is discussed in relation to the previously published reports. Whereas melatonin is synthesized in the mitochondria of normal cells, we hypothesize that this synthetic capability is not present in cancer cell mitochondria because of the depressed acetyl CoA; acetyl CoA is necessary for the rate limiting enzyme in melatonin synthesis, arylalkylamine-N-acetyltransferase. Finally, the ability of melatonin to switch glucose oxidation from the cytosol to the mitochondria also explains how tumors that become resistant to conventional chemotherapies are re-sensitized to the same treatment when melatonin is applied.
Collapse
Affiliation(s)
- Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX, USA.
| | - Ramaswamy Sharma
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX, USA
| | - Qiang Ma
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX, USA
| | - Sergio Rorsales-Corral
- Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Mexico
| | | |
Collapse
|
13
|
Melatonin's Antineoplastic Potential Against Glioblastoma. Cells 2020; 9:cells9030599. [PMID: 32138190 PMCID: PMC7140435 DOI: 10.3390/cells9030599] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 02/25/2020] [Accepted: 03/01/2020] [Indexed: 12/16/2022] Open
Abstract
Glioblastoma (GBM) is one of the most intransigent and aggressive brain tumors, and its treatment is extremely challenging and ineffective. To improve patients’ expectancy and quality of life, new therapeutic approaches were investigated. Melatonin is an endogenous indoleamine with an incredible variety of properties. Due to evidence demonstrating melatonin’s activity against several cancer hallmarks, there is growing interest in its use for preventing and treating cancer. In this review, we report on the potential effects of melatonin, alone or in combination with anticancer drugs, against GBM. We also summarize melatonin targets and/or the intracellular pathways involved. Moreover, we describe melatonin’s epigenetic activity responsible for its antineoplastic effects. To date, there are too few clinical studies (involving a small number of patients) investigating the antineoplastic effects of melatonin against GBM. Nevertheless, these studies described improvement of GBM patients’ quality of life and did not show significant adverse effects. In this review, we also report on studies regarding melatonin-like molecules with the tumor-suppressive properties of melatonin together with implemented pharmacokinetics. Melatonin effects and mechanisms of action against GBM require more research attention due to the unquestionably high potential of this multitasking indoleamine in clinical practice.
Collapse
|
14
|
Haim A, Boynao S, Elsalam Zubidat A. Consequences of Artificial Light at Night: The Linkage between Chasing Darkness Away and Epigenetic Modifications. Epigenetics 2019. [DOI: 10.5772/intechopen.84789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
|
15
|
Zubidat AE, Fares B, Fares F, Haim A. Artificial Light at Night of Different Spectral Compositions Differentially Affects Tumor Growth in Mice: Interaction With Melatonin and Epigenetic Pathways. Cancer Control 2019; 25:1073274818812908. [PMID: 30477310 PMCID: PMC6259078 DOI: 10.1177/1073274818812908] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Lighting technology is rapidly advancing toward shorter wavelength illuminations
that offer energy-efficient properties. Along with this advantage, the increased
use of such illuminations also poses some health challenges, particularly breast
cancer progression. Here, we evaluated the effects of artificial light at night
(ALAN) of 4 different spectral compositions (500-595 nm) at 350 Lux on melatonin
suppression by measuring its urine metabolite 6-sulfatoxymelatonin, global DNA
methylation, tumor growth, metastases formation, and urinary corticosterone
levels in 4T1 breast cancer cell-inoculated female BALB/c mice. The results
revealed an inverse dose-dependent relationship between wavelength and melatonin
suppression. Short wavelength increased tumor growth, promoted lung metastases
formation, and advanced DNA hypomethylation, while long wavelength lessened
these effects. Melatonin treatment counteracted these effects and resulted in
reduced cancer burden. The wavelength suppression threshold for
melatonin-induced tumor growth was 500 nm. These results suggest that short
wavelength increases cancer burden by inducing aberrant DNA methylation mediated
by the suppression of melatonin. Additionally, melatonin suppression and global
DNA methylation are suggested as promising biomarkers for early diagnosis and
therapy of breast cancer. Finally, ALAN may manifest other physiological
responses such as stress responses that may challenge the survival fitness of
the animal under natural environments.
Collapse
Affiliation(s)
- A E Zubidat
- 1 The Israeli Center for Interdisciplinary Research in Chronobiology, University of Haifa, Haifa, Israel
| | - B Fares
- 2 Department of Human Biology, University of Haifa, Haifa, Israel.,3 Department of Molecular Genetics, Carmel Medical Center, Haifa, Israel
| | - F Fares
- 2 Department of Human Biology, University of Haifa, Haifa, Israel.,3 Department of Molecular Genetics, Carmel Medical Center, Haifa, Israel
| | - A Haim
- 1 The Israeli Center for Interdisciplinary Research in Chronobiology, University of Haifa, Haifa, Israel
| |
Collapse
|
16
|
From Implantation to Birth: Insight into Molecular Melatonin Functions. Int J Mol Sci 2018; 19:ijms19092802. [PMID: 30227688 PMCID: PMC6164374 DOI: 10.3390/ijms19092802] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 09/10/2018] [Accepted: 09/14/2018] [Indexed: 12/27/2022] Open
Abstract
Melatonin is a lipophilic hormone synthesized and secreted mainly in the pineal gland, acting as a neuroendocrine transducer of photoperiodic information during the night. In addition to this activity, melatonin has shown an antioxidant function and a key role as regulator of physiological processes related to human reproduction. Melatonin is involved in the normal outcome of pregnancy, beginning with the oocyte quality, continuing with embryo implantation, and finishing with fetal development and parturition. Melatonin has been shown to act directly on several reproductive events, including folliculogenesis, oocyte maturation, and corpus luteum (CL) formation. The molecular mechanism of action has been investigated through several studies which provide solid evidence on the connections between maternal melatonin secretion and embryonic and fetal development. Melatonin administration, reducing oxidative stress and directly acting on its membrane receptors, melatonin thyroid hormone receptors (MT1 and MT2), displays effects on the earliest phases of pregnancy and during the whole gestational period. In addition, considering the reported positive effects on the outcomes of compromised pregnancies, melatonin supplementation should be considered as an important tool for supporting fetal development, opening new opportunities for the management of several reproductive and gestational pathologies.
Collapse
|
17
|
Asghari MH, Ghobadi E, Moloudizargari M, Fallah M, Abdollahi M. Does the use of melatonin overcome drug resistance in cancer chemotherapy? Life Sci 2018; 196:143-155. [DOI: 10.1016/j.lfs.2018.01.024] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/12/2018] [Accepted: 01/22/2018] [Indexed: 12/23/2022]
|
18
|
Zubidat AE, Haim A. Artificial light-at-night - a novel lifestyle risk factor for metabolic disorder and cancer morbidity. J Basic Clin Physiol Pharmacol 2017; 28:295-313. [PMID: 28682785 DOI: 10.1515/jbcpp-2016-0116] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 03/02/2017] [Indexed: 06/07/2023]
Abstract
Both obesity and breast cancer are already recognized worldwide as the most common syndromes in our modern society. Currently, there is accumulating evidence from epidemiological and experimental studies suggesting that these syndromes are closely associated with circadian disruption. It has been suggested that melatonin (MLT) and the circadian clock genes both play an important role in the development of these syndromes. However, we still poorly understand the molecular mechanism underlying the association between circadian disruption and the modern health syndromes. One promising candidate is epigenetic modifications of various genes, including clock genes, circadian-related genes, oncogenes, and metabolic genes. DNA methylation is the most prominent epigenetic signaling tool for gene expression regulation induced by environmental exposures, such as artificial light-at-night (ALAN). In this review, we first provide an overview on the molecular feedback loops that generate the circadian regulation and how circadian disruption by ALAN can impose adverse impacts on public health, particularly metabolic disorders and breast cancer development. We then focus on the relation between ALAN-induced circadian disruption and both global DNA methylation and specific loci methylation in relation to obesity and breast cancer morbidities. DNA hypo-methylation and DNA hyper-methylation, are suggested as the most studied epigenetic tools for the activation and silencing of genes that regulate metabolic and monostatic responses. Finally, we discuss the potential clinical and therapeutic roles of MLT suppression and DNA methylation patterns as novel biomarkers for the early detection of metabolic disorders and breast cancer development.
Collapse
|
19
|
Reiter RJ, Rosales-Corral SA, Tan DX, Acuna-Castroviejo D, Qin L, Yang SF, Xu K. Melatonin, a Full Service Anti-Cancer Agent: Inhibition of Initiation, Progression and Metastasis. Int J Mol Sci 2017; 18:E843. [PMID: 28420185 PMCID: PMC5412427 DOI: 10.3390/ijms18040843] [Citation(s) in RCA: 318] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 04/05/2017] [Accepted: 04/06/2017] [Indexed: 12/21/2022] Open
Abstract
There is highly credible evidence that melatonin mitigates cancer at the initiation, progression and metastasis phases. In many cases, the molecular mechanisms underpinning these inhibitory actions have been proposed. What is rather perplexing, however, is the large number of processes by which melatonin reportedly restrains cancer development and growth. These diverse actions suggest that what is being observed are merely epiphenomena of an underlying more fundamental action of melatonin that remains to be disclosed. Some of the arresting actions of melatonin on cancer are clearly membrane receptor-mediated while others are membrane receptor-independent and involve direct intracellular actions of this ubiquitously-distributed molecule. While the emphasis of melatonin/cancer research has been on the role of the indoleamine in restraining breast cancer, this is changing quickly with many cancer types having been shown to be susceptible to inhibition by melatonin. There are several facets of this research which could have immediate applications at the clinical level. Many studies have shown that melatonin's co-administration improves the sensitivity of cancers to inhibition by conventional drugs. Even more important are the findings that melatonin renders cancers previously totally resistant to treatment sensitive to these same therapies. Melatonin also inhibits molecular processes associated with metastasis by limiting the entrance of cancer cells into the vascular system and preventing them from establishing secondary growths at distant sites. This is of particular importance since cancer metastasis often significantly contributes to death of the patient. Another area that deserves additional consideration is related to the capacity of melatonin in reducing the toxic consequences of anti-cancer drugs while increasing their efficacy. Although this information has been available for more than a decade, it has not been adequately exploited at the clinical level. Even if the only beneficial actions of melatonin in cancer patients are its ability to attenuate acute and long-term drug toxicity, melatonin should be used to improve the physical wellbeing of the patients. The experimental findings, however, suggest that the advantages of using melatonin as a co-treatment with conventional cancer therapies would far exceed improvements in the wellbeing of the patients.
Collapse
Affiliation(s)
- Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health, San Antonio, TX 78229, USA.
| | - Sergio A Rosales-Corral
- Centro de Investigacion Biomedica de Occidente, Del Instituto Mexicano del Seguro Social, Guadalajara 44340, Mexico.
| | - Dun-Xian Tan
- Department of Cell Systems and Anatomy, UT Health, San Antonio, TX 78229, USA.
| | | | - Lilan Qin
- Department of Cell Systems and Anatomy, UT Health, San Antonio, TX 78229, USA.
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan, Medical University, Taichung 40201, Taiwan.
| | - Kexin Xu
- Department of Molecular Medicine, UT Health, San Antonio, TX 78229, USA.
| |
Collapse
|
20
|
Uthamacumaran A. A biophysical approach to cancer dynamics: Quantum chaos and energy turbulence. Biosystems 2017; 156-157:1-22. [PMID: 28377182 DOI: 10.1016/j.biosystems.2017.03.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 03/22/2017] [Indexed: 02/06/2023]
Abstract
Cancer is a term used to define a collective set of rapidly evolving cells with immortalized replication, altered epimetabolomes and patterns of longevity. Identifying a common signaling cascade to target all cancers has been a major obstacle in medicine. A quantum dynamic framework has been established to explain mutation theory, biological energy landscapes, cell communication patterns and the cancer interactome under the influence of quantum chaos. Quantum tunneling in mutagenesis, vacuum energy field dynamics, and cytoskeletal networks in tumor morphogenesis have revealed the applicability for description of cancer dynamics, which is discussed with a brief account of endogenous hallucinogens, bioelectromagnetism and water fluctuations. A holistic model of mathematical oncology has been provided to identify key signaling pathways required for the phenotypic reprogramming of cancer through an epigenetic landscape. The paper will also serve as a mathematical guide to understand the cancer interactome by interlinking theoretical and experimental oncology. A multi-dimensional model of quantum evolution by adaptive selection has been established for cancer biology.
Collapse
|
21
|
Mayo JC, Sainz RM, González Menéndez P, Cepas V, Tan DX, Reiter RJ. Melatonin and sirtuins: A "not-so unexpected" relationship. J Pineal Res 2017; 62. [PMID: 28109165 DOI: 10.1111/jpi.12391] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 01/17/2017] [Indexed: 12/11/2022]
Abstract
Epigenetic modifications, including methylation or acetylation as well as post-transcriptional modifications, are mechanisms used by eukaryotic cells to increase the genome diversity in terms of differential gene expression and protein diversity. Among these modifying enzymes, sirtuins, a class III histone deacetylase (HDAC) enzymes, are of particular importance. Sirtuins regulate the cell cycle, DNA repair, cell survival, and apoptosis, thus having important roles in normal and cancer cells. Sirtuins can also regulate metabolic pathways by changing preference for glycolysis under aerobic conditions as well as glutaminolysis. These actions make sirtuins a major target in numerous physiological processes as well as in other contexts such as calorie restriction-induced anti-aging, cancer, or neurodegenerative disease. Interestingly, melatonin, a nighttime-produced indole synthesized by pineal gland and many other organs, has important cytoprotective effects in many tissues including aging, neurodegenerative diseases, immunomodulation, and cancer. The pleiotropic actions of melatonin in different physiological and pathological conditions indicate that may be basic cellular targeted for the indole. Thus, much research has focused attention on the potential mechanisms of the indole in modulating expression and/or activity of sirtuins. Numerous findings report a rise in activity, especially on SIRT1, in a diversity of cells and animal models after melatonin treatment. This contrasts, however, with data reporting an inhibitory effect of melatonin on this sirtuin in some tumor cells. This review tabulates and discusses the recent findings relating melatonin with sirtuins, particularly SIRT1 and mitochondrial SIRT3, showing the apparent dichotomy with the differential actions documented in normal and in cancer cells.
Collapse
Affiliation(s)
- Juan C Mayo
- Departamento de Morfología y Biología Celular, Facultad de Medicina, Universidad de Oviedo, Oviedo, Spain
- Instituto Universitario Oncológico del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain
| | - Rosa M Sainz
- Departamento de Morfología y Biología Celular, Facultad de Medicina, Universidad de Oviedo, Oviedo, Spain
- Instituto Universitario Oncológico del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain
| | - Pedro González Menéndez
- Departamento de Morfología y Biología Celular, Facultad de Medicina, Universidad de Oviedo, Oviedo, Spain
- Instituto Universitario Oncológico del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain
| | - Vanesa Cepas
- Departamento de Morfología y Biología Celular, Facultad de Medicina, Universidad de Oviedo, Oviedo, Spain
- Instituto Universitario Oncológico del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain
| | - Dun-Xian Tan
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio (UTHSCSA), San Antonio, TX, USA
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio (UTHSCSA), San Antonio, TX, USA
| |
Collapse
|
22
|
Association between light at night, melatonin secretion, sleep deprivation, and the internal clock: Health impacts and mechanisms of circadian disruption. Life Sci 2017; 173:94-106. [PMID: 28214594 DOI: 10.1016/j.lfs.2017.02.008] [Citation(s) in RCA: 356] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 02/02/2017] [Accepted: 02/14/2017] [Indexed: 01/20/2023]
Abstract
Exposure to Artificial Light At Night (ALAN) results in a disruption of the circadian system, which is deleterious to health. In industrialized countries, 75% of the total workforce is estimated to have been involved in shift work and night work. Epidemiologic studies, mainly of nurses, have revealed an association between sustained night work and a 50-100% higher incidence of breast cancer. The potential and multifactorial mechanisms of the effects include the suppression of melatonin secretion by ALAN, sleep deprivation, and circadian disruption. Shift and/or night work generally decreases the time spent sleeping, and it disrupts the circadian time structure. In the long run, this desynchronization is detrimental to health, as underscored by a large number of epidemiological studies that have uncovered elevated rates of several diseases, including cancer, diabetes, cardiovascular risks, obesity, mood disorders and age-related macular degeneration. It amounts to a public health issue in the light of the very substantial number of individuals involved. The IARC has classified shift work in group 2A of "probable carcinogens to humans" since "they involve a circadian disorganization". Countermeasures to the effects of ALAN, such as melatonin, bright light, or psychotropic drugs, have been proposed as a means to combat circadian clock disruption and improve adaptation to shift and night work. We review the evidence for the ALAN impacts on health. Furthermore, we highlight the importance of an in-depth mechanistic understanding to combat the detrimental properties of exposure to ALAN and develop strategies of prevention.
Collapse
|
23
|
Deibel SH, Zelinski EL, Keeley RJ, Kovalchuk O, McDonald RJ. Epigenetic alterations in the suprachiasmatic nucleus and hippocampus contribute to age-related cognitive decline. Oncotarget 2016; 6:23181-203. [PMID: 26252151 PMCID: PMC4695111 DOI: 10.18632/oncotarget.4036] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 12/31/1969] [Indexed: 12/16/2022] Open
Abstract
Circadian rhythm dysfunction and cognitive decline, specifically memory loss, frequently accompany natural aging. Circadian rhythms and memory are intertwined, as circadian rhythms influence memory formation and recall in young and old rodents. Although, the precise relationship between circadian rhythms and memory is still largely unknown, it is hypothesized that circadian rhythm disruption, which occurs during aging, contributes to age-associated cognitive decline, specifically memory loss. While there are a variety of mechanisms that could mediate this effect, changes in the epigenome that occur during aging has been proposed as a potential candidate. Interestingly, epigenetic mechanisms, such as DNA methylation and sirtuin1 (SIRT1) are necessary for both circadian rhythms and memory. During aging, similar alterations of epigenetic mechanisms occur in the suprachiasmatic nucleus (SCN) and hippocampus, which are necessary for circadian rhythm generation and memory, respectively. Recently, circadian rhythms have been linked to epigenetic function in the hippocampus, as some of these epigenetic mechanisms oscillate in the hippocampus and are disrupted by clock gene deletion. The current paper will review how circadian rhythms and memory change with age, and will suggest how epigenetic changes in these processes might contribute to age-related cognitive decline.
Collapse
Affiliation(s)
- Scott H Deibel
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Erin L Zelinski
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Robin J Keeley
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Olga Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, Canada
| | - Robert J McDonald
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| |
Collapse
|
24
|
Agorastos A, Linthorst ACE. Potential pleiotropic beneficial effects of adjuvant melatonergic treatment in posttraumatic stress disorder. J Pineal Res 2016; 61:3-26. [PMID: 27061919 DOI: 10.1111/jpi.12330] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 04/05/2016] [Indexed: 12/21/2022]
Abstract
Loss of circadian rhythmicity fundamentally affects the neuroendocrine, immune, and autonomic system, similar to chronic stress and may play a central role in the development of stress-related disorders. Recent articles have focused on the role of sleep and circadian disruption in the pathophysiology of posttraumatic stress disorder (PTSD), suggesting that chronodisruption plays a causal role in PTSD development. Direct and indirect human and animal PTSD research suggests circadian system-linked neuroendocrine, immune, metabolic and autonomic dysregulation, linking circadian misalignment to PTSD pathophysiology. Recent experimental findings also support a specific role of the fundamental synchronizing pineal hormone melatonin in mechanisms of sleep, cognition and memory, metabolism, pain, neuroimmunomodulation, stress endocrinology and physiology, circadian gene expression, oxidative stress and epigenetics, all processes affected in PTSD. In the current paper, we review available literature underpinning a potentially beneficiary role of an add-on melatonergic treatment in PTSD pathophysiology and PTSD-related symptoms. The literature is presented as a narrative review, providing an overview on the most important and clinically relevant publications. We conclude that adjuvant melatonergic treatment could provide a potentially promising treatment strategy in the management of PTSD and especially PTSD-related syndromes and comorbidities. Rigorous preclinical and clinical studies are needed to validate this hypothesis.
Collapse
Affiliation(s)
- Agorastos Agorastos
- Department of Psychiatry and Psychotherapy, Center for Psychosocial Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Astrid C E Linthorst
- Faculty of Health Sciences, Neurobiology of Stress and Behaviour Research Group, School of Clinical Sciences, University of Bristol, Bristol, UK
| |
Collapse
|
25
|
Haim A, Zubidat AE. Artificial light at night: melatonin as a mediator between the environment and epigenome. Philos Trans R Soc Lond B Biol Sci 2016; 370:rstb.2014.0121. [PMID: 25780234 DOI: 10.1098/rstb.2014.0121] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The adverse effects of excessive use of artificial light at night (ALAN) are becoming increasingly evident and associated with several health problems including cancer. Results of epidemiological studies revealed that the increase in breast cancer incidents co-distribute with ALAN worldwide. There is compiling evidence that suggests that melatonin suppression is linked to ALAN-induced cancer risks, but the specific genetic mechanism linking environmental exposure and the development of disease is not well known. Here we propose a possible genetic link between environmental exposure and tumorigenesis processes. We discuss evidence related to the relationship between epigenetic remodelling and oncogene expression. In breast cancer, enhanced global hypomethylation is expected in oncogenes, whereas in tumour suppressor genes local hypermethylation is recognized in the promoter CpG chains. A putative mechanism of action involving epigenetic modifications mediated by pineal melatonin is discussed in relation to cancer prevalence. Taking into account that ALAN-induced epigenetic modifications are reversible, early detection of cancer development is of great significance in the treatment of the disease. Therefore, new biomarkers for circadian disruption need to be developed to prevent ALAN damage.
Collapse
Affiliation(s)
- Abraham Haim
- The Israeli Center for Interdisciplinary Research in Chronobiology, Department of Evolutionary and Environmental Biology, University of Haifa, Mount Carmel, Haifa 31905, Israel
| | - Abed E Zubidat
- The Israeli Center for Interdisciplinary Research in Chronobiology, Department of Evolutionary and Environmental Biology, University of Haifa, Mount Carmel, Haifa 31905, Israel
| |
Collapse
|
26
|
Abu-Elmagd M, Assidi M, Schulten HJ, Dallol A, Pushparaj PN, Ahmed F, Scherer SW, Al-Qahtani M. Individualized medicine enabled by genomics in Saudi Arabia. BMC Med Genomics 2015; 8 Suppl 1:S3. [PMID: 25951871 PMCID: PMC4315314 DOI: 10.1186/1755-8794-8-s1-s3] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The biomedical research sector in Saudi Arabia has recently received special attention from the government, which is currently supporting research aimed at improving the understanding and treatment of common diseases afflicting Saudi Arabian society. To build capacity for research and training, a number of centres of excellence were established in different areas of the country. Among these, is the Centre of Excellence in Genomic Medicine Research (CEGMR) at King Abdulaziz University, Jeddah, with its internationally ranked and highly productive team performing translational research in the area of individualized medicine. Here, we present a panorama of the recent trends in different areas of biomedical research in Saudi Arabia drawing from our vision of where genomics will have maximal impact in the Kingdom of Saudi Arabia. We describe advances in a number of research areas including; congenital malformations, infertility, consanguinity and pre-implantation genetic diagnosis, cancer and genomic classifications in Saudi Arabia, epigenetic explanations of idiopathic disease, and pharmacogenomics and personalized medicine. We conclude that CEGMR will continue to play a pivotal role in advances in the field of genomics and research in this area is facing a number of challenges including generating high quality control data from Saudi population and policies for using these data need to comply with the international set up.
Collapse
Affiliation(s)
- Muhammad Abu-Elmagd
- Centre of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, P.O. Box: 80216 Jeddah 21589, KSA
- KACST Technology Innovation Centre in Personalized Medicine at King Abdulaziz University (CIPM), P.O. Box: 80216 Jeddah 21589, KSA
- School of Biological Sciences, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK
- Zoology Department, Faculty of Science, Minia University, Minia, P.O. Box 61519, Egypt
| | - Mourad Assidi
- Centre of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, P.O. Box: 80216 Jeddah 21589, KSA
- KACST Technology Innovation Centre in Personalized Medicine at King Abdulaziz University (CIPM), P.O. Box: 80216 Jeddah 21589, KSA
| | - Hans-Juergen Schulten
- Centre of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, P.O. Box: 80216 Jeddah 21589, KSA
| | - Ashraf Dallol
- Centre of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, P.O. Box: 80216 Jeddah 21589, KSA
- KACST Technology Innovation Centre in Personalized Medicine at King Abdulaziz University (CIPM), P.O. Box: 80216 Jeddah 21589, KSA
| | - Peter Natesan Pushparaj
- Centre of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, P.O. Box: 80216 Jeddah 21589, KSA
| | - Farid Ahmed
- Centre of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, P.O. Box: 80216 Jeddah 21589, KSA
| | - Stephen W Scherer
- Centre of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, P.O. Box: 80216 Jeddah 21589, KSA
- The Centre for Applied Genomics and Program in Genetics and Genome Biology, the Hospital for Sick Children, Toronto, Ontario, Canada
- McLaughlin Centre and Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Mohammed Al-Qahtani
- Centre of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, P.O. Box: 80216 Jeddah 21589, KSA
| |
Collapse
|
27
|
Jenwitheesuk A, Nopparat C, Mukda S, Wongchitrat P, Govitrapong P. Melatonin regulates aging and neurodegeneration through energy metabolism, epigenetics, autophagy and circadian rhythm pathways. Int J Mol Sci 2014; 15:16848-84. [PMID: 25247581 PMCID: PMC4200827 DOI: 10.3390/ijms150916848] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 09/03/2014] [Accepted: 09/12/2014] [Indexed: 12/19/2022] Open
Abstract
Brain aging is linked to certain types of neurodegenerative diseases and identifying new therapeutic targets has become critical. Melatonin, a pineal hormone, associates with molecules and signaling pathways that sense and influence energy metabolism, autophagy, and circadian rhythms, including insulin-like growth factor 1 (IGF-1), Forkhead box O (FoxOs), sirtuins and mammalian target of rapamycin (mTOR) signaling pathways. This review summarizes the current understanding of how melatonin, together with molecular, cellular and systemic energy metabolisms, regulates epigenetic processes in the neurons. This information will lead to a greater understanding of molecular epigenetic aging of the brain and anti-aging mechanisms to increase lifespan under healthy conditions.
Collapse
Affiliation(s)
- Anorut Jenwitheesuk
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakornpathom 73170, Thailand.
| | - Chutikorn Nopparat
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakornpathom 73170, Thailand.
| | - Sujira Mukda
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakornpathom 73170, Thailand.
| | - Prapimpun Wongchitrat
- Center for Innovation Development and Technology Transfer, Faculty of Medical Technology, Mahidol University, Salaya, Nakornpathom 73170, Thailand.
| | - Piyarat Govitrapong
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakornpathom 73170, Thailand.
| |
Collapse
|
28
|
Tampaki EC, Nakopoulou L, Tampakis A, Kontzoglou K, Weber WP, Kouraklis G. Nestin involvement in tissue injury and cancer--a potential tumor marker? Cell Oncol (Dordr) 2014; 37:305-15. [PMID: 25164879 DOI: 10.1007/s13402-014-0193-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2014] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND In eukaryotic cells, the cytoskeleton contains three major filamentous components: actin microfilaments, microtubules and intermediate filaments. Nestin represents one of the class VI intermediate filament proteins. Clinical and molecular analyses have revealed substantial information regarding the presence of Nestin in cells with progenitor or stem cell properties. During tissue injury Nestin is expressed in cells with progenitor cell-like properties. These cells may serve as a tissue reserve and, as such, may contribute to tissue repair. Based on currently available data, Nestin also appears to be implicated in two oncogenic processes. First, Nestin has been found to be expressed in cancer stem-like cells and poorly differentiated cancer cells and, as such, Nestin is thought to contribute to the aggressive behavior of these cells. Second, Nestin has been found to be involved in tumor angiogenesis through an interaction of cancer cells and blood vessel endothelial cells and, as such, Nestin is thought to facilitate tumor growth. CONCLUSIONS We conclude that Nestin may serve as a promising tumor marker and as a potential therapeutic target amenable to tumor suppression and angiogenesis inhibition.
Collapse
Affiliation(s)
- Ekaterini Christina Tampaki
- 2nd Department of Propedeutic Surgery, Athens University Medical School, Laiko General Hospital, 17 Agiou Thoma Street, 11527, Athens, Greece,
| | | | | | | | | | | |
Collapse
|
29
|
Chottanapund S, Van Duursen MBM, Navasumrit P, Hunsonti P, Timtavorn S, Ruchirawat M, Van den Berg M. Anti-aromatase effect of resveratrol and melatonin on hormonal positive breast cancer cells co-cultured with breast adipose fibroblasts. Toxicol In Vitro 2014; 28:1215-21. [PMID: 24929094 DOI: 10.1016/j.tiv.2014.05.015] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 05/27/2014] [Accepted: 05/29/2014] [Indexed: 12/29/2022]
Abstract
Targeting the estrogen pathway has been proven effective in the treatment for estrogen receptor positive breast cancer. There are currently two common groups of anti-estrogenic compounds used in the clinic; Selective Estrogen Receptor Modulators (SERMs, e.g. tamoxifen) and Selective Estrogen Enzyme Modulators (SEEMs e.g. letrozole). Among various naturally occurring, biologically active compounds, resveratrol and melatonin have been suggested to act as aromatase inhibitors, which make them potential candidates in hormonal treatment of breast cancer. Here we used a co-culture model in which we previously demonstrated that primary human breast adipose fibroblasts (BAFs) can convert testosterone to estradiol, which subsequently results in estrogen receptor-mediated breast cancer T47D cell proliferation. In the presence of testosterone in this model, we examined the effect of letrozole, resveratrol and melatonin on cell proliferation, estradiol (E2) production and gene expression of CYP19A1, pS2 and Ki-67. Both melatonin and resveratrol were found to be aromatase inhibitors in this co-culture system, albeit at different concentrations. Our co-culture model did not provide any indications that melatonin is also a selective estrogen receptor modulator. In the T47D-BAF co-culture, a melatonin concentration of 20 nM and resveratrol concentration of 20 μM have an aromatase inhibitory effect as potent as 20 nM letrozole, which is a clinically used anti-aromatase drug in breast cancer treatment. The SEEM mechanism of action of especially melatonin clearly offers potential advantages for breast cancer treatment.
Collapse
Affiliation(s)
- Suthat Chottanapund
- Division of Environmental Toxicology, Chulabhorn Graduate Institute, Bangkok, Thailand; Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Bangkok, Thailand; Center of Excellence on Environmental Health, Toxicology and Management of Chemicals, Bangkok, Thailand; Bamrasnaradura Infectious Diseases Institute, Ministry of Public Health, Thailand.
| | - M B M Van Duursen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Panida Navasumrit
- Division of Environmental Toxicology, Chulabhorn Graduate Institute, Bangkok, Thailand; Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Bangkok, Thailand; Center of Excellence on Environmental Health, Toxicology and Management of Chemicals, Bangkok, Thailand
| | - Potchanee Hunsonti
- Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Bangkok, Thailand
| | - Supatchaya Timtavorn
- Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Bangkok, Thailand
| | - Mathuros Ruchirawat
- Division of Environmental Toxicology, Chulabhorn Graduate Institute, Bangkok, Thailand; Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Bangkok, Thailand; Center of Excellence on Environmental Health, Toxicology and Management of Chemicals, Bangkok, Thailand
| | - Martin Van den Berg
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
30
|
Hong Y, Won J, Lee Y, Lee S, Park K, Chang KT, Hong Y. Melatonin treatment induces interplay of apoptosis, autophagy, and senescence in human colorectal cancer cells. J Pineal Res 2014; 56:264-74. [PMID: 24484372 DOI: 10.1111/jpi.12119] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 01/03/2014] [Indexed: 12/13/2022]
Abstract
In Asia, the incidence of colorectal cancer has been increasing gradually due to a more Westernized lifestyle. The aim of study is to determine the interaction between melatonin-induced cell death and cellular senescence. We treated HCT116 human colorectal adenocarcinoma cells with 10 μm melatonin and determined the levels of cell death-related proteins and evaluated cell cycle kinetics. The plasma membrane melatonin receptor, MT1, was significantly decreased by melatonin in a time-dependent manner, whereas the nuclear receptor, RORα, was increased only after 12 hr treatment. HCT116 cells, which upregulated both pro-apoptotic Bax and anti-apoptotic Bcl-xL in the early response to melatonin treatment, activated autophagic as well as apoptotic machinery within 18 hr. Melatonin decreased the S-phase population of the cells to 57% of the control at 48 hr, which was concomitant with a reduction in BrdU-positive cells in the melatonin-treated cell population. We found not only marked attenuation of E- and A-type cyclins, but also increased expression of p16 and p-p21. Compared to the cardiotoxicity of Trichostatin A in vitro, single or cumulative melatonin treatment induced insignificant detrimental effects on neonatal cardiomyocytes. We found that 10 μm melatonin activated cell death programs early and induced G1-phase arrest at the advanced phase. Therefore, we suggest that melatonin is a potential chemotherapeutic agent for treatment of colon cancer, the effects of which are mediated by regulation of both cell death and senescence in cancerous cells with minimized cardiotoxicity.
Collapse
Affiliation(s)
- Yunkyung Hong
- Department of Rehabilitation Science, Graduate School of Inje University, Gimhae, Korea; Cardiovascular & Metabolic Disease Center, College of Biomedical Science & Engineering, Inje University, Gimhae, Korea; Ubiquitous Healthcare Research Center, Inje University, Gimhae, Korea
| | | | | | | | | | | | | |
Collapse
|
31
|
Update on the role of melatonin in the prevention of cancer tumorigenesis and in the management of cancer correlates, such as sleep-wake and mood disturbances: review and remarks. Aging Clin Exp Res 2013; 25:499-510. [PMID: 24046037 PMCID: PMC3788186 DOI: 10.1007/s40520-013-0118-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 04/24/2013] [Indexed: 01/24/2023]
Abstract
The aim of this article was to perform a systematic review on the role of melatonin in the prevention of cancer tumorigenesis--in vivo and in vitro--as well as in the management of cancer correlates, such as sleep-wake and mood disturbances. The International Agency for Research on Cancer recently classified "shift-work that involves circadian disruption" as "probably carcinogenic to humans" (Group 2A) based on "limited evidence in humans for the carcinogenicity of shift-work that involves night-work", and "sufficient evidence in experimental animals for the carcinogenicity of light during the daily dark period (biological night)". The clinical implications and the potential uses of melatonin in terms of biologic clock influence (e.g. sleep and mood), immune function, cancer initiation and growth, as well as the correlation between melatonin levels and cancer risk, are hereinafter recorded and summarized. Additionally, this paper includes a description of the newly discovered effects that melatonin has on the management of sleep-wake and mood disturbances as well as with regard to cancer patients' life quality. In cancer patients depression and insomnia are frequent and serious comorbid conditions which definitely require a special attention. The data presented in this review encourage the performance of new clinical trials to investigate the possible use of melatonin in cancer patients suffering from sleep-wake and mood disturbances, also considering that melatonin registered a low toxicity in cancer patients.
Collapse
|
32
|
|
33
|
Milagro F, Mansego M, De Miguel C, Martínez J. Dietary factors, epigenetic modifications and obesity outcomes: Progresses and perspectives. Mol Aspects Med 2013; 34:782-812. [DOI: 10.1016/j.mam.2012.06.010] [Citation(s) in RCA: 209] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 06/27/2012] [Indexed: 12/31/2022]
|
34
|
Proietti S, Cucina A, Reiter RJ, Bizzarri M. Molecular mechanisms of melatonin's inhibitory actions on breast cancers. Cell Mol Life Sci 2013; 70:2139-57. [PMID: 23007844 PMCID: PMC11113894 DOI: 10.1007/s00018-012-1161-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2012] [Revised: 09/04/2012] [Accepted: 09/05/2012] [Indexed: 02/07/2023]
Abstract
Melatonin is involved in many physiological functions and it plays an important role in many pathological processes as well. Melatonin has been shown to reduce the incidence of experimentally induced cancers and can significantly inhibit the growth of some human tumors, namely hormone-dependent cancers. The anticancer effects of melatonin have been observed in breast cancer, both in in vivo with models of chemically induced rat mammary tumors, and in vitro studies on human breast cancer cell lines. Melatonin acts at different physiological levels and its antitumoral properties are supported by a set of complex, different mechanisms of action, involving apoptosis activation, inhibition of proliferation, and cell differentiation.
Collapse
Affiliation(s)
- Sara Proietti
- Department of Clinical and Molecular Medicine, University “La Sapienza”, Rome, Italy
- Department of Surgery “P.Valdoni”, University “La Sapienza”, Rome, Italy
| | - Alessandra Cucina
- Department of Surgery “P.Valdoni”, University “La Sapienza”, Rome, Italy
| | - Russel J. Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX USA
| | - Mariano Bizzarri
- Systems Biology Group Laboratory, Department of Experimental Medicine, University “La Sapienza”, 14-16, Via Antonio Scarpa, Rome, 00161 Italy
| |
Collapse
|
35
|
Chen YC, Sheen JM, Tiao MM, Tain YL, Huang LT. Roles of melatonin in fetal programming in compromised pregnancies. Int J Mol Sci 2013; 14:5380-401. [PMID: 23466884 PMCID: PMC3634509 DOI: 10.3390/ijms14035380] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Revised: 02/25/2013] [Accepted: 02/25/2013] [Indexed: 12/24/2022] Open
Abstract
Compromised pregnancies such as those associated with gestational diabetes mellitus, intrauterine growth retardation, preeclampsia, maternal undernutrition, and maternal stress may negatively affect fetal development. Such pregnancies may induce oxidative stress to the fetus and alter fetal development through the epigenetic process that may affect development at a later stage. Melatonin is an oxidant scavenger that reverses oxidative stress during the prenatal period. Moreover, the role of melatonin in epigenetic modifications in the field of developmental programming has been studied extensively. Here, we describe the physiological function of melatonin in pregnancy and discuss the roles of melatonin in fetal programming in compromised pregnancies, focusing on its involvement in redox and epigenetic mechanisms.
Collapse
Affiliation(s)
- Yu-Chieh Chen
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan; E-Mails: (Y.-C.C.); (J.-M.S.); (M.-M.T.); (Y.-L.T.)
| | - Jiunn-Ming Sheen
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan; E-Mails: (Y.-C.C.); (J.-M.S.); (M.-M.T.); (Y.-L.T.)
| | - Miao-Meng Tiao
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan; E-Mails: (Y.-C.C.); (J.-M.S.); (M.-M.T.); (Y.-L.T.)
| | - You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan; E-Mails: (Y.-C.C.); (J.-M.S.); (M.-M.T.); (Y.-L.T.)
- Center for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Li-Tung Huang
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan; E-Mails: (Y.-C.C.); (J.-M.S.); (M.-M.T.); (Y.-L.T.)
- Department of Traditional Chinese Medicine, Chang Gung University, Linkow 333, Taiwan
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +886-975-056-169; Fax: +886-773-380-09
| |
Collapse
|
36
|
Lee SE, Kim SJ, Yoon HJ, Yu SY, Yang H, Jeong SI, Hwang SY, Park CS, Park YS. Genome-wide profiling in melatonin-exposed human breast cancer cell lines identifies differentially methylated genes involved in the anticancer effect of melatonin. J Pineal Res 2013; 54:80-8. [PMID: 22856590 DOI: 10.1111/j.1600-079x.2012.01027.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 06/22/2012] [Indexed: 01/07/2023]
Abstract
Epigenetic alterations have emerged as an important mechanism involved in tumorigenesis. The epigenetic impact of DNA methylation in various types of human cancer is not completely understood. Previously, we observed melatonin-induced differential expression of miRNA and miRNA-related genes in human breast cancer cell lines that indicated an anticancer effect of melatonin. In this report, we further characterized epigenetic changes in melatonin-exposed MCF-7 cells through the analysis of DNA methylation profiles in breast cancer cells to provide new insights into the potential mechanisms of the anticancer effect of melatonin. Microarray-based DNA methylation and gene expression profiling were carried out using human breast cancer cell lines. We further identified a number of mRNAs whose expression levels show an inverse correlation with DNA methylation levels. The mRNA expression levels and methylation status of candidate genes in melatonin-exposed cells were confirmed by real-time quantitative PCR and bisulfite PCR. This approach led to the detection of cancer-related genes, which were oncogenic genes, including EGR3 and POU4F2/Brn-3b were down-regulated, while the tumor suppressor gene, GPC3, was up-regulated by 1 nm melatonin-treated MCF-7 cells. Our results provide detailed insights into the DNA methylation patterns induced by melatonin and suggest a potential mechanism of the anticancer effect of aberrant DNA methylation in melatonin-treated breast cancer cells.
Collapse
Affiliation(s)
- Seung Eun Lee
- Department of Microbiology, School of Medicine, Kyung Hee University, Seoul, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Du J, Xu R. RORα, a potential tumor suppressor and therapeutic target of breast cancer. Int J Mol Sci 2012; 13:15755-66. [PMID: 23443091 PMCID: PMC3546659 DOI: 10.3390/ijms131215755] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 11/17/2012] [Accepted: 11/19/2012] [Indexed: 12/29/2022] Open
Abstract
The function of the nuclear receptor (NR) in breast cancer progression has been investigated for decades. The majority of the nuclear receptors have well characterized natural ligands, but a few of them are orphan receptors for which no ligand has been identified. RORα, one member of the retinoid orphan nuclear receptor (ROR) subfamily of orphan receptors, regulates various cellular and pathological activities. RORα is commonly down-regulated and/or hypoactivated in breast cancer compared to normal mammary tissue. Expression of RORα suppresses malignant phenotypes in breast cancer cells, in vitro and in vivo. Activity of RORα can be categorized into the canonical and non-canonical nuclear receptor pathways, which in turn regulate various breast cancer cellular function, including cell proliferation, apoptosis and invasion. This information suggests that RORα is a potent tumor suppressor and a potential therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Jun Du
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; E-Mail:
| | - Ren Xu
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; E-Mail:
- Department of Molecular and Biomedical Pharmacology, University of Kentucky, Lexington, KY 40536, USA
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-859-323-7889; Fax: +1-859-257-6030
| |
Collapse
|
38
|
Milagro FI, Gómez-Abellán P, Campión J, Martínez JA, Ordovás JM, Garaulet M. CLOCK, PER2 and BMAL1 DNA methylation: association with obesity and metabolic syndrome characteristics and monounsaturated fat intake. Chronobiol Int 2012; 29:1180-94. [PMID: 23003921 DOI: 10.3109/07420528.2012.719967] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The circadian clock system instructs 24-h rhythmicity on gene expression in essentially all cells, including adipocytes, and epigenetic mechanisms may participate in this regulation. The aim of this research was to investigate the influence of obesity and metabolic syndrome (MetS) features in clock gene methylation and the involvement of these epigenetic modifications in the outcomes. Sixty normal-weight, overweight and obese women followed a 16-weeks weight reduction program. DNA methylation levels at different CpG sites of CLOCK, BMAL1 and PER2 genes were analyzed by Sequenom's MassARRAY in white blood cells obtained before the treatment. Statistical differences between normal-weight and overweight + obese subjects were found in the methylation status of different CpG sites of CLOCK (CpGs 1, 5-6, 8 and 11-14) and, with lower statistical significance, in BMAL1 (CpGs 6-7, 8, 15 and 16-17). The methylation pattern of different CpG sites of the three genes showed significant associations with anthropometric parameters such as body mass index and adiposity, and with a MetS score. Moreover, the baseline methylation levels of CLOCK CpG 1 and PER2 CpGs 2-3 and 25 correlated with the magnitude of weight loss. Interestingly, the percentage of methylation of CLOCK CpGs 1 and 8 showed associations with the intake of monounsaturated and polyunsaturated fatty acids. This study demonstrates for the first time an association between methylation status of CpG sites located in clock genes (CLOCK, BMAL1 and PER2) with obesity, MetS and weight loss. Moreover, the methylation status of different CpG sites in CLOCK and PER2 could be used as biomarkers of weight-loss success, particularly CLOCK CPGs 5-6.
Collapse
Affiliation(s)
- Fermín I Milagro
- Department of Nutrition and Food Sciences, Physiology and Toxicology, University of Navarra, Pamplona, Spain
| | | | | | | | | | | |
Collapse
|
39
|
Wolf E, Milazzo S, Pilkington K, Liu JP, Zwahlen M, Horneber M. Melatonin in cancer treatment. Hippokratia 2012. [DOI: 10.1002/14651858.cd010145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Elke Wolf
- Klinikum Nord; Medizinische Klinik 5-Schwerpunkt Onkologie/Haematologie; Prof.-Ernst-Nathan-Str. 1 Nuernberg Germany 90340
| | - Stefania Milazzo
- Klinikum Nord; Medizinische Klinik 5-Schwerpunkt Onkologie/Haematologie; Prof.-Ernst-Nathan-Str. 1 Nuernberg Germany 90340
| | - Karen Pilkington
- University of Westminster; School of Life Sciences; 115 New Cavendish Street London UK W1W 6UW
| | - Jian Ping Liu
- Beijing University of Chinese Medicine; Centre for Evidence-Based Chinese Medicine; 11 Bei San Huan Dong Lu, Chaoyang District Beijing China 100029
| | - Marcel Zwahlen
- University of Bern; Institute of Social and Preventive Medicine; Finkelhubelweg11 Bern Switzerland 3012
| | - Markus Horneber
- Klinikum Nord; Medizinische Klinik 5-Schwerpunkt Onkologie/Haematologie; Prof.-Ernst-Nathan-Str. 1 Nuernberg Germany 90340
| |
Collapse
|
40
|
Gene regulation by melatonin linked to epigenetic phenomena. Gene 2012; 503:1-11. [DOI: 10.1016/j.gene.2012.04.040] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 03/29/2012] [Accepted: 04/17/2012] [Indexed: 12/13/2022]
|
41
|
Melatonin protection from chronic, low-level ionizing radiation. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2012; 751:7-14. [DOI: 10.1016/j.mrrev.2011.12.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 12/05/2011] [Accepted: 12/06/2011] [Indexed: 01/02/2023]
|
42
|
Li Y, Shi L, Han C, Wang Y, Yang J, Cao C, Jiao S. Effects of ARHI on cell cycle progression and apoptosis levels of breast cancer cells. Tumour Biol 2012; 33:1403-10. [PMID: 22528939 DOI: 10.1007/s13277-012-0388-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 03/21/2012] [Indexed: 12/12/2022] Open
Abstract
The purposes of this study were to investigate the role of Aplysia Ras Homolog I (ARHI) on cell growth, proliferation, apoptosis, and other biological characteristics of HER2-positive breast cancer cells. Our goal was to provide experimental evidence for the development of future effective treatments of HER2-positive breast cancer. A pcDNA3.1-ARHI eukaryotic expression vector was constructed and transfected into the human HER2-positive breast cancer cell lines SK-BR-3 and JIMT-1. Then, various experimental methods were utilized to analyze the biological characteristics of ARHI-expressing breast cancer cells and to examine the impact of expression of the ARHI gene on cyclin D1, p27(Kip1), and calpain1 expression. We further analyzed the cells in each group after treatment with trastuzumab to examine the effects of this drug on various cellular characteristics. When we compared pcDNA3.1-ARHI-expressing SK-BR-3 and JIMT-1 cells to their respective empty vector and control groups, we found that cell viability was significantly lower (p < 0.05) in the ARHI-expressing cells, and the proportions of G1 phase cells and apoptotic cells were significantly higher in the ARHI-expressing cells (p < 0.05). In all groups of SK-BR-3 cells, trastuzumab treatment significantly decreased cell growth (p < 0.05). The proportion of cells in G1 phase and the number of apoptotic cells in the pcDNA3.1-ARHI-expressing group were significantly higher than that in the empty vector group and the control group (p < 0.05). The growth of pcDNA3.1-ARHI-transfected JIMT-1 cells was significantly decreased (p < 0.05), while the proportion of apoptotic cells was significantly increased (p < 0.05). Cell growth, viability, and the percentage of apoptotic cells were similar between the JIMT-1 empty vector and control groups. ARHI expression inhibited cyclin D1 expression in SK-BR-3 cells and JIMT-1 cells, while it promoted p27(Kip1) and calpain1 expression in these cells. ARHI expression inhibits the growth and proliferation of HER2-positive breast cancer cells, while it also promotes apoptosis in these cells. ARHI expression also improves the sensitivity of JIMT-1 cells to trastuzumab by inducing apoptosis.
Collapse
Affiliation(s)
- Ying Li
- Department of Oncology, Chinese PLA General Hospital, No. 28, FuXing Road, Beijing, 100853, China
| | | | | | | | | | | | | |
Collapse
|
43
|
Hardeland R, Madrid JA, Tan DX, Reiter RJ. Melatonin, the circadian multioscillator system and health: the need for detailed analyses of peripheral melatonin signaling. J Pineal Res 2012; 52:139-66. [PMID: 22034907 DOI: 10.1111/j.1600-079x.2011.00934.x] [Citation(s) in RCA: 301] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Evidence is accumulating regarding the importance of circadian core oscillators, several associated factors, and melatonin signaling in the maintenance of health. Dysfunction of endogenous clocks, melatonin receptor polymorphisms, age- and disease-associated declines of melatonin likely contribute to numerous diseases including cancer, metabolic syndrome, diabetes type 2, hypertension, and several mood and cognitive disorders. Consequences of gene silencing, overexpression, gene polymorphisms, and deviant expression levels in diseases are summarized. The circadian system is a complex network of central and peripheral oscillators, some of them being relatively independent of the pacemaker, the suprachiasmatic nucleus. Actions of melatonin on peripheral oscillators are poorly understood. Various lines of evidence indicate that these clocks are also influenced or phase-reset by melatonin. This includes phase differences of core oscillator gene expression under impaired melatonin signaling, effects of melatonin and melatonin receptor knockouts on oscillator mRNAs or proteins. Cross-connections between melatonin signaling pathways and oscillator proteins, including associated factors, are discussed in this review. The high complexity of the multioscillator system comprises alternate or parallel oscillators based on orthologs and paralogs of the core components and a high number of associated factors with varying tissue-specific importance, which offers numerous possibilities for interactions with melatonin. It is an aim of this review to stimulate research on melatonin signaling in peripheral tissues. This should not be restricted to primary signal molecules but rather include various secondarily connected pathways and discriminate between direct effects of the pineal indoleamine at the target organ and others mediated by modulation of oscillators.
Collapse
Affiliation(s)
- Rüdiger Hardeland
- Johann Friedrich Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Germany.
| | | | | | | |
Collapse
|
44
|
Korkmaz A, Ma S, Topal T, Rosales-Corral S, Tan DX, Reiter RJ. Glucose: a vital toxin and potential utility of melatonin in protecting against the diabetic state. Mol Cell Endocrinol 2012; 349:128-37. [PMID: 22079284 DOI: 10.1016/j.mce.2011.10.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 10/14/2011] [Indexed: 12/29/2022]
Abstract
The molecular mechanisms including elevated oxidative and nitrosative reactants, activation of pro-inflammatory transcription factors and subsequent inflammation appear as a unified pathway leading to metabolic deterioration resulting from hyperglycemia, dyslipidemia, and insulin resistance. Consistent evidence reveals that chronically-elevated blood glucose initiates a harmful series of processes in which toxic reactive species play crucial roles. As a consequence, the resulting nitro-oxidative stress harms virtually all biomolecules including lipids, proteins and DNA leading to severely compromised metabolic activity. Melatonin is a multifunctional indoleamine which counteracts several pathophysiologic steps and displays significant beneficial effects against hyperglycemia-induced cellular toxicity. Melatonin has the capability of scavenging both oxygen and nitrogen-based reactants and blocking transcriptional factors which induce pro-inflammatory cytokines. These functions contribute to melatonin's antioxidative, anti-inflammatory and possibly epigenetic regulatory properties. Additionally, melatonin restores adipocyte glucose transporter-4 loss and eases the effects of insulin resistance associated with the type 2 diabetic state and may also assist in the regulation of body weight in these patients. Current knowledge suggests the clinical use of this non-toxic indoleamine in conjunction with other treatments for inhibition of the negative consequences of hyperglycemia for reducing insulin resistance and for regulating the diabetic state.
Collapse
Affiliation(s)
- Ahmet Korkmaz
- Department of Physiology, School of Medicine, Gulhane Military Medical Academy, Ankara, Turkey
| | | | | | | | | | | |
Collapse
|
45
|
Walton JC, Weil ZM, Nelson RJ. Influence of photoperiod on hormones, behavior, and immune function. Front Neuroendocrinol 2011; 32:303-19. [PMID: 21156187 PMCID: PMC3139743 DOI: 10.1016/j.yfrne.2010.12.003] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2010] [Revised: 11/30/2010] [Accepted: 12/03/2010] [Indexed: 01/26/2023]
Abstract
Photoperiodism is the ability of plants and animals to measure environmental day length to ascertain time of year. Central to the evolution of photoperiodism in animals is the adaptive distribution of energetically challenging activities across the year to optimize reproductive fitness while balancing the energetic tradeoffs necessary for seasonally-appropriate survival strategies. The ability to accurately predict future events requires endogenous mechanisms to permit physiological anticipation of annual conditions. Day length provides a virtually noise free environmental signal to monitor and accurately predict time of the year. In mammals, melatonin provides the hormonal signal transducing day length. Duration of pineal melatonin is inversely related to day length and its secretion drives enduring changes in many physiological systems, including the HPA, HPG, and brain-gut axes, the autonomic nervous system, and the immune system. Thus, melatonin is the fulcrum mediating redistribution of energetic investment among physiological processes to maximize fitness and survival.
Collapse
Affiliation(s)
- James C Walton
- Department of Neuroscience, The Ohio State University Medical Center, Columbus, OH 43210, USA.
| | | | | |
Collapse
|
46
|
Proietti S, Cucina A, D'Anselmi F, Dinicola S, Pasqualato A, Lisi E, Bizzarri M. Melatonin and vitamin D3 synergistically down-regulate Akt and MDM2 leading to TGFβ-1-dependent growth inhibition of breast cancer cells. J Pineal Res 2011; 50:150-8. [PMID: 21091766 DOI: 10.1111/j.1600-079x.2010.00824.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Melatonin and vitamin D3 inhibit breast cancer cell growth and induce apoptosis, but they have never been combined as a breast cancer treatment. Therefore, we investigated whether their association could lead to an enhanced anticancer activity. In MCF-7 breast cancer cells, melatonin together with vitamin D3, induced a synergistic proliferative inhibition, with an almost complete cell growth arrest at 144 hr. Cell growth blockade is associated to an activation of the TGFβ-1 pathway, leading to increased TGFβ-1, Smad4 and phosphorylated-Smad3 levels. Concomitantly, melatonin and D3, alone or in combination, caused a significant reduction in Akt phosphorylation and MDM2 values, with a consequent increase of p53/MDM2 ratio. These effects were completely suppressed by adding a monoclonal anti-TGFβ-1 antibody to the culture medium. Taken together, these results indicate that cytostatic effects triggered by melatonin and D3 are likely related to a complex TGFβ-1-dependent mechanism, involving down-regulation of both MDM2 and Akt-phosphorylation.
Collapse
Affiliation(s)
- Sara Proietti
- Department of Experimental Medicine, University La Sapienza, Roma, Italy
| | | | | | | | | | | | | |
Collapse
|
47
|
Korkmaz A, Manchester L, Topal T, Ma S, Tan D, Reiter R. Epigenetic mechanisms in human physiology and diseases. ACTA ACUST UNITED AC 2011. [DOI: 10.5455/jeim.060611.rw.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
48
|
Reiter R, Tan D, SanchezBarcelo E, Mediavilla M, Gitto E, Korkmaz A. Circadian mechanisms in the regulation of melatonin synthesis: disruption with light at night and the pathophysiological consequences. ACTA ACUST UNITED AC 2011. [DOI: 10.5455/jeim.101210.ir.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
49
|
Yasuniwa Y, Izumi H, Wang KY, Shimajiri S, Sasaguri Y, Kawai K, Kasai H, Shimada T, Miyake K, Kashiwagi E, Hirano G, Kidani A, Akiyama M, Han B, Wu Y, Ieiri I, Higuchi S, Kohno K. Circadian disruption accelerates tumor growth and angio/stromagenesis through a Wnt signaling pathway. PLoS One 2010; 5:e15330. [PMID: 21203463 PMCID: PMC3009728 DOI: 10.1371/journal.pone.0015330] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2010] [Accepted: 11/08/2010] [Indexed: 12/24/2022] Open
Abstract
Epidemiologic studies show a high incidence of cancer in shift workers, suggesting a possible relationship between circadian rhythms and tumorigenesis. However, the precise molecular mechanism played by circadian rhythms in tumor progression is not known. To identify the possible mechanisms underlying tumor progression related to circadian rhythms, we set up nude mouse xenograft models. HeLa cells were injected in nude mice and nude mice were moved to two different cases, one case is exposed to a 24-hour light cycle (L/L), the other is a more "normal" 12-hour light/dark cycle (L/D). We found a significant increase in tumor volume in the L/L group compared with the L/D group. In addition, tumor microvessels and stroma were strongly increased in L/L mice. Although there was a hypervascularization in L/L tumors, there was no associated increase in the production of vascular endothelial cell growth factor (VEGF). DNA microarray analysis showed enhanced expression of WNT10A, and our subsequent study revealed that WNT10A stimulates the growth of both microvascular endothelial cells and fibroblasts in tumors from light-stressed mice, along with marked increases in angio/stromagenesis. Only the tumor stroma stained positive for WNT10A and WNT10A is also highly expressed in keloid dermal fibroblasts but not in normal dermal fibroblasts indicated that WNT10A may be a novel angio/stromagenic growth factor. These findings suggest that circadian disruption induces the progression of malignant tumors via a Wnt signaling pathway.
Collapse
Affiliation(s)
- Yoshihiro Yasuniwa
- Department of Molecular Biology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
- Department of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroto Izumi
- Department of Molecular Biology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Ke-Yong Wang
- Department of Pathology and Cell Biology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Shohei Shimajiri
- Department of Pathology and Cell Biology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Yasuyuki Sasaguri
- Department of Pathology and Cell Biology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Kazuaki Kawai
- Department of Environmental Oncology, Institute of Industrial Ecological Science, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Hiroshi Kasai
- Department of Environmental Oncology, Institute of Industrial Ecological Science, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Takashi Shimada
- Department of Biochemistry and Molecular Biology, Nihon Medical School, Tokyo, Japan
| | - Koichi Miyake
- Department of Biochemistry and Molecular Biology, Nihon Medical School, Tokyo, Japan
| | - Eiji Kashiwagi
- Department of Molecular Biology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Gen Hirano
- Department of Molecular Biology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Akihiko Kidani
- Department of Molecular Biology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Masaki Akiyama
- Department of Molecular Biology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Bin Han
- Department of Molecular Biology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
- Department of Urology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Ying Wu
- Department of Molecular Biology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
- Department of Oncology, First Affiliated Hospital, China Medical University, Shenyang, China
| | - Ichiro Ieiri
- Department of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Shun Higuchi
- Department of Oncology, First Affiliated Hospital, China Medical University, Shenyang, China
| | - Kimitoshi Kohno
- Department of Molecular Biology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
- * E-mail:
| |
Collapse
|
50
|
Reiter RJ, Manchester LC, Tan DX. Neurotoxins: free radical mechanisms and melatonin protection. Curr Neuropharmacol 2010; 8:194-210. [PMID: 21358970 PMCID: PMC3001213 DOI: 10.2174/157015910792246236] [Citation(s) in RCA: 127] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 05/21/2010] [Accepted: 05/30/2010] [Indexed: 12/15/2022] Open
Abstract
Toxins that pass through the blood-brain barrier put neurons and glia in peril. The damage inflicted is usually a consequence of the ability of these toxic agents to induce free radical generation within cells but especially at the level of the mitochondria. The elevated production of oxygen and nitrogen-based radicals and related non-radical products leads to the oxidation of essential macromolecules including lipids, proteins and DNA. The resultant damage is referred to as oxidative and nitrosative stress and, when the molecular destruction is sufficiently severe, it causes apoptosis or necrosis of neurons and glia. Loss of brain cells compromises the functions of the central nervous system expressed as motor, sensory and cognitive deficits and psychological alterations. In this survey we summarize the publications related to the following neurotoxins and the protective actions of melatonin: aminolevulinic acid, cyanide, domoic acid, kainic acid, metals, methamphetamine, polychlorinated biphenyls, rotenone, toluene and 6-hydroxydopamine. Given the potent direct free radical scavenging activities of melatonin and its metabolites, their ability to indirectly stimulate antioxidative enzymes and their efficacy in reducing electron leakage from mitochondria, it would be expected that these molecules would protect the brain from oxidative and nitrosative molecular mutilation. The studies summarized in this review indicate that this is indeed the case, an action that is obviously assisted by the fact that melatonin readily crosses the blood brain barrier.
Collapse
Affiliation(s)
- Russel J. Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, Texas
| | | | | |
Collapse
|