1
|
Swede H, Ridwan SM, Strandberg J, Salner AL, Sporn JR, Kuo L, Ru K, Smilowitz HM. Baseline sLAG-3 levels in Caucasian and African-American breast cancer patients. Breast Cancer Res Treat 2024; 208:193-200. [PMID: 39230627 DOI: 10.1007/s10549-024-07455-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 07/31/2024] [Indexed: 09/05/2024]
Abstract
BACKGROUND Worse survival persists for African-Americans (AA) with breast cancer compared to other race/ethnic groups despite recent improvements for all. Unstudied in outcomes disparities to date is soluble LAG-3 (sLAG-3), cleaved from the LAG-3 immune checkpoint receptor which is a proposed target for deactivation in emerging immunotherapies due to its prominent immunosuppressive function in the tumoral microenvironment. A prior study has found that lower sLAG-3 baseline level was associated with poor outcomes. METHODS In a cross-sectional study of 95 patients with primary breast cancer (n = 58 Caucasian, n = 37 AA), we measured sLAG-3 (ELISA pg/ml) in pre-treatment blood samples using the non-parametric Mann-Whitney u-Test for independent samples, and, calculated Pearson r correlation coefficients of sLAG-3 with circulating cytokines by race. RESULTS Mean sLAG-3 level was lower in AA compared to Caucasian patients (1377.6 vs 3690.3, P = .002), and in patients with triple-negative breast cancer (TNBC) compared to those with non-TNBC malignancies (P = .02). When patients with TNBC tumors were excluded from analyses, the difference in sLAG-3 level between AA (n = 21) and Caucasian patients (n = 40) substantially remained (1937.4 vs 4182.4, P = .06). Among Caucasian patients, sLAG-3 was correlated with IL-6, IL-8 and IL-10 (r = .69, P < .001; r = .70, P < .001; and, r = .46, P = .01; respectively). For AA patients, sLAG-3 was correlated only with IL-6 (r = .37, P = .03). CONCLUSIONS We present the first report that African-American breast cancer patients might have comparatively low pre-treatment sLAG-3 levels, independent of TNBC status, along with reduced co-expression with circulating cytokines. The mechanistic and prognostic role of cleaved LAG-3, particularly in disparate outcomes, remains to be elucidated.
Collapse
Affiliation(s)
- Helen Swede
- Department of Public Health Sciences, University of Connecticut Health, Farmington, CT, USA
| | - Sharif M Ridwan
- Department of Cell Biology, University of Connecticut Health, 263 Farmington Avenue, Farmington, CT, 06030, USA
| | - Jillian Strandberg
- Department of Cell Biology, University of Connecticut Health, 263 Farmington Avenue, Farmington, CT, 06030, USA
| | - Andrew L Salner
- Cancer Center, Hartford Hospital, Hartford HealthCare, Hartford, CT, USA
| | - Jonathan R Sporn
- Yale Smilow Cancer Program, Saint Francis Hospital, Hartford, CT, USA
| | - Lynn Kuo
- Department of Statistics, University of Connecticut, Storrs, CT, USA
| | - Karen Ru
- Department of Cell Biology, University of Connecticut Health, 263 Farmington Avenue, Farmington, CT, 06030, USA
| | - Henry M Smilowitz
- Department of Cell Biology, University of Connecticut Health, 263 Farmington Avenue, Farmington, CT, 06030, USA.
| |
Collapse
|
2
|
Foley KG, Adli M, Kim JJ. Single-nuclei sequencing of uterine serous carcinoma reveals racial differences in immune signaling. Proc Natl Acad Sci U S A 2024; 121:e2402998121. [PMID: 39133838 PMCID: PMC11348309 DOI: 10.1073/pnas.2402998121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 07/15/2024] [Indexed: 08/29/2024] Open
Abstract
Significant racial disparities exist between Black and White patients with uterine serous carcinoma (USC). While the reasons for these disparities are unclear, several studies have demonstrated significantly different rates of driver mutations between racial groups, including TP53. However, limited research has investigated the transcriptional differences of tumors or the composition of the tumor microenvironment (TME) between these groups. Here, we report the single-nuclei RNA-sequencing profiles of primary USC tumors from diverse racial backgrounds. We find that there are significant differences between the tumors of Black and White patients. Tumors from Black patients exhibited higher expression of specific genes associated with aggressiveness, such as PAX8, and axon guidance and synaptic signaling pathways. We also demonstrated that T cell populations are reduced in the tumor tissue compared to matched benign, while anti-inflammatory macrophage populations are retained within the TME. Furthermore, we investigated the connection between PAX8 overexpression and immunosuppression in USC through regulation of several cytokines and chemokines. Notably, we show that PAX8 activity can influence macrophage gene expression and protein secretion. These studies provide a detailed understanding of the USC transcriptome and TME, and identify differences in tumor biology from patients of different racial backgrounds.
Collapse
Affiliation(s)
- K. Grace Foley
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Robert H. Lurie Cancer Center, Northwestern University, Chicago, IL60611
| | - Mazhar Adli
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Robert H. Lurie Cancer Center, Northwestern University, Chicago, IL60611
| | - J. Julie Kim
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Robert H. Lurie Cancer Center, Northwestern University, Chicago, IL60611
| |
Collapse
|
3
|
Rujchanarong D, Spruill L, Sandusky GE, Park Y, Mehta AS, Drake RR, Ford ME, Nakshatri H, Angel PM. Spatial N-glycomics of the normal breast microenvironment reveals fucosylated and high-mannose N-glycan signatures related to BI-RADS density and ancestry. Glycobiology 2024; 34:cwae043. [PMID: 38869882 PMCID: PMC11193881 DOI: 10.1093/glycob/cwae043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/25/2024] [Accepted: 06/12/2024] [Indexed: 06/14/2024] Open
Abstract
Higher breast cancer mortality rates continue to disproportionally affect black women (BW) compared to white women (WW). This disparity is largely due to differences in tumor aggressiveness that can be related to distinct ancestry-associated breast tumor microenvironments (TMEs). Yet, characterization of the normal microenvironment (NME) in breast tissue and how they associate with breast cancer risk factors remains unknown. N-glycans, a glucose metabolism-linked post-translational modification, has not been characterized in normal breast tissue. We hypothesized that normal female breast tissue with distinct Breast Imaging and Reporting Data Systems (BI-RADS) categories have unique microenvironments based on N-glycan signatures that varies with genetic ancestries. Profiles of N-glycans were characterized in normal breast tissue from BW (n = 20) and WW (n = 20) at risk for breast cancer using matrix assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI). A total of 176 N-glycans (32 core-fucosylated and 144 noncore-fucosylated) were identified in the NME. We found that certain core-fucosylated, outer-arm fucosylated and high-mannose N-glycan structures had specific intensity patterns and histological distributions in the breast NME dependent on BI-RADS densities and ancestry. Normal breast tissue from BW, and not WW, with heterogeneously dense breast densities followed high-mannose patterns as seen in invasive ductal and lobular carcinomas. Lastly, lifestyles factors (e.g. age, menopausal status, Gail score, BMI, BI-RADS) differentially associated with fucosylated and high-mannose N-glycans based on ancestry. This study aims to decipher the molecular signatures in the breast NME from distinct ancestries towards improving the overall disparities in breast cancer burden.
Collapse
Affiliation(s)
- Denys Rujchanarong
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Bruker-MUSC Center of Excellence, Clinical Glycomics, Medical University of South Carolina, 173 Ashley Ave, Charleston, SC 29425, United States
| | - Laura Spruill
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, 96 Jonathan Lucas St. Ste. 601, MSC 617, Charleston, SC 29425, United States
| | - George E Sandusky
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, 340 West 10th Street Fairbanks Hall, Suite 6200 Indianapolis, IN 46202-3082, United States
| | - Yeonhee Park
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Warf Office Bldg, 610 Walnut St Room 201, Madison, WI 53726, United States
| | - Anand S Mehta
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Bruker-MUSC Center of Excellence, Clinical Glycomics, Medical University of South Carolina, 173 Ashley Ave, Charleston, SC 29425, United States
| | - Richard R Drake
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Bruker-MUSC Center of Excellence, Clinical Glycomics, Medical University of South Carolina, 173 Ashley Ave, Charleston, SC 29425, United States
| | - Marvella E Ford
- Department of Public Health Sciences, Medical University of South Carolina, 35 Cannon Street, Charleston, SC 29425, United States
| | - Harikrishna Nakshatri
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Dr, Indianapolis, IN 46202, United States
- Department of Surgery, Indiana University School of Medicine, 545 Barnhill Dr, Indianapolis, IN 46202, United States
| | - Peggi M Angel
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Bruker-MUSC Center of Excellence, Clinical Glycomics, Medical University of South Carolina, 173 Ashley Ave, Charleston, SC 29425, United States
| |
Collapse
|
4
|
Fang C, Cheung MY, Chan RC, Poon IK, Lee C, To CC, Tsang JY, Li J, Tse GM. Prognostic Significance of CD163+ and/or CD206+ Tumor-Associated Macrophages Is Linked to Their Spatial Distribution and Tumor-Infiltrating Lymphocytes in Breast Cancer. Cancers (Basel) 2024; 16:2147. [PMID: 38893266 PMCID: PMC11172176 DOI: 10.3390/cancers16112147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/03/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
Tumor-associated macrophages (TAMs) is a key element in the breast tumor microenvironment. CD163 and CD206 have been utilized for TAM identification, but the clinical implications of TAMs identified by these markers have not been thoroughly explored. This study conducted a comparative analysis of CD163 and CD206 TAMs using digital image analysis, focusing on their spatial distribution and prognostic significance in relation to tumor-infiltrating lymphocytes (TILs). Distinct clinico-pathological and prognostic characteristics were noted between the two types of TAMs. CD163 TAMs were linked to high-grade tumors (p = 0.006), whereas CD206 TAMs were associated with a higher incidence of nodal metastasis (p = 0.033). CD206 TAMs were predominantly found in the stroma, with more cases being stromal CD206-high (sCD206-high) than tumoral CD206-high (tCD206-high) (p = 0.024). Regarding prognostication, patients stratified according to stromal and tumoral densities of CD163 showed different disease-free survival (DFS) time. Specifically, those that were sCD163-low but tCD163-high exhibited the poorest DFS (chi-square = 10.853, p = 0.013). Furthermore, a high sCD163-to-stromal-TILs ratio was identified as an independent predictor of unfavorable survival outcomes (DFS: HR = 3.477, p = 0.018). The spatial distribution and interactions with TILs enhanced the prognostic value of CD163 TAMs, while CD206 TAMs appeared to have limited prognostic utility in breast cancer cases.
Collapse
Affiliation(s)
- Canbin Fang
- State Key Laboratory of Translational Oncology, Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Maisy Y. Cheung
- State Key Laboratory of Translational Oncology, Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ronald C. Chan
- State Key Laboratory of Translational Oncology, Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ivan K. Poon
- State Key Laboratory of Translational Oncology, Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Conrad Lee
- State Key Laboratory of Translational Oncology, Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Curtis C. To
- State Key Laboratory of Translational Oncology, Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Julia Y. Tsang
- State Key Laboratory of Translational Oncology, Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Joshua Li
- State Key Laboratory of Translational Oncology, Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Pathology, The University of Hong Kong, Hong Kong SAR, China
| | - Gary M. Tse
- State Key Laboratory of Translational Oncology, Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
5
|
Omilian AR, Cannioto R, Mendicino L, Stein L, Bshara W, Qin B, Bandera EV, Zeinomar N, Abrams SI, Hong CC, Yao S, Khoury T, Ambrosone CB. CD163 + macrophages in the triple-negative breast tumor microenvironment are associated with improved survival in the Women's Circle of Health Study and the Women's Circle of Health Follow-Up Study. Breast Cancer Res 2024; 26:75. [PMID: 38720366 PMCID: PMC11077737 DOI: 10.1186/s13058-024-01831-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/25/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Tumor-associated macrophages (TAMs) are a prominent immune subpopulation in the tumor microenvironment that could potentially serve as therapeutic targets for breast cancer. Thus, it is important to characterize this cell population across different tumor subtypes including patterns of association with demographic and prognostic factors, and breast cancer outcomes. METHODS We investigated CD163+ macrophages in relation to clinicopathologic variables and breast cancer outcomes in the Women's Circle of Health Study and Women's Circle of Health Follow-up Study populations of predominantly Black women with breast cancer. We evaluated 611 invasive breast tumor samples (507 from Black women, 104 from White women) with immunohistochemical staining of tissue microarray slides followed by digital image analysis. Multivariable Cox proportional hazards models were used to estimate hazard ratios for overall survival (OS) and breast cancer-specific survival (BCSS) for 546 cases with available survival data (median follow-up time 9.68 years (IQR: 7.43-12.33). RESULTS Women with triple-negative breast cancer showed significantly improved OS in relation to increased levels of tumor-infiltrating CD163+ macrophages in age-adjusted (Q3 vs. Q1: HR = 0.36; 95% CI 0.16-0.83) and fully adjusted models (Q3 vs. Q1: HR = 0.30; 95% CI 0.12-0.73). A similar, but non-statistically significant, association was observed for BCSS. Macrophage infiltration in luminal and HER2+ tumors was not associated with OS or BCSS. In a multivariate regression model that adjusted for age, subtype, grade, and tumor size, there was no significant difference in CD163+ macrophage density between Black and White women (RR = 0.88; 95% CI 0.71-1.10). CONCLUSIONS In contrast to previous studies, we observed that higher densities of CD163+ macrophages are independently associated with improved OS and BCSS in women with invasive triple-negative breast cancer. Trial registration Not applicable.
Collapse
Affiliation(s)
- Angela R Omilian
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.
| | - Rikki Cannioto
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Lucas Mendicino
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Leighton Stein
- Department of Pathology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Wiam Bshara
- Department of Pathology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Bo Qin
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ, USA
- Cancer Epidemiology and Health Outcomes, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Elisa V Bandera
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ, USA
- Cancer Epidemiology and Health Outcomes, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Nur Zeinomar
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ, USA
- Cancer Epidemiology and Health Outcomes, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Scott I Abrams
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Chi-Chen Hong
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Song Yao
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Thaer Khoury
- Department of Pathology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Christine B Ambrosone
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| |
Collapse
|
6
|
Huang R, Kang T, Chen S. The role of tumor-associated macrophages in tumor immune evasion. J Cancer Res Clin Oncol 2024; 150:238. [PMID: 38713256 PMCID: PMC11076352 DOI: 10.1007/s00432-024-05777-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/03/2024] [Indexed: 05/08/2024]
Abstract
BACKGROUND Tumor growth is closely linked to the activities of various cells in the tumor microenvironment (TME), particularly immune cells. During tumor progression, circulating monocytes and macrophages are recruited, altering the TME and accelerating growth. These macrophages adjust their functions in response to signals from tumor and stromal cells. Tumor-associated macrophages (TAMs), similar to M2 macrophages, are key regulators in the TME. METHODS We review the origins, characteristics, and functions of TAMs within the TME. This analysis includes the mechanisms through which TAMs facilitate immune evasion and promote tumor metastasis. Additionally, we explore potential therapeutic strategies that target TAMs. RESULTS TAMs are instrumental in mediating tumor immune evasion and malignant behaviors. They release cytokines that inhibit effector immune cells and attract additional immunosuppressive cells to the TME. TAMs primarily target effector T cells, inducing exhaustion directly, influencing activity indirectly through cellular interactions, or suppressing through immune checkpoints. Additionally, TAMs are directly involved in tumor proliferation, angiogenesis, invasion, and metastasis. Developing innovative tumor-targeted therapies and immunotherapeutic strategies is currently a promising focus in oncology. Given the pivotal role of TAMs in immune evasion, several therapeutic approaches have been devised to target them. These include leveraging epigenetics, metabolic reprogramming, and cellular engineering to repolarize TAMs, inhibiting their recruitment and activity, and using TAMs as drug delivery vehicles. Although some of these strategies remain distant from clinical application, we believe that future therapies targeting TAMs will offer significant benefits to cancer patients.
Collapse
Affiliation(s)
- Ruizhe Huang
- Department of Oncology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Ting Kang
- Department of Oncology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Siyu Chen
- Department of Oncology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
7
|
Qiu Y, Chen A, Yu R, Llevenes P, Seen M, Ko NY, Monti S, Denis GV. Insulin Resistance Increases TNBC Aggressiveness and Brain Metastasis via Adipocyte-derived Exosomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.01.592097. [PMID: 38746141 PMCID: PMC11092600 DOI: 10.1101/2024.05.01.592097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Patients with triple negative breast cancer (TNBC) and comorbid Type 2 Diabetes (T2D), characterized by insulin resistance of adipose tissue, have higher risk of metastasis and shorter survival. Adipocytes are the main non-malignant cells of the breast tumor microenvironment (TME). However, adipocyte metabolism is usually ignored in oncology and mechanisms that couple T2D to TNBC outcomes are poorly understood. Here we hypothesized that exosomes, small vesicles secreted by TME breast adipocytes, drive epithelial-to-mesenchymal transition (EMT) and metastasis in TNBC via miRNAs. Exosomes were purified from conditioned media of 3T3-L1 mature adipocytes, either insulin-sensitive (IS) or insulin-resistant (IR). Murine 4T1 cells, a TNBC model, were treated with exosomes in vitro (72h). EMT, proliferation and angiogenesis were elevated in IR vs. control and IS. Brain metastases showed more mesenchymal morphology and EMT enrichment in the IR group. MiR-145a-3p is highly differentially expressed between IS and IR, and potentially regulates metastasis. Significance IR adipocyte exosomes modify TME, increase EMT and promote metastasis to distant organs, likely through miRNA pathways. We suggest metabolic diseases such as T2D reshape the TME, promoting metastasis and decreasing survival. Therefore, TNBC patients with T2D should be closely monitored for metastasis, with metabolic medications considered.
Collapse
|
8
|
Neagu AN, Bruno P, Johnson KR, Ballestas G, Darie CC. Biological Basis of Breast Cancer-Related Disparities in Precision Oncology Era. Int J Mol Sci 2024; 25:4113. [PMID: 38612922 PMCID: PMC11012526 DOI: 10.3390/ijms25074113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 04/14/2024] Open
Abstract
Precision oncology is based on deep knowledge of the molecular profile of tumors, allowing for more accurate and personalized therapy for specific groups of patients who are different in disease susceptibility as well as treatment response. Thus, onco-breastomics is able to discover novel biomarkers that have been found to have racial and ethnic differences, among other types of disparities such as chronological or biological age-, sex/gender- or environmental-related ones. Usually, evidence suggests that breast cancer (BC) disparities are due to ethnicity, aging rate, socioeconomic position, environmental or chemical exposures, psycho-social stressors, comorbidities, Western lifestyle, poverty and rurality, or organizational and health care system factors or access. The aim of this review was to deepen the understanding of BC-related disparities, mainly from a biomedical perspective, which includes genomic-based differences, disparities in breast tumor biology and developmental biology, differences in breast tumors' immune and metabolic landscapes, ecological factors involved in these disparities as well as microbiomics- and metagenomics-based disparities in BC. We can conclude that onco-breastomics, in principle, based on genomics, proteomics, epigenomics, hormonomics, metabolomics and exposomics data, is able to characterize the multiple biological processes and molecular pathways involved in BC disparities, clarifying the differences in incidence, mortality and treatment response for different groups of BC patients.
Collapse
Affiliation(s)
- Anca-Narcisa Neagu
- Laboratory of Animal Histology, Faculty of Biology, "Alexandru Ioan Cuza" University of Iași, Carol I bvd. 20A, 700505 Iasi, Romania
| | - Pathea Bruno
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA
| | - Kaya R Johnson
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA
| | - Gabriella Ballestas
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA
| | - Costel C Darie
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA
| |
Collapse
|
9
|
Quail DF, Park M, Welm AL, Ekiz HA. Breast Cancer Immunity: It is TIME for the Next Chapter. Cold Spring Harb Perspect Med 2024; 14:a041324. [PMID: 37188526 PMCID: PMC10835621 DOI: 10.1101/cshperspect.a041324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Our ability to interrogate the tumor immune microenvironment (TIME) at an ever-increasing granularity has uncovered critical determinants of disease progression. Not only do we now have a better understanding of the immune response in breast cancer, but it is becoming possible to leverage key mechanisms to effectively combat this disease. Almost every component of the immune system plays a role in enabling or inhibiting breast tumor growth. Building on early seminal work showing the involvement of T cells and macrophages in controlling breast cancer progression and metastasis, single-cell genomics and spatial proteomics approaches have recently expanded our view of the TIME. In this article, we provide a detailed description of the immune response against breast cancer and examine its heterogeneity in disease subtypes. We discuss preclinical models that enable dissecting the mechanisms responsible for tumor clearance or immune evasion and draw parallels and distinctions between human disease and murine counterparts. Last, as the cancer immunology field is moving toward the analysis of the TIME at the cellular and spatial levels, we highlight key studies that revealed previously unappreciated complexity in breast cancer using these technologies. Taken together, this article summarizes what is known in breast cancer immunology through the lens of translational research and identifies future directions to improve clinical outcomes.
Collapse
Affiliation(s)
- Daniela F Quail
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Quebec H3A 1A3, Canada
- Department of Physiology, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Morag Park
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Quebec H3A 1A3, Canada
- Departments of Biochemistry, Oncology, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Alana L Welm
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
| | - H Atakan Ekiz
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Gulbahce, 35430 Urla, Izmir, Turkey
| |
Collapse
|
10
|
Zwager MC, Holt-Kedde I, Timmer-Bosscha H, de Bock GH, Werker PMN, Schröder CP, van der Vegt B, Arjaans M. Presence of crown-like structures in breast adipose tissue; differences between healthy controls, BRCA1/2 gene mutation carriers and breast cancer patients. Breast Cancer Res Treat 2024; 204:27-37. [PMID: 38057686 DOI: 10.1007/s10549-023-07169-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/31/2023] [Indexed: 12/08/2023]
Abstract
PURPOSE Crown-like structures (CLS) in breast adipose tissue are associated with inflammation and a potential factor in breast cancer behaviour. Whether this effect varies between breast cancer subtypes and is influenced by BMI and BRCA mutation status is presently unknown. Therefore, we compared CLS presence between adipose tissue of healthy controls, BRCA1/2 gene mutation carriers and breast cancer patients, and assessed the relation of CLS with clinical outcome in breast cancer patients. METHODS Immunohistochemical staining for CD68 was performed on breast adipose tissue sections of 48 healthy controls, 78 BRCA1/2 gene mutation carriers and 259 breast cancer patients. CLS presence and index (CLS/cm2) were correlated with BMI, BRCA status, tumour presence, intrinsic tumour subtype and tumour characteristics. Associations with clinical outcome were assessed. RESULTS CLS were more often present in breast cancer patients compared to BRCA carriers and healthy controls. CLS presence was associated with the presence of breast cancer and high BMI. CLS were more often present in Luminal-B-like tumours compared to the other subtypes. No correlations between CLS and BRCA status or age was found. In TNBC, CLS were related to lymphovascular invasion. No association with survival was found. CONCLUSION In conclusion, CLS were more frequently present in breast adipose tissue of breast cancer patients compared to BRCA1/2 gene mutation carriers and healthy controls. Furthermore, our study provides evidence of the association between obesity and presence of CLS. The prognostic significance and impact on clinical outcome of differences in CLS numbers should be further assessed in prospective studies.
Collapse
Affiliation(s)
- Mieke C Zwager
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| | - Iris Holt-Kedde
- Department of Plastic Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Hetty Timmer-Bosscha
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Geertruida H de Bock
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Paul M N Werker
- Department of Plastic Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Carolien P Schröder
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Bert van der Vegt
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Marlous Arjaans
- Department of Plastic Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Plastic Surgery, OLVG Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
11
|
Elfstrum AK, Bapat AS, Schwertfeger KL. Defining and targeting macrophage heterogeneity in the mammary gland and breast cancer. Cancer Med 2024; 13:e7053. [PMID: 38426622 PMCID: PMC10905685 DOI: 10.1002/cam4.7053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/09/2024] [Accepted: 02/16/2024] [Indexed: 03/02/2024] Open
Abstract
INTRODUCTION Macrophages are innate immune cells that are associated with extensive phenotypic and functional plasticity and contribute to normal development, tissue homeostasis, and diseases such as cancer. In this review, we discuss the heterogeneity of tissue resident macrophages in the normal mammary gland and tumor-associated macrophages in breast cancer. Tissue resident macrophages are required for mammary gland development, where they have been implicated in promoting extracellular matrix remodeling, apoptotic clearance, and cellular crosstalk. In the context of cancer, tumor-associated macrophages are key drivers of growth and metastasis via their ability to promote matrix remodeling, angiogenesis, lymphangiogenesis, and immunosuppression. METHOD We identified and summarized studies in Pubmed that describe the phenotypic and functional heterogeneity of macrophages and the implications of targeting individual subsets, specifically in the context of mammary gland development and breast cancer. We also identified and summarized recent studies using single-cell RNA sequencing to identify and describe macrophage subsets in human breast cancer samples. RESULTS Advances in single-cell RNA sequencing technologies have yielded nuances in macrophage heterogeneity, with numerous macrophage subsets identified in both the normal mammary gland and breast cancer tissue. Macrophage subsets contribute to mammary gland development and breast cancer progression in differing ways, and emerging studies highlight a role for spatial localization in modulating their phenotype and function. CONCLUSION Understanding macrophage heterogeneity and the unique functions of each subset in both normal mammary gland development and breast cancer progression may lead to more promising targets for the treatment of breast cancer.
Collapse
Affiliation(s)
- Alexis K. Elfstrum
- Microbiology, Immunology, and Cancer Biology Graduate ProgramUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Aditi S. Bapat
- Molecular Pharmacology and Therapeutics Graduate ProgramUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Kathryn L. Schwertfeger
- Department of Laboratory Medicine and PathologyUniversity of MinnesotaMinneapolisMinnesotaUSA
- Masonic Cancer CenterUniversity of MinnesotaMinneapolisMinnesotaUSA
- Center for ImmunologyUniversity of MinnesotaMinneapolisMinnesotaUSA
| |
Collapse
|
12
|
Engin A. Lipid Storage, Lipolysis, and Lipotoxicity in Obesity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:97-129. [PMID: 39287850 DOI: 10.1007/978-3-031-63657-8_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The ratio of free fatty acid (FFA) turnover decreases significantly with the expansion of white adipose tissue. Adipose tissue and dietary saturated fatty acid levels significantly correlate with an increase in fat cell size and number. The G0/G1 switch gene 2 increases lipid content in adipocytes and promotes adipocyte hypertrophy through the restriction of triglyceride (triacylglycerol: TAG) turnover. Hypoxia in obese adipose tissue due to hypertrophic adipocytes results in excess deposition of extracellular matrix (ECM) components. Cluster of differentiation (CD) 44, as the main receptor of the extracellular matrix component regulates cell-cell and cell-matrix interactions including diet-induced insulin resistance. Excess TAGs, sterols, and sterol esters are surrounded by the phospholipid monolayer surface and form lipid droplets (LDs). Once LDs are formed, they grow up because of the excessive amount of intracellular FFA stored and reach a final size. The ratio of FFA turnover/lipolysis decreases significantly with increases in the degree of obesity. Dysfunctional adipose tissue is unable to expand further to store excess dietary lipids, increased fluxes of plasma FFAs lead to ectopic fatty acid deposition and lipotoxicity. Reduced neo-adipogenesis and dysfunctional lipid-overloaded adipocytes are hallmarks of hypertrophic obesity linked to insulin resistance. Obesity-associated adipocyte death exhibits feature of necrosis-like programmed cell death. Adipocyte death is a prerequisite for the transition from hypertrophic to hyperplastic obesity. Increased adipocyte number in obesity has life-long effects on white adipose tissue mass. The positive correlation between the adipose tissue volume and magnetic resonance imaging proton density fat fraction estimation is used for characterization of the obesity phenotype, as well as the risk stratification and selection of appropriate treatment strategies. In obese patients with type 2 diabetes, visceral adipocytes exposed to chronic/intermittent hyperglycemia develop a new microRNAs' (miRNAs') expression pattern. Visceral preadipocytes memorize the effect of hyperglycemia via changes in miRNAs' expression profile and contribute to the progression of diabetic phenotype. Nonsteroidal anti-inflammatory drugs, metformin, and statins can be beneficial in treating the local or systemic consequences of white adipose tissue inflammation. Rapamycin inhibits leptin-induced LD formation. Collectively, in this chapter, the concept of adipose tissue remodeling in response to adipocyte death or adipogenesis, and the complexity of LD interactions with the other cellular organelles are reviewed. Furthermore, clinical perspective of fat cell turnover in obesity is also debated.
Collapse
Affiliation(s)
- Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey.
- Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey.
| |
Collapse
|
13
|
Liu L, Zhao WY, Zheng XY. ZNF746 promotes M2 macrophage polarisation and favours tumour progression in breast cancer via the Jagged1/Notch pathway. Cell Signal 2023; 112:110892. [PMID: 37730102 DOI: 10.1016/j.cellsig.2023.110892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/29/2023] [Accepted: 09/16/2023] [Indexed: 09/22/2023]
Abstract
Breast cancer (BC) is a major threat to women's health. BC is a heterogeneous disease and treatment strategies and outcomes differ between subtypes. Investigating the molecular mechanisms of BC will help to identify potential therapeutic targets and develop new therapies. Here we report that zinc finger protein 746 (ZNF746), a Krüppel-associated box and zinc finger protein, exhibits tumour-promoting properties in BC. Functional experiments (cell growth, colony formation, cell cycle analysis, and transwell analysis) were used to evaluate the proliferation, migration, and invasion capacity of BC cells. Immunohistochemistry was performed to detect the expression of ZNF746, CD163 (M2 macrophage marker), and HES1 (Notch target) in BC tissues. ZNF746 was highly expressed in BC tissues compared to adjacent paired non-tumour tissues. Patients with M1 BC had higher expression of ZNF746 compared to patients with non-metastatic (M0) BC, and higher expression of ZNF746 was associated with poorer overall survival. The immunohistochemical results showed a positive correlation between the expression of ZNF746 and the expression of CD163 or HES1. ZNF746 promoted BC cell proliferation, migration, and invasion and increased the expression of molecules essential for monocyte recruitment and differentiation (CCL2 and CSF1). Furthermore, THP-1 monocytes cultured in the conditioned medium derived from BC cells overexpressing ZNF746 exhibited enhanced M2 polarisation. In contrast, ZNF746 knockdown reduced BC cell proliferation, migration, and invasion and suppressed M2 polarisation. Mechanistically, ZNF746 promoted the activation of the Jagged1/Notch pathway, and the Jagged1 siRNA-mediated blockade of this pathway prevented the tumour-promoting functions of ZNF746. In conclusion, this study uncovers the role of ZNF746 in promoting M2 macrophage polarisation and suggests that ZNF746 may be a promising therapeutic target for limiting BC progression.
Collapse
Affiliation(s)
- Lu Liu
- Department of Breast Surgery, the First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Wen-Yue Zhao
- Department of Thoracic Surgery, the First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xin-Yu Zheng
- Department of Breast Surgery, the First Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
14
|
Song J, Xiao T, Li M, Jia Q. Tumor-associated macrophages: Potential therapeutic targets and diagnostic markers in cancer. Pathol Res Pract 2023; 249:154739. [PMID: 37544129 DOI: 10.1016/j.prp.2023.154739] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/03/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
Macrophages are plastic and functionally diverse, present in all tissues, and play a key role in organisms from development, homeostasis and repair, to immune responses to pathogens. They are central to many disease states and have emerged as important therapeutic targets for many diseases. Tumor-associated macrophages (TAMs) are the most abundant immune cells in the tumor microenvironment (TME) and are key factors influencing cancer progression, metastasis and tumor recurrence. TAMs can be derived from different sources and exert different pro- or anti-tumor effects based on the type, stage and immune composition of the tumor. TAMs are highly heterogeneous and diverse, and have multiple functional phenotypes. There is still a great deal of controversy regarding the relationship between TAMs and prognosis of cancer patients. In this review, we summarize the characteristics of common markers of TAMs as well as explore the prognostic role of TAMs in different cancers including lung, breast, gastric, colorectal, esophageal and ovarian cancers.
Collapse
Affiliation(s)
- Junyang Song
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Tian Xiao
- Department of Physiology and Pathophysiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Mingyang Li
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, China.
| | - Qingge Jia
- Department of Reproductive Medicine, Xi'an International Medical Center Hospital, Northwest University, Xi'an, China.
| |
Collapse
|
15
|
Zhao C, Zeng N, Zhou X, Tan Y, Wang Y, Zhang J, Wu Y, Zhang Q. CAA-derived IL-6 induced M2 macrophage polarization by activating STAT3. BMC Cancer 2023; 23:392. [PMID: 37127625 PMCID: PMC10152707 DOI: 10.1186/s12885-023-10826-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 04/07/2023] [Indexed: 05/03/2023] Open
Abstract
BACKGROUND Tumor-associated macrophages (TAMs) are the most abundant types of immune cells in the tumor microenvironment (TME) of breast cancer (BC). TAMs usually exhibit an M2 phenotype and promote tumor progression by facilitating immunosuppression. This study aimed to investigate the effect of CAA-derived IL-6 on macrophage polarization in promoting BC progression. METHODS Human BC samples and adipocytes co-cultured with 4T1 BC cells were employed to explore the properties of CAAs. The co-implantation of adipocytes and 4T1 cells in mouse tumor-bearing model and tail vein pulmonary metastasis model were constructed to investigate the impact of CAAs on BC malignant progression in vivo. The functional assays, qRT-PCR, western blotting assay and ELISA assay were employed to explore the effect of CAA-derived IL-6 on macrophage polarization and programmed cell death protein ligand 1 (PD-L1) expression. RESULTS CAAs were located at the invasive front of BC and possessed a de-differentiated fibroblast phenotype. CAAs facilitated the malignant behaviors of 4T1 cells in vitro, and promoted 4T1 tumor growth and pulmonary metastasis in vivo. The IHC staining of both human BC specimens and xenograft and the in vitro experiment indicated that CAAs could enhance infiltration of M2 macrophages in the TME of 4T1 BC. Furthermore, CAA-educated macrophages could enhance malignant behaviors of 4T1 cells in vitro. More importantly, CAAs could secret abundant IL-6 and thus induce M2 macrophage polarization by activating STAT3. In addition, CAAs could upregulate PD-L1 expression in macrophages. CONCLUSIONS Our study revealed that CAAs and CAA-educated macrophages enhanced the malignant behaviors of BC. Specifically, CAA-derived IL-6 induced migration and M2 polarization of macrophages via activation STAT3 and promoted macrophage PD-L1 expression, thereby leading to BC progression.
Collapse
Affiliation(s)
- Chongru Zhao
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
- Department of Thyroid and Breast Surgery, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, 518067, Guangdong, China
| | - Ning Zeng
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Xiaomei Zhou
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Yufang Tan
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Yichen Wang
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Jun Zhang
- Department of Thyroid and Breast Surgery, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, 518067, Guangdong, China.
| | - Yiping Wu
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China.
| | - Qi Zhang
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China.
| |
Collapse
|
16
|
Savva C, Copson E, Johnson PWM, Cutress RI, Beers SA. Obesity Is Associated with Immunometabolic Changes in Adipose Tissue That May Drive Treatment Resistance in Breast Cancer: Immune-Metabolic Reprogramming and Novel Therapeutic Strategies. Cancers (Basel) 2023; 15:cancers15092440. [PMID: 37173907 PMCID: PMC10177091 DOI: 10.3390/cancers15092440] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/20/2023] [Accepted: 04/22/2023] [Indexed: 05/15/2023] Open
Abstract
White adipose tissue (WAT) represents an endocrinologically and immunologically active tissue whose primary role is energy storage and homeostasis. Breast WAT is involved in the secretion of hormones and proinflammatory molecules that are associated with breast cancer development and progression. The role of adiposity and systemic inflammation in immune responses and resistance to anti-cancer treatment in breast cancer (BC) patients is still not clear. Metformin has demonstrated antitumorigenic properties both in pre-clinical and clinical studies. Nevertheless, its immunomodulating properties in BC are largely unknown. This review aims to evaluate the emerging evidence on the crosstalk between adiposity and the immune-tumour microenvironment in BC, its progression and treatment resistance, and the immunometabolic role of metformin in BC. Adiposity, and by extension subclinical inflammation, are associated with metabolic dysfunction and changes in the immune-tumour microenvironment in BC. In oestrogen receptor positive (ER+) breast tumours, it is proposed that these changes are mediated via a paracrine interaction between macrophages and preadipocytes, leading to elevated aromatase expression and secretion of pro-inflammatory cytokines and adipokines in the breast tissue in patients who are obese or overweight. In HER2+ breast tumours, WAT inflammation has been shown to be associated with resistance to trastuzumab mediated via MAPK or PI3K pathways. Furthermore, adipose tissue in patients with obesity is associated with upregulation of immune checkpoints on T-cells that is partially mediated via immunomodulatory effects of leptin and has been paradoxically associated with improved responses to immunotherapy in several cancers. Metformin may play a role in the metabolic reprogramming of tumour-infiltrating immune cells that are dysregulated by systemic inflammation. In conclusion, evidence suggests that body composition and metabolic status are associated with patient outcomes. To optimise patient stratification and personalisation of treatment, prospective studies are required to evaluate the role of body composition and metabolic parameters in metabolic immune reprogramming with and without immunotherapy in patients with BC.
Collapse
Affiliation(s)
- Constantinos Savva
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
- CRUK Southampton Centre, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Ellen Copson
- CRUK Southampton Centre, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
- Southampton Experimental Cancer Medicine Centre, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
| | - Peter W M Johnson
- CRUK Southampton Centre, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
- Southampton Experimental Cancer Medicine Centre, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Ramsey I Cutress
- CRUK Southampton Centre, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
- Southampton Experimental Cancer Medicine Centre, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
| | - Stephen A Beers
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
- CRUK Southampton Centre, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| |
Collapse
|
17
|
Ahmed MSU, Lord BD, Adu Addai B, Singhal SK, Gardner K, Salam AB, Ghebremedhin A, White J, Mahmud I, Martini R, Bedi D, Lin H, Jones JD, Karanam B, Dean-Colomb W, Grizzle W, Wang H, Davis M, Yates CC. Immune Profile of Exosomes in African American Breast Cancer Patients Is Mediated by Kaiso/THBS1/CD47 Signaling. Cancers (Basel) 2023; 15:cancers15082282. [PMID: 37190208 DOI: 10.3390/cancers15082282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 04/02/2023] [Accepted: 04/04/2023] [Indexed: 05/17/2023] Open
Abstract
African American (AA) women with breast cancer are more likely to have higher inflammation and a stronger overall immune response, which correlate with poorer outcomes. In this report, we applied the nanostring immune panel to identify differences in inflammatory and immune gene expression by race. We observed a higher expression of multiple cytokines in AA patients compared to EA patients, with high expression of CD47, TGFB1, and NFKB1 associated with the transcriptional repressor Kaiso. To investigate the mechanism associated with this expression pattern, we observed that Kaiso depletion results in decreased expression of CD47, and its ligand SIRPA. Furthermore, Kaiso appears to directly bind to the methylated sequences of the THBS1 promotor and repress gene expression. Similarly, Kaiso depletion attenuated tumor formation in athymic nude mice, and these Kaiso-depleted xenograft tissues showed significantly higher phagocytosis and increased infiltration of M1 macrophages. In vitro validation using MCF7 and THP1 macrophages treated with Kaiso-depleted exosomes showed a reduced expression of immune-related markers (CD47 and SIRPA) and macrophage polarization towards the M1 phenotype compared to MCF7 cells treated with exosomes isolated from high-Kaiso cells. Lastly, analysis of TCGA breast cancer patient data demonstrates that this gene signature is most prominent in the basal-like subtype, which is more frequently observed in AA breast cancer patients.
Collapse
Affiliation(s)
- Md Shakir Uddin Ahmed
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL 36088, USA
- Bangladesh Council of Scientific and Industrial Research, Dhaka 1205, Bangladesh
| | - Brittany D Lord
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Benjamin Adu Addai
- School of Veterinary Medicine, Tuskegee University, Tuskegee, AL 36088, USA
| | - Sandeep K Singhal
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
- Department of Biomedical Engineering, School of Electrical Engineering and Computer Science, University of North Dakota, Grand Forks, ND 58202, USA
| | - Kevin Gardner
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA
| | - Ahmad Bin Salam
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL 36088, USA
| | - Anghesom Ghebremedhin
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL 36088, USA
| | - Jason White
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL 36088, USA
| | - Iqbal Mahmud
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Rachel Martini
- Department of Surgery, Weill Cornell Medicine, New York, NY 10065, USA
| | - Deepa Bedi
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL 36088, USA
| | - Huixian Lin
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL 36088, USA
| | - Jacqueline D Jones
- Department of Biological and Environmental Sciences, Troy University, Troy, AL 36082, USA
| | | | - Windy Dean-Colomb
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL 36088, USA
- Piedmont Oncology-Newnan, Newnan, GA 30265, USA
| | - William Grizzle
- Department of Pathology, School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Honghe Wang
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL 36088, USA
| | - Melissa Davis
- Department of Surgery, Weill Cornell Medicine, New York, NY 10065, USA
| | - Clayton C Yates
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL 36088, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
18
|
Allison E, Edirimanne S, Matthews J, Fuller SJ. Breast Cancer Survival Outcomes and Tumor-Associated Macrophage Markers: A Systematic Review and Meta-Analysis. Oncol Ther 2023; 11:27-48. [PMID: 36484945 PMCID: PMC9935786 DOI: 10.1007/s40487-022-00214-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/14/2022] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION Tumor-associated macrophages (TAMs) in breast cancer are associated with a poor prognosis. Early studies of TAMs were largely limited to the pan-macrophage marker CD68, however, more recently, an increasing number of studies have used CD163, a marker expressed by alternatively activated M2 macrophages and TAM subsets. We hypothesized that CD163-positive (CD163+) TAMs would be a better predictor of survival outcomes in breast cancer compared to CD68+ TAMs. METHODS We performed a systematic literature search of trials (from 1900 to August 2020) reporting overall survival (OS) or progression-free survival (PFS), breast cancer-specific survival (BCSS), TAM phenotype, and density. Thirty-two studies with 8446 patients were included. Meta-analyses were carried out on hazard ratios (HRs) for survival outcomes of breast cancer patients with a high density of TAMs (CD68+ and/or CD163+) compared to a low density of TAMs. RESULTS A high density of TAMs (CD68+ and/or CD163+) was associated with decreased OS (HR 1.69, 95% CI 1.37-2.07) and reduced PFS (HR 1.64; 95% CI 1.35-1.99). Subgrouping by CD marker type showed a lower OS for high density of CD163+ TAMs (HR 2.24; 95% CI 1.71-2.92) compared to a high density of CD68+ TAMs (HR 1.5; 95% CI 1.12-2). A high density of TAMs (CD68+ and/or CD163+) in triple-negative breast cancer (TNBC) cases was associated with lower OS (HR 2.81, 95% CI 1.35-5.84). CONCLUSION Compared to CD68+ TAMs, a high density of CD163+ TAMs that express a similar phenotype to M2 macrophages are a better predictor of poor survival outcomes in breast cancer.
Collapse
Affiliation(s)
- Eleanor Allison
- Sydney Medical School, Nepean Clinical School, The University of Sydney, Level 3, 62 Derby St, Kingswood, NSW, 2747, Australia
| | - Senarath Edirimanne
- Sydney Medical School, Nepean Clinical School, The University of Sydney, Level 3, 62 Derby St, Kingswood, NSW, 2747, Australia
| | - Jim Matthews
- Sydney Informatics Hub, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Stephen J Fuller
- Sydney Medical School, Nepean Clinical School, The University of Sydney, Level 3, 62 Derby St, Kingswood, NSW, 2747, Australia.
| |
Collapse
|
19
|
Zwager MC, Bense R, Waaijer S, Qiu SQ, Timmer-Bosscha H, de Vries EGE, Schröder CP, van der Vegt B. Assessing the role of tumour-associated macrophage subsets in breast cancer subtypes using digital image analysis. Breast Cancer Res Treat 2023; 198:11-22. [PMID: 36622544 PMCID: PMC9883348 DOI: 10.1007/s10549-022-06859-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 12/29/2022] [Indexed: 01/10/2023]
Abstract
PURPOSE The number of M1-like and M2-like tumour-associated macrophages (TAMs) and their ratio can play a role in breast cancer development and progression. Early clinical trials using macrophage targeting compounds are currently ongoing. However, the most optimal detection method of M1-like and M2-like macrophage subsets and their clinical relevance in breast cancer is still unclear. We aimed to optimize the assessment of TAM subsets in different breast cancer subtypes, and therefore related TAM subset numbers and ratio to clinicopathological characteristics and clinical outcome. METHODS Tissue microarrays of 347 consecutive primary Luminal-A, Luminal-B, HER2-positive and triple-negative tumours of patients with early-stage breast cancer were serially sectioned and immunohistochemically stained for the pan-macrophage marker CD68 and the M2-like macrophage markers CD163, CSF-1R and CD206. TAM numbers were quantified using a digital image analysis algorithm. M1-like macrophage numbers were calculated by subtracting M2-like TAM numbers from the total TAM number. RESULTS M2-like markers CD163 and CSF-1R showed a moderate positive association with each other and with CD68 (r ≥ 0.47), but only weakly with CD206 (r ≤ 0.06). CD68 + , CD163 + and CSF-1R + macrophages correlated with tumour grade in Luminal-B tumours (P < 0.001). Total or subset TAM numbers did not correlate with disease outcome in any breast cancer subtype. CONCLUSION In conclusion, macrophages and their subsets can be detected by means of a panel of TAM markers and are related to unfavourable clinicopathological characteristics in Luminal-B breast cancer. However, their impact on outcome remains unclear. Preferably, this should be determined in prospective series.
Collapse
Affiliation(s)
- Mieke C. Zwager
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Rico Bense
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Stijn Waaijer
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Si-Qi Qiu
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Diagnosis and Treatment Center of Breast Diseases, Clinical Research Center, Shantou Central Hospital, Shantou, China
- Guangdong Provincial Key Laboratory for Breast Cancer Diagnosis and Treatment, Shantou University Medical College, Shantou, China
| | - Hetty Timmer-Bosscha
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Elisabeth G. E. de Vries
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Carolien P. Schröder
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Medical Oncology, Dutch Cancer Institute, Amsterdam, Netherlands
| | - Bert van der Vegt
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, PO Box 30001, 9700 RB Groningen, The Netherlands
| |
Collapse
|
20
|
Bassiouni R, Idowu MO, Gibbs LD, Robila V, Grizzard PJ, Webb MG, Song J, Noriega A, Craig DW, Carpten JD. Spatial Transcriptomic Analysis of a Diverse Patient Cohort Reveals a Conserved Architecture in Triple-Negative Breast Cancer. Cancer Res 2023; 83:34-48. [PMID: 36283023 PMCID: PMC9812886 DOI: 10.1158/0008-5472.can-22-2682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 02/03/2023]
Abstract
Triple-negative breast cancer (TNBC) is an aggressive disease that disproportionately affects African American (AA) women. Limited targeted therapeutic options exist for patients with TNBC. Here, we employ spatial transcriptomics to interrogate tissue from a racially diverse TNBC cohort to comprehensively annotate the transcriptional states of spatially resolved cellular populations. A total of 38,706 spatial features from a cohort of 28 sections from 14 patients were analyzed. Intratumoral analysis of spatial features from individual sections revealed heterogeneous transcriptional substructures. However, integrated analysis of all samples resulted in nine transcriptionally distinct clusters that mapped across all individual sections. Furthermore, novel use of join count analysis demonstrated nonrandom directional spatial dependencies of the transcriptionally defined shared clusters, supporting a conserved spatio-transcriptional architecture in TNBC. These findings were substantiated in an independent validation cohort comprising 17,861 spatial features representing 15 samples from 8 patients. Stratification of samples by race revealed race-associated differences in hypoxic tumor content and regions of immune-rich infiltrate. Overall, this study combined spatial and functional molecular analyses to define the tumor architecture of TNBC, with potential implications in understanding TNBC disparities. SIGNIFICANCE Spatial transcriptomics profiling of a diverse cohort of triple-negative breast cancers and innovative informatics approaches reveal a conserved cellular architecture across cancers and identify proportional differences in tumor cell composition by race.
Collapse
Affiliation(s)
- Rania Bassiouni
- Department of Translational Genomics, Keck School of Medicine, University of Southern California; Los Angeles, CA
| | - Michael O. Idowu
- Department of Pathology, Virginia Commonwealth University; Richmond, VA
| | - Lee D. Gibbs
- Department of Translational Genomics, Keck School of Medicine, University of Southern California; Los Angeles, CA
| | - Valentina Robila
- Department of Pathology, Virginia Commonwealth University; Richmond, VA
| | | | - Michelle G. Webb
- Department of Translational Genomics, Keck School of Medicine, University of Southern California; Los Angeles, CA
| | - Jiarong Song
- Department of Translational Genomics, Keck School of Medicine, University of Southern California; Los Angeles, CA
| | - Ashley Noriega
- Department of Translational Genomics, Keck School of Medicine, University of Southern California; Los Angeles, CA
| | - David W. Craig
- Department of Translational Genomics, Keck School of Medicine, University of Southern California; Los Angeles, CA
- Translational and Clinical Sciences Program, Norris Comprehensive Cancer Center, University of Southern California; Los Angeles, CA
| | - John D. Carpten
- Department of Translational Genomics, Keck School of Medicine, University of Southern California; Los Angeles, CA
- Translational and Clinical Sciences Program, Norris Comprehensive Cancer Center, University of Southern California; Los Angeles, CA
| |
Collapse
|
21
|
Li B, Liu S, Yang Q, Li Z, Li J, Wu J, Sun S, Xu Z, Sun S, Wu Q. Macrophages in Tumor-Associated Adipose Microenvironment Accelerate Tumor Progression. Adv Biol (Weinh) 2023; 7:e2200161. [PMID: 36266968 DOI: 10.1002/adbi.202200161] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/02/2022] [Indexed: 11/06/2022]
Abstract
Adipose-tissue macrophages (ATMs), a complex ensemble of diverse macrophage subtypes, are prevalent in the tumor-adipose microenvironment (TAME) and facilitate tumor growth. However, the mechanisms in which the tumor-adipocyte crosstalk may enable the properties and plasticity of macrophages remain unclear. The single-cell RNA-sequence profiling reveals that a subset of macrophages expressed CD163, CCL2, and CCL5 in TAME, exhibiting an immunosuppressive subtype. It is demonstrated that CD163+ macrophages aggregate to surround adipocytes in breast cancer tissues. The expressions of CCL2 and CCL5 are also elevated in TAME and enable the recruitment and polarize macrophages. Mechanically, the level of exosomal miRNA-155 increased in the coculture of tumor cells and adipocytes, and then it promoted the generation and release of CCL2 and CCL5 from adipocytes by targeting the SOCS6/STAT3 pathway. Inhibition of exosomal miRNA-155 in tumor cells reduced the CCL2 and CCL5 levels in tumor-adipocytes coculture and further retarded tumor growth. Finally, the deletion of macrophages partially inhibited adipocyte-induced tumor proliferation. Likewise, inhibiting chemokines and their receptors or suppressing the phosphorylation of STAT3 decreased tumor burden in preclinical models. These results demonstrate that the niche factors in TAME, such as exosomal miRNA-155, regulate the function and polarity of macrophages to facilitate tumor progression.
Collapse
Affiliation(s)
- Bei Li
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P. R. China
| | - Siqing Liu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P. R. China
| | - Qian Yang
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P. R. China
| | - Zhiyu Li
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P. R. China
| | - Juanjuan Li
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P. R. China
| | - Juan Wu
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P. R. China
| | - Shengrong Sun
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P. R. China
| | - Zhiliang Xu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P. R. China
| | - Si Sun
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P. R. China
| | - Qi Wu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P. R. China.,Tongji University Cancer Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200092, P. R. China
| |
Collapse
|
22
|
Association of CD206 Protein Expression with Immune Infiltration and Prognosis in Patients with Triple-Negative Breast Cancer. Cancers (Basel) 2022; 14:cancers14194829. [PMID: 36230752 PMCID: PMC9564167 DOI: 10.3390/cancers14194829] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/19/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Triple-negative breast cancers (TNBCs) have a worse prognosis, but might respond to immunotherapies. Macrophages are plastic cells that can adopt various phenotypes and functions. Although they are a major immune population in TNBCs, the relationship between tumor-associated macrophages (TAMs) and TNBC progression has been rarely explored, with controversial results. Methods: We evaluated the prognostic impact of TAMs, quantified by immunohistochemistry with anti-CD68, -IRF8, -CD163, and -CD206 antibodies, in a well-described cohort of 285 patients with non-metastatic TNBC. Results: CD68 (p = 0.008), IRF8 (p = 0.001), and CD163 (p < 0.001) expression positively correlated with higher tumor grade, while CD206 was associated with smaller tumor size (p < 0.001). All macrophage markers were associated with higher tumor-infiltrating lymphocyte numbers and PD-L1 expression. Univariate survival analyses reported a significant positive correlation between CD163+ or CD206+ TAMs and relapse-free survival (respectively: HR = 0.52 [0.28−0.97], p = 0.027, and HR = 0.51 [0.31−0.82], p = 0.005), and between CD206+ TAMs and overall survival (HR = 0.54 [0.35−0.83], p = 0.005). In multivariate analysis, there was a trend for an association between CD206+ TAMs and relapse-free survival (HR = 0.63 [0.33−1.04], p = 0.073). Conclusions: These data suggest that CD206 expression defines a TAM subpopulation potentially associated with favorable outcomes in patients with TNBC. CD206 expression might identify an immune TNBC subgroup with specific therapeutic options.
Collapse
|
23
|
Hamilton AM, Hurson AN, Olsson LT, Walens A, Nsonwu-Farley J, Kirk EL, Abdou Y, Downs-Canner SM, Serody JS, Perou CM, Calhoun BC, Troester MA, Hoadley KA. The Landscape of Immune Microenvironments in Racially Diverse Breast Cancer Patients. Cancer Epidemiol Biomarkers Prev 2022; 31:1341-1350. [PMID: 35437570 PMCID: PMC9292136 DOI: 10.1158/1055-9965.epi-21-1312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 03/01/2022] [Accepted: 04/12/2022] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Immunotherapy is a rapidly evolving treatment option in breast cancer; However, the breast cancer immune microenvironment is understudied in Black and younger (<50 years) patients. METHODS We used histologic and RNA-based immunoprofiling methods to characterize the breast cancer immune landscape in 1,952 tumors from the Carolina Breast Cancer Study (CBCS), a population-based study that oversampled Black (n = 1,030) and young women (n = 1,039). We evaluated immune response leveraging markers for 10 immune cell populations, compared profiles to those in The Cancer Genome Atlas (TCGA) Project [n = 1,095 tumors, Black (n = 183), and young women (n = 295)], and evaluated in association with clinical and demographic variables, including recurrence. RESULTS Consensus clustering identified three immune clusters in CBCS (adaptive-enriched, innate-enriched, or immune-quiet) that varied in frequency by race, age, tumor grade and subtype; however, only two clusters were identified in TCGA, which were predominantly comprised of adaptive-enriched and innate-enriched tumors. In CBCS, the strongest adaptive immune response was observed for basal-like, HER2-positive (HER2+), triple-negative breast cancer (TNBC), and high-grade tumors. Younger patients had higher proportions of adaptive-enriched tumors, particularly among estrogen receptor (ER)-negative (ER-) cases. Black patients had higher frequencies of both adaptive-enriched and innate-enriched tumors. Immune clusters were associated with recurrence among ER- tumors, with adaptive-enriched showing the best and innate-enriched showing the poorest 5-year recurrence-free survival. CONCLUSIONS These data suggest that immune microenvironments are intricately related to race, age, tumor subtype, and grade. IMPACT Given higher mortality among Black and young women, more defined immune classification using cell-type-specific panels could help explain higher recurrence and ultimately lead to targetable interventions.
Collapse
Affiliation(s)
- Alina M. Hamilton
- Department of Pathology and Laboratory Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Amber N. Hurson
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Linnea T. Olsson
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Andrea Walens
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Joseph Nsonwu-Farley
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Erin L. Kirk
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Yara Abdou
- Department of Medicine, Division of Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Stephanie M. Downs-Canner
- Department of Surgery, Division of Surgical Oncology and Endocrine Surgery, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| | - Jonathan S. Serody
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, 27599, USA
- Division of Hematology/Oncology, Department of Medicine, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Charles M. Perou
- Department of Pathology and Laboratory Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Benjamin C. Calhoun
- Department of Pathology and Laboratory Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Melissa A. Troester
- Department of Pathology and Laboratory Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Katherine A. Hoadley
- Department of Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| |
Collapse
|
24
|
Wang C, Lin Y, Zhu H, Zhou Y, Mao F, Huang X, Sun Q, Li C. The Prognostic and Clinical Value of Tumor-Associated Macrophages in Patients With Breast Cancer: A Systematic Review and Meta-Analysis. Front Oncol 2022; 12:905846. [PMID: 35847911 PMCID: PMC9280493 DOI: 10.3389/fonc.2022.905846] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/26/2022] [Indexed: 12/24/2022] Open
Abstract
Background The prognostic and clinical value of tumor-associated macrophages (TAMs) in patients with breast cancer (BCa) remains unclear. We conducted the current meta-analysis to systematically evaluate the association of CD68+ and CD163+ TAM density with the prognosis and clinicopathologic features of BCa patients. Methods Searches of Web of Science, PubMed, and EMBASE databases were performed up to January 31, 2022. The meta-analysis was conducted using hazard risks (HRs) and 95% confidence intervals (CIs) for survival data including overall survival (OS), disease-free survival (DFS), and BCa specific survival. Sensitivity and meta-regression analyses were also conducted to identify the robustness of the pooled estimates. Results Our literature search identified relevant articles involving a total of 8,496 patients from 32 included studies. Our analysis indicates that a high CD68+ TAM density in the tumor stoma was significantly linked with poor OS (HR 2.46, 95% CI, 1.83–3.31, P<0.001) and shorter DFS (HR 1.77, 95% CI, 1.08–2.89, P=0.02) compared to low CD68+ TAM density. A significant association was also found in the tumor nest. Analysis of CD163+ TAM density showed similar results (all P<0.001). Notably, the pooled analysis with multivariate-adjusted HRs for OS and DFS also found that a high TAM density was significantly related to poorer outcomes for BCa patients (all P<0.05). In addition, BCa patients with high TAM density were more likely to have larger tumors, no vascular invasion, and positive estrogen receptor expression (all P<0.05). Conclusion This meta-analysis indicates that a high CD68+ and CD163+ TAM density is associated with poor OS and shorter DFS in BCa patients. Further clinical studies and in vivo experiments are needed to elucidate the underlying mechanism of TAMs. Systematic Review Registration https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42022304853, identifier CRD42022304853.
Collapse
Affiliation(s)
- Changjun Wang
- Department of Breast Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Yan Lin
- Department of Breast Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Hanjiang Zhu
- Department of Dermatology, 90 Medical Center Way, Surge 110, University of California, San Francisco, San Francisco, CA, United States
| | - Yidong Zhou
- Department of Breast Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Feng Mao
- Department of Breast Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Xin Huang
- Department of Breast Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Qiang Sun
- Department of Breast Surgery, Peking Union Medical College Hospital, Beijing, China
- *Correspondence: Qiang Sun, ; Chenggang Li,
| | - Chenggang Li
- State Key Laboratory of Medicinal Chemical biology, Nankai University, Tianjin, China
- College of Pharmacy, Nankai University, Tianjin, China
- *Correspondence: Qiang Sun, ; Chenggang Li,
| |
Collapse
|
25
|
Devericks EN, Carson MS, McCullough LE, Coleman MF, Hursting SD. The obesity-breast cancer link: a multidisciplinary perspective. Cancer Metastasis Rev 2022; 41:607-625. [PMID: 35752704 PMCID: PMC9470704 DOI: 10.1007/s10555-022-10043-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/31/2022] [Indexed: 12/12/2022]
Abstract
Obesity, exceptionally prevalent in the USA, promotes the incidence and progression of numerous cancer types including breast cancer. Complex, interacting metabolic and immune dysregulation marks the development of both breast cancer and obesity. Obesity promotes chronic low-grade inflammation, particularly in white adipose tissue, which drives immune dysfunction marked by increased pro-inflammatory cytokine production, alternative macrophage activation, and reduced T cell function. Breast tissue is predominantly composed of white adipose, and developing breast cancer readily and directly interacts with cells and signals from adipose remodeled by obesity. This review discusses the biological mechanisms through which obesity promotes breast cancer, the role of obesity in breast cancer health disparities, and dietary interventions to mitigate the adverse effects of obesity on breast cancer. We detail the intersection of obesity and breast cancer, with an emphasis on the shared and unique patterns of immune dysregulation in these disease processes. We have highlighted key areas of breast cancer biology exacerbated by obesity, including incidence, progression, and therapeutic response. We posit that interception of obesity-driven breast cancer will require interventions that limit protumor signaling from obese adipose tissue and that consider genetic, structural, and social determinants of the obesity–breast cancer link. Finally, we detail the evidence for various dietary interventions to offset obesity effects in clinical and preclinical studies of breast cancer. In light of the strong associations between obesity and breast cancer and the rising rates of obesity in many parts of the world, the development of effective, safe, well-tolerated, and equitable interventions to limit the burden of obesity on breast cancer are urgently needed.
Collapse
Affiliation(s)
- Emily N Devericks
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Meredith S Carson
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lauren E McCullough
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Michael F Coleman
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Stephen D Hursting
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. .,Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC, USA. .,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
26
|
Birts CN, Savva C, Laversin SA, Lefas A, Krishnan J, Schapira A, Ashton-Key M, Crispin M, Johnson PWM, Blaydes JP, Copson E, Cutress RI, Beers SA. Prognostic significance of crown-like structures to trastuzumab response in patients with primary invasive HER2 + breast carcinoma. Sci Rep 2022; 12:7802. [PMID: 35610242 PMCID: PMC9130517 DOI: 10.1038/s41598-022-11696-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 04/20/2022] [Indexed: 11/09/2022] Open
Abstract
Obesity can initiate, promote, and maintain systemic inflammation via metabolic reprogramming of macrophages that encircle adipocytes, termed crown-like structures (CLS). In breast cancer the presence of CLS has been correlated to high body mass index (BMI), larger mammary adipocyte size and postmenopausal status. However, the prognostic significance of CLS in HER2 + breast cancer is still unknown. We investigated the prognostic significance of CLS in a cohort of 69 trastuzumab-naïve and 117 adjuvant trastuzumab-treated patients with primary HER2 + breast cancer. Immunohistochemistry of tumour blocks was performed for CLS and correlated to clinical outcomes. CLS were more commonly found at the adipose-tumour border (B-CLS) (64.8% of patients). The presence of multiple B-CLS was associated with reduced time to metastatic disease (TMD) in trastuzumab treated patients with BMI ≥ 25 kg/m2 but not those with BMI < 25 kg/m2. Phenotypic analysis showed the presence of CD32B + B-CLS was strongly correlated to BMI ≥ 25 kg/m2 and reduced TMD in trastuzumab treated patients. Multivariable analysis suggested that CD32B + B-CLS positive tumours are associated with shorter TMD in trastuzumab-treated patients (HR 4.2 [95%CI, (1.01-17.4). This study indicates adipose-tumour border crown-like structures that are CD32B + potentially represent a biomarker for improved personalisation of treatment in HER2-overexpressed breast cancer patients.
Collapse
Affiliation(s)
- Charles N Birts
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK.
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK.
- Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK.
| | - Constantinos Savva
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
- CRUK Southampton Centre, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - Stéphanie A Laversin
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - Alicia Lefas
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
- CRUK Southampton Centre, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - Jamie Krishnan
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
- CRUK Southampton Centre, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - Aron Schapira
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
- CRUK Southampton Centre, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - Margaret Ashton-Key
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
- CRUK Southampton Centre, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
- Cellular Pathology, University Hospitals Southampton NHS Foundation Trust, Southampton, SO16 6YD, UK
| | - Max Crispin
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
- Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Peter W M Johnson
- CRUK Southampton Centre, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
- Southampton Experimental Cancer Medicine Centre, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - Jeremy P Blaydes
- Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
- CRUK Southampton Centre, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - Ellen Copson
- CRUK Southampton Centre, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
- Southampton Experimental Cancer Medicine Centre, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
- NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, SO16 6YD, UK
| | - Ramsey I Cutress
- CRUK Southampton Centre, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK.
- Southampton Experimental Cancer Medicine Centre, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK.
- NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, SO16 6YD, UK.
| | - Stephen A Beers
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK.
- CRUK Southampton Centre, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK.
| |
Collapse
|
27
|
Immune response and inflammation in cancer health disparities. Trends Cancer 2021; 8:316-327. [PMID: 34965905 DOI: 10.1016/j.trecan.2021.11.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 12/22/2022]
Abstract
Cancer death rates vary among population groups. Underserved populations continue to experience an excessive burden of lethal cancers that is largely explained by health-care disparities. However, the prominent role of advanced-stage disease as a driver of cancer survival disparities may indicate that some cancers are more aggressive in certain population groups than others. The tumor mutational burden can show large differences among patients with similar-stage disease but differences in race/ethnicity or residence. These dissimilarities may result from environmental or chronic inflammatory exposures, altering tumor biology and the immune response. We discuss the evidence that inflammation and immune response dissimilarities among population groups contribute to cancer disparities and how they can be targeted to reduce these disparities.
Collapse
|
28
|
Shastri AA, Lombardo J, Okere SC, Higgins S, Smith BC, DeAngelis T, Palagani A, Hines K, Monti DA, Volpe S, Mitchell EP, Simone NL. Personalized Nutrition as a Key Contributor to Improving Radiation Response in Breast Cancer. Int J Mol Sci 2021; 23:175. [PMID: 35008602 PMCID: PMC8745527 DOI: 10.3390/ijms23010175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 02/06/2023] Open
Abstract
Understanding metabolic and immune regulation inherent to patient populations is key to improving the radiation response for our patients. To date, radiation therapy regimens are prescribed based on tumor type and stage. Patient populations who are noted to have a poor response to radiation such as those of African American descent, those who have obesity or metabolic syndrome, or senior adult oncology patients, should be considered for concurrent therapies with radiation that will improve response. Here, we explore these populations of breast cancer patients, who frequently display radiation resistance and increased mortality rates, and identify the molecular underpinnings that are, in part, responsible for the radiation response and that result in an immune-suppressive tumor microenvironment. The resulting immune phenotype is discussed to understand how antitumor immunity could be improved. Correcting nutrient deficiencies observed in these populations should be considered as a means to improve the therapeutic index of radiation therapy.
Collapse
Affiliation(s)
- Anuradha A. Shastri
- Department of Radiation Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; (A.A.S.); (J.L.); (S.C.O.); (S.H.); (B.C.S.); (T.D.); (A.P.); (K.H.)
| | - Joseph Lombardo
- Department of Radiation Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; (A.A.S.); (J.L.); (S.C.O.); (S.H.); (B.C.S.); (T.D.); (A.P.); (K.H.)
| | - Samantha C. Okere
- Department of Radiation Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; (A.A.S.); (J.L.); (S.C.O.); (S.H.); (B.C.S.); (T.D.); (A.P.); (K.H.)
| | - Stephanie Higgins
- Department of Radiation Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; (A.A.S.); (J.L.); (S.C.O.); (S.H.); (B.C.S.); (T.D.); (A.P.); (K.H.)
| | - Brittany C. Smith
- Department of Radiation Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; (A.A.S.); (J.L.); (S.C.O.); (S.H.); (B.C.S.); (T.D.); (A.P.); (K.H.)
| | - Tiziana DeAngelis
- Department of Radiation Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; (A.A.S.); (J.L.); (S.C.O.); (S.H.); (B.C.S.); (T.D.); (A.P.); (K.H.)
| | - Ajay Palagani
- Department of Radiation Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; (A.A.S.); (J.L.); (S.C.O.); (S.H.); (B.C.S.); (T.D.); (A.P.); (K.H.)
| | - Kamryn Hines
- Department of Radiation Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; (A.A.S.); (J.L.); (S.C.O.); (S.H.); (B.C.S.); (T.D.); (A.P.); (K.H.)
| | - Daniel A. Monti
- Department of Integrative Medicine and Nutritional Sciences, Marcus Institute of Integrative Health, Thomas Jefferson University, Philadelphia, PA 19107, USA;
| | - Stella Volpe
- Department of Human Nutrition, Foods and Exercise, College of Agriculture and Life Sciences, Virginia Tech, Blacksburg, VA 24061, USA;
| | - Edith P. Mitchell
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA;
| | - Nicole L. Simone
- Department of Radiation Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; (A.A.S.); (J.L.); (S.C.O.); (S.H.); (B.C.S.); (T.D.); (A.P.); (K.H.)
| |
Collapse
|
29
|
Yaghoobi V, Moutafi M, Aung TN, Pelekanou V, Yaghoubi S, Blenman K, Ibrahim E, Vathiotis IA, Shafi S, Sharma A, O'Meara T, Fernandez AI, Pusztai L, Rimm DL. Quantitative assessment of the immune microenvironment in African American Triple Negative Breast Cancer: a case-control study. Breast Cancer Res 2021; 23:113. [PMID: 34906209 PMCID: PMC8670126 DOI: 10.1186/s13058-021-01493-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 12/01/2021] [Indexed: 11/10/2022] Open
Abstract
PURPOSE Triple negative breast cancer (TNBC) is more common in African American (AA) than Non-AA (NAA) population. We hypothesize that tumor microenvironment (TME) contributes to this disparity. Here, we use multiplex quantitative immunofluorescence to characterize the expression of immunologic biomarkers in the TME in both populations. PATIENTS AND METHODS TNBC tumor resection specimen tissues from a 100-patient case: control cohort including 49 AA and 51 NAA were collected. TME markers including CD45, CD14, CD68, CD206, CD4, CD8, CD20, CD3, Ki67, GzB, Thy1, FAP, aSMA, CD34, Col4, VWF and PD-L1 we quantitatively assessed in every field of view. Mean expression levels were compared between cases and controls. RESULTS Although no significant differences were detected in individual lymphoid and myeloid markers, we found that infiltration with CD45+ immune cells (p = 0.0102) was higher in TNBC in AA population. AA TNBC tumors also had significantly higher level of lymphocytic infiltration defined as CD45+ CD14- cells (p = 0.0081). CD3+ T-cells in AA tumors expressed significantly higher levels of Ki67 (0.0066) compared to NAAs, indicating that a higher percentage of AA tumors contained activated T-cells. All other biomarkers showed no significant differences between the AA and NAA group. CONCLUSIONS While the TME in TNBC is rich in immune cells in both racial groups, there is a numerical increase in lymphoid infiltration in AA compared to NAA TNBC. Significantly, higher activated T cells seen in AA patients raises the possibility that there may be a subset of AA patients with improved response to immunotherapy.
Collapse
Affiliation(s)
- Vesal Yaghoobi
- Department of Pathology, Yale University School of Medicine, 310 Cedar Street, BML 116, P.O. Box 208023, New Haven, CT, 06520-8023, USA
| | - Myrto Moutafi
- Department of Pathology, Yale University School of Medicine, 310 Cedar Street, BML 116, P.O. Box 208023, New Haven, CT, 06520-8023, USA
| | - Thazin Nwe Aung
- Department of Pathology, Yale University School of Medicine, 310 Cedar Street, BML 116, P.O. Box 208023, New Haven, CT, 06520-8023, USA
| | - Vasiliki Pelekanou
- Department of Pathology, Yale University School of Medicine, 310 Cedar Street, BML 116, P.O. Box 208023, New Haven, CT, 06520-8023, USA
| | - Sanam Yaghoubi
- Genetics Branch, National Cancer Institute (NCI), National Institute of Health (NIH), Bethesda, MD, USA
| | - Kim Blenman
- Department of Internal Medicine, Section of Medical Oncology, Yale School of Medicine, New Haven, CT, USA
- Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA
| | - Eiman Ibrahim
- Department of Internal Medicine, Section of Medical Oncology, Yale School of Medicine, New Haven, CT, USA
| | - Ioannis A Vathiotis
- Department of Pathology, Yale University School of Medicine, 310 Cedar Street, BML 116, P.O. Box 208023, New Haven, CT, 06520-8023, USA
| | - Saba Shafi
- Department of Pathology, Yale University School of Medicine, 310 Cedar Street, BML 116, P.O. Box 208023, New Haven, CT, 06520-8023, USA
| | - Anup Sharma
- Department of Surgery, Yale School of Medicine, New Haven, CT, USA
| | - Tess O'Meara
- Department of Internal Medicine, Section of Medical Oncology, Yale School of Medicine, New Haven, CT, USA
| | - Aileen I Fernandez
- Department of Pathology, Yale University School of Medicine, 310 Cedar Street, BML 116, P.O. Box 208023, New Haven, CT, 06520-8023, USA
| | - Lajos Pusztai
- Department of Internal Medicine, Section of Medical Oncology, Yale School of Medicine, New Haven, CT, USA
- Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA
| | - David L Rimm
- Department of Pathology, Yale University School of Medicine, 310 Cedar Street, BML 116, P.O. Box 208023, New Haven, CT, 06520-8023, USA.
- Department of Internal Medicine, Section of Medical Oncology, Yale School of Medicine, New Haven, CT, USA.
- Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
30
|
Holm JB, Rosendahl AH, Borgquist S. Local Biomarkers Involved in the Interplay between Obesity and Breast Cancer. Cancers (Basel) 2021; 13:cancers13246286. [PMID: 34944905 PMCID: PMC8699696 DOI: 10.3390/cancers13246286] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/30/2021] [Accepted: 12/07/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Breast cancer is the second most common cancer in women worldwide. The risk of developing breast cancer depends on various mechanisms, such as age, heredity, reproductive factors, physical inactivity, and obesity. Obesity increases the risk of breast cancer and worsens outcomes for breast cancer patients. The rate of obesity is increasing worldwide, stressing the need for awareness of the association between obesity and breast cancer. In this review, we outline the biomarkers—including cellular and soluble factors—in the breast, associated with obesity, that affect the risk of breast cancer and breast cancer prognosis. Through these biomarkers, we aim to better identify patients with obesity with a higher risk of breast cancer and an inferior prognosis. Abstract Obesity is associated with an increased risk of breast cancer, which is the most common cancer in women worldwide (excluding non-melanoma skin cancer). Furthermore, breast cancer patients with obesity have an impaired prognosis. Adipose tissue is abundant in the breast. Therefore, breast cancer develops in an adipose-rich environment. During obesity, changes in the local environment in the breast occur which are associated with breast cancer. A shift towards a pro-inflammatory state is seen, resulting in altered levels of cytokines and immune cells. Levels of adipokines, such as leptin, adiponectin, and resistin, are changed. Aromatase activity rises, resulting in higher levels of potent estrogen in the breast. Lastly, remodeling of the extracellular matrix takes place. In this review, we address the current knowledge on the changes in the breast adipose tissue in obesity associated with breast cancer initiation and progression. We aim to identify obesity-associated biomarkers in the breast involved in the interplay between obesity and breast cancer. Hereby, we can improve identification of women with obesity with an increased risk of breast cancer and an impaired prognosis. Studies investigating mammary adipocytes and breast adipose tissue in women with obesity versus women without obesity are, however, sparse and further research is needed.
Collapse
Affiliation(s)
- Jonas Busk Holm
- Department of Oncology, Aarhus University Hospital, Aarhus University, Palle Juul-Jensens Boulevard 99, 8200 Aarhus, Denmark
- Correspondence: (J.B.H.); (S.B.)
| | - Ann H. Rosendahl
- Department of Clinical Sciences Lund, Oncology, Lund University, Skåne University Hospital, Barngatan 4, 221 85 Lund, Sweden;
| | - Signe Borgquist
- Department of Oncology, Aarhus University Hospital, Aarhus University, Palle Juul-Jensens Boulevard 99, 8200 Aarhus, Denmark
- Department of Clinical Sciences Lund, Oncology, Lund University, Skåne University Hospital, Barngatan 4, 221 85 Lund, Sweden;
- Correspondence: (J.B.H.); (S.B.)
| |
Collapse
|
31
|
Cho BA, Iyengar NM, Zhou XK, Morrow M, Giri DD, Verma A, Elemento O, Pollak M, Dannenberg AJ. Blood biomarkers reflect the effects of obesity and inflammation on the human breast transcriptome. Carcinogenesis 2021; 42:1281-1292. [PMID: 34314488 PMCID: PMC8546933 DOI: 10.1093/carcin/bgab066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 07/15/2021] [Accepted: 07/26/2021] [Indexed: 11/14/2022] Open
Abstract
Obesity is a risk factor for the development of post-menopausal breast cancer. Breast white adipose tissue (WAT) inflammation, which is commonly found in women with excess body fat, is also associated with increased breast cancer risk. Both local and systemic effects are probably important for explaining the link between excess body fat, adipose inflammation and breast cancer. The first goal of this cross-sectional study of 196 women was to carry out transcriptome profiling to define the molecular changes that occur in the breast related to excess body fat and WAT inflammation. A second objective was to determine if commonly measured blood biomarkers of risk and prognosis reflect molecular changes in the breast. Breast WAT inflammation was assessed by immunohistochemistry. Bulk RNA-sequencing was carried out to assess gene expression in non-tumorous breast. Obesity and WAT inflammation were associated with a large number of differentially expressed genes and changes in multiple pathways linked to the development and progression of breast cancer. Altered pathways included inflammatory response, complement, KRAS signaling, tumor necrosis factor α signaling via NFkB, interleukin (IL)6-JAK-STAT3 signaling, epithelial mesenchymal transition, angiogenesis, interferon γ response and transforming growth factor (TGF)-β signaling. Increased expression of several drug targets such as aromatase, TGF-β1, IDO-1 and PD-1 were observed. Levels of various blood biomarkers including high sensitivity C-reactive protein, IL6, leptin, adiponectin, triglycerides, high-density lipoprotein cholesterol and insulin were altered and correlated with molecular changes in the breast. Collectively, this study helps to explain both the link between obesity and breast cancer and the utility of blood biomarkers for determining risk and prognosis.
Collapse
Affiliation(s)
- Byuri Angela Cho
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Neil M Iyengar
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Xi Kathy Zhou
- Department of Population Health Sciences, Weill Cornell Medical College, New York, NY, USA
| | - Monica Morrow
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Dilip D Giri
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Akanksha Verma
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY, USA
| | - Olivier Elemento
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Michael Pollak
- Department of Medicine and Oncology, McGill University, Montreal, Quebec, Canada
| | | |
Collapse
|
32
|
Liang YL, Lin CN, Tsai HF, Wu PY, Lin SH, Hong TM, Hsu KF. Omental Macrophagic "Crown-like Structures" Are Associated with Poor Prognosis in Advanced-Stage Serous Ovarian Cancer. ACTA ACUST UNITED AC 2021; 28:4234-4246. [PMID: 34677277 PMCID: PMC8534828 DOI: 10.3390/curroncol28050359] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/29/2021] [Accepted: 10/16/2021] [Indexed: 12/11/2022]
Abstract
The tumor microenvironment is a well-recognized framework in which immune cells present in the tumor microenvironment promote or inhibit cancer formation and development. A crown-like structure (CLS) has been reported as a dying or dead adipocyte surrounded by a 'crown' of macrophages within adipose tissue, which is a histologic hallmark of the inflammatory process in this tissue. CLSs have also been found to be related to formation, progression and prognosis of some types of cancer. However, the presence of CLSs in the omentum of advanced-stage high-grade serous ovarian carcinoma (HGSOC) has not been thoroughly investigated. By using CD68, a pan-macrophage marker, and CD163, an M2-like polarization macrophage marker, immunohistochemistry (IHC) was performed to identify tumor-associated macrophages (TAMs) and CLSs. This retrospective study analyzed 116 patients with advanced-stage HGSOC who received complete treatment and had available clinical data from July 2008 through December 2016 at National Cheng Kung University Hospital (NCKUH) (Tainan, Taiwan). Based on multivariate Cox regression analysis, patients with omental CD68+ CLSs had poor OS (median survival: 24 vs. 38 months, p = 0.001, hazard ratio (HR): 2.26, 95% confidence interval (CI): 1.41-3.61); patients with omental CD163+ CLSs also had poor OS (median survival: 22 vs. 36 months, HR: 2.14, 95%CI: 1.33-3.44, p = 0.002). Additionally, patients with omental CD68+ or CD163+ CLSs showed poor PFS (median survival: 11 vs. 15 months, HR: 2.28, 95%CI: 1.43-3.64, p = 0.001; median survival: 11 vs. 15 months, HR: 2.17, 95%CI: 1.35-3.47, respectively, p = 0.001). Conversely, the density of CD68+ or CD163+ TAMs in ovarian tumors was not associated with patient prognosis in advanced-stage HGSOC in our cohort. In conclusion, we, for the first time, demonstrate that the presence of omental CLSs is associated with poor prognosis in advanced-stage HGSOC.
Collapse
Affiliation(s)
- Yu-Ling Liang
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan; (Y.-L.L.); (C.-N.L.); (H.-F.T.); (P.-Y.W.)
| | - Chang-Ni Lin
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan; (Y.-L.L.); (C.-N.L.); (H.-F.T.); (P.-Y.W.)
| | - Hsing-Fen Tsai
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan; (Y.-L.L.); (C.-N.L.); (H.-F.T.); (P.-Y.W.)
| | - Pei-Ying Wu
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan; (Y.-L.L.); (C.-N.L.); (H.-F.T.); (P.-Y.W.)
| | - Sheng-Hsiang Lin
- Graduate Institute of Clinical Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan;
| | - Tse-Ming Hong
- Graduate Institute of Clinical Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan;
- Correspondence: (T.-M.H.); (K.-F.H.); Tel.: +886-6-2353535 (ext. 4259) (T.-M.H.); +886-6-2353535 (ext. 5263) (K.-F.H.); Fax: +886-6-2359885 (T.-M.H.); +886-6-2766185 (K.-F.H.)
| | - Keng-Fu Hsu
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan; (Y.-L.L.); (C.-N.L.); (H.-F.T.); (P.-Y.W.)
- Graduate Institute of Clinical Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan;
- Correspondence: (T.-M.H.); (K.-F.H.); Tel.: +886-6-2353535 (ext. 4259) (T.-M.H.); +886-6-2353535 (ext. 5263) (K.-F.H.); Fax: +886-6-2359885 (T.-M.H.); +886-6-2766185 (K.-F.H.)
| |
Collapse
|
33
|
Blaszczak AM, Quiroga D, Jalilvand A, Torres Matias GS, Wright VP, Liu J, Yu L, Bradley D, Hsueh WA, Carson WE. Characterization of inflammatory changes in the breast cancer associated adipose tissue and comparison to the unaffected contralateral breast. Surg Oncol 2021; 39:101659. [PMID: 34534729 DOI: 10.1016/j.suronc.2021.101659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 09/06/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND Adipose tissue has emerged as an important window into cancer pathophysiology, revealing potential targets for novel therapeutic interventions. The goal of this study was to compare the breast adipose tissue (BrAT) immune milieu surrounding breast carcinoma and contralateral unaffected breast tissue obtained from the same patient. MATERIALS AND METHODS Patients undergoing bilateral mastectomy for unilateral breast cancer were enrolled for bilateral BrAT collection at the time of operation. After BrAT was processed, adipocyte and stromal vascular fraction (SVF) gene expression was quantified by PCR. SVF cells were also processed for flow cytometric immune cell characterization. RESULTS Twelve patients underwent bilateral mastectomy for unilateral ductal carcinoma. BrAT adipocyte CXCL2 gene expression trended higher in the tumor-affected breast as compared to the unaffected breast. Macrophage MCP-1 and PPARγ gene expression also tended to be higher in the tumor-affected breasts. T cell gene expression of FOXP3 (p = 0.0370) were significantly greater in tumor-affected breasts than unaffected breasts. Affected BrAT contained higher numbers of Th2 CD4+ cells (p = 0.0165) and eosinophils (p = 0.0095) while trending towards increased macrophage and lower Th1 CD4+ cells infiltration than tumor-affected BrAT. CONCLUSION This preliminary study aimed to identify the immunologic environment present within BrAT and is the first to directly compare this in individual patients' tumor-associated and unaffected BrAT. These findings suggest that cancer-affected BrAT had increased levels of T cell specific FOXP3 and higher levels of anti-inflammatory/regulatory cells compared to the contralateral BrAT.
Collapse
Affiliation(s)
- Alecia M Blaszczak
- Diabetes and Metabolism Research Center, Division of Endocrinology, Diabetes & Metabolism, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Dionisia Quiroga
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, 410 W 12th Avenue, Columbus, OH, 43210, USA; Department of Internal Medicine, Division of Medical Oncology, The Ohio State University, Starling Loving Hall, 320 W10th Ave, Columbus, OH, 43210, USA
| | - Anahita Jalilvand
- Diabetes and Metabolism Research Center, Division of Endocrinology, Diabetes & Metabolism, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Gina S Torres Matias
- Diabetes and Metabolism Research Center, Division of Endocrinology, Diabetes & Metabolism, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Valerie P Wright
- Diabetes and Metabolism Research Center, Division of Endocrinology, Diabetes & Metabolism, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Joey Liu
- Diabetes and Metabolism Research Center, Division of Endocrinology, Diabetes & Metabolism, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Lianbo Yu
- Center for Biostatistics, The Ohio State University, 2012 Kenny Rd, Columbus, OH, 43221, USA
| | - David Bradley
- Diabetes and Metabolism Research Center, Division of Endocrinology, Diabetes & Metabolism, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Willa A Hsueh
- Diabetes and Metabolism Research Center, Division of Endocrinology, Diabetes & Metabolism, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - William E Carson
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, 410 W 12th Avenue, Columbus, OH, 43210, USA; Department of Surgery, The Ohio State University, 410 W 10th Ave, N911 Doan Hall, Columbus, OH, 43210, USA.
| |
Collapse
|
34
|
Danforth DN. The Role of Chronic Inflammation in the Development of Breast Cancer. Cancers (Basel) 2021; 13:3918. [PMID: 34359821 PMCID: PMC8345713 DOI: 10.3390/cancers13153918] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/20/2021] [Accepted: 07/27/2021] [Indexed: 12/13/2022] Open
Abstract
Chronic inflammation contributes to the malignant transformation of several malignancies and is an important component of breast cancer. The role of chronic inflammation in the initiation and development of breast cancer from normal breast tissue, however, is unclear and needs to be clarified. A review of the literature was conducted to define the chronic inflammatory processes in normal breast tissue at risk for breast cancer and in breast cancer, including the role of lymphocyte and macrophage infiltrates, chronic active adipocytes and fibroblasts, and processes that may promote chronic inflammation including the microbiome and factors related to genomic abnormalities and cellular injury. The findings indicate that in healthy normal breast tissue there is systemic evidence to suggest inflammatory changes are present and associated with breast cancer risk, and adipocytes and crown-like structures in normal breast tissue may be associated with chronic inflammatory changes. The microbiome, genomic abnormalities, and cellular changes are present in healthy normal breast tissue, with the potential to elicit inflammatory changes, while infiltrating lymphocytes are uncommon in these tissues. Chronic inflammatory changes occur prominently in breast cancer tissues, with important contributions from tumor-infiltrating lymphocytes and tumor-associated macrophages, cancer-associated adipocytes and crown-like structures, and cancer-associated fibroblasts, while the microbiome and DNA damage may serve to promote inflammatory events. Together, these findings suggest that chronic inflammation may play a role in influencing the initiation, development and conduct of breast cancer, although several chronic inflammatory processes in breast tissue may occur later in breast carcinogenesis.
Collapse
Affiliation(s)
- David N Danforth
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
35
|
Amens JN, Bahçecioglu G, Zorlutuna P. Immune System Effects on Breast Cancer. Cell Mol Bioeng 2021; 14:279-292. [PMID: 34295441 PMCID: PMC8280260 DOI: 10.1007/s12195-021-00679-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 05/17/2021] [Indexed: 12/11/2022] Open
Abstract
Breast cancer is one of the most common cancers in women, with the ability to metastasize to secondary organs, which is the main cause of cancer-related deaths. Understanding how breast tumors progress is essential for developing better treatment strategies against breast cancer. Until recently, it has been considered that breast cancer elicits a small immune response. However, it is now clear that breast tumor progression is either prevented by the action of antitumor immunity or exacerbated by proinflammatory cytokines released mainly by the immune cells. In this comprehensive review we first explain antitumor immunity, then continue with how the tumor suppresses and evades the immune response, and next, outline the role of inflammation in breast tumor initiation and progression. We finally review the current immunotherapeutic and immunoengineering strategies against breast cancer as a promising emerging approach for the discovery and design of immune system-based strategies for breast cancer treatment.
Collapse
Affiliation(s)
- Jensen N. Amens
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556 USA
| | - Gökhan Bahçecioglu
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556 USA
| | - Pinar Zorlutuna
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556 USA
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN 46556 USA
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556 USA
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556 USA
| |
Collapse
|
36
|
Chang MC, Eslami Z, Ennis M, Goodwin PJ. Crown-like structures in breast adipose tissue of breast cancer patients: associations with CD68 expression, obesity, metabolic factors and prognosis. NPJ Breast Cancer 2021; 7:97. [PMID: 34294716 PMCID: PMC8298396 DOI: 10.1038/s41523-021-00304-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/24/2021] [Indexed: 12/15/2022] Open
Abstract
Crown-like structures of the breast (CLS-B), defined by the clustering of macrophages (identified using CD68 immunohistochemical staining) to surround a dying adipocyte, are a sign of adipose-tissue inflammation. In human cohorts, CLS-B positively correlates with older age, obesity, dyslipidemia and higher levels of glucose, insulin, C-reactive protein and IL-6. In an existing cohort of early-stage breast cancer patients, CLS-B were identified using H&E stained histologic sections (hCLS-B), and by CD68 immunohistochemistry (CD68 + CLS-B). We examined associations of H&E and CD68-detected CLS-B with clinicopathologic features using χ2 tests, with metabolic factors using Wilcoxon rank sum tests and with disease free and overall survival using Cox regression models. hCLS-B were detected in 59 of 163 patients with slides (36.2%) and CD68 + CLS-B in 37 of 119 patients with paraffin blocks (31.1%). hCLS-B were positively correlated with higher weight (p = 0.003), BMI (p = 0.0008) and C-reactive protein (p = 0.045). CD68 + CLS-B were positively correlated with higher weight (p = 0.006), BMI p = 0.001), leptin (p = 0.034), insulin (p = 0.008) and Homeostasis Model Assessment (p = 0.027). CD68 + CLS-B were associated with poor distant disease-free with a hazard ratio (HR) of 2.81, 95% confidence interval (CI) 1.20-6.57, and overall survival with HR 3.97 (1.66-9.48), while hCLS-B were not associated with either: HR for distant recurrence 0.59 (0.26-1.30); HR for death 1.04 (0.50-2.16). The presence of hCLS-B and of CD68 + CLS-B were associated with obesity; CD68 + CLS-B were associated with insulin resistance and adverse prognosis. Similar patterns were not seen for hCLS-B. Research is needed to understand the biologic basis for these differences.
Collapse
Affiliation(s)
- Martin C Chang
- University of Vermont Cancer Center, Burlington, VT, USA.
- Department of Pathology & Laboratory Medicine, Larner College of Medicine at the University of Vermont, Burlington, VT, USA.
| | - Zohreh Eslami
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | | | - Pamela J Goodwin
- Department of Medicine, University of Toronto, Toronto, ON, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| |
Collapse
|
37
|
Debacker JM, Gondry O, Lahoutte T, Keyaerts M, Huvenne W. The Prognostic Value of CD206 in Solid Malignancies: A Systematic Review and Meta-Analysis. Cancers (Basel) 2021; 13:cancers13143422. [PMID: 34298638 PMCID: PMC8305473 DOI: 10.3390/cancers13143422] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 01/03/2023] Open
Abstract
Simple Summary The role of innate immune cells in the tumor microenvironment (TME), more specifically the presence of the tumor associated macrophages (TAMs), is becoming more important in the prognosis and treatment of patients diagnosed with malignancies. The aim of this systematic review and meta-analysis was to assess the potential prognostic value of CD206-expressing TAMs, a subclass of macrophages, which were previously proposed to negatively impact the patient’s prognosis. We identified 27 manuscripts describing the role of CD206 in patient prognosis for 14 different tumor types. Despite a large heterogeneity in the results, we identified a significantly worse overall and disease-free survival for patients with increased CD206-expressing TAMs in the TME. The use of CD206-expressing TAMs could therefore be used as a prognostic marker in patients diagnosed with solid malignancies. Abstract An increased presence of CD206-expressing tumor associated macrophages in solid cancers was proposed to be associated with worse outcomes in multiple types of malignancies, but contradictory results are published. We performed a reproducible systematic review and meta-analysis to provide increased evidence to confirm or reject this hypothesis following the Preferred Reporting Items for Systematic Reviews and Meta-analyses statement. The Embase, Web of Science, and MEDLINE-databases were systematically searched for eligible manuscripts. A total of 27 papers studying the prognostic impact of CD206 in 14 different tumor types were identified. Meta-analyses showed a significant impact on the overall survival (OS) and disease-free survival (DFS). While no significant differences were revealed in progression-free survival (PFS) and disease-specific survival (DSS), a shift towards negative survival was correlated with increased CD206-expresion. As a result of the different tumor types, large heterogeneity was present between the different tumor types. Subgroup analysis of hepatocellular carcinoma and gastric cancers revealed no heterogeneity, associated with a significant negative impact on OS in both groups. The current systematic review displays the increased presence CD206-expressing macrophages as a significant negative prognostic biomarker for both OS and DFS in patients diagnosed with solid cancers. Because a heterogenous group of tumor types was included in the meta-analysis, the results cannot be generalized. These results can, however, be used to further lead follow-up research to validate the specific prognostic value of CD206 in individual tumor types and therapeutic approaches.
Collapse
Affiliation(s)
- Jens M. Debacker
- Department of Head and Skin, Ghent University, 9000 Ghent, Belgium;
- Department of Head and Neck Surgery, Ghent University Hospital, 9000 Ghent, Belgium
- Department of Nuclear Medicine, University Hospital Brussels, 1090 Brussels, Belgium; (O.G.); (T.L.); (M.K.)
- Correspondence: ; Tel.: +32-9-332-39-90
| | - Odrade Gondry
- Department of Nuclear Medicine, University Hospital Brussels, 1090 Brussels, Belgium; (O.G.); (T.L.); (M.K.)
- In Vivo Cellular and Molecular Imaging, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Tony Lahoutte
- Department of Nuclear Medicine, University Hospital Brussels, 1090 Brussels, Belgium; (O.G.); (T.L.); (M.K.)
- In Vivo Cellular and Molecular Imaging, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Marleen Keyaerts
- Department of Nuclear Medicine, University Hospital Brussels, 1090 Brussels, Belgium; (O.G.); (T.L.); (M.K.)
- In Vivo Cellular and Molecular Imaging, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Wouter Huvenne
- Department of Head and Skin, Ghent University, 9000 Ghent, Belgium;
- Department of Head and Neck Surgery, Ghent University Hospital, 9000 Ghent, Belgium
| |
Collapse
|
38
|
Desharnais L, Walsh LA, Quail DF. Exploiting the obesity-associated immune microenvironment for cancer therapeutics. Pharmacol Ther 2021; 229:107923. [PMID: 34171329 DOI: 10.1016/j.pharmthera.2021.107923] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/11/2021] [Accepted: 06/10/2021] [Indexed: 12/12/2022]
Abstract
Obesity causes chronic low-grade inflammation and leads to changes in the immune landscape of multiple organ systems. Given the link between chronic inflammatory conditions and cancer, it is not surprising that obesity is associated with increased risk and worse outcomes in many malignancies. Paradoxically, recent epidemiological studies have shown that high BMI is associated with increased efficacy of immune checkpoint inhibitors (ICI), and a causal relationship has been demonstrated in the preclinical setting. It has been proposed that obesity-associated immune dysregulation underlies this observation by inadvertently creating a favourable microenvironment for increased ICI efficacy. The recent success of ICIs in obese cancer patients raises the possibility that additional immune-targeted therapies may hold therapeutic value in this context. Here we review how obesity affects the immunological composition of the tumor microenvironment in ways that can be exploited for cancer immunotherapies. We discuss existing literature supporting a beneficial role for obesity during ICI therapy in cancer patients, potential opportunities for targeting the innate immune system to mitigate chronic inflammatory processes, and how to pinpoint obese patients who are most likely to benefit from immune interventions without relying solely on body mass index. Given that the incidence of obesity is expanding on an international scale, we propose that understanding obesity-associated inflammation is necessary to reduce cancer mortalities and capitalize on novel therapeutic opportunities in the era of cancer immunotherapy.
Collapse
Affiliation(s)
- Lysanne Desharnais
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada; Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Logan A Walsh
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada; Department of Human Genetics, McGill University, Montreal, QC, Canada.
| | - Daniela F Quail
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada; Department of Physiology, Faculty of Medicine, McGill University, Montreal, QC, Canada; Department of Medicine, Division of Experimental Medicine, McGill University, Montreal, QC, Canada.
| |
Collapse
|
39
|
Kakarla M, ChallaSivaKanaka S, Hayward SW, Franco OE. Race as a Contributor to Stromal Modulation of Tumor Progression. Cancers (Basel) 2021; 13:cancers13112656. [PMID: 34071280 PMCID: PMC8197868 DOI: 10.3390/cancers13112656] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/18/2021] [Accepted: 05/23/2021] [Indexed: 02/07/2023] Open
Abstract
Stromal cells play crucial roles in tumor development and are increasingly attractive targets for therapy. There are considerable racial disparities in the incidence and progression of many tumors, reflecting both environmental exposure and genetic differences existing between races. Tumorigenesis and tumor progression are linked to both the propensity to suffer an initiating event and the host response to such an event once it occurs, contributing to incidence and outcomes. In this review, we focused on racial disparities in the tumor microenvironment (TME) of different cancers as potential modulators of growth, metastasis, and response to treatment. Several studies suggest that the TME in AA has a distinct tumor biology and may facilitate both early onset and aggressive tumor growth while inhibiting anti-tumorigenic properties. The TME of AA patients often exhibits an immunosuppressive microenvironment with a substantial enrichment of immune inflammatory pathways and genes. As a result, AA patients can potentially benefit more from treatment strategies that modulate the immune system. Focusing on TME components for diagnostic and therapeutic purposes to address racial disparities is a promising area of investigation. Future basic and clinical research studies on personalized cancer diagnosis and treatment should acknowledge the significance of TME in racial disparities.
Collapse
|
40
|
Omilian AR, Sheng H, Hong CC, Bandera EV, Khoury T, Ambrosone CB, Yao S. Multiplexed digital spatial profiling of invasive breast tumors from Black and White women. Mol Oncol 2021; 16:54-68. [PMID: 34018684 PMCID: PMC8732343 DOI: 10.1002/1878-0261.13017] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 04/19/2021] [Accepted: 05/18/2021] [Indexed: 12/17/2022] Open
Abstract
The NanoString GeoMx digital spatial profiling is a new multiplexed platform that quantifies the abundance of tumor‐ and immune‐related proteins in a spatially resolved manner. We performed DSP for the simultaneous assessment of 52 analytes within spatially resolved tissue compartments defined by pan‐cytokeratin expression. We compared protein targets between 94 African American/Black and 65 European American/White cases, tumor and stromal tissue compartments, estrogen receptor alpha (ER)‐positive and ER‐negative cases, and explored potential biomarkers of survival. Of 33 analytes with robust signal for analysis, results were highly replicable. For a subset of markers, correlative analyses between DSP analytes and traditional immunohistochemistry scores revealed moderate to very strong associations between the two platforms. Similarly, DSP analytes and gene expression scores were concordant for 21 of 25 markers with overlap between the two datasets. Several analytes varied by ER status, and across the 25 immune markers surveyed, 14 had a significant inverse association with ER expression. B7 homolog 3 (B7‐H3; encoded by CD276) was the only analyte to show a significant difference by race, being lower in both the tumor and stromal compartments in Black women. DSP markers that were associated with survival included CD8, CD25, CD56, CD127, EpCAM, ER, Ki‐67, and STING. We conclude that DSP is an efficient tool for screening tumor‐ and immune‐related markers in a simultaneous fashion and yields results that are concordant with established immune profiling assays. DSP immune analytes were inversely associated with ER expression, in agreement with a substantial body of previous work that documents higher immune infiltration in ER‐negative breast cancers. This technology revealed that scores of the B7‐H3 protein were significantly lower in breast cancers from Black women compared with White women, an intriguing finding that requires replication in independent and racially diverse female populations.
Collapse
Affiliation(s)
- Angela R Omilian
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Haiyang Sheng
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.,Department of Biostatistics, The State University of New York at Buffalo, NY, USA
| | - Chi-Chen Hong
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Elisa V Bandera
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ, USA.,Cancer Epidemiology and Health Outcomes, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Thaer Khoury
- Department of Pathology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Christine B Ambrosone
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Song Yao
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| |
Collapse
|
41
|
Maliniak ML, Miller-Kleinhenz J, Cronin-Fenton DP, Lash TL, Gogineni K, Janssen EAM, McCullough LE. Crown-Like Structures in Breast Adipose Tissue: Early Evidence and Current Issues in Breast Cancer. Cancers (Basel) 2021; 13:2222. [PMID: 34066392 PMCID: PMC8124644 DOI: 10.3390/cancers13092222] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/24/2021] [Accepted: 04/26/2021] [Indexed: 12/29/2022] Open
Abstract
Obesity is an established risk factor for postmenopausal breast cancer and has been linked to worse breast cancer prognosis, most clearly for hormone receptor-positive breast cancers. The underlying mechanisms of the obesity-breast cancer association are not fully understood, but growing evidence points to the breast adipose tissue microenvironment playing an important role. Obesity-induced adipose tissue dysfunction can result in a chronic state of low-grade inflammation. Crown-like structures of the breast (CLS-B) were recently identified as a histologic marker of local inflammation. In this review, we evaluate the early evidence of CLS-B in breast cancer. Data from preclinical and clinical studies show that these inflammatory lesions within the breast are associated with local NF-κB activation, increased aromatase activity, and elevation of pro-inflammatory mediators (TNFα, IL-1β, IL-6, and COX-2-derived PGE2)-factors involved in multiple pathways of breast cancer development and progression. There is also substantial evidence from epidemiologic studies that CLS-B are associated with greater adiposity among breast cancer patients. However, there is insufficient evidence that CLS-B impact breast cancer risk or prognosis. Comparisons across studies of prognosis were complicated by differences in CLS-B evaluation and deficiencies in study design, which future studies should take into consideration. Breast adipose tissue inflammation provides a plausible explanation for the obesity-breast cancer association, but further study is needed to establish its role and whether markers such as CLS-B are clinically useful.
Collapse
Affiliation(s)
- Maret L. Maliniak
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA; (J.M.-K.); (T.L.L.); (L.E.M.)
| | - Jasmine Miller-Kleinhenz
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA; (J.M.-K.); (T.L.L.); (L.E.M.)
| | | | - Timothy L. Lash
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA; (J.M.-K.); (T.L.L.); (L.E.M.)
- Department of Clinical Epidemiology, Aarhus University Hospital, 8200 Aarhus, Denmark;
- Glenn Family Breast Center, Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA;
| | - Keerthi Gogineni
- Glenn Family Breast Center, Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA;
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Emiel A. M. Janssen
- Department of Pathology, Stavanger University Hospital, 4011 Stavanger, Norway;
| | - Lauren E. McCullough
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA; (J.M.-K.); (T.L.L.); (L.E.M.)
- Glenn Family Breast Center, Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA;
| |
Collapse
|
42
|
Makower D, Lin J, Xue X, Sparano JA. Lymphovascular invasion, race, and the 21-gene recurrence score in early estrogen receptor-positive breast cancer. NPJ Breast Cancer 2021; 7:20. [PMID: 33649322 PMCID: PMC7921089 DOI: 10.1038/s41523-021-00231-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 01/20/2021] [Indexed: 12/27/2022] Open
Abstract
Lymphovascular invasion (LVI) and Black race are associated with poorer prognosis in early breast cancer (EBC). We evaluated the association between LVI and race, and whether LVI adds prognostic benefit to the 21-gene recurrence score (RS) in EBC. Women with ER+ HER2- EBC measuring up to 5 cm, with 0-3 involved axillary nodes, diagnosed between 1 January 2010 and 1 January 2014, who underwent surgery as first treatment and had available RS, were identified in the NCDB database. Bivariate associations between two categorical variables were examined using chi-square test. Multivariate Cox proportional hazards model were used to assess the association of LVI, race, and other covariates with overall survival (OS). 77,425 women, 65,018 node-negative (N0), and 12,407 with 1-3 positive (N+) nodes, were included. LVI was present in 12.7%, and associated with poor grade, RS 26-100, and N+ (all p < 0.0001), but not Black race. In multivariate analysis, LVI was associated with worse OS in N0 [HR 1.37 (95% CI 1.27, 1.57], but not N+ EBC. LVI was associated with worse OS in N0 patients with RS 11-25 [HR 1.31 (95% CI 1.09, 1.57)] and ≥26 [HR 1.58 (95% CI 1.30, 1.93)], but not RS 0-10. No interaction between LVI and chemotherapy benefit was seen. Black race was associated with worse OS in N0 (HR 1.21, p = 0.009) and N+ (HR 1.37, p = 0.015) disease. LVI adds prognostic information in ER+, HER2-, N0 BCA with RS 11-100, but does not predict chemotherapy benefit. Black race is associated with worse OS, but not LVI.
Collapse
Affiliation(s)
- Della Makower
- Montefiore Einstein Center for Cancer Care, Bronx, NY, USA.
| | - Juan Lin
- Albert Einstein Cancer Center, Bronx, NY, USA
| | - Xiaonan Xue
- Albert Einstein Cancer Center, Bronx, NY, USA
| | | |
Collapse
|
43
|
Iyengar NM, Zhou XK, Mendieta H, Giri DD, El-Hely O, Winston L, Falcone DJ, Wang H, Meng L, Landa J, Pollak M, Kirstein L, Morrow M, Dannenberg AJ. Effects of Adiposity and Exercise on Breast Tissue and Systemic Metabo-Inflammatory Factors in Women at High Risk or Diagnosed with Breast Cancer. Cancer Prev Res (Phila) 2021; 14:541-550. [PMID: 33648942 DOI: 10.1158/1940-6207.capr-20-0507] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/31/2020] [Accepted: 02/25/2021] [Indexed: 11/16/2022]
Abstract
Excess body fat and sedentary behavior are associated with increased breast cancer risk and mortality, including in normal weight women. To investigate underlying mechanisms, we examined whether adiposity and exercise impact the breast microenvironment (e.g., inflammation and aromatase expression) and circulating metabo-inflammatory factors. In a cross-sectional cohort study, breast white adipose tissue (WAT) and blood were collected from 100 women undergoing mastectomy for breast cancer risk reduction or treatment. Self-reported exercise behavior, body composition measured by dual-energy x-ray absorptiometry (DXA), and waist:hip ratio were obtained prior to surgery. Breast WAT inflammation (B-WATi) was assessed by IHC and aromatase expression was assessed by quantitative PCR. Metabolic and inflammatory blood biomarkers that are predictive of breast cancer risk and progression were measured. B-WATi was present in 56 of 100 patients and was associated with older age, elevated BMI, postmenopausal status, decreased exercise, hypertension and dyslipidemia (Ps < 0.001). Total body fat and trunk fat correlated with B-WATi and breast aromatase levels (Ps < 0.001). Circulating C-reactive protein, IL6, insulin, and leptin positively correlated with body fat and breast aromatase levels, while negative correlations were observed for adiponectin and sex hormone binding globulin (P < 0.001). Inverse relationships were observed with exercise (Ps < 0.05). In a subgroup of 39 women with normal BMI, body fat levels positively correlated with B-WATi and aromatase expression (Ps < 0.05). In conclusion, elevated body fat levels and decreased exercise are associated with protumorigenic micro- and host environments in normal, overweight, and obese individuals. These findings support the development of BMI-agnostic lifestyle interventions that target adiposity. PREVENTION RELEVANCE: We report that individuals with high body fat and low exercise levels have breast inflammation, higher breast aromatase expression, and levels of circulating metabo-inflammatory factors that have been associated with increased breast cancer risk. These findings support interventions to lower adiposity, even among normal weight individuals, to prevent tumor growth.
Collapse
Affiliation(s)
- Neil M Iyengar
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York. .,Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Xi Kathy Zhou
- Department of Population Health Sciences, Weill Cornell Medical College, New York, New York
| | - Hillary Mendieta
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Dilip D Giri
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Omar El-Hely
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Lisle Winston
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Domenick J Falcone
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York
| | - Hanhan Wang
- Department of Population Health Sciences, Weill Cornell Medical College, New York, New York
| | - Lingsong Meng
- Department of Population Health Sciences, Weill Cornell Medical College, New York, New York
| | - Jonathan Landa
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Michael Pollak
- Departments of Medicine and Oncology, McGill University, Montreal, Quebec
| | - Laurie Kirstein
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Monica Morrow
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | | |
Collapse
|
44
|
Shaik AN, Kiavash K, Stark K, Boerner JL, Ruterbusch JJ, Deirawan H, Bandyopadhyay S, Ali-Fehmi R, Dyson G, Cote ML. Inflammation markers on benign breast biopsy are associated with risk of invasive breast cancer in African American women. Breast Cancer Res Treat 2020; 185:831-839. [PMID: 33113091 DOI: 10.1007/s10549-020-05983-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 10/15/2020] [Indexed: 12/13/2022]
Abstract
PURPOSE Markers of inflammation, including crown-like structures of the breast (CLS-B) and infiltrating lymphocytes (IL), have been identified in breast tissue and associated with increased risk of breast cancer (BrCa), however most of this work has been performed in primarily non-Hispanic white women. Here, we examined whether CLS-B and IL are associated with invasive BrCa in African American (AA) women. METHODS We assessed breast biopsies from three 5-year age-matched groups: BrCa-free AA women (50 Volunteer) from the Komen Normal Tissue Bank (KTB) and AA women with a clinically-indicated biopsy diagnosed with benign breast disease (BBD) from our Detroit cohort who developed BrCa (55 BBD-cancer) or did not develop BrCa (47 BBD only, year of biopsy matched to BBD-cancer). Mean adipocyte diameter and total adipose area were estimated from digital images using the Adiposoft plugin from ImageJ. Associations between CLS-B, IL, and BrCa among KTB and Detroit biopsies were assessed using multivariable multinomial and conditional logistic regression models. RESULTS Among all biopsies, Volunteer and BBD only biopsies did not harbor CLS-B or IL at significantly different rates after adjusting for logarithm of adipocyte area, adipocyte diameter, and BMI. Among clinically-indicated BBD biopsies, BBD-cancer biopsies were more likely to exhibit CLS-B (odds ratio (OR) = 3.36, 95% Confidence Interval (CI): 1.33-8.48) or IL (OR = 4.95, 95% CI 1.76-13.9) than BBD only biopsies after adjusting for total adipocyte area, adipocyte diameter, proliferative disease, and BMI. CONCLUSIONS CLS-B and IL may serve as histological markers of BrCa risk in benign breast biopsies from AA women.
Collapse
Affiliation(s)
- Asra N Shaik
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Katrin Kiavash
- Department of Pathology, Anatomy and Laboratory Medicine, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Karri Stark
- Barbara Ann Karmanos Cancer Institute, 4100 John R. St, Mailstop: MM04EP, Detroit, MI, 48201, USA
| | - Julie L Boerner
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA.,Barbara Ann Karmanos Cancer Institute, 4100 John R. St, Mailstop: MM04EP, Detroit, MI, 48201, USA
| | - Julie J Ruterbusch
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Hany Deirawan
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI, USA.,Barbara Ann Karmanos Cancer Institute, 4100 John R. St, Mailstop: MM04EP, Detroit, MI, 48201, USA
| | - Sudeshna Bandyopadhyay
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI, USA.,Barbara Ann Karmanos Cancer Institute, 4100 John R. St, Mailstop: MM04EP, Detroit, MI, 48201, USA
| | - Rouba Ali-Fehmi
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI, USA.,Barbara Ann Karmanos Cancer Institute, 4100 John R. St, Mailstop: MM04EP, Detroit, MI, 48201, USA
| | - Gregory Dyson
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA.,Barbara Ann Karmanos Cancer Institute, 4100 John R. St, Mailstop: MM04EP, Detroit, MI, 48201, USA
| | - Michele L Cote
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA. .,Barbara Ann Karmanos Cancer Institute, 4100 John R. St, Mailstop: MM04EP, Detroit, MI, 48201, USA.
| |
Collapse
|
45
|
Larionova I, Tuguzbaeva G, Ponomaryova A, Stakheyeva M, Cherdyntseva N, Pavlov V, Choinzonov E, Kzhyshkowska J. Tumor-Associated Macrophages in Human Breast, Colorectal, Lung, Ovarian and Prostate Cancers. Front Oncol 2020; 10:566511. [PMID: 33194645 PMCID: PMC7642726 DOI: 10.3389/fonc.2020.566511] [Citation(s) in RCA: 227] [Impact Index Per Article: 56.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/21/2020] [Indexed: 12/11/2022] Open
Abstract
Tumor-associated macrophages (TAMs) are major innate immune cells that constitute up to 50% of the cell mass of human tumors. TAMs are highly heterogeneous cells that originate from resident tissue-specific macrophages and from newly recruited monocytes. TAMs' variability strongly depends on cancer type, stage, and intratumor heterogeneity. Majority of TAMs are programmed by tumor microenvironment to support primary tumor growth and metastatic spread. However, TAMs can also restrict tumor growth and metastasis. In this review, we summarized the knowledge about the role of TAMs in tumor growth, metastasis and in the response to cancer therapy in patients with five aggressive types of cancer: breast, colorectal, lung, ovarian, and prostate cancers that are frequently metastasize into distant organs resulting in high mortality of the patients. Two major TAM parameters are applied for the evaluation of TAM correlation with the cancer progression: total amount of TAMs and specific phenotype of TAMs identified by functional biomarkers. We summarized the data generated in the wide range of international patient cohorts on the correlation of TAMs with clinical and pathological parameters of tumor progression including lymphatic and hematogenous metastasis, recurrence, survival, therapy efficiency. We described currently available biomarkers for TAMs that can be measured in patients' samples (tumor tissue and blood). CD68 is the major biomarker for the quantification of total TAM amounts, while transmembrane receptors (stabilin-1, CD163, CD206, CD204, MARCO) and secreted chitinase-like proteins (YKL-39, YKL-40) are used as biomarkers for the functional TAM polarization. We also considered that specific role of TAMs in tumor progression can depend on the localization in the intratumoral compartments. We have made the conclusion for the role of TAMs in primary tumor growth, metastasis, and therapy sensitivity for breast, colorectal, lung, ovarian, and prostate cancers. In contrast to other cancer types, majority of clinical studies indicate that TAMs in colorectal cancer have protective role for the patient and interfere with primary tumor growth and metastasis. The accumulated data are essential for using TAMs as biomarkers and therapeutic targets to develop cancer-specific immunotherapy and to design efficient combinations of traditional therapy and new immunomodulatory approaches.
Collapse
Affiliation(s)
- Irina Larionova
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, Tomsk, Russia
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Gulnara Tuguzbaeva
- Department of Pathophysiology, Bashkir State Medical University, Ufa, Russia
| | - Anastasia Ponomaryova
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Marina Stakheyeva
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Nadezhda Cherdyntseva
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, Tomsk, Russia
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Valentin Pavlov
- Department of Urology, Bashkir State Medical University, Ufa, Russia
| | - Evgeniy Choinzonov
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Julia Kzhyshkowska
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, Tomsk, Russia
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
- German Red Cross Blood Service Baden-Württemberg—Hessen, Mannheim, Germany
| |
Collapse
|
46
|
Kim G, Pastoriza JM, Condeelis JS, Sparano JA, Filippou PS, Karagiannis GS, Oktay MH. The Contribution of Race to Breast Tumor Microenvironment Composition and Disease Progression. Front Oncol 2020; 10:1022. [PMID: 32714862 PMCID: PMC7344193 DOI: 10.3389/fonc.2020.01022] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 05/22/2020] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is the second most commonly diagnosed cancer in American women following skin cancer. Despite overall decrease in breast cancer mortality due to advances in treatment and earlier screening, black patients continue to have 40% higher risk of breast cancer related death compared to white patients. This disparity in outcome persists even when controlled for access to care and stage at presentation and has been attributed to differences in tumor subtypes or gene expression profiles. There is emerging evidence that the tumor microenvironment (TME) may contribute to the racial disparities in outcome as well. Here, we provide a comprehensive review of current literature available regarding race-dependent differences in the TME. Notably, black patients tend to have a higher density of pro-tumorigenic immune cells (e.g., M2 macrophages, regulatory T cells) and microvasculature. Although immune cells are classically thought to be anti-tumorigenic, increase in M2 macrophages and angiogenesis may lead to a paradoxical increase in metastasis by forming doorways of tumor cell intravasation called tumor microenvironment of metastasis (TMEM). Furthermore, black patients also have higher serum levels of inflammatory cytokines, which provide a positive feedback loop in creating a pro-metastatic TME. Lastly, we propose that the higher density of immune cells and angiogenesis observed in the TME of black patients may be a result of evolutionary selection for a more robust immune response in patients of African geographic ancestry. Better understanding of race-dependent differences in the TME will aid in overcoming the racial disparity in breast cancer mortality.
Collapse
Affiliation(s)
- Gina Kim
- Department of Anatomy and Structural Biology, Montefiore Medical Center, Einstein College of Medicine, Bronx, NY, United States.,Integrated Imaging Program, Montefiore Medical Center, Einstein College of Medicine, Bronx, NY, United States.,Department of Surgery, Montefiore Medical Center, Einstein College of Medicine, Bronx, NY, United States
| | - Jessica M Pastoriza
- Department of Surgery, Montefiore Medical Center, Einstein College of Medicine, Bronx, NY, United States
| | - John S Condeelis
- Department of Anatomy and Structural Biology, Montefiore Medical Center, Einstein College of Medicine, Bronx, NY, United States.,Integrated Imaging Program, Montefiore Medical Center, Einstein College of Medicine, Bronx, NY, United States.,Department of Surgery, Montefiore Medical Center, Einstein College of Medicine, Bronx, NY, United States.,Gruss-Lipper Biophotonics Center, Montefiore Medical Center, Einstein College of Medicine, Bronx, NY, United States
| | - Joseph A Sparano
- Integrated Imaging Program, Montefiore Medical Center, Einstein College of Medicine, Bronx, NY, United States.,Department of Medicine (Oncology), Montefiore Medical Center, Einstein College of Medicine, Bronx, NY, United States
| | - Panagiota S Filippou
- School of Health & Life Sciences, Teesside University, Middlesbrough, United Kingdom.,National Horizons Centre, Teesside University, Darlington, United Kingdom
| | - George S Karagiannis
- Department of Anatomy and Structural Biology, Montefiore Medical Center, Einstein College of Medicine, Bronx, NY, United States.,Integrated Imaging Program, Montefiore Medical Center, Einstein College of Medicine, Bronx, NY, United States.,Gruss-Lipper Biophotonics Center, Montefiore Medical Center, Einstein College of Medicine, Bronx, NY, United States
| | - Maja H Oktay
- Department of Anatomy and Structural Biology, Montefiore Medical Center, Einstein College of Medicine, Bronx, NY, United States.,Integrated Imaging Program, Montefiore Medical Center, Einstein College of Medicine, Bronx, NY, United States.,Gruss-Lipper Biophotonics Center, Montefiore Medical Center, Einstein College of Medicine, Bronx, NY, United States.,Department of Pathology, Montefiore Medical Center, Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
47
|
Maliniak ML, Cheriyan AM, Sherman ME, Liu Y, Gogineni K, Liu J, He J, Krishnamurti U, Miller-Kleinhenz J, Ashiqueali R, He J, Yacoub R, McCullough LE. Detection of crown-like structures in breast adipose tissue and clinical outcomes among African-American and White women with breast cancer. Breast Cancer Res 2020; 22:65. [PMID: 32552729 PMCID: PMC7298873 DOI: 10.1186/s13058-020-01308-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 06/04/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Crown-like structures in breast adipose tissue (CLS-B), composed of necrotic adipocytes encircled by macrophages, are associated with obesity and hypothesized to worsen breast cancer prognosis; however, data are sparse, particularly in multi-racial populations. METHODS We assessed specimens for CLS-B from 174 African-American and 168 White women with stage I-III breast cancer treated by mastectomy. Benign breast tissue from an uninvolved quadrant was immunohistochemically stained for CD68 to determine CLS-B presence and density (per cm2 of adipose tissue). Demographic and lifestyle factors, collected via medical record review, were analyzed for associations with CLS-B using logistic regression. Multivariable Cox proportional hazards models were used to compute hazard ratios (HRs) and 95% confidence intervals (CIs) for associations between CLS-B and overall (OS) or progression-free (PFS) survival. RESULTS Detection of any CLS-B was similar between African-American (32%) and White (29%) patients with no evidence of an association between race and CLS-B in multivariable models (OR = 0.82, 95% CI = 0.49-1.36). Detection of CLS-B was associated with obesity (OR = 4.73, 95% CI = 2.48-9.01) and age ≥ 60 years at diagnosis (OR = 1.78, 95% CI = 0.99-3.21). There was some evidence of associations with parity and current smoking status. Detection of CLS-B was not associated with OS (HR = 1.02, 95% CI = 0.55-1.87) or PFS (HR = 0.99, 95% CI = 0.59-1.67). CONCLUSIONS Our results show a strong, positive association between BMI and CLS-B in non-tumor tissue similar to previous findings. Detection of CLS-B did not vary by race and was not associated with worse OS or PFS.
Collapse
Affiliation(s)
- Maret L Maliniak
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Aswathy Miriam Cheriyan
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
- Allegheny Health Network, Pittsburgh, PA, USA
| | - Mark E Sherman
- Department of Health Sciences Research, Mayo Clinic, Jacksonville, FL, USA
| | - Yuan Liu
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Keerthi Gogineni
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Jiaqi Liu
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Jiabei He
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Uma Krishnamurti
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | | | - Ryan Ashiqueali
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Jinjing He
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Rami Yacoub
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Lauren E McCullough
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA.
- Winship Cancer Institute of Emory University, Atlanta, GA, USA.
| |
Collapse
|
48
|
Abstract
Despite great advances in treatment, cancer remains a leading cause of death worldwide. Diet can greatly impact health, while caloric restriction and fasting have putative benefits for disease prevention and longevity. Strong epidemiological associations exist between obesity and cancer, whereas healthy diets can reduce cancer risk. However, less is known about how diet might impact cancer once it has been diagnosed and particularly how diet can impact cancer treatment. In the present review, we discuss the links between obesity, diet, and cancer. We explore potential mechanisms by which diet can improve cancer outcomes, including through hormonal, metabolic, and immune/inflammatory effects, and present the limited clinical research that has been published in this arena. Though data are sparse, diet intervention may reduce toxicity, improve chemotherapy efficacy, and lower the risk of long-term complications in cancer patients. Thus, it is important that we understand and expand the science of this important but complex adjunctive cancer treatment strategy.
Collapse
Affiliation(s)
- Steven D Mittelman
- Division of Pediatric Endocrinology, University of California, Los Angeles (UCLA), Children's Discovery and Innovation Institute, David Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA;
| |
Collapse
|
49
|
Abdou Y, Attwood K, Cheng TYD, Yao S, Bandera EV, Zirpoli GR, Ondracek RP, Stein L, Bshara W, Khoury T, Ambrosone CB, Omilian AR. Racial differences in CD8 + T cell infiltration in breast tumors from Black and White women. Breast Cancer Res 2020; 22:62. [PMID: 32517730 PMCID: PMC7285742 DOI: 10.1186/s13058-020-01297-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 05/17/2020] [Indexed: 01/08/2023] Open
Abstract
Background African American/Black women with breast cancer have poorer survival than White women, and this disparity persists even after adjusting for non-biological factors. Differences in tumor immune biology have been reported between Black and White women, and the tumor immune milieu could potentially drive racial differences in breast cancer etiology and outcome. Methods We examined the association of CD8+ cytotoxic T cells with clinical-pathological variables in the Women’s Circle of Health Study (WCHS) population of predominantly Black breast cancer patients. We evaluated 688 invasive breast tumor samples (550 Black, 138 White) using immunohistochemical staining of tissue microarray slides. CD8+ T cells were scored for each patient tumor sample with digital image analysis. Results Black women had a significantly higher percentage of high-grade, estrogen receptor (ER)-negative, and triple-negative tumors than White women and significantly higher CD8+ T cell density (median 87.6/mm2 vs. 53.1/mm2; p < 0.001). Within the overall population and in the population of Black women only, CD8+ T cell density was significantly higher in younger patients and patients with high-grade and ER/PR-negative tumors. No significant associations were observed between CD8+ T cell density and overall survival or breast cancer-specific survival in the overall population, or when Black patients were analyzed as a separate group. However, when stratified by subtype, Black women with triple-negative breast cancer and high CD8+ T cell density showed a trend towards better overall survival in comparison with patients with low CD8+ T cell density (HR = 0.51; 95% CI 0.25–1.04). Conclusions Our data raise the possibility that distinct mechanisms of immune cell action may occur in different racial groups.
Collapse
Affiliation(s)
- Yara Abdou
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Kristopher Attwood
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Ting-Yuan David Cheng
- Department of Epidemiology, University of Florida, 2004 Mowry Road, Gainesville, FL, 32610, USA
| | - Song Yao
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Elisa V Bandera
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ, USA.,Cancer Epidemiology and Health Outcomes, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Gary R Zirpoli
- Slone Epidemiology Center, Boston University Medical Campus, Boston, MA, USA
| | - Rochelle Payne Ondracek
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Leighton Stein
- Department of Pathology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Wiam Bshara
- Department of Pathology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Thaer Khoury
- Department of Pathology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Christine B Ambrosone
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Angela R Omilian
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.
| |
Collapse
|
50
|
The Relationship Between White Adipose Tissue Inflammation and Overweight/Obesity in Chinese Female Breast Cancer: A Retrospective Study. Adv Ther 2020; 37:2734-2747. [PMID: 32410166 DOI: 10.1007/s12325-020-01368-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Indexed: 12/21/2022]
Abstract
INTRODUCTION This study aims to investigate the relationship between breast white adipose tissue (WAT) inflammation and being overweight or obese, menopausal status, and metabolic syndrome-related indicators in breast cancer patients as well as the association between adipocyte size and the severity of WAT inflammation and body mass index (BMI). METHODS The crown-like structures (CLS-B) formed by macrophages surrounding dying or dead adipocytes can be used to identify breast WAT inflammation. In this study, breast WAT and fasting blood from 136 Chinese women with breast cancer were collected for analysis. Cluster of differentiation 68 (CD68) immunohistochemical staining was performed to identify CLS-B, and the adipocyte size was measured by hematoxylin and eosin staining. RESULTS The results showed that breast WAT inflammation usually occurs in overweight/obese breast cancer patients, and the severity of inflammation is positively correlated with adipocyte hypertrophy. We did not observe a direct association between WAT inflammation and menopausal status. In addition, the presence of WAT inflammation is associated with abnormalities in circulating factors associated with metabolic syndrome such as higher serum lipid, glucose, and C-reactive protein levels. CONCLUSION Overweight/obese breast cancer patients may be more prone to breast WAT inflammation and may be associated with abnormalities in circulatory markers associated with metabolic syndrome.
Collapse
|