1
|
Zwara A, Hellmann A, Czapiewska M, Korczynska J, Sztendel A, Mika A. The influence of cancer on the reprogramming of lipid metabolism in healthy thyroid tissues of patients with papillary thyroid carcinoma. Endocrine 2024:10.1007/s12020-024-03993-z. [PMID: 39145825 DOI: 10.1007/s12020-024-03993-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/02/2024] [Indexed: 08/16/2024]
Abstract
BACKGROUND AND OBJECTIVES Over the years we observed changes in the metabolism of glucose, amino acids, fatty acids (FA) and nucleotides in cancer cells in order to maintain their viability and proliferate. Moreover, as the latest data show, cancer also forces a complete change in the behavior of other tissues. For instance, fat-filled adipocytes are often found in the vicinity of invasive solid human tumors. We investigated the effects of papillary thyroid carcinoma (PTC) on the lipid metabolism of healthy tissue distant from the tumor. METHOD Thyroid tissue was collected from female patients immediately after surgical removal of the entire thyroid gland. Blood samples were collected from PTC patients and healthy volunteers. Real-time PCR assays were performed to analyze the expression of lipogenic genes and a broad panel of FA was determined using the gas chromatography-mass spectrometry method. RESULTS The concentration of lipids was higher in paratumor tissue than in healthy thyroid tissue (p = 0.005). The lipogenic genes tested were significantly increased in paratumor tissue compared to healthy tissue, especially enzymes related to the synthesis of very long-chain saturated and polyunsaturated FAs (VLCSFAs and PUFAs, respectively) (p < 0.001). The FA profile also showed increased levels of C22-C26, VLCSFAs and almost all PUFAs in paratumor tissue (p < 0.05). CONCLUSION Our study suggests that a restructuring of lipid metabolism occurs in the adjacent healthy thyroid gland and that the metabolism of VLCSFAs and PUFAs is higher in the paratumor tissue than in the distant tissue of the healthy thyroid gland.
Collapse
Affiliation(s)
- Agata Zwara
- Department of Environmental Analytics, Faculty of Chemistry, University of Gdansk, Gdańsk, Poland
| | - Andrzej Hellmann
- Department of General, Endocrine and Transplant Surgery, Faculty of Medicine, Medical University of Gdansk, Gdańsk, Poland.
| | - Monika Czapiewska
- Department of Pharmaceutical Biochemistry, Medical University of Gdansk, Gdańsk, Poland
| | - Justyna Korczynska
- Department of Pharmaceutical Biochemistry, Medical University of Gdansk, Gdańsk, Poland
| | - Alicja Sztendel
- Department of Pharmaceutical Biochemistry, Medical University of Gdansk, Gdańsk, Poland
| | - Adriana Mika
- Department of Environmental Analytics, Faculty of Chemistry, University of Gdansk, Gdańsk, Poland
- Department of Pharmaceutical Biochemistry, Medical University of Gdansk, Gdańsk, Poland
| |
Collapse
|
2
|
Yang Y, Wang X, Yang M, Wei S, Li Y. Integrated Analysis of Per- and Polyfluoroalkyl Substance Exposure and Metabolic Profiling of Elderly Residents Living near Industrial Plants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4104-4114. [PMID: 38373080 DOI: 10.1021/acs.est.3c09014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are widely used in industrial production, causing potential health risks to the residents living around chemical industrial plants; however, the lack of data on population exposure and adverse effects impedes our understanding and ability to prevent risks. In this study, we performed screening and association analysis on exogenous PFAS pollutants and endogenous small-molecule metabolites in the serum of elderly residents living near industrial plants. Exposure levels of 11 legacy and novel PFASs were determined. PFOA and PFOS were major contributors, and PFNA, PFHxS, and 6:2 Cl-PFESA also showed high detection frequencies. Association analysis among PFASs and 287 metabolites identified via non-target screening was performed with adjustments of covariates and false discovery rate. Strongly associated metabolites were predominantly lipid and lipid-like molecules. Steroid hormone biosynthesis, primary bile acid biosynthesis, and fatty-acid-related pathways, including biosynthesis of unsaturated fatty acids, linoleic acid metabolism, α-linolenic acid metabolism, and fatty acid biosynthesis, were enriched as the metabolic pathways associated with mixed exposure to multiple PFASs, providing metabolic explanation and evidence for the potential mediating role of adverse health effects as a result of PFAS exposure. Our study achieved a comprehensive screening of PFAS exposure and associated metabolic profiling, demonstrating the promising application for integrated analysis of exposome and metabolome.
Collapse
Affiliation(s)
- Yajing Yang
- School of Environmental Science and Engineering, Qingdao University, Qingdao, Shandong 266071, People's Republic of China
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, People's Republic of China
| | - Xuebing Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, People's Republic of China
| | - Minmin Yang
- Affiliated Qingdao Third People's Hospital, Qingdao University, Qingdao, Shandong 266041, People's Republic of China
| | - Si Wei
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, People's Republic of China
| | - Yuqian Li
- School of Environmental Science and Engineering, Qingdao University, Qingdao, Shandong 266071, People's Republic of China
| |
Collapse
|
3
|
Akbar S, Rahman A, Ahmad N, Imran M, Hafeez Z. Understanding the Role of Polyunsaturated Fatty Acids in the Development and Prevention of Cancer. Cancer Treat Res 2024; 191:57-93. [PMID: 39133404 DOI: 10.1007/978-3-031-55622-7_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Polyunsaturated fatty acids (PUFAs), notably omega-3 (n-3) and omega-6 (n-6), have received much attention owing to their multifaceted effects not only in the management of diverse pathological conditions but also in the maintenance of overall health of an individual. A disproportionately high n-6 to n-3 ratio contributes to the development of various disorders including cancer, which ranks as a leading cause of death worldwide with profound social and economic burden. Epidemiological studies and clinical trials combined with the animal and cell culture models have demonstrated the beneficial effects of n-3 PUFAs in reducing the risk of various cancer types including breast, prostate and colon cancer. The anti-cancer actions of n-3 PUFAs are mainly attributed to their role in the modulation of a wide array of cellular processes including membrane dynamics, apoptosis, inflammation, angiogenesis, oxidative stress, gene expression and signal transduction pathways. On the contrary, n-6 PUFAs have been shown to exert pro-tumor actions; however, the inconsistent findings and controversial data emphasize upon the need to further investigation. Nevertheless, one of the biggest challenges in future is to optimize the n-6 to n-3 ratio despite the genetic predisposition, age, gender and disease severity. Moreover, a better understanding of the potential risks and benefits as well as the cellular and molecular mechanisms of the basic actions of these PUFAs is required to explore their role as adjuvants in cancer therapy. All these aspects will be reviewed in this chapter.
Collapse
Affiliation(s)
- Samina Akbar
- CALBINOTOX, Université de Lorraine, 54000, Nancy, France.
| | - Abdur Rahman
- Atta ur Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Nazir Ahmad
- Faculty of Life Sciences, Institute of Home and Food Sciences, Government College University, Faisalabad, Pakistan
| | - Muhammad Imran
- Department of Biosciences, Faculty of Sciences, COMSATS Institute of Information Technology, Park Road, Islamabad, Pakistan
| | - Zeeshan Hafeez
- CALBINOTOX, Université de Lorraine, 54000, Nancy, France
| |
Collapse
|
4
|
Mandrich L, Piccolella S, Esposito AV, Costa S, Mercadante V, Pacifico S, Caputo E. Different Extraction Procedures Revealed the Anti-Proliferation Activity from Vegetable Semi-Purified Sources on Breast Cancer Cell Lines. Antioxidants (Basel) 2023; 12:1242. [PMID: 37371972 DOI: 10.3390/antiox12061242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Breast cancer (BC) remains the leading cause of mortality in women, despite significant advancements in diagnosis. Thus, the identification of new compounds for its treatment is critical. Phytochemicals are known to exhibit anti-cancer properties. Here, we investigated the anti-proliferation potential of extracts from carrot, Calendula officinalis flower, and Aloe vera on breast cancer vs. epithelial cell lines. Various extraction methods were used, and the proliferative effect of the resulting extracts was assessed by proliferation assay on breast cancer and epithelial cell lines. Carrot, Aloe leaf, and Calendula flower extracts were extracted by hexane and methanol methods, and their semi-purified extracts were able to specifically inhibit the proliferation of breast cancer cell lines. The extract composition was investigated by colorimetric assays, UHPLC-HRMS, and MS/MS analysis. All the extracts contained monogalactosyl-monoacylglycerol (MGMG), while digalactosyl-monoacylglycerol (DGMG) and aloe-emodin were found in Aloe, and glycerophosphocholine (GPC) derivatives were identified in Calendula, except for the isomer 2 detected in carrot, suggesting that their observed different anti-proliferative properties may be associated with the different lipid compounds. Interestingly, Calendula extract was able to strongly inhibit the triple negative breast cancer MDA-MB-231 cell line proliferation (about 20% cell survival), supporting MGMG and GPC derivatives as potential drugs for this BC subtype treatment.
Collapse
Affiliation(s)
- Luigi Mandrich
- Research Institute on Terrestrial Ecosystems-IRET-CNR, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Simona Piccolella
- Department for Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100 Caserta, Italy
| | - Antonia Valeria Esposito
- Institute of Genetics and Biophysics-IGB-CNR, "A. Buzzati-Traverso", Via Pietro Castellino 111, 80131 Naples, Italy
| | - Silvio Costa
- Institute of Genetics and Biophysics-IGB-CNR, "A. Buzzati-Traverso", Via Pietro Castellino 111, 80131 Naples, Italy
| | - Vincenzo Mercadante
- Institute of Genetics and Biophysics-IGB-CNR, "A. Buzzati-Traverso", Via Pietro Castellino 111, 80131 Naples, Italy
| | - Severina Pacifico
- Department for Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100 Caserta, Italy
| | - Emilia Caputo
- Institute of Genetics and Biophysics-IGB-CNR, "A. Buzzati-Traverso", Via Pietro Castellino 111, 80131 Naples, Italy
| |
Collapse
|
5
|
Tong JH, Elmore S, Huang SS, Tachachartvanich P, Manz K, Pennell K, Wilson MD, Borowsky A, La Merrill MA. Chronic Exposure to Low Levels of Parabens Increases Mammary Cancer Growth and Metastasis in Mice. Endocrinology 2023; 164:bqad007. [PMID: 36683225 PMCID: PMC10205179 DOI: 10.1210/endocr/bqad007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 01/08/2023] [Accepted: 01/10/2023] [Indexed: 01/24/2023]
Abstract
Methylparaben (MP) and propylparaben (PP) are commonly used as food, cosmetic, and drug preservatives. These parabens are detected in the majority of US women and children, bind and activate estrogen receptors (ER), and stimulate mammary tumor cell growth and invasion in vitro. Hemizygous B6.FVB-Tg (MMTV-PyVT)634Mul/LellJ female mice (n = 20/treatment) were exposed to MP or PP at levels within the US Food and Drug Administration's "human acceptable daily intake." These paraben-exposed mice had increased mammary tumor volume compared with control mice (P < 0.001) and a 28% and 91% increase in the number of pulmonary metastases per week compared with the control mice, respectively (P < 0.0001). MP and PP caused differential expression of 288 and 412 mammary tumor genes, respectively (false discovery rate < 0.05), a subset of which has been associated with human breast cancer metastasis. Molecular docking and luciferase reporter studies affirmed that MP and PP bound and activated human ER, and RNA-sequencing revealed increased ER expression in mammary tumors among paraben-exposed mice. However, ER signaling was not enriched in mammary tumors. Instead, both parabens strongly impaired tumor RNA metabolism (eg, ribosome, spliceosome), as evident from enriched KEGG pathway analysis of differential mammary tumor gene expression common to both paraben treatments (MP, P < 0.001; PP, P < 0.01). Indeed, mammary tumors from PP-exposed mice had an increased retention of introns (P < 0.05). Our data suggest that parabens cause substantial mammary cancer metastasis in mice as a function of their increasing alkyl chain length and highlight the emerging role of aberrant spliceosome activity in breast cancer metastasis.
Collapse
Affiliation(s)
- Jason H Tong
- Department of Environmental Toxicology, University of California at Davis, Davis, CA 95616, USA
| | - Sarah Elmore
- Department of Environmental Toxicology, University of California at Davis, Davis, CA 95616, USA
| | - Shenq-Shyang Huang
- Department of Environmental Toxicology, University of California at Davis, Davis, CA 95616, USA
| | - Phum Tachachartvanich
- Department of Environmental Toxicology, University of California at Davis, Davis, CA 95616, USA
- Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | - Katherine Manz
- School of Engineering, Brown University, Providence, RI 02912, USA
| | - Kurt Pennell
- School of Engineering, Brown University, Providence, RI 02912, USA
| | - Machelle D Wilson
- Department of Public Health Sciences, University of California at Davis, Davis, CA 95616, USA
| | - Alexander Borowsky
- Department of Pathology and Laboratory Medicine, University of California at Davis, Sacramento, CA 95817, USA
| | - Michele A La Merrill
- Department of Environmental Toxicology, University of California at Davis, Davis, CA 95616, USA
| |
Collapse
|
6
|
Yao Y, Tian S, Li N, Yang Y, Zhang C. Effects of omega-3 polyunsaturated fatty acids on cellular development in human ovarian granulosa tumor cells (KGN). Front Nutr 2022; 9:1017072. [PMID: 36245495 PMCID: PMC9562104 DOI: 10.3389/fnut.2022.1017072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/13/2022] [Indexed: 11/15/2022] Open
Abstract
Emerging research has shown that polyunsaturated fatty acids (PUFAs) benefit human health and exert anti-cancer effects. However, there is little understanding of the specific mechanisms by which PUFAs regulate the cells of the ovarian granulosa tumor. In the current study, we investigate the effects and the possible mechanisms of PUFAs on human ovarian tumor cells development. KGN cells were treated with omega-3. Small interfering (siRNA) and specific activator were used to knock down and overexpress gene expression in KGN cells. The protein content levels were analyzed by Western blot. Cell viability, proliferation and apoptosis assay were performed to examine the cellular development. And the level of glucose uptake in KGN cells were assessed by 2-DG measurement. The results showed that omega-3 treatment reduced cell viability, proliferation and increased cell apoptosis. Further studies showed that omega-3 also reduced GLUT1/4 protein content and cellular glucose uptake. Subsequent knockdown and overexpression of OCT4 using Oct4 siRNA and O4I2 (OCT4 activator) showed that OCT4 was involved in the regulations of omega-3 on GLUT1/4 expression and cell development. Our data demonstrate that omega-3 inhibits cellular development by down-regulating GLUT1/4 expression and glucose uptake in KGN cells, which are mediated through OCT4.
Collapse
Affiliation(s)
- Yilin Yao
- College of Life Science, Capital Normal University, Beijing, China
| | - Shen Tian
- College of Life Science, Capital Normal University, Beijing, China
| | - Ningxin Li
- College of Life Science, Capital Normal University, Beijing, China
| | - Yanzhou Yang
- Key Laboratory of Fertility Preservation and Maintenance, Key Laboratory of Reproduction and Genetics in Ningxia, Ministry of Education, Department of Histology and Embryology, Ningxia Medical University, Ningxia, China
- *Correspondence: Yanzhou Yang,
| | - Cheng Zhang
- College of Life Science, Capital Normal University, Beijing, China
- Cheng Zhang,
| |
Collapse
|
7
|
Effects of dietary omega-3 fatty acids on orthotopic prostate cancer progression, tumor associated macrophages, angiogenesis and T-cell activation-dependence on GPR120. Prostate Cancer Prostatic Dis 2022; 25:539-546. [PMID: 35075215 PMCID: PMC9308823 DOI: 10.1038/s41391-021-00440-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 08/02/2021] [Accepted: 08/09/2021] [Indexed: 12/23/2022]
Abstract
BACKGROUND The antiprostate cancer effects of dietary ω-3 fatty acids (FAs) were previously found to be dependent on host G-protein coupled receptor 120 (GPR120). Using an orthotopic tumor model and an ex-vivo model of bone marrow derived M2-like macrophages, we sought to determine if ω-3 FAs inhibit angiogenesis and activate T-cells, and if these effects are dependent on GPR120. METHODS Gausia luciferase labeled MycCaP prostate cancer cells (MycCaP-Gluc) were injected into the anterior prostate lobe of FVB mice. After established tumors were confirmed by blood luminescence, mice were fed an ω-3 or ω-6 diet. Five weeks after tumor injection, tumor weight, immune cell infiltration and markers of angiogenesis were determined. An ex-vivo co-culture model of bone marrow derived M2-like macrophages from wild-type or GPR120 knockout mice with MycCap prostate cancer cells was used to determine if docosahexanoic acid (DHA, ω-3 FA) inhibition of angiogenesis and T-cell activation is dependent on macrophage GPR120. RESULTS Feeding an ω-3 diet significantly reduced orthotopic MycCaP-Gluc tumor growth relative to an ω-6 diet. Tumors from the ω-3 group had decreased M2-like macrophage infiltration and decreased expression of angiogenesis factors. DHA significantly inhibited M2 macrophage-induced endothelial tube formation and reversed M2 macrophage-induced T-cell suppression, and these DHA effects were mediated, in part, by M2 macrophage GPR120. CONCLUSION Omega-3 FAs delayed orthotopic tumor growth, inhibited M2-like macrophage tumor infiltration, and inhibited M2-like macrophage-induced angiogenesis and T-cell suppression. Given the central role of M2-like macrophages in prostate cancer progression, GPR120-dependent ω-3 FA inhibition of M2-like macrophages may play an important role in prostate cancer therapeutics.
Collapse
|
8
|
Shan K, Feng N, Zhu D, Qu H, Fu G, Li J, Cui J, Chen H, Wang R, Qi Y, Chen YQ. Free docosahexaenoic acid promotes ferroptotic cell death via lipoxygenase dependent and independent pathways in cancer cells. Eur J Nutr 2022; 61:4059-4075. [PMID: 35804267 DOI: 10.1007/s00394-022-02940-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 06/15/2022] [Indexed: 02/07/2023]
Abstract
PURPOSE Ferroptosis is a form of regulated cell death that has the potential to be targeted as a cancer therapeutic strategy. But cancer cells have a wide range of sensitivities to ferroptosis, which limits its therapeutic potential. Accumulation of lipid peroxides determines the occurrence of ferroptosis. However, the type of lipid involved in peroxidation and the mechanism of lipid peroxide accumulation are less studied. METHODS The effects of fatty acids (10 μM) with different carbon chain length and unsaturation on ferroptosis were evaluated by MTT and LDH release assay in cell lines derived from prostate cancer (PC3, 22RV1, DU145 and LNCaP), colorectal cancer (HT-29), cervical cancer (HeLa) and liver cancer (HepG2). Inhibitors of apoptosis, necroptosis, autophagy and ferroptosis were used to determine the type of cell death. Then the regulation of reactive oxygen species (ROS) and lipid peroxidation by docosahexaenoic acid (DHA) was measured by HPLC-MS and flow cytometry. The avtive form of DHA was determined by siRNA mediated gene silencing. The role of lipoxygenases was checked by inhibitors and gene silencing. Finally, the effect of DHA on ferroptosis-mediated tumor killing was verified in xenografts. RESULTS The sensitivity of ferroptosis was positively correlated with the unsaturation of exogenously added fatty acid. DHA (22:6 n-3) sensitized cancer cells to ferroptosis-inducing reagents (FINs) at the highest level in vitro and in vivo. In this process, DHA increased ROS accumulation, lipid peroxidation and protein oxidation independent of its membrane receptor, GPR120. Inhibition of long chain fatty acid-CoA ligases and lysophosphatidylcholine acyltransferases didn't affect the role of DHA. DHA-involved ferroptosis can be induced in both arachidonate lipoxygenase 5 (ALOX5) negative and positive cells. Down regulation of ALOX5 inhibited ferroptosis, while overexpression of ALOX5 promoted ferroptosis. CONCLUSION DHA can effectively promote ferroptosis-mediated tumor killing by increasing intracellular lipid peroxidation. Both ALOX5 dependent and independent pathways are involved in DHA-FIN induced ferroptosis. And during this process, free DHA plays an important role.
Collapse
Affiliation(s)
- Kai Shan
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu Province, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu Province, China
| | - Ninghan Feng
- Department of Urology, Wuxi No. 2 People's Hospital, Wuxi, 214000, Jiangsu Province, China
| | - Doudou Zhu
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu Province, China
| | - Hongyan Qu
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu Province, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu Province, China
| | - Guoling Fu
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu Province, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu Province, China
| | - Jiaqi Li
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu Province, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu Province, China
| | - Jing Cui
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu Province, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu Province, China
| | - Heyan Chen
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu Province, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu Province, China
| | - Rong Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu Province, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu Province, China
| | - Yumin Qi
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu Province, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu Province, China
| | - Yong Q Chen
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu Province, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu Province, China.
| |
Collapse
|
9
|
Tong C, Wang W, He C. m1A methylation modification patterns and metabolic characteristics in hepatocellular carcinoma. BMC Gastroenterol 2022; 22:93. [PMID: 35240991 PMCID: PMC8896097 DOI: 10.1186/s12876-022-02160-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 02/15/2022] [Indexed: 12/02/2022] Open
Abstract
Background The dysregulation of RNA methylation has been demonstrated to contribute to tumorigenicity and progression in recent years. However, the alteration of N1-methyladenosine (m1A) methylation and its role in hepatocellular carcinoma (HCC) remain unclear. Methods We systematically investigated the modification patterns of 10 m1A regulators in HCC samples and evaluated the metabolic characteristics of each pattern. A scoring system named the m1Ascore was developed using principal component analysis. The clinical value of the m1Ascore in risk stratification and drug screening was further explored. Results Three m1A modification patterns with distinct metabolic characteristics were identified, corresponding to the metabolism-high, metabolism-intermediate and metabolism-excluded phenotypes. Patients were divided into high- or low-m1Ascore groups, and a significant survival difference was observed. External validation confirmed the prognostic value of the m1Ascore. A nomogram incorporating the m1Ascore and other clinicopathological factors was constructed and had good performance for predicting survival. Two agents, mitoxantrone and doxorubicin, were determined to be potential therapeutic drugs for the high-risk group. Conclusion This study provided novel insights into m1A modification and metabolic heterogeneity in cancer, promoted risk stratification in the clinic from the perspective of m1A modification, and further guided individual treatment strategies. Supplementary Information The online version contains supplementary material available at 10.1186/s12876-022-02160-w.
Collapse
Affiliation(s)
- Chengcheng Tong
- Department of Gastroenterology, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui Province, China
| | - Wei Wang
- Department of Gastroenterology, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui Province, China.
| | - Chiyi He
- Department of Gastroenterology, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui Province, China.
| |
Collapse
|
10
|
Gu D, Tang M, Wang Y, Cui H, Zhang M, Bai Y, Zeng Z, Tan Y, Wang X, Zhang B. The Causal Relationships Between Extrinsic Exposures and Risk of Prostate Cancer: A Phenome-Wide Mendelian Randomization Study. Front Oncol 2022; 12:829248. [PMID: 35237523 PMCID: PMC8882837 DOI: 10.3389/fonc.2022.829248] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 01/19/2022] [Indexed: 11/25/2022] Open
Abstract
Background Prostate cancer is the second most common cancer in males worldwide, and multitudes of factors have been reported to be associated with prostate cancer risk. Objectives We aim to conduct the phenome-wide exposed-omics analysis of the risk factors for prostate cancer and verify the causal associations between them. Methods We comprehensively searched published systematic reviews and meta-analyses of cohort studies and conducted another systematic review and meta-analysis of the Mendelian randomization studies investigating the associations between extrinsic exposures and prostate cancer, thus to find all of the potential risk factors for prostate cancer. Then, we launched a phenome-wide two-sample Mendelian randomization analysis to validate the potentially causal relationships using the PRACTICAL consortium and UK Biobank. Results We found a total of 55 extrinsic exposures for prostate cancer risk. The causal effect of 30 potential extrinsic exposures on prostate cancer were assessed, and the results showed docosahexaenoic acid (DHA) [odds ratio (OR)=0.806, 95% confidence interval (CI): 0.661-0.984, p=0.034], insulin-like growth factor binding protein 3 (IGFBP-3) (OR=1.0002, 95%CI: 1.00004-1.0004, p=0.016), systemic lupus erythematosus (SLE) (OR=0.9993, 95%CI: 0.9986-0.99997, p=0.039), and body mass index (BMI) (OR=0.995, 95%CI: 0.990-0.9999, p=0.046) were associated with prostate cancer risk. However, no association was found between the other 26 factors and prostate cancer risk. Conclusions Our study discovered the phenome-wide exposed-omics risk factors profile of prostate cancer, and verified that the IGFBP-3, DHA, BMI, and SLE were causally related to prostate cancer risk. The results may provide new insight into the study of the pathogenesis of prostate cancer.
Collapse
Affiliation(s)
- Dongqing Gu
- Department of Epidemiology and Biostatistics, First Affiliated Hospital, Army Medical University, Chongqing, China
| | - Mingshuang Tang
- Department of Epidemiology and Biostatistics, First Affiliated Hospital, Army Medical University, Chongqing, China
| | - Yutong Wang
- Department of Epidemiology and Biostatistics, First Affiliated Hospital, Army Medical University, Chongqing, China
| | - Huijie Cui
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Min Zhang
- School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Ye Bai
- School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Ziqian Zeng
- Department of Epidemiology and Biostatistics, First Affiliated Hospital, Army Medical University, Chongqing, China
| | - Yunhua Tan
- Department of Epidemiology and Biostatistics, First Affiliated Hospital, Army Medical University, Chongqing, China
| | - Xin Wang
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Ben Zhang
- Department of Epidemiology and Biostatistics, First Affiliated Hospital, Army Medical University, Chongqing, China
- *Correspondence: Ben Zhang,
| |
Collapse
|
11
|
Robinson GF, Sooda KKY, Phillips RM, Allison SJ, Javid FA. Investigation of the cytotoxicity induced by didocosahexaenoin, an omega 3 derivative, in human prostate carcinoma cell lines. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2022; 3:100085. [PMID: 35112078 PMCID: PMC8790608 DOI: 10.1016/j.crphar.2022.100085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 10/29/2022] Open
Abstract
The aim of the present study was to investigate the cytotoxicity induced by an omega-3 derivative, didocosahexaenoin (Dido) on human prostate carcinoma cells and to compare the cytotoxicity to that of docosahexaenoic acid (DHA). Different carcinoma- and non-carcinoma cells were exposed to various concentrations of omega-3 compounds at varying exposure times and the cytotoxicity was measured by MTT assay. The mechanism of Dido-induced apoptosis was investigated in prostate carcinoma cells. Dido induced stronger cytotoxicity than DHA in human prostate carcinoma cells in a dose- and time-dependent manner. Dido was also more selective and potent in inducing cytotoxicity in prostate carcinoma cells than other carcinoma cell lines tested. Pre-treatment with Dido increased the level of reactive oxygen species (ROS) in prostate carcinoma cells. Pre-treatment with various antioxidants reduced the cytotoxicity induced by Dido. Pre-treatment with Dido ≥30 μM also induced apoptosis which was suggested to involve an externalisation of phosphatidyl serine, a significant increase in the mitochondrial membrane potential (p < 0.01) and the level of activated caspase 3/7 (p < 0.05) in prostate carcinoma cells. This study is the first to show that Dido induced cytotoxicity with high selectivity and higher potency than DHA in human prostate carcinoma cells. The mechanism of action is likely to involve an increase in the level of ROS, loss in the mitochondrial membrane potential as well as externalisation of phosphatidyl serine and increase in the caspase 3/7 activity. Dido may have potential to be used for the adjuvant therapy or combination therapy with conventional chemotherapeutic drugs.
Collapse
Affiliation(s)
- Glenn F. Robinson
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK
| | - Kartheek KY. Sooda
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK
| | - Roger M. Phillips
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK
| | - Simon J. Allison
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK
| | - Farideh A. Javid
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK
| |
Collapse
|
12
|
Fatty Acid Metabolism Reprogramming in Advanced Prostate Cancer. Metabolites 2021; 11:metabo11110765. [PMID: 34822423 PMCID: PMC8618281 DOI: 10.3390/metabo11110765] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 11/01/2021] [Accepted: 11/03/2021] [Indexed: 12/23/2022] Open
Abstract
Prostate cancer (PCa) is a carcinoma in which fatty acids are abundant. Fatty acid metabolism is rewired during PCa development. Although PCa can be treated with hormone therapy, after prolonged treatment, castration-resistant prostate cancer can develop and can lead to increased mortality. Changes to fatty acid metabolism occur systemically and locally in prostate cancer patients, and understanding these changes may lead to individualized treatments, especially in advanced, castration-resistant prostate cancers. The fatty acid metabolic changes are not merely reflective of oncogenic activity, but in many cases, these represent a critical factor in cancer initiation and development. In this review, we analyzed the literature regarding systemic changes to fatty acid metabolism in PCa patients and how these changes relate to obesity, diet, circulating metabolites, and peri-prostatic adipose tissue. We also analyzed cellular fatty acid metabolism in prostate cancer, including fatty acid uptake, de novo lipogenesis, fatty acid elongation, and oxidation. This review broadens our view of fatty acid switches in PCa and presents potential candidates for PCa treatment and diagnosis.
Collapse
|
13
|
García-Perdomo HA, Gómez-Ospina JC, Chaves-Medina MJ, Sierra JM, Gómez AMA, Rivas JG. Impact of lifestyle in prostate cancer patients. What should we do? Int Braz J Urol 2021; 48:244-262. [PMID: 34472770 PMCID: PMC8932020 DOI: 10.1590/s1677-5538.ibju.2021.0297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 05/20/2021] [Indexed: 12/24/2022] Open
Abstract
Objective: This review aimed to analyze interventions raised within primary and tertiary prevention concerning the disease's incidence, progression, and recurrence of Prostate Cancer (PCa). Priority was given to the multidisciplinary approach of PCa patients with an emphasis on modifiable risk factors. Materials and Methods: We conducted a comprehensive literature review in the following databases: Embase, Central, and Medline. We included the most recent evidence assessing cohort studies, case-control studies, clinical trials, and systematic reviews published in the last five years. We only included studies in adults and in vitro or cell culture studies. The review was limited to English and Spanish articles. Results: Preventive interventions at all levels are the cornerstone of adherence to disease treatment and progression avoidance. The relationship in terms of healthy lifestyles is related to greater survival. The risk of developing cancer is associated to different eating habits, determined by geographic variations, possibly related to different genetic susceptibilities. Discussion: PCa is the second most common cancer in men, representing a leading cause of death among men in Latin America. Prevention strategies and healthy lifestyles are associated with higher survival rates in PCa patients. Also, screening for anxiety and the presence of symptoms related to mood disorders is essential in the patient's follow-up concerning their perception of the condition.
Collapse
Affiliation(s)
- Herney Andrés García-Perdomo
- Division of Urology/Uroooncology, Department of Surgery, School of Medicine, Universidad Del Valle, Cali, Colombia.,UROGIV Research Group, School of Medicine, Universidad Del Valle, Cali, Colombia
| | | | | | | | | | - Juan Gómez Rivas
- Department of Urology, Hospital Clínico San Carlos, Madrid, Spain
| |
Collapse
|
14
|
ELOVL5-Mediated Long Chain Fatty Acid Elongation Contributes to Enzalutamide Resistance of Prostate Cancer. Cancers (Basel) 2021; 13:cancers13163957. [PMID: 34439125 PMCID: PMC8391805 DOI: 10.3390/cancers13163957] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/28/2021] [Accepted: 08/02/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The resistance mechanism of hormonal therapy has been a long-sought-after but not-yet-understood research topic in the prostate cancer (PCa) field. Here, we provide new mechanistic insights into how long-chain fatty acid contributes to enzalutamide resistance of prostate cancer. We demonstrated that ELOLV5-mediated polyunsaturated fatty acids (PUFAs) upregulation and the lipid raft-derived activation of AKT-mTOR pathway drives the therapy resistance and neuroendocrine differentiation (NED) of prostate cancer. Thus, ELOVL5 could be a potential candidate for therapeutically targeting the therapy-resistant NE-like PCa. Abstract Prostate cancer (PCa) exhibits an elevated level of de novo lipogenesis that provides both energy and basic metabolites for its malignant development. Long-chain polyunsaturated fatty acids (PUFAs) are elongated and desaturated from palmitate but their effects on PCa progression remain largely unknown. Here, we showed that PUFAs were significantly upregulated by androgen deprivation therapy (ADT) and elevated in neuroendocrine (NE)-like PCa cells. The key enzyme of PUFA elongation, ELOVL5, was overexpressed in NE-like PCa cells as well. Furthermore, we demonstrated that knocking down ELOVL5 in enzalutamide resistant NE-like PCa cells diminished the neuroendocrine phenotypes and enzalutamide resistance, while overexpressing ELOVL5 augmented the enzalutamide resistance of PCa cells in vitro and in vivo. Mechanistically, ELOVL5-mediated PUFA elongation enhanced the lipid raft-associated AKT-mTOR signaling activation and therefore contributes to the enzalutamide resistance. These findings suggest that ELOLV5-mediated PUFA elongation may be a potential novel target for the treatment of enzalutamide resistant NE-like PCa.
Collapse
|
15
|
Ye T, Li S, Zhang Y. Genomic pan-cancer classification using image-based deep learning. Comput Struct Biotechnol J 2021; 19:835-846. [PMID: 33598099 PMCID: PMC7848437 DOI: 10.1016/j.csbj.2021.01.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/05/2021] [Accepted: 01/08/2021] [Indexed: 12/24/2022] Open
Abstract
Accurate cancer type classification based on genetic mutation can significantly facilitate cancer-related diagnosis. However, existing methods usually use feature selection combined with simple classifiers to quantify key mutated genes, resulting in poor classification performance. To circumvent this problem, a novel image-based deep learning strategy is employed to distinguish different types of cancer. Unlike conventional methods, we first convert gene mutation data containing single nucleotide polymorphisms, insertions and deletions into a genetic mutation map, and then apply the deep learning networks to classify different cancer types based on the mutation map. We outline these methods and present results obtained in training VGG-16, Inception-v3, ResNet-50 and Inception-ResNet-v2 neural networks to classify 36 types of cancer from 9047 patient samples. Our approach achieves overall higher accuracy (over 95%) compared with other widely adopted classification methods. Furthermore, we demonstrate the application of a Guided Grad-CAM visualization to generate heatmaps and identify the top-ranked tumor-type-specific genes and pathways. Experimental results on prostate and breast cancer demonstrate our method can be applied to various types of cancer. Powered by the deep learning, this approach can potentially provide a new solution for pan-cancer classification and cancer driver gene discovery. The source code and datasets supporting the study is available at https://github.com/yetaoyu/Genomic-pan-cancer-classification.
Collapse
Affiliation(s)
- Taoyu Ye
- Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, China
| | - Sen Li
- Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, China
| | - Yang Zhang
- Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, China
| |
Collapse
|
16
|
Abedin MR, Barua S. Isolation and purification of glycoglycerolipids to induce apoptosis in breast cancer cells. Sci Rep 2021; 11:1298. [PMID: 33446783 PMCID: PMC7809038 DOI: 10.1038/s41598-020-80484-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 12/17/2020] [Indexed: 01/03/2023] Open
Abstract
Monogalactosyldiacylglycerol (MGDG) is the most abundant type of glycoglycerolipid found in the plant cell membrane and mostly in the chloroplast thylakoid membrane. The amphiphilic nature of MGDG is attractive in pharmaceutical fields for interaction with other biological molecules and hence exerting therapeutic anti-cancer, anti-viral, and anti-inflammatory activities. In this study, we investigated the therapeutic efficacy of cyanobacteria derived MGDG to inhibit breast cancer cell growth. MGDG was extracted from a cyanobacteria Synechocystis sp. PCC 6803 followed by a subsequent fractionation by column chromatographic technique. The purity and molecular structure of MGDG were analyzed by nuclear magnetic resonance (NMR) spectroscopy analysis. The presence of MGDG in the extracted fraction was further confirmed and quantified by high-performance liquid chromatography (HPLC). The anti-proliferation activity of the extracted MGDG molecule was tested against BT-474 and MDA-MB-231 breast cancer cell lines. The in vitro study showed that MGDG extracted from Synechocystis sp. PCC 6803 induced apoptosis in (70 ± 8) % of BT-474 (p < 0.001) and (58 ± 5) % of MDA-MB-231 cells (p < 0.001) using ~ 60 and 200 ng/ml of concentrations, respectively. The half-maximal inhibitory concentration, IC50 of MGDG extracted from Synechocystis sp. PCC 6803 were (27.2 ± 7.6) and (150 ± 70) ng/ml in BT-474 and MDA-MB-231 cell lines, respectively. Quantification of caspase-3/7 activity using flow cytometry showed (3.0 ± 0.4) and (2.1 ± 0.04)-fold (p < 0.001) higher protein expressions in the MGDG treated BT-474 and MDA-MB-231 cells, respectively than untreated controls conferring to the caspase-dependent apoptosis. The MGDG did not show any significant cytotoxic side effects in human dermal fibroblasts cells. A commercially available MGDG control did not induce any apoptotic cell death in cancer cells substantiating the potential of the MGDG extracted from Synechocystis sp. PCC 6803 for the treatment of breast cancer cells through the apoptosis-mediated pathway.
Collapse
Affiliation(s)
- Muhammad Raisul Abedin
- Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, 110 Bertelsmeyer Hall, 1101 N. State Street, Rolla, MO, 65409-1230, USA
| | - Sutapa Barua
- Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, 110 Bertelsmeyer Hall, 1101 N. State Street, Rolla, MO, 65409-1230, USA.
| |
Collapse
|
17
|
Maksymchuk OV, Kashuba VI. Altered expression of cytochrome P450 enzymes involved in metabolism of androgens and vitamin D in the prostate as a risk factor for prostate cancer. Pharmacol Rep 2020; 72:1161-1172. [PMID: 32681429 DOI: 10.1007/s43440-020-00133-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 07/02/2020] [Accepted: 07/09/2020] [Indexed: 12/30/2022]
Abstract
Prostate cancer is the most common malignant disease among men. The signaling pathways, regulated by the androgen and vitamin D receptors, play a key role in prostate cancer. The intracellular level of androgens and vitamin D determines not only receptor functionality, but also the efficacy of cellular processes regulated by them (cell proliferation, apoptosis, differentiation etc.). It is known that several androgen-metabolizing P450s (CYP3A4/5/43 and CYP2B6) and P450 enzymes (CYP2R1, CYP27A1, CYP27B1, CYP24A1, CYP3A4, CYP2J2), which are necessary for vitamin D metabolism, are expressed in the prostate. It was shown that alterations in an expression pattern of the certain cytochrome P450s might lead to the development of castration-resistant cancer (CYP3A4, CYP2J2, CYP24A1), and to chemo-resistance (CYP3A4, CYP3A5, CYP2B6) and early mortality (CYP2B6, CYP27A1, CYP24A1). Moreover, steroidogenic CYPs (CYP17A1, CYP11A1) are not expressed in normal prostate tissue. Alterations in their expression levels in steroidogenic tissues are closely associated with carcinogenesis, and, most importantly, with the development of aggressive forms of prostate cancer. Hence, it is important, to study how expression of CYPs in the prostate might be regulated, to understand the mechanisms of disease development and to improve the effectiveness of therapy. Several CYPs (CYP3A43, CYP2B6, CYP27A1, CYP24A1) can be considered as prognostic and diagnostic markers of prostate cancer. To propose personalized treatment, individual differences in CYP expression should be taken into account.
Collapse
Affiliation(s)
- Oksana V Maksymchuk
- Department of Molecular Oncogenetics, Institute of Molecular Biology and Genetics of National Academy of Sciences of Ukraine, 150, Zabolotnogo Street, Kyiv, 03143, Ukraine.
| | - Vladimir I Kashuba
- Department of Molecular Oncogenetics, Institute of Molecular Biology and Genetics of National Academy of Sciences of Ukraine, 150, Zabolotnogo Street, Kyiv, 03143, Ukraine
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum, Karolinska Institutet, 17177, Stockholm, Sweden
| |
Collapse
|
18
|
Vahid F, Davoodi SH. Nutritional Factors Involved in the Etiology of Gastric Cancer: A Systematic Review. Nutr Cancer 2020; 73:376-390. [PMID: 32336147 DOI: 10.1080/01635581.2020.1756353] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
CONTEXT Since treatment options for GC are limited, the best and most effective way is to try to reduce the incidences and understanding prevention strategies. OBJECTIVE The success in prevention strategies depends on understanding etiologic mechanisms. Our goal is to identify the major nutritional risk factors for GC, and we will examine the controversial evidence. DATA SOURCES We used Pub Med, Google Scholar, Scopus, Science Direct, Elsevier, Springer, and MEDLINE databases for extracting articles. DATA EXTRACTION Human studies published in English from 1997to2018 were included. Two reviewers other than authors initially assessed abstract of 742 papers and 248papers were selected for future assessments. After full review and consideration of the inclusion and exclusion criteria, we used 85 articles. RESULTS Dietary salt is a strong independent risk for GC whereas alcohol is most likely a risk only in the presence of heavy alcohol consumption. Red meat and high-fat diet increase the risk of developing GC but fresh fruits, vegetables and certain micronutrients like selenium and vitamin C are protective. CONCLUSION Some nutrients such as selenium, vitamin C, folate, iron, and zinc are involved in the etiology of GC. On the other hand; salt, fats, alcohol, red meat, and pepper were reported to be risk factors for GC. Since the GC is a heterogeneous malignancy and multiple factors are involved in its genesis.
Collapse
Affiliation(s)
- Farhad Vahid
- Department of Nutritional Sciences, School of Health, Arak University of Medical Sciences, Arak, Iran
| | - Sayed Hossein Davoodi
- Faculty of Nutrition Sciences and Food Technology, Department of Nutritional Sciences, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
FADS1 promotes the progression of laryngeal squamous cell carcinoma through activating AKT/mTOR signaling. Cell Death Dis 2020; 11:272. [PMID: 32332698 PMCID: PMC7181692 DOI: 10.1038/s41419-020-2457-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 04/07/2020] [Accepted: 04/07/2020] [Indexed: 12/12/2022]
Abstract
Metabolic abnormality is the major feature of laryngeal squamous cell carcinoma (LSCC), however, the underlying mechanism remain largely elusive. Fatty acid desaturase 1 (FADS1), as the key rate-limiting enzyme of polyunsaturated fatty acids (PUFAs), catalyzes dihomo-gamma-linolenic acid (DGLA) to arachidonic acid (AA). In this study, we reported that the expression of FADS1 was upregulated in LSCC, high FADS1 expression was closely associated with the advanced clinical features and poor prognosis of the recurrent LSCC patients after chemotherapy. Liquid chromatograph-mass spectrometry (LC-MS) analysis revealed that FADS1 overexpression induced greater conversion of DGLA to AA, suggesting an increased activity of FADS1. Similarly, the level of prostaglandin E2 (PGE2), a downstream metabolite of AA, was also elevated in cancerous laryngeal tissues. Functional assays showed that FADS1 knockdown suppressed the proliferation, migration and invasion of LSCC cells, while FADS1 overexpression had the opposite effects. Bioinformatic analysis based on microarray data found that FADS1 could activate AKT/mTOR signaling. This hypothesis was further validated by both in vivo and in vitro assays. Hence, our data has supported the viewpoint that FADS1 is a potential promoter in LSCC progression, and has laid the foundation for further functional research on the PUFA dietary supplementation interventions targeting FADS1/AKT/mTOR pathway for LSCC prevention and treatment.
Collapse
|
20
|
Ferreri C, Sansone A, Buratta S, Urbanelli L, Costanzi E, Emiliani C, Chatgilialoglu C. The n-10 Fatty Acids Family in the Lipidome of Human Prostatic Adenocarcinoma Cell Membranes and Extracellular Vesicles. Cancers (Basel) 2020; 12:E900. [PMID: 32272739 PMCID: PMC7226157 DOI: 10.3390/cancers12040900] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/07/2020] [Accepted: 03/31/2020] [Indexed: 02/06/2023] Open
Abstract
A new pathway leading to the n-10 fatty acid series has been recently evidenced, starting from sapienic acid, a monounsaturated fatty acid (MUFA) resulting from the transformation of palmitic acid by delta-6 desaturase. Sapienic acid has attracted attention as a novel marker of cancer cell plasticity. Here, we analyzed fatty acids, including the n-10 fatty acid contents, and for the first time, compared cell membranes and the corresponding extracellular vesicles (EV) of two human prostatic adenocarcinoma cell lines of different aggressiveness (PC3 and LNCaP). The n-10 components were 9-13% of the total fatty acids in both cancer cell lines and EVs, with total MUFA levels significantly higher in EVs of the most aggressive cell type (PC3). High sapienic/palmitoleic ratios indicated the preference for delta-6 versus delta-9 desaturase enzymatic activity in these cell lines. The expressions analysis of enzymes involved in desaturation and elongation by qRT-PCR showed a higher desaturase activity in PC3 and a higher elongase activity toward polyunsaturated fatty acids than toward saturated fatty acids, compared to LNCaP cells. Our results improve the present knowledge in cancer fatty acid metabolism and lipid phenotypes, highlighting EV lipidomics to monitor positional fatty acid isomer profiles and MUFA levels in cancer.
Collapse
Affiliation(s)
- Carla Ferreri
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Via P. Gobetti 101, 40129 Bologna, Italy; (A.S.); (C.C.)
| | - Anna Sansone
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Via P. Gobetti 101, 40129 Bologna, Italy; (A.S.); (C.C.)
| | - Sandra Buratta
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06122 Perugia, Italy; (S.B.); (L.U.); (E.C.); (C.E.)
| | - Lorena Urbanelli
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06122 Perugia, Italy; (S.B.); (L.U.); (E.C.); (C.E.)
| | - Eva Costanzi
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06122 Perugia, Italy; (S.B.); (L.U.); (E.C.); (C.E.)
| | - Carla Emiliani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06122 Perugia, Italy; (S.B.); (L.U.); (E.C.); (C.E.)
| | - Chryssostomos Chatgilialoglu
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Via P. Gobetti 101, 40129 Bologna, Italy; (A.S.); (C.C.)
| |
Collapse
|
21
|
Liang P, Henning SM, Guan J, Grogan T, Elashoff D, Olefsky JM, Cohen P, Aronson WJ. Role of Host GPR120 in Mediating Dietary Omega-3 Fatty Acid Inhibition of Prostate Cancer. J Natl Cancer Inst 2020; 111:52-59. [PMID: 30202902 DOI: 10.1093/jnci/djy125] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 06/25/2018] [Indexed: 12/27/2022] Open
Abstract
Background GPR120, a G protein-coupled receptor for long-chain polyunsaturated fatty acids (FAs), mediates the anti-inflammatory effects of omega-3 (ω-3) FAs. We investigated whether host or tumor GPR120 plays a role in the anti-prostate cancer effects of ω-3 FAs. Methods MycCap prostate cancer allografts were grown in immunocompetent wild-type (WT) and GPR120 knockout (KO) mice fed ω-3 (fish oil) or ω-6 (corn oil) diets. Immune cell infiltration was quantified by flow cytometry, and gene expression of immune cell markers in isolated tumor-associated macrophages (TAMs) was quantified by quantitative real-time polymerase chain reaction. Archived tissue from a fish oil intervention trial was used to correlate gene expression of GPR120 with cell cycle progression (CCP) genes and Ki67 index (n = 11-15 per group). All statistical tests were two-sided. Results In WT mice (n = 7 per group), dietary ω-3 FAs decreased MycCap allograft tumor growth (mean [SD] final tumor volume ω-6 = 491 [437] mm3 vs ω-3 = 127 [77] mm3, P = .04), whereas in global GPR120KO mice (n = 7 per group) ω-3 FAs had no anticancer effects. Dietary ω-3 FAs inhibited GPR120KO-MycCaP allografts grown in WT mice (n = 8 per group; mean [SD] final tumor volume ω-6 = 776 [767] mm3 vs ω-3 = 36 [34] mm3, P = .02). Omega-3 FA treatment decreased the number of M2-like TAMs in tumor tissue and gene expression of M2 markers in isolated TAMs compared with ω-6 controls in WT (n = 7 per group) but not in GPR120KO mice (n = 7 per group). In human tissue, higher expression of stromal GPR120 correlated with greater reduction in expression of CCP genes in men with prostate cancer on a high-ω-3 diet (r = -.57, P = .04). Conclusions Host GPR120 plays a central role in the anti-prostate cancer effects of dietary ω-3 FAs. Future studies are required to determine if the anticancer effects of ω-3 FAs are mediated through inhibition of M2-like macrophages and if host GPR120 status predicts anticancer effects of dietary ω-3 FAs in men with prostate cancer.
Collapse
Affiliation(s)
- Pei Liang
- Department of Urology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Susanne M Henning
- Department of Urology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Johnny Guan
- Department of Urology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Tristan Grogan
- Statistics Core, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - David Elashoff
- Statistics Core, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Jerrold M Olefsky
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego, San Diego, CA
| | - Pinchas Cohen
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA
| | - William J Aronson
- Department of Urology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA.,VA Medical Center Greater Los Angeles Healthcare System, Los Angeles, CA
| |
Collapse
|
22
|
Dietary fatty acid quality affects systemic parameters and promotes prostatitis and pre-neoplastic lesions. Sci Rep 2019; 9:19233. [PMID: 31848441 PMCID: PMC6917739 DOI: 10.1038/s41598-019-55882-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 12/04/2019] [Indexed: 01/02/2023] Open
Abstract
Environmental and nutritional factors, including fatty acids (FA), are associated with prostatitis, benign prostate hyperplasia and prostate cancer. We hypothesized that different FA in normolipidic diets (7%) affect prostate physiology, increasing the susceptibility to prostate disorders. Thus, we fed male C57/BL6 mice with normolipidic diets based on linseed oil, soybean oil or lard (varying saturated and unsaturated FA contents and ω-3/ω-6 ratios) for 12 or 32 weeks after weaning and examined structural and functional parameters of the ventral prostate (VP) in the systemic metabolic context. Mongolian gerbils were included because they present a metabolic detour for low water consumption (i.e., oxidize FA to produce metabolic water). A linseed oil-based diet (LO, 67.4% PUFAs, ω-3/ω-6 = 3.70) resulted in a thermogenic profile, while a soybean oil-based diet (SO, 52.7% PUFAs, ω-3/ω-6 = 0.11) increased body growth and adiposity. Mice fed lard (PF, 13.1% PUFA, ω-3/ω-6 = 0.07) depicted a biphasic growth, resulting in decreased adiposity in adulthood. SO and PF resulted in hepatic steatosis and steatohepatitis, respectively. PF and SO increased prostate epithelial volume, and lard resulted in epithelial hyperplasia. Animals in the LO group had smaller prostates with predominant atrophic epithelia and inflammatory loci. Inflammatory cells were frequent in the VP of PF mice (predominantly stromal) and LO mice (predominantly luminal). RNAseq after 12 weeks revealed good predictors of a later-onset inflammation. The transcriptome unveiled ontologies related to ER stress after 32 weeks on PF diets. In conclusion, different FA qualities result in different metabolic phenotypes and differentially impact prostate size, epithelial volume, inflammation and gene expression.
Collapse
|
23
|
Maksymchuk O, Kashuba V. Dietary lipids and environmental xenobiotics as risk factors for prostate cancer: The role of cytochrome P450. Pharmacol Rep 2019; 71:826-832. [PMID: 31382168 DOI: 10.1016/j.pharep.2019.04.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/08/2019] [Accepted: 04/13/2019] [Indexed: 01/31/2023]
Abstract
Prostate cancer is one of the most common malignant neoplasms in men. Because of the increase in the number of cases as well as development of cancers resistant to conventional therapy, identification of the new molecular targets for the treatment and prevention is of great importance. For this purpose, many studies are aimed on revealing of molecular mechanisms of prostate cancer development. In this process, dietary lipids and environmental xenobiotics are largely involved and are considered as risk factors. A wide range of endogenous (cholesterol, polyunsaturated fatty acids, etc.) and exogenous (pollutants, drugs) compounds are metabolized in the human organism by cytochrome P450. From other hand, these compounds may alter cytochrome P450 expression levels, especially in prostate, which, in turn, affects cell metabolism. Cytochrome P450 is a member of signaling pathways, regulating cell cycle, apoptosis, invasion and adhesion. Hence, cytochrome P450 most probably plays the important role in initiation and progression of prostate cancer. Based on that, cytochrome P450 enzymes are considered as potential targets for the targeted therapy and prevention, and might serve as specific markers of malignant growth.
Collapse
Affiliation(s)
- Oksana Maksymchuk
- Department of Molecular Oncogenetics, Institute of Molecular Biology and Genetics NAS Ukraine, Kyiv, Ukraine.
| | - Vladimir Kashuba
- Department of Molecular Oncogenetics, Institute of Molecular Biology and Genetics NAS Ukraine, Kyiv, Ukraine; Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
24
|
Effect of dietary omega-3 fatty acids on castrate-resistant prostate cancer and tumor-associated macrophages. Prostate Cancer Prostatic Dis 2019; 23:127-135. [PMID: 31439889 PMCID: PMC7031053 DOI: 10.1038/s41391-019-0168-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/01/2019] [Accepted: 07/22/2019] [Indexed: 12/19/2022]
Abstract
Background M2-like macrophages are associated with the pathogenesis of castrate resistant prostate cancer (CRPC). We sought to determine if dietary omega-3 fatty acids (ω−3 FAs) delay the development and progression of CRPC and inhibit tumor associated M2-like macrophages. Methods MycCap cells were grown subcutaneously in immunocompetent FVB mice. Mice were castrated when tumors reached 300mm3. To study effects of dietary ω−3 FAs on development of CRPC, ω−3 or ω−6 diets were started two days after castration and mice sacrificed after early regrowth of tumors. To study ω−3 FA effects on progression of CRPC, tumors were allowed to regrow after castration before starting the diets. M2 (CD206+) macrophages were isolated from allografts to examine ω−3 FA effects on macrophage function. Omega-3 fatty acid effects on androgen-deprived RAW264.7 M2 macrophages was studied by RTqPCR and a migration/ invasion assay. Results The ω−3 diet combined with castration lead to greater MycCap tumor regression (182.2±33.6 mm3) than the ω−6 diet (148.3±35.2; p=0.003) and significantly delayed the time to CRPC (p=0.006). Likewise, the ω−3 diet significantly delayed progression of established castrate resistant MycCaP tumors (p=0.003). The ω−3 diet (as compared to the ω−6 diet) significantly reduced tumor associated M2-like macrophage expression of CSF-1R in the CRPC development model, and matrix metallopeptidase-9 (MMP-9) and vascular endothelial growth factor (VEGF) in the CRPC progression model. Migration of androgen depleted RAW264.7 M2 macrophages towards MycCaP cells was reversed by addition of docosahexaenoic acid (ω−3). Conclusions Dietary omega-3 FAs (as compared to omega-6 FAs) decreased the development and progression of CRPC in an immunocompetent mouse model, and had inhibitory effects on M2-like macrophage function. Clinical trials are warranted evaluating if a fish oil-based diet can delay the time to castration resistance in men on androgen deprivation therapy, whereas further pre-clinical studies are warranted evaluating fish oil for more advanced CRPC.
Collapse
|
25
|
Greene J, Baird AM, Casey O, Brady L, Blackshields G, Lim M, O'Brien O, Gray SG, McDermott R, Finn SP. Circular RNAs are differentially expressed in prostate cancer and are potentially associated with resistance to enzalutamide. Sci Rep 2019; 9:10739. [PMID: 31341219 PMCID: PMC6656767 DOI: 10.1038/s41598-019-47189-2] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 07/04/2019] [Indexed: 12/19/2022] Open
Abstract
Most forms of castration-resistant prostate cancer (CRPC) are dependent on the androgen receptor (AR) for survival. While, enzalutamide provides a substantial survival benefit, it is not curative and many patients develop resistance to therapy. Although not yet fully understood, resistance can develop through a number of mechanisms, such as AR copy number gain, the generation of splice variants such as AR-V7 and mutations within the ligand binding domain (LBD) of the AR. circular RNAs (circRNAs) are a novel type of non-coding RNA, which can regulate the function of miRNA, and may play a key role in the development of drug resistance. circRNAs are highly resistant to degradation, are detectable in plasma and, therefore may serve a role as clinical biomarkers. In this study, AR-V7 expression was assessed in an isogenic model of enzalutamide resistance. The model consisted of age matched control cells and two sub-line clones displaying varied resistance to enzalutamide. circRNA profiling was performed on the panel using a high throughout microarray assay. Bioinformatic analysis identified a number of differentially expressed circRNAs and predicted five miRNA binding sites for each circRNA. miRNAs were stratified based on known associations with prostate cancer, and targets were validated using qPCR. Overall, circRNAs were more often down regulated in resistant cell lines compared with control (588 vs. 278). Of particular interest was hsa_circ_0004870, which was down-regulated in enzalutamide resistant cells (p ≤ 0.05, vs. sensitive cells), decreased in cells that highly express AR (p ≤ 0.01, vs. AR negative), and decreased in malignant cells (p ≤ 0.01, vs. benign). The associated parental gene was identified as RBM39, a member of the U2AF65 family of proteins. Both genes were down-regulated in resistant cells (p < 0.05, vs. sensitive cells). This is one of the first studies to profile and demonstrate discrete circRNA expression patterns in an enzalutamide resistant cell line model of prostate cancer. Our data suggests that hsa_circ_0004870, through RBM39, may play a critical role in the development of enzalutamide resistance in CRPC.
Collapse
Affiliation(s)
- John Greene
- Department of Histopathology and Morbid Anatomy, School of Medicine, Trinity College Dublin, Dublin 8, Ireland. .,Department of Medical Oncology, Tallaght Hospital, Dublin 24, Ireland.
| | - Anne-Marie Baird
- Department of Histopathology and Morbid Anatomy, School of Medicine, Trinity College Dublin, Dublin 8, Ireland.,Thoracic Oncology Research Group, Trinity Translational Medical Institute, St. James's Hospital, Dublin 8, Ireland.,Department of Clinical Medicine, Trinity College Dublin, Dublin 2, Ireland.,Cancer and Ageing Research Program, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Orla Casey
- Department of Histopathology and Morbid Anatomy, School of Medicine, Trinity College Dublin, Dublin 8, Ireland
| | - Lauren Brady
- Department of Histopathology and Morbid Anatomy, School of Medicine, Trinity College Dublin, Dublin 8, Ireland
| | - Gordon Blackshields
- Department of Histopathology and Morbid Anatomy, School of Medicine, Trinity College Dublin, Dublin 8, Ireland
| | - Marvin Lim
- Department of Histopathology and Morbid Anatomy, School of Medicine, Trinity College Dublin, Dublin 8, Ireland.,Department of Medical Oncology, Tallaght Hospital, Dublin 24, Ireland
| | | | - Steven G Gray
- Thoracic Oncology Research Group, Trinity Translational Medical Institute, St. James's Hospital, Dublin 8, Ireland.,Department of Clinical Medicine, Trinity College Dublin, Dublin 2, Ireland.,Labmed Directorate, St. James's Hospital, Dublin 8, Ireland.,HOPE Directorate, St. James's Hospital, Dublin 8, Ireland
| | - Raymond McDermott
- Department of Medical Oncology, Tallaght Hospital, Dublin 24, Ireland.,Department of Histopathology, St. James's Hospital, Dublin 8, Ireland.,Department of Medical Oncology, St. Vincent's Hospital, Dublin 4, Ireland
| | - Stephen P Finn
- Department of Histopathology and Morbid Anatomy, School of Medicine, Trinity College Dublin, Dublin 8, Ireland.,Thoracic Oncology Research Group, Trinity Translational Medical Institute, St. James's Hospital, Dublin 8, Ireland.,Department of Clinical Medicine, Trinity College Dublin, Dublin 2, Ireland.,Department of Histopathology, St. James's Hospital, Dublin 8, Ireland
| |
Collapse
|
26
|
Bratton BA, Maly IV, Hofmann WA. Effect of polyunsaturated fatty acids on proliferation and survival of prostate cancer cells. PLoS One 2019; 14:e0219822. [PMID: 31314803 PMCID: PMC6636762 DOI: 10.1371/journal.pone.0219822] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 07/03/2019] [Indexed: 11/23/2022] Open
Abstract
Progression of prostate cancer to lethal forms is marked by emergence of hormone-independent proliferation of the cancer cells. Nutritional and epidemiological studies have indicated that prostate cancer progression is correlated with the consumption of polyunsaturated fatty acids (PUFA). To shed additional light on the cell-level mechanisms of the observed correlation, we compared the sensitivity of hormone-dependent and hormone-independent prostate cancer cells to growth medium supplementation with free PUFAs in a cell proliferation and viability assay. Our data show that the hormone-dependent cells are comparatively insensitive to various PUFAs, at the same time as the growth and viability of hormone-independent cells lines are strongly inhibited by most of the tested PUFAs, whether n–3 or n–6. We speculate that this difference may be at least partially responsible for the observed effects of specific dietary lipids in prostate cancer. The new data strengthen the case for dietary intervention as part of potential new therapeutic strategies seeking to impede prostate cancer progression.
Collapse
Affiliation(s)
- Brenden A. Bratton
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States of America
| | - Ivan V. Maly
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States of America
| | - Wilma A. Hofmann
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States of America
- * E-mail:
| |
Collapse
|
27
|
Narita S, Nara T, Sato H, Koizumi A, Huang M, Inoue T, Habuchi T. Research Evidence on High-Fat Diet-Induced Prostate Cancer Development and Progression. J Clin Med 2019; 8:jcm8050597. [PMID: 31052319 PMCID: PMC6572108 DOI: 10.3390/jcm8050597] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/27/2019] [Accepted: 04/29/2019] [Indexed: 02/07/2023] Open
Abstract
Although recent evidence has suggested that a high-fat diet (HFD) plays an important role in prostate carcinogenesis, the underlying mechanisms have largely remained unknown. This review thus summarizes previous preclinical studies that have used prostate cancer cells and animal models to assess the impact of dietary fat on prostate cancer development and progression. Large variations in the previous studies were found during the selection of preclinical models and types of dietary intervention. Subcutaneous human prostate cancer cell xenografts, such as LNCaP, LAPC-4, and PC-3 and genetic engineered mouse models, such as TRAMP and Pten knockout, were frequently used. The dietary interventions had not been standardized, and distinct variations in the phenotype were observed in different studies using distinct HFD components. The use of different dietary components in the research models is reported to influence the effect of diet-induced metabolic disorders. The proposed underlying mechanisms for HFD-induced prostate cancer were divided into (1) growth factor signaling, (2) lipid metabolism, (3) inflammation, (4) hormonal modulation, and others. A number of preclinical studies proposed that dietary fat and/or obesity enhanced prostate cancer development and progression. However, the relationship still remains controversial, and care should be taken when interpreting the results in a human context. Future studies using more sophisticated preclinical models are imperative in order to explore deeper understanding regarding the impact of dietary fat on the development and progression of prostate cancer.
Collapse
Affiliation(s)
- Shintaro Narita
- Department of Urology, Akita University School of Medicine, Akita 010-8543, Japan.
| | - Taketoshi Nara
- Department of Urology, Akita University School of Medicine, Akita 010-8543, Japan.
| | - Hiromi Sato
- Department of Urology, Akita University School of Medicine, Akita 010-8543, Japan.
| | - Atsushi Koizumi
- Department of Urology, Akita University School of Medicine, Akita 010-8543, Japan.
| | - Mingguo Huang
- Department of Urology, Akita University School of Medicine, Akita 010-8543, Japan.
| | - Takamitsu Inoue
- Department of Urology, Akita University School of Medicine, Akita 010-8543, Japan.
| | - Tomonori Habuchi
- Department of Urology, Akita University School of Medicine, Akita 010-8543, Japan.
| |
Collapse
|
28
|
Curbing Lipids: Impacts ON Cancer and Viral Infection. Int J Mol Sci 2019; 20:ijms20030644. [PMID: 30717356 PMCID: PMC6387424 DOI: 10.3390/ijms20030644] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/17/2019] [Accepted: 01/22/2019] [Indexed: 12/13/2022] Open
Abstract
Lipids play a fundamental role in maintaining normal function in healthy cells. Their functions include signaling, storing energy, and acting as the central structural component of cell membranes. Alteration of lipid metabolism is a prominent feature of cancer, as cancer cells must modify their metabolism to fulfill the demands of their accelerated proliferation rate. This aberrant lipid metabolism can affect cellular processes such as cell growth, survival, and migration. Besides the gene mutations, environmental factors, and inheritance, several infectious pathogens are also linked with human cancers worldwide. Tumor viruses are top on the list of infectious pathogens to cause human cancers. These viruses insert their own DNA (or RNA) into that of the host cell and affect host cellular processes such as cell growth, survival, and migration. Several of these cancer-causing viruses are reported to be reprogramming host cell lipid metabolism. The reliance of cancer cells and viruses on lipid metabolism suggests enzymes that can be used as therapeutic targets to exploit the addiction of infected diseased cells on lipids and abrogate tumor growth. This review focuses on normal lipid metabolism, lipid metabolic pathways and their reprogramming in human cancers and viral infection linked cancers and the potential anticancer drugs that target specific lipid metabolic enzymes. Here, we discuss statins and fibrates as drugs to intervene in disordered lipid pathways in cancer cells. Further insight into the dysregulated pathways in lipid metabolism can help create more effective anticancer therapies.
Collapse
|
29
|
|
30
|
Maly IV, Hofmann WA. Fatty Acids and Calcium Regulation in Prostate Cancer. Nutrients 2018; 10:nu10060788. [PMID: 29921791 PMCID: PMC6024573 DOI: 10.3390/nu10060788] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/14/2018] [Accepted: 06/15/2018] [Indexed: 12/24/2022] Open
Abstract
Prostate cancer is a widespread malignancy characterized by a comparative ease of primary diagnosis and difficulty in choosing the individualized course of treatment. Management of prostate cancer would benefit from a clearer understanding of the molecular mechanisms behind the transition to the lethal, late-stage forms of the disease, which could potentially yield new biomarkers for differential prognosis and treatment prioritization in addition to possible new therapeutic targets. Epidemiological research has uncovered a significant correlation of prostate cancer incidence and progression with the intake (and often co-intake) of fatty acids and calcium. Additionally, there is evidence of the impact of these nutrients on intracellular signaling, including the mechanisms mediated by the calcium ion as a second messenger. The present review surveys the recent literature on the molecular mechanisms associated with the critical steps in the prostate cancer progression, with special attention paid to the regulation of these processes by fatty acids and calcium homeostasis. Testable hypotheses are put forward that integrate some of the recent results in a more unified picture of these phenomena at the interface of cell signaling and metabolism.
Collapse
Affiliation(s)
- Ivan V Maly
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, 955 Main Street, Buffalo, NY 14203, USA.
| | - Wilma A Hofmann
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, 955 Main Street, Buffalo, NY 14203, USA.
| |
Collapse
|
31
|
Cheng Y, Monteiro C, Matos A, You J, Fraga A, Pereira C, Catalán V, Rodríguez A, Gómez-Ambrosi J, Frühbeck G, Ribeiro R, Hu P. Epigenome-wide DNA methylation profiling of periprostatic adipose tissue in prostate cancer patients with excess adiposity-a pilot study. Clin Epigenetics 2018; 10:54. [PMID: 29692867 PMCID: PMC5904983 DOI: 10.1186/s13148-018-0490-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 04/05/2018] [Indexed: 12/12/2022] Open
Abstract
Background Periprostatic adipose tissue (PPAT) has been recognized to associate with prostate cancer (PCa) aggressiveness and progression. Here, we sought to investigate whether excess adiposity modulates the methylome of PPAT in PCa patients. DNA methylation profiling was performed in PPAT from obese/overweight (OB/OW, BMI > 25 kg m−2) and normal weight (NW, BMI < 25 kg m−2) PCa patients. Significant differences in methylated CpGs between OB/OW and NW groups were inferred by statistical modeling. Results Five thousand five hundred twenty-six differentially methylated CpGs were identified between OB/OW and NW PCa patients with 90.2% hypermethylated. Four hundred eighty-three of these CpGs were found to be located at both promoters and CpG islands, whereas the representing 412 genes were found to be involved in pluripotency of stem cells, fatty acid metabolism, and many other biological processes; 14 of these genes, particularly FADS1, MOGAT1, and PCYT2, with promoter hypermethylation presented with significantly decreased gene expression in matched samples. Additionally, 38 genes were correlated with antigen processing and presentation of endogenous antigen via MHC class I, which might result in fatty acid accumulation in PPAT and tumor immune evasion. Conclusions Results showed that the whole epigenome methylation profiles of PPAT were significantly different in OB/OW compared to normal weight PCa patients. The epigenetic variation associated with excess adiposity likely resulted in altered lipid metabolism and immune dysregulation, contributing towards unfavorable PCa microenvironment, thus warranting further validation studies in larger samples. Electronic supplementary material The online version of this article (10.1186/s13148-018-0490-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yan Cheng
- 1Department of Biochemistry and Medical Genetics & Department of Electrical and Computer Engineering, University of Manitoba, Winnipeg, Canada.,2Experimental Center, Northwest University for Nationalities, Lanzhou, People's Republic of China
| | - Cátia Monteiro
- 3Molecular Oncology Group, Portuguese Institute of Oncology, Porto, Portugal.,Research Department, Portuguese League Against Cancer-North, Porto, Portugal
| | - Andreia Matos
- 5Laboratory of Genetics and Environmental Health Institute, Faculty of Medicine, University of Lisboa, Lisbon, Portugal.,6Tumor & Microenvironment Interactions, i3S/INEB, Institute for Research and Innovation in Health, and Institute of Biomedical Engineering, University of Porto, Porto, Portugal
| | - Jiaying You
- 1Department of Biochemistry and Medical Genetics & Department of Electrical and Computer Engineering, University of Manitoba, Winnipeg, Canada
| | - Avelino Fraga
- 6Tumor & Microenvironment Interactions, i3S/INEB, Institute for Research and Innovation in Health, and Institute of Biomedical Engineering, University of Porto, Porto, Portugal.,7Department of Urology, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Carina Pereira
- 3Molecular Oncology Group, Portuguese Institute of Oncology, Porto, Portugal.,8CINTESIS, Center for Health Technology and Services Research, Faculty of Medicine, e, University of Porto, Porto, Portugal
| | - Victoria Catalán
- 9Metabolic Research Laboratory, Universidad de Navarra, Pamplona, Spain.,10CIBER Fisiopatología de la Obesidad y Nutricion, Instituto de Salud Carlos III, Madrid, Spain
| | - Amaia Rodríguez
- 9Metabolic Research Laboratory, Universidad de Navarra, Pamplona, Spain.,10CIBER Fisiopatología de la Obesidad y Nutricion, Instituto de Salud Carlos III, Madrid, Spain
| | - Javier Gómez-Ambrosi
- 9Metabolic Research Laboratory, Universidad de Navarra, Pamplona, Spain.,10CIBER Fisiopatología de la Obesidad y Nutricion, Instituto de Salud Carlos III, Madrid, Spain
| | - Gema Frühbeck
- 9Metabolic Research Laboratory, Universidad de Navarra, Pamplona, Spain.,10CIBER Fisiopatología de la Obesidad y Nutricion, Instituto de Salud Carlos III, Madrid, Spain.,11Department of Endocrinology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Ricardo Ribeiro
- 3Molecular Oncology Group, Portuguese Institute of Oncology, Porto, Portugal.,5Laboratory of Genetics and Environmental Health Institute, Faculty of Medicine, University of Lisboa, Lisbon, Portugal.,6Tumor & Microenvironment Interactions, i3S/INEB, Institute for Research and Innovation in Health, and Institute of Biomedical Engineering, University of Porto, Porto, Portugal.,12Department of Clinical Pathology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal.,13i3S/INEB, Instituto de Investigação e Inovação em Saúde/Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Tumor & Microenvironment Interactions, Rua Alfredo Allen, 208 4200-135 Porto, Portugal
| | - Pingzhao Hu
- 1Department of Biochemistry and Medical Genetics & Department of Electrical and Computer Engineering, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
32
|
Rahbar E, Waits CMK, Kirby EH, Miller LR, Ainsworth HC, Cui T, Sergeant S, Howard TD, Langefeld CD, Chilton FH. Allele-specific methylation in the FADS genomic region in DNA from human saliva, CD4+ cells, and total leukocytes. Clin Epigenetics 2018; 10:46. [PMID: 29636834 PMCID: PMC5889567 DOI: 10.1186/s13148-018-0480-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 03/26/2018] [Indexed: 12/17/2022] Open
Abstract
Background Genetic variants within the fatty acid desaturase (FADS) gene cluster (human Chr11) are important regulators of long-chain (LC) polyunsaturated fatty acid (PUFA) biosynthesis in the liver and consequently have been associated with circulating LC-PUFA levels. More recently, epigenetic modifications such as DNA methylation, particularly within the FADS cluster, have been shown to affect LC-PUFA levels. Our lab previously demonstrated strong associations of allele-specific methylation (ASM) between a single nucleotide polymorphism (SNP) rs174537 and CpG sites across the FADS region in human liver tissues. Given that epigenetic signatures are tissue-specific, we aimed to evaluate the methylation status and ASM associations between rs174537 and DNA methylation obtained from human saliva, CD4+ cells and total leukocytes derived from whole blood. The goals were to (1) determine if DNA methylation from these peripheral samples would display similar ASM trends as previously observed in human liver tissues and (2) evaluate the associations between DNA methylation and circulating LC-PUFAs. Results DNA methylation at six CpG sites spanning FADS1 and FADS2 promoter regions and a putative FADS enhancer region were determined in two Caucasian cohorts of healthy volunteers: leukocytes in cohort 1 (n = 89, median age = 43, 35% male) and saliva and CD4+ cells in cohort 2 (n = 32, median age = 41, 41% male). Significant ASM between rs174537 and DNA methylation at three CpG sites located in the FADS2 promoter region (i.e., chr11:61594865, chr11:61594876, chr11:61594907) and one CpG site in the putative enhancer region (chr11:61587979) were observed with leukocytes. In CD4+ cells, significant ASM was observed at CpG sites chr11:61594876 and chr11:61584894. Genotype at rs174537 was significantly associated with DNA methylation from leukocytes. Similar trends were observed with CD4+ cells, but not with saliva. DNA methylation from leukocytes and CD4+ cells also significantly correlated with circulating omega-6 LC-PUFAs. Conclusions We observed significant ASM between rs174537 and DNA methylation at key regulatory regions in the FADS region from leukocyte and CD4+ cells. DNA methylation from leukocytes also correlated with circulating omega-6 LC-PUFAs. These results support the use of peripheral whole blood samples, with leukocytes showing the most promise for future nutrigenomic studies evaluating epigenetic modifications affecting LC-PUFA biosynthesis in humans.
Collapse
Affiliation(s)
- Elaheh Rahbar
- Department of Biomedical Engineering, Wake Forest University School of Medicine, Virginia-Tech Wake Forest School of Biomedical Engineering and Sciences, 575 N. Patterson Ave. Suite 120, Winston-Salem, NC 27101 USA
- Virginia-Tech Wake Forest School of Biomedical Engineering and Sciences, Blacksburg, VA USA
| | - Charlotte Mae K. Waits
- Department of Biomedical Engineering, Wake Forest University School of Medicine, Virginia-Tech Wake Forest School of Biomedical Engineering and Sciences, 575 N. Patterson Ave. Suite 120, Winston-Salem, NC 27101 USA
- Virginia-Tech Wake Forest School of Biomedical Engineering and Sciences, Blacksburg, VA USA
| | - Edward H. Kirby
- Department of Biomedical Engineering, Wake Forest University School of Medicine, Virginia-Tech Wake Forest School of Biomedical Engineering and Sciences, 575 N. Patterson Ave. Suite 120, Winston-Salem, NC 27101 USA
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, 575 N. Patterson Ave. Suite 310, Winston-Salem, NC 27101 USA
| | - Leslie R. Miller
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, 575 N. Patterson Ave. Suite 310, Winston-Salem, NC 27101 USA
| | - Hannah C. Ainsworth
- Department of Biostatistical Sciences, Division of Public Health Sciences, Wake Forest School of Medicine, Medical Center Blvd/525 Vine Street, Winston-Salem, NC 27157-1063 USA
| | - Tao Cui
- Department of Urology, Wake Forest School of Medicine, 1 Medical Center Blvd, Winston-Salem, NC 27157 USA
| | - Susan Sergeant
- Department of Biochemistry, Wake Forest School of Medicine, 1 Medical Center Blvd, Winston-Salem, NC 27157 USA
| | - Timothy D. Howard
- Department of Biochemistry, Wake Forest School of Medicine, 1 Medical Center Blvd, Winston-Salem, NC 27157 USA
| | - Carl D. Langefeld
- Department of Biostatistical Sciences, Division of Public Health Sciences, Wake Forest School of Medicine, Medical Center Blvd/525 Vine Street, Winston-Salem, NC 27157-1063 USA
| | - Floyd H. Chilton
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, 575 N. Patterson Ave. Suite 310, Winston-Salem, NC 27101 USA
| |
Collapse
|
33
|
Tanaka A, Yamamoto A, Murota K, Tsujiuchi T, Iwamori M, Fukushima N. Polyunsaturated fatty acids induce ovarian cancer cell death through ROS-dependent MAP kinase activation. Biochem Biophys Res Commun 2017; 493:468-473. [DOI: 10.1016/j.bbrc.2017.08.168] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 08/31/2017] [Indexed: 01/10/2023]
|
34
|
Rahbar E, Ainsworth HC, Howard TD, Hawkins GA, Ruczinski I, Mathias R, Seeds MC, Sergeant S, Hixson JE, Herrington DM, Langefeld CD, Chilton FH. Uncovering the DNA methylation landscape in key regulatory regions within the FADS cluster. PLoS One 2017; 12:e0180903. [PMID: 28957329 PMCID: PMC5619705 DOI: 10.1371/journal.pone.0180903] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 06/22/2017] [Indexed: 12/16/2022] Open
Abstract
Genetic variants near and within the fatty acid desaturase (FADS) cluster are associated with polyunsaturated fatty acid (PUFA) biosynthesis, levels of several disease biomarkers and risk of human disease. However, determining the functional mechanisms by which these genetic variants impact PUFA levels remains a challenge. Utilizing an Illumina 450K array, we previously reported strong allele-specific methylation (ASM) associations (p = 2.69×10−29) between a single nucleotide polymorphism (SNP) rs174537 and DNA methylation of CpG sites located in the putative enhancer region between FADS1 and FADS2, in human liver tissue. However, this array only featured 20 CpG sites within this 12kb region. To better understand the methylation landscape within this region, we conducted bisulfite sequencing of the region between FADS1 and FADS2. Liver tissues from 50 male subjects (27 European Americans, 23 African Americans) were obtained from the Pathobiological Determinants of Atherosclerosis in Youth (PDAY) study, and used to ascertain the genotype at rs174537 and methylation status across the region of interest. Associations between rs174537 genotype and methylation status of 136 CpG sites were determined. Age-adjusted linear regressions were used to assess ASM associations with rs174537 genotype. The majority of CpG sites (117 out of 136, 86%) exhibited high levels of methylation with the greatest variability observed at three key regulatory regions–the promoter regions for FADS1 and FADS2 and a putative enhancer site between the two genes. Eight CpG sites within the putative enhancer region displayed significant (FDR p <0.05) ASM associations with rs174537. These data support the concept that both genetic and epigenetic factors regulate PUFA biosynthesis, and raise fundamental questions as to how genetic variants such as rs174537 impact DNA methylation in distant regulatory regions, and ultimately the capacity of tissues to synthesize PUFAs.
Collapse
Affiliation(s)
- Elaheh Rahbar
- Department of Biomedical Engineering, Wake Forest School of Medicine, Winston-Salem, NC, United States of America
- * E-mail: (ER); (FHC)
| | - Hannah C. Ainsworth
- Department of Biostatistical Sciences, Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC, United States of America
| | - Timothy D. Howard
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, NC, United States of America
| | - Gregory A. Hawkins
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, NC, United States of America
| | - Ingo Ruczinski
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States of America
| | - Rasika Mathias
- Division of Allergy and Clinical Immunology Department of Medicine, The Johns Hopkins University, Baltimore, MD, United States of America
| | - Michael C. Seeds
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States of America
| | - Susan Sergeant
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, United States of America
| | - James E. Hixson
- Department of Epidemiology, Human Genetics and Environmental Sciences, Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, United States of America
| | - David M. Herrington
- Department of Internal Medicine, Division of Cardiology, Wake Forest School of Medicine, Winston-Salem, NC, United States of America
| | - Carl D. Langefeld
- Department of Biostatistical Sciences, Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC, United States of America
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, NC, United States of America
| | - Floyd H. Chilton
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, United States of America
- * E-mail: (ER); (FHC)
| |
Collapse
|
35
|
Lin S, Li T, Liu X, Wei S, Liu Z, Hu S, Liu Y, Tan H. Abnormal octadeca-carbon fatty acids distribution in erythrocyte membrane phospholipids of patients with gastrointestinal tumor. Medicine (Baltimore) 2017; 96:e7189. [PMID: 28614260 PMCID: PMC5478345 DOI: 10.1097/md.0000000000007189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Fatty acid (FA) composition is closely associated with tumorigenesis and neoplasm metastasis. This study was designed to investigate the differences of phospholipid FA (PLFA) composition in erythrocyte and platelet cell membranes in both gastrointestinal (GI) tumor patients and healthy controls.In this prospective study, 50 GI tumor patients and 33 healthy volunteers were recruited between the years 2013 and 2015. Blood samples were collected from healthy volunteers and patients, and FA composition was assessed using gas chromatography-mass spectrometer (GC-MS), and data were analyzed by multifactor regression analysis.Compared with healthy controls, the percentages of C18:0 (stearic acid, SA), C22:6 (docosahexaenoic acid, DHA), and n-3 polyunsaturated FAs (n-3 PUFA) were significantly increased, while C18:1 (oleic acid, OA), C18:2 (linoleic acid, LA), and monounsaturated FAs (MUFA) decreased in erythrocyte membranes of GI tumor patients. Also, patient's platelets revealed higher levels of C20:4 (arachidonic acid, AA) and DHA, and lower levels of OA and MUFA.Our study displayed a remarkable change in the FA composition of erythrocyte and platelet membranes in GI tumor patients as compared with healthy controls. The octadeca-carbon FAs (SA, OA, and LA) in erythrocyte membranes could serve as a potential indicator for GI tumor detection.
Collapse
Affiliation(s)
- Shaohui Lin
- Department of Epidemiology and Health Statistics, School of Public Health, Central South University, Changsha, Hunan
- Beijing Sciecure Pharmceutical Co. Ltd., Zhongbei Industrial Park, Beishicao Town, Shunyi District, Beijing, China
| | - Tianyu Li
- Beijing Sciecure Pharmceutical Co. Ltd., Zhongbei Industrial Park, Beishicao Town, Shunyi District, Beijing, China
| | - Xifang Liu
- Beijing Sciecure Pharmceutical Co. Ltd., Zhongbei Industrial Park, Beishicao Town, Shunyi District, Beijing, China
| | - Shihu Wei
- Beijing Sciecure Pharmceutical Co. Ltd., Zhongbei Industrial Park, Beishicao Town, Shunyi District, Beijing, China
| | - Zequn Liu
- Beijing Sciecure Pharmceutical Co. Ltd., Zhongbei Industrial Park, Beishicao Town, Shunyi District, Beijing, China
| | - Shimin Hu
- Department of Epidemiology and Health Statistics, School of Public Health, Central South University, Changsha, Hunan
| | - Yali Liu
- Beijing Sciecure Pharmceutical Co. Ltd., Zhongbei Industrial Park, Beishicao Town, Shunyi District, Beijing, China
| | - Hongzhuan Tan
- Department of Epidemiology and Health Statistics, School of Public Health, Central South University, Changsha, Hunan
| |
Collapse
|
36
|
Sun Y, Jia X, Hou L, Liu X, Gao Q. Involvement of apoptotic pathways in docosahexaenoic acid-induced benefit in prostate cancer: Pathway-focused gene expression analysis using RT 2 Profile PCR Array System. Lipids Health Dis 2017; 16:59. [PMID: 28330470 PMCID: PMC5363041 DOI: 10.1186/s12944-017-0442-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 03/07/2017] [Indexed: 11/12/2022] Open
Abstract
Background Present study aimed to better understand the potential apoptotic pathways that involved in docosahexaenoic acid (DHA)-induced apoptosis of prostate cancer cells. Methods Human prostate cancer DU145 cells were treated with different concentrations of fish oil, omega-3 PUFA (DHA, and Eicosapentaenoic acid, EPA), or omega-6 PUFA (Arachidonic acid, AA). Cell viability and apoptosis were evaluated by MTT assay and Hoechst staining. Pathway-focused gene expression profiling of DU145 cells was analyzed with the RT2 Profile PCR Array System. The results were verified by real time quantitative polymerase chain reaction (RT-qPCR). Results AA exposure showed no obvious effect on viability of DU145 cells. However, exposure with fish oil, EPA, or DHA for 24 h significantly affected cell viability. The growth inhibition of DHA was more pronounced than that of EPA and showed a time-dependent increase. DHA exposure caused typical apoptotic characteristics. Ten genes were more expressed, while 5 genes were less expressed following DHA exposure. RT-qPCR confirmed the time dependent effect of DHA on the expression of these differentially expressed genes. KEGG pathway analysis showed that DHA may induce the apoptosis of cancer cells preferentially through mediating P53, MAPK, TNF, PI3K/AKT, and NF-κB signaling pathways. Conclusion Our study demonstrated the beneficial action of DHA on human prostate carcinoma cell line DU145. The pro-apoptotic effect of DHA on DU145 cells may involve mediation various pathways, especially P53, MAPK, TNF, PI3K/AKT, and NF-κB signaling pathways. Molecular mechanisms of DHA on apoptosis of cancer cells still need to be further clarified. Electronic supplementary material The online version of this article (doi:10.1186/s12944-017-0442-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yanan Sun
- Department of Obstetrics and Gynecology, Bethune International Peace Hospital of the People's Liberation Army, Shijiazhuang, 050082, China
| | - Xiaopeng Jia
- Department of Urology, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, China.
| | - Lianguo Hou
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Xing Liu
- Department of Orthopaedic Trauma, Section II, The Third Hospital of Shijiazhuang City, Shijiazhuang, Hebei, 050011, China
| | - Qiang Gao
- Department of Nutrition and Food hygiene, Hebei Medical University, Shijiazhuang, 050017, China
| |
Collapse
|
37
|
Lu Y, Pan Y, Sheng N, Zhao AZ, Dai J. Perfluorooctanoic acid exposure alters polyunsaturated fatty acid composition, induces oxidative stress and activates the AKT/AMPK pathway in mouse epididymis. CHEMOSPHERE 2016; 158:143-53. [PMID: 27262104 DOI: 10.1016/j.chemosphere.2016.05.071] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 05/02/2016] [Accepted: 05/22/2016] [Indexed: 05/15/2023]
Abstract
Perfluorooctanoic acid (PFOA) is a degradation-resistant compound with a carbon-fluorine bond. Although PFOA emissions have been reduced since 2000, it remains persistent in the environment. Several studies on laboratory animals indicate that PFOA exposure can impact male fertility. Here, adult male mice received either PFOA (1.25, 5 or 20 mg/kg/d) or an equal volume of water for 28 d consecutively. PFOA accumulated in the epididymis in a dose-dependent manner and resulted in reduced epididymis weight, lower levels of triglycerides (TG), cholesterol (CHO), and free fatty acids (FFA), and activated AKT/AMPK signaling in the epididymis. Altered polyunsaturated fatty acid (PUFA) compositions, such as a higher arachidonic acid:linoleic acid (AA:LA) ratio, concomitant with excessive oxidative stress, as demonstrated by increased malonaldehyde (MDA) and decreased glutathione peroxidase (GSH-Px) in the epididymis, were observed in epididymis tissue following treatment with PFOA. These results indicate that the epididymis is a potential target of PFOA. Oxidative stress and PUFA alteration might help explain the sperm injury and male reproductive dysfunction induced by PFOA exposure.
Collapse
Affiliation(s)
- Yin Lu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yitao Pan
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Nan Sheng
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Allan Z Zhao
- Center of Metabolic Disease Research, Nanjing Medical University, Nanjing, 210029, China
| | - Jiayin Dai
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
38
|
Khankari NK, Murff HJ, Zeng C, Wen W, Eeles RA, Easton DF, Kote-Jarai Z, Al Olama AA, Benlloch S, Muir K, Giles GG, Wiklund F, Gronberg H, Haiman CA, Schleutker J, Nordestgaard BG, Travis RC, Donovan JL, Pashayan N, Khaw KT, Stanford JL, Blot WJ, Thibodeau SN, Maier C, Kibel AS, Cybulski C, Cannon-Albright L, Brenner H, Park J, Kaneva R, Batra J, Teixeira MR, Pandha H, Zheng W. Polyunsaturated fatty acids and prostate cancer risk: a Mendelian randomisation analysis from the PRACTICAL consortium. Br J Cancer 2016; 115:624-31. [PMID: 27490808 PMCID: PMC4997551 DOI: 10.1038/bjc.2016.228] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 06/30/2016] [Accepted: 07/06/2016] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Prostate cancer is a common cancer worldwide with no established modifiable lifestyle factors to guide prevention. The associations between polyunsaturated fatty acids (PUFAs) and prostate cancer risk have been inconsistent. Using Mendelian randomisation, we evaluated associations between PUFAs and prostate cancer risk. METHODS We used individual-level data from a consortium of 22 721 cases and 23 034 controls of European ancestry. Externally-weighted PUFA-specific polygenic risk scores (wPRSs), with explanatory variation ranging from 0.65 to 33.07%, were constructed and used to evaluate associations with prostate cancer risk per one standard deviation (s.d.) increase in genetically-predicted plasma PUFA levels using multivariable-adjusted unconditional logistic regression. RESULTS No overall association was observed between the genetically-predicted PUFAs evaluated in this study and prostate cancer risk. However, risk reductions were observed for short-chain PUFAs, linoleic (ORLA=0.95, 95%CI=0.92, 0.98) and α-linolenic acids (ORALA=0.96, 95%CI=0.93, 0.98), among men <62 years; whereas increased risk was found among men ⩾62 years for LA (ORLA=1.04, 95%CI=1.01, 1.07). For long-chain PUFAs (i.e., arachidonic, eicosapentaenoic, and docosapentaenoic acids), increased risks were observed among men <62 years (ORAA=1.05, 95%CI=1.02, 1.08; OREPA=1.04, 95%CI=1.01, 1.06; ORDPA=1.05, 95%CI=1.02, 1.08). CONCLUSION Results from this study suggest that circulating ω-3 and ω-6 PUFAs may have a different role in the aetiology of early- and late-onset prostate cancer.
Collapse
Affiliation(s)
- Nikhil K Khankari
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37203, USA
| | - Harvey J Murff
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37203, USA
| | - Chenjie Zeng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37203, USA
| | - Wanqing Wen
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37203, USA
| | - Rosalind A Eeles
- The Institute of Cancer Research, 15 Cotswold Road, Sutton, London SM2 5NG, UK
- Royal Marsden NHS Foundation Trust, Fulham Road, London SW3 6JJ, UK
| | - Douglas F Easton
- Strangeways Research Laboratory, Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, 2 Worts' Causeway, Cambridge CB1 8RN, UK
| | - Zsofia Kote-Jarai
- The Institute of Cancer Research, 15 Cotswold Road, Sutton, London SM2 5NG, UK
| | - Ali Amin Al Olama
- Strangeways Research Laboratory, Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, 2 Worts' Causeway, Cambridge CB1 8RN, UK
| | - Sara Benlloch
- Strangeways Research Laboratory, Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, 2 Worts' Causeway, Cambridge CB1 8RN, UK
| | - Kenneth Muir
- Institute of Population Health, University of Warwick, Coventry CV4 7AL, UK
| | - Graham G Giles
- Cancer Epidemiology Centre, Cancer Council Victoria, 615 St Kilda Road, Melbourne, Victoria 3004, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Fredrik Wiklund
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm 171 77, Sweden
| | - Henrik Gronberg
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm 171 77, Sweden
| | - Christopher A Haiman
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California/Norris Comprehensive Cancer Center, Los Angeles, CA 90089, USA
| | - Johanna Schleutker
- Department of Medical Biochemistry and Genetics, University of Turku, Turku 20014, Finland
- Institute of Biomedical Technology/BioMediTech, University of Tampere and FimLab Laboratories, Kalevantie 4, Tampere 33014, Finland
| | - Børge G Nordestgaard
- Department of Clinical Biochemistry, Herlev Hospital, Copenhagen University Hospital, Herlev Ringvej 75, Herlev 2730, Denmark
| | - Ruth C Travis
- Cancer Epidemiology, Nuffield Department of Population Health University of Oxford, Oxford OX3 7LF, UK
| | - Jenny L Donovan
- School of Social and Community Medicine, University of Bristol, Canynge Hall, 39 Whatley Road, Bristol BS8 2PS, UK
| | - Nora Pashayan
- Strangeways Research Laboratory, Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, 2 Worts' Causeway, Cambridge CB1 8RN, UK
- Department of Applied Health Research, University College London, 1-19 Torrington Place, London WC1E 7HB, UK
| | - Kay-Tee Khaw
- Cambridge Institute of Public Health, University of Cambridge, Forvie Site, Robinson Way, Cambridge CB2 0SR, UK
| | - Janet L Stanford
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA 98195, USA
| | - William J Blot
- International Epidemiology Institute, 1455 Research Boulevard, Suite 550, Rockville, MD 20850, USA
| | - Stephen N Thibodeau
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Christiane Maier
- Institute of Human Genetics, University Hospital Ulm, Albert-Einstein-Allee 11, Ulm 89081, Germany
- Department of Urology, University Hospital Ulm, Albert-Einstein-Allee 11, Ulm 89081, Germany
| | - Adam S Kibel
- Division of Urology, Brigham and Women's Hospital/Dana-Farber Cancer Institute, 45 Francis Street-ASB II-3, Boston, MA 02115, USA
- Washington University, 660 S. Euclid Avenue, St Louis, MO 63110, USA
| | - Cezary Cybulski
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Rybacka 1, Szczecin, Poland
| | - Lisa Cannon-Albright
- Division of Genetic Epidemiology, Department of Medicine, University of Utah School of Medicine, Salt Lake City, UT 84108, USA
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, Division of Preventive Oncology, German Cancer Research Center, Heidelberg 69120, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Jong Park
- Division of Cancer Prevention and Control, H. Lee Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL 33612, USA
| | - Radka Kaneva
- Department of Medical Chemistry and Biochemistry, Molecular Medicine Center, Medical University—Sofia, 2 Zdrave Street, 1431 Sofia, Bulgaria
| | - Jyotsna Batra
- Australian Prostate Cancer Research Centre-Queensland, Institute of Health and Biomedical Innovation and Schools of Life Science and Public Health, Queensland University of Technology, Brisbane, Queensland 4102, Australia
| | - Manuel R Teixeira
- Department of Genetics, Portuguese Oncology Institute, Porto, Portugal
- Biomedical Sciences Institute (ICBAS), Porto University, 4200-072 Porto, Portugal
| | - Hardev Pandha
- Department of Clinical and Experimental Medicine, Targeted Cancer Therapy, The University of Surrey, Guildford, Surrey GU2 7XH, UK
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37203, USA
| | | |
Collapse
|
39
|
COX-2, aspirin and metabolism of arachidonic, eicosapentaenoic and docosahexaenoic acids and their physiological and clinical significance. Eur J Pharmacol 2016; 785:116-132. [DOI: 10.1016/j.ejphar.2015.08.049] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 06/19/2015] [Accepted: 08/26/2015] [Indexed: 01/22/2023]
|
40
|
Abstract
Over the past decades, extensive studies have addressed the therapeutic effects of omega-3 polyunsaturated fatty acids (omega-3 FAs) against different human diseases such as cardiovascular and neurodegenerative diseases, cancer, etc. A growing body of scientific research shows the pharmacokinetic information and safety of these natural occurring substances. Moreover, during recent years, a plethora of studies has demonstrated that omega-3 FAs possess therapeutic role against certain types of cancer. It is also known that omega-3 FAs can improve efficacy and tolerability of chemotherapy. Previous reports showed that suppression of nuclear factor-κB, activation of AMPK/SIRT1, modulation of cyclooxygenase (COX) activity, and up-regulation of novel anti-inflammatory lipid mediators such as protectins, maresins, and resolvins, are the main mechanisms of antineoplastic effect of omega-3 FAs. In this review, we have collected the available clinical data on the therapeutic role of omega-3 FAs against breast cancer, colorectal cancer, leukemia, gastric cancer, pancreatic cancer, esophageal cancer, prostate cancer, lung cancer, head and neck cancer, as well as cancer cachexia. We also discussed the chemistry, dietary source, and bioavailability of omega-3 FAs, and the potential molecular mechanisms of anticancer and adverse effects.
Collapse
|
41
|
Dinwiddie MT, Terry PD, Whelan J, Patzer RE. Omega-3 Fatty Acid Consumption and Prostate Cancer: A Review of Exposure Measures and Results of Epidemiological Studies. J Am Coll Nutr 2015; 35:452-68. [PMID: 26595854 DOI: 10.1080/07315724.2015.1032444] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Animal studies have shown that dietary omega-3 polyunsaturated fatty acids (n-3) may play a role in the development of prostate cancer, but the results of epidemiologic studies have been equivocal. Associations in humans may vary depending on study design, measurement methodology of fatty acid intake, intake ranges, and stage of cancer development. To address this, we identified 36 published studies through PubMed (Medline) from 1993 through 2013 on long-chain n-3s and prostate cancer. Exposure measurements included dietary assessment and biomarker levels. Associations for total, early, and late stage prostate cancer were examined by subgroup of study design and exposure measure type and by using forest plots to illustrate the relative strength of associations within each subgroup. We also tested for potential threshold effects by considering studies that included measurement cut-points that met intake levels recommended by the American Heart Association. We found no consistent evidence supporting a role of n-3s in either the causation or prevention of prostate cancer at any stage or grade. Results did not vary appreciably by study design, exposure measurement, intake level, or stage of cancer development.
Collapse
Affiliation(s)
| | - Paul D Terry
- a Department of Public Health.,c University of Tennessee, Knoxville, Tennessee ; Department of Surgery, University of Tennessee Medical Center , Knoxville , Tennessee
| | | | | |
Collapse
|
42
|
Grzincic EM, Yang JA, Drnevich J, Falagan-Lotsch P, Murphy CJ. Global transcriptomic analysis of model human cell lines exposed to surface-modified gold nanoparticles: the effect of surface chemistry. NANOSCALE 2015; 7:1349-62. [PMID: 25491924 PMCID: PMC4411964 DOI: 10.1039/c4nr05166a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Gold nanoparticles (Au NPs) are attractive for biomedical applications not only for their remarkable physical properties, but also for the ease of which their surface chemistry can be manipulated. Many applications involve functionalization of the Au NP surface in order to improve biocompatibility, attach targeting ligands or carry drugs. However, changes in cells exposed to Au NPs of different surface chemistries have been observed, and little is known about how Au NPs and their surface coatings may impact cellular gene expression. The gene expression of two model human cell lines, human dermal fibroblasts (HDF) and prostate cancer cells (PC3) was interrogated by microarray analysis of over 14,000 human genes. The cell lines were exposed to four differently functionalized Au NPs: citrate, poly(allylamine hydrochloride) (PAH), and lipid coatings combined with alkanethiols or PAH. Gene functional annotation categories and weighted gene correlation network analysis were used in order to connect gene expression changes to common cellular functions and to elucidate expression patterns between Au NP samples. Coated Au NPs affect genes implicated in proliferation, angiogenesis, and metabolism in HDF cells, and inflammation, angiogenesis, proliferation apoptosis regulation, survival and invasion in PC3 cells. Subtle changes in surface chemistry, such as the initial net charge, lability of the ligand, and underlying layers greatly influence the degree of expression change and the type of cellular pathway affected.
Collapse
Affiliation(s)
- E. M. Grzincic
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - J. A. Yang
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - J. Drnevich
- High Performance Biological Computing Group, Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - P. Falagan-Lotsch
- Laboratory of Toxicology, Division of Bioengineering, Board of Life Sciences Metrology, National Institute of Metrology, Quality and Technology (INMETRO), Duque de Caxias, Rio de Janeiro 25250-929, Brazil
| | - C. J. Murphy
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| |
Collapse
|
43
|
Lin PH, Aronson W, Freedland SJ. Nutrition, dietary interventions and prostate cancer: the latest evidence. BMC Med 2015; 13:3. [PMID: 25573005 PMCID: PMC4286914 DOI: 10.1186/s12916-014-0234-y] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 11/11/2014] [Indexed: 02/06/2023] Open
Abstract
Prostate cancer (PCa) remains a leading cause of mortality in US men and the prevalence continues to rise world-wide especially in countries where men consume a 'Western-style' diet. Epidemiologic, preclinical and clinical studies suggest a potential role for dietary intake on the incidence and progression of PCa. 'This minireview provides an overview of recent published literature with regard to nutrients, dietary factors, dietary patterns and PCa incidence and progression. Low carbohydrates intake, soy protein, omega-3 (w-3) fat, green teas, tomatoes and tomato products and zyflamend showed promise in reducing PCa risk or progression. A higher saturated fat intake and a higher β-carotene status may increase risk. A 'U' shape relationship may exist between folate, vitamin C, vitamin D and calcium with PCa risk. Despite the inconsistent and inconclusive findings, the potential for a role of dietary intake for the prevention and treatment of PCa is promising. The combination of all the beneficial factors for PCa risk reduction in a healthy dietary pattern may be the best dietary advice. This pattern includes rich fruits and vegetables, reduced refined carbohydrates, total and saturated fats, and reduced cooked meats. Further carefully designed prospective trials are warranted.
Collapse
Affiliation(s)
- Pao-Hwa Lin
- Department of Medicine, Division of Nephrology, Duke University Medical Center, Box 3487, Durham, NC 27710 USA
| | - William Aronson
- Urology Section, Department of Surgery, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA USA
- Department of Urology, UCLA School of Medicine, Los Angeles, CA USA
| | - Stephen J Freedland
- Urology Section, Department of Surgery, Durham Veterans Affairs Medical Center, Division of Urology, Durham, NC USA
- Duke Prostate Center, Departments of Surgery and Pathology, Duke University Medical Center, Durham, NC USA
| |
Collapse
|
44
|
Chromatographic Methods in the Separation of Long-Chain Mono- and Polyunsaturated Fatty Acids. J CHEM-NY 2015. [DOI: 10.1155/2015/120830] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
This review presents various chromatographic systems, TLC, HPLC, GC, and also SFC, developed for identification and accurate quantification of long-chain mono- and polyunsaturated fatty acids from different samples with emphasis on selected literature which was published during last decade. Almost all the aspects such as preseparation step of fatty acids (cisandtrans), stationary phase, solvent system, and detection mode are discussed.
Collapse
|
45
|
Chen Y, Liu H, Xu S, Wang T, Li W. Targeting microsomal prostaglandin E2synthase-1 (mPGES-1): the development of inhibitors as an alternative to non-steroidal anti-inflammatory drugs (NSAIDs). MEDCHEMCOMM 2015. [DOI: 10.1039/c5md00278h] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
AA cascade and several key residues in the 3D structure of mPGES-1.
Collapse
Affiliation(s)
- Yuqing Chen
- Department of Medicinal Chemistry, School of Pharmacy
- Nanjing University of Chinese Medicine
- Nanjing
- China
| | | | - Shuang Xu
- Department of Medicinal Chemistry, School of Pharmacy
- Nanjing University of Chinese Medicine
- Nanjing
- China
| | - Tianlin Wang
- Department of Medicinal Chemistry, School of Pharmacy
- Nanjing University of Chinese Medicine
- Nanjing
- China
| | - Wei Li
- Department of Medicinal Chemistry, School of Pharmacy
- Nanjing University of Chinese Medicine
- Nanjing
- China
| |
Collapse
|
46
|
The role of dietary fat throughout the prostate cancer trajectory. Nutrients 2014; 6:6095-109. [PMID: 25533015 PMCID: PMC4277017 DOI: 10.3390/nu6126095] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 12/05/2014] [Accepted: 12/11/2014] [Indexed: 01/09/2023] Open
Abstract
Prostate cancer is the second most common cancer diagnosed world-wide; however, patients demonstrate exceptionally high survival rates. Many lifestyle factors, including obesity and diet, are considered risk factors for advanced prostate cancer. Dietary fat is a fundamental contributor to obesity and may be specifically important for prostate cancer patients. Prostate cancer treatment can result in changes in body composition, affecting quality of life for survivors by increasing the risk of co-morbidities, like cardiovascular disease and diabetes. We aim to examine dietary fat throughout the prostate cancer treatment trajectory, including risk, cancer development and survivorship. Focusing on one specific nutrient throughout the prostate cancer trajectory provides a unique perspective of dietary fat in prostate cancer and the mechanisms that may exacerbate prostate cancer risk, progression and recurrence. Through this approach, we noted that high intake of dietary fat, especially, high intake of animal and saturated fats, may be associated with increased prostate cancer risk. In contrast, a low-fat diet, specifically low in saturated fat, may be beneficial for prostate cancer survivors by reducing tumor angiogenesis and cancer recurrence. The insulin-like growth factor (IGF)/Akt signaling pathway appears to be the key pathway moderating dietary fat intake and prostate cancer development and progression.
Collapse
|
47
|
Transcriptional and antioxidative responses to endogenous polyunsaturated fatty acid accumulation in yeast. Mol Cell Biochem 2014; 399:27-37. [PMID: 25280400 DOI: 10.1007/s11010-014-2229-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 09/27/2014] [Indexed: 01/06/2023]
Abstract
Pathophysiology of polyunsaturated fatty acids (PUFAs) is associated with aberrant lipid and oxygen metabolism. In particular, under oxidative stress, PUFAs are prone to autocatalytic degradation via peroxidation, leading to formation of reactive aldehydes with numerous potentially harmful effects. However, the pathological and compensatory mechanisms induced by lipid peroxidation are very complex and not sufficiently understood. In our study, we have used yeast capable of endogenous PUFA synthesis in order to understand the effects triggered by PUFA accumulation on cellular physiology of a eukaryotic organism. The mechanisms induced by PUFA accumulation in S. cerevisiae expressing Hevea brasiliensis Δ12-fatty acid desaturase include down-regulation of components of electron transport chain in mitochondria as well as up-regulation of pentose-phosphate pathway and fatty acid β-oxidation at the transcriptional level. Interestingly, while no changes were observed at the transcriptional level, activities of two important enzymatic antioxidants, catalase and glutathione-S-transferase, were altered in response to PUFA accumulation. Increased intracellular glutathione levels further suggest an endogenous oxidative stress and activation of antioxidative defense mechanisms under conditions of PUFA accumulation. Finally, our data suggest that PUFA in cell membrane causes metabolic changes which in turn lead to adaptation to endogenous oxidative stress.
Collapse
|
48
|
Holowka D, Korzeniowski MK, Bryant KL, Baird B. Polyunsaturated fatty acids inhibit stimulated coupling between the ER Ca(2+) sensor STIM1 and the Ca(2+) channel protein Orai1 in a process that correlates with inhibition of stimulated STIM1 oligomerization. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1841:1210-6. [PMID: 24769339 DOI: 10.1016/j.bbalip.2014.04.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Revised: 04/02/2014] [Accepted: 04/17/2014] [Indexed: 11/28/2022]
Abstract
Polyunsaturated fatty acids (PUFAs) have been found to be effective inhibitors of cell signaling in numerous contexts, and we find that acute addition of micromolar PUFAs such as linoleic acid effectively inhibit of Ca(2+) responses in mast cells stimulated by antigen-mediated crosslinking of FcεRI or by the SERCA pump inhibitor, thapsigargin. In contrast, the saturated fatty acid, stearic acid, with the same carbon chain length as linoleic acid does not inhibit these responses. Consistent with this inhibition of store-operated Ca(2+) entry (SOCE), linoleic acid inhibits antigen-stimulated granule exocytosis to a similar extent. Using the fluorescently labeled plasma membrane Ca(2+) channel protein, AcGFP-Orai1, together with the labeled ER Ca(2+) sensor protein, STIM1-mRFP, we monitor stimulated coupling of these proteins that is essential for SOCE with a novel spectrofluorimetric resonance energy transfer method. We find effective inhibition of this stimulated coupling by linoleic acid that accounts for the inhibition of SOCE. Moreover, we find that linoleic acid induces some STIM1-STIM1 association, while inhibiting stimulated STIM1 oligomerization that precedes STIM1-Orai1 coupling. We hypothesize that linoleic acid and related PUFAs inhibit STIM1-Orai1 coupling by a mechanism that involves perturbation of ER membrane structure, possibly by disrupting electrostatic interactions important in STIM1 oligomerization. Thisarticle is part of a Special Issue entitled Tools to study lipid functions.
Collapse
Affiliation(s)
- David Holowka
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, NY 14853, USA.
| | - Marek K Korzeniowski
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, NY 14853, USA
| | - Kirsten L Bryant
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, NY 14853, USA
| | - Barbara Baird
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
49
|
Suburu J, Gu Z, Chen H, Chen W, Zhang H, Chen YQ. Fatty acid metabolism: Implications for diet, genetic variation, and disease. FOOD BIOSCI 2013; 4:1-12. [PMID: 24511462 DOI: 10.1016/j.fbio.2013.07.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cultures across the globe, especially Western societies, are burdened by chronic diseases such as obesity, metabolic syndrome, cardiovascular disease, and cancer. Several factors, including diet, genetics, and sedentary lifestyle, are suspected culprits to the development and progression of these health maladies. Fatty acids are primary constituents of cellular physiology. Humans can acquire fatty acids by de novo synthesis from carbohydrate or protein sources or by dietary consumption. Importantly, regulation of their metabolism is critical to sustain balanced homeostasis, and perturbations of such can lead to the development of disease. Here, we review de novo and dietary fatty acid metabolism and highlight recent advances in our understanding of the relationship between dietary influences and genetic variation in fatty acid metabolism and their role in chronic diseases.
Collapse
Affiliation(s)
- Janel Suburu
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Zhennan Gu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, P.R. China ; Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Haiqin Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, P.R. China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, P.R. China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, P.R. China
| | - Yong Q Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, P.R. China ; Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| |
Collapse
|
50
|
Galet C, Gollapudi K, Stepanian S, Byrd JB, Henning SM, Grogan T, Elashoff D, Heber D, Said J, Cohen P, Aronson WJ. Effect of a low-fat fish oil diet on proinflammatory eicosanoids and cell-cycle progression score in men undergoing radical prostatectomy. Cancer Prev Res (Phila) 2013; 7:97-104. [PMID: 24169960 DOI: 10.1158/1940-6207.capr-13-0261] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We previously reported that a 4- to 6-week low-fat fish oil (LFFO) diet did not affect serum insulin-like growth factor (IGF)-1 levels (primary outcome) but resulted in lower omega-6 to omega-3 fatty acid ratios in prostate tissue and lower prostate cancer proliferation (Ki67) as compared with a Western diet. In this post hoc analysis, the effect of the LFFO intervention on serum pro-inflammatory eicosanoids, leukotriene B4 (LTB4) and 15-S-hydroxyeicosatetraenoic acid [15(S)-HETE], and the cell-cycle progression (CCP) score were investigated. Serum fatty acids and eicosanoids were measured by gas chromatography and ELISA. CCP score was determined by quantitative real-time reverse transcriptase PCR (RT-PCR). Associations between serum eicosanoids, Ki67, and CCP score were evaluated using partial correlation analyses. BLT1 (LTB4 receptor) expression was determined in prostate cancer cell lines and prostatectomy specimens. Serum omega-6 fatty acids and 15(S)-HETE levels were significantly reduced, and serum omega-3 levels were increased in the LFFO group relative to the Western diet group, whereas there was no change in LTB4 levels. The CCP score was significantly lower in the LFFO compared with the Western diet group. The 15(S)-HETE change correlated with tissue Ki67 (R = 0.48; P < 0.01) but not with CCP score. The LTB4 change correlated with the CCP score (r = 0.4; P = 0.02) but not with Ki67. The LTB4 receptor BLT1 was detected in prostate cancer cell lines and human prostate cancer specimens. In conclusion, an LFFO diet resulted in decreased 15(S)-HETE levels and lower CCP score relative to a Western diet. Further studies are warranted to determine whether the LFFO diet antiproliferative effects are mediated through the LTB4/BLT1 and 15(S)-HETE pathways.
Collapse
Affiliation(s)
- Colette Galet
- Department of Urology, University of California-Los Angeles, Box 951738, Los Angeles, CA 90095-1738;
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|