1
|
Tan W, Wang Y, Cheng S, Liu Z, Xie M, Song L, Qiu Q, Wang X, Li Z, Liu T, Guo F, Wang J, Zhou X. AdipoRon ameliorates the progression of heart failure with preserved ejection fraction via mitigating lipid accumulation and fibrosis. J Adv Res 2025; 68:299-315. [PMID: 38382593 PMCID: PMC11785573 DOI: 10.1016/j.jare.2024.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/17/2024] [Accepted: 02/18/2024] [Indexed: 02/23/2024] Open
Abstract
INTRODUCTION Obesity and imbalance in lipid homeostasis contribute greatly to heart failure with preserved ejection fraction (HFpEF), the dominant form of heart failure. Few effective therapies exist to control metabolic alterations and lipid homeostasis. OBJECTIVES We aimed to investigate the cardioprotective roles of AdipoRon, the adiponectin receptor agonist, in regulating lipid accumulation in the two-hit HFpEF model. METHODS HFpEF mouse model was induced using 60 % high-fat diet plus L-NAME drinking water. Then, AdipoRon (50 mg/kg) or vehicle were administered by gavage to the two-hit HFpEF mouse model once daily for 4 weeks. Cardiac function was evaluated using echocardiography, and Postmortem analysis included RNA-sequencing, untargeted metabolomics, transmission electron microscopy and molecular biology methods. RESULTS Our study presents the pioneering evidence that AdipoR was downregulated and impaired fatty acid oxidation in the myocardia of HFpEF mice, which was associated with lipid metabolism as indicated by untargeted metabolomics. AdipoRon, orally active synthetic adiponectin receptor agonist, could upregulate AdipoR1/2 (independently of adiponectin) and reduce lipid droplet accumulation, and alleviate fibrosis to restore HFpEF phenotypes. Finally, AdipoRon primarily exerted its effects through restoring the balance of myocardial fatty acid intake, transport, and oxidation via the downstream AMPKα or PPARα signaling pathways. The protective effects of AdipoRon in HFpEF mice were reversed by compound C and GW6471, inhibitors of AMPKα and PPARα, respectively. CONCLUSIONS AdipoRon ameliorated the HFpEF phenotype by promoting myocardial fatty acid oxidation, decreasing fatty acid transport, and inhibiting fibrosis via the upregulation of AdipoR and the activation of AdipoR1/AMPKα and AdipoR2/PPARα-related downstream pathways. These findings underscore the therapeutic potential of AdipoRon in HFpEF. Importantly, all these parameters get restored in the context of continued mechanical and metabolic stressors associated with HFpEF.
Collapse
Affiliation(s)
- Wuping Tan
- Department of Cardiology, Renmin Hospital of Wuhan University, China; Institute of Molecular Medicine, Renmin Hospital of Wuhan University, China; Hubei Key Laboratory of Autonomic Nervous System Modulation, China; Taikang Center for Life and Medical Sciences, Wuhan University, China; Cardiac Autonomic Nervous System Research Center of Wuhan University, China; Hubei Key Laboratory of Cardiology, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China
| | - Yijun Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, China; Institute of Molecular Medicine, Renmin Hospital of Wuhan University, China; Hubei Key Laboratory of Autonomic Nervous System Modulation, China; Taikang Center for Life and Medical Sciences, Wuhan University, China; Cardiac Autonomic Nervous System Research Center of Wuhan University, China; Hubei Key Laboratory of Cardiology, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China
| | - Siyi Cheng
- Department of Cardiology, Renmin Hospital of Wuhan University, China; Institute of Molecular Medicine, Renmin Hospital of Wuhan University, China; Hubei Key Laboratory of Autonomic Nervous System Modulation, China; Taikang Center for Life and Medical Sciences, Wuhan University, China; Cardiac Autonomic Nervous System Research Center of Wuhan University, China; Hubei Key Laboratory of Cardiology, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China
| | - Zhihao Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, China; Institute of Molecular Medicine, Renmin Hospital of Wuhan University, China; Hubei Key Laboratory of Autonomic Nervous System Modulation, China; Taikang Center for Life and Medical Sciences, Wuhan University, China; Cardiac Autonomic Nervous System Research Center of Wuhan University, China; Hubei Key Laboratory of Cardiology, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China
| | - Mengjie Xie
- Department of Cardiology, Renmin Hospital of Wuhan University, China; Institute of Molecular Medicine, Renmin Hospital of Wuhan University, China; Hubei Key Laboratory of Autonomic Nervous System Modulation, China; Taikang Center for Life and Medical Sciences, Wuhan University, China; Cardiac Autonomic Nervous System Research Center of Wuhan University, China; Hubei Key Laboratory of Cardiology, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China
| | - Lingpeng Song
- Department of Cardiology, Renmin Hospital of Wuhan University, China; Institute of Molecular Medicine, Renmin Hospital of Wuhan University, China; Hubei Key Laboratory of Autonomic Nervous System Modulation, China; Taikang Center for Life and Medical Sciences, Wuhan University, China; Cardiac Autonomic Nervous System Research Center of Wuhan University, China; Hubei Key Laboratory of Cardiology, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China
| | - Qinfang Qiu
- Department of Cardiology, Renmin Hospital of Wuhan University, China; Institute of Molecular Medicine, Renmin Hospital of Wuhan University, China; Hubei Key Laboratory of Autonomic Nervous System Modulation, China; Taikang Center for Life and Medical Sciences, Wuhan University, China; Cardiac Autonomic Nervous System Research Center of Wuhan University, China; Hubei Key Laboratory of Cardiology, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China
| | - Xiaofei Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, China; Institute of Molecular Medicine, Renmin Hospital of Wuhan University, China; Hubei Key Laboratory of Autonomic Nervous System Modulation, China; Taikang Center for Life and Medical Sciences, Wuhan University, China; Cardiac Autonomic Nervous System Research Center of Wuhan University, China; Hubei Key Laboratory of Cardiology, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China
| | - Zeyan Li
- Department of Cardiology, Renmin Hospital of Wuhan University, China; Institute of Molecular Medicine, Renmin Hospital of Wuhan University, China; Hubei Key Laboratory of Autonomic Nervous System Modulation, China; Taikang Center for Life and Medical Sciences, Wuhan University, China; Cardiac Autonomic Nervous System Research Center of Wuhan University, China; Hubei Key Laboratory of Cardiology, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China
| | - Tianyuan Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, China; Institute of Molecular Medicine, Renmin Hospital of Wuhan University, China; Hubei Key Laboratory of Autonomic Nervous System Modulation, China; Taikang Center for Life and Medical Sciences, Wuhan University, China; Cardiac Autonomic Nervous System Research Center of Wuhan University, China; Hubei Key Laboratory of Cardiology, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China
| | - Fuding Guo
- Department of Cardiology, Renmin Hospital of Wuhan University, China; Institute of Molecular Medicine, Renmin Hospital of Wuhan University, China; Hubei Key Laboratory of Autonomic Nervous System Modulation, China; Taikang Center for Life and Medical Sciences, Wuhan University, China; Cardiac Autonomic Nervous System Research Center of Wuhan University, China; Hubei Key Laboratory of Cardiology, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China.
| | - Jun Wang
- Department of Cardiology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China.
| | - Xiaoya Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University, China; Institute of Molecular Medicine, Renmin Hospital of Wuhan University, China; Hubei Key Laboratory of Autonomic Nervous System Modulation, China; Taikang Center for Life and Medical Sciences, Wuhan University, China; Cardiac Autonomic Nervous System Research Center of Wuhan University, China; Hubei Key Laboratory of Cardiology, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China.
| |
Collapse
|
2
|
Jaiswal A, Yadav P, Rawat PS, Kaur M, Babu SS, Khurana A, Bhatti JS, Navik U. Empagliflozin in diabetic cardiomyopathy: elucidating mechanisms, therapeutic potentials, and future directions. Mol Biol Rep 2025; 52:158. [PMID: 39853512 DOI: 10.1007/s11033-025-10260-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 01/13/2025] [Indexed: 01/26/2025]
Abstract
Diabetic cardiomyopathy (DCM) represents a significant health burden, exacerbated by the global increase in type 2 diabetes mellitus (T2DM). This condition contributes substantially to the morbidity and mortality associated with diabetes, primarily through myocardial dysfunction independent of coronary artery disease. Current treatment strategies focus on managing symptoms rather than targeting the underlying pathophysiological mechanisms, highlighting a critical need for specific therapeutic interventions. This review explores the multifaceted role of empagliflozin, a sodium-glucose cotransporter 2 (SGLT-2) inhibitor, in addressing the complex etiology of DCM. We discuss the key mechanisms by which hyperglycemia contributes to cardiac dysfunction, including oxidative stress, mitochondrial impairment, and inflammation, and how empagliflozin mitigates these effects. Empagliflozin's effects on reducing hospitalization for heart failure and potentially lowering cardiovascular mortality mark it as a promising candidate for DCM management. By elucidating the underlying mechanisms through which empagliflozin operates, this review underscores its therapeutic potential and paves the way for future research into its broader applications in diabetic cardiac care. This synthesis aims to foster a deeper understanding of DCM and encourage the integration of empagliflozin into treatment paradigms, offering hope for improved outcomes in patients suffering from this debilitating condition.
Collapse
Affiliation(s)
- Aiswarya Jaiswal
- Department of Pharmacology, Central University of Punjab, Bathinda, Punjab, 151401, India
| | - Poonam Yadav
- Department of Pharmacology, Central University of Punjab, Bathinda, Punjab, 151401, India
| | - Pushkar Singh Rawat
- Department of Pharmacology, Central University of Punjab, Bathinda, Punjab, 151401, India
| | - Maninder Kaur
- Department of Human Anatomy, Bhojia Dental College and Hospital, Budh, Baddi, Himachal Pradesh, 173205, India
| | | | - Amit Khurana
- Department of Pharmacology, Central University of Punjab, Bathinda, Punjab, 151401, India
| | - Jasvinder Singh Bhatti
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, 151401, India.
| | - Umashanker Navik
- Department of Pharmacology, Central University of Punjab, Bathinda, Punjab, 151401, India.
| |
Collapse
|
3
|
Shooshtarian AK, O'Gallagher K, Shah AM, Zhang M. SERCA2a dysfunction in the pathophysiology of heart failure with preserved ejection fraction: a direct role is yet to be established. Heart Fail Rev 2025:10.1007/s10741-025-10487-1. [PMID: 39843817 DOI: 10.1007/s10741-025-10487-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/10/2025] [Indexed: 01/24/2025]
Abstract
With rising incidence, mortality and limited therapeutic options, heart failure with preserved ejection fraction (HFpEF) remains one of the most important topics in cardiovascular medicine today. Characterised by left ventricular diastolic dysfunction partially due to impaired Ca2+ homeostasis, one ion channel in particular, SarcoEndoplasmic Reticulum Ca2+-ATPase (SERCA2a), may play a significant role in its pathophysiology. A better understanding of the complex mechanisms interplaying to contribute to SERCA2a dysfunction will help develop treatments targeting it and thus address the growing clinical challenge HFpEF poses. This review examines the conflicting evidence present for changes in SERCA2a expression and activity in HFpEF, explores potential underlying mechanisms, and finally evaluates the drug and gene therapy trials targeting SERCA2a in heart failure. Recent positive results from trials involving widely used anti-diabetic agents such as sodium-glucose co-transporter protein 2 inhibitors (SGLT2i) and glucagon-like peptide-1 (GLP-1) agonists offer advancement in HFpEF management. The potential interplay between these agents and SERCA2a regulation presents a novel angle that could open new avenues for modulating diastolic function; however, the mechanistic research in this emerging field is limited. Overall, the direct role of SERCA2a dysfunction in HFpEF remains undetermined, highlighting the need for well-designed pre-clinical studies and robust clinical trials.
Collapse
Affiliation(s)
- Adam Kia Shooshtarian
- School of Cardiovascular and Metabolic Medicine & Sciences, King's College London British Heart Foundation Centre of Research Excellence, London, UK
| | - Kevin O'Gallagher
- School of Cardiovascular and Metabolic Medicine & Sciences, King's College London British Heart Foundation Centre of Research Excellence, London, UK
| | - Ajay M Shah
- School of Cardiovascular and Metabolic Medicine & Sciences, King's College London British Heart Foundation Centre of Research Excellence, London, UK
| | - Min Zhang
- School of Cardiovascular and Metabolic Medicine & Sciences, King's College London British Heart Foundation Centre of Research Excellence, London, UK.
| |
Collapse
|
4
|
Loh YH, Lv J, Goh Y, Sun X, Zhu X, Muheyati M, Luan Y. Remodelling of T-Tubules and Associated Calcium Handling Dysfunction in Heart Failure: Mechanisms and Therapeutic Insights. Can J Cardiol 2024; 40:2569-2588. [PMID: 39455023 DOI: 10.1016/j.cjca.2024.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
In cardiomyocytes, transverse tubules (T-tubules) are sarcolemmal invaginations that facilitate excitation-contraction coupling and diastolic function. The clinical significance of T-tubules has become evident in that their remodelling is recognised as a hallmark feature of heart failure (HF) and a key contributor to disrupted Ca2+ homeostasis, compromised cardiac function, and arrhythmogenesis. Further investigations have revealed that T-tubule remodelling is particularly pronounced in HF with reduced ejection fraction (HFrEF), but not in HF with preserved ejection fraction, implying that T-tubule remodelling may play a crucial pathophysiologic role in HFrEF. While research on the functional importance of T-tubules is ongoing, T-tubule remodelling has been found to be reversible. That finding has triggered a surge in studies aimed at identifying specific therapeutic approaches for HFrEF. This review discusses the functional importance of T-tubules and their microdomains, the pathophysiology of T-tubule remodelling, and the potential mechanisms of current HFrEF therapeutic approaches in reversing T-tubule alterations. We also highlight discrepancies regarding the roles of T-tubule proteins in the recovery process across studies to offer valuable insights for future research.
Collapse
Affiliation(s)
- Yi Hao Loh
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine, Hangzhou, China; Engineering Research Center for Cardiovascular Innovative Devices of Zhejiang Province, Hangzhou, China
| | - Jingyi Lv
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine, Hangzhou, China; Engineering Research Center for Cardiovascular Innovative Devices of Zhejiang Province, Hangzhou, China
| | - Yenfang Goh
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine, Hangzhou, China; Engineering Research Center for Cardiovascular Innovative Devices of Zhejiang Province, Hangzhou, China
| | - Xiangjie Sun
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine, Hangzhou, China; Engineering Research Center for Cardiovascular Innovative Devices of Zhejiang Province, Hangzhou, China
| | - Xianfeng Zhu
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine, Hangzhou, China; Engineering Research Center for Cardiovascular Innovative Devices of Zhejiang Province, Hangzhou, China; Department of Critical Care Medicine, Hangzhou Ninth People's Hospital, China
| | - Muergen Muheyati
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine, Hangzhou, China; Engineering Research Center for Cardiovascular Innovative Devices of Zhejiang Province, Hangzhou, China
| | - Yi Luan
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine, Hangzhou, China; Engineering Research Center for Cardiovascular Innovative Devices of Zhejiang Province, Hangzhou, China; School of Medicine, Shaoxing University, China.
| |
Collapse
|
5
|
Göpel SO, Adingupu D, Wang J, Semenova E, Behrendt M, Jansson-Löfmark R, Ahlström C, Jönsson-Rylander AC, Gopaul VS, Esterline R, Gan LM, Xiao RP. SGLT2 inhibition improves coronary flow velocity reserve and contractility: role of glucagon signaling. Cardiovasc Diabetol 2024; 23:408. [PMID: 39548491 PMCID: PMC11568596 DOI: 10.1186/s12933-024-02491-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/24/2024] [Indexed: 11/18/2024] Open
Abstract
BACKGROUND SGLT2 inhibitors, a T2DM medication to lower blood glucose, markedly improve cardiovascular outcomes but the underlying mechanism(s) are not fully understood. SGLT2i's produce a unique metabolic pattern by lowering blood glucose without increasing insulin while increasing ketone body and glucagon levels and reducing body weight. We tested if glucagon signaling contributes to SGLT2i induced improvement in CV function. METHODS Cardiac contractility and coronary flow velocity reserve (CFVR) were monitored in ob/ob mice and rhesus monkeys with metabolic syndrome using echocardiography. Metabolic status was characterized by measuring blood ketone levels, glucose tolerance during glucose challenge and Arg and ADMA levels were measured. Baysian models were developed to analyse the data. RESULTS Dapagliflozin improved CFVR and contractility, co-application of a glucagon receptor inhibitor (GcgRi) blunted the effect on CFVR but not contractility. Dapagliflozin increased the Arg/ADMA ratio and ketone levels and co-treatment with GcgRi blunted only the Dapagliflozin induced increase in Arg/ADMA ratio but not ketone levels. CONCLUSIONS Since GcgRi co-treatment only reduced the Arg/ADMA increase we hypothesize that dapagliflozin via a glucagon-signaling dependent pathway improves vascular function through the NO-signaling pathway leading to improved vascular function. Increase in ketone levels might be a contributing factor in SGLT2i induced contractility increase and does not require glucagon signaling.
Collapse
Affiliation(s)
- Sven O Göpel
- Global Patient Safety BioPharmaceuticals, AstraZeneca, Gothenburg, Sweden.
| | - Damilola Adingupu
- Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Jue Wang
- College of Future Technology, Peking University, Beijing, 100871, China
| | - Elizaveta Semenova
- Data Sciences and Quantitative Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
- Imperial College London, School of Public Health, Department of Epidemiology and Biostatistics, London, United Kingdom
| | - Margareta Behrendt
- Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Rasmus Jansson-Löfmark
- Drug Metabolism and Pharmacokinetics, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Christine Ahlström
- Drug Metabolism and Pharmacokinetics, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Ann-Cathrine Jönsson-Rylander
- Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - V Sashi Gopaul
- Drug Metabolism and Pharmacokinetics, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | | | - Li-Ming Gan
- Ribocure Pharmaceuticals AB, Gothenburg, Sweden & SuZhou Ribo Life Science Co. Ltd., Gothenburg, Sweden
- Department of Cardiology, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Rui-Ping Xiao
- College of Future Technology, Peking University, Beijing, 100871, China
| |
Collapse
|
6
|
Packer M, Ferreira JP, Butler J, Filippatos G, Januzzi JL, González Maldonado S, Panova-Noeva M, Pocock SJ, Prochaska JH, Saadati M, Sattar N, Sumin M, Anker SD, Zannad F. Reaffirmation of Mechanistic Proteomic Signatures Accompanying SGLT2 Inhibition in Patients With Heart Failure: A Validation Cohort of the EMPEROR Program. J Am Coll Cardiol 2024; 84:1979-1994. [PMID: 39217550 DOI: 10.1016/j.jacc.2024.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Sodium-glucose cotransporter 2 (SGLT2) inhibitors exert a distinctive pattern of direct biological effects on the heart and kidney under experimental conditions, but the meaningfulness of these signatures for patients with heart failure has not been fully defined. OBJECTIVES We performed the first mechanistic validation study of large-scale proteomics in a double-blind randomized trial of any treatment in patients with heart failure. METHODS In a discovery cohort from the EMPEROR (Empagliflozin Outcome Trial in Patients With Chronic Heart Failure and Reduced Ejection Fraction) program, we studied the effect of randomized treatment with placebo or empagliflozin on 1,283 circulating proteins in 1,134 patients with heart failure with a reduced or preserved ejection fraction. In a validation cohort, we expanded the number to 2,155 assessed proteins, which were measured in 1,120 EMPEROR participants who had not been studied previously. RESULTS In the validation cohort, 25 proteins were the most differentially enriched by empagliflozin (ie, ≥15% between-group difference and false discovery rate <1% at 12 weeks with known effects on the heart or kidney): 1) 13 proteins promote autophagy and other cellular quality-control functions (IGFBP1, OTUB1, DNAJB1, DNAJC9, RBP2, IST1, HSPA8, H-FABP, FABP6, ATPIFI, TfR1, EPO, IGBP1); 2) 12 proteins enhance mitochondrial health and ATP production (UMtCK, TBCA, L-FABP, H-FABP, FABP5, FABP6, RBP2, IST1, HSPA8, ATPIFI, TfR1, EPO); 3) 7 proteins augment cellular iron mobilization or erythropoiesis (TfR1, EPO, IGBP1, ERMAP, UROD, ATPIF1, SNCA); 4) 3 proteins influence renal tubular sodium handling; and 5) 9 proteins have restorative effects in the heart or kidneys, with many proteins exerting effects in >1 domain. These biological signatures replicated those observed in our discovery cohort. When the threshold for a meaningful between-group difference was lowered to ≥10%, there were 58 additional differentially enriched proteins with actions on the heart and kidney, but the biological signatures remained the same. CONCLUSIONS The replication of mechanistic signatures across discovery and validation cohorts closely aligns with the experimental effects of SGLT2 inhibitors. Thus, the actions of SGLT2 inhibitors-to promote autophagy, restore mitochondrial health and production of ATP, promote iron mobilization and erythropoiesis, influence renal tubular ion reabsorption, and normalize cardiac and renal structure and function-are likely to be relevant to patients with heart failure. (EMPagliflozin outcomE tRial in Patients With chrOnic heaRt Failure With Preserved Ejection Fraction [EMPEROR-Preserved], NCT03057951; EMPagliflozin outcomE tRial in Patients With chrOnic heaRt Failure With Reduced Ejection Fraction [EMPEROR-Reduced], NCT03057977).
Collapse
Affiliation(s)
- Milton Packer
- Baylor Heart and Vascular Institute, Baylor University Medical Center, Dallas, Texas, USA; Imperial College London, London, United Kingdom.
| | - João Pedro Ferreira
- UnIC@RISE, Cardiovascular Research and Development Center, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal; Baylor Scott and White Research Institute, Dallas, Texas, USA
| | - Javed Butler
- Baylor Scott and White Research Institute, Dallas, Texas, USA; University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Gerasimos Filippatos
- National and Kapodistrian University of Athens School of Medicine, Athens University Hospital Attikon, Athens, Greece
| | - James L Januzzi
- National and Kapodistrian University of Athens School of Medicine, Athens University Hospital Attikon, Athens, Greece; Massachusetts General Hospital and Baim Institute for Clinical Research, Boston, Massachusetts, USA
| | | | - Marina Panova-Noeva
- Boehringer Ingelheim Pharma GmbH & Co KG, Ingelheim, Germany; Center for Thrombosis and Haemostasis, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Stuart J Pocock
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Jürgen H Prochaska
- Boehringer Ingelheim International GmbH, Ingelheim, Germany; Preventive Cardiology and Preventive Medicine, Department of Cardiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Maral Saadati
- Elderbrook Solutions GmbH, on behalf of Boehringer Ingelheim Pharma GmbH & Co KG, Biberach an der Riss, Germany
| | - Naveed Sattar
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Mikhail Sumin
- Boehringer Ingelheim International GmbH, Ingelheim, Germany
| | - Stefan D Anker
- Department of Cardiology (CVK) of German Heart Center Charité, Institute of Health Center for Regenerative Therapies (BCRT), German Centre for Cardiovascular Research (DZHK) partner site Berlin, Charité Universitätsmedizin, Berlin, Germany
| | - Faiez Zannad
- Centre d'Investigations Cliniques Plurithématique 1433, INSERM, Université de Lorraine, Nancy, France; F-CRIN INI-CRCT (Cardiovascular and Renal Clinical Trialists), INSERM U1116, Centre Hospitalier Régional Universitaire de Nancy, Nancy, France
| |
Collapse
|
7
|
Soares RR, Viggiani LF, Reis Filho JM, Joviano-Santos JV. Cardioprotection of Canagliflozin, Dapagliflozin, and Empagliflozin: Lessons from preclinical studies. Chem Biol Interact 2024; 403:111229. [PMID: 39244185 DOI: 10.1016/j.cbi.2024.111229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/12/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024]
Abstract
Clinical and preclinical studies have elucidated the favorable effects of Inhibitors of Sodium-Glucose Cotransporter-2 (iSGLT2) in patients and animal models with type 2 diabetes. Notably, these inhibitors have shown significant benefits in reducing hospitalizations and mortality among patients with heart failure. However, despite their incorporation into clinical practice for indications beyond diabetes, the decision-making process regarding their use often lacks a systematic approach. The selection of iSGLT2 remains arbitrary, with only a limited number of studies simultaneously exploring the different classes of them. Currently, no unique guideline establishes their application in both clinical and basic research. This review delves into the prevalent use of iSGLT2 in animal models previously subjected to induced cardiac stress. We have compiled key findings related to cardioprotection across various animal models, encompassing diverse dosages and routes of administration. Beyond their established role in diabetes management, iSGLT2 has demonstrated utility as agents for safeguarding heart health and cardioprotection can be class-dependent among the iSGLT2. These findings may serve as valuable references for other researchers. Preclinical studies play a pivotal role in ensuring the safety of novel compounds or treatments for potential human use. By assessing side effects, toxicity, and optimal dosages, these studies offer a robust foundation for informed decisions, identifying interventions with the highest likelihood of success and minimal risk to patients. The insights gleaned from preclinical studies, which play a crucial role in highlighting areas of knowledge deficiency, can guide the exploration of novel mechanisms and strategies involving iSGLT2.
Collapse
Affiliation(s)
- Rayla Rodrigues Soares
- Faculdade Ciências Médicas de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; Laboratório de Investigações NeuroCardíacas, Ciências Médicas de Minas Gerais (LINC CMMG), Belo Horizonte, Minas Gerais, Brazil
| | - Larissa Freitas Viggiani
- Faculdade Ciências Médicas de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; Laboratório de Investigações NeuroCardíacas, Ciências Médicas de Minas Gerais (LINC CMMG), Belo Horizonte, Minas Gerais, Brazil
| | - Juliano Moreira Reis Filho
- Post-Graduate Program in Health Sciences, Faculdade Ciências Médicas de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Julliane V Joviano-Santos
- Post-Graduate Program in Health Sciences, Faculdade Ciências Médicas de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; Laboratório de Investigações NeuroCardíacas, Ciências Médicas de Minas Gerais (LINC CMMG), Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
8
|
Mouffokes A, Soliman Y, Amer BE, Umar TP, Gonnah AR, Ellabban MH, Abdelazeem B. The effect of Empagliflozin on echocardiographic parameters in diabetic patients after acute myocardial infarction: A systematic review and meta-analysis with trial sequential analysis. Ir J Med Sci 2024; 193:2223-2238. [PMID: 38958683 DOI: 10.1007/s11845-024-03744-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/25/2024] [Indexed: 07/04/2024]
Abstract
Patients with diabetes mellitus (DM) are at higher risk of cardiovascular events, particularly acute myocardial infarction (MI). Sodium-glucose cotransporter 2 inhibitors (SGLT2i) can improve cardiac outcomes among heart failure individuals, however, the effects on acute myocardial infarction remain unclear. This meta-analysis investigates the impact of empagliflozin in diabetic patients following acute myocardial infarction. We comprehensively searched PubMed, Scopus, Cochrane, and Web of Science through August 10th, 2023. We included studies comparing empagliflozin versus placebo in diabetes patients with acute myocardial infarction. We used Revman to report the data as mean difference (MD) and 95% confidence interval (CI), and our effect size with a random effects model. Additionally, we performed Trial Sequential Analysis (TSA) to test the robustness of the results. The study protocol was published on PROSPERO with ID: CRD42023447733. Five studies with a total of 751 patients were included in our analysis. Empagliflozin was effective to improve LVEF% (MD: 1.80, 95% CI [0.50, 3.10], p = 0.007), left ventricular end-diastolic volume (LVEDV) (MD: -9.93, 95% CI [-16.07, -3.80], p = 0.002), and left ventricular end-systolic volume (LVESV) (MD: -7.91, 95% CI [-11.93, -3.88], p = 0.0001). However, there was no difference between empagliflozin and placebo groups in terms of NT-pro BNP (MD: - 136.59, 95% CI [-293.43, 20.25], p = 0.09), and HbA1c (MD: -0.72, 95% CI [-1.73, 0.29], p = 0.16). Additionally, empagliflozin did not prevent hospitalization due to heart failure (RR: 0.59, 95% CI [0.16, 2.24], p = 0.44, I-squared = 0%), and mortality (RR: 1.34, 95% CI [0.15,11.90], p = 0.79, I-squared = 25%). Empagliflozin initiation in diabetic patients following acute MI may improve echocardiographic parameters. However, empagliflozin might not be effective in heart failure prevention and optimal glycemic control in this patient population. Further large-scale trials are warranted to ascertain our findings.
Collapse
Affiliation(s)
- Adel Mouffokes
- Faculty of Medicine, University of Oran Ahmed Ben Bella 1, Oran, Algeria.
| | | | | | - Tungki Pratama Umar
- Faculty of Medicine, Sriwijaya University, Palembang, Indonesia
- Division of Surgery and Interventional Science, Faculty of Medical Sciences, University College London, London, UK
| | | | | | - Basel Abdelazeem
- Department of Cardiology, West Virginia University, Morgantown, West Virginia, USA
| |
Collapse
|
9
|
Ismail Z, Aboughdir M, Duric B, Kakar S, Chan JSK, Bayatpoor Y, Harky A. Advances in pharmacotherapy for heart failure and reduced ejection fraction: what's new in 2024? Expert Opin Pharmacother 2024; 25:1887-1902. [PMID: 39313997 DOI: 10.1080/14656566.2024.2408376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/04/2024] [Accepted: 09/20/2024] [Indexed: 09/25/2024]
Abstract
INTRODUCTION Updated guidelines for heart failure with reduced ejection fraction (HFrEF) and acute decompensation have improved outcomes, but ongoing efforts are focused on uncovering new evidence and developing novel therapies. This review examines the limitations of current treatments and the potential impact of emerging therapies. AREAS COVERED A literature search focused on studies investigating drugs for HFrEF. We review recent clinical trials and emerging therapies to assess evidence strength, explore guideline updates, and identify strategies to optimize patient outcomes. EXPERT OPINION The HFrEF treatment landscape is rapidly evolving, with advances in therapies like sodium/glucose cotransporter inhibitors and sacubitril-valsartan. Though managing acute decompensated heart failure remains challenging, recent trials suggest improvements in diuretic strategies and anti-inflammatory treatments. Ongoing research is essential for validating these therapies and incorporating them into standard practice.
Collapse
Affiliation(s)
- Zahra Ismail
- St. George's, University of London, Cranmer Terrace, London, UK
| | | | - Bea Duric
- GKT School of Medical Education, King's College London, London, UK
| | - Sahil Kakar
- University Hospitals Birmingham; Queen Elizabeth Hospital, Birmingham, UK
| | - Jeffrey Shi Kai Chan
- Heart Failure and Structural Heart Disease Unit, Cardiovascular Analytics Group, United Kingdom-China Collaboration, Hong Kong, China
| | | | - Amer Harky
- Liverpool Heart and Chest Hospital, Liverpool, UK
| |
Collapse
|
10
|
Shaaban A, Scott SS, Greenlee AN, Binda N, Noor A, Webb A, Guo S, Purdy N, Pennza N, Habib A, Mohammad SJ, Smith SA. Atrial fibrillation in cancer, anticancer therapies, and underlying mechanisms. J Mol Cell Cardiol 2024; 194:118-132. [PMID: 38897563 PMCID: PMC11500699 DOI: 10.1016/j.yjmcc.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024]
Abstract
Atrial fibrillation (AF) is a common arrhythmic complication in cancer patients and can be exacerbated by traditional cytotoxic and targeted anticancer therapies. Increased incidence of AF in cancer patients is independent of confounding factors, including preexisting myocardial arrhythmogenic substrates, type of cancer, or cancer stage. Mechanistically, AF is characterized by fast unsynchronized atrial contractions with rapid ventricular response, which impairs ventricular filling and results in various symptoms such as fatigue, chest pain, and shortness of breath. Due to increased blood stasis, a consequence of both cancer and AF, concern for stroke increases in this patient population. To compound matters, cardiotoxic anticancer therapies themselves promote AF; thereby exacerbating AF morbidity and mortality in cancer patients. In this review, we examine the relationship between AF, cancer, and cardiotoxic anticancer therapies with a focus on the shared molecular and electrophysiological mechanisms linking these disease processes. We also explore the potential role of sodium-glucose co-transporter 2 inhibitors (SGLT2i) in the management of anticancer-therapy-induced AF.
Collapse
Affiliation(s)
- Adnan Shaaban
- The Ohio State University College of Medicine, Department of Internal Medicine, Columbus, OH 43210, USA
| | - Shane S Scott
- Medical Scientist Training Program, Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH, USA; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University College of Medicine, Columbus, OH 43210, USA; Bob and Corrinne Frick Center for Heart Failure and Arrhythmia Research, The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Ashley N Greenlee
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University College of Medicine, Columbus, OH 43210, USA; Bob and Corrinne Frick Center for Heart Failure and Arrhythmia Research, The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Nkongho Binda
- The Ohio State University College of Medicine, Department of Internal Medicine, Columbus, OH 43210, USA
| | - Ali Noor
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Averie Webb
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Shuliang Guo
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University College of Medicine, Columbus, OH 43210, USA; Bob and Corrinne Frick Center for Heart Failure and Arrhythmia Research, The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Najhee Purdy
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University College of Medicine, Columbus, OH 43210, USA; Bob and Corrinne Frick Center for Heart Failure and Arrhythmia Research, The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Nicholas Pennza
- Ohio University Heritage College of Osteopathic Medicine, Athens, OH 45701, USA
| | - Alma Habib
- The Ohio State University College of Medicine, Department of Internal Medicine, Division of Hematology, Columbus, OH 43210, USA
| | - Somayya J Mohammad
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University College of Medicine, Columbus, OH 43210, USA; Bob and Corrinne Frick Center for Heart Failure and Arrhythmia Research, The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Sakima A Smith
- The Ohio State University College of Medicine, Department of Internal Medicine, Columbus, OH 43210, USA; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University College of Medicine, Columbus, OH 43210, USA; Bob and Corrinne Frick Center for Heart Failure and Arrhythmia Research, The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
| |
Collapse
|
11
|
Amesz JH, Langmuur SJJ, Epskamp N, Bogers AJJC, de Groot NMS, Manintveld OC, Taverne YJHJ. Acute Biomechanical Effects of Empagliflozin on Living Isolated Human Heart Failure Myocardium. Cardiovasc Drugs Ther 2024; 38:659-666. [PMID: 36780068 PMCID: PMC11266265 DOI: 10.1007/s10557-023-07434-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/20/2023] [Indexed: 02/14/2023]
Abstract
PURPOSE Multiple randomized controlled trials have presented SGLT2 inhibitors (SGLT2i) as novel pharmacological therapy for patients with heart failure, resulting in reductions in hospitalization for heart failure and mortality. Given the absence of SGLT2 receptors in the heart, mechanisms of direct cardioprotective effects of SGLT2i are complex and remain to be investigated. In this study, we evaluated the direct biomechanical effects of SGLT2i empagliflozin on isolated myocardium from end-stage heart failure patients. METHODS Ventricular tissue biopsies obtained from 7 patients undergoing heart transplantation or ventricular assist device implantation surgery were cut into 27 living myocardial slices (LMS) and mounted in custom-made cultivation chambers with mechanical preload and electrical stimulation, resulting in cardiac contractions. These 300 µm thick LMS were subjected to 10 µM empagliflozin and with continuous recording of biomechanical parameters. RESULTS Empagliflozin did not affect the maximum contraction force of the slices, however, increased total contraction duration by 13% (p = 0.002) which was determined by prolonged time to peak and time to relaxation (p = 0.009 and p = 0.003, respectively). CONCLUSION The addition of empagliflozin to LMS from end-stage heart failure patients cultured in a biomimetic system improves contraction and relaxation kinetics by increasing total contraction duration without diminishing maximum force production. Therefore, we present convincing evidence that SGLT2i can directly act on the myocardium in absence of systemic influences from other organ systems.
Collapse
Affiliation(s)
- Jorik H Amesz
- Translational Cardiothoracic Surgery Research Lab, Department of Cardiothoracic Surgery, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015GD, Rotterdam, the Netherlands
- Lowlands Institute for Bioelectric Medicine, Department of Cardiology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Sanne J J Langmuur
- Translational Cardiothoracic Surgery Research Lab, Department of Cardiothoracic Surgery, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015GD, Rotterdam, the Netherlands
- Lowlands Institute for Bioelectric Medicine, Department of Cardiology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Nina Epskamp
- Translational Cardiothoracic Surgery Research Lab, Department of Cardiothoracic Surgery, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015GD, Rotterdam, the Netherlands
| | - Ad J J C Bogers
- Translational Cardiothoracic Surgery Research Lab, Department of Cardiothoracic Surgery, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015GD, Rotterdam, the Netherlands
| | - Natasja M S de Groot
- Lowlands Institute for Bioelectric Medicine, Department of Cardiology, Erasmus University Medical Center, Rotterdam, the Netherlands
- Department of Cardiology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Olivier C Manintveld
- Department of Cardiology, Erasmus University Medical Center, Rotterdam, the Netherlands
- Erasmus MC Transplant Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Yannick J H J Taverne
- Translational Cardiothoracic Surgery Research Lab, Department of Cardiothoracic Surgery, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015GD, Rotterdam, the Netherlands.
- Lowlands Institute for Bioelectric Medicine, Department of Cardiology, Erasmus University Medical Center, Rotterdam, the Netherlands.
- Erasmus MC Transplant Institute, Erasmus University Medical Center, Rotterdam, the Netherlands.
| |
Collapse
|
12
|
Borisova EV, Barsukov AV, Glebova SA, Airapetyan AV. [The effect of sodium-glucose cotransporter type 2 inhibitors on left ventricular diastolic function: current status and prospects]. KARDIOLOGIIA 2024; 64:64-71. [PMID: 39102575 DOI: 10.18087/cardio.2024.7.n2545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 10/07/2023] [Indexed: 08/07/2024]
Abstract
Sodium-glucose cotransporter-2 inhibitors (SGLT2 inhibitors) or gliflozins, are a new class of cardiovascular drugs with a proven clinical efficacy and a beneficial effect on prognosis in patients with heart failure with preserved ejection fraction (HFpEF). Impaired left ventricular (LV) diastolic function (DF) is an important element in the pathogenesis of HFpEF. Experimental studies have found intracellular mechanisms for the so-called diastolic effects in gliflozins. Studies using laboratory models of experimental HFpEF have demonstrated a positive effect of dapagliflozin and empagliflozin on the elastic properties of cardiomyocyte myofilaments, the dynamics of myocardial fibrosis, and intracellular sodium and calcium homeostasis. The significance of anti-inflammatory, antioxidant properties of gliflozins in improving the cardiomyocyte DF has been experimentally established. The effect of SGLT2 inhibitors on LV DF in patients at high risk for cardiovascular diseases and their complications, that has been demonstrated in relatively small clinical studies, is due to primary cardiac and secondary effects. Results of individual studies confirmed the protective (in relation to myocardial relaxation) properties of gliflozins in the conditions of a diastolic stress test. The regression of LV diastolic dysfunction associated with the SGLT2 inhibitor treatment found in small observational studies is important in the context of the significant beneficial effect of empagliflozin and dapagliflozin on the prognosis of cardiovascular diseases that has been demonstrated in large randomized clinical trials in patients with HFpEF.
Collapse
Affiliation(s)
- E V Borisova
- KardioKlinica St Petersburg; Mechnikov North-Western State Medical University, St. Petersburg
| | - A V Barsukov
- KardioKlinica St Petersburg; Kirov Military Medical Academy, St. Peterburg
| | | | - A V Airapetyan
- KardioKlinica St Petersburg; Mechnikov North-Western State Medical University, St. Petersburg
| |
Collapse
|
13
|
Dienda YM, On'kin JBKL, Natuhoyila AN, Lubenga Y, Swambulu TM, M'buyamba-Kabangu JR, Longo-Mbenza B, Phanzu BK. Correlations of Serum Lipid Parameters and Atherogenic Indices With Left Ventricular Diastolic Dysfunction Among Apparently Healthy Patients With Type 2 Diabetes Mellitus: A Multicenter In-Hospital Cross-Sectional Study. J Diabetes Res 2024; 2024:4078281. [PMID: 39035683 PMCID: PMC11260213 DOI: 10.1155/2024/4078281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 03/11/2024] [Accepted: 06/20/2024] [Indexed: 07/23/2024] Open
Abstract
Background: In adolescents with Type 1 diabetes, lipid ratios are predictors of left ventricular diastolic dysfunction (LVDD). However, whether this also applies to adults with Type 2 Diabetes Mellitus (T2DM) is unclear. This study is aimed at assessing the correlations of serum lipid parameters and atherogenic indices with LVDD in patients with T2DM. Methods: This cross-sectional study included 203 patients with T2DM aged 59.9 ± 13.6 years (111 males, sex ratio: 1 : 2 in favor of males) from eight randomly selected urban hospitals. Demographic information was collected, an anthropometric assessment was performed, and blood pressure was measured. Fasting blood samples were obtained to assess total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), triglycerides (TGs), glucose, and glycated hemoglobin. The atherogenic index of plasma (AIP), Castelli Risk Index I (CRI-I), Castelli Risk Index II (CRI-II), atherogenic coefficient, and non-HDL-C were determined using specific formulas. Diastolic function was assessed using echocardiography as per the 2016 updated guidelines of the American Society of Echocardiography (ASE) and the European Association of Cardiovascular Imaging (EACVI). Results: Approximately 47.8% of the participants had LVDD. Compared with participants with normal diastolic function, those with LVDD were more likely to be older than 55 years (p < 0.001), tended to have obesity (p = 0.045), had a higher risk of developing dyslipidemia (p = 0.041), and higher AIP and CRI-II (p < 0.05) levels while having similar low HDL-C and hypertriglyceridemia frequencies. In the multivariate model adjusting for age, high AIP (adjusted odds ratio [aOR], 3.37; 95% confidence interval [CI], 1.22-5.34) and high CRI-II (aOR: 3.80; 95% CI: 2.25-6.35) were independent determinants of LVDD. Conclusions: These results highlight the importance of considering atherogenic indices, primarily AIP and CRI-II in the management of T2DM patients. High AIP and high CRI-II could serve as surrogate markers of LVDD, an early cardiovascular manifestation in patients with T2DM.
Collapse
Affiliation(s)
- Yves Mayambu Dienda
- Cardiology UnitUniversity Hospital of KinshasaUniversity of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Jean-Bosco Kasiam Lasi On'kin
- Unit of Endocrinology and MetabolismUniversity Hospital of KinshasaUniversity of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | | | - Yves Lubenga
- Cardiology UnitUniversity Hospital of KinshasaUniversity of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Tresor Mvunzi Swambulu
- Cardiology UnitUniversity Hospital of KinshasaUniversity of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Jean-René M'buyamba-Kabangu
- Cardiology UnitUniversity Hospital of KinshasaUniversity of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Benjamin Longo-Mbenza
- Cardiology UnitUniversity Hospital of KinshasaUniversity of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Bernard Kianu Phanzu
- Cardiology UnitUniversity Hospital of KinshasaUniversity of Kinshasa, Kinshasa, Democratic Republic of the Congo
| |
Collapse
|
14
|
Wen Q, Zhang R, Ye K, Yang J, Shi H, Liu Z, Li Y, Liu T, Zhang S, Chen W, Wu J, Liu W, Tan X, Lei M, Huang CLH, Ou X. Empagliflozin rescues pro-arrhythmic and Ca 2+ homeostatic effects of transverse aortic constriction in intact murine hearts. Sci Rep 2024; 14:15683. [PMID: 38977794 PMCID: PMC11231339 DOI: 10.1038/s41598-024-66098-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 06/27/2024] [Indexed: 07/10/2024] Open
Abstract
We explored physiological effects of the sodium-glucose co-transporter-2 inhibitor empagliflozin on intact experimentally hypertrophic murine hearts following transverse aortic constriction (TAC). Postoperative drug (2-6 weeks) challenge resulted in reduced late Na+ currents, and increased phosphorylated (p-)CaMK-II and Nav1.5 but not total (t)-CaMK-II, and Na+/Ca2+ exchanger expression, confirming previous cardiomyocyte-level reports. It rescued TAC-induced reductions in echocardiographic ejection fraction and fractional shortening, and diastolic anterior and posterior wall thickening. Dual voltage- and Ca2+-optical mapping of Langendorff-perfused hearts demonstrated that empagliflozin rescued TAC-induced increases in action potential durations at 80% recovery (APD80), Ca2+ transient peak signals and durations at 80% recovery (CaTD80), times to peak Ca2+ (TTP100) and Ca2+ decay constants (Decay30-90) during regular 10-Hz stimulation, and Ca2+ transient alternans with shortening cycle length. Isoproterenol shortened APD80 in sham-operated and TAC-only hearts, shortening CaTD80 and Decay30-90 but sparing TTP100 and Ca2+ transient alternans in all groups. All groups showed similar APD80, and TAC-only hearts showed greater CaTD80, heterogeneities following isoproterenol challenge. Empagliflozin abolished or reduced ventricular tachycardia and premature ventricular contractions and associated re-entrant conduction patterns, in isoproterenol-challenged TAC-operated hearts following successive burst pacing episodes. Empagliflozin thus rescues TAC-induced ventricular hypertrophy and systolic functional, Ca2+ homeostatic, and pro-arrhythmogenic changes in intact hearts.
Collapse
Affiliation(s)
- Qiang Wen
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Rd, Wuhan, 430022, Hubei Province, China
| | - Rui Zhang
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Institute of Cardiovascular Research, Department of Cardiology of the Affiliated Hospital, Southwest Medical University, 1 Xianglin Rd, Luzhou, 646000, Sichuan Province, China
| | - Kejun Ye
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Institute of Cardiovascular Research, Department of Cardiology of the Affiliated Hospital, Southwest Medical University, 1 Xianglin Rd, Luzhou, 646000, Sichuan Province, China
| | - Jun Yang
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Institute of Cardiovascular Research, Department of Cardiology of the Affiliated Hospital, Southwest Medical University, 1 Xianglin Rd, Luzhou, 646000, Sichuan Province, China
| | - Hangchuan Shi
- Department of Clinical & Translational Research, University of Rochester Medical Center, 265 Crittenden Blvd, Rochester, NY, 14642, USA
- Department of Public Health Sciences, University of Rochester Medical Center, 265 Crittenden Blvd, Rochester, NY, 14642, USA
| | - Zhu Liu
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Institute of Cardiovascular Research, Department of Cardiology of the Affiliated Hospital, Southwest Medical University, 1 Xianglin Rd, Luzhou, 646000, Sichuan Province, China
| | - Yangpeng Li
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Institute of Cardiovascular Research, Department of Cardiology of the Affiliated Hospital, Southwest Medical University, 1 Xianglin Rd, Luzhou, 646000, Sichuan Province, China
| | - Ting Liu
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Institute of Cardiovascular Research, Department of Cardiology of the Affiliated Hospital, Southwest Medical University, 1 Xianglin Rd, Luzhou, 646000, Sichuan Province, China
| | - Shiyu Zhang
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Institute of Cardiovascular Research, Department of Cardiology of the Affiliated Hospital, Southwest Medical University, 1 Xianglin Rd, Luzhou, 646000, Sichuan Province, China
| | - Wanpei Chen
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Institute of Cardiovascular Research, Department of Cardiology of the Affiliated Hospital, Southwest Medical University, 1 Xianglin Rd, Luzhou, 646000, Sichuan Province, China
| | - Jingjing Wu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Rd, Wuhan, 430022, Hubei Province, China
| | - Weichao Liu
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Institute of Cardiovascular Research, Department of Cardiology of the Affiliated Hospital, Southwest Medical University, 1 Xianglin Rd, Luzhou, 646000, Sichuan Province, China
| | - Xiaoqiu Tan
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Institute of Cardiovascular Research, Department of Cardiology of the Affiliated Hospital, Southwest Medical University, 1 Xianglin Rd, Luzhou, 646000, Sichuan Province, China
| | - Ming Lei
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Institute of Cardiovascular Research, Department of Cardiology of the Affiliated Hospital, Southwest Medical University, 1 Xianglin Rd, Luzhou, 646000, Sichuan Province, China
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Christopher L-H Huang
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Institute of Cardiovascular Research, Department of Cardiology of the Affiliated Hospital, Southwest Medical University, 1 Xianglin Rd, Luzhou, 646000, Sichuan Province, China.
- Physiological Laboratory, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK.
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK.
| | - Xianhong Ou
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Institute of Cardiovascular Research, Department of Cardiology of the Affiliated Hospital, Southwest Medical University, 1 Xianglin Rd, Luzhou, 646000, Sichuan Province, China.
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, 15 Yucai Rd, Guilin, 541004, Guangxi Province, China.
| |
Collapse
|
15
|
Cheng X, Huang P, Liu H, Bi X, Gao Y, Lu R, Gao Y, Liu Y, Deng Y. Improvements of myocardial strain and work in diabetes patients with normal ejection fraction after empagliflozin treatment. J Diabetes Investig 2024; 15:851-860. [PMID: 38534028 PMCID: PMC11215679 DOI: 10.1111/jdi.14199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/21/2024] [Accepted: 03/16/2024] [Indexed: 03/28/2024] Open
Abstract
AIMS/INTRODUCTION To assess the effect of empagliflozin treatment on left ventricular (LV), right ventricular (RV) and left atrial (LA) functions in diabetes patients with normal ejection fraction. MATERIALS AND METHODS The study included a total of 128 diabetes patients with multiple cardiovascular risk factors who were subjected to a 6-month follow up from the initiation of empagliflozin treatment. Before and after treatment with empagliflozin, LV, RV and LA strain, and noninvasive myocardial work parameters were evaluated by speckle tracking echocardiography. RESULTS In 128 diabetes patients (mean age 56 ± 8 years, 85 men) with multiple cardiovascular risk factors, myocardial strain and work parameters were impaired, despite the absence of significant clinical symptoms of heart failure. After 6-month treatment with empagliflozin, the absolute value of LV strain in all directions increased, represented by LV global longitudinal strain (-18.0 ± 1.7% to -19.2 ± 1.7% [mean ± SD]). The same trend in LV global work efficiency (93 [91-94] % to 94 [93-95] % [median (IQR)]), RV free-wall longitudinal strain (-24.0 ± 2.7% to -25.0 ± 2.8%), LA reservoir (31 ± 5% to 34 ± 5%) and conduit strain (-14 ± 4% to -16 ± 4%) was also observed. LV mass index (106.9 ± 16.8-103.6 ± 16.4 g/m2) and LV global wasted work (143 [111-185] mmHg% to 108 [88-141] mmHg%) decreased after treatment (P < 0.05 for all). LV volume and LA volume index remained unchanged after treatment. In the multivariable analysis, the change in LA reservoir strain (β = 0.050, P = 0.035) and baseline global longitudinal strain (β = -0.488, P < 0.001) were independent predictors of improvement in LV global longitudinal strain. CONCLUSIONS This study suggests that 6-month treatment with empagliflozin improved LV, RV and LA functions in diabetes patients with normal ejection fraction.
Collapse
Affiliation(s)
- Xueqing Cheng
- Department of Medical Ultrasound, Tongji Medical College, Tongji HospitalHuazhong University of Science and TechnologyWuhanChina
| | - Peina Huang
- Department of Medical Ultrasound, Tongji Medical College, Tongji HospitalHuazhong University of Science and TechnologyWuhanChina
| | - Hongyun Liu
- Department of Medical Ultrasound, Tongji Medical College, Tongji HospitalHuazhong University of Science and TechnologyWuhanChina
| | - Xiaojun Bi
- Department of Medical Ultrasound, Tongji Medical College, Tongji HospitalHuazhong University of Science and TechnologyWuhanChina
| | - Yiping Gao
- Department of Medical Ultrasound, Tongji Medical College, Tongji HospitalHuazhong University of Science and TechnologyWuhanChina
| | - Ruirui Lu
- Department of Medical Ultrasound, Tongji Medical College, Tongji HospitalHuazhong University of Science and TechnologyWuhanChina
| | - Yipeng Gao
- Department of Medical Ultrasound, Tongji Medical College, Tongji HospitalHuazhong University of Science and TechnologyWuhanChina
| | - Yani Liu
- Department of Medical Ultrasound, Tongji Medical College, Tongji HospitalHuazhong University of Science and TechnologyWuhanChina
| | - Youbin Deng
- Department of Medical Ultrasound, Tongji Medical College, Tongji HospitalHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
16
|
Alfieri M, Bruscoli F, Di Vito L, Di Giusto F, Scalone G, Marchese P, Delfino D, Silenzi S, Martoni M, Guerra F, Grossi P. Novel Medical Treatments and Devices for the Management of Heart Failure with Reduced Ejection Fraction. J Cardiovasc Dev Dis 2024; 11:125. [PMID: 38667743 PMCID: PMC11050600 DOI: 10.3390/jcdd11040125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/13/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
Heart failure (HF) is a growing issue in developed countries; it is often the result of underlying processes such as ischemia, hypertension, infiltrative diseases or even genetic abnormalities. The great majority of the affected patients present a reduced ejection fraction (≤40%), thereby falling under the name of "heart failure with reduced ejection fraction" (HFrEF). This condition represents a major threat for patients: it significantly affects life quality and carries an enormous burden on the whole healthcare system due to its high management costs. In the last decade, new medical treatments and devices have been developed in order to reduce HF hospitalizations and improve prognosis while reducing the overall mortality rate. Pharmacological therapy has significantly changed our perspective of this disease thanks to its ability of restoring ventricular function and reducing symptom severity, even in some dramatic contexts with an extensively diseased myocardium. Notably, medical therapy can sometimes be ineffective, and a tailored integration with device technologies is of pivotal importance. Not by chance, in recent years, cardiac implantable devices witnessed a significant improvement, thereby providing an irreplaceable resource for the management of HF. Some devices have the ability of assessing (CardioMEMS) or treating (ultrafiltration) fluid retention, while others recognize and treat life-threatening arrhythmias, even for a limited time frame (wearable cardioverter defibrillator). The present review article gives a comprehensive overview of the most recent and important findings that need to be considered in patients affected by HFrEF. Both novel medical treatments and devices are presented and discussed.
Collapse
Affiliation(s)
- Michele Alfieri
- Cardiology and Arrhythmology Clinic, Marche Polytechnic University, University Hospital “Umberto I-Lancisi-Salesi”, 60121 Ancona, Italy; (M.A.); (F.G.)
| | - Filippo Bruscoli
- Cardiology Unit, C. and G. Mazzoni Hospital, AST Ascoli Piceno, 63100 Ascoli Piceno, Italy; (F.B.); (F.D.G.); (G.S.); (P.M.); (D.D.); (S.S.); (P.G.)
| | - Luca Di Vito
- Cardiology Unit, C. and G. Mazzoni Hospital, AST Ascoli Piceno, 63100 Ascoli Piceno, Italy; (F.B.); (F.D.G.); (G.S.); (P.M.); (D.D.); (S.S.); (P.G.)
| | - Federico Di Giusto
- Cardiology Unit, C. and G. Mazzoni Hospital, AST Ascoli Piceno, 63100 Ascoli Piceno, Italy; (F.B.); (F.D.G.); (G.S.); (P.M.); (D.D.); (S.S.); (P.G.)
| | - Giancarla Scalone
- Cardiology Unit, C. and G. Mazzoni Hospital, AST Ascoli Piceno, 63100 Ascoli Piceno, Italy; (F.B.); (F.D.G.); (G.S.); (P.M.); (D.D.); (S.S.); (P.G.)
| | - Procolo Marchese
- Cardiology Unit, C. and G. Mazzoni Hospital, AST Ascoli Piceno, 63100 Ascoli Piceno, Italy; (F.B.); (F.D.G.); (G.S.); (P.M.); (D.D.); (S.S.); (P.G.)
| | - Domenico Delfino
- Cardiology Unit, C. and G. Mazzoni Hospital, AST Ascoli Piceno, 63100 Ascoli Piceno, Italy; (F.B.); (F.D.G.); (G.S.); (P.M.); (D.D.); (S.S.); (P.G.)
| | - Simona Silenzi
- Cardiology Unit, C. and G. Mazzoni Hospital, AST Ascoli Piceno, 63100 Ascoli Piceno, Italy; (F.B.); (F.D.G.); (G.S.); (P.M.); (D.D.); (S.S.); (P.G.)
| | - Milena Martoni
- Medical School, Università degli Studi “G. d’Annunzio”, 66100 Chieti, Italy;
| | - Federico Guerra
- Cardiology and Arrhythmology Clinic, Marche Polytechnic University, University Hospital “Umberto I-Lancisi-Salesi”, 60121 Ancona, Italy; (M.A.); (F.G.)
| | - Pierfrancesco Grossi
- Cardiology Unit, C. and G. Mazzoni Hospital, AST Ascoli Piceno, 63100 Ascoli Piceno, Italy; (F.B.); (F.D.G.); (G.S.); (P.M.); (D.D.); (S.S.); (P.G.)
| |
Collapse
|
17
|
Wijnker PJM, Dinani R, van der Laan NC, Algül S, Knollmann BC, Verkerk AO, Remme CA, Zuurbier CJ, Kuster DWD, van der Velden J. Hypertrophic cardiomyopathy dysfunction mimicked in human engineered heart tissue and improved by sodium-glucose cotransporter 2 inhibitors. Cardiovasc Res 2024; 120:301-317. [PMID: 38240646 PMCID: PMC10939456 DOI: 10.1093/cvr/cvae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 11/15/2023] [Accepted: 11/29/2023] [Indexed: 03/16/2024] Open
Abstract
AIMS Hypertrophic cardiomyopathy (HCM) is the most common inherited cardiomyopathy, often caused by pathogenic sarcomere mutations. Early characteristics of HCM are diastolic dysfunction and hypercontractility. Treatment to prevent mutation-induced cardiac dysfunction is lacking. Sodium-glucose cotransporter 2 inhibitors (SGLT2i) are a group of antidiabetic drugs that recently showed beneficial cardiovascular outcomes in patients with acquired forms of heart failure. We here studied if SGLT2i represent a potential therapy to correct cardiomyocyte dysfunction induced by an HCM sarcomere mutation. METHODS AND RESULTS Contractility was measured of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) harbouring an HCM mutation cultured in 2D and in 3D engineered heart tissue (EHT). Mutations in the gene encoding β-myosin heavy chain (MYH7-R403Q) or cardiac troponin T (TNNT2-R92Q) were investigated. In 2D, intracellular [Ca2+], action potential and ion currents were determined. HCM mutations in hiPSC-CMs impaired relaxation or increased force, mimicking early features observed in human HCM. SGLT2i enhance the relaxation of hiPSC-CMs, to a larger extent in HCM compared to control hiPSC-CMs. Moreover, SGLT2i-effects on relaxation in R403Q EHT increased with culture duration, i.e. hiPSC-CMs maturation. Canagliflozin's effects on relaxation were more pronounced than empagliflozin and dapagliflozin. SGLT2i acutely altered Ca2+ handling in HCM hiPSC-CMs. Analyses of SGLT2i-mediated mechanisms that may underlie enhanced relaxation in mutant hiPSC-CMs excluded SGLT2, Na+/H+ exchanger, peak and late Nav1.5 currents, and L-type Ca2+ current, but indicate an important role for the Na+/Ca2+ exchanger. Indeed, electrophysiological measurements in mutant hiPSC-CM indicate that SGLT2i altered Na+/Ca2+ exchange current. CONCLUSION SGLT2i (canagliflozin > dapagliflozin > empagliflozin) acutely enhance relaxation in human EHT, especially in HCM and upon prolonged culture. SGLT2i may represent a potential therapy to correct early cardiac dysfunction in HCM.
Collapse
Affiliation(s)
- Paul J M Wijnker
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Rafeeh Dinani
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Nico C van der Laan
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Sila Algül
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Bjorn C Knollmann
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Arie O Verkerk
- Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
- Experimental Cardiology, Amsterdam UMC, Academic Medical Centre, Amsterdam, The Netherlands
| | - Carol Ann Remme
- Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
- Experimental Cardiology, Amsterdam UMC, Academic Medical Centre, Amsterdam, The Netherlands
| | - Coert J Zuurbier
- Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
- Laboratory for Experimental Intensive Care and Anesthesiology (L.E.I.C.A.), Department of Anesthesiology, Amsterdam UMC, Academic Medical Centre, Amsterdam, The Netherlands
| | - Diederik W D Kuster
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Jolanda van der Velden
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| |
Collapse
|
18
|
Chen Y, Gong Y, Cai K. Correlations of cardiovascular autonomic neuropathy with urinary albumin excretion rate and cardiac function in patients with type 2 diabetes mellitus. Minerva Endocrinol (Torino) 2024; 49:3-12. [PMID: 33792236 DOI: 10.23736/s2724-6507.21.03358-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND The associations of cardiovascular autonomic neuropathy (CAN) with diabetic nephropathy and heart disease remain elusive. The aim of this study was to explore the correlations of CAN with urinary albumin excretion rate (UAER) and cardiac function in patients with type 2 diabetes mellitus (T2DM). METHODS A total of 225 T2DM patients were assigned into CAN and non-CAN groups using cardiovascular reflex tests (CARTs). They were divided into macroalbuminuria, microalbuminuria and normoalbuminuria groups according to urinary albumin/creatinine ratio (UACR), or left ventricular diastolic dysfunction and normal groups based on left ventricular peak E/A velocity ratio (E/A). The correlations of CAN with albuminuria and left ventricular diastolic dysfunction, and the predictive values of UACR and E/A were analyzed. RESULTS Compared with non-CAN group, CAN group had older age, longer T2DM duration, higher serum urine acid (SUA) level, UACR, systolic and diastolic pressure differences between supine and standing positions, and lower other CARTs parameters and E/A (P<0.001). Macroalbuminuria group had largest positional systolic and diastolic pressure differences, and lowest other CARTs parameters (P<0.001). Compared with normal group, left ventricular diastolic dysfunction group had larger positional systolic and diastolic pressure differences, and lower other CARTs parameters (P<0.001). CAN in T2DM patients was positively correlated with albuminuria and left ventricular diastolic dysfunction (P<0.001). Age, SUA, UACR and E/A were independent predictive factors (P=0.031, P=0.005, P<0.001, P<0.001). UACR and E/A had high predictive values. CONCLUSIONS In T2DM patients, CAN is positively correlated with declined UAER and cardiac function. UACR and E/A have high predictive values.
Collapse
Affiliation(s)
- Yunjiang Chen
- Department of General Practice, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanchun Gong
- Department of General Practice, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kaiyu Cai
- Department of General Practice, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China -
| |
Collapse
|
19
|
Yi M, Cruz Cisneros L, Cho EJ, Alexander M, Kimelman FA, Swentek L, Ferrey A, Tantisattamo E, Ichii H. Nrf2 Pathway and Oxidative Stress as a Common Target for Treatment of Diabetes and Its Comorbidities. Int J Mol Sci 2024; 25:821. [PMID: 38255895 PMCID: PMC10815857 DOI: 10.3390/ijms25020821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/27/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Diabetes is a chronic disease that induces many comorbidities, including cardiovascular disease, nephropathy, and liver damage. Many mechanisms have been suggested as to how diabetes leads to these comorbidities, of which increased oxidative stress in diabetic patients has been strongly implicated. Limited knowledge of antioxidative antidiabetic drugs and substances that can address diabetic comorbidities through the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway calls for detailed investigation. This review will describe how diabetes increases oxidative stress, the general impact of that oxidative stress, and how oxidative stress primarily contributes to diabetic comorbidities. It will also address how treatments for diabetes, especially focusing on their effects on the Nrf2 antioxidative pathway, have been shown to similarly affect the Nrf2 pathway of the heart, kidney, and liver systems. This review demonstrates that the Nrf2 pathway is a common pathogenic component of diabetes and its associated comorbidities, potentially identifying this pathway as a target to guide future treatments.
Collapse
Affiliation(s)
- Michelle Yi
- Department of Surgery, University of California Irvine, Irvine, CA 92697, USA; (M.Y.); (L.C.C.); (E.J.C.); (M.A.); (F.A.K.); (L.S.)
| | - Leslie Cruz Cisneros
- Department of Surgery, University of California Irvine, Irvine, CA 92697, USA; (M.Y.); (L.C.C.); (E.J.C.); (M.A.); (F.A.K.); (L.S.)
| | - Eric J. Cho
- Department of Surgery, University of California Irvine, Irvine, CA 92697, USA; (M.Y.); (L.C.C.); (E.J.C.); (M.A.); (F.A.K.); (L.S.)
| | - Michael Alexander
- Department of Surgery, University of California Irvine, Irvine, CA 92697, USA; (M.Y.); (L.C.C.); (E.J.C.); (M.A.); (F.A.K.); (L.S.)
| | - Francesca A. Kimelman
- Department of Surgery, University of California Irvine, Irvine, CA 92697, USA; (M.Y.); (L.C.C.); (E.J.C.); (M.A.); (F.A.K.); (L.S.)
| | - Lourdes Swentek
- Department of Surgery, University of California Irvine, Irvine, CA 92697, USA; (M.Y.); (L.C.C.); (E.J.C.); (M.A.); (F.A.K.); (L.S.)
| | - Antoney Ferrey
- Department of Medicine, University of California Irvine, Irvine, CA 92697, USA; (A.F.); (E.T.)
| | - Ekamol Tantisattamo
- Department of Medicine, University of California Irvine, Irvine, CA 92697, USA; (A.F.); (E.T.)
| | - Hirohito Ichii
- Department of Surgery, University of California Irvine, Irvine, CA 92697, USA; (M.Y.); (L.C.C.); (E.J.C.); (M.A.); (F.A.K.); (L.S.)
| |
Collapse
|
20
|
Gao S, Liu XP, Li TT, Chen L, Feng YP, Wang YK, Yin YJ, Little PJ, Wu XQ, Xu SW, Jiang XD. Animal models of heart failure with preserved ejection fraction (HFpEF): from metabolic pathobiology to drug discovery. Acta Pharmacol Sin 2024; 45:23-35. [PMID: 37644131 PMCID: PMC10770177 DOI: 10.1038/s41401-023-01152-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/08/2023] [Indexed: 08/31/2023] Open
Abstract
Heart failure (HF) with preserved ejection fraction (HFpEF) is currently a preeminent challenge for cardiovascular medicine. It has a poor prognosis, increasing mortality, and is escalating in prevalence worldwide. Despite accounting for over 50% of all HF patients, the mechanistic underpinnings driving HFpEF are poorly understood, thus impeding the discovery and development of mechanism-based therapies. HFpEF is a disease syndrome driven by diverse comorbidities, including hypertension, diabetes and obesity, pulmonary hypertension, aging, and atrial fibrillation. There is a lack of high-fidelity animal models that faithfully recapitulate the HFpEF phenotype, owing primarily to the disease heterogeneity, which has hampered our understanding of the complex pathophysiology of HFpEF. This review provides an updated overview of the currently available animal models of HFpEF and discusses their characteristics from the perspective of energy metabolism. Interventional strategies for efficiently utilizing energy substrates in preclinical HFpEF models are also discussed.
Collapse
Affiliation(s)
- Si Gao
- Department of Pharmacy, School of Medicine, Guangxi University of Science and Technology, Liuzhou, 545005, China
| | - Xue-Ping Liu
- Department of Pharmacy, School of Medicine, Guangxi University of Science and Technology, Liuzhou, 545005, China
| | - Ting-Ting Li
- Department of Pharmacy, School of Medicine, Guangxi University of Science and Technology, Liuzhou, 545005, China
| | - Li Chen
- Department of Pharmacy, School of Medicine, Guangxi University of Science and Technology, Liuzhou, 545005, China
| | - Yi-Ping Feng
- Department of Pharmacy, School of Medicine, Guangxi University of Science and Technology, Liuzhou, 545005, China
| | - Yu-Kun Wang
- Department of Pharmacy, School of Medicine, Guangxi University of Science and Technology, Liuzhou, 545005, China
| | - Yan-Jun Yin
- School of Pharmacy, Bengbu Medical College, Bengbu, 233000, China
| | - Peter J Little
- School of Pharmacy, University of Queensland, Pharmacy Australia Centre of Excellence, Woolloongabba, QLD, 4102, Australia
| | - Xiao-Qian Wu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China.
| | - Suo-Wen Xu
- Department of Endocrinology, First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China.
| | - Xu-Dong Jiang
- Department of Pharmacy, School of Medicine, Guangxi University of Science and Technology, Liuzhou, 545005, China.
| |
Collapse
|
21
|
Rоsul ММ, М Bletskan М, Ivano NV, Rudakova SO. Expanding the possibilities of using sodium-glucose cotransporter 2 inhibitors in patients with heart failure. WIADOMOSCI LEKARSKIE (WARSAW, POLAND : 1960) 2024; 77:585-590. [PMID: 38691804 DOI: 10.36740/wlek202403130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
OBJECTIVE Aim: To study the potential mechanisms of the beneficial cardiovascular effects of sodium-glucose cotransporter 2 (SGLT-2) inhibitors, the possibilities of improving the treatment and prognosis of patients with acute heart failure (HF) during their use. PATIENTS AND METHODS Materials and Methods: The data analysis of literary sources has been conducted regarding the results of existing studies evaluating the clinical benefit and safety of SGLT-2 inhibitors in patients with acute heart failure. CONCLUSION Conclusions: The peculiarities of the pharmacological action of SGLT-2 inhibitors and the obtained research results expand the possibilities of using this group of drugs, demonstrating encouraging prospects in improving the prognosis of patients hospitalized with acute heart failure.
Collapse
|
22
|
Li N, Zhao M, Yuan L, Chen Y, Zhou H. Association between glycosylated hemoglobin levels, diabetes duration, and left ventricular diastolic dysfunction in patients with type 2 diabetes and preserved ejection fraction: a cross-sectional study. Front Endocrinol (Lausanne) 2023; 14:1326891. [PMID: 38174338 PMCID: PMC10761463 DOI: 10.3389/fendo.2023.1326891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024] Open
Abstract
Background We aimed to explore the intricate interplay between glycated hemoglobin (HbA1C) levels, disease duration, and left ventricular diastolic dysfunction in patients with type 2 diabetes mellitus (T2DM) characterized by preserved ejection fraction. Methods A cross-sectional study was conducted at the Second Affiliated Hospital of Hebei Medical University from January 2022 to December 2022. A total of 114 inpatients from the Department of Endocrinology were randomly selected based on the inclusion and exclusion criteria. Patients with T2DM were stratified into three subgroups, each comprising 38 patients, based on disease duration and HbA1C levels. A sub-analysis was conducted to explore variations among these three distinct groups. A control group comprised 38 age, gender, body mass index (BMI), and smoking habit-matched healthy volunteers form the Physical Examination Center of the same hospital. General demographic information, biochemical results, and echocardiographic data were collected, and correlation and linear regression analyses were performed. Results Diabetic patients exhibited lower E/A values (0.85 (0.72, 1.17) vs. 1.20 (0.97, 1.30)) and elevated E/e' values (9.50 (8.75, 11.00) vs. 9.00 (7.67, 9.85)) compared to their normal controls. In the subgroup analysis, patients with a disease duration exceeding 2 years displayed reduced E/A values (0.85 (0.75, 1.10) vs. 1.10 (0.80, 1.30)) and elevated E/e' values (9.80 (9.20, 10.80) vs. 8.95 (7.77, 9.50)) in comparison to those with a disease duration of ≤2 years, p<0.05. Among patients with a disease duration surpassing 2 years, those with higher HbA1C levels exhibited lower E/A values (0.80 (0.70, 0.90) vs. (0.85 (0.75, 1.10)) and higher E/e' values (11.00 (9.87, 12.15) vs. 9.80 (9.20, 10.80)) in contrast to patients with low HbA1C levels, p<0.05. Multiple linear regression analysis identified HbA1C (β=0.294, p<0.001) and disease duration (β=0.319, p<0.001) as independent risk factors for the E/A value in diabetes patients. Furthermore, HbA1C (β=0.178, p=0.015) and disease duration (β=0.529, p<0.001) emerged as independent risk factors for the E/e' value in diabetic patients. Conclusions In individuals with T2DM exhibiting preserved ejection fraction, the presence of left ventricular diastolic dysfunction is significantly associated with HbA1C levels and the duration of diabetes.
Collapse
Affiliation(s)
| | | | | | | | - Hong Zhou
- Department of Endocrinology, the Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
23
|
Li N, Zhu QX, Li GZ, Wang T, Zhou H. Empagliflozin ameliorates diabetic cardiomyopathy probably via activating AMPK/PGC-1α and inhibiting the RhoA/ROCK pathway. World J Diabetes 2023; 14:1862-1876. [PMID: 38222788 PMCID: PMC10784799 DOI: 10.4239/wjd.v14.i12.1862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/20/2023] [Accepted: 11/17/2023] [Indexed: 12/14/2023] Open
Abstract
BACKGROUND Diabetic cardiomyopathy (DCM) increases the risk of hospitalization for heart failure (HF) and mortality in patients with diabetes mellitus. However, no specific therapy to delay the progression of DCM has been identified. Mitochondrial dysfunction, oxidative stress, inflammation, and calcium handling imbalance play a crucial role in the pathological processes of DCM, ultimately leading to cardiomyocyte apoptosis and cardiac dysfunctions. Empagliflozin, a novel glucose-lowering agent, has been confirmed to reduce the risk of hospitalization for HF in diabetic patients. Nevertheless, the molecular mechanisms by which this agent provides cardioprotection remain unclear. AIM To investigate the effects of empagliflozin on high glucose (HG)-induced oxidative stress and cardiomyocyte apoptosis and the underlying molecular mechanism. METHODS Twelve-week-old db/db mice and primary cardiomyocytes from neonatal rats stimulated with HG (30 mmol/L) were separately employed as in vivo and in vitro models. Echocardiography was used to evaluate cardiac function. Flow cytometry and TdT-mediated dUTP-biotin nick end labeling staining were used to assess apoptosis in myocardial cells. Mitochondrial function was assessed by cellular ATP levels and changes in mitochondrial membrane potential. Furthermore, intracellular reactive oxygen species production and superoxide dismutase activity were analyzed. Real-time quantitative PCR was used to analyze Bax and Bcl-2 mRNA expression. Western blot analysis was used to measure the phosphorylation of AMP-activated protein kinase (AMPK) and myosin phosphatase target subunit 1 (MYPT1), as well as the peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) and active caspase-3 protein levels. RESULTS In the in vivo experiment, db/db mice developed DCM. However, the treatment of db/db mice with empagliflozin (10 mg/kg/d) for 8 wk substantially enhanced cardiac function and significantly reduced myocardial apoptosis, accompanied by an increase in the phosphorylation of AMPK and PGC-1α protein levels, as well as a decrease in the phosphorylation of MYPT1 in the heart. In the in vitro experiment, the findings indicate that treatment of cardiomyocytes with empagliflozin (10 μM) or fasudil (FA) (a ROCK inhibitor, 100 μM) or overexpression of PGC-1α significantly attenuated HG-induced mitochondrial injury, oxidative stress, and cardiomyocyte apoptosis. However, the above effects were partly reversed by the addition of compound C (CC). In cells exposed to HG, empagliflozin treatment increased the protein levels of p-AMPK and PGC-1α protein while decreasing phosphorylated MYPT1 levels, and these changes were mitigated by the addition of CC. Adding FA and overexpressing PGC-1α in cells exposed to HG substantially increased PGC-1α protein levels. In addition, no sodium-glucose cotransporter (SGLT)2 protein expression was detected in cardiomyocytes. CONCLUSION Empagliflozin partially achieves anti-oxidative stress and anti-apoptotic effects on cardiomyocytes under HG conditions by activating AMPK/PGC-1α and suppressing of the RhoA/ROCK pathway independent of SGLT2.
Collapse
Affiliation(s)
- Na Li
- Department of Endocrinology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
| | - Qiu-Xiao Zhu
- Department of Endocrinology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
| | - Gui-Zhi Li
- Department of Endocrinology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
| | - Ting Wang
- Department of Endocrinology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
| | - Hong Zhou
- Department of Endocrinology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
| |
Collapse
|
24
|
Hwang HJ, Kim M, Jun JE, Yon DK. Sodium-glucose cotransporter-2 inhibitors improve clinical outcomes in patients with type 2 diabetes mellitus undergoing anthracycline-containing chemotherapy: an emulated target trial using nationwide cohort data in South Korea. Sci Rep 2023; 13:21756. [PMID: 38066029 PMCID: PMC10709414 DOI: 10.1038/s41598-023-48678-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
Novel hypoglycemic agents, sodium-glucose cotransporter 2 inhibitors (SGLT2i), have shown protective effects against anthracycline (AC)-induced cardiotoxicity and exhibit partial anticancer effects in animal models. However, clinical evidence for this is scarce. This study aimed to evaluate whether SGLT2i improve the clinical outcomes of patients with type 2 diabetes mellitus (T2DM) undergoing AC-containing chemotherapy. A total of 81,572 patients who underwent AC chemotherapy between 2014 and 2021 were recruited from a nationwide Korean cohort. Patients were classified into three groups: patients with T2DM taking SGLT2i (n = 780) and other hypoglycemic agents excluding SGLT2i (non-SGLT2i; n = 3,455) during AC chemotherapy, and the non-DM group (n = 77,337). The clinical outcome was a composite of heart failure hospitalization, acute myocardial infarction, ischemic stroke, and death. After propensity score matching, 779 SGLT2i users were compared with 7800 non-DM patients and 2,337 non-SGLT2i users. The SGLT2i group had better composite outcomes compared with the non-DM group (adjusted hazard ratio [HR] = 0.35, 95% confidence interval [95% CI] = 0.25-0.51) and compared with the non-SGLT2i group (adjusted HR = 0.47, 95% CI = 0.32-0.69). In conclusion, SGLT2i may contribute to improving clinical outcomes in patients with T2DM undergoing AC-containing chemotherapy, through an emulated target trial using Korean nationwide cohort data.
Collapse
Affiliation(s)
- Hui-Jeong Hwang
- Department of Cardiology, Kyung Hee University College of Medicine, Kyung Hee University Hospital at Gangdong, Seoul, 05278, Republic of Korea.
| | - Minji Kim
- Center for Digital Health, Medical Science Research Institute, Kyung Hee University Medical Center, Kyung Hee University College of Medicine, Seoul, 02447, Republic of Korea
- Department of Regulatory Science, Kyung Hee University, Seoul, Republic of Korea
| | - Ji Eun Jun
- Department of Endocrinology and Metabolism, Kyung Hee University Hospital at Gangdong, Kyung Hee University School of Medicine, Seoul, Republic of Korea
| | - Dong Keon Yon
- Center for Digital Health, Medical Science Research Institute, Kyung Hee University Medical Center, Kyung Hee University College of Medicine, Seoul, 02447, Republic of Korea.
- Department of Regulatory Science, Kyung Hee University, Seoul, Republic of Korea.
| |
Collapse
|
25
|
Vaziri Z, Saleki K, Aram C, Alijanizadeh P, Pourahmad R, Azadmehr A, Ziaei N. Empagliflozin treatment of cardiotoxicity: A comprehensive review of clinical, immunobiological, neuroimmune, and therapeutic implications. Biomed Pharmacother 2023; 168:115686. [PMID: 37839109 DOI: 10.1016/j.biopha.2023.115686] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 10/03/2023] [Accepted: 10/08/2023] [Indexed: 10/17/2023] Open
Abstract
Cancer and cardiovascular disorders are known as the two main leading causes of mortality worldwide. Cardiotoxicity is a critical and common adverse effect of cancer-related chemotherapy. Chemotherapy-induced cardiotoxicity has been associated with various cancer treatments, such as anthracyclines, immune checkpoint inhibitors, and kinase inhibitors. Different methods have been reported for the management of chemotherapy-induced cardiotoxicity. In this regard, sodium-glucose cotransporter-2 inhibitors (SGLT2i), a class of antidiabetic agents, have recently been applied to manage heart failure patients. Further, SGLT2i drugs such as EMPA exert protective cardiac and systemic effects. Moreover, it can reduce inflammation through the mediation of major inflammatory components, such as Nucleotide-binding domain-like receptor protein 3 (NLRP3) inflammasomes, Adenosine 5'-monophosphate-activated protein kinase (AMPK), and c-Jun N-terminal kinase (JNK) pathways, Signal transducer and activator of transcription (STAT), and overall decreasing transcription of proinflammatory cytokines. The clinical outcome of EMPA administration is related to improving cardiovascular risk factors, including body weight, lipid profile, blood pressure, and arterial stiffness. Intriguingly, SGLT2 suppressors can regulate microglia-driven hyperinflammation affecting neurological and cardiovascular disorders. In this review, we discuss the protective effects of EMPA in chemotherapy-induced cardiotoxicity from molecular, immunological, and neuroimmunological aspects to preclinical and clinical outcomes.
Collapse
Affiliation(s)
- Zahra Vaziri
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran; USERN Office, Babol University of Medical Sciences, Babol, Iran
| | - Kiarash Saleki
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran; USERN Office, Babol University of Medical Sciences, Babol, Iran; Department of e-Learning, Virtual School of Medical Education and Management, Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
| | - Cena Aram
- Department of Cell & Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Parsa Alijanizadeh
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran; USERN Office, Babol University of Medical Sciences, Babol, Iran
| | - Ramtin Pourahmad
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Azadmehr
- Immunology Department, Babol University of Medical Sciences, Babol, Iran
| | - Naghmeh Ziaei
- Clinical Research Development unit of Rouhani Hospital, Babol University of Medical Sciences, Babol, Iran; Department of Cardiology, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
26
|
Eltobshy SAG, Messiha R, Metias E, Sarhan M, El-Gamal R, El-Shaieb A, Ghalwash M. Effect of SGLT2 Inhibitor on Cardiomyopathy in a Rat Model of T2DM: Possible involvement of Cardiac Aquaporins. Tissue Cell 2023; 85:102200. [PMID: 37660414 DOI: 10.1016/j.tice.2023.102200] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 08/17/2023] [Accepted: 08/19/2023] [Indexed: 09/05/2023]
Abstract
Diabetic cardiomyopathy (DCM) causes arrhythmia, heart failure, and sudden death. Empagliflozin, an SGLT-2 (Sodium glucose co-transporter) inhibitor, is an anti-diabetic medication that decreases blood glucose levels by stimulating urinary glucose excretion. Several aquaporins (AQPs) including AQP-1-3 and - 4 and their involvement in the pathogenesis in different cardiac diseases were detected. In the current study the effect of Empagliflozin on diabetic cardiomyopathy and the possible involvement of cardiac AQPs were investigated. METHODS 56 adult male Sprague-Dawley rats were divided into 4 groups: Control, DCM: type 2 diabetic rats, low EMPA+DCM received empagliflozin (10 mg/kg/day) and high EMPA+DCM received empagliflozin (30 mg/kg/day) for 6 weeks. RESULTS Administration of both EMPA doses, especially in high dose group, led to significant improvement in ECG parameters. Also, a significant improvement in biochemical and cardiac oxidative stress markers (significant decrease in serum CK-MB, and malondialdehyde while increasing catalase) with decreased fibrosis and edema in histopathological examination and a significant attenuation in apoptosis (caspase-3) and edema (AQP-1& -4). CONCLUSION Both doses of Empagliflozin have a cardioprotective effect and reduced myocardial tissue edema with high dose having a greater effect. This might be due to attenuation of oxidative stress, fibrosis and edema mediated through AQP-1, - 3& - 4 expression.
Collapse
Affiliation(s)
- Somaia A G Eltobshy
- Department of Physiology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt.
| | - Refka Messiha
- Department of Physiology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Emile Metias
- Department of Physiology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Mohamed Sarhan
- Department of Physiology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Randa El-Gamal
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt; Medical Experimental Research Center, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Ahmed El-Shaieb
- Department of Pathology, Faculty of Veterinary Medicine, Mansoura university, Mansoura 35516, Egypt
| | - Mohammad Ghalwash
- Department of Physiology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
27
|
Zhou Y, Suo W, Zhang X, Liang J, Zhao W, Wang Y, Li H, Ni Q. Targeting mitochondrial quality control for diabetic cardiomyopathy: Therapeutic potential of hypoglycemic drugs. Biomed Pharmacother 2023; 168:115669. [PMID: 37820568 DOI: 10.1016/j.biopha.2023.115669] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/23/2023] [Accepted: 10/06/2023] [Indexed: 10/13/2023] Open
Abstract
Diabetic cardiomyopathy is a chronic cardiovascular complication caused by diabetes that is characterized by changes in myocardial structure and function, ultimately leading to heart failure and even death. Mitochondria serve as the provider of energy to cardiomyocytes, and mitochondrial dysfunction plays a central role in the development of diabetic cardiomyopathy. In response to a series of pathological changes caused by mitochondrial dysfunction, the mitochondrial quality control system is activated. The mitochondrial quality control system (including mitochondrial biogenesis, fusion and fission, and mitophagy) is core to maintaining the normal structure of mitochondria and performing their normal physiological functions. However, mitochondrial quality control is abnormal in diabetic cardiomyopathy, resulting in insufficient mitochondrial fusion and excessive fission within the cardiomyocyte, and fragmented mitochondria are not phagocytosed in a timely manner, accumulating within the cardiomyocyte resulting in cardiomyocyte injury. Currently, there is no specific therapy or prevention for diabetic cardiomyopathy, and glycemic control remains the mainstay. In this review, we first elucidate the pathogenesis of diabetic cardiomyopathy and explore the link between pathological mitochondrial quality control and the development of diabetic cardiomyopathy. Then, we summarize how clinically used hypoglycemic agents (including sodium-glucose cotransport protein 2 inhibitions, glucagon-like peptide-1 receptor agonists, dipeptidyl peptidase-4 inhibitors, thiazolidinediones, metformin, and α-glucosidase inhibitors) exert cardioprotective effects to treat and prevent diabetic cardiomyopathy by targeting the mitochondrial quality control system. In addition, the mechanisms of complementary alternative therapies, such as active ingredients of traditional Chinese medicine, exercise, and lifestyle, targeting mitochondrial quality control for the treatment of diabetic cardiomyopathy are also added, which lays the foundation for the excavation of new diabetic cardioprotective drugs.
Collapse
Affiliation(s)
- Yutong Zhou
- Guang'an Men Hospital, China Academy of Chinese Medicine, Beijing 100053, China
| | - Wendong Suo
- LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Xinai Zhang
- Guang'an Men Hospital, China Academy of Chinese Medicine, Beijing 100053, China
| | - Jiaojiao Liang
- Zhengzhou Shuqing Medical College, Zhengzhou 450064, China
| | - Weizhe Zhao
- College of Traditional Chinese Medicine, Beijing University of Traditional Chinese Medicine, Beijing 100105, China
| | - Yue Wang
- Capital Medical University, Beijing 100069, China
| | - Hong Li
- LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| | - Qing Ni
- Guang'an Men Hospital, China Academy of Chinese Medicine, Beijing 100053, China.
| |
Collapse
|
28
|
Jasińska-Stroschein M. Searching for Effective Treatments in HFpEF: Implications for Modeling the Disease in Rodents. Pharmaceuticals (Basel) 2023; 16:1449. [PMID: 37895920 PMCID: PMC10610318 DOI: 10.3390/ph16101449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/04/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND While the prevalence of heart failure with preserved ejection fraction (HFpEF) has increased over the last two decades, there still remains a lack of effective treatment. A key therapeutic challenge is posed by the absence of animal models that accurately replicate the complexities of HFpEF. The present review summarizes the effects of a wide spectrum of therapeutic agents on HF. METHODS Two online databases were searched for studies; in total, 194 experimental protocols were analyzed following the PRISMA protocol. RESULTS A diverse range of models has been proposed for studying therapeutic interventions for HFpEF, with most being based on pressure overload and systemic hypertension. They have been used to evaluate more than 150 different substances including ARNIs, ARBs, HMGR inhibitors, SGLT-2 inhibitors and incretins. Existing preclinical studies have primarily focused on LV diastolic performance, and this has been significantly improved by a wide spectrum of candidate therapeutic agents. Few experiments have investigated the normalization of pulmonary congestion, exercise capacity, animal mortality, or certain molecular hallmarks of heart disease. CONCLUSIONS The development of comprehensive preclinical HFpEF models, with multi-organ system phenotyping and physiologic stress-based functional testing, is needed for more successful translation of preclinical research to clinical trials.
Collapse
|
29
|
Saha S, Fang X, Green CD, Das A. mTORC1 and SGLT2 Inhibitors-A Therapeutic Perspective for Diabetic Cardiomyopathy. Int J Mol Sci 2023; 24:15078. [PMID: 37894760 PMCID: PMC10606418 DOI: 10.3390/ijms242015078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/27/2023] [Accepted: 10/04/2023] [Indexed: 10/29/2023] Open
Abstract
Diabetic cardiomyopathy is a critical diabetes-mediated co-morbidity characterized by cardiac dysfunction and heart failure, without predisposing hypertensive or atherosclerotic conditions. Metabolic insulin resistance, promoting hyperglycemia and hyperlipidemia, is the primary cause of diabetes-related disorders, but ambiguous tissue-specific insulin sensitivity has shed light on the importance of identifying a unified target paradigm for both the glycemic and non-glycemic context of type 2 diabetes (T2D). Several studies have indicated hyperactivation of the mammalian target of rapamycin (mTOR), specifically complex 1 (mTORC1), as a critical mediator of T2D pathophysiology by promoting insulin resistance, hyperlipidemia, inflammation, vasoconstriction, and stress. Moreover, mTORC1 inhibitors like rapamycin and their analogs have shown significant benefits in diabetes and related cardiac dysfunction. Recently, FDA-approved anti-hyperglycemic sodium-glucose co-transporter 2 inhibitors (SGLT2is) have gained therapeutic popularity for T2D and diabetic cardiomyopathy, even acknowledging the absence of SGLT2 channels in the heart. Recent studies have proposed SGLT2-independent drug mechanisms to ascertain their cardioprotective benefits by regulating sodium homeostasis and mimicking energy deprivation. In this review, we systematically discuss the role of mTORC1 as a unified, eminent target to treat T2D-mediated cardiac dysfunction and scrutinize whether SGLT2is can target mTORC1 signaling to benefit patients with diabetic cardiomyopathy. Further studies are warranted to establish the underlying cardioprotective mechanisms of SGLT2is under diabetic conditions, with selective inhibition of cardiac mTORC1 but the concomitant activation of mTORC2 (mTOR complex 2) signaling.
Collapse
Affiliation(s)
- Sumit Saha
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, USA; (S.S.); (X.F.); (C.D.G.)
| | - Xianjun Fang
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, USA; (S.S.); (X.F.); (C.D.G.)
| | - Christopher D. Green
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, USA; (S.S.); (X.F.); (C.D.G.)
| | - Anindita Das
- Division of Cardiology, Pauley Heart Center, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
30
|
Fan G, Guo DL. The effect of sodium-glucose cotransporter-2 inhibitors on cardiac structure remodeling and function: A meta-analysis of randomized controlled trials. Eur J Intern Med 2023; 114:49-57. [PMID: 37062643 DOI: 10.1016/j.ejim.2023.04.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 03/19/2023] [Accepted: 04/05/2023] [Indexed: 04/18/2023]
Abstract
BACKGROUND It has been proven that sodium-glucose co-transporter 2 inhibitors (SGLT2is) improve the prognosis of patients with heart failure, independent of the presence of diabetes mellitus. Whether SGLT2 inhibitors affect cardiac structural remodeling and cardiac function is still uncertain. METHODS We included published randomized controlled trials (RCTs) to compare the effect of SGLT2is and control therapy in patients with or without heart failure. The meta-analysis was performed using Review Manager 5.3 software. RESULTS A total of 15 RCTs with a total of 1343 patients were selected for this meta-analysis, 663 of whom were on SGLT2is treatment and 680 of whom were in the control group. SGLT2is significantly improved heart rate (HR) [MD: -2.74, 95% CI (-4.71, -0.77), P = 0.006], left atrium volume index (LAVi) [MD: -1.99, 95% CI (-3.23,-0.75), P = 0.002], E/e' [MD: -1.47, 95% CI (-1.83,-1.10), P<0.00001], left ventricular mass index (LVMi) [MD: -2.38, 95% CI (-4.35, -0.40), P = 0.02], left ventricular end-systolic volume (LVESV) [MD: -6.50, 95% CI (-11.15,-1.84), P = 0.006], and left ventricular ejection fraction (LVEF) [MD: 1.78, 95% CI (0.56,3.01), P = 0.004] in the total population. Subgroup analysis indicated that compared with other SGLT2is, empagliflozin significantly decreased LVEDV, LVESV,LVMi, LAVi, E/e', and increased LVEF (P<0.05). In addition, the cardiac anti-remodeling effects of SGLT2 are particularly significant in patients with heart failure. CONCLUSION Our study showed that SGLT2is, particularly empagliflozin, significantly reverse cardiac remodeling in patients with heart failure. Empagliflozin may be a potentially promising agent to reverse cardiac remodeling in clinical practice.
Collapse
Affiliation(s)
- Gang Fan
- Cardiology Department of Xianyang First People's Hospital, Xianyang, ShaanXi 712000, PR China.
| | - Dian-Long Guo
- Cardiology Department of Xianyang First People's Hospital, Xianyang, ShaanXi 712000, PR China.
| |
Collapse
|
31
|
Silva Dos Santos D, Turaça LT, Coutinho KCDS, Barbosa RAQ, Polidoro JZ, Kasai-Brunswick TH, Campos de Carvalho AC, Girardi ACC. Empagliflozin reduces arrhythmogenic effects in rat neonatal and human iPSC-derived cardiomyocytes and improves cytosolic calcium handling at least partially independent of NHE1. Sci Rep 2023; 13:8689. [PMID: 37248416 DOI: 10.1038/s41598-023-35944-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 05/26/2023] [Indexed: 05/31/2023] Open
Abstract
The antidiabetic agent class of sodium-glucose cotransporter 2 (SGLT2) inhibitors confer unprecedented cardiovascular benefits beyond glycemic control, including reducing the risk of fatal ventricular arrhythmias. However, the impact of SGLT2 inhibitors on the electrophysiological properties of cardiomyocytes exposed to stimuli other than hyperglycemia remains elusive. This investigation tested the hypothesis that the SGLT2 inhibitor empagliflozin (EMPA) affects cardiomyocyte electrical activity under hypoxic conditions. Rat neonatal and human induced pluripotent stem cell (iPSC)-derived cardiomyocytes incubated or not with the hypoxia-mimetic agent CoCl2 were treated with EMPA (1 μM) or vehicle for 24 h. Action potential records obtained using intracellular microelectrodes demonstrated that EMPA reduced the action potential duration at 30%, 50%, and 90% repolarization and arrhythmogenic events in rat and human cardiomyocytes under normoxia and hypoxia. Analysis of Ca2+ transients using Fura-2-AM and contractility kinetics showed that EMPA increased Ca2+ transient amplitude and decreased the half-time to recover Ca2+ transients and relaxation time in rat neonatal cardiomyocytes. We also observed that the combination of EMPA with the Na+/H+ exchanger isoform 1 (NHE1) inhibitor cariporide (10 µM) exerted a more pronounced effect on Ca2+ transients and contractility than either EMPA or cariporide alone. Besides, EMPA, but not cariporide, increased phospholamban phosphorylation at serine 16. Collectively, our data reveal that EMPA reduces arrhythmogenic events, decreases the action potential duration in rat neonatal and human cardiomyocytes under normoxic or hypoxic conditions, and improves cytosolic calcium handling at least partially independent of NHE1. Moreover, we provided further evidence that SGLT2 inhibitor-mediated cardioprotection may be partly attributed to its cardiomyocyte electrophysiological effects.
Collapse
Affiliation(s)
- Danúbia Silva Dos Santos
- Laboratório de Genética e Cardiologia Molecular, Faculdade de Medicina, Instituto do Coração (InCor), Hospital das Clínicas HCFMUSP, Universidade de São Paulo, Avenida Dr. Enéas de Carvalho Aguiar, 44 - Bloco II 10° Andar, São Paulo, 05403-900, Brazil
| | - Lauro Thiago Turaça
- Laboratório de Genética e Cardiologia Molecular, Faculdade de Medicina, Instituto do Coração (InCor), Hospital das Clínicas HCFMUSP, Universidade de São Paulo, Avenida Dr. Enéas de Carvalho Aguiar, 44 - Bloco II 10° Andar, São Paulo, 05403-900, Brazil
| | | | - Raiana Andrade Quintanilha Barbosa
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Centro de Tecnologia Celular, Instituto Nacional de Cardiologia, Rio de Janeiro, Brazil
| | - Juliano Zequini Polidoro
- Laboratório de Genética e Cardiologia Molecular, Faculdade de Medicina, Instituto do Coração (InCor), Hospital das Clínicas HCFMUSP, Universidade de São Paulo, Avenida Dr. Enéas de Carvalho Aguiar, 44 - Bloco II 10° Andar, São Paulo, 05403-900, Brazil
| | - Tais Hanae Kasai-Brunswick
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Centro Nacional de Biologia Estrutural e Bioimagem (CENABIO), Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Antonio Carlos Campos de Carvalho
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Centro Nacional de Biologia Estrutural e Bioimagem (CENABIO), Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Adriana Castello Costa Girardi
- Laboratório de Genética e Cardiologia Molecular, Faculdade de Medicina, Instituto do Coração (InCor), Hospital das Clínicas HCFMUSP, Universidade de São Paulo, Avenida Dr. Enéas de Carvalho Aguiar, 44 - Bloco II 10° Andar, São Paulo, 05403-900, Brazil.
| |
Collapse
|
32
|
Chung CC, Lin YK, Chen YC, Kao YH, Yeh YH, Trang NN, Chen YJ. Empagliflozin suppressed cardiac fibrogenesis through sodium-hydrogen exchanger inhibition and modulation of the calcium homeostasis. Cardiovasc Diabetol 2023; 22:27. [PMID: 36747205 PMCID: PMC9903522 DOI: 10.1186/s12933-023-01756-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 01/26/2023] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The novel sodium-glucose co-transporter 2 inhibitor (SGLT2i) potentially ameliorates heart failure and reduces cardiac arrhythmia. Cardiac fibrosis plays a pivotal role in the pathophysiology of HF and atrial myopathy, but the effect of SGLT2i on fibrogenesis remains to be elucidated. This study investigated whether SGLT2i directly modulates fibroblast activities and its underlying mechanisms. METHODS AND RESULTS Migration, proliferation analyses, intracellular pH assay, intracellular inositol triphosphate (IP3) assay, Ca2+ fluorescence imaging, and Western blotting were applied to human atrial fibroblasts. Empagliflozin (an SGLT2i, 1, or 5 μmol/L) reduced migration capability and collagen type I, and III production. Compared with control cells, empagliflozin (1 μmol/L)- treated atrial fibroblasts exhibited lower endoplasmic reticulum (ER) Ca2+ leakage, Ca2+ entry, inositol trisphosphate (IP3), lower expression of phosphorylated phospholipase C (PLC), and lower intracellular pH. In the presence of cariporide (an Na+-H+ exchanger (NHE) inhibitor, 10 μmol/L), control and empagliflozin (1 μmol/L)-treated atrial fibroblasts revealed similar intracellular pH, ER Ca2+ leakage, Ca2+ entry, phosphorylated PLC, pro-collagen type I, type III protein expression, and migration capability. Moreover, empagliflozin (10 mg/kg/day orally for 28 consecutive days) significantly increased left ventricle systolic function, ß-hydroxybutyrate and decreased atrial fibrosis, in isoproterenol (100 mg/kg, subcutaneous injection)-induced HF rats. CONCLUSIONS By inhibiting NHE, empagliflozin decreases the expression of phosphorylated PLC and IP3 production, thereby reducing ER Ca2+ release, extracellular Ca2+ entry and the profibrotic activities of atrial fibroblasts.
Collapse
Affiliation(s)
- Cheng-Chih Chung
- grid.412896.00000 0000 9337 0481Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan ,grid.412896.00000 0000 9337 0481Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan ,grid.412896.00000 0000 9337 0481Taipei Heart Institute, Taipei Medical University, Taipei, Taiwan
| | - Yung-Kuo Lin
- grid.412896.00000 0000 9337 0481Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan ,grid.412896.00000 0000 9337 0481Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan ,grid.412896.00000 0000 9337 0481Taipei Heart Institute, Taipei Medical University, Taipei, Taiwan
| | - Yao-Chang Chen
- grid.260565.20000 0004 0634 0356Department of Biomedical Engineering, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Hsun Kao
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, No. 250, Wu-Hsing Street, 11031, Taipei, Taiwan. .,Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| | - Yung-Hsin Yeh
- grid.413801.f0000 0001 0711 0593Division of Cardiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan ,grid.145695.a0000 0004 1798 0922College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Nguyen Ngoc Trang
- grid.414163.50000 0004 4691 4377Radiology Center, Bach Mai Hospital, Hanoi, Vietnam
| | - Yi-Jen Chen
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan. .,Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan. .,Taipei Heart Institute, Taipei Medical University, Taipei, Taiwan. .,Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, No. 250, Wu-Hsing Street, 11031, Taipei, Taiwan.
| |
Collapse
|
33
|
Sun H, Wang Z, Wang Y, Rong H, Wang D, Liu X, Jin K, Sun Z, Fan Q. Bibliometric and visualized analysis of sodium-Glucose cotransporter 2 inhibitors. Front Pharmacol 2023; 13:1009025. [PMID: 36686683 PMCID: PMC9846544 DOI: 10.3389/fphar.2022.1009025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 12/13/2022] [Indexed: 01/06/2023] Open
Abstract
Background: Sodium-glucose cotransporter 2 inhibitors have proved to be extremely effective and reliable in reducing hyperglycemia, and have also been used for the treatment of cardiovascular and renal disease in patients with or without type 2 diabetes. Thousands of research articles on SGLT2 inhibitors have been published in the past, but few bibliometric analyses have systematically been studied this field. We aimed to visualize the global research hotspots and trends of SGLT2 inhibitors using a bibliometric analysis to provide new evidence and ideas for researchers and clinicians in this field. Methods: We retrieved publications from Science Citation Index Expanded of Web of Science Core Collection in 2004-2022 on 1 July 2022. Microsoft Excel, CiteSpace and VOSviewer were employed to collect publication data, analyze publication trends, and visualize relevant results. Results: We identified 4,419 original research articles on SGLT2 inhibitors published between 2004 and the first half of 2022. Global SGLT2 inhibitors-related research increased rapidly from 2004 to 2022, especially recently. United States made the greatest contribution to the topic, with (1,629, 36.86%) publications and citations (88,892). AstraZeneca was the most prolific institutions (272, 6.16%). Heerspink HJL published the most related articles (98), whereas Zinman B was cited the most frequently (1,784 citations). Diabetes Obesity and Metabolism was the journal with the most studies (406, 9.19%), and The New England Journal of Medicine was the most commonly cited journal (11,617 citations), with nine of the top 10 co-cited references published in this journal. The emerging keywords "heart failure," "diabetic cardiomyopathy," "ejection fraction," "mortality," "biomarker," "fibrosis," "ampk," and "guideline" appeared the most recently as research frontiers. Conclusion: United States is the leader in SGLT2 inhibitor research. Recently, the research on SGLT2 inhibitors has focused on clinical trials, related mechanisms, and therapy. In the future, the research on SGLT2 inhibitors will delve into molecular mechanisms, especially those related to fibrosis and AMPK, revealing the link between SGLT2 inhibitors and heart failure and diabetic cardiomyopathy will be the next research hotspot.
Collapse
Affiliation(s)
- He Sun
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, China,Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhongqing Wang
- Department of Information Center, The First Hospital of China Medical University, Shenyang, China
| | - Yuxi Wang
- Department of Clinical Medicine, China Medical University, Shenyang, China
| | - Haichuan Rong
- Department of Clinical Medicine, China Medical University, Shenyang, China
| | - Danyang Wang
- Department of Clinical Medicine, China Medical University, Shenyang, China
| | - Xiangnian Liu
- Department of Clinical Medicine, China Medical University, Shenyang, China
| | - Ke Jin
- Department of Clinical Medicine, China Medical University, Shenyang, China
| | - Zhicheng Sun
- Department of Clinical Medicine, China Medical University, Shenyang, China
| | - Qiuling Fan
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, China,Department of Nephrology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shenyang, China,*Correspondence: Qiuling Fan,
| |
Collapse
|
34
|
Gao Z, Bao J, Hu Y, Tu J, Ye L, Wang L. Sodium-glucose Cotransporter 2 Inhibitors and Pathological Myocardial Hypertrophy. Curr Drug Targets 2023; 24:1009-1022. [PMID: 37691190 PMCID: PMC10879742 DOI: 10.2174/1389450124666230907115831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/18/2023] [Accepted: 08/23/2023] [Indexed: 09/12/2023]
Abstract
Sodium-glucose cotransporter 2 (SGLT2) inhibitors are a new type of oral hypoglycemic drugs that exert a hypoglycemic effect by blocking the reabsorption of glucose in the proximal renal tubules, thus promoting the excretion of glucose from urine. Their hypoglycemic effect is not dependent on insulin. Increasing data shows that SGLT2 inhibitors improve cardiovascular outcomes in patients with type 2 diabetes. Previous studies have demonstrated that SGLT2 inhibitors can reduce pathological myocardial hypertrophy with or without diabetes, but the exact mechanism remains to be elucidated. To clarify the relationship between SGLT2 inhibitors and pathological myocardial hypertrophy, with a view to providing a reference for the future treatment thereof, this study reviewed the possible mechanisms of SGLT2 inhibitors in attenuating pathological myocardial hypertrophy. We focused specifically on the mechanisms in terms of inflammation, oxidative stress, myocardial fibrosis, mitochondrial function, epicardial lipids, endothelial function, insulin resistance, cardiac hydrogen and sodium exchange, and autophagy.
Collapse
Affiliation(s)
- Zhicheng Gao
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
- Heart Center, Department of Cardiovascular Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jiaqi Bao
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
- Heart Center, Department of Cardiovascular Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yilan Hu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
- Heart Center, Department of Cardiovascular Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Junjie Tu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Lifang Ye
- Heart Center, Department of Cardiovascular Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Lihong Wang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
- Heart Center, Department of Cardiovascular Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
35
|
van der Velden J, Asselbergs FW, Bakkers J, Batkai S, Bertrand L, Bezzina CR, Bot I, Brundel BJJM, Carrier L, Chamuleau S, Ciccarelli M, Dawson D, Davidson SM, Dendorfer A, Duncker DJ, Eschenhagen T, Fabritz L, Falcão-Pires I, Ferdinandy P, Giacca M, Girao H, Gollmann-Tepeköylü C, Gyongyosi M, Guzik TJ, Hamdani N, Heymans S, Hilfiker A, Hilfiker-Kleiner D, Hoekstra AG, Hulot JS, Kuster DWD, van Laake LW, Lecour S, Leiner T, Linke WA, Lumens J, Lutgens E, Madonna R, Maegdefessel L, Mayr M, van der Meer P, Passier R, Perbellini F, Perrino C, Pesce M, Priori S, Remme CA, Rosenhahn B, Schotten U, Schulz R, Sipido KR, Sluijter JPG, van Steenbeek F, Steffens S, Terracciano CM, Tocchetti CG, Vlasman P, Yeung KK, Zacchigna S, Zwaagman D, Thum T. Animal models and animal-free innovations for cardiovascular research: current status and routes to be explored. Consensus document of the ESC Working Group on Myocardial Function and the ESC Working Group on Cellular Biology of the Heart. Cardiovasc Res 2022; 118:3016-3051. [PMID: 34999816 PMCID: PMC9732557 DOI: 10.1093/cvr/cvab370] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 01/05/2022] [Indexed: 01/09/2023] Open
Abstract
Cardiovascular diseases represent a major cause of morbidity and mortality, necessitating research to improve diagnostics, and to discover and test novel preventive and curative therapies, all of which warrant experimental models that recapitulate human disease. The translation of basic science results to clinical practice is a challenging task, in particular for complex conditions such as cardiovascular diseases, which often result from multiple risk factors and comorbidities. This difficulty might lead some individuals to question the value of animal research, citing the translational 'valley of death', which largely reflects the fact that studies in rodents are difficult to translate to humans. This is also influenced by the fact that new, human-derived in vitro models can recapitulate aspects of disease processes. However, it would be a mistake to think that animal models do not represent a vital step in the translational pathway as they do provide important pathophysiological insights into disease mechanisms particularly on an organ and systemic level. While stem cell-derived human models have the potential to become key in testing toxicity and effectiveness of new drugs, we need to be realistic, and carefully validate all new human-like disease models. In this position paper, we highlight recent advances in trying to reduce the number of animals for cardiovascular research ranging from stem cell-derived models to in situ modelling of heart properties, bioinformatic models based on large datasets, and state-of-the-art animal models, which show clinically relevant characteristics observed in patients with a cardiovascular disease. We aim to provide a guide to help researchers in their experimental design to translate bench findings to clinical routine taking the replacement, reduction, and refinement (3R) as a guiding concept.
Collapse
Grants
- R01 HL150359 NHLBI NIH HHS
- RG/16/14/32397 British Heart Foundation
- FS/18/37/33642 British Heart Foundation
- PG/17/64/33205 British Heart Foundation
- PG/15/88/31780 British Heart Foundation
- FS/RTF/20/30009, NH/19/1/34595, PG/18/35/33786, CS/17/4/32960, PG/15/88/31780, and PG/17/64/33205 British Heart Foundation
- NC/T001488/1 National Centre for the Replacement, Refinement and Reduction of Animals in Research
- PG/18/44/33790 British Heart Foundation
- CH/16/3/32406 British Heart Foundation
- FS/RTF/20/30009 British Heart Foundation
- NWO-ZonMW
- ZonMW and Heart Foundation for the translational research program
- Dutch Cardiovascular Alliance (DCVA)
- Leducq Foundation
- Dutch Research Council
- Association of Collaborating Health Foundations (SGF)
- UCL Hospitals NIHR Biomedical Research Centre, and the DCVA
- Netherlands CardioVascular Research Initiative CVON
- Stichting Hartekind and the Dutch Research Counsel (NWO) (OCENW.GROOT.2019.029)
- National Fund for Scientific Research, Belgium and Action de Recherche Concertée de la Communauté Wallonie-Bruxelles, Belgium
- Netherlands CardioVascular Research Initiative CVON (PREDICT2 and CONCOR-genes projects), the Leducq Foundation
- ERA PerMed (PROCEED study)
- Netherlands Cardiovascular Research Initiative
- Dutch Heart Foundation
- German Centre of Cardiovascular Research (DZHH)
- Chest Heart and Stroke Scotland
- Tenovus Scotland
- Friends of Anchor and Grampian NHS-Endowments
- National Institute for Health Research University College London Hospitals Biomedical Research Centre
- German Centre for Cardiovascular Research
- European Research Council (ERC-AG IndivuHeart), the Deutsche Forschungsgemeinschaft
- European Union Horizon 2020 (REANIMA and TRAINHEART)
- German Ministry of Education and Research (BMBF)
- Centre for Cardiovascular Research (DZHK)
- European Union Horizon 2020
- DFG
- National Research, Development and Innovation Office of Hungary
- Research Excellence Program—TKP; National Heart Program
- Austrian Science Fund
- European Union Commission’s Seventh Framework programme
- CVON2016-Early HFPEF
- CVON She-PREDICTS
- CVON Arena-PRIME
- European Union’s Horizon 2020 research and innovation programme
- Deutsche Forschungsgemeinschaft
- Volkswagenstiftung
- French National Research Agency
- ERA-Net-CVD
- Fédération Française de Cardiologie, the Fondation pour la Recherche Médicale
- French PIA Project
- University Research Federation against heart failure
- Netherlands Heart Foundation
- Dekker Senior Clinical Scientist
- Health Holland TKI-LSH
- TUe/UMCU/UU Alliance Fund
- south African National Foundation
- Cancer Association of South Africa and Winetech
- Netherlands Heart Foundation/Applied & Engineering Sciences
- Dutch Technology Foundation
- Pie Medical Imaging
- Netherlands Organisation for Scientific Research
- Dr. Dekker Program
- Netherlands CardioVascular Research Initiative: the Dutch Heart Foundation
- Dutch Federation of University Medical Centres
- Netherlands Organization for Health Research and Development and the Royal Netherlands Academy of Sciences for the GENIUS-II project
- Netherlands Organization for Scientific Research (NWO) (VICI grant); the European Research Council
- Incyte s.r.l. and from Ministero dell’Istruzione, Università e Ricerca Scientifica
- German Center for Cardiovascular Research (Junior Research Group & Translational Research Project), the European Research Council (ERC Starting Grant NORVAS),
- Swedish Heart-Lung-Foundation
- Swedish Research Council
- National Institutes of Health
- Bavarian State Ministry of Health and Care through the research project DigiMed Bayern
- ERC
- ERA-CVD
- Dutch Heart Foundation, ZonMw
- the NWO Gravitation project
- Ministero dell'Istruzione, Università e Ricerca Scientifica
- Regione Lombardia
- Netherlands Organisation for Health Research and Development
- ITN Network Personalize AF: Personalized Therapies for Atrial Fibrillation: a translational network
- MAESTRIA: Machine Learning Artificial Intelligence Early Detection Stroke Atrial Fibrillation
- REPAIR: Restoring cardiac mechanical function by polymeric artificial muscular tissue
- Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)
- European Union H2020 program to the project TECHNOBEAT
- EVICARE
- BRAV3
- ZonMw
- German Centre for Cardiovascular Research (DZHK)
- British Heart Foundation Centre for Cardiac Regeneration
- British Heart Foundation studentship
- NC3Rs
- Interreg ITA-AUS project InCARDIO
- Italian Association for Cancer Research
Collapse
Affiliation(s)
- Jolanda van der Velden
- Amsterdam UMC, Vrije Universiteit, Physiology, Amsterdam Cardiovascular Science, Amsterdam, The Netherlands
- Netherlands Heart Institute, Utrecht, The Netherlands
| | - Folkert W Asselbergs
- Division Heart & Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- Faculty of Population Health Sciences, Institute of Cardiovascular Science and Institute of Health Informatics, University College London, London, UK
| | - Jeroen Bakkers
- Hubrecht Institute-KNAW and University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Sandor Batkai
- Hannover Medical School, Institute of Molecular and Translational Therapeutic Strategies, Hannover, Germany
| | - Luc Bertrand
- Hannover Medical School, Institute of Molecular and Translational Therapeutic Strategies, Hannover, Germany
| | - Connie R Bezzina
- Université catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Pole of Cardiovascular Research, Brussels, Belgium
| | - Ilze Bot
- Heart Center, Department of Experimental Cardiology, Amsterdam UMC, Location Academic Medical Center, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, The Netherlands
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Bianca J J M Brundel
- Amsterdam UMC, Vrije Universiteit, Physiology, Amsterdam Cardiovascular Science, Amsterdam, The Netherlands
| | - Lucie Carrier
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, Hamburg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Steven Chamuleau
- Amsterdam UMC, Heart Center, Cardiology, Amsterdam Cardiovascular Science, Amsterdam, The Netherlands
| | - Michele Ciccarelli
- Department of Medicine, Surgery and Odontology, University of Salerno, Fisciano (SA), Italy
| | - Dana Dawson
- Department of Cardiology, Aberdeen Cardiovascular and Diabetes Centre, Aberdeen Royal Infirmary and University of Aberdeen, Aberdeen, UK
| | - Sean M Davidson
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London WC1E 6HX, UK
| | - Andreas Dendorfer
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Dirk J Duncker
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Thomas Eschenhagen
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, Hamburg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Larissa Fabritz
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
- University Center of Cardiovascular Sciences and Department of Cardiology, University Heart Center Hamburg, Germany and Institute of Cardiovascular Sciences, University of Birmingham, UK
| | - Ines Falcão-Pires
- UnIC - Cardiovascular Research and Development Centre, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Portugal
| | - Péter Ferdinandy
- Cardiometabolic Research Group and MTA-SE System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Mauro Giacca
- Department of Medicine, Surgery and Health Sciences and Cardiovascular Department, Centre for Translational Cardiology, Azienda Sanitaria Universitaria Integrata Trieste, Trieste, Italy
- International Center for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
- King’s British Heart Foundation Centre, King’s College London, London, UK
| | - Henrique Girao
- Univ Coimbra, Center for Innovative Biomedicine and Biotechnology, Faculty of Medicine, Coimbra, Portugal
- Clinical Academic Centre of Coimbra, Coimbra, Portugal
| | | | - Mariann Gyongyosi
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Tomasz J Guzik
- Instutute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
- Jagiellonian University, Collegium Medicum, Kraków, Poland
| | - Nazha Hamdani
- Division Cardiology, Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
- Institute of Physiology, Ruhr University Bochum, Bochum, Germany
| | - Stephane Heymans
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, Maastricht University, Maastricht, The Netherlands
- Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - Andres Hilfiker
- Department for Cardiothoracic, Transplant, and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Denise Hilfiker-Kleiner
- Department for Cardiology and Angiology, Hannover Medical School, Hannover, Germany
- Department of Cardiovascular Complications in Pregnancy and in Oncologic Therapies, Comprehensive Cancer Centre, Philipps-Universität Marburg, Germany
| | - Alfons G Hoekstra
- Computational Science Lab, Informatics Institute, Faculty of Science, University of Amsterdam, Amsterdam, the Netherlands
| | - Jean-Sébastien Hulot
- Université de Paris, INSERM, PARCC, F-75015 Paris, France
- CIC1418 and DMU CARTE, AP-HP, Hôpital Européen Georges-Pompidou, F-75015 Paris, France
| | - Diederik W D Kuster
- Amsterdam UMC, Vrije Universiteit, Physiology, Amsterdam Cardiovascular Science, Amsterdam, The Netherlands
| | - Linda W van Laake
- Division Heart & Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Sandrine Lecour
- Department of Medicine, Hatter Institute for Cardiovascular Research in Africa and Cape Heart Institute, University of Cape Town, Cape Town, South Africa
| | - Tim Leiner
- Department of Radiology, Utrecht University Medical Center, Utrecht, the Netherlands
| | - Wolfgang A Linke
- Institute of Physiology II, University of Muenster, Robert-Koch-Str. 27B, 48149 Muenster, Germany
| | - Joost Lumens
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Esther Lutgens
- Experimental Vascular Biology Division, Department of Medical Biochemistry, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität München (LMU), Munich, Germany
- DZHK, Partner Site Munich Heart Alliance, Munich, Germany
| | - Rosalinda Madonna
- Department of Pathology, Cardiology Division, University of Pisa, 56124 Pisa, Italy
- Department of Internal Medicine, Cardiology Division, University of Texas Medical School in Houston, Houston, TX, USA
| | - Lars Maegdefessel
- DZHK, Partner Site Munich Heart Alliance, Munich, Germany
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Manuel Mayr
- King’s British Heart Foundation Centre, King’s College London, London, UK
| | - Peter van der Meer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Robert Passier
- Department of Applied Stem Cell Technologies, TechMed Centre, University of Twente, 7500AE Enschede, The Netherlands
- Department of Anatomy and Embryology, Leiden University Medical Centre, 2300 RC Leiden, The Netherlands
| | - Filippo Perbellini
- Hannover Medical School, Institute of Molecular and Translational Therapeutic Strategies, Hannover, Germany
| | - Cinzia Perrino
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Maurizio Pesce
- Unità di Ingegneria Tissutale Cardiovascolare, Centro cardiologico Monzino, IRCCS, Milan, Italy
| | - Silvia Priori
- Molecular Cardiology, Istituti Clinici Scientifici Maugeri, Pavia, Italy
- University of Pavia, Pavia, Italy
| | - Carol Ann Remme
- Université catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Pole of Cardiovascular Research, Brussels, Belgium
| | - Bodo Rosenhahn
- Institute for information Processing, Leibniz University of Hanover, 30167 Hannover, Germany
| | - Ulrich Schotten
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands
| | - Rainer Schulz
- Institute of Physiology, Justus Liebig University Giessen, Giessen, Germany
| | - Karin R Sipido
- Department of Cardiovascular Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Joost P G Sluijter
- Experimental Cardiology Laboratory, Department of Cardiology, Regenerative Medicine Center Utrecht, Circulatory Health Laboratory, Utrecht University, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Frank van Steenbeek
- Division Heart & Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Sabine Steffens
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität München (LMU), Munich, Germany
- DZHK, Partner Site Munich Heart Alliance, Munich, Germany
| | | | - Carlo Gabriele Tocchetti
- Cardio-Oncology Unit, Department of Translational Medical Sciences, Center for Basic and Clinical Immunology Research (CISI), Interdepartmental Center for Clinical and Translational Research (CIRCET), Interdepartmental Hypertension Research Center (CIRIAPA), Federico II University, Naples, Italy
| | - Patricia Vlasman
- Amsterdam UMC, Vrije Universiteit, Physiology, Amsterdam Cardiovascular Science, Amsterdam, The Netherlands
| | - Kak Khee Yeung
- Amsterdam UMC, Vrije Universiteit, Surgery, Amsterdam Cardiovascular Science, Amsterdam, The Netherlands
| | - Serena Zacchigna
- Department of Medicine, Surgery and Health Sciences and Cardiovascular Department, Centre for Translational Cardiology, Azienda Sanitaria Universitaria Integrata Trieste, Trieste, Italy
- International Center for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Dayenne Zwaagman
- Amsterdam UMC, Heart Center, Cardiology, Amsterdam Cardiovascular Science, Amsterdam, The Netherlands
| | - Thomas Thum
- Hannover Medical School, Institute of Molecular and Translational Therapeutic Strategies, Hannover, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| |
Collapse
|
36
|
Gao J, Xue G, Zhan G, Wang X, Li J, Yang X, Xia Y. Benefits of SGLT2 inhibitors in arrhythmias. Front Cardiovasc Med 2022; 9:1011429. [PMID: 36337862 PMCID: PMC9631490 DOI: 10.3389/fcvm.2022.1011429] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/04/2022] [Indexed: 09/25/2023] Open
Abstract
Some studies have shown that sodium-glucose cotransporter (SGLT) 2 inhibitors can definitively attenuate the occurrence of cardiovascular diseases such as heart failure (HF), dilated cardiomyopathy (DCM), and myocardial infarction. With the development of research, SGLT2 inhibitors can also reduce the risk of arrhythmias. So in this review, how SGLT2 inhibitors play a role in reducing the risk of arrhythmia from the perspective of electrical remodeling and structural remodeling are explored and then the possible mechanisms are discussed. Specifically, we focus on the role of SGLT2 inhibitors in Na+ and Ca2 + homeostasis and the transients of Na+ and Ca2 +, which could affect electrical remodeling and then lead to arrythmia. We also discuss the protective role of SGLT2 inhibitors in structural remodeling from the perspective of fibrosis, inflammation, oxidative stress, and apoptosis. Ultimately, it is clear that SGLT2 inhibitors have significant benefits on cardiovascular diseases such as HF, myocardial hypertrophy and myocardial infarction. It can be expected that SGLT2 inhibitors can reduce the risk of arrhythmia.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yunlong Xia
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
37
|
Empagliflozin prevents angiotensin II-induced hypertension related micro and macrovascular endothelial cell activation and diastolic dysfunction in rats despite persistent hypertension: Role of endothelial SGLT1 and 2. Vascul Pharmacol 2022; 146:107095. [PMID: 35944842 DOI: 10.1016/j.vph.2022.107095] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 12/31/2022]
Abstract
SGLT2 inhibitors (SGLT2i) showed pronounced beneficial effects in patients with heart failure but the underlying mechanisms remain unclear. We evaluated the effect of empagliflozin, selective SGLT2i, on hypertension-induced cardiac and vascular dysfunction. Male Wistar rats received diet with or without empagliflozin (30 mg/kg/day). After 1 week, a hypertensive dose of Ang II (0.4 mg/kg/day) was administered using osmotic mini-pumps for 4 weeks. Systolic blood pressure was determined by sphygmomanometry, the cardiac function by echocardiography and ex vivo (coronary microvascular endothelial cell activation, LV remodeling and fibrosis responses), and the systemic micro and macrovascular endothelial cell activation ex vivo. Empagliflozin treatment did not affect the Ang II-induced hypertensive response. Ang II treatment increased LV mass and induced LV diastolic dysfunction, fibrosis, collagen I and ANP expression, and infiltration of macrophages. In the vasculature, it caused eNOS upregulation in the aorta and down-regulation in mesenteric microvessels associated with increased oxidative stress, ACE, AT1R, VCAM-1, MCP-1, MMP-2, and MMP-9 and collagen I expression, increased endothelial SGLT1 staining in the aorta, mesenteric and coronary microvessels, increased SGLT1 and 2 protein levels in the aorta. All Ang II-induced cardiac and vascular responses were reduced by the empagliflozin treatment. Thus, the SGLT2i effectively attenuated the deleterious impact of Ang II-induced hypertension on target organs including cardiac diastolic dysfunction and remodeling, and endothelial cell activation and pro-atherosclerotic, pro-fibrotic and pro-remodeling responses in macro and microvessels despite persistent hypertension.
Collapse
|
38
|
Gliozzi M, Macrì R, Coppoletta AR, Musolino V, Carresi C, Scicchitano M, Bosco F, Guarnieri L, Cardamone A, Ruga S, Scarano F, Nucera S, Mollace R, Bava I, Caminiti R, Serra M, Maiuolo J, Palma E, Mollace V. From Diabetes Care to Heart Failure Management: A Potential Therapeutic Approach Combining SGLT2 Inhibitors and Plant Extracts. Nutrients 2022; 14:nu14183737. [PMID: 36145112 PMCID: PMC9504067 DOI: 10.3390/nu14183737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 11/30/2022] Open
Abstract
Diabetes is a complex chronic disease, and among the affected patients, cardiovascular disease (CVD)is the most common cause of death. Consequently, the evidence for the cardiovascular benefit of glycaemic control may reduce long-term CVD rates. Over the years, multiple pharmacological approaches aimed at controlling blood glucose levels were unable to significantly reduce diabetes-related cardiovascular events. In this view, a therapeutic strategy combining SGLT2 inhibitors and plant extracts might represent a promising solution. Indeed, countering the main cardiometabolic risk factor using plant extracts could potentiate the cardioprotective action of SGLT2 inhibitors. This review highlights the main molecular mechanisms underlying these beneficial effects that could contribute to the better management of diabetic patients.
Collapse
Affiliation(s)
- Micaela Gliozzi
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Roberta Macrì
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Anna Rita Coppoletta
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Vincenzo Musolino
- Pharmaceutical Biology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
- Correspondence: (V.M.); (C.C.); Tel./Fax: +39-0961-3694301 (V.M. & C.C.)
| | - Cristina Carresi
- Veterinary Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
- Correspondence: (V.M.); (C.C.); Tel./Fax: +39-0961-3694301 (V.M. & C.C.)
| | - Miriam Scicchitano
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Francesca Bosco
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Lorenza Guarnieri
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Antonio Cardamone
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Stefano Ruga
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Federica Scarano
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Saverio Nucera
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Rocco Mollace
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Irene Bava
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Rosamaria Caminiti
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Maria Serra
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Jessica Maiuolo
- Pharmaceutical Biology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Ernesto Palma
- Veterinary Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Vincenzo Mollace
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
- Renato Dulbecco Institute, Lamezia Terme, 88046 Catanzaro, Italy
| |
Collapse
|
39
|
Lee SG, Kim D, Lee JJ, Lee HJ, Moon RK, Lee YJ, Lee SJ, Lee OH, Kim C, Oh J, Lee CJ, Lee YH, Park S, Jeon OH, Choi D, Hong GR, Kim JS. Dapagliflozin attenuates diabetes-induced diastolic dysfunction and cardiac fibrosis by regulating SGK1 signaling. BMC Med 2022; 20:309. [PMID: 36068525 PMCID: PMC9450279 DOI: 10.1186/s12916-022-02485-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 07/14/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Recent studies have reported improved diastolic function in patients administered sodium-glucose cotransporter 2 inhibitors (SGLT2i). We aimed to investigate the effect of dapagliflozin on left ventricular (LV) diastolic function in a diabetic animal model and to determine the molecular and cellular mechanisms underlying its function. METHODS A total of 30 male New Zealand white rabbits were randomized into control, diabetes, or diabetes+dapagliflozin groups (n = 10/per each group). Diabetes was induced by intravenous alloxan. Cardiac function was evaluated using echocardiography. Myocardial samples were obtained for histologic and molecular evaluation. For cellular evaluation, fibrosis-induced cardiomyoblast (H9C2) cells were obtained, and transfection was performed for mechanism analysis (serum and glucocorticoid-regulated kinase 1 (SGK1) signaling analysis). RESULTS The diabetes+dapagliflozin group showed attenuation of diastolic dysfunction compared with the diabetes group. Dapagliflozin inhibited myocardial fibrosis via inhibition of SGK1 and epithelial sodium channel (ENaC) protein, which was observed both in myocardial tissue and H9C2 cells. In addition, dapagliflozin showed an anti-inflammatory effect and ameliorated mitochondrial disruption. Inhibition of SGK1 expression by siRNA decreased and ENaC and Na+/H+ exchanger isoform 1 (NHE1) expression was confirmed as significantly reduced as siSGK1 in the diabetes+dapagliflozin group. CONCLUSIONS Dapagliflozin attenuated left ventricular diastolic dysfunction and cardiac fibrosis via regulation of SGK1 signaling. Dapagliflozin also reduced macrophages and inflammatory proteins and ameliorated mitochondrial disruption.
Collapse
Affiliation(s)
- Seul-Gee Lee
- Yonsei Cardiovascular Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Darae Kim
- Division of Cardiology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Jung-Jae Lee
- Yonsei Cardiovascular Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Hyun-Ju Lee
- Graduate Yonsei University, Seoul, South Korea
| | - Ro-Kyung Moon
- College of Medicine, Yonsei University Seoul, Seoul, South Korea
| | - Yong-Joon Lee
- Division of Cardiology, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Seung-Jun Lee
- Division of Cardiology, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Oh-Hyun Lee
- Division of Cardiology, Yongin Severance Hospital, Yonsei University College of Medicine, Gyeonggi-do, South Korea
| | - Choongki Kim
- Department of Cardiology, Ewha Womans University College of Medicine, Seoul Hospital, Seoul, South Korea
| | - Jaewon Oh
- Division of Cardiology, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Chan Joo Lee
- Division of Cardiology, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Yong-Ho Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Seil Park
- Cardiovascular Product Evaluation Center, Yonsei University College of Medicine, Seoul, South Korea
| | - Ok-Hee Jeon
- Cardiovascular Product Evaluation Center, Yonsei University College of Medicine, Seoul, South Korea
| | - Donghoon Choi
- Division of Cardiology, Yongin Severance Hospital, Yonsei University College of Medicine, Gyeonggi-do, South Korea
| | - Geu-Ru Hong
- Division of Cardiology, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea.
| | - Jung-Sun Kim
- Division of Cardiology, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea.
| |
Collapse
|
40
|
Wu J, Liu Y, Wei X, Zhang X, Ye Y, Li W, Su X. Antiarrhythmic effects and mechanisms of sodium-glucose cotransporter 2 inhibitors: A mini review. Front Cardiovasc Med 2022; 9:915455. [PMID: 36003915 PMCID: PMC9393294 DOI: 10.3389/fcvm.2022.915455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
Sodium-glucose cotransporter 2 inhibitors (SGLT2i) are a new type of oral hypoglycaemic agent with good cardiovascular protective effects. There are several lines of clinical evidence suggest that SGLT2i can significantly reduce the risks of heart failure, cardiovascular death, and delay the progression of chronic kidney disease. In addition, recent basic and clinical studies have also reported that SGLT2i also has good anti-arrhythmic effects. However, the exact mechanism is poorly understood. The aim of this review is to summarize recent clinical findings, studies of laboratory animals, and related study about this aspect of the antiarrhythmic effects of SGLT2i, to further explore its underlying mechanisms, safety, and prospects for clinical applications of it.
Collapse
Affiliation(s)
- Jinchun Wu
- Department of Cardiology, Qinghai Provincial People's Hospital, Xining, China
- *Correspondence: Jinchun Wu
| | - Yanmin Liu
- Department of Cardiology, Qinghai Provincial People's Hospital, Xining, China
| | - Xiaojuan Wei
- Department of Cardiology, Qinghai Provincial People's Hospital, Xining, China
| | - Xiaofei Zhang
- Department of Cardiology, Qinghai Provincial People's Hospital, Xining, China
| | - Yi Ye
- Graduate School of Qinghai University, Qinghai University, Xining, China
| | - Wei Li
- Department of Cardiology, Qinghai Provincial People's Hospital, Xining, China
| | - Xiaoling Su
- Department of Cardiology, Qinghai Provincial People's Hospital, Xining, China
- Xiaoling Su
| |
Collapse
|
41
|
Voorrips SN, Saucedo-Orozco H, Sánchez-Aguilera PI, De Boer RA, Van der Meer P, Westenbrink BD. Could SGLT2 Inhibitors Improve Exercise Intolerance in Chronic Heart Failure? Int J Mol Sci 2022; 23:8631. [PMID: 35955784 PMCID: PMC9369142 DOI: 10.3390/ijms23158631] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 12/04/2022] Open
Abstract
Despite the constant improvement of therapeutical options, heart failure (HF) remains associated with high mortality and morbidity. While new developments in guideline-recommended therapies can prolong survival and postpone HF hospitalizations, impaired exercise capacity remains one of the most debilitating symptoms of HF. Exercise intolerance in HF is multifactorial in origin, as the underlying cardiovascular pathology and reactive changes in skeletal muscle composition and metabolism both contribute. Recently, sodium-related glucose transporter 2 (SGLT2) inhibitors were found to improve cardiovascular outcomes significantly. Whilst much effort has been devoted to untangling the mechanisms responsible for these cardiovascular benefits of SGLT2 inhibitors, little is known about the effect of SGLT2 inhibitors on exercise performance in HF. This review provides an overview of the pathophysiological mechanisms that are responsible for exercise intolerance in HF, elaborates on the potential SGLT2-inhibitor-mediated effects on these phenomena, and provides an up-to-date overview of existing studies on the effect of SGLT2 inhibitors on clinical outcome parameters that are relevant to the assessment of exercise capacity. Finally, current gaps in the evidence and potential future perspectives on the effects of SGLT2 inhibitors on exercise intolerance in chronic HF are discussed.
Collapse
Affiliation(s)
- Suzanne N. Voorrips
- Department of Cardiology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (H.S.-O.); (P.I.S.-A.); (R.A.D.B.); (P.V.d.M.)
| | | | | | | | | | - B. Daan Westenbrink
- Department of Cardiology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (H.S.-O.); (P.I.S.-A.); (R.A.D.B.); (P.V.d.M.)
| |
Collapse
|
42
|
Jing Y, Yang R, Chen W, Ye Q. Anti-Arrhythmic Effects of Sodium-Glucose Co-Transporter 2 Inhibitors. Front Pharmacol 2022; 13:898718. [PMID: 35814223 PMCID: PMC9263384 DOI: 10.3389/fphar.2022.898718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/04/2022] [Indexed: 12/11/2022] Open
Abstract
Arrhythmias are clinically prevalent with a high mortality rate. They impose a huge economic burden, thereby substantially affecting the quality of life. Sodium-glucose co-transporter 2 inhibitor (SGLT2i) is a new type of hypoglycemic drug, which can regulate blood glucose level safely and effectively. Additionally, it reduces the occurrence and progression of heart failure and cardiovascular events significantly. Recently, studies have found that SGLT2i can alleviate the occurrence and progression of cardiac arrhythmias; however, the exact mechanism remains unclear. In this review, we aimed to discuss and summarize new literature on different modes in which SGLT2i ameliorates the occurrence and development of cardiac arrhythmias.
Collapse
|
43
|
Novo G, Guarino T, Di Lisi D, Biagioli P, Carluccio E. Effects of SGLT2 inhibitors on cardiac structure and function. Heart Fail Rev 2022; 28:697-707. [PMID: 35711023 DOI: 10.1007/s10741-022-10256-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/06/2022] [Indexed: 01/10/2023]
Abstract
SGLT2 inhibitors reduce cardiovascular death or hospitalization for heart failure, regardless of the presence or absence of diabetes in patients at high cardiovascular risk and in those with heart failure and reduced ejection fraction (HFrEF). In patients with HF and preserved EF, empagliflozin also showed favorable effects mainly related to the reduction of hospitalization for heart failure. These favorable effects are beyond the reduction of glycemic levels and mainly related to beneficial hemodynamic and anti-inflammatory effects of these drugs and improved cardiac energy metabolism. In this review, we aimed to evaluate the effects of SGLT2 inhibitor on cardiac remodeling and function, which is still incompletely clear.
Collapse
Affiliation(s)
- Giuseppina Novo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialities, University of Palermo, Cardiology Unit, University Hospital P. Giaccone, Palermo, Italy
| | - Tommaso Guarino
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialities, University of Palermo, Cardiology Unit, University Hospital P. Giaccone, Palermo, Italy.
| | - Daniela Di Lisi
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialities, University of Palermo, Cardiology Unit, University Hospital P. Giaccone, Palermo, Italy
| | - Paolo Biagioli
- Cardiology and Cardiovascular Pathophysiology, S. Maria della Misericordia Hospital, University of Perugia, Perugia, Italy
| | - Erberto Carluccio
- Cardiology and Cardiovascular Pathophysiology, S. Maria della Misericordia Hospital, University of Perugia, Perugia, Italy
| |
Collapse
|
44
|
Turan B, Durak A, Olgar Y, Tuncay E. Comparisons of pleiotropic effects of SGLT2 inhibition and GLP-1 agonism on cardiac glucose intolerance in heart dysfunction. Mol Cell Biochem 2022; 477:2609-2625. [DOI: 10.1007/s11010-022-04474-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/04/2022] [Indexed: 11/29/2022]
|
45
|
Theofilis P, Antonopoulos AS, Katsimichas T, Oikonomou E, Siasos G, Aggeli C, Tsioufis K, Tousoulis D. The impact of SGLT2 inhibition on imaging markers of cardiac function: A systematic review and meta-analysis. Pharmacol Res 2022; 180:106243. [PMID: 35523389 DOI: 10.1016/j.phrs.2022.106243] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/13/2022] [Accepted: 05/01/2022] [Indexed: 12/26/2022]
Abstract
OBJECTIVES The use of sodium-glucose cotransporter-2 inhibitors (SGLT2-Is) has resulted in significant benefits in patients with heart failure irrespective of left ventricular ejection fraction (LVEF) and the presence of diabetes mellitus. The aim of this systematic review and meta-analysis was to assess the impact of SGLT2-Is on cardiac function indices. METHODS We conducted a systematic literature search for studies assessing the changes in LVEF, global longitudinal strain (GLS), left ventricular end-diastolic volume (LVEDV), left ventricular end-systolic volume (LVESV), left ventricular mass index (LVMi), left atrial volume index (LAVi), and E/e' following the initiation of an SGLT2-I. RESULTS A total of 32 studies with 2351 patients were included. SGLT2 inhibition resulted in a significant improvement of LVEF [MD 1.97 (95%CI 0.92, 3.02), p < .01, I2:84%] in patients with heart failure, an increase in GLS [MD 1.17 (95% CI 0.25, 2.10), p < .01], a decrease in LVESV [MD: -3.60 (95% CI -7.02, -0.18), p = .04, I2:9%] while the effect was neutral concerning LVEDV [MD: -3.10 (95% CI -6.76, 0.56), p = .40, I2:4%]. LVMi [MD: -3.99 (95% CI -7.16 to -0.82), p = .01, I2:65%], LAVi [MD: -1.77 (95% CI -2.97, -0.57), p < .01, I2:0%], and E/e' [MD: -1.39 (95% CI -2.04, -0.73), p < .01, I2:55%] were significantly reduced. CONCLUSIONS In this systematic review and meta-analysis, the use of SGLT2 inhibitors was associated with an improvement in markers of cardiac function, confirming the importance of SGLT2 inhibition towards the reversal of cardiac remodeling.
Collapse
Affiliation(s)
- Panagiotis Theofilis
- 1st Cardiology Department, "Hippokration" General Hospital, University of Athens Medical School, Athens, Greece
| | - Alexios S Antonopoulos
- 1st Cardiology Department, "Hippokration" General Hospital, University of Athens Medical School, Athens, Greece
| | - Themistoklis Katsimichas
- 1st Cardiology Department, "Hippokration" General Hospital, University of Athens Medical School, Athens, Greece
| | - Evangelos Oikonomou
- 1st Cardiology Department, "Hippokration" General Hospital, University of Athens Medical School, Athens, Greece; 3rd Cardiology Department, "Sotiria" Chest Diseases Hospital, University of Athens Medical School, Athens, Greece
| | - Gerasimos Siasos
- 1st Cardiology Department, "Hippokration" General Hospital, University of Athens Medical School, Athens, Greece; 3rd Cardiology Department, "Sotiria" Chest Diseases Hospital, University of Athens Medical School, Athens, Greece
| | - Constantina Aggeli
- 1st Cardiology Department, "Hippokration" General Hospital, University of Athens Medical School, Athens, Greece
| | - Konstantinos Tsioufis
- 1st Cardiology Department, "Hippokration" General Hospital, University of Athens Medical School, Athens, Greece
| | - Dimitris Tousoulis
- 1st Cardiology Department, "Hippokration" General Hospital, University of Athens Medical School, Athens, Greece.
| |
Collapse
|
46
|
Zhou H, Peng W, Li F, Wang Y, Wang B, Ding Y, Lin Q, Zhao Y, Pan G, Wang X. Effect of Sodium-Glucose Cotransporter 2 Inhibitors for Heart Failure With Preserved Ejection Fraction: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. Front Cardiovasc Med 2022; 9:875327. [PMID: 35600478 PMCID: PMC9116195 DOI: 10.3389/fcvm.2022.875327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 04/01/2022] [Indexed: 11/13/2022] Open
Abstract
Background Heart failure with preserved ejection fraction (HFpEF) is associated with a high risk of mortality and frequent hospitalization. Sodium-glucose cotransporter 2 (SGLT2) inhibitors have favorable cardiovascular protective effect and could decrease the risk of mortality and hospitalization in patients with heart failure with reduced ejection fraction. However, the effect of SGLT2 inhibitors for HFpEF has not been well studied. Purpose The aim of this meta-analysis is to systematically assess the effects of SGLT2 inhibitors in patients with HFpEF. Methods MEDLINE, EMBASE, Ovid, Cochrane Library, Chinese National Knowledge Infrastructure Database, VIP database, Chinese Biomedical Database, and Wanfang Database were searched from inception to November 2021 for randomized controlled trials (RCTs) of SGLT2 inhibitors for HFpEF. Risk bias was assessed for included studies according to Cochrane handbook. The primary outcome was the composite of first hospitalization for heart failure (HHF) or cardiovascular mortality. First HHF, cardiovascular mortality, total HHF, all-cause mortality, exercise capacity, ventricular diastolic function, and adverse events were considered as secondary endpoints. PROSPERO registration: CRD42021291122. Results A total of 12 RCTs including 10,883 patients with HFpEF (SGLT2 inhibitors group: 5,621; control group: 5,262) were included. All included RCTs were at low risk of bias. Meta-analysis showed that SGLT2 inhibitors significantly reduced the composite of first HHF or cardiovascular mortality (HR:0.78, 95% CI: [0.70, 0.87], P< 0.00001, I 2 = 0%), first HHF (HR:0.71, 95% CI: [0.62, 0.83], P < 0.00001, I 2 = 0%), total HHF (RR:0.75, 95% CI: [0.67, 0.84], P<0.00001, I 2 = 0%), E/e' (MD: -1.22, 95% CI: [-2.29, -0.15], P = 0.03, I 2 = 59%) and adverse events (RR:0.92, 95% CI: [0.88, 0.97], P = 0.001, I 2 = 0%). No statistical differences were found in terms of cardiovascular mortality, all-cause mortality, NT-proBNP, BNP and 6-min walk test distance. Conclusion SGLT2 inhibitors significantly improve cardiovascular outcomes with a lower risk of serious adverse events in patients with HFpEF. However, these findings require careful recommendation due to the small number of RCTs at present. More multi-center, randomized, double-blind, placebo-controlled trials are needed. Systematic Review Registration [https://www.crd.york.ac.Uk/prospero/], identifier [CRD42021291122].
Collapse
Affiliation(s)
- Hufang Zhou
- Institute of Cardiovascular Diseases, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Wenhua Peng
- Institute of Cardiovascular Diseases, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Fuyao Li
- Institute of Cardiovascular Diseases, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yuelin Wang
- Jinan Municipal Hospital of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Baofu Wang
- Institute of Cardiovascular Diseases, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yukun Ding
- Institute of Cardiovascular Diseases, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Qian Lin
- Changping District Hospital of Integrated Traditional Chinese and Western Medicine, Beijing, China
| | - Ying Zhao
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Guozhong Pan
- Institute of Cardiovascular Diseases, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xian Wang
- Institute of Cardiovascular Diseases, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
47
|
Shi FH, Li H, Shen L, Xu L, Ge H, Gu ZC, Lin HW, Pu J. Beneficial Effect of Sodium-Glucose Co-transporter 2 Inhibitors on Left Ventricular Function. J Clin Endocrinol Metab 2022; 107:1191-1203. [PMID: 34791312 DOI: 10.1210/clinem/dgab834] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Indexed: 01/10/2023]
Abstract
BACKGROUND Sodium-glucose cotransporter 2 (SGLT2) inhibitors lowered the risk of cardiovascular events in patients with diabetes or heart failure (HF) with reduced ejection fraction, whether they directly promote cardiac function remains unclear. Therefore, we sought to determine whether SGLT2 inhibitors could improve left ventricular (LV) function in these patients. METHODS A literature search was conducted using MEDLINE, EMBASE, and Cochrane Library databases from their inception to July 9, 2021. Randomized clinical trials and cohort studies that reported LV function-related variables were included. RESULTS Thirteen studies comprising 1437 patients (830 SGLT2 inhibitor-treated and 607 non-SGLT2 inhibitor-treated patients) and representing 7 randomized controlled trials with 640 individuals and 6 cohort studies with 797 individuals were included in this meta-analysis. LV regression [LV mass (LVM)], LV ejection fractions (LVEF), LV volumes [LV end-diastolic volumes and systolic volumes (LVEDV and LVESV, respectively], and LV diastolic function [mitral inflow E velocity to tissue Doppler e' ratio, E/e' and left atrial volume index (LAVI)] were all significantly improved in patients treated with SGLT2 inhibitors (weighted mean differences, 95% CI, LVM: -6.319 g, -10.850 to -1.789; LVEF: 2.458%, 0.693 to 4.224; LVEDV: -9.134 mL, -15.808 to -2.460; LVESV: -8.440 mL, -15.093 to -1.787; LAVI: -2.791 mL/m2, -.554 to -1.027; E/e': -1.567, -2.440 to -0.698). Subgroup analysis further confirmed the improvement of LV function mainly in patients with HF or those receiving empagliflozin treatment. CONCLUSIONS Treatment with SGLT2 inhibitors can significantly improve LV function in patients with or without diabetes (especially those with HF or undergoing empagliflozin treatment).
Collapse
Affiliation(s)
- Fang-Hong Shi
- Department of Pharmacy, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hao Li
- Department of Pharmacy, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Clinical Research Center, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Long Shen
- Department of Cardiology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Xu
- Department of Cardiology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Heng Ge
- Department of Cardiology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhi-Chun Gu
- Department of Pharmacy, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hou-Wen Lin
- Department of Pharmacy, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- School of Medicine, Tongji University, Shanghai, China
| | - Jun Pu
- Department of Cardiology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
48
|
Attachaipanich T, Chattipakorn SC, Chattipakorn N. Potential roles of sodium-glucose co-transporter 2 inhibitors in attenuating cardiac arrhythmias in diabetes and heart failure. J Cell Physiol 2022; 237:2404-2419. [PMID: 35324001 DOI: 10.1002/jcp.30727] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/02/2022] [Accepted: 03/12/2022] [Indexed: 12/12/2022]
Abstract
Sodium-glucose co-transporter 2 (SGLT-2) inhibitors are antidiabetic drugs that have been shown to exert cardiovascular benefits. Their benefits including a reduction of cardiovascular events and worsening heart failure have been extended to nondiabetic patients with high-risk. Although both heart failure and diabetes are known to increase risk of cardiac arrhythmias, the effects of SGLT-2 inhibitors on arrhythmia reduction and their underlying mechanisms are still not fully understood. This review aims to summarize the current available evidence ranging from basic research to clinical reports regarding the potential benefits of SGLT-2 inhibitors against cardiac arrhythmias. Previous in vitro and in vivo studies using various models including heart failure and diabetes are comprehensively summarized to examine the evidence of how SGLT-2 inhibitors affect cardiac action potential, cellular ion currents, calcium ion homeostasis, and cardiac mitochondrial function. Clinical reports investigating the association between SGLT-2 inhibitors and arrhythmias including atrial fibrillation and ventricular arrhythmias are also comprehensively summarized. Valuable information obtained from this review can be used to encourage further clinical investigations to warrant the potential use of SGLT-2 inhibitors against cardiac arrhythmias in both diabetic and heart failure settings.
Collapse
Affiliation(s)
- Tanawat Attachaipanich
- Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn C Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand.,Cardiac Electrophysiology Research Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
49
|
Sodium-Glucose Cotransporter 2 Inhibitors and Cardiac Remodeling. J Cardiovasc Transl Res 2022; 15:944-956. [PMID: 35290593 DOI: 10.1007/s12265-022-10220-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/14/2022] [Indexed: 02/06/2023]
Abstract
Sodium-glucose cotransporter 2 (SGLT2) inhibitors have evident cardiovascular benefits in patients with type 2 diabetes with or at high risk for atherosclerotic cardiovascular disease, heart failure with reduced ejection fraction, heart failure with preserved ejection fraction (only empagliflozin and dapagliflozin have been investigated in this group so far), and chronic kidney disease. Prevention and reversal of adverse cardiac remodeling is one of the mechanisms by which SGLT2 inhibitors may exert cardiovascular benefits, especially heart failure-related outcomes. Cardiac remodeling encompasses molecular, cellular, and interstitial changes that result in favorable changes in the mass, geometry, size, and function of the heart. The pathophysiological mechanisms of adverse cardiac remodeling are related to increased apoptosis and necrosis, decreased autophagy, impairments of myocardial oxygen supply and demand, and altered energy metabolism. Herein, the accumulating evidence from animal and human studies is reviewed investigating the effects of SGLT2 inhibitors on these mechanisms of cardiac remodeling.
Collapse
|
50
|
Aslan B, Akyüz A, Işık F, Boyraz B, İnci Ü, Yıldız H, Çap M, Karahan MZ, Araç E, Okşul M, Kaya İ. The effect of empagliflozin on p wave peak time and other p wave parameters in patients with diabetes mellitus. Pacing Clin Electrophysiol 2022; 45:323-329. [PMID: 35175628 DOI: 10.1111/pace.14463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/26/2022] [Accepted: 02/06/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Empagliflozin is a selective SGLT2 inhibitor and provides a significant reduction in hospitalizations in HF patients and a reduction in combined cardiovascular deaths regardless of diabetes. The mechanisms of favorable effects remain unclear. Improvement in left ventricular diastolic function and a decrease in filling pressure are any mechanisms of positive effects. These effects may show themselves with some changes on the ECG. So, we aimed to evaluate the effect of empagliflozin on P wave parameters in type 2 diabetes mellitus patients without heart failure. METHOD Fifty-three patients were included in the study. The electrocardiographic and echocardiographic evaluations were examined at the baseline and end of the 3rd month for all patients. RESULTS The median age of all patients was 55 (45-64 IOR). After treatment, LA volume (p 0.001) and diameter (p=0.001) in both the parasternal long-axis (p=0.001) and the apical four-chamber view decreased. E/e' and sPAP were significantly decreased after treatment. PWDmax, PWDmin, and PWdis (p=0.017) were significantly shorter after treatment. The PWPT in lead Dıı and V1 were significantly shorter after treatment. CONCLUSION We found shortening of PWPT, PWdis, and PWD as reflections of improvements in LA volume and LV diastolic function on ECG after empagliflozin treatment. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Burhan Aslan
- Diyarbakır Gazi Yaşargil Education and Research Hospital, Health and Science University, Department of Cardiology, Turkey
| | - Abdurrahman Akyüz
- Diyarbakır Gazi Yaşargil Education and Research Hospital, Health and Science University, Department of Cardiology, Turkey
| | - Ferhat Işık
- Diyarbakır Gazi Yaşargil Education and Research Hospital, Health and Science University, Department of Cardiology, Turkey
| | | | - Ümit İnci
- Diyarbakır Gazi Yaşargil Education and Research Hospital, Health and Science University, Department of Cardiology, Turkey
| | - Halil Yıldız
- Diyarbakır Gazi Yaşargil Education and Research Hospital, Health and Science University, Department of Cardiology, Turkey
| | - Murat Çap
- Diyarbakır Gazi Yaşargil Education and Research Hospital, Health and Science University, Department of Cardiology, Turkey
| | - Mehmet Zülküf Karahan
- Diyarbakır Gazi Yaşargil Education and Research Hospital, Health and Science University, Department of Cardiology, Turkey
| | - Eşref Araç
- Diyarbakır Gazi Yaşargil Education and Research Hospital, Health and Science University, Department of General Medicine and Endocrine, Turkey
| | - Metin Okşul
- Diyarbakır Gazi Yaşargil Education and Research Hospital, Health and Science University, Department of Cardiology, Turkey
| | - İlyas Kaya
- Diyarbakır Gazi Yaşargil Education and Research Hospital, Health and Science University, Department of Cardiology, Turkey
| |
Collapse
|