1
|
Yang M, Wang J, Meng H, Xu J, Xie Y, Kong W. Identification of key genes in diabetic nephropathy based on lipid metabolism. Exp Ther Med 2024; 28:406. [PMID: 39268370 PMCID: PMC11391184 DOI: 10.3892/etm.2024.12695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 06/20/2024] [Indexed: 09/15/2024] Open
Abstract
Diabetic nephropathy (DN) is a common systemic microvascular complication of diabetes with a high incidence rate. Notably, the disturbance of lipid metabolism is associated with DN progression. The present study aimed to identify lipid metabolism-related hub genes associated with DN for improved diagnosis of DN. The gene expression profile data of DN and healthy samples (GSE142153) were obtained from the Gene Expression Omnibus database, and the lipid metabolism-related genes were obtained from the Molecular Signatures Database. Differentially expressed genes (DEGs) between DN and healthy samples were analyzed. The weighted gene co-expression network analysis (WGCNA) was performed to examine the relationship between genes and clinical traits to identify the key module genes associated with DN. Next, the Venn Diagram R package was used to identify the lipid metabolism-related genes associated with DN and their protein-protein interaction (PPI) network was constructed. Subsequently, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed. The hub genes were identified using machine-learning algorithms. The Gene Set Enrichment Analysis (GSEA) was used to analyze the functions of the hub genes. The present study also investigated the immune infiltration discrepancies between DN and healthy samples, and assessed the correlation between the immune cells and hub genes. Finally, the expression levels of key genes were verified by reverse transcription-quantitative (RT-q)PCR. The present study determined 1,445 DEGs in DN samples. In addition, 694 DN-related genes in MEyellow and MEturquoise modules were identified by WGCNA. Next, the Venn Diagram R package was used to identify 17 lipid metabolism-related genes and to construct a PPI network. GO analysis revealed that these 17 genes were markedly associated with 'phospholipid biosynthetic process' and 'cholesterol biosynthetic process', while the KEGG analysis showed that they were enriched in 'glycerophospholipid metabolism' and 'fatty acid degradation'. In addition, SAMD8 and CYP51A1 were identified through the intersections of two machine-learning algorithms. The results of GSEA revealed that the 'mitochondrial matrix' and 'GTPase activity' were the markedly enriched GO terms in both SAMD8 and CYP51A1. Their KEGG pathways were mainly concentrated in the 'pathways of neurodegeneration-multiple diseases'. Immune infiltration analysis showed that nine types of immune cells had different expression levels in DN (diseased) and healthy samples. Notably, SAMD8 and CYP51A1 were both markedly associated with activated B cells and effector memory CD8 T cells. Finally, RT-qPCR confirmed the high expression of SAMD8 and CYP51A1 in DN. In conclusion, lipid metabolism-related genes SAMD8 and CYP51A1 may play key roles in DN. The present study provides fundamental information on lipid metabolism that may aid the diagnosis and treatment of DN.
Collapse
Affiliation(s)
- Meng Yang
- Department of Nephrology, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan 650032, P.R. China
| | - Jian Wang
- Department of Nephrology, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan 650032, P.R. China
| | - Hu Meng
- Department of Nephrology, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan 650032, P.R. China
| | - Jian Xu
- Department of Nephrology, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan 650032, P.R. China
| | - Yu Xie
- Department of Nephrology, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan 650032, P.R. China
| | - Weiying Kong
- Department of Nephrology, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan 650032, P.R. China
| |
Collapse
|
2
|
Nxumalo MB, Ntanzi N, Kumalo HM, Khan RB. Mitigating Hyperglycaemic Oxidative Stress in HepG2 Cells: The Role of Carica papaya Leaf and Root Extracts in Promoting Glucose Uptake and Antioxidant Defence. Nutrients 2024; 16:3496. [PMID: 39458491 PMCID: PMC11510471 DOI: 10.3390/nu16203496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/30/2024] [Accepted: 10/03/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: Diabetes often goes undiagnosed, with 60% of people in Africa unaware of their condition. Type 2 diabetes mellitus (T2DM) is associated with insulin resistance and is treated with metformin, despite the undesirable side effects. Medicinal plants with therapeutic potential, such as Carica papaya, have shown promising anti-diabetic properties. This study explored the role of C. papaya leaf and root extracts compared to metformin in reducing hyperglycaemia-induced oxidative stress and their impact on liver function using HepG2 as a reference. Methods: The cytotoxicity was assessed through the MTT assay. At the same time, glucose uptake and metabolism (ATP and ∆Ψm) in HepG2 cells treated with C. papaya aqueous leaf and root extract were evaluated using a luminometry assay. Additionally, antioxidant properties (SOD2, GPx1, GSH, and Nrf2) were measured using qPCR and Western blot following the detection of MDA, NO, and iNOS, indicators of free radicals. Results: The MTT assay showed that C. papaya extracts did not exhibit toxicity in HepG2 cells and enhanced glucose uptake compared to the hyperglycaemic control (HGC) and metformin. The glucose levels in C. papaya-treated cells increased ATP production (p < 0.05), while the ∆Ψm was significantly increased in HGR1000-treated cells (p < 0.05). Furthermore, C. papaya leaf extract upregulated GPx1 (p < 0.05), GSH, and Nrf2 gene (p < 0.05), while SOD2 and Nrf2 proteins were reduced (p > 0.05), ultimately lowering ROS (p > 0.05). Contrarily, the root extract stimulated SOD2 (p > 0.05), GPx1 (p < 0.05), and GSH levels (p < 0.05), reducing Nrf2 gene and protein expression (p < 0.05) and resulting in high MDA levels (p < 0.05). Additionally, the extracts elevated NO levels and iNOS expression (p < 0.05), suggesting potential RNS activation. Conclusion: Taken together, the leaf extract stimulated glucose metabolism and triggered ROS production, producing a strong antioxidant response that was more effective than the root extract and metformin. However, the root extract, particularly at high concentrations, was less effective at neutralising free radicals as it did not stimulate Nrf2 production, but it did maintain elevated levels of SOD2, GSH, and GPx1 antioxidants.
Collapse
Affiliation(s)
- Mthokozisi Bongani Nxumalo
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa; (N.N.); (H.M.K.); (R.B.K.)
| | | | | | | |
Collapse
|
3
|
Zhu Y, Liu J, Wang B. Integrated approach of machine learning, Mendelian randomization and experimental validation for biomarker discovery in diabetic nephropathy. Diabetes Obes Metab 2024. [PMID: 39370621 DOI: 10.1111/dom.15933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/19/2024] [Accepted: 08/23/2024] [Indexed: 10/08/2024]
Abstract
AIM To identify potential biomarkers and explore the mechanisms underlying diabetic nephropathy (DN) by integrating machine learning, Mendelian randomization (MR) and experimental validation. METHODS Microarray and RNA-sequencing datasets (GSE47184, GSE96804, GSE104948, GSE104954, GSE142025 and GSE175759) were obtained from the Gene Expression Omnibus database. Differential expression analysis identified the differentially expressed genes (DEGs) between patients with DN and controls. Diverse machine learning algorithms, including least absolute shrinkage and selection operator, support vector machine-recursive feature elimination, and random forest, were used to enhance gene selection accuracy and predictive power. We integrated summary-level data from genome-wide association studies on DN with expression quantitative trait loci data to identify genes with potential causal relationships to DN. The predictive performance of the biomarker gene was validated using receiver operating characteristic (ROC) curves. Gene set enrichment and correlation analyses were conducted to investigate potential mechanisms. Finally, the biomarker gene was validated using quantitative real-time polymerase chain reaction in clinical samples from patients with DN and controls. RESULTS Based on identified 314 DEGs, seven characteristic genes with high predictive performance were identified using three integrated machine learning algorithms. MR analysis revealed 219 genes with significant causal effects on DN, ultimately identifying one co-expressed gene, carbonic anhydrase II (CA2), as a key biomarker for DN. The ROC curves demonstrated the excellent predictive performance of CA2, with area under the curve values consistently above 0.878 across all datasets. Additionally, our analysis indicated a significant association between CA2 and infiltrating immune cells in DN, providing potential mechanistic insights. This biomarker was validated using clinical samples, confirming the reliability of our findings in clinical practice. CONCLUSION By integrating machine learning, MR and experimental validation, we successfully identified and validated CA2 as a promising biomarker for DN with excellent predictive performance. The biomarker may play a role in the pathogenesis and progression of DN via immune-related pathways. These findings provide important insights into the molecular mechanisms underlying DN and may inform the development of personalized treatment strategies for this disease.
Collapse
Affiliation(s)
- Yidong Zhu
- Department of Traditional Chinese Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jun Liu
- Department of Traditional Chinese Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Bo Wang
- Department of Endocrinology, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Wang J, Zhang R, Wu C, Wang L, Liu P, Li P. Exploring potential targets for natural product therapy of DN: the role of SUMOylation. Front Pharmacol 2024; 15:1432724. [PMID: 39431155 PMCID: PMC11486755 DOI: 10.3389/fphar.2024.1432724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/20/2024] [Indexed: 10/22/2024] Open
Abstract
Diabetic nephropathy (DN) is a common and serious micro-vascular complication of diabetes and a leading cause of end-stage renal disease globally. This disease primarily affects middle-aged and elderly individuals, especially those with a diabetes history of over 10 years and poor long-term blood glucose control. Small ubiquitin-related modifiers (SUMOs) are a group of reversible post-translational modifications of proteins that are widely expressed in eukaryotes. SUMO proteins intervene in the progression of DN by modulating various signaling cascades, such as Nrf2-mediated oxidative stress, NF-κB, TGF-β, and MAPK pathways. Recent advancements indicate that natural products regulating SUMOylation hold promise as targets for intervening in DN. In a previous article published in 2022, we reviewed the mechanisms by which SUMOylation intervenes in renal fibrosis and presented a summary of some natural products with therapeutic potential. Therefore, this paper will focus on DN. The aim of this review is to elucidate the mechanism of action of SUMOylation in DN and related natural products with therapeutic potential, thereby summarising the targets and candidate natural products for the treatment of DN through the modulation of SUMOylation, such as ginkgolic acid, ginkgolide B, resveratrol, astragaloside IV, etc., and highlighting that natural product-mediated modulation of SUMOylation is a potential therapeutic strategy for the treatment of DN as a potential therapeutic strategy.
Collapse
Affiliation(s)
- Jingjing Wang
- Renal Division, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Rui Zhang
- Renal Division, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Chenguang Wu
- Renal Division, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Lifan Wang
- Renal Division, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Peng Liu
- Shunyi Hospital, Beijing Hospital of Traditional Chinese Medicine, Beijing, China
| | - Ping Li
- China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
5
|
Rong L, Xue H, Hao J, Liu J, Xu H. Long non-coding RNA MEG3 silencing weakens high glucose-induced mesangial cell injury by decreasing LIN28B expression by sponging and sequestering miR-23c. Kidney Res Clin Pract 2024; 43:600-613. [PMID: 38148128 PMCID: PMC11467368 DOI: 10.23876/j.krcp.23.090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 12/28/2023] Open
Abstract
BACKGROUND Diabetic nephropathy (DN) is a common kidney disease in diabetic patients. Long non-coding RNA maternally expressed gene 3 (MEG3) and microRNA (miR)-23c are reported to be implicated in DN development. Nevertheless, it is unclear that the molecular mechanism between MEG3 and miR-23c in DN remains unclear. METHODS Human mesangial cells (HMCs) were treated with high glucose (HG) to simulate the DN status in vitro. Expression of MEG3 and miR-23c was measured. Effects of MEG3 silencing on HG-stimulated HMC injury were determined. The relationship between MEG3 and miR-23c was verified by the dual-luciferase reporter and RNA immunoprecipitation assays. RESULTS MEG3 was overexpressed in serums from DN patients and HG-stimulated HMCs. MEG3 knockdown weakened HG-stimulated HMC proliferation, extracellular matrix (ECM) accumulation, and inflammation. MEG3 regulated lin-28 homolog B (LIN28B) expression through adsorbing miR-23c. MiR-23c inhibitor reversed MEG3 knockdown-mediated effects on HG-stimulated HMC proliferation, ECM accumulation, and inflammation. LIN28B overexpression overturned miR-23c mimic-mediated effects on HG-stimulated HMC proliferation, ECM accumulation, and inflammation. CONCLUSION MEG3 regulated HMC injury via regulation of the miR-23c/LIN28B axis in DN, which can help us better understand the mechanism of DN mediated by MEG3.
Collapse
Affiliation(s)
- Lu Rong
- Department of Urology, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Huanzhou Xue
- Department of Urology, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Jianwei Hao
- Department of Urology, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Jianjun Liu
- Department of Urology, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Hao Xu
- Department of Urology, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital, Zhengzhou, China
| |
Collapse
|
6
|
Ma N, Liu W, Xu N, Yin D, Zheng P, Wang G, Hui Y, Zhang J, Han G, Yang C, Lu Y, Cheng X. Relationship between circulating thrombospondin-1 messenger ribonucleic acid and microribonucleic acid-194 levels in Chinese patients with type 2 diabetic kidney disease: The outcomes of a case-control study. J Diabetes Investig 2024; 15:1248-1258. [PMID: 38932465 PMCID: PMC11363100 DOI: 10.1111/jdi.14252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/16/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
AIMS/INTRODUCTION We investigated the relationship of circulating TSP-1 mRNA and miR-194 with diabetic kidney disease's degree. MATERIALS AND METHODS We enrolled 167 hospitalized type 2 diabetes patients in the endocrinology department. Patients were split into three groups according to urinary microalbumin: A, B and C. The control group comprised healthy outpatients (n = 163). The quantities of microribonucleic acid (miR)-194 and thrombospondin-1 (TSP-1) messenger ribonucleic acid (mRNA) in the participants' circulation were measured using a quantitative real-time polymerase chain reaction. RESULTS Circulating TSP-1 mRNA (P = 0.024) and miR-194 (P = 0.029) expressions significantly increased in type 2 diabetes patients. Circulating TSP-1 mRNA (P = 0.040) and miR-194 (P = 0.007) expression levels differed significantly among the three groups; circulating TSP-1 mRNA expression increased with urinary microalbumin. However, miR-194 declined in group B and increased in group C. Circulating TSP-1 mRNA was positively correlated with cystatin-c (r = 0.281; P = 0.021) and microalbumin/creatinine ratio (UmALB/Cr; r = 0.317; P = 0.009); miR-194 was positively correlated with UmALB/Cr (r = 0.405; P = 0.003). Stepwise multivariate linear regression analysis showed cystatin-c (β = 0.578; P = 0.021) and UmALB/Cr (β = 0.001; P = 0.009) as independent factors for TSP-1 mRNA; UmALB/Cr (β = 0.005; P = 0.028) as an independent factor for miR194. Areas under the curve for circulating TSP-1 mRNA and miR194 were 0.756 (95% confidence interval 0.620-0.893; sensitivity 0.69 and specificity 0.71, P < 0.01) and 0.584 (95% confidence interval 0.421-0.748; sensitivity 0.54 and specificity 0.52, P < 0.01), respectively. CONCLUSIONS Circulating TSP-1 mRNA and miR-194 expressions significantly increased in type 2 diabetes patients. The microalbumin group had lower levels of miR-194 (a risk factor that is valuable for type 2 diabetes kidney disease evaluation).
Collapse
Affiliation(s)
- Ning Ma
- Department of Endocrinology and MetabolismLianyungang No. 1 People's HospitalLianyungangJiangsuChina
- Department of Endocrinology and MetabolismFirst Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Weiwei Liu
- Department of Endocrinology and MetabolismLianyungang No. 1 People's HospitalLianyungangJiangsuChina
| | - Ning Xu
- Department of Endocrinology and MetabolismLianyungang No. 1 People's HospitalLianyungangJiangsuChina
| | - Dong Yin
- Department of Endocrinology and MetabolismLianyungang No. 1 People's HospitalLianyungangJiangsuChina
| | - Ping Zheng
- Department of Endocrinology and MetabolismLianyungang No. 1 People's HospitalLianyungangJiangsuChina
| | - Guofeng Wang
- Department of Endocrinology and MetabolismLianyungang No. 1 People's HospitalLianyungangJiangsuChina
| | - Yuan Hui
- Department of Endocrinology and MetabolismLianyungang No. 1 People's HospitalLianyungangJiangsuChina
| | - Jiping Zhang
- Department of Endocrinology and MetabolismLianyungang No. 1 People's HospitalLianyungangJiangsuChina
| | - Guanjun Han
- Department of Endocrinology and MetabolismLianyungang No. 1 People's HospitalLianyungangJiangsuChina
| | - Chuanhui Yang
- Department of Endocrinology and MetabolismLianyungang No. 1 People's HospitalLianyungangJiangsuChina
| | - Yan Lu
- Department of Endocrinology and MetabolismFirst Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Xingbo Cheng
- Department of Endocrinology and MetabolismFirst Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| |
Collapse
|
7
|
De La Cruz JP, Osuna-Esteban L, Rodríguez-Pérez MD, Ortega-Hombrados L, Sánchez-Tévar AM, Martín-Aurioles E, Fernández-Prior MÁ, Pérez-Burillo S, Espejo-Calvo JA, González-Correa JA. Effect of a Triterpenoid-Rich Olive Oil on Chronic Kidney Disease in an Experimental Model of Diabetes Mellitus. Nutrients 2024; 16:2794. [PMID: 39203930 PMCID: PMC11357248 DOI: 10.3390/nu16162794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/17/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
The aim of this study was to assess the effect of triterpenoids on the development of diabetic nephropathy in an experimental model of diabetes mellitus. For this purpose, a destoned and dehydrated olive oil (DDOO) was used, comparing its effects to a destoned olive oil (DOO). DDOO had a higher triterpenoid content than DOO but an equal content of alcoholic polyphenols. Four study groups (n = 10 animals/group) were formed: healthy rats, diabetic control rats (DRs), and DRs treated orally with 0.5 mL/kg/day of DOO or DDOO for two months. DRs showed impaired renal function (proteinuria, increased serum creatinine, decreased renal creatinine clearance) and morphology (glomerular volume and glomerulosclerosis). These alterations correlated with increased systemic and renal tissue oxidative stress and decreased prostacyclin production. DDOO administration significantly reduced all variables of renal damage, as well as systemic and renal oxidative stress, to a greater extent than the effect produced by DOO. In conclusion, triterpenoid-rich olive oil may prevent kidney damage in experimental diabetes mellitus.
Collapse
Affiliation(s)
- José Pedro De La Cruz
- Departamento de Farmacología, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina—IBIMA Plataforma BIONAND, Facultad de Medicina, Universidad de Málaga, 29010 Malaga, Spain; (J.P.D.L.C.); (L.O.-E.); (L.O.-H.); (A.M.S.-T.); (S.P.-B.); (J.A.G.-C.)
| | - Laura Osuna-Esteban
- Departamento de Farmacología, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina—IBIMA Plataforma BIONAND, Facultad de Medicina, Universidad de Málaga, 29010 Malaga, Spain; (J.P.D.L.C.); (L.O.-E.); (L.O.-H.); (A.M.S.-T.); (S.P.-B.); (J.A.G.-C.)
| | - María Dolores Rodríguez-Pérez
- Departamento de Farmacología, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina—IBIMA Plataforma BIONAND, Facultad de Medicina, Universidad de Málaga, 29010 Malaga, Spain; (J.P.D.L.C.); (L.O.-E.); (L.O.-H.); (A.M.S.-T.); (S.P.-B.); (J.A.G.-C.)
| | - Laura Ortega-Hombrados
- Departamento de Farmacología, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina—IBIMA Plataforma BIONAND, Facultad de Medicina, Universidad de Málaga, 29010 Malaga, Spain; (J.P.D.L.C.); (L.O.-E.); (L.O.-H.); (A.M.S.-T.); (S.P.-B.); (J.A.G.-C.)
| | - Ana María Sánchez-Tévar
- Departamento de Farmacología, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina—IBIMA Plataforma BIONAND, Facultad de Medicina, Universidad de Málaga, 29010 Malaga, Spain; (J.P.D.L.C.); (L.O.-E.); (L.O.-H.); (A.M.S.-T.); (S.P.-B.); (J.A.G.-C.)
| | | | | | - Sergio Pérez-Burillo
- Departamento de Farmacología, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina—IBIMA Plataforma BIONAND, Facultad de Medicina, Universidad de Málaga, 29010 Malaga, Spain; (J.P.D.L.C.); (L.O.-E.); (L.O.-H.); (A.M.S.-T.); (S.P.-B.); (J.A.G.-C.)
| | - Juan Antonio Espejo-Calvo
- Tecnofood I+D+i Soluciones S.L., Instituto para la Calidad y Seguridad Alimentaria (ICSA), 18320 Granada, Spain;
| | - José Antonio González-Correa
- Departamento de Farmacología, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina—IBIMA Plataforma BIONAND, Facultad de Medicina, Universidad de Málaga, 29010 Malaga, Spain; (J.P.D.L.C.); (L.O.-E.); (L.O.-H.); (A.M.S.-T.); (S.P.-B.); (J.A.G.-C.)
| |
Collapse
|
8
|
Fernandez MF, Pattin FF, Rubio JS, Montes LA, Ramisch DA, Lev G, Fava C, Raffaele P, Gondolesi GE. Salvage Endovascular Thrombectomy for Splenic Vein Thrombosis After Pancreas Transplantation: A Single-Center Experience and Systematic Literature Review. EXP CLIN TRANSPLANT 2024; 22:487-496. [PMID: 39223807 DOI: 10.6002/ect.2024.0109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
OBJECTIVES Technical graft loss, usually thrombotic in nature, accounts for most of the pancreas grafts that are removed early after transplant. Although arterial and venous thrombosis can occur, the vein is predominantly affected, with estimated overall rate of thrombosis of 6% to 33%. In late diagnosis, the graft will need to be removed because thrombectomy will not restore its functionality. However, in early diagnosis, a salvage procedure should be attempted. MATERIALS AND METHODS We conducted a retrospective, descriptive analysis of a prospective database of patients who underwent pancreas transplant from April 2008 to June 2020 at a single center. We evaluated post-transplant clinical glucose levels, imaging, treatment, and outcomes. We also performed a systematic review of publications for endovascular treatment of vascular graft thrombosis in pancreas transplant. RESULTS In 67 pancreas transplants analyzed, 13 (19%) were diagnosed with venous thrombus. In 7 of 13 patients (54%), systemic anticoagulation was prescribed because of a non-occlusive thromboses, resulting in complete resolution for all 7 patients. Six patients (46%) required endovascular thrombectomy because of the presence of complete occlusive thrombosis; 4 of these patients (67%) needed a second procedure because of recurrence of the thrombosis. One of the 6 patients (17%) required a surgical approach, resulting in successful removal of the recurrent clot. Twelve of the 13 grafts (92%) were rescued. Graft survival at 1 year was 84%; graft survival at 3, 5, and 10 years remained at 70%. CONCLUSIONS Pancreas vein thrombosis represents a frequent surgical complication and remains as a challenging problem. In our experience, early diagnoses and an endovascular approach combined with aggressive medical treatment and follow-up can be used for successful treatment and reduce graft loss.
Collapse
Affiliation(s)
- María F Fernandez
- >From the HPB Surgery and Abdominal Organs Transplant Unit, Hospital Universitario Fundación Favaloro, Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Zhang K, Zheng S, Wu J, He J, Ouyang Y, Ao C, Lang R, Jiang Y, Yang Y, Xiao H, Li Y, Li M, Wang H, Li C, Wu D. Human umbilical cord mesenchymal stem cell-derived exosomes ameliorate renal fibrosis in diabetic nephropathy by targeting Hedgehog/SMO signaling. FASEB J 2024; 38:e23599. [PMID: 38572590 DOI: 10.1096/fj.202302324r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 03/03/2024] [Accepted: 03/25/2024] [Indexed: 04/05/2024]
Abstract
Diabetic nephropathy (DN) is the leading cause of end-stage renal disease globally. Currently, there are no effective drugs for the treatment of DN. Although several studies have reported the therapeutic potential of mesenchymal stem cells, the underlying mechanisms remain largely unknown. Here, we report that both human umbilical cord MSCs (UC-MSCs) and UC-MSC-derived exosomes (UC-MSC-exo) attenuate kidney damage, and inhibit epithelial-mesenchymal transition (EMT) and renal fibrosis in streptozotocin-induced DN rats. Strikingly, the Hedgehog receptor, smoothened (SMO), was significantly upregulated in the kidney tissues of DN patients and rats, and positively correlated with EMT and renal fibrosis. UC-MSC and UC-MSC-exo treatment resulted in decrease of SMO expression. In vitro co-culture experiments revealed that UC-MSC-exo reduced EMT of tubular epithelial cells through inhibiting Hedgehog/SMO pathway. Collectively, UC-MSCs inhibit EMT and renal fibrosis by delivering exosomes and targeting Hedgehog/SMO signaling, suggesting that UC-MSCs and their exosomes are novel anti-fibrotic therapeutics for treating DN.
Collapse
Affiliation(s)
- Ke Zhang
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Shuo Zheng
- R&D Center, Wuhan Hamilton Biotechnology Co., Ltd, Wuhan, China
| | - Jiasheng Wu
- The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jing He
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Yu Ouyang
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Chunchun Ao
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Ruibo Lang
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Yijia Jiang
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Yifan Yang
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Huan Xiao
- School of Life Science, Hubei University, Wuhan, China
| | - Yu Li
- School of Life Science, Hubei University, Wuhan, China
| | - Mao Li
- School of Life Science, Hubei University, Wuhan, China
| | - Huiming Wang
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Changyong Li
- Department of Physiology, Wuhan University School of Basic Medical Sciences, Wuhan, China
- Xianning Medical College, Hubei University of Science & Technology, Xianning, China
| | - Dongcheng Wu
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
- R&D Center, Wuhan Hamilton Biotechnology Co., Ltd, Wuhan, China
- R&D Center, Guangzhou Hamilton Biotechnology Co., Ltd, Guangzhou, China
| |
Collapse
|
10
|
Wang K, Hou M, Qiao C, Duan Y, Tao R, Wang X, Xiao K, Liu S, Zhao H, Wang J, Jia Z, Ding X. Icariin alleviates diabetic renal interstitial fibrosis aggravation by inhibiting miR-320a-3p targeting BMP6. J Pharmacol Sci 2024; 154:316-325. [PMID: 38485350 DOI: 10.1016/j.jphs.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/21/2023] [Accepted: 02/26/2024] [Indexed: 03/19/2024] Open
Abstract
Diabetic nephropathy is a common complication of diabetes, accumulating evidence underscores the pivotal role of tubulointerstitial fibrosis in the progression of diabetic nephropathy. However, the underlying mechanisms remain incompletely understood. Although the mechanisms in diabetic nephropathy fibrosis have been the focus of many studies, only limited information is currently available concerning microRNA regulation in tubulointerstitial fibrosis. In this study, we aimed to investigate the roles of miR-320a-3p and bone morphogenetic protein-6 (BMP6) in tubulointerstitial fibrosis. After inducing fibrosis with high glucose in HK-2 cells, we found that miR-320a-3p is significantly up-regulated, whereas BMP6 is markedly down-regulated. These changes suggest close link between miR-320a-3p and BMP6 in tubulointerstitial fibrosis. To elucidate this phenomenon, miR-320a-3p mimic, inhibitor and siBMP6 were employed. We observed in miR-320a-3p mimic group the fibrosis marker include alpha smooth muscle actin and type I collagen was significantly up-regulated, whereas BMP6 exhibited the opposite trend. Additionally, we found icariin could alleviate tubulointerstitial fibrosis by downregulation the miR-320a-3p expression. In conclusion, miR-320a-3p promotes tubulointerstitial fibrosis during the development of DN by suppressing BMP signal pathway activity via inhibiting BMP6 expression. Suggesting that miR-320a-3p represents a potential therapeutic target for tubulointerstitial fibrosis induced by diabetic nephropathy.
Collapse
Affiliation(s)
- Kaiwei Wang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Mengjun Hou
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Chen Qiao
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Yalei Duan
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Rongpin Tao
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Xiniao Wang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Kang Xiao
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Shuo Liu
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Hanzhen Zhao
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Jiali Wang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Zhirong Jia
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Xuansheng Ding
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China; Precision Medicine Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
11
|
Algarni AA, Alqarni FS, Shalaby HA. The impact of weekly semaglutide, a glucagon-like peptide-1 agonist, on kidney outcomes in adults with type 2 diabetes mellitus. J Family Med Prim Care 2024; 13:532-536. [PMID: 38605766 PMCID: PMC11006082 DOI: 10.4103/jfmpc.jfmpc_1031_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/19/2023] [Accepted: 08/11/2023] [Indexed: 04/13/2024] Open
Abstract
Background Type 2 diabetes mellitus (T2DM) is a chronic metabolic disorder associated with kidney complications. This study aims to investigate the effects of weekly subcutaneous semaglutide, a GLP-1 agonist, on kidney outcomes. Methods This retrospective cohort study was conducted in nephrology and endocrinology clinics at KFAFH from March 2022 to February 2023. The sample size was determined based on hospital records, and randomly selected patients who met the inclusion criteria were included. The inclusion criteria included adults with T2DM who were on weekly subcutaneous semaglutide for 6 months or longer. Patients with type 1 diabetes mellitus, pregnant or gestational diabetes patients, individuals who added other antidiabetic medications during the study period, and participants who refused to be involved were excluded from the study. Results The study included participants aged between 42 and 85 years, with a mean age of 65.38 years, and the majority (58.7%) were males. There was a significant weight and BMI reduction observed in all patients, with P values <0.001 for both. The average weight reduction was 2.97 kg (SD = 2.34, 95% CI 1.65-3.30), and the average Body (BMI) reduction was 1.16 (SD = 0.91, 95% CI 1.03-1.29). A vast majority of participants (98.5%) reported a weight loss of at least 1 kg, and 13.8% of participants experienced a change in BMI category from higher to lower. No patients reported an increase in the BMI category. There was a significant reduction in glycohemoglobin (HbA1c) measurements from 9.18 pretreatment to 8.13 posttreatment, with an average reduction of 1.05 units (SD = 1.84, 95% CI 0.79-1.31). The majority of participants (70.9%) reported a reduction in HbA1c of at least 0.1 unit. Although there was a slight decrease in estimated glomerular filtration rate (eGFR) values on average (1.35 units), the change was not statistically significant (P = 0.059). More than half of the participants (51.5%) reported an increase in eGFR, 45.4% reported a decrease, and 3.1% reported no change. There was a statistically significant reduction in urinary albumin-to-creatinine ratio (UACR) values from a median of 5.97 pretreatment to a median of 5.60 post-treatment. The median decrease was 0.72 units, with one-third (33.3%) reporting an increase and two-thirds (66.7%) reporting a decrease in values. The correlation analysis revealed no significant association between the total quantity of semaglutide taken and the magnitude of changes. Conclusion Our study on the impact of weekly semaglutide in adults with T2DM reveals positive effects on kidney outcomes, including weight loss, glycemic control and improved urine albumin creatine ratio, and a reduced risk of nephropathy. These findings highlight the potential of semaglutide as a safe and effective treatment option for improving renal health in individuals with T2DM.
Collapse
Affiliation(s)
- Ahmad A. Algarni
- Consultant Family Medicine, King Fahad Armed Forces Hospital, Jeddah, Kingdom of Saudi Arabia
| | - Fahad S. Alqarni
- Department of Family Medicine, King Fahad Armed Forces Hospital, Jeddah, Kingdom of Saudi Arabia
| | - Hanin A. Shalaby
- Clinical Research and Data Management, King Fahad Armed Forces Hospital, Jeddah, Kingdom of Saudi Arabia
| |
Collapse
|
12
|
Feng X, Deng M, Zhang L, Pan Q. Impact of gut microbiota and associated mechanisms on postprandial glucose levels in patients with diabetes. J Transl Int Med 2023; 11:363-371. [PMID: 38130636 PMCID: PMC10732577 DOI: 10.2478/jtim-2023-0116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
Diabetes and its complications are serious medical and global burdens, often manifesting as postprandial hyperglycemia. In recent years, considerable research attention has focused on relationships between the gut microbiota and circulating postprandial glucose (PPG). Different population studies have suggested that PPG is closely related to the gut microbiota which may impact PPG via short-chain fatty acids (SCFAs), bile acids (BAs) and trimethylamine N-oxide (TMAO). Studies now show that gut microbiota models can predict PPG, with individualized nutrition intervention strategies used to regulate gut microbiota and improve glucose metabolism to facilitate the precision treatment of diabetes. However, few studies have been conducted in patients with diabetes. Therefore, little is known about the relationships between the gut microbiota and PPG in this cohort. Thus, more research is required to identify key gut microbiota and associated metabolites and pathways impacting PPG to provide potential therapeutic targets for PPG.
Collapse
Affiliation(s)
- Xinyuan Feng
- Department of Endocrinology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Beijing100730 ,China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing100730, China
| | - Mingqun Deng
- Department of Endocrinology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Beijing100730 ,China
| | - Lina Zhang
- Department of Endocrinology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Beijing100730 ,China
| | - Qi Pan
- Department of Endocrinology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Beijing100730 ,China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing100730, China
| |
Collapse
|
13
|
Han L, Cai X, Zhou H. Exosomal microRNAs: potential nanotherapeutic targets for diabetic kidney disease. Nanomedicine (Lond) 2023; 18:1669-1680. [PMID: 37909293 DOI: 10.2217/nnm-2023-0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023] Open
Abstract
Diabetic kidney disease (DKD) is a primary cause for end-stage renal disease, but no specific therapeutic approaches exist. Exosomal miRNAs, a key functional cargo of nanovesicles, play crucial roles in the pathophysiological processes of DKD. Exosomal miRNAs are involved in cell-to-cell transfer of biological information, mediating nephritic inflammation, oxidative stress, apoptosis, autophagy, epithelial-mesenchymal transition and fibrosis. Circulating exosomal miRNAs derived from urine or serum might function as noninvasive prognostic biomarkers for DKD. Exosomal miRNAs from stem cells have been reported to exert beneficial effects on diabetic kidneys, which suggests that these exosomes might function as potential nanotherapy tools for treating DKD. In this review, we have summarized recent studies based on the association between exosomal miRNAs and DKD.
Collapse
Affiliation(s)
- Lulu Han
- Department of Endocrinology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
- Department of Endocrinology, The First Central Hospital of Baoding, Baoding, 071000, China
| | - Xiaoning Cai
- Department of Endocrinology, Liaocheng Traditional Chinese Medicine Hospital, Liaocheng, 252000, China
| | - Hong Zhou
- Department of Endocrinology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| |
Collapse
|
14
|
Tawhari MH, Aldahash RA, Almutairi FM, Albogami MS, Rokon AE, Alsomali FA, Alanazi KH, Alshehri AA, Almutairi TH, Alharbi AD, Alghamdi RM, Tawhari IH, Salih SAB. Impact of sodium-glucose cotransporter-2 inhibitors on kidney outcomes in type 2 diabetes: A tertiary center experience. J Family Community Med 2023; 30:267-272. [PMID: 38044971 PMCID: PMC10688587 DOI: 10.4103/jfcm.jfcm_111_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/12/2023] [Accepted: 08/05/2023] [Indexed: 12/05/2023] Open
Abstract
BACKGROUND Diabetic nephropathy (DN) is a complication of chronic hyperglycemia associated with diabetes mellitus (DM). Several studies have demonstrated the positive impact of sodium-glucose cotransporter-2 (SGLT2) inhibitors on kidney outcomes. The objective of the study was to evaluate the effects of dapagliflozin, an SGLT2 inhibitor, on kidney outcomes in Saudi patients with type 2 DM. MATERIALS AND METHODS Study included all Saudi patients with type 2 DM who visited our center from August 1, 2021, to July 31, 2022, and had been on dapagliflozin for at least 3 months. Data was abstracted through chart review for all patients included in the study. Paired t-test or Wilcoxon signed-rank test were used to compare the results before and after treatment for continuous variables and the McNemar test was used to compare the results for categorical data. RESULTS Study included 184 Saudi patients with type 2 diabetes with a mean age of 61.32 years (SD=9.37). Dapagliflozin 10 mg/day significantly reduced hemoglobin A1C (HbA1C) from a mean (SD) of 9.00 to 8.40 (P < 0.001). Among a subgroup of patients with significant proteinuria (n = 83), dapagliflozin significantly reduced ACR from a median of 93.1 to 64.9 mg/g (P = 0.001). Following treatment, the estimated glomerular filtration rate improved from a mean of 69.83 to 71.68 mL/min and the mean arterial pressure (MAP) fell from 90.03 to 89.06 mmHg, both were not statistically significant. Despite a statistically insignificant increase in the episodes of urinary tract infections (UTIs), the hospitalization rate declined. No episodes of amputations or ketoacidosis occurred during the study period. CONCLUSION SGLT2 inhibitors had beneficial effects among Saudi patients with type 2 diabetes by improving diabetic control and lowering proteinuria. Dapagliflozin did not result in significant harm, including UTIs, amputations, and ketoacidosis.
Collapse
Affiliation(s)
- Mohammed H. Tawhari
- Department of Medicine, College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Ministry of the National Guard Health Affairs, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Centre, Ministry of the National Guard Health Affairs, Riyadh, Saudi Arabia
- Department of Medicine, Division of Nephrology, King Abdulaziz Medical City, Ministry of the National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Raed A. Aldahash
- Department of Medicine, College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Ministry of the National Guard Health Affairs, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Centre, Ministry of the National Guard Health Affairs, Riyadh, Saudi Arabia
- Department of Medicine, Division of Endocrinology, Ministry of the National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Faisal M. Almutairi
- Department of Medicine, College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Ministry of the National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Mahdi S. Albogami
- Department of Medicine, College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Ministry of the National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Ahmad E. Rokon
- Department of Medicine, College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Ministry of the National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Faisal A. Alsomali
- Department of Medicine, College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Ministry of the National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Khaled H. Alanazi
- Department of Medicine, College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Ministry of the National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Abdulrahman A. Alshehri
- Department of Medicine, College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Ministry of the National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Talal H. Almutairi
- Department of Medicine, College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Ministry of the National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Abdulrahman D. Alharbi
- Department of Medicine, College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Ministry of the National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Rayan M. Alghamdi
- Department of Medicine, College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Ministry of the National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Ibrahim H. Tawhari
- Department of Internal Medicine, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Salih A. Bin Salih
- Department of Medicine, College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Ministry of the National Guard Health Affairs, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Centre, Ministry of the National Guard Health Affairs, Riyadh, Saudi Arabia
- Department of Medicine, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| |
Collapse
|
15
|
Zhang W, Zhang L, Dong Q, Wang X, Li Z, Wang Q. Hsa_circ_0003928 regulates the progression of diabetic nephropathy through miR-136-5p/PAQR3 axis. J Endocrinol Invest 2023; 46:2103-2114. [PMID: 37017919 DOI: 10.1007/s40618-023-02061-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 03/06/2023] [Indexed: 04/06/2023]
Abstract
BACKGROUND Diabetic nephropathy (DN) is one of the complications of diabetes and has a high mortality, but its specific pathogenesis is not clear. In recent years, researches on the mechanism of circRNAs in DN have been proved a lot, whereas the functional mechanism of circ_0003928 in DN remains open and it must be investigated to value its important role in DN prevention. METHODS HK-2 cells were treated with high glucose (HG), normal glucose (NG) or Mannitol. Cell counting kit-8 (CCK8) and 5-ethynyl-2'-deoxyuridine (EdU) assays were performed to detect cell proliferation. Enzyme-linked immunosorbent assay (ELISA) was applied to analyze malondialdehyde (MDA) and superoxide dismutase 1 (SOD) levels. Flow cytometry and western blot were preformed to measure cell apoptosis. Real-time quantitative PCR (RT-qPCR) was used to test the levels of circ_0003928, miR-136-5p and progestin and adipoQ receptor family member 3 (PAQR3) mRNA. Western blot was executed to detect Bcl2 associated X (Bax), B cell leukemia/lymphoma 2 (Bcl2), smooth muscle (αSMA), apolipoprotein (C-IV) and PAQR3 levels. Luciferase reporter assay and RNA pull-down assay were used to analyze the target relationship between miR-136-5p and circ_0003928 or PAQR3. RESULTS Circ_0003928 and PAQR3 expression were up-regulated, whereas miR-136-5p was decreased in DN serum and HG-induced HK-2 cells. Circ_0003928 knockdown promoted cell proliferation, and inhibit cell apoptosis, oxidative stress, and fibrosis in HK-2 cells under HG condition. MiR-136-5p silencing overturned the protective effects of si-circ_0003928 on HG-induced HK-2 cells. MiR-136-5p was targeted by circ_0003928 and directly targeted PAQR3. Overexpression of PAQR3 counteracted the inhibitory functions of circ_0003928 knockdown or miR-136-5p overexpression on HG-induced HK-2 cell injury. CONCLUSION Circ_0003928 acted as a sponge of miR-136-5p to up-regulating PAQR3 expression, and then regulate the proliferation, oxidative stress, fibrosis and apoptosis in HG-induced HK-2 cells.
Collapse
Affiliation(s)
- W Zhang
- Kidney Disease and Dialysis Center, Shaanxi Provincial People's Hospital, No. 256 Youyi West Road, Beilin District, Xi'an, 710068, Shaanxi, China
| | - L Zhang
- Kidney Disease and Dialysis Center, Shaanxi Provincial People's Hospital, No. 256 Youyi West Road, Beilin District, Xi'an, 710068, Shaanxi, China
| | - Q Dong
- Kidney Disease and Dialysis Center, Shaanxi Provincial People's Hospital, No. 256 Youyi West Road, Beilin District, Xi'an, 710068, Shaanxi, China
| | - X Wang
- Kidney Disease and Dialysis Center, Shaanxi Provincial People's Hospital, No. 256 Youyi West Road, Beilin District, Xi'an, 710068, Shaanxi, China
| | - Z Li
- Kidney Disease and Dialysis Center, Shaanxi Provincial People's Hospital, No. 256 Youyi West Road, Beilin District, Xi'an, 710068, Shaanxi, China
| | - Q Wang
- Kidney Disease and Dialysis Center, Shaanxi Provincial People's Hospital, No. 256 Youyi West Road, Beilin District, Xi'an, 710068, Shaanxi, China.
| |
Collapse
|
16
|
Al-Tantawy SM, Eraky SM, Eissa LA. Promising renoprotective effect of gold nanoparticles and dapagliflozin in diabetic nephropathy via targeting miR-192 and miR-21. J Biochem Mol Toxicol 2023; 37:e23430. [PMID: 37352119 DOI: 10.1002/jbt.23430] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 03/04/2023] [Accepted: 06/12/2023] [Indexed: 06/25/2023]
Abstract
Diabetic nephropathy (DN) is a worldwide issue that eventually leads to end-stage renal failure, with limited therapeutic options. Prior research has revealed that gold nanoparticles (AuNPs) have a substantial antidiabetic impact. In addition, sodium-glucose cotransporter2 (SGLT2) inhibitors, including dapagliflozin (DAPA), had renoprotective impact on DN. Therefore, this research attempted to determine the potential AuNPs and DAPA impacts in ameliorating experimentally DN induction and the underlying mechanisms focusing on miR-192 and miR-21, correlating them with autophagy, apoptosis, fibrosis, and oxidative stress. Diabetes induction was through a single intraperitoneal streptozotocin (55 mg/kg) injection, and rats with diabetes received AuNPs (2.5 mg/kg/day) as well as DAPA (2 mg/kg/day) for 7 weeks as a treatment. AuNPs and DAPA treatment for 7 weeks substantially alleviated DN. AuNPs and DAPA significantly increased catalase (CAT) activity as well as serum total antioxidant capacity (TAC), along with a substantial decline in malondialdehyde (MDA). AuNPs and DAPA treatment alleviated renal fibrosis as they decreased transforming growth factorß1(TGF-ß1) as well as matrix metalloproteinase-2 (MMP-2) renal expression, decreased apoptosis through alleviating the proapoptotic gene (caspase-3) renal expression and increased the antiapoptotic gene (Bcl-2) renal expression, and increased autophagy as they increased LC-3 as well as Beclin-1 renal expression. Autophagy activation, inhibition of apoptosis, and renal fibrosis could be due to their inhibitory impact on miR-192 and miR-21 renal expression. AuNPs and DAPA have a protective effect on DN in rats by targeting miR-192 and miR-21 and their downstream pathways, including fibrosis, apoptosis, autophagy, and oxidative stress.
Collapse
Affiliation(s)
- Samar M Al-Tantawy
- Biochemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Salma M Eraky
- Biochemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Laila A Eissa
- Biochemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
17
|
Li H, Hao J, Yu W. LncRNA CASC15 inhibition relieves renal fibrosis in diabetic nephropathy through down-regulating SP-A by sponging to miR-424. Open Med (Wars) 2023; 18:20230710. [PMID: 37465354 PMCID: PMC10350895 DOI: 10.1515/med-2023-0710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 04/11/2023] [Accepted: 05/05/2023] [Indexed: 07/20/2023] Open
Abstract
Study has demonstrated the abnormal expression and role of lncRNA CASC15 in diabetes patients with chronic renal failure. However, its role in diabetes nephropathy (DN) is still unclear. This study aimed to investigate the potential mechanism and role of lncRNA CASC15 in DN. The relationship between miR-424 and CASC15/SP-A was predicted by Starbase software and verified by luciferase reporter assay. HK-2 cells were treated with 25 mM glucose (HG) for 24 h to establish DN cell model. MTT and flow cytometry analysis were carried out to test cell proliferation and apoptosis. Epithelial-to-mesenchymal transition (EMT) markers were analyzed by RT-qPCR and western blot assay. We proved that CASC15 could interact with miR-424, and SP-A was a target of miR-424. HG-treatment significantly enhanced lncRNA CASC15 level and decreased miR-424 level in HK-2 cells. LncRNA CASC15-siRNA significantly improved cell viability, repressed apoptosis, promoted E-cadherin expression, and inhibited N-cadherin expression in HG-treated HK-2 cells, and these effects were reversed by miR-424 inhibitor. SP-A was highly expressed in HG-treated HK-2 cells. The biological effects of miR-424 mimic on HG-treated HK-2 cells were reversed by SP-A-plasmid. In conclusion, lncRNA CASC15 inhibition relieved HG-induced HK-2 cell injury and EMT through miR-424/SP-A axis.
Collapse
Affiliation(s)
- Hui Li
- Department of Nephrology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
| | - Jian Hao
- Department of Nephrology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, No. 99 Longcheng Street, Xiaodian District,, Taiyuan, 030032, China
| | - Weimin Yu
- Department of Nephrology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
| |
Collapse
|
18
|
Li C, Liu Q, Ji W, Fu Y, Cao H, Huan Y, Lei L, Gao X, Chen L, Feng C, Zhang L, Li P, Liu Y, Liu S, Shen Z. New anti-diabetic drug Morus alba L. (Sangzhi) alkaloids (SZ-A) improves diabetic nephropathy through ameliorating inflammation and fibrosis in diabetic rats. Front Med (Lausanne) 2023; 10:1164242. [PMID: 37359004 PMCID: PMC10289017 DOI: 10.3389/fmed.2023.1164242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 05/11/2023] [Indexed: 06/28/2023] Open
Abstract
Background Morus alba L. (Sangzhi) alkaloid (SZ-A) is a new antidiabetic drug approved by the China National Medical Products Administration in 2020. Diabetic nephropathy (DN) is a common diabetic complication and an important cause of morbidity and mortality in patients with diabetes. The effects of SZ-A on DN remain unknown. Purpose This study evaluated the effects of SZ-A on DN in Zucker diabetic fatty (ZDF) rats and explored the underlying mechanisms based on nitrosative stress, inflammation, and fibrosis. Methods Diabetic ZDF rats were orally administered 100 and 200 mg/kg of SZ-A once daily for 9 weeks. The glucose metabolism and kidney function were assayed. The pathological injury and fibrosis of the kidneys were separately evaluated using hematoxylin and eosin staining and Masson's staining. The oxidative and nitrosative stress and inflammation were assayed by determining the levels of related indices in the blood and kidneys and quantifying the related gene and protein expression. The expression of transforming growth factor β1 (TGFβ1) gene and protein were assayed by quantitative real-time PCR and immunohistochemistry, respectively. The renal transcriptomics was analyzed using RNA sequencing. Results Repeated treatment with SZ-A significantly improved glucose metabolism, dose-dependently decreased the levels of blood urea nitrogen, urinary albumin, and β2-microglobulin, and evidently relieved the renal injury in diabetic ZDF rats. As for the mechanisms, SZ-A remarkably ameliorated systemic nitrosative stress through lowering the levels of blood inducible nitric oxide synthase and nitric oxide, and significantly relieved systemic and renal inflammation by reducing the levels of blood interleukin-1β and monocyte chemoattractant protein-1 (MCP-1) and decreasing the levels of renal C-reactive protein content and expression of tumor necrosis factor-α in the kidneys. SZ-A also improved renal fibrosis by lowering the expression of TGFβ1 in the kidneys. Additionally, SZ-A significantly lowered the expression of stimulator of chondrogenesis 1 in the kidneys. Conclusion Repeated treatments with SZ-A significantly ameliorates DN by regulating systemic nitrosative stress, renal inflammation, and renal fibrosis partially through inhibition of the cytokine-NO and TGF-β1 signaling in ZDF rats, providing evidence for the additional application of SZ-A in clinical use for the treatment of DN.
Collapse
Affiliation(s)
- Caina Li
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Key Laboratory of Polymorphic Drugs of Beijing, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Diabetes Research Center of Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Quan Liu
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Key Laboratory of Polymorphic Drugs of Beijing, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Diabetes Research Center of Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenming Ji
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Key Laboratory of Polymorphic Drugs of Beijing, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yaxin Fu
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Key Laboratory of Polymorphic Drugs of Beijing, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hui Cao
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Key Laboratory of Polymorphic Drugs of Beijing, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Diabetes Research Center of Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yi Huan
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Key Laboratory of Polymorphic Drugs of Beijing, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Diabetes Research Center of Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lei Lei
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Key Laboratory of Polymorphic Drugs of Beijing, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Diabetes Research Center of Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xuefeng Gao
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Key Laboratory of Polymorphic Drugs of Beijing, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Leilei Chen
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Key Laboratory of Polymorphic Drugs of Beijing, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Cunyu Feng
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Key Laboratory of Polymorphic Drugs of Beijing, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lin Zhang
- Department of Endocrinology, Department of Medical Records, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Pingping Li
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Key Laboratory of Polymorphic Drugs of Beijing, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Diabetes Research Center of Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuling Liu
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Key Laboratory of Polymorphic Drugs of Beijing, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shuainan Liu
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Key Laboratory of Polymorphic Drugs of Beijing, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Diabetes Research Center of Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhufang Shen
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Key Laboratory of Polymorphic Drugs of Beijing, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Diabetes Research Center of Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
19
|
Mengstie MA, Seid MA, Gebeyehu NA, Adella GA, Kassie GA, Bayih WA, Gesese MM, Anley DT, Feleke SF, Zemene MA, Dessie AM, Solomon Y, Bantie B, Dejenie TA, Teshome AA, Abebe EC. Ferroptosis in diabetic nephropathy: Mechanisms and therapeutic implications. Metabol Open 2023; 18:100243. [PMID: 37124126 PMCID: PMC10130620 DOI: 10.1016/j.metop.2023.100243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/07/2023] [Accepted: 04/10/2023] [Indexed: 05/02/2023] Open
Abstract
Diabetic Nephropathy (DN), the most common complication in diabetes mellitus, has been affecting the lives of people diabetic for a long time. Numerous studies have demonstrated the unbreakable connection between ferroptosis and kidney cell damage. Ferroptosis is a type of iron-dependent, non-apoptotic, regulated cell death, characterized by the buildup of intracellular lipid peroxides to lethal levels. Although the role of programmed cell deaths like apoptosis, autophagy, and necroptosis in the pathogenesis of DN has been demonstrated, the implication of ferroptosis in DN was least interrogated. Hence, the main aim of this review was to discuss the current understanding of ferroptosis focusing on its potential mechanisms, its involvement in DN, and emerging therapeutic opportunities.
Collapse
Affiliation(s)
- Misganaw Asmamaw Mengstie
- Department of Biochemistry, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
- Corresponding author.
| | - Mohammed Abdu Seid
- Department of Physiology, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Natnael Atnafu Gebeyehu
- Department of Midwifery, College of Medicine and Health Science, Wolaita Sodo University, Sodo, Ethiopia
| | - Getachew Asmare Adella
- Department of Reproductive Health and Nutrition, School of Public Health, Woliata Sodo University, Sodo, Ethiopia
| | - Gizchew Ambaw Kassie
- Department of Epidemiology and Biostatistics, School of Public Health, Woliata Sodo University, Sodo, Ethiopia
| | - Wubet Alebachew Bayih
- Department of Epidemiology and preventive Medicine, School of Public Health and Preventive Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Australia
| | - Molalegn Mesele Gesese
- Department of Midwifery, College of Medicine and Health Science, Wolaita Sodo University, Sodo, Ethiopia
| | - Denekew Tenaw Anley
- Department of Public Health, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Sefineh Fenta Feleke
- Department of Public Health, College of Health Sciences, Woldia University, Woldia, Ethiopia
| | - Melkamu Aderajew Zemene
- Department of Public Health, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Anteneh Mengist Dessie
- Department of Public Health, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Yenealem Solomon
- Department of Medical Laboratory Science, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Berihun Bantie
- Department of Comprehensive Nursing, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Tadesse Asmamaw Dejenie
- Department of Medical Biochemistry, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Assefa Agegnehu Teshome
- Department of Anatomy, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Endeshaw Chekol Abebe
- Department of Biochemistry, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| |
Collapse
|
20
|
Moin H, Shafi R, Ishtiaq A, Liaquat A, Majeed S, Zaidi NN. Effectiveness of analog of Humanin in ameliorating streptozotocin-induced diabetic nephropathy in Sprague Dawley rats. Peptides 2023; 165:171014. [PMID: 37119975 DOI: 10.1016/j.peptides.2023.171014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/01/2023]
Abstract
Diabetes mellitus(DM) is associated with numerous complications, including nephropathy, which principally occur due to hyperglycemia-induced oxidative stress and inflammation. Humanin(HN), a novel peptide generated from mitochondria, has anti-oxidant and anti-inflammatory potential as observed in different disease models. However, role of HN in diabetic nephropathy (DN) has not yet been explored. This study aimed to evaluate biochemical and molecular aspects of the effects of HN analog, Humanin-glycine([S14G]-humanin) on streptozotocin (STZ)-induced rat model of DN. Ninety Sprague Dawley (SD) rats were randomly segregated into three groups - A (control), B (disease control) and C (treatment). DM type-I was induced in group B and C via single intra-peritoneal dose of STZ (45mg/Kg). Seven days following STZ injection, rats were deemed diabetic if their blood glucose level was >250mg/dL. Subsequently, diabetic rats in group C were injected with [S14G]-humanin intra-peritoneally (0.4mg/Kg/day) for sixteen weeks. Biochemical analysis revealed that diabetic rats had markedly elevated levels of serum glucose, creatinine, BUN, TNF-α, and kidney tissue SOD. Whereas, significant decline was detected in serum insulin and albumin levels. All these parameters were significantly reversed in group C after administering [S14G]-humanin. Moreover, qRT-PCR analysis displayed up-regulation of pro-inflammatory (IL-18, IL-6, IL-1α, IL-1β, TNF-α) and down-regulation of anti-inflammatory cytokines (IL-10, IL-1RN, IL-4) in diabetic rats (group B). [S14G]-humanin treatment significantly reversed the expression IL-18 and IL-1α, however, change in relative expression of IL-6, IL-1β, TNF-α and anti-inflammatory cytokines was insignificant(group C). Conclusively, the findings of this study depicted potential therapeutic role of [S14G]-humanin in pre-clinical rodent model of DN.
Collapse
Affiliation(s)
- Hira Moin
- Department of Physiology, Shifa College of Medicine, Shifa Tameer-e-Millat University, Islamabad 45550, Pakistan.
| | - Riffat Shafi
- Department of Physiology, Shifa College of Medicine, Shifa Tameer-e-Millat University, Islamabad 45550, Pakistan.
| | - Ayesha Ishtiaq
- Signal Transduction Lab, Department of Biochemistry, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad 45320, Pakistan.
| | - Afrose Liaquat
- Dr. Qamar Alam Research Lab, Department of Biochemistry, Shifa College of Medicine Shifa Tameer-e-Millat University, Islamabad 45550, Pakistan.
| | - Sadaf Majeed
- Department of Physiology, Shifa College of Medicine, Shifa Tameer-e-Millat University, Islamabad 45550, Pakistan.
| | - Nilofar Nasir Zaidi
- Department of Physiology, Shifa College of Medicine, Shifa Tameer-e-Millat University, Islamabad 45550, Pakistan.
| |
Collapse
|
21
|
Hajishizari S, Mirzababaei A, Abaj F, Khosroshahi RA, Barekzai AM, Worm N, Abbasy M, Mirzaei K. The association between a low-carbohydrate diet score and the risk of diabetic nephropathy in women: A case-control study. Nutrition 2023; 107:111930. [PMID: 36584662 DOI: 10.1016/j.nut.2022.111930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 11/05/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Because evidence linking carbohydrate consumption to diabetic nephropathy (DN) is scarce, and the association between a low-carbohydrate diet (LCD) and DN has not been investigated, we sought to investigate whether a higher LCD score is associated with DN among women. METHODS In a case-control study, 105 women with type 2 diabetes mellitus and DN and 105 controls with type 2 diabetes mellitus and without DN who attended Kowsar Diabetes Clinic in Semnan, Iran, were matched for age and diabetes duration. The data related to anthropometric and biochemical measures were collected and a food frequency questionnaire with 147 items was used to assess dietary intake. Based on the food frequency questionnaire, we calculated an LCD score for each study participant. Multivariate logistic regression was performed to examine the association between an LCD score and the odds of developing DN. RESULTS The results of the study demonstrated that the LCD score was not significantly associated with DN in the crude model (odds ratio = 0.39; 95% confidence interval, 0.14-1.07; P = 0.06). However, after adjusting for several confounders, subjects in the top quartile of the LCD score were associated with a 71% lower risk of DN (odds ratio [OR] = 0.29; 95% confidence interval, 0.10-0.86; P = 0.02). A significant trend toward decreased urinary albumin excretion was found with an increase in the LCD score (P = 0.005). CONCLUSIONS A diet low in carbohydrates was inversely associated with risk of DN. Further observational studies, and preferably randomized controlled trials, are needed to confirm the present results.
Collapse
Affiliation(s)
- Sara Hajishizari
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Atieh Mirzababaei
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Faezeh Abaj
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Reza Amiri Khosroshahi
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | | | - Nicolai Worm
- Department of Nutrition, German University of Applied Sciences for Prevention and Health Care Management, Saarbrücken, Germany
| | - Maryam Abbasy
- National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Khadijeh Mirzaei
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran; Food Microbiology Research Center, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| |
Collapse
|
22
|
Han Y, Su Y, Han M, Liu Y, Shi Q, Li X, Wang P, Li W, Li W. Ginsenoside Rg1 attenuates glomerular fibrosis by inhibiting CD36/TRPC6/NFAT2 signaling in type 2 diabetes mellitus mice. JOURNAL OF ETHNOPHARMACOLOGY 2023; 302:115923. [PMID: 36375645 DOI: 10.1016/j.jep.2022.115923] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/27/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ginsenoside Rg1 (Rg1) is one of the main active components in Panax ginseng C. A. Meyer (ginseng), which has been widely used to delay senescence or improve health conditions for more than 2000 years. Increasing studies have revealed that Rg1 could regulate cell proliferation and differentiation, as well as anti-inflammatory and anti-apoptotic effects, and might have protective effects on many chronic kidney diseases. AIM OF THE STUDY Diabetic nephropathy (DN) is one of the most dangerous microvascular complications of diabetes and is the leading cause of end-stage renal disease worldwide. However, the role and mechanism of Rg1 against high-glucose and high-fat-induced glomerular fibrosis in DN are not clear. This study aimed to investigate the protective effect of Rg1 on DN and its possible mechanism. MATERIALS AND METHODS The type 2 diabetes mellitus (T2DM) mice models were established with a high-fat diet (HFD) combined with an intraperitoneal injection of streptozotocin (STZ). Urine protein and serum biochemical indexes were detected by corresponding kits. The kidney was stained with H&E, PAS, and Masson to observe the pathological morphology, glycogen deposition, and fibrosis. The expression of CD36 and p-PLC in the kidney cortex was detected by IHC. The expressions of FN and COL4 were detected by IF. Western blot and PCR were performed to examine protein and mRNA expressions of kidney fibrosis and TRPC6/NFAT2-related pathways in DN mice. Calcium imaging was used to examine the effect of Rg1 on [Ca2+]i in PA + HG-induced human mesangial cells (HMCs). Visualization of the interaction between Rg1 and CD36 was detected by molecular docking. RESULTS Rg1 treatment for 8 weeks could prominently decrease urinary protein, serum creatinine, and urea nitrogen and downgrade blood lipid levels and renal lipid accumulation in T2DM mice. The pathological results indicated that Rg1 treatment attenuated renal pathological injury and glomerular fibrosis. The further results demonstrated that Rg1 treatment remarkably decreased the expressions of CD36, TRPC6, p-PLC, CN, NFAT2, TGF-β, p-Smad2/3, COL4, and FN in renal tissues from T2DM mice. Calcium imaging results found that Rg1 downgraded the base levels of [Ca2+]i and ΔRatioF340/F380 after BAPTA and CaCl2 treatment. Molecular docking results showed that Rg1 could interact with CD36 with a good affinity. CONCLUSION These results revealed that Rg1 could ameliorate renal lipid accumulation, pathological damage, and glomerular fibrosis in T2DM mice. The mechanism may be involved in reducing the overexpression of CD36 and inhibiting the TRPC6/NFAT2 signaling pathway in renal tissues of T2DM mice.
Collapse
Affiliation(s)
- Yuli Han
- Department of Pharmacology, Basic Medicine College, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, PR China
| | - Yong Su
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, PR China
| | - Min Han
- Department of Pharmacology, Basic Medicine College, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, PR China
| | - Yan Liu
- Department of Pharmacology, Basic Medicine College, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, PR China
| | - Qifeng Shi
- Department of Pharmacology, Basic Medicine College, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, PR China
| | - Xuewang Li
- Department of Pharmacology, Basic Medicine College, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, PR China
| | - Penghui Wang
- Department of Pharmacology, Basic Medicine College, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, PR China
| | - Weiping Li
- Department of Pharmacology, Basic Medicine College, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, PR China
| | - Weizu Li
- Department of Pharmacology, Basic Medicine College, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, PR China.
| |
Collapse
|
23
|
Li F, Zhang J, Luo L, Hu J. Protective Effects of Xanthohumol against Diabetic Nephropathy in a Mouse Model. Kidney Blood Press Res 2023; 48:92-101. [PMID: 36592619 DOI: 10.1159/000528650] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 12/05/2022] [Indexed: 01/03/2023] Open
Abstract
INTRODUCTION Diabetic nephropathy (DN) is a long-term loss of renal function occurring in the diabetic patients, leading to 5 million deaths in 2015, and this number is dramatically growing annually. Due to unsatisfied outcome of current treatment, there is urgent need to develop more effective therapeutic drugs for DN. METHODS Approximately 150 kinds of natural small molecule drugs that have been used on the market or in the clinical trials in the presence of high glucose were tested individually on the same batch of human renal glomerular endothelial cells (GECs) and human kidney 2 (HK-2) cells with triplicated wells by using a robotic pipetting workstation to screen for the potential drug candidate. Cell viability and oxidative stress were examined in the GECs and HK-2 cells. DN mouse model was established and treated with 25 mg/kg xanthohumol. RESULTS By measuring cell viability, xanthohumol was selected as our predicted drug candidate for DN because it could mostly protect renal cells from high glucose with about 90% survived GECs and HK-2 cells, about 2.12- and 2.37-fold increase compared to glucose group which was with 42.78% and 37.69% survived GECs and HK-2 cells, respectively. Then, xanthohumol inhibited high glucose-induced oxidative stress through nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway in vitro. Moreover, xanthohumol (25 mg/kg) significantly decreased the levels of serum creatinine, blood urea nitrogen, urea protein, and kidney weight/body weight ratio in DN mice. In addition, the increase of reactive oxygen species production and the decrease of superoxide dismutase and catalase activities in DN mice were partially reversed by xanthohumol. mRNA levels of Nrf2, Hmox1, and Nqol genes were all decreased by xanthohumol DN mice. CONCLUSION Xanthohumol could ameliorate DN-related impairments via Nrf2 signaling pathway, which might serve as a promising drug candidate for treatment of DN.
Collapse
Affiliation(s)
- Fenglin Li
- Department of Pharmacy, Daqing Longnan Hospital, Daqing, China
| | - Jinling Zhang
- Department of Nephrology, Daqing Longnan Hospital, Daqing, China
| | - Le Luo
- Anhui Isotex Biotech Co. Ltd, Xuancheng, China
| | - Jing Hu
- Department of Endocrine, Daqing Longnan Hospital, Daqing, China
| |
Collapse
|
24
|
de Sousa LCM, Silva NR, Azeredo CM, Rinaldi AEM, da Silva LS. Health-related patterns and chronic kidney disease in the Brazilian population: National Health Survey, 2019. Front Public Health 2023; 11:1090196. [PMID: 37089474 PMCID: PMC10117670 DOI: 10.3389/fpubh.2023.1090196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 03/10/2023] [Indexed: 04/25/2023] Open
Abstract
Objective The aim of this study was to identify patterns related to health and their association with chronic kidney disease (CKD) in the Brazilian population. Methods We used data from the National Health Survey (PNS), 2019. Participants were interviewed and answered questions related to socioeconomic and demographic information (gender, age, education, race/color), health conditions (presence of hypertension, diabetes mellitus, hyperlipidemia, cardiovascular disease, overweight and CKD) and lifestyle (smoking, alcohol consumption, physical activity and food consumption). To identify patterns, we used exploratory factor analysis. We performed logistic regression models to describe the association of CKD with each pattern in crude models and adjusted for gender, age group, education level and race/color. Results A total of 90,846 individuals were evaluated. The prevalence of CKD was 1.49% (95% CI: 1.3-1.6). Three health-related patterns - metabolic factors, behavioral risk factors and behavioral protective factors - were identified by factor analysis. Metabolic factors were determined by the presence of hypertension, diabetes mellitus, hyperlipidemia and cardiovascular diseases. Behavioral risk factors were determined by smoking, alcohol consumption, regular consumption of soft drinks, sweets and artificial juices, and high salt consumption. The protective behavioral factors were established by the practice of physical activity and regular consumption of vegetables and fruits. Participants of the highest tertile for metabolic factors were more likely to have CKD in the adjusted model (OR = 3.61, 95% CI: 2.69-4.85), when compared to those of the lower tertile. Conclusion The pattern referring to metabolic factors was associated with a higher chance of presenting CKD.
Collapse
|
25
|
Chen J, Ou Z, Gao T, Yang Y, Shu A, Xu H, Chen Y, Lv Z. Ginkgolide B alleviates oxidative stress and ferroptosis by inhibiting GPX4 ubiquitination to improve diabetic nephropathy. Biomed Pharmacother 2022; 156:113953. [DOI: 10.1016/j.biopha.2022.113953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/22/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2022] Open
|
26
|
Kushwaha K, Kabra U, Dubey R, Gupta J. Diabetic Nephropathy: Pathogenesis to Cure. Curr Drug Targets 2022; 23:1418-1429. [PMID: 35993461 DOI: 10.2174/1389450123666220820110801] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 05/18/2022] [Accepted: 06/09/2022] [Indexed: 01/25/2023]
Abstract
Diabetic nephropathy (DN) is a leading cause of end-stage renal disorder (ESRD). It is defined as the increase in urinary albumin excretion (UAE) when no other renal disease is present. DN is categorized into microalbuminuria and macroalbuminuria. Factors like high blood pressure, high blood sugar levels, genetics, oxidative stress, hemodynamic and metabolic changes affect DN. Hyperglycemia causes renal damage through activating protein kinase C (PKC), producing advanced end glycation products (AGEs) and reactive oxygen species (ROS). Growth factors, chemokines, cell adhesion molecules, inflammatory cytokines are found to be elevated in the renal tissues of the diabetic patient. Many different and new diagnostic methods and treatment options are available due to the increase in research efforts and progression in medical science. However, until now, no permanent cure is available. This article aims to explore the mechanism, diagnosis, and therapeutic strategies in current use for increasing the understanding of DN.
Collapse
Affiliation(s)
- Kriti Kushwaha
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Uma Kabra
- Department of Pharmaceutical Chemistry, Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat 391760, India
| | - Rupal Dubey
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India.,Department of Medical Laboratory Sciences, School of Pharmaceutical Sciences, Lovely Professional University (LPU), Jalandhar - Delhi G.T. Road, Phagwara, Punjab 144411, India
| | - Jeena Gupta
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India
| |
Collapse
|
27
|
Mok H, Al-Jumaily A, Lu J. Plasmacytoma Variant Translocation 1 (PVT1) Gene as a Potential Novel Target for the Treatment of Diabetic Nephropathy. Biomedicines 2022; 10:2711. [PMID: 36359234 PMCID: PMC9687488 DOI: 10.3390/biomedicines10112711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/08/2022] [Accepted: 10/21/2022] [Indexed: 01/29/2024] Open
Abstract
Introduction: Diabetic nephropathy (DN), a severe microvascular complication in patients with diabetes, is clinically characterized by progressive decline in glomerular filtration rate (GFR). DN is the most common cause of end-stage renal disease (ESRD), and has a consistently high mortality rate. Despite the fact that the prevalence of DN is increasing worldwide, the molecular mechanism underlying the pathogenesis of DN is not fully understood. Previous studies indicated PVT1 as a key determinant of ESRD as well as a mediator of extracellular matrix (ECM) accumulation in vitro. More investigations into the role of PVT1 in DN development are needed. Objectives: To study the effect of PVT1 silencing on progression of DN in diabetic male C57BL/6 mice at early, intermediate and relatively advanced ages. Methods: Diabetic mice were treated with either scramble-siRNA (DM + siRNA (scramble)) or PVT1-siRNA (DM + siRNA (PVT1)), whereas the control mice were normal mice without siRNA injection (Control). Blood, urine and kidney were collected at the age of 9 (young), 16 (middle-aged) or 24 (old) weeks old. Kidney function, histology and molecular gene expression were evaluated. Results: Our findings showed that silencing of PVT1 reduced kidney hypertrophy, proteinuria (UAE, UACR, UPE, UPCR), serum creatinine, serum TGF-β1, serum insulin decline, glomerular and mesangial areas, and increased creatinine clearance in diabetic mice to levels closer to the age-matched controls. Also, silencing of PVT1 markedly suppressed the upregulation of PAI-1, TGF-β1, FN1, COL4A1, and downregulation of BMP7. Conclusion: Silencing of PVT1 ameliorates DN in terms of kidney function and histology in diabetic mice. The renoprotection is attributed to the reduction in ECM accumulation, TGF-β1 elevation and insulin decline. PVT1 is suggested to play an important role in ECM accumulation which makes it a possible target for the treatment of DN.
Collapse
Affiliation(s)
- Helen Mok
- School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1142, New Zealand
| | - Ahmed Al-Jumaily
- School of Engineering, Computer and Mathematical Sciences, Faculty of Design and Creative Technologies, Auckland University of Technology, Auckland 1142, New Zealand
| | - Jun Lu
- School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1142, New Zealand
- Maurice Wilkins Centre for Molecular Discovery, Auckland 1142, New Zealand
- College of Food Science and Technology, Nanchang University, Nanchang 330031, China
- College of Food Engineering and Nutrition Sciences, Shaanxi Normal University, Xi’an 710119, China
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| |
Collapse
|
28
|
Chen H, Xie C, Chen Q, Zhuang S. HDAC11, an emerging therapeutic target for metabolic disorders. Front Endocrinol (Lausanne) 2022; 13:989305. [PMID: 36339432 PMCID: PMC9631211 DOI: 10.3389/fendo.2022.989305] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/10/2022] [Indexed: 11/29/2022] Open
Abstract
Histone deacetylase 11 (HDAC11) is the only member of the class IV HDAC, and the latest member identified. It is highly expressed in brain, heart, kidney and some other organs, and located in mitochondria, cytoplasm and nuclei, depending on the tissue and cell types. Although studies in HDAC11 total knockout mice suggest its dispensable features for tissue development and life, it participates in diverse pathophysiological processes, such as DNA replication, tumor growth, immune regulation, oxidant stress injury and neurological function of cocaine. Recent studies have shown that HDAC11 is also critically involved in the pathogenesis of some metabolic diseases, including obesity, diabetes and complications of diabetes. In this review, we summarize the recent progress on the role and mechanism of HDAC11 in the regulation of metabolic disorders, with the focus on its regulation on adipogenesis, lipid metabolism, metabolic inflammation, glucose tolerance, immune responses and energy consumption. We also discuss the property and selectivity of HDAC11 inhibitors and their applications in a variety of in vitro and in vivo models of metabolic disorders. Given that pharmacological and genetic inhibition of HDAC11 exerts a beneficial effect on various metabolic disorders, HDAC11 may be a potential therapeutic target to treat chronic metabolic diseases.
Collapse
Affiliation(s)
- Huizhen Chen
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chunguang Xie
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiu Chen
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shougang Zhuang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, United States
| |
Collapse
|
29
|
Zhou J, Peng X, Ru Y, Xu J. Circ_0060077 Knockdown Alleviates High-Glucose-Induced Cell Apoptosis, Oxidative Stress, Inflammation and Fibrosis in HK-2 Cells via miR-145-5p/VASN Pathway. Inflammation 2022; 45:1911-1923. [PMID: 35729462 DOI: 10.1007/s10753-022-01649-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 01/17/2022] [Accepted: 02/09/2022] [Indexed: 12/22/2022]
Abstract
The involvement of circular RNAs (circRNAs) in the progression of diabetic nephropathy (DN) has been reported. However, the functions of circ_0060077 in DN remain unclear. HK-2 cells were treated with high glucose (HG) to establish DN cell model. Quantitative real-time polymerase chain reaction (qRT-PCR) was proceeded to determine the levels of circ_0060077, microRNA-145-5p (miR-145-5p) and vasorin (VASN). Cell counting kit-8 (CCK-8) assay, 5-ethynyl-2'-deoxyuridine (EdU) assay and colony formation assay were conducted to assess cell proliferation ability. Flow cytometry analysis was employed for cell apoptosis. The oxidative stress level was evaluated by commercial kits. Enzyme-linked immunosorbent assay (ELISA) was adopted to examine the concentrations of inflammatory factors. Western blot assay was utilized for protein levels. Dual-luciferase reporter assay and RNA pull-down assay were manipulated to analyze the relationships among circ_0060077, miR-145-5p and VASN. Circ_0060077 level was increased in DN patients and HG-stimulated HK-2 cells. Circ_0060077 knockdown ameliorated the inhibitory effect of HG on HK-2 cell proliferation and the promotional effects on cell apoptosis, oxidative stress, inflammation and fibrosis. MiR-145-5p was identified as the target for circ_0060077 and miR-145-5p inhibition ameliorated the effect of circ_0060077 silencing on HG-induced HK-2 cell injury. Moreover, miR-145-5p directly bound to VASN. Overexpression of miR-145-5p facilitated cell proliferation and repressed apoptosis, oxidative injury, inflammation and fibrosis in HG-induced HK-2 cells by targeting VASN. Circ_0060077 silencing protected HK-2 cells from HG-induced damage by regulating miR-145-5p/VASN axis.
Collapse
Affiliation(s)
- Jinjin Zhou
- Department of Nephrology, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang City, Henan Province, China
| | - Xia Peng
- Department of Nephrology, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang City, Henan Province, China
| | - Yanhai Ru
- Department of Nephrology, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang City, Henan Province, China
| | - Jiayun Xu
- Department of Nephrology, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang City, Henan Province, China.
| |
Collapse
|
30
|
Nedyalkova M, Robeva R, Elenkova A, Simeonov V. Chemometric exploratory data analysis for patients with diabetes type 2 and diabetic complications. PHYSICAL SCIENCES REVIEWS 2022. [DOI: 10.1515/psr-2020-0132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The present study deals with the interpretation and modeling of clinical data for patients with diabetes mellitus type 2 (DMT2) additionally diagnosed with complications of the disease by the use of multivariate statistical methods. The major goal is to determine some specific clinical descriptors characterizing each health problem by applying the options of the exploratory data analysis. The results from the statistical analysis are commented in details by medical reasons for each of the complications. It was found that each of the complications is characterized by specific medical descriptors linked into each one of the five latent factors identified by factor and principal components analysis. Such an approach to interpret concomitant to DMT2 complications is original and allows a better understanding of the role of clinical parameters for diagnostic and prevention goals.
Collapse
Affiliation(s)
- Miroslava Nedyalkova
- Chair of General and Inorganic Chemistry, Faculty of Chemistry and Pharmacy, University of Sofia “St. Kl. Okhridski”, 1 , J. Bourchier Blvd. , 1164 Sofia , Bulgaria
| | - Ralitsa Robeva
- USHATE “Acad. Iv. Penchev”, Department of Endocrinology , Medical Faculty, Medical University-Sofia , 2, Zdrave Str. , 1431 Sofia , Bulgaria
| | - Atanaska Elenkova
- USHATE “Acad. Iv. Penchev”, Department of Endocrinology , Medical Faculty, Medical University-Sofia , 2, Zdrave Str. , 1431 Sofia , Bulgaria
| | - Vasil Simeonov
- Chair of Analytical Chemistry, Faculty of Chemistry and Pharmacy, University of Sofia “St. Kl. Okhridski”, 1 , J. Bourchier Blvd. , 1164 Sofia , Bulgaria
| |
Collapse
|
31
|
Aviles Bueno B, Soler MJ, Perez-Belmonte L, Jimenez Millan A, Rivas Ruiz F, Garcia de Lucas MD. Semaglutide in type 2 diabetes with chronic kidney disease at high risk progression-real-world clinical practice. Clin Kidney J 2022; 15:1593-1600. [PMID: 35892023 PMCID: PMC9308087 DOI: 10.1093/ckj/sfac096] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Indexed: 12/01/2022] Open
Abstract
Background Semaglutide [glucagon-like peptide-1 receptor-agonist (GLP-1RA)] has shown nephroprotective effects in previous cardiovascular studies. However, its efficacy and safety in patients with chronic kidney disease (CKD) and type 2 diabetes (T2D) have been rarely studied. Methods This is a multicenter, retrospective, observational study in patients with T2D and CKD with glycosylated hemoglobin A1c (HbA1c) of 7.5-9.5% treated with subcutaneous semaglutide for 12 months in real-world clinical practice. The main objectives were glycemic control as HbA1c <7% and weight loss >5%. Results We studied a total of 122 patients, ages 65.50 ± 11 years, 62% men, duration of T2D 12 years, baseline HbA1c 7.57% ± 1.36% and an estimated glomerular filtration rate (eGFR) 50.32 ± 19.21 mL/min/1.73 m2; 54% had a urinary albumin:creatinine ratio (UACR) of 30-300 mg/g and 20% had a UACR >300 mg/g. After 12 months of follow-up, HbA1c declined -0.73% ± 1.09% (P < .001), with 57% of patients achieving values <7% and weight loss of -6.95 kg (P < .001), with 59% of patients showing a reduction of >5% of their body weight. Systolic and diastolic blood pressure decreased -9.85 mmHg and -5.92 mmHg, respectively (P < .001). The mean UACR decreased 51% in the group with baseline macroalbuminuria (UACR >300 mg/g). The mean eGFR (by the Chronic Kidney Disease Epidemiology Collaboration) remained stable. The need for basal insulin decreased 20% (P < .005). Only 7% of patients on insulin had mild hypoglycemic episodes. Semaglutide was stopped in 5.7% of patients for digestive intolerance. Conclusions In this real-world study, patients with T2D and CKD treated with subcutaneous semaglutide for 12 months significantly improved glycemic control and decreased weight. Albuminuria decreased by >50% in patients with macroalbuminuria. The administration of GLP-1RA in patients with T2D and CKD was safe and well tolerated.
Collapse
Affiliation(s)
| | - Maria Jose Soler
- Vall D´Hebron University Hospital, Nephrology Department, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Luis Perez-Belmonte
- Regional University Hospital and Biomedical Research Institute, Internal Medicine Department Málaga, Spain
| | | | | | | |
Collapse
|
32
|
Dong Q, Dong L, Zhu Y, Wang X, Li Z, Zhang L. Circular ribonucleic acid nucleoporin 98 knockdown alleviates high glucose-induced proliferation, fibrosis, inflammation and oxidative stress in human glomerular mesangial cells by regulating the microribonucleic acid-151-3p-high mobility group AT-hook 2 axis. J Diabetes Investig 2022; 13:1303-1315. [PMID: 35482475 PMCID: PMC9340880 DOI: 10.1111/jdi.13821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/27/2022] [Accepted: 04/27/2022] [Indexed: 11/27/2022] Open
Abstract
AIMS/INTRODUCTION This study aimed to investigate the role and mechanism of circular ribonucleic acid nucleoporin 98 (circNUP98) in diabetic nephropathy (DN). MATERIALS AND METHODS Human glomerular mesangial cells (HMCs) were stimulated with high glucose (HG) to imitate the growth environment of cells under the DN condition. Levels of genes and proteins were tested by quantitative reverse transcription polymerase chain reaction and western blot. Cell proliferation, apoptosis and inflammatory response were analyzed by using cell counting kit-8, flow cytometry and enzyme-linked immunosorbent assay analysis, respectively. Oxidative stress and fibrosis were evaluated by detecting the activity of reactive oxygen species, malondialdehyde, superoxide dismutase, fibronectin and collagen IV. The binding interaction between microribonucleic acid (miR)-151-3p and high mobility group AT-hook 2 (HMGA2) or circNUP98 was confirmed using dual-luciferase reporter, pull-down and ribonucleic acid immunoprecipitation assays. Exosomes were isolated by ultracentrifugation, and qualified by transmission electron microscopy, nanoparticle tracking analysis and western blot. RESULTS CircNUP98 expression was higher in the serum of DN patients and HG-stimulated HMCs. Functionally, circNUP98 knockdown alleviated HG-induced proliferation, fibrosis, inflammatory response and oxidative stress in HMCs. Mechanistically, circNUP98 directly sponged miR-151-3p, which targeted HMGA2. Rescue experiments showed that miR-151-3p reversed the inhibitory effects of circNUP98 knockdown on HG-induced HMC dysfunction. Furthermore, miR-151-3p re-expression also led to an inhibition of the aforementioned biological behaviors, which was attenuated by HMGA2 upregulation. Besides that, CircNUP98 was found to be packaged into exosomes of DN, and exosomal circNUP98 possessed diagnostic value for DN patients. CONCLUSION CircNUP98 knockdown alleviates HG-induced proliferation, fibrosis inflammation and oxidative stress in HMCs by regulating the miR-151-3p-HMGA2 axis, which might provide a potential approach for DN therapeutics.
Collapse
Affiliation(s)
- Qianlan Dong
- Kidney Disease and Dialysis CenterShaanxi Provincial People's HospitalXi'an, ShaanxiChina
| | - Longhao Dong
- Department of EmergencyTongchuan People's HospitalTongchuan, ShaanxiChina
| | - Yanting Zhu
- Kidney Disease and Dialysis CenterShaanxi Provincial People's HospitalXi'an, ShaanxiChina
| | - Xiaoming Wang
- Kidney Disease and Dialysis CenterShaanxi Provincial People's HospitalXi'an, ShaanxiChina
| | - Zhenjiang Li
- Kidney Disease and Dialysis CenterShaanxi Provincial People's HospitalXi'an, ShaanxiChina
| | - Linping Zhang
- Kidney Disease and Dialysis CenterShaanxi Provincial People's HospitalXi'an, ShaanxiChina
| |
Collapse
|
33
|
lncRNA MALAT1 Promotes Diabetic Nephropathy Progression via miR-15b-5p/TLR4 Signaling Axis. J Immunol Res 2022; 2022:8098001. [PMID: 35910856 PMCID: PMC9334040 DOI: 10.1155/2022/8098001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/01/2022] [Indexed: 02/07/2023] Open
Abstract
Objective The long noncoding RNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) are closely associated with the pathogenesis of diabetic nephropathy (DN). But a complete mechanism for MALAT1 in DN has yet to be identified. This study investigated the effect of MALAT1 on DN through the regulation of miR-15b-5p/TLR4 signaling. Method Renal tissues were collected from DN patients. Human renal tubular epithelial cells (HK-2) were used as a model of DN induced by high glucose (HG). We then measured the viability, apoptosis, and inflammatory cytokine levels of HK-2 cells using the corresponding assays. Following transfections of si-MALAT1, si-MALAT1+miR-15b-5p inhibitor, or si-MALAT1+vector TLR4 into HG-stimulated HK-2 cells, cell viability, apoptosis, and inflammatory cytokines were again measured. Furthermore, dual-luciferase reporter assay validated the interactions of MALAT1/miR-15b-5p and miR-15b-5p/TLR4. In addition, the interaction between MALAT1 and miR-15b-5p was investigated by RNA immunoprecipitation (RIP). Results A significant upregulation of MALAT1 was observed in DN kidney tissues, as well as in HG-stimulated HK-2 cells. MALAT1 knockdown attenuates the inhibition of cell viability, apoptosis, and inflammatory response induced by HG in HK-2 cells. Moreover, a miR-15b-5p inhibitor or TLR4 overexpression reversed the above effects induced by MALAT1 knockdown. Conclusion These results indicate that reduced MALAT1 ameliorates HG-stimulated HK-2 cell damage through an inhibition of the miR-15b-5p/TLR4 axis. MALAT1 may serve as a biomarker and potential therapeutic target for DN.
Collapse
|
34
|
Shahin D. H. H, Sultana R, Farooq J, Taj T, Khaiser UF, Alanazi NSA, Alshammari MK, Alshammari MN, Alsubaie FH, Asdaq SMB, Alotaibi AA, Alamir AA, Imran M, Jomah S. Insights into the Uses of Traditional Plants for Diabetes Nephropathy: A Review. Curr Issues Mol Biol 2022; 44:2887-2902. [PMID: 35877423 PMCID: PMC9316237 DOI: 10.3390/cimb44070199] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/21/2022] [Accepted: 06/24/2022] [Indexed: 11/16/2022] Open
Abstract
Diabetic nephropathy (DN) is a serious kidney illness characterized by proteinuria, glomerular enlargement, reduced glomerular filtration, and renal fibrosis. DN is the most common cause of end-stage kidney disease, accounting for nearly one-third of all cases of diabetes worldwide. Hyperglycemia is a major factor in the onset and progression of diabetic nephropathy. Many contemporary medicines are derived from plants since they have therapeutic properties and are relatively free of adverse effects. Glycosides, alkaloids, terpenoids, and flavonoids are among the few chemical compounds found in plants that are utilized to treat diabetic nephropathy. The purpose of this review was to consolidate information on the clinical and pharmacological evidence supporting the use of a variety of medicinal plants to treat diabetic nephropathy.
Collapse
Affiliation(s)
- Haleema Shahin D. H.
- Department of Pharmacology, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University) Mangaluru, Karnataka 575018, India; (H.S.D.H.); (J.F.); (T.T.); (U.F.K.)
| | - Rokeya Sultana
- Department of Pharmacognosy, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University) Mangaluru, Karnataka 575018, India
- Correspondence: (R.S.); (S.M.B.A.)
| | - Juveriya Farooq
- Department of Pharmacology, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University) Mangaluru, Karnataka 575018, India; (H.S.D.H.); (J.F.); (T.T.); (U.F.K.)
| | - Tahreen Taj
- Department of Pharmacology, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University) Mangaluru, Karnataka 575018, India; (H.S.D.H.); (J.F.); (T.T.); (U.F.K.)
| | - Umaima Farheen Khaiser
- Department of Pharmacology, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University) Mangaluru, Karnataka 575018, India; (H.S.D.H.); (J.F.); (T.T.); (U.F.K.)
| | | | | | | | - Firas Hamdan Alsubaie
- Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia; (M.N.A.); (F.H.A.)
| | - Syed Mohammed Basheeruddin Asdaq
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Dariyah, Riyadh 13713, Saudi Arabia
- Correspondence: (R.S.); (S.M.B.A.)
| | - Abdulmueen A. Alotaibi
- Department of Anaesthesia Technology, College of Applied Sciences, AlMaarefa University, Dariyah, Riyadh 13713, Saudi Arabia;
| | - Abdulrhman ahmed Alamir
- Department of Emergency Medicine, Prince Sultan Military Medical City, Riyadh 12233, Saudi Arabia;
| | - Mohd. Imran
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia;
| | - Shahamah Jomah
- Pharmacy Department, Dr.Sulaiman Al-Habib Medical Group, Riyadh 11372, Saudi Arabia;
| |
Collapse
|
35
|
Ma Y, Wang Q, Chen Y, Su J, Gao Q, Fan Y, Feng J, Liu M, He Q. Correlation of DHEA with diabetic nephropathy and its clinical value in early detection. J Diabetes Investig 2022; 13:1695-1702. [PMID: 35726691 PMCID: PMC9533038 DOI: 10.1111/jdi.13862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/08/2022] [Accepted: 05/30/2022] [Indexed: 11/30/2022] Open
Abstract
Aims/Introduction This study was carried out to assess the association of dehydroepiandrosterone (DHEA) with diabetic nephropathy (DN) in patients with type 2 diabetes mellitus to better predict the progression of diabetic nephropathy. Materials and Methods A total of 1,082 patients with type 2 diabetes mellitus in the Department of Endocrinology and Metabolism of Tianjin Medical University General Hospital were enrolled in this study, and grouped for comparison. The effect of serum DHEA on DN was evaluated by multivariate logistic regression analysis, and receiver operating characteristic curves were established to explore the optimal concentration of DHEA in patients with DN and non‐DN. Results DHEA was significantly decreased in patients with DN (P < 0.001). The prevalence of DN was significantly higher in the low DHEA quartile than in the other quartiles (P < 0.001). Spearman‐related analysis showed that DHEA levels were negatively correlated with patient age, course of diabetes, systolic blood pressure, blood creatinine, uric acid, urine albumin‐to‐creatinine ratio, 24‐h urine microalbumin, 24‐h urine protein quantification and glomerular filtration rate, and positively correlated with body mass index, total cholesterol and low density lipoprotein. Logistic regression analysis showed that the effect of DHEA on DN was statistically significant (P < 0.001). The receiver operating characteristic curve showed that the sensitivity was 81.4%, the specificity was 70% and the area under the curve was 0.812 when the optimal cut‐off value was 1,640 (pg/mL). Conclusion DHEA is significantly associated with DN and might be a protective factor for DN, and is important for the prediction of DN.
Collapse
Affiliation(s)
- Ying Ma
- Tianjin Medical University;No.22, Meteorological Observatory Road, Heping District, Tianjin, Tianjin, China, 300070
| | - Qian Wang
- Tianjin Medical University General Hospital, Department of Clinical Laboratory, 154 Anshan Road Heping District Tianjin, Tianjin, China, 300052
| | - Yunxia Chen
- Cangzhou People's Hospital,Department of Endocrinology and Metabolis, No.7 Qingchi Road, Cangzhou, Hebei Province, China, 061000
| | - Junping Su
- Cangzhou People's Hospital,Department of Endocrinology and Metabolis, No.7 Qingchi Road, Cangzhou, Hebei Province, China, 061000
| | - Qian Gao
- Cangzhou People's Hospital,Department of Endocrinology and Metabolis, No.7 Qingchi Road, Cangzhou, Hebei Province, China, 061000
| | - Yuxin Fan
- Tianjin Medical University General Hospital, Department of Endocrinology and Metabolis, 54 Anshan Road Heping District Tianjin, Tianjin, China, 300052
| | - Jing Feng
- Tianjin Medical University General Hospital, Department of Respiratory and Critical Care Medicine, 154 Anshan Road, Heping District, Tianjin, China
| | - Ming Liu
- Tianjin Medical University General Hospital, Department of Endocrinology and Metabolis, 54 Anshan Road Heping District Tianjin, Tianjin, China, 300052
| | - Qing He
- Tianjin Medical University General Hospital, Department of Endocrinology and Metabolis, 54 Anshan Road Heping District Tianjin, Tianjin, China, 300052
| |
Collapse
|
36
|
Yang R, Xu S, Zhang X, Zheng X, Liu Y, Jiang C, Liu J, Shang X, Fang S, Zhang J, Yin Z, Pan K. Cyclocarya paliurus triterpenoids attenuate glomerular endothelial injury in the diabetic rats via ROCK pathway. JOURNAL OF ETHNOPHARMACOLOGY 2022; 291:115127. [PMID: 35219820 DOI: 10.1016/j.jep.2022.115127] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/24/2022] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cyclocarya paliurus (Batal.) Iljinskaja. (C. paliurus) is a distinctive traditional Chinese herb, with remarkable hypoglycemic capacity. Emerging evidence suggested that glomerular endothelial injury is a crucial pathological process of diabetic kidney disease (DKD). Our previous research found that C. paliurus triterpenoids fraction (CPT) has ameliorative effects on DKD. However, whether C. paliurus could counteract the glomerular endothelial injury of DKD is still undefined. AIM OF THE STUDY We aimed to investigate the effects of CPT on glomerular endothelial function and explore its underlying mechanisms with in vivo and in vitro experiments. MATERIALS AND METHODS The effects and possible mechanisms of CPT on glomerular endothelial injury in streptozotocin (STZ)-induced diabetic rats and H2O2-challenged primary rat glomerular endothelial cells were successively investigated. RESULTS In vivo, we found that CPT treatment obviously decreased the levels of blood glucose, microalbumin, BUN and mesangial expansion. Additionally, CPT could ameliorate renal endothelium function by reducing the content of VCAM-1 and ICAM-1, and blocking the loss of glycocalyx. In vitro, CPT could also alleviate H2O2-induced endothelial injury. Mechanistically, CPT remarkably increased the phosphorylation levels of Akt and eNOS, decreased the expression of ROCK and Arg2in vivo and in vitro. Noticeably, the favorable effects mediated by CPT were abolished following ROCK overexpression with plasmid transfection. CONCLUSION These findings suggested that CPT could be sufficient to protect against glomerular endothelial injury in DKD through regulating ROCK pathway.
Collapse
Affiliation(s)
- Ru Yang
- Department of Nephrology, Nanjing Lishui District Hospital of Traditional Chinese Medicine, Nanjing, 211200, China; Department of TCMs Pharmaceuticals & Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, China; Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, PR China
| | - Susu Xu
- Department of Nephrology, Nanjing Lishui District Hospital of Traditional Chinese Medicine, Nanjing, 211200, China
| | - Xuanxuan Zhang
- Department of TCMs Pharmaceuticals & Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, China; Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, PR China
| | - Xian Zheng
- Department of TCMs Pharmaceuticals & Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, China; Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, PR China
| | - Yao Liu
- Department of TCMs Pharmaceuticals & Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, China
| | - Cuihua Jiang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, PR China
| | - Jianjing Liu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, PR China
| | - Xulan Shang
- College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Shengzuo Fang
- College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Jian Zhang
- Department of Nephrology, Nanjing Lishui District Hospital of Traditional Chinese Medicine, Nanjing, 211200, China; Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, PR China.
| | - Zhiqi Yin
- Department of TCMs Pharmaceuticals & Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, China.
| | - Ke Pan
- Department of TCMs Pharmaceuticals & Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
37
|
Li Y, Deng X, Zhuang W, Li Y, Xue H, Lv X, Zhu S. Tanshinone IIA down-regulates -transforming growth factor beta 1 to relieve renal tubular epithelial cell inflammation and pyroptosis caused by high glucose. Bioengineered 2022; 13:12224-12236. [PMID: 35577353 PMCID: PMC9275952 DOI: 10.1080/21655979.2022.2074619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Diabetic nephropathy (DN) is a microvascular disease caused by diabetes. Tanshinone IIA has been indicated to ameliorate streptozotocin-induced DN. This study explores the effect of tanshinone IIA on high glucose-induced renal tubular epithelial cell pyroptosis and inflammation. High glucose-stimulated HK-2 cells were used as the in-vitro model of DN and were treated with tanshinone IIA at concentrations of 1, 5, 10 μM for 24 h with the same doses of tolbutamide as the control. After tanshinone IIA treatment, HK-2 cells were transfected with pcDNA-transforming growth factor beta 1 (TGFB1) or sh-TGFB1 for 48 h. RT-qPCR was used to detect the mRNA levels of TNF-α, IL-6, IL-1β, and IL-18. Cell apoptosis and pyroptosis were detected by flow cytometry and cell immunofluorescence. Bioinformatics screening predicted that tanshinone IIA might be an effective component of Salvia miltiorrhiza Bunge (Labiatae) for the treatment of DN. Tanshinone IIA exerted a protective effect in the in-vitro model of DN by suppressing inflammation and pyroptosis via the TGFB1-dependent pathway. Tanshinone IIA inhibited high glucose-induced renal tubular epithelial cell inflammation and cell death through pyroptosis by regulating TGFB1, indicating the therapeutic potential of tanshinone IIA for DN treatment.
Collapse
Affiliation(s)
- Ying Li
- Department of Endocrinology, The Affiliated Suqian First People's Hospital of Nanjing Medical University, Suqian, China
| | - Xu Deng
- Department of Endocrinology, The Affiliated Suqian First People's Hospital of Nanjing Medical University, Suqian, China
| | - Wenlong Zhuang
- Department of General Surgery, The Affiliated Suqian First People's Hospital of Nanjing Medical University, Suqian, China
| | - Yong Li
- Department of General Surgery, The Affiliated Suqian First People's Hospital of Nanjing Medical University, Suqian, China
| | - Hui Xue
- Department of Endocrinology, The Affiliated Suqian First People's Hospital of Nanjing Medical University, Suqian, China
| | - Xin Lv
- Department of Endocrinology, The Affiliated Suqian First People's Hospital of Nanjing Medical University, Suqian, China
| | - Shuqin Zhu
- Department of Endocrinology, The Affiliated Suqian First People's Hospital of Nanjing Medical University, Suqian, China
| |
Collapse
|
38
|
Aloe-Emodin Ameliorates Diabetic Nephropathy by Targeting Interferon Regulatory Factor 4. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:2421624. [PMID: 35518350 PMCID: PMC9064522 DOI: 10.1155/2022/2421624] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 03/16/2022] [Accepted: 04/07/2022] [Indexed: 12/27/2022]
Abstract
Diabetic nephropathy (DN) is one of the leading causes of end-stage renal disease and lacks effective clinical treatment for its complicated pathogenesis. In this study, the gene expression profiles downloaded from the GEO database were used to identify the key regulatory gene through bioinformatics analyses, and the potential mechanism in regulating DN was revealed via the gene set enrichment analysis, pathway analysis, and in vitro phenotype detection. The effect of the screened drug on DN was analyzed through in vitro and in vivo model experiments. Interferon regulatory factor 4 (IRF4) in DN was identified to be upregulated compared with that in normal control tissues. Further results revealed that IRF4 promoted the DN progression through inflammation, immunity, and extracellular matrix remodeling. The screening results of the TCM library showed that aloe-emodin (Ae) should be a potentially active target drug, and the in vitro and in vivo experiment results demonstrated that Ae could ameliorate DN by targeting IRF4. In conclusion, this study revealed the mechanism of the DN progression and demonstrated that Ae could be a potential target drug in ameliorating DN, providing ideas for the clinical treatments for DN.
Collapse
|
39
|
SIRT2 Affects Cell Proliferation and Apoptosis by Suppressing the Level of Autophagy in Renal Podocytes. DISEASE MARKERS 2022; 2022:4586198. [PMID: 35493297 PMCID: PMC9054447 DOI: 10.1155/2022/4586198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/21/2022] [Accepted: 02/28/2022] [Indexed: 12/15/2022]
Abstract
Purpose Despite the discovery of many important molecules in diabetic nephropathy, there has been very limited progress in the management of diabetic kidney diseases and the design of new drugs. To fill this gap, the present study explored the expression of SIRT2 in high-glucose murine kidney foot cells and its impact on cell biological functions. Methods Expression levels of SIRT2 in the MPC-5 of murine kidney foot cells after high and normal glucose treatment or in cells targeted with siRNA were detected using qRT-PCR. Cellular proliferation and programmed cell death were analyzed via the CCK8 assay and flow cell technique, separately. Levels of autophagy markers were measured by western blotting, and chloroquine treatment was applied to the cells to observe the effect of SIRT2 on cell proliferation and apoptosis after treatment. Results The expression level of SIRT2 was remarkably upregulated in the high-GLU group in contrast to the low-GLU group. The cell proliferation and autophagy levels were significantly reduced, and apoptosis was remarkably reinforced in the high-GLU group in contrast to the normal GLU group. However, knocking down the expression level of SIRT2 caused an increase in cell proliferation and cell autophagy levels and significantly weakened apoptosis. Chloroquine influenced cell proliferation and apoptosis in cells targeted with SIRT2 siRNA. Conclusion SIRT2 expression was upregulated in hyperglycaemic murine kidney foot cells, and knocking down the expression level of SIRT2 affected the biological function of the cells. We found that SIRT2 may modulate cell proliferation and apoptosis by regulating cell autophagy.
Collapse
|
40
|
Li X, Xu B, Wu J, Pu Y, Wan S, Zeng Y, Wang M, Luo L, Zhang F, Jiang Z, Xu Y. Maresin 1 Alleviates Diabetic Kidney Disease via LGR6-Mediated cAMP-SOD2-ROS Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7177889. [PMID: 35498124 PMCID: PMC9042615 DOI: 10.1155/2022/7177889] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 03/11/2022] [Accepted: 03/23/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND Chronic hyperglycemia-induced inflammation is recognized as the most important pathophysiological process in diabetic kidney disease (DKD). As maresin 1 (MaR1) is an extensive anti-inflammatory lipid mediator, the present study investigated the protective role of MaR1 in the pathogenesis of DKD and its clinical relevance. METHODS Serum MaR1 concentrations were analyzed in 104 subjects with normal glucose tolerant, type 2 diabetes (T2DM), or DKD. Streptozotocin (STZ) together with high fat diet was used to induce male C57BL/6 J mice into diabetic mice which were treated with MaR1. Human renal tubule epithelial cells (HK-2 cells) were treated by high glucose for glucotoxicity cell model and transfected with LGR6 siRNA for knockdown with MaR1 added,and detected oxidative stress and inflammatory related factors. RESULTS Serum MaR1 concentrations were significant decreased in T2DM with or without kidney disease compared with normal participant and were lowest in patients with DKD. Serum MaR1 concentrations were negatively correlated with hemoglobin A1c (HbA1c), duration of diabetes, urinary albumin to creatinine ratio (UACR), neutrophil, and neutrophil-lymphocyte ratio and were positively correlated with high-density lipoprotein-cholesterol (HDL-C) and estimated glomerular filtration rate (eGFR). In mouse model, MaR1 injection alleviated hyperglycemia, UACR and the pathological progression of DKD. Interestingly, the renal expression of LGR6 was down-regulated in DKD and high glucose treated HK-2 cells but up-regulated by MaR1 treatment. Mechanistically, MaR1 alleviated inflammation via LGR6-mediated cAMP-SOD2 antioxidant pathway in DKD mice and high glucose treated HK-2 cells. CONCLUSIONS Our study demonstrates that decreased serum MaR1 levels were correlated with the development of DKD. MaR1 could alleviate DKD and glucotoxicity-induced inflammation via LGR6-mediated cAMP-SOD2 antioxidant pathway. Thus, our present findings identify MaR1 as a predictor and a potential therapeutic target for DKD.
Collapse
Affiliation(s)
- Xinyue Li
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan 646000, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Sichuan 646000, China
| | - Butuo Xu
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan 646000, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Sichuan 646000, China
| | - Jing Wu
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan 646000, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Sichuan 646000, China
| | - Yueli Pu
- Department of Endocrinology and Metabolism, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Shengrong Wan
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan 646000, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Sichuan 646000, China
| | - Yan Zeng
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan 646000, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Sichuan 646000, China
| | - Mei Wang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan 646000, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Sichuan 646000, China
| | - Lifang Luo
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan 646000, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Sichuan 646000, China
| | - Fanjie Zhang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan 646000, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Sichuan 646000, China
| | - Zongzhe Jiang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan 646000, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Sichuan 646000, China
| | - Yong Xu
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan 646000, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Sichuan 646000, China
| |
Collapse
|
41
|
Rezazadegan M, Mirjalili F, Jalilpiran Y, Aziz M, Jayedi A, Setayesh L, Yekaninejad MS, Casazza K, Mirzaei K. The Association Between Dietary Diversity Score and Odds of Diabetic Nephropathy: A Case-Control Study. Front Nutr 2022; 9:767415. [PMID: 35433795 PMCID: PMC9012530 DOI: 10.3389/fnut.2022.767415] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 03/01/2022] [Indexed: 11/13/2022] Open
Abstract
A dietary diversity score (DDS) may be a useful strategy for monitoring risks associated with chronic diseases. Few studies have investigated the relationship between DDS and the progression to chronic kidney disease (CKD). A better understanding of the relationship between DDS and diabetic nephropathy (DN) may provide insight for monitoring the overall diet and clinical outcomes. This case-control study included 105 women with DN and 105 controls with age and diabetes duration-matched to evaluate the extent to which DDS is associated with DN. Dietary intake was assessed using the food frequency questionnaire (FFQ). DDS was calculated based on the method using five food groups: bread/grains, vegetables, fruits, meats, and dairies. Conditional logistic regression was performed to examine the association between DDS and odds of DN. Anthropometric measures and physical activity levels were evaluated using standard protocols. In a fully adjusted model [controlled for age, body mass index (BMI), energy intake, physical activity, diabetes duration, cardiovascular disease history, and drug usage], greater adherence (the third vs. the first tertile) to DDS [odds ratio (OR) = 0.13; 95% CI (0.05–0.35)], vegetables group [OR = 0.09; 95% CI (0.02–0.36)], and fruits group [OR = 0.05; 95% CI (0.01–0.20)] were significantly associated with lower odds of DN. However, we did not observe any significant relationship between other DDS components and the odds of DN. Our findings showed that higher DDS might be associated with reduced odds of DN. However, more prospective studies are warranted to confirm these findings.
Collapse
Affiliation(s)
- Mahsa Rezazadegan
- Department of Clinical Nutrition, School of Nutrition and Food Science, Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fatemeh Mirjalili
- Department of Clinical Nutrition, School of Nutrition and Food Science, Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Yahya Jalilpiran
- Department of Clinical Nutrition, School of Nutritional Science and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Monireh Aziz
- Department of Clinical Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Jayedi
- Social Determinants of Health Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Leila Setayesh
- Department of Community Nutrition, School of Nutritional Science and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Mir Saeed Yekaninejad
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Krista Casazza
- Marieb College of Health and Human Services, Florida Gulf Coast University, Florida, FL, United States
| | - Khadijeh Mirzaei
- Department of Community Nutrition, School of Nutritional Science and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
- *Correspondence: Khadijeh Mirzaei
| |
Collapse
|
42
|
Ghoreishy SM, Shirzad N, Nakhjavani M, Esteghamati A, Djafarian K, Esmaillzadeh A. Effect of daily consumption of probiotic yoghurt on albumin to creatinine ratio, eGFR and metabolic parameters in patients with type 2 diabetes with microalbuminuria: study protocol for a randomised controlled clinical trial. BMJ Open 2022; 12:e056110. [PMID: 35361646 PMCID: PMC8971794 DOI: 10.1136/bmjopen-2021-056110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
INTRODUCTION To alleviate clinical symptoms of diabetic nephropathy (DN), several dietary and non-dietary strategies have been suggested. Probiotic-enriched foods, through their effects on modulating microflora, might help these patients control the adverse effects. The current study will be done to examine the effects of probiotic yoghurt consumption on albumin to creatinine ratio, estimated glomerular filtration rate (eGFR) and metabolic parameters in patients with type 2 diabetes with nephropathy. METHODS AND ANALYSIS Sixty patients with DN will be recruited in this study. After block matching for sex, body mass index and age, patients will be randomly assigned to receive 300 g/day probiotic yoghurt containing 106 CFU/g Lactobacillus acidophilus and Bifidobacterium lactis strains or 300 g/day plain yoghurt daily for 8 weeks. Weight, height and waist circumference will be measured at study baseline and after the intervention. Biochemical indicators including glycaemic measures (haemoglobin A1c (HbA1c), fasting blood sugar (FBS)), inflammatory markers (high sensitivity-C reactive protein), lipid profile (total cholesterol (TC), triglyceride (TG), low-density lipoprotein (LDL), high-density lipoprotein (HDL)) and finally renal makers (creatinine, albumin to creatinine ratio, eGFR) will be assessed at study baseline and at the end of the trial. DISCUSSION Improving the condition of a person with DN is a serious clinical challenge. The use of probiotic supplements has been considered in these people, but the use of probiotic-enriched foods has received less attention. TRIAL REGISTRATION NUMBER Iranian Registry of Clinical Trials (www.irct.ir) (IRCT20201125049491N1).
Collapse
Affiliation(s)
- Seyed Mojtaba Ghoreishy
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Nooshin Shirzad
- Endocrinology and Metabolism Research Center, Vali-Asr Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Manouchehr Nakhjavani
- Endocrinology and Metabolism Research Center, Vali-Asr Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Esteghamati
- Endocrinology and Metabolism Research Center, Vali-Asr Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Kurosh Djafarian
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Esmaillzadeh
- Department of Community Nutrition, Tehran University of Medical Sciences, Tehran, Iran
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Molecular -Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
43
|
METTL3 enhances NSD2 mRNA stability to reduce renal impairment and interstitial fibrosis in mice with diabetic nephropathy. BMC Nephrol 2022; 23:124. [PMID: 35354439 PMCID: PMC8969340 DOI: 10.1186/s12882-022-02753-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/24/2022] [Indexed: 02/06/2023] Open
Abstract
Background Nuclear receptor-binding SET domain protein 2 (NSD2) is a histone methyltransferase that has been demonstrated to regulate insulin secretion and glucose concentration. This study focused on the role of NSD2 in the renal impairment during diabetic nephropathy (DN). Methods Serum NSD2 level in patients with DN was examined, and its correlations with the renal impairment-related indicators were examined. A murine model of DN was established, and mouse mesangial cells (SV40-MES-13) were treated with high-glucose (HG) to mimic a DN-like condition in vitro. Overexpression of NSD2 was introduced into mice or cells for in vivo and in vitro studies. The m6A level in HG-treated SV40-MES-13 cells was analyzed. METTL3 expression and its correlation with NSD2 were determined. Results NSD2 was poorly expressed in the serum of patients with DN and was negatively correlated with the levels of fasting blood sugar (FBG), serum creatinine (SCr), serum cystatin C (S-Cys-C), the 24-h urine protein (24-h U-protein) and the urine cystatin C (U-Cys-C). NSD2 overexpression reduced the kidney weight and reduced renal impairment in mice. It also suppressed interstitial fibrosis in mouse kidney tissues and reduced fibrosis-related markers in HG-treated SV40-MES-13 cells. HG treatment reduced the m6A level in the cells. METTL3 promoted m6A modification of NDS2 mRNA and enhanced its stability by YTHDF1. METTL3 overexpression alleviated renal impairment and fibrosis in vivo and in vitro. But the protective role was blocked upon NSD2 silencing. Conclusion This study demonstrates that METTL3 promotes NSD2 mRNA stability by YTHDF1 to alleviate progression of DN. Supplementary Information The online version contains supplementary material available at 10.1186/s12882-022-02753-3.
Collapse
|
44
|
Hu Y, Wang SX, Wu FY, Wu KJ, Shi RP, Qin LH, Lu CF, Wang SQ, Wang FF, Zhou S. Effects and Mechanism of Ganoderma lucidum Polysaccharides in the Treatment of Diabetic Nephropathy in Streptozotocin-Induced Diabetic Rats. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4314415. [PMID: 35299891 PMCID: PMC8923773 DOI: 10.1155/2022/4314415] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/07/2022] [Indexed: 12/18/2022]
Abstract
Ganoderma lucidum polysaccharides (GLP) have renal protection effect but there was no study on the diabetic nephropathy. This study was designed to investigate its effect and mechanism using a diabetic rat model induced by streptozotocin (50 mg/kg, i.p.). The diabetic rats were treated with GLP (300 mg/kg/day) for 10 weeks. The blood glucose, glycated hemoglobin, body weight, and the levels of blood creatinine, urea nitrogen, and urine protein were assessed. And renal pathologies were assessed by the tissue sections stained with hematoxylin-eosin, Masson's trichome, and periodic acid-Schiff. The expression of phosphorylated phosphoinositide 3 kinase (p-PI3K), phosphorylated protein kinase B (p-Akt), and phosphorylated mammalian target of rapamycin (p-mTOR), the autophagy proteins beclin-1, LC3-II, LC3-I, and P62; the apoptosis-related proteins caspase-3 and caspase-9; and the inflammation markers IL-6, IL-1β, and TNF-ɑ were assessed. Results showed that GLP alleviated the impairment of renal function by reducing urinary protein excretion and the blood creatinine level and ameliorated diabetic nephropathy. The expression of p-PI3K, p-Akt, and p-mTOR in the diabetic kidney were significantly reduced in the GLP treatment group compared to the without treatment group. GLP treatment activated the autophagy indicators of beclin-1 and the ratio of LC3-II/LC3-I but reduced p62 and also inhibited the expression of caspase-3, caspase-9 and IL-6, IL-1β, and TNF-ɑ. In conclusion, the effect of GLP amelioration diabetic nephropathy may be via the PI3k/Akt/mTOR signaling pathway by inhibition of the apoptosis and inflammation and activation of the autophagy process.
Collapse
Affiliation(s)
- Yu Hu
- Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang, China 154002
- School of Medicine, The First Affiliated Hospital of Jiamusi University, Jiamusi 154003, China
| | - Shu-Xiang Wang
- Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang, China 154002
| | - Fu-Yu Wu
- School of Medicine, The First Affiliated Hospital of Jiamusi University, Jiamusi 154003, China
| | - Ke-Jia Wu
- School of Medicine, The First Affiliated Hospital of Jiamusi University, Jiamusi 154003, China
| | - Rui-Ping Shi
- School of Medicine, The First Affiliated Hospital of Jiamusi University, Jiamusi 154003, China
| | - Li-Hong Qin
- School of Medicine, The First Affiliated Hospital of Jiamusi University, Jiamusi 154003, China
| | - Chun-Feng Lu
- School of Medicine, Huzhou University, Huzhou Central Hospital, Huzhou 313000, China
| | - Shu-Qiu Wang
- Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang, China 154002
| | - Fang-Fang Wang
- Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang, China 154002
| | - Shaobo Zhou
- School of Life Sciences, Institute of Biomedical and Environmental Science and Technology, University of Bedfordshire, Luton, UK LU1 3JU
| |
Collapse
|
45
|
Chaudhuri A, Ghanim H, Arora P. Improving the residual risk of renal and cardiovascular outcomes in diabetic kidney disease: A review of pathophysiology, mechanisms, and evidence from recent trials. Diabetes Obes Metab 2022; 24:365-376. [PMID: 34779091 PMCID: PMC9300158 DOI: 10.1111/dom.14601] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/28/2021] [Accepted: 11/08/2021] [Indexed: 12/14/2022]
Abstract
Based on global estimates, almost 10% of adults have diabetes, of whom 40% are estimated to also have chronic kidney disease (CKD). Almost 2 decades ago, treatments targeting the renin-angiotensin system (RAS) were shown to slow the progression of kidney disease. More recently, studies have reported the additive benefits of antihyperglycaemic sodium-glucose co-transporter-2 inhibitors in combination with RAS inhibitors on both CKD progression and cardiovascular outcomes. However, these recent data also showed that patients continue to progress to kidney failure or die from kidney- or cardiovascular-related causes. Therefore, new agents are needed to address this continuing risk. Overactivation of the mineralocorticoid (MR) receptor contributes to kidney inflammation and fibrosis, suggesting that it is an appropriate treatment target in patients with diabetes and CKD. Novel, selective non-steroidal MR antagonists are being studied in these patients, and the results of two large recently completed clinical trials have shown that one such treatment, finerenone, significantly reduces CKD progression and cardiovascular events compared with standard of care. This review summarizes the pathogenic mechanisms of CKD in type 2 diabetes and examines the potential benefit of novel disease-modifying agents that target inflammatory and fibrotic factors in these patients.
Collapse
Affiliation(s)
- Ajay Chaudhuri
- Division of Endocrinology and MetabolismJacobs School of Medicine and Biomedical Sciences, University at BuffaloBuffaloNew YorkUSA
- Diabetes CenterKaleida HealthBuffaloNew YorkUSA
| | - Husam Ghanim
- Division of Endocrinology and MetabolismJacobs School of Medicine and Biomedical Sciences, University at BuffaloBuffaloNew YorkUSA
| | - Pradeep Arora
- Buffalo VA Medical CenterJacobs School of Medicine and Biomedical Sciences, University at BuffaloBuffaloNew YorkUSA
| |
Collapse
|
46
|
Chen C, Shi Y, Ma J, Chen Z, Zhang M, Zhao Y. Trigonelline reverses high glucose-induced proliferation, fibrosis of mesangial cells via modulation of Wnt signaling pathway. Diabetol Metab Syndr 2022; 14:28. [PMID: 35139912 PMCID: PMC8827266 DOI: 10.1186/s13098-022-00798-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 01/24/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Diabetic nephropathy (DN) is the leading cause of the end-stage renal disease (ESRD). The proliferation and apoptosis of mesangial cells induced by the activated Wnt/β-catenin pathway is crucial in DN. Trigonelline (TRL) is an alkaloid that has been shown to decrease proteinuria and protect the renal function in DN. However, the effect of TRL on the Wnt/β-catenin pathway of mesangial cells is unclear. METHODS As a cellular DN model, human mesangial cells (HMCs) were treated with high-glucose (HG). β-Catenin plasmid and control knockdown plasmids were transfected into HG-treated HMCs as β-catenin pcDNA and β-catenin siRNA groups, respectively. Cell viability was measured by MTT assay. Flow cytometry was used to detect the cell cycle. Cell apoptosis was evaluated by flow cytometry and terminal dUTP transferase nick end labeling (TUNEL) assay. mRNA expression of Wnt1, Wnt3a, Wnt4, Wnt5a, β-catenin, TCF4, Cyclin D1, and CDK4 were detected by qRT-PCR. Protein expression of Wnt4, Wnt5a, nucleus-β-catenin, TCF4, Cyclin D1, and CDK4 were detected by western blotting. RESULTS TRL significantly inhibited HG-induced HMCs viability over three-time points measured (24, 48, and 72 h). In addition, TRL suppressed the levels of fibronectin (FN) and collagen IV (Col IV) in HG-stimulated HMCs. Furthermore, TRL efficiently inhibited the activation of the Wnt/β-catenin signaling pathway in HG-stimulated HMCs. Taken together, these data indicated that TRL inhibited HG-induced HMCs proliferation and ECM expression via the modulation of the Wnt signaling pathway. CONCLUSIONS TRL reduces HG-induced cell injury by regulating the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Chen Chen
- College of Pharmacy, Jilin University, Xinmin Street No. 1163, Changchun, People's Republic of China
| | - Yan Shi
- College of Pharmacy, Jilin University, Xinmin Street No. 1163, Changchun, People's Republic of China
| | - Jiulong Ma
- College of Pharmacy, Jilin University, Xinmin Street No. 1163, Changchun, People's Republic of China
| | - Zhen Chen
- College of Pharmacy, Jilin University, Xinmin Street No. 1163, Changchun, People's Republic of China
| | - Ming Zhang
- College of Pharmacy, Jilin University, Xinmin Street No. 1163, Changchun, People's Republic of China
| | - Yan Zhao
- Physical Examination Center, Jilin University Second Hospital, Street No. 218, Changchun, Ziqiang, People's Republic of China.
| |
Collapse
|
47
|
El-Lateef AEA, El-Shemi AGA, Alhammady MS, Yuan R, Zhang Y. LncRNA NEAT2 Modulates Pyroptosis of Renal Tubular Cells Induced by High Glucose in Diabetic Nephropathy (DN) by via miR-206 Regulation. Biochem Genet 2022; 60:1733-1747. [PMID: 35084640 DOI: 10.1007/s10528-021-10164-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 12/06/2021] [Indexed: 12/22/2022]
Abstract
Patients suffering from terminal-stage diabetic nephropathy (DN) are commonly diagnosed with kidney failure. The condition of DN patients gets generally improved by long-chain noncoding RNA (LncRNA) since it regulates microRNA (miR). The current study analyzes the role played by NEAT2/miR-206 upon cell death of renal tubular epithelial cells (RTECs), high glucose (HG)-induced inflammation and oxidative stress in diabetic nephropathy (DN). The researcher used high glucose (HG) to treat HK-2 cells in in vitro conditions to establish the DN cell model. qRT-PCR was used to confirm the transfection effect whereas the researcher also tested NEAT2, nucleotide-binding oligomerization domain, leucine-rich repeat and pyrin domain containing (NLRP3), caspase-1, interleukin IL-1β, gasdermin D (GSMDD)-N, and miR-206. To analyze the proteins in caspase-1, IL-1β, GSMDD-N, and NLRP3, Western blot technique was performed. The technique is also used to observe the pyroptosis. To identify TNF-α, IL-6, MCP-9, NEAT2, miR-206, and NLRP3, dual-luciferase reporter assay was conducted through ELISA kit to emphasize the correlation that exists among the above-mentioned factors. NEAT2 has been confirmed to have bound with miR-206 through double luciferase report experiments as well as RNA immunoprecipitation (RIP). NEAT2, present in HK-2 cells, was induced by HG. So, if NEAT2 is knocked down, it would mitigate TNF-α, IL-6, and MCP-9 as well. Among the HK-2 cells intervened with HG, the overexpressed miR-206 that was transfected into cells was in alignment with the modifications introduced in inflammatory factors and cytokines after NEAT2 is knocked down. The current study concludes that if NEAT2 is upregulated, it has the potential to retreat the inhibition of miR-206 on inflammatory response as well pyroptosis. Further, by targeting miR-206, NEAT2 has the potential to enhance HG-induced HK-2 pyroptosis. This miR-206 is predicted to be a latent target in the clinical treatment of DN.
Collapse
Affiliation(s)
- Amal Ezzat Abd El-Lateef
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm-Alqura University, Makkah al-Mukarramah, Saudi Arabia.,Department of Clinical Pathology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Adel Galal Ahmed El-Shemi
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm-Alqura University, Makkah al-Mukarramah, Saudi Arabia.,Department of Pharmacology, Faculty of Medicine, Assiut University, El Fateh, Assiut, Egypt
| | - Mona S Alhammady
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm-Alqura University, Makkah al-Mukarramah, Saudi Arabia.,Forensic Medicine and Clinical Toxicology Department, Mansoura University, El Gomhouria St, Dakahlia, Egypt
| | - Rucui Yuan
- University of Science and Technology of China, Hefei, 230001, Anhui, China.
| | - Yan Zhang
- University of Science and Technology of China, Hefei, 230001, Anhui, China
| |
Collapse
|
48
|
Gu LY, Tang HT, Xu ZX. Huangkui capsule in combination with metformin ameliorates diabetic nephropathy via the Klotho/TGF-β1/p38MAPK signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2021; 281:113548. [PMID: 33152427 DOI: 10.1016/j.jep.2020.113548] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/21/2020] [Accepted: 10/30/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Huangkui capsule (HKC), extracted from Abelmoschus manihot (L.) medic (AM), as a patent proprietary Chinese medicine on the market for approximately 20 years, has been clinically used to treat chronic glomerulonephritis. Renal fibrosis has been implicated in the onset and development of diabetic nephropathy (DN). However, the potential application of HKC for preventing DN has not been evaluated. AIM OF THE STUDY This study was designed to investigate the efficacy and underlying mechanisms of HKC combined with metformin (MET), the first-line medication for treating type 2 diabetes, in the treatment of renal interstitial fibrosis. MATERIALS AND METHODS A rat model of diabetes-associated renal fibrosis was established by intraperitoneal injection of streptozotocin (STZ, 65 mg/kg) combined with a high-fat and high-glucose diet. The rats were randomly divided into five groups: normal control, DN, HKC (1.0 g/kg/day), MET (100 mg/kg/d), and HKC plus MET (1.0 g/kg/day + 100 mg/kg/d). Following drug administration for 8 weeks, we collected blood, urine, and kidney tissue for analysis. Biochemical markers and metabolic parameters were detected using commercial kits. Histopathological staining was performed to monitor morphological changes in the rat kidney. High-glucose-induced human kidney HK-2 cells were used to evaluate the renal protective effects of HKC combined with MET (100 μg/mL+10 mmol/L). MTT assay and acridine orange/ethidium bromide were used to examine cell proliferation inhibition rates and apoptosis. Immunofluorescence assay and Western blot analysis were performed to detect renal fibrosis-related proteins including Klotho, TGF-β1, and phosphorylated (p)-p38. RESULTS Combination therapy (HKC plus MET) significantly improved the weight, reduced blood glucose (BG), blood urea nitrogen (BUN), total cholesterol (T-CHO), triglycerides (TG), low-density lipoprotein (LDL) and increased the level of high-density lipoprotein (HDL) of DN rats. Combination therapy also significantly reduced urine serum creatinine (SCR) and urine protein (UP) levels as well as reduced the degrees of renal tubule damage and glomerulopathy in DN rats. Combination therapy ameliorated renal fibrosis, as evidenced by reduced levels of alpha-smooth muscle actin and fibronectin and increased expression of E-cadherin in the kidneys. Moreover, HKC plus MET alleviated the degree of DN in part via the Klotho/TGF-β1/p38MAPK signaling pathway. In vitro experiments showed that combination therapy significantly inhibited cell proliferation and apoptosis and regulated fibrosis-related proteins in high-glucose (HG)-induced HK-2 cells. Further studies revealed that combination therapy suppressed cell proliferation and fibrosis by inhibiting the Klotho-dependent TGF-β1/p38MAPK pathway. CONCLUSIONS HKC plus MET in combination suppressed abnormal renal cell proliferation and fibrosis by inhibiting the Klotho-dependent TGF-β1/p38MAPK pathway. Collectively, HKC combined with MET effectively improved DN by inhibiting renal fibrosis-associated proteins and blocking the Klotho/TGF-β1/p38MAPK signaling pathway. These findings improve the understanding of the pathogenesis of diabetes-associated complications and support that HKC plus MET combination therapy is a promising strategy for preventing DN.
Collapse
Affiliation(s)
- Li-Yuan Gu
- School of Medicine, Yangzhou University, Yangzhou, 225001, Jiangsu, PR China.
| | - Hai-Tao Tang
- The Huangkui Research Institute of Suzhong Pharmaceutical Co, Ltd, Taizhou, 225500, Jiangsu, PR China.
| | - Zheng-Xin Xu
- School of Medicine, Yangzhou University, Yangzhou, 225001, Jiangsu, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225001, PR China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou, 225001, PR China; Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou, 225001, PR China.
| |
Collapse
|
49
|
Zhang B, Zhang X, Zhang C, Sun G, Sun X. Berberine Improves the Protective Effects of Metformin on Diabetic Nephropathy in db/db Mice through Trib1-dependent Inhibiting Inflammation. Pharm Res 2021; 38:1807-1820. [PMID: 34773184 DOI: 10.1007/s11095-021-03104-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 08/31/2021] [Indexed: 11/24/2022]
Abstract
PURPOSE Diabetic nephropathy (DN), one of severe diabetic complications in the diabetes, is the main cause of end stage renal disease (ESRD). Notably, the currently available medications used to treat DN remain limited. Here, we determined whether berberine (BBR) could enhance the anti-diabetic nephropathy activities of metformin (Met) and explored its possible mechanisms. METHOD The anti-diabetic nephropathy properties were systematically analyzed in the diabetic db/db mice treated with Met, BBR or with combination of Met and BBR. RESULTS We found that both single Met and BBR treatments, and combination therapy could lower blood glucose, and ameliorate insulin resistance. The improvement of lipids metabolism by co-administration was more evident, as indicated by reduced serum cholesterol and less fat accumulation in the liver. Further, it was found that Met and BBR treatments, and co-administration could attenuate the progression of DN. However, anti-diabetic nephropathy activities of Met were enhanced when combined with BBR, as evidenced by improved renal function and histological abnormalities of diabetic kidney. Mechanistically, BBR enhanced renal-protective effects of Met primarily through potently promoting expression of Trib1, which subsequently downregulated the increased protein levels of CCAAT/enhancer binding protein α (C/EBPα), and eventually inhibited fatty synthesis proteins and nuclear factor kappa-B (NF-κB) signaling. CONCLUSION Our data provide novel insight that co-administration of BBR and Met exerts a preferable activity of anti-diabetic nephropathy via collectively enhancing lipolysis and inhibiting inflammation. Combination therapy with these two drugs may provide an effective therapeutic strategy for the medical treatment of diabetic nephropathy.
Collapse
Affiliation(s)
- Bin Zhang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, 100193, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, 100193, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing, 100193, China
| | - Xuelian Zhang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, 100193, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, 100193, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing, 100193, China
| | - Chenyang Zhang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, 100193, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, 100193, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing, 100193, China
| | - Guibo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China. .,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, 100193, China. .,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, 100193, China. .,Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing, 100193, China.
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China. .,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, 100193, China. .,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, 100193, China. .,Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing, 100193, China.
| |
Collapse
|
50
|
Feng T, Li W, Li T, Jiao W, Chen S. Circular RNA_0037128 aggravates high glucose-induced damage in HK-2 cells via regulation of microRNA-497-5p/nuclear factor of activated T cells 5 axis. Bioengineered 2021; 12:10959-10970. [PMID: 34753398 PMCID: PMC8810043 DOI: 10.1080/21655979.2021.2001912] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Circular RNAs (CircRNAs) were reported to play vital roles in the progression of DN. Herein, the action of circular RNA_0037128 (circ_0037128) was investigated in DN. The level of circ_0037128, microRNA-497-5p (miR-497-5p) and nuclear factor of activated T cells 5 (NFAT5) was determined using quantitative real-time polymerase chain reaction (qRT-PCR). The feature of circ_0037128 was tested by RNase R and Actinomycin D treatment assays. Cell Counting Kit-8 (CCK-8) and 5-ethynyl-2ʹ-deoxyuridine (EdU) staining assays were conducted to evaluate the proliferation ability. The relative protein expression was determined via Western blot analysis. Levels of the inflammatory cytokines, like tumor necrosis factor α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6), were assessed by enzyme-linked immunosorbent assay (ELISA). Reactive oxygen species (ROS) production, lactate dehydrogenase (LDH) and superoxide dismutase (SOD) activity were determined by the matched kits. Dual-luciferase reporter and RNA immunoprecipitation (RIP) assays were conducted for evaluating the correlation between miR-497-5p and circ_0037128 or NFAT5. Circ_0037128 and NFAT5 were enhanced, while miR-497-5p was weakened in kidney tissues of DN patients and high glucose (HG)-cultured HK-2 cells. Circ_0037128 inhibition bated HG-caused inhibition effect on cell proliferation and promotion effects on oxidative stress, inflammation and fibrosis in HK-2 cells. Moreover, circ_0037128 knockdown alleviated HG-caused cell damage via regulating miR-497-5p. In addition, NFAT5 overexpression could reverse the influence of miR-497-5p on HG-induced injury in HK-2 cells. Mechanically, circ_0037128 sponged miR-497-5p to modulate NFAT5. Circ_0037128 downregulation could mitigate HG-stimulated cell damage via regulating the miR-497-5p/NFAT5 axis in HK-2 cells in vitro, providing a possible therapy target for DN.
Collapse
Affiliation(s)
- Tao Feng
- Department of Geriatric Endocrinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Weifang Li
- Department of Geriatric Endocrinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tianyi Li
- Department of Geriatric Endocrinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wenjun Jiao
- Department of Geriatric Endocrinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Sufang Chen
- Department of Geriatric Endocrinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|