1
|
Nagaoka A, Hino M, Izumi R, Shishido R, Ishibashi M, Hatano M, Sainouchi M, Kakita A, Tomita H, Kunii Y. Availability of individual proteins for quantitative analysis in postmortem brains preserved in two different brain banks. Neuropsychopharmacol Rep 2024; 44:399-409. [PMID: 38558385 PMCID: PMC11144605 DOI: 10.1002/npr2.12430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 04/04/2024] Open
Abstract
AIM Postmortem brain research is necessary for elucidating the pathology of schizophrenia; an increasing number of studies require a combination of suitable tissue samples preserved at multiple brain banks. In this study, we examined whether a comparative study of protein expression levels can be conducted using postmortem brain samples preserved in different facilities. METHODS We compared the demographic factors of postmortem brain samples preserved in two institutions and measured and compared the expression levels of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and glial fibrillary acidic protein (GFAP) in the prefrontal cortex and superior temporal gyrus. GAPDH is generally used as a loading control for western blotting, and GFAP is considered as an astrocyte marker in the brain. RESULTS We found significant differences between the two institutions in postmortem interval, age at death, and preservation time. To reduce the effects of these differences on our measurements, the parameters were set as covariates in our analyses of covariance. Subsequently, no differences in GAPDH and GFAP expression were found between institutions. CONCLUSIONS When studies are conducted using brain samples preserved in different brain banks, differences in demographic factors should be carefully considered and taken into account by statistical methods to minimize their impact as much as possible. Since there was no significant difference in the protein expression levels of GAPDH and GFAP in either region between the two institutions that preserved the postmortem brains, we concluded that it is possible to perform protein quantitative analysis assuming that there is no effect of difference between two institutions.
Collapse
Affiliation(s)
- Atsuko Nagaoka
- Department of PsychiatryTohoku University HospitalSendaiJapan
- Department of Neuropsychiatry, School of MedicineFukushima Medical UniversityFukushimaJapan
| | - Mizuki Hino
- Department of Neuropsychiatry, School of MedicineFukushima Medical UniversityFukushimaJapan
- Department of Disaster Psychiatry, International Research Institute of Disaster ScienceTohoku UniversitySendaiJapan
| | - Ryuta Izumi
- Department of Neuropsychiatry, School of MedicineFukushima Medical UniversityFukushimaJapan
| | - Risa Shishido
- Department of Neuropsychiatry, School of MedicineFukushima Medical UniversityFukushimaJapan
| | - Miki Ishibashi
- Department of Neuropsychiatry, School of MedicineFukushima Medical UniversityFukushimaJapan
| | - Masataka Hatano
- Department of Neuropsychiatry, School of MedicineFukushima Medical UniversityFukushimaJapan
| | - Makoto Sainouchi
- Department of Pathology, Brain Research InstituteNiigata UniversityNiigataJapan
| | - Akiyoshi Kakita
- Department of Pathology, Brain Research InstituteNiigata UniversityNiigataJapan
| | - Hiroaki Tomita
- Department of PsychiatryTohoku University HospitalSendaiJapan
- Department of Disaster Psychiatry, International Research Institute of Disaster ScienceTohoku UniversitySendaiJapan
- Department of Psychiatry, Graduate School of MedicineTohoku UniversitySendaiJapan
| | - Yasuto Kunii
- Department of PsychiatryTohoku University HospitalSendaiJapan
- Department of Neuropsychiatry, School of MedicineFukushima Medical UniversityFukushimaJapan
- Department of Disaster Psychiatry, International Research Institute of Disaster ScienceTohoku UniversitySendaiJapan
| |
Collapse
|
2
|
Lin J, Rivadeneira AP, Ye Y, Ryu C, Parvin S, Jang K, Garraway SM, Choi I. Sodium Bicarbonate Decreases Alcohol Consumption in Mice. Int J Mol Sci 2024; 25:5006. [PMID: 38732226 PMCID: PMC11084513 DOI: 10.3390/ijms25095006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/26/2024] [Accepted: 04/28/2024] [Indexed: 05/13/2024] Open
Abstract
We previously reported that mice with low neuronal pH drink more alcohol, demonstrating the importance of pH for alcohol reward and motivation. In this study, we tested whether systemic pH affects alcohol consumption and if so, whether it occurs by changing the alcohol reward. C57BL/6J mice were given NaHCO3 to raise their blood pH, and the animals' alcohol consumption was measured in the drinking-in-the-dark and two-bottle free choice paradigms. Alcohol consumption was also assessed after suppressing the bitterness of NaHCO3 with sucrose. Alcohol reward was evaluated using a conditioned place preference. In addition, taste sensitivity was assessed by determining quinine and sucrose preference. The results revealed that a pH increase by NaHCO3 caused mice to decrease their alcohol consumption. The decrease in high alcohol contents (20%) was significant and observed at different ages, as well as in both males and females. Alcohol consumption was also decreased after suppressing NaHCO3 bitterness. Oral gavage of NaHCO3 did not alter quinine and sucrose preference. In the conditioned place preference, NaHCO3-treated mice spent less time in the alcohol-injected chamber. Conclusively, the results show that raising systemic pH with NaHCO3 decreases alcohol consumption, as it decreases the alcohol reward value.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Inyeong Choi
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA; (J.L.); (Y.Y.); (C.R.); (S.P.); (K.J.); (S.M.G.)
| |
Collapse
|
3
|
Mulholland PJ, Berto S, Wilmarth PA, McMahan C, Ball LE, Woodward JJ. Adaptor protein complex 2 in the orbitofrontal cortex predicts alcohol use disorder. Mol Psychiatry 2023; 28:4766-4776. [PMID: 37679472 PMCID: PMC10918038 DOI: 10.1038/s41380-023-02236-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/17/2023] [Accepted: 08/23/2023] [Indexed: 09/09/2023]
Abstract
Alcohol use disorder (AUD) is a life-threatening disease characterized by compulsive drinking, cognitive deficits, and social impairment that continue despite negative consequences. The inability of individuals with AUD to regulate drinking may involve functional deficits in cortical areas that normally balance actions that have aspects of both reward and risk. Among these, the orbitofrontal cortex (OFC) is critically involved in goal-directed behavior and is thought to maintain a representation of reward value that guides decision making. In the present study, we analyzed post-mortem OFC brain samples collected from age- and sex-matched control subjects and those with AUD using proteomics, bioinformatics, machine learning, and reverse genetics approaches. Of the 4,500+ total unique proteins identified in the proteomics screen, there were 47 proteins that differed significantly by sex that were enriched in processes regulating extracellular matrix and axonal structure. Gene ontology enrichment analysis revealed that proteins differentially expressed in AUD cases were involved in synaptic and mitochondrial function, as well as transmembrane transporter activity. Alcohol-sensitive OFC proteins also mapped to abnormal social behaviors and social interactions. Machine learning analysis of the post-mortem OFC proteome revealed dysregulation of presynaptic (e.g., AP2A1) and mitochondrial proteins that predicted the occurrence and severity of AUD. Using a reverse genetics approach to validate a target protein, we found that prefrontal Ap2a1 expression significantly correlated with voluntary alcohol drinking in male and female genetically diverse mouse strains. Moreover, recombinant inbred strains that inherited the C57BL/6J allele at the Ap2a1 interval consumed higher amounts of alcohol than those that inherited the DBA/2J allele. Together, these findings highlight the impact of excessive alcohol consumption on the human OFC proteome and identify important cross-species cortical mechanisms and proteins that control drinking in individuals with AUD.
Collapse
Affiliation(s)
- Patrick J Mulholland
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA.
- Charleston Alcohol Research Center, Medical University of South Carolina, Charleston, SC, 29425, USA.
| | - Stefano Berto
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Phillip A Wilmarth
- Proteomics Shared Resource, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Christopher McMahan
- School of Mathematical and Statistical Sciences, Clemson-MUSC Artificial Intelligence Hub, Clemson University, Clemson, SC, 29634-0975, USA
| | - Lauren E Ball
- Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - John J Woodward
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA
- Charleston Alcohol Research Center, Medical University of South Carolina, Charleston, SC, 29425, USA
| |
Collapse
|
4
|
Mulholland PJ, Berto S, Wilmarth PA, McMahan C, Ball LE, Woodward JJ. Adaptor protein complex 2 in the orbitofrontal cortex predicts alcohol use disorder. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.28.542637. [PMID: 37398482 PMCID: PMC10312445 DOI: 10.1101/2023.05.28.542637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Alcohol use disorder (AUD) is a life-threatening disease characterized by compulsive drinking, cognitive deficits, and social impairment that continue despite negative consequences. The inability of individuals with AUD to regulate drinking may involve functional deficits in cortical areas that normally balance actions that have aspects of both reward and risk. Among these, the orbitofrontal cortex (OFC) is critically involved in goal-directed behavior and is thought to maintain a representation of reward value that guides decision making. In the present study, we analyzed post-mortem OFC brain samples collected from age- and sex-matched control subjects and those with AUD using proteomics, bioinformatics, machine learning, and reverse genetics approaches. Of the 4,500+ total unique proteins identified in the proteomics screen, there were 47 proteins that differed significantly by sex that were enriched in processes regulating extracellular matrix and axonal structure. Gene ontology enrichment analysis revealed that proteins differentially expressed in AUD cases were involved in synaptic and mitochondrial function, as well as transmembrane transporter activity. Alcohol-sensitive OFC proteins also mapped to abnormal social behaviors and social interactions. Machine learning analysis of the post-mortem OFC proteome revealed dysregulation of presynaptic (e.g., AP2A1) and mitochondrial proteins that predicted the occurrence and severity of AUD. Using a reverse genetics approach to validate a target protein, we found that prefrontal Ap2a1 expression significantly correlated with voluntary alcohol drinking in male and female genetically diverse mouse strains. Moreover, recombinant inbred strains that inherited the C57BL/6J allele at the Ap2a1 interval consumed higher amounts of alcohol than those that inherited the DBA/2J allele. Together, these findings highlight the impact of excessive alcohol consumption on the human OFC proteome and identify important cross-species cortical mechanisms and proteins that control drinking in individuals with AUD.
Collapse
|
5
|
Australian Donation and Transplantation Biobank: A Research Biobank Integrated Within a Deceased Organ and Tissue Donation Program. Transplant Direct 2022; 9:e1422. [PMID: 36591329 PMCID: PMC9750700 DOI: 10.1097/txd.0000000000001422] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 10/04/2022] [Indexed: 12/27/2022] Open
Abstract
We aimed to facilitate the donation of tissue samples for research by establishing a centralized system integrated in the organ donation program for collection, storage, and distribution of samples (the Australian Donation and Transplantation Biobank [ADTB]). Methods Feasibility of a research biobank integrated within the deceased organ and tissue donation program was assessed. DonateLife Victoria sought consent for ADTB donation after consent was received for organ donation for transplantation from the donor's senior available next of kin. ADTB samples were collected during donation surgery and distributed fresh to researchers or stored for future research. The main outcome measures were ADTB donation rates, ADTB sample collection, ADTB sample use, and to identify ethical considerations. Results Over 2 y, samples were collected for the ADTB from 69 donors (28% of 249 donors). Samples were obtained from the spleen (n = 59, 86%), colon (n = 57, 83%), ileum (n = 56, 82%), duodenum (n = 55, 80%), blood (n = 55, 80%), bone marrow (n = 55, 80%), skin (n = 54, 78%), mesenteric lymph nodes (n = 56, 81%), liver (n = 21, 30%), lung (n = 29, 42%), and lung-draining lymph node (n = 29, 42%). Heart (n = 20), breast (n = 1), and lower urinary tract (n = 1) samples were obtained in the second year. Five hundred fifty-six samples were used in 19 ethics-approved research projects spanning the fields of immunology, microbiology, oncology, anatomy, physiology, and surgery. Conclusions The integration of routine deceased donation and transplantation activities with a coordinated system for retrieval and allocation of donor samples for use in a range of research projects is feasible and valuable.
Collapse
|
6
|
Padoan CS, Garcia LF, Crespo KC, Longaray VK, Martini M, Contessa JC, Kapczinski F, de Oliveira FH, Goldim JR, Vs Magalhães P. A qualitative study exploring the process of postmortem brain tissue donation after suicide. Sci Rep 2022; 12:4710. [PMID: 35304551 PMCID: PMC8933424 DOI: 10.1038/s41598-022-08729-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 03/08/2022] [Indexed: 11/30/2022] Open
Abstract
Access to postmortem brain tissue can be valuable in refining knowledge on the pathophysiology and genetics of neuropsychiatric disorders. Obtaining postmortem consent for the donation after death by suicide can be difficult, as families may be overwhelmed by a violent and unexpected death. Examining the process of brain donation can inform on how the request can best be conducted. This is a qualitative study with in-depth interviews with forty-one people that were asked to consider brain donation-32 who had consented to donation and 9 who refused it. Data collection and analyses were carried out according to grounded theory. Five key themes emerged from data analysis: the context of the families, the invitation to talk to the research team, the experience with the request protocol, the participants' assessment of the experience, and their participation in the study as an opportunity to heal. The participants indicated that a brain donation request that is respectful and tactful can be made without adding to the family distress brought on by suicide and pondering brain donation was seen as an opportunity to transform the meaning of the death and invest it with a modicum of solace for being able to contribute to research.
Collapse
Affiliation(s)
- Carolina Stopinski Padoan
- Universidade Federal do Rio Grande do Sul, Hospital de Clínicas de Porto Alegre, Centro de Pesquisa Clínica, Faculty of Medicine, Graduate Program in Psychiatry and Behavioral Sciences, Porto Alegre, Brazil
| | - Lucas França Garcia
- Graduate Program in Health Promotion, Cesumar University, Maringá, Paraná, Brazil
| | - Kleber Cardoso Crespo
- Universidade Federal do Rio Grande do Sul, Hospital de Clínicas de Porto Alegre, Centro de Pesquisa Clínica, Faculty of Medicine, Graduate Program in Psychiatry and Behavioral Sciences, Porto Alegre, Brazil
| | - Vanessa Kenne Longaray
- Universidade Federal do Rio Grande do Sul, Hospital de Clínicas de Porto Alegre, Centro de Pesquisa Clínica, Faculty of Medicine, Graduate Program in Psychiatry and Behavioral Sciences, Porto Alegre, Brazil
| | - Murilo Martini
- Universidade Federal do Rio Grande do Sul, Hospital de Clínicas de Porto Alegre, Centro de Pesquisa Clínica, Faculty of Medicine, Graduate Program in Psychiatry and Behavioral Sciences, Porto Alegre, Brazil
| | - Júlia Camargo Contessa
- Universidade Federal do Rio Grande do Sul, Hospital de Clínicas de Porto Alegre, Centro de Pesquisa Clínica, Faculty of Medicine, Graduate Program in Psychiatry and Behavioral Sciences, Porto Alegre, Brazil
| | - Flávio Kapczinski
- Universidade Federal do Rio Grande do Sul, Hospital de Clínicas de Porto Alegre, Centro de Pesquisa Clínica, Faculty of Medicine, Graduate Program in Psychiatry and Behavioral Sciences, Porto Alegre, Brazil
- St. Joseph's Healthcare Hamilton McMaster University, Hamilton, ON, Canada
| | - Francine Hehn de Oliveira
- Serviço de Patologia, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - José Roberto Goldim
- Bioethics Department, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Pedro Vs Magalhães
- Universidade Federal do Rio Grande do Sul, Hospital de Clínicas de Porto Alegre, Centro de Pesquisa Clínica, Faculty of Medicine, Graduate Program in Psychiatry and Behavioral Sciences, Porto Alegre, Brazil.
| |
Collapse
|
7
|
Vetreno RP, Qin L, Coleman LG, Crews FT. Increased Toll-like Receptor-MyD88-NFκB-Proinflammatory neuroimmune signaling in the orbitofrontal cortex of humans with alcohol use disorder. Alcohol Clin Exp Res 2021; 45:1747-1761. [PMID: 34415075 PMCID: PMC8526379 DOI: 10.1111/acer.14669] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/02/2021] [Accepted: 07/07/2021] [Indexed: 01/27/2023]
Abstract
BACKGROUND Many brain disorders, including alcohol use disorder (AUD), are associated with induction of multiple proinflammatory genes. One aspect of proinflammatory signaling is progressive increases in expression across cells and induction of other innate immune genes. High-mobility group box 1 (HMGB1) heteromers contribute to amplification by potentiating multiple proinflammatory responses, including Toll-like receptors (TLRs). TLR signaling recruits coupling proteins linked to nuclear transcription factors that induce proinflammatory cytokines and chemokines and their respective receptors. We tested the hypothesis that AUD induction of TLR expression increases levels of proinflammatory genes and cellular signaling cascades in association with neurodegeneration in the orbitofrontal cortex (OFC). METHODS Postmortem human OFC tissue samples (n = 10) from males diagnosed with AUD were compared to age-matched moderate drinking controls (CON). Neuroimmune signaling molecules were assessed using immunohistochemistry for protein and reverse transcription polymerase chain reaction for messenger RNA (mRNA). RESULTS In the AUD OFC, we report induction of the endogenous TLR agonist HMGB1 as well as all TLRs assessed (i.e., TLR2-TLR9) except TLR1. This was accompanied by increased expression of the TLR adaptor protein myeloid differentiation primary response 88 (MyD88), activation of the proinflammatory nuclear transcription factor nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB), and downstream induction of proinflammatory cytokines, chemokines, and their corresponding receptors. Several of these proinflammatory signaling markers are expressed in glia and neurons. The induction of HMGB1-TLR-MyD88-NFκB proinflammatory signaling pathways correlates with neurodegeneration (i.e., Fluoro-Jade B), lifetime alcohol consumption, and age of drinking onset. CONCLUSION These data implicate the induction of HMGB1-TLR-MyD88-NFκB cascades through coordinated glial and neuronal signaling as contributors to the neurodegeneration seen in the postmortem human OFC of individuals with AUD.
Collapse
Affiliation(s)
- Ryan P. Vetreno
- Bowles Center for Alcohol StudiesSchool of MedicineUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
- Department of PsychiatrySchool of MedicineUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Liya Qin
- Bowles Center for Alcohol StudiesSchool of MedicineUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Leon G. Coleman
- Bowles Center for Alcohol StudiesSchool of MedicineUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
- Department of PharmacologySchool of MedicineUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Fulton T. Crews
- Bowles Center for Alcohol StudiesSchool of MedicineUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
- Department of PsychiatrySchool of MedicineUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
- Department of PharmacologySchool of MedicineUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| |
Collapse
|
8
|
Correlation of cerebellar granular layer autolysis with ante-mortem systemic acid-base status. Cell Tissue Bank 2021; 22:505-509. [PMID: 33523332 DOI: 10.1007/s10561-021-09900-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 01/15/2021] [Indexed: 10/22/2022]
Abstract
Research in neuroscience relies heavily upon postmortem human brain tissue. Cerebellar granular layer autolysis (GLA) is a surrogate marker for the quality of such tissue and suitability for molecular analysis. GLA is associated with reduced brain tissue pH. The aim of this study was to assess correlation of GLA with premortem systemic acid-base status. This is a retrospective study in which 62 consecutive adult autopsy cases were included. Sections of cerebellum were reviewed microscopically for presence of GLA. Autolysis was graded as negative, grade 1, grade 2, and grade 3. Medical records were reviewed for arterial blood gas analysis. Postmortem interval was recorded. 23 of 62 cases showed GLA. Of the 23 patients with autolysis, 22 were acidotic and 1 was alkalotic. Of these 23 cases, 15 had metabolic acidosis, 4 had respiratory acidosis, 3 had combined acidosis and 1 had respiratory alkalosis. There was no statistically significant difference in postmortem interval between the two groups. 10 cases with grade 3 autolysis had mean pH of 7.13, 7 cases with grade 2 autolysis had mean pH of 7.23 and in 6 cases with grade 1 autolysis the mean pH was 7.2. Overall, the mean pH in patients with GLA was 7.19, and in the non-autolytic cases the mean pH was 7.28 (P < 0.05). There was no correlation between the degree of acidosis and severity of autolysis. GLA is associated with premortem systemic acidosis, and premortem systemic alkalosis is associated with the absence of GLA. Premortem acid-base status may serve as an additional quality indicator for assessment of tissue for research.
Collapse
|
9
|
Liu W, Vetreno RP, Crews FT. Hippocampal TNF-death receptors, caspase cell death cascades, and IL-8 in alcohol use disorder. Mol Psychiatry 2021; 26:2254-2262. [PMID: 32139808 PMCID: PMC7483234 DOI: 10.1038/s41380-020-0698-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 02/17/2020] [Accepted: 02/20/2020] [Indexed: 01/22/2023]
Abstract
The relationship between increased neuroimmune gene expression and hippocampal degeneration in alcohol use disorder (AUD) and other mental diseases is poorly understood. We report here that tumor necrosis factor receptor superfamily death receptor 3 (TNFRSF25, DR3) and Fas receptors (Fas) that initiate caspase cell death cascades are increased in AUD hippocampus and following a rat adolescent binge drinking model. Death receptors are known inducers of apoptosis and cell death that recruit death domain (DD) proteins FADD and TRADD and caspases to form death-inducing signaling complexes (DISC). In postmortem human AUD hippocampus, mRNA and IHC protein are increased for the entire death receptor cascade. In AUD hippocampus, ligand-death receptor pairs, i.e., TL1A-DR3 and FasL-Fas, were increased, as well as FADD and TRADD, and active caspase-8, -7, -9, and caspase-3. Further, pNFκB p65, a key neuroimmune transcription factor, and IL-8, a chemokine, were significantly increased. Interestingly, across AUD patients, increases in DR3 and Fas correlated with TRADD, and TRADD with active caspase+IR and IL-8+IR, consistent with coordinated activation of neuronal DISC mediated death cascades and neuroimmune gene induction in AUD. These findings support a role for DR3 and Fas neuroimmune signaling in AUD hippocampal neurodegeneration.
Collapse
Affiliation(s)
- Wen Liu
- grid.10698.360000000122483208Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7178 USA
| | - Ryan P. Vetreno
- grid.10698.360000000122483208Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7178 USA
| | - Fulton T. Crews
- grid.10698.360000000122483208Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7178 USA
| |
Collapse
|
10
|
Johnstone AL, Andrade NS, Barbier E, Khomtchouk BB, Rienas CA, Lowe K, Van Booven DJ, Domi E, Esanov R, Vilca S, Tapocik JD, Rodriguez K, Maryanski D, Keogh MC, Meinhardt MW, Sommer WH, Heilig M, Zeier Z, Wahlestedt C. Dysregulation of the histone demethylase KDM6B in alcohol dependence is associated with epigenetic regulation of inflammatory signaling pathways. Addict Biol 2021; 26:e12816. [PMID: 31373129 PMCID: PMC7757263 DOI: 10.1111/adb.12816] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 05/28/2019] [Accepted: 07/09/2019] [Indexed: 12/20/2022]
Abstract
Epigenetic enzymes oversee long‐term changes in gene expression by integrating genetic and environmental cues. While there are hundreds of enzymes that control histone and DNA modifications, their potential roles in substance abuse and alcohol dependence remain underexplored. A few recent studies have suggested that epigenetic processes could underlie transcriptomic and behavioral hallmarks of alcohol addiction. In the present study, we sought to identify epigenetic enzymes in the brain that are dysregulated during protracted abstinence as a consequence of chronic and intermittent alcohol exposure. Through quantitative mRNA expression analysis of over 100 epigenetic enzymes, we identified 11 that are significantly altered in alcohol‐dependent rats compared with controls. Follow‐up studies of one of these enzymes, the histone demethylase KDM6B, showed that this enzyme exhibits region‐specific dysregulation in the prefrontal cortex and nucleus accumbens of alcohol‐dependent rats. KDM6B was also upregulated in the human alcoholic brain. Upregulation of KDM6B protein in alcohol‐dependent rats was accompanied by a decrease of trimethylation levels at histone H3, lysine 27 (H3K27me3), consistent with the known demethylase specificity of KDM6B. Subsequent epigenetic (chromatin immunoprecipitation [ChIP]–sequencing) analysis showed that alcohol‐induced changes in H3K27me3 were significantly enriched at genes in the IL‐6 signaling pathway, consistent with the well‐characterized role of KDM6B in modulation of inflammatory responses. Knockdown of KDM6B in cultured microglial cells diminished IL‐6 induction in response to an inflammatory stimulus. Our findings implicate a novel KDM6B‐mediated epigenetic signaling pathway integrated with inflammatory signaling pathways that are known to underlie the development of alcohol addiction.
Collapse
Affiliation(s)
- Andrea L. Johnstone
- Center for Therapeutic Innovation University of Miami Miller School of Medicine Miami Florida USA
- Department of Psychiatry and Behavioral Sciences University of Miami Miller School of Medicine Miami Florida USA
- Division of Product Development EpiCypher, Inc Durham North Carolina USA
| | - Nadja S. Andrade
- Department of Psychiatry and Behavioral Sciences University of Miami Miller School of Medicine Miami Florida USA
| | - Estelle Barbier
- Department of Clinical and Experimental Medicine, Division of Cell Biology, Faculty of Health Sciences Linköping University Linköping Sweden
| | - Bohdan B. Khomtchouk
- Center for Therapeutic Innovation University of Miami Miller School of Medicine Miami Florida USA
- Department of Psychiatry and Behavioral Sciences University of Miami Miller School of Medicine Miami Florida USA
- Department of Medicine, Section of Computational Biomedicine and Biomedical Data Science, Institute for Genomics and Systems Biology University of Chicago Chicago IL USA
| | - Christopher A. Rienas
- Center for Therapeutic Innovation University of Miami Miller School of Medicine Miami Florida USA
- Department of Psychiatry and Behavioral Sciences University of Miami Miller School of Medicine Miami Florida USA
| | - Kenneth Lowe
- Center for Therapeutic Innovation University of Miami Miller School of Medicine Miami Florida USA
- Department of Psychiatry and Behavioral Sciences University of Miami Miller School of Medicine Miami Florida USA
| | - Derek J. Van Booven
- John P. Hussman Institute for Human Genomics University of Miami Miller School of Medicine Miami Florida USA
| | - Esi Domi
- Department of Clinical and Experimental Medicine, Division of Cell Biology, Faculty of Health Sciences Linköping University Linköping Sweden
| | - Rustam Esanov
- Center for Therapeutic Innovation University of Miami Miller School of Medicine Miami Florida USA
- Department of Psychiatry and Behavioral Sciences University of Miami Miller School of Medicine Miami Florida USA
| | - Samara Vilca
- Center for Therapeutic Innovation University of Miami Miller School of Medicine Miami Florida USA
- Department of Psychiatry and Behavioral Sciences University of Miami Miller School of Medicine Miami Florida USA
| | - Jenica D. Tapocik
- Laboratory of Clinical and Translational Studies, National Institute on Alcohol Abuse and Alcoholism National Institutes of Health Bethesda Maryland USA
| | - Keli Rodriguez
- Division of Product Development EpiCypher, Inc Durham North Carolina USA
| | - Danielle Maryanski
- Division of Product Development EpiCypher, Inc Durham North Carolina USA
| | | | - Marcus W. Meinhardt
- Department of Psychopharmacology Central Institute of Mental Health, Heidelberg University Mannheim Germany
| | - Wolfgang H. Sommer
- Department of Psychopharmacology Central Institute of Mental Health, Heidelberg University Mannheim Germany
| | - Markus Heilig
- Department of Clinical and Experimental Medicine, Division of Cell Biology, Faculty of Health Sciences Linköping University Linköping Sweden
| | - Zane Zeier
- Center for Therapeutic Innovation University of Miami Miller School of Medicine Miami Florida USA
- Department of Psychiatry and Behavioral Sciences University of Miami Miller School of Medicine Miami Florida USA
| | - Claes Wahlestedt
- Center for Therapeutic Innovation University of Miami Miller School of Medicine Miami Florida USA
- Department of Psychiatry and Behavioral Sciences University of Miami Miller School of Medicine Miami Florida USA
| |
Collapse
|
11
|
Yoshino Y, Roy B, Dwivedi Y. Altered miRNA landscape of the anterior cingulate cortex is associated with potential loss of key neuronal functions in depressed brain. Eur Neuropsychopharmacol 2020; 40:70-84. [PMID: 32600964 PMCID: PMC7655604 DOI: 10.1016/j.euroneuro.2020.06.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/05/2020] [Accepted: 06/09/2020] [Indexed: 12/20/2022]
Abstract
MicroRNAs (miRNAs), a family of non-coding RNAs, have recently gained a considerable attention in neuropsychiatric disorders. Being a pleiotropic modulator of target gene(s), miRNA has been recognized as central to downstream gene regulatory networks. In the recent past, reports have suggested their role in changing the epigenetic landscape in brain of subjects with major depressive disorder (MDD). Anterior cingulate cortex (ACC) is a brain area implicated in several complex cognitive functions, such as impulse control, emotion, and decision-making and is associated with psychopathology associated with mood regulation. In this study, we examined whether MDD is associated with altered miRNA transcriptome in ACC and whether altered miRNA landscape is associated with modifications in specific gene network(s) at the functional level. Using next generation sequencing (NGS), it was observed that 117 miRNAs (4.61%) were significantly upregulated and 54 (2.13%) were downregulated in MDD subjects (n = 22) compared with non-psychiatric controls (n = 25). Using 24 most significantly upregulated miRNAs in the MDD group, we determined functional enrichment of target genes and found them to be associated with long-term potentiation, neurotrophin signaling, and axon guidance. Intra- and inter-cluster similarities of enriched terms based on overrepresented gene list showed neurobiological functions associated with neuronal growth and survival. Web centric parameters and ontology enrichment functions identified two major domains related to phosphatidyl signaling, GTPase signaling, neuronal migration, and neurotrophin signaling. Our findings of altered miRNA landscape along with a shift in targetome relate to previously reported morphometric changes and neuronal atrophy in ACC of MDD subjects.
Collapse
Affiliation(s)
- Yuta Yoshino
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| | - Bhaskar Roy
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| | - Yogesh Dwivedi
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| |
Collapse
|
12
|
Gatta E, Guidotti A, Saudagar V, Grayson DR, Aspesi D, Pandey SC, Pinna G. Epigenetic Regulation of GABAergic Neurotransmission and Neurosteroid Biosynthesis in Alcohol Use Disorder. Int J Neuropsychopharmacol 2020; 24:130-141. [PMID: 32968808 PMCID: PMC7883893 DOI: 10.1093/ijnp/pyaa073] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 09/11/2020] [Accepted: 09/21/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Alcohol use disorder (AUD) is a chronic relapsing brain disorder. GABAA receptor (GABAAR) subunits are a target for the pharmacological effects of alcohol. Neurosteroids play an important role in the fine-tuning of GABAAR function in the brain. Recently, we have shown that AUD is associated with changes in DNA methylation mechanisms. However, the role of DNA methylation in the regulation of neurosteroid biosynthesis and GABAergic neurotransmission in AUD patients remains under-investigated. METHODS In a cohort of postmortem brains from 20 male controls and AUD patients, we investigated the expression of GABAAR subunits and neurosteroid biosynthetic enzymes and their regulation by DNA methylation mechanisms. Neurosteroid levels were quantified by gas chromatography-mass spectrometry. RESULTS The α 2 subunit expression was reduced due to increased DNA methylation at the gene promoter region in the cerebellum of AUD patients, a brain area particularly sensitive to the effects of alcohol. Alcohol-induced alteration in GABAAR subunits was also observed in the prefrontal cortex. Neurosteroid biosynthesis was also affected with reduced cerebellar expression of the 18kDa translocator protein and 3α-hydroxysteroid dehydrogenase mRNAs. Notably, increased DNA methylation levels were observed at the promoter region of 3α-hydroxysteroid dehydrogenase. These changes were associated with markedly reduced levels of allopregnanolone and pregnanolone in the cerebellum. CONCLUSION Given the key role of neurosteroids in modulating the strength of GABAAR-mediated inhibition, our data suggest that alcohol-induced impairments in GABAergic neurotransmission might be profoundly impacted by reduced neurosteroid biosynthesis most likely via DNA hypermethylation.
Collapse
Affiliation(s)
- Eleonora Gatta
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, Psychiatric Institute, University of Illinois at Chicago, Chicago, Illinois
| | - Alessandro Guidotti
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, Psychiatric Institute, University of Illinois at Chicago, Chicago, Illinois,Correspondence: Dr Alessandro Guidotti, Center for Alcohol Research in Epigenetics, Psychiatric Institute - Department of Psychiatry, University of Illinois at Chicago, 1601 West Taylor Street, Chicago, IL 60612 ()
| | - Vikram Saudagar
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, Psychiatric Institute, University of Illinois at Chicago, Chicago, Illinois
| | - Dennis R Grayson
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, Psychiatric Institute, University of Illinois at Chicago, Chicago, Illinois
| | - Dario Aspesi
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, Psychiatric Institute, University of Illinois at Chicago, Chicago, Illinois
| | - Subhash C Pandey
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, Psychiatric Institute, University of Illinois at Chicago, Chicago, Illinois,Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois
| | - Graziano Pinna
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, Psychiatric Institute, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
13
|
Casanova Ferrer F, Pascual M, Hidalgo MR, Malmierca-Merlo P, Guerri C, García-García F. Unveiling Sex-Based Differences in the Effects of Alcohol Abuse: A Comprehensive Functional Meta-Analysis of Transcriptomic Studies. Genes (Basel) 2020; 11:E1106. [PMID: 32967293 PMCID: PMC7564639 DOI: 10.3390/genes11091106] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/13/2020] [Accepted: 09/17/2020] [Indexed: 12/31/2022] Open
Abstract
The abuse of alcohol, one of the most popular psychoactive substances, can cause several pathological and psychological consequences, including alcohol use disorder (AUD). An impaired ability to stop or control alcohol intake despite adverse health or social consequences characterize AUD. While AUDs predominantly occur in men, growing evidence suggests the existence of distinct cognitive and biological consequences of alcohol dependence in women. The molecular and physiological mechanisms participating in these differential effects remain unknown. Transcriptomic technology permits the detection of the biological mechanisms responsible for such sex-based differences, which supports the subsequent development of novel personalized therapeutics to treat AUD. We conducted a systematic review and meta-analysis of transcriptomics studies regarding alcohol dependence in humans with representation from both sexes. For each study, we processed and analyzed transcriptomic data to obtain a functional profile of pathways and biological functions and then integrated the resulting data by meta-analysis to characterize any sex-based transcriptomic differences associated with AUD. Global results of the transcriptomic analysis revealed the association of decreased tissue regeneration, embryo malformations, altered intracellular transport, and increased rate of RNA and protein replacement with female AUD patients. Meanwhile, our analysis indicated that increased inflammatory response and blood pressure and a reduction in DNA repair capabilities are associated with male AUD patients. In summary, our functional meta-analysis of transcriptomic studies provides evidence for differential biological mechanisms of AUD patients of differing sex.
Collapse
Affiliation(s)
- Franc Casanova Ferrer
- Bioinformatics and Biostatistics Unit, Principe Felipe Research Center (CIPF), 46012 Valencia, Spain; (F.C.F.); (M.R.H.); (P.M.-M.)
- Hospital Clinico Research Foundation, INCLIVA, 46010 Valencia, Spain
| | - María Pascual
- Department of Physiology, School of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain;
- Department of Molecular and Cellular Pathology of Alcohol, Príncipe Felipe Research Center (CIPF), 46012 Valencia, Spain;
| | - Marta R. Hidalgo
- Bioinformatics and Biostatistics Unit, Principe Felipe Research Center (CIPF), 46012 Valencia, Spain; (F.C.F.); (M.R.H.); (P.M.-M.)
| | - Pablo Malmierca-Merlo
- Bioinformatics and Biostatistics Unit, Principe Felipe Research Center (CIPF), 46012 Valencia, Spain; (F.C.F.); (M.R.H.); (P.M.-M.)
- Atos Research Innovation (ARI), 28037 Madrid, Spain
| | - Consuelo Guerri
- Department of Molecular and Cellular Pathology of Alcohol, Príncipe Felipe Research Center (CIPF), 46012 Valencia, Spain;
| | - Francisco García-García
- Bioinformatics and Biostatistics Unit, Principe Felipe Research Center (CIPF), 46012 Valencia, Spain; (F.C.F.); (M.R.H.); (P.M.-M.)
- Spanish National Bioinformatics Institute, ELIXIR-Spain (INB, ELIXIR-ES), 46012 Valencia, Spain
| |
Collapse
|
14
|
Tang K, Wan M, Zhang H, Zhang Q, Yang Q, Chen K, Wang N, Zhang D, Qiu W, Ma C. The top 100 most-cited articles citing human brain banking from 1970 to 2020: a bibliometric analysis. Cell Tissue Bank 2020; 21:685-697. [PMID: 32761559 DOI: 10.1007/s10561-020-09849-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 07/09/2020] [Indexed: 02/08/2023]
Abstract
Many articles involving human brain banks have been published. Bibliometric analysis can determine the history of the development of research and future research trends in a specific field. Three independent researchers retrieved and reviewed articles from the Web of Science database using the following strategy: "TS = (((brain OR cerebral) AND (bank* OR biobank*)) OR brainbank*)." The top 100 most-cited articles were identified and listed in descending order by total citations. Web of Science was used to identify ten recent articles describing bank construction. GeenMedical ( https://www.geenmedical.com/ ) was used to identify ten recent articles from journals with an impact factor (IF) > 20. The top 100 most-cited articles citing human brain banks were published between 1991 and 2017. Fifty-two percent of the articles focused on a specific type of neurodegenerative disease, and 16% discussed the construction and development of human brain banks. Articles using brain tissue had more total and annual citations than those on bank construction. Ten articles with high IFs were published from 2017 to 2019, and they were primarily studies using novel research techniques such RNA sequencing and genome-wide association studies. Most studies were published in journals specializing in neurology or neuroscience such as Movement Disorders (10%), and had been conducted in the United States (52%) by neurologists (62%). The top 100 most-cited articles and recent publications citing human brain banks and their bibliometric characteristics were identified and analyzed, which may serve as a useful reference and pave the way for further research.
Collapse
Affiliation(s)
- Keyun Tang
- Department of Human Anatomy, Histology and Embryology, Institute of Basic Medical Sciences, Neuroscience Center, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.,Eight-Year MD Program, Peking Union Medical College, Beijing, China
| | - Mengyao Wan
- Department of Human Anatomy, Histology and Embryology, Institute of Basic Medical Sciences, Neuroscience Center, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.,Eight-Year MD Program, Peking Union Medical College, Beijing, China
| | - Hanlin Zhang
- Department of Human Anatomy, Histology and Embryology, Institute of Basic Medical Sciences, Neuroscience Center, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.,Eight-Year MD Program, Peking Union Medical College, Beijing, China
| | - Qing Zhang
- Department of Human Anatomy, Histology and Embryology, Institute of Basic Medical Sciences, Neuroscience Center, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Qian Yang
- Department of Human Anatomy, Histology and Embryology, Institute of Basic Medical Sciences, Neuroscience Center, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Kang Chen
- Department of Human Anatomy, Histology and Embryology, Institute of Basic Medical Sciences, Neuroscience Center, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.,Eight-Year MD Program, Peking Union Medical College, Beijing, China
| | - Naili Wang
- Department of Human Anatomy, Histology and Embryology, Institute of Basic Medical Sciences, Neuroscience Center, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.,National Experimental Demonstration Center of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Di Zhang
- Department of Human Anatomy, Histology and Embryology, Institute of Basic Medical Sciences, Neuroscience Center, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.,National Experimental Demonstration Center of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Wenying Qiu
- Department of Human Anatomy, Histology and Embryology, Institute of Basic Medical Sciences, Neuroscience Center, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.
| | - Chao Ma
- Department of Human Anatomy, Histology and Embryology, Institute of Basic Medical Sciences, Neuroscience Center, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China. .,Joint Laboratory of Anesthesia and Pain, Peking Union Medical College, Beijing, China.
| |
Collapse
|
15
|
Schank JR, Lee S, Gonzalez-Islas CE, Nennig SE, Fulenwider HD, Chang J, Li JM, Kim Y, Jeffers LA, Chung J, Lee JK, Jin Z, Aalkjaer C, Boedtkjer E, Choi I. Increased Alcohol Consumption in Mice Lacking Sodium Bicarbonate Transporter NBCn1. Sci Rep 2020; 10:11017. [PMID: 32620847 PMCID: PMC7335059 DOI: 10.1038/s41598-020-67291-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 05/26/2020] [Indexed: 12/21/2022] Open
Abstract
The previous reports on an addiction vulnerability marker in the human SLC4A7 gene encoding the Na/HCO3 transporter NBCn1 suggest that this pH-regulating protein may affect alcohol-related behavior and response. Here, we examined alcohol consumption and sensitivity to the sedative effects of alcohol in male NBCn1 knockout mice. These mice displayed lower pH in neurons than wildtype controls, determined by intracellular pH in hippocampal neuronal cultures. Neurons from knockout mice had a higher action potential threshold and a more depolarized membrane potential, thus reducing membrane excitability. In a two-bottle free choice procedure, knockout mice consumed more alcohol than controls and consistently increased alcohol consumption after repeated alcohol deprivation periods. Quinine and sucrose preference was similar between genotypes. Knockout mice showed increased propensity for alcohol-induced conditioned place preference. In loss of righting reflex assessment, knockout mice revealed increased sensitivity to alcohol-induced sedation and developed tolerance to the sedation after repeated alcohol administrations. Furthermore, chronic alcohol consumption caused NBCn1 downregulation in the hippocampus and striatum of mice and humans. These results demonstrate an important role of NBCn1 in regulation of alcohol consumption and sensitivity to alcohol-induced sedation.
Collapse
Affiliation(s)
- Jesse R Schank
- Department of Physiology and Pharmacology, University of Georgia College of Veterinary Medicine, Athens, GA, 30602, USA
| | - Soojung Lee
- Department of Physiology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | | | - Sadie E Nennig
- Department of Physiology and Pharmacology, University of Georgia College of Veterinary Medicine, Athens, GA, 30602, USA
| | - Hannah D Fulenwider
- Department of Physiology and Pharmacology, University of Georgia College of Veterinary Medicine, Athens, GA, 30602, USA
| | - Jianjun Chang
- Department of Physiology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Jun Ming Li
- Department of Physiology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Yejin Kim
- Department of Physiology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Lauren A Jeffers
- Department of Medicine, Pulmonary Division, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Jaegwon Chung
- Department of Physiology and Pharmacology, University of Georgia College of Veterinary Medicine, Athens, GA, 30602, USA
| | - Jae-Kyung Lee
- Department of Physiology and Pharmacology, University of Georgia College of Veterinary Medicine, Athens, GA, 30602, USA
| | - Zhe Jin
- Department of Neuroscience, Uppsala University, Uppsala, 75124, Sweden
| | | | - Ebbe Boedtkjer
- Department of Biomedicine, Aarhus University, 8000, Aarhus C, Denmark
| | - Inyeong Choi
- Department of Physiology, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| |
Collapse
|
16
|
Petralia MC, Mazzon E, Mangano K, Fagone P, Di Marco R, Falzone L, Basile MS, Nicoletti F, Cavalli E. Transcriptomic analysis reveals moderate modulation of macrophage migration inhibitory factor superfamily genes in alcohol use disorders. Exp Ther Med 2020; 19:1755-1762. [PMID: 32104230 PMCID: PMC7026954 DOI: 10.3892/etm.2020.8410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 11/14/2019] [Indexed: 12/20/2022] Open
Abstract
Alcohol use disorder (AUD) is a primary, chronic and relapsing disease of brain reward, motivation and memory, which is associated with several comorbidities, including major depression and post-traumatic stress disorder. It has been revealed that Ibudilast (IBUD), a dual inhibitor of phosphodiesterase-4 and −10 and of macrophage migration inhibitory factor (MIF), exerts beneficial effects on AUD in rodent models and human patients. Therefore, IBUD has attracted increasing interest, with research focusing on the elucidation of the pathogenic role of MIF and its homologue, D-dopachrome tautomerase (DDT), in the pathogenesis and maintenance of AUD. By using DNA microarray analysis, the current study performed a transcriptomic expression analysis of MIF, DDT and their co-receptors, including CD74, C-X-C chemokine receptor (CXCR)2, CXCR4 and CXCR7 in patients with AUD. The results revealed that the transcriptomic levels of MIF, DDT and their receptors were superimposable in the prefrontal cortex of rodents and patients with AUD and human patients. Furthermore, peripheral blood cells from heavy drinkers exhibited a moderate increase in MIF and DDT levels, both at the baseline and following exposure to alcohol-associated cues, based on individual situations that included alcohol-related stimuli resulting in subsequent alcohol use (buying alcohol and being at a bar, watching others drink alcohol). Considering the overlapping effects of MIF and DDT, the inverse Fisher's χ2 test was performed on unadjusted P-values to evaluate the combined effect of MIF and DDT. The results revealed a significant increase in these cytokines in heavy drinkers compared with controls (moderate drinkers). To the best of our knowledge, the present study demonstrated for the first time that MIF and DDT expression was upregulated in the blood of patients with AUD. These results therefore warrant further study to evaluate the role of MIF and DDT in the development and maintenance of AUD, to evaluate their use as biomarkers to predict the psychotherapeutic and pharmacological response of patients with AUD and for use as therapeutic targets.
Collapse
Affiliation(s)
- Maria Cristina Petralia
- Department of Biomedical and Biotechnological Sciences, University of Catania, I-95123 Catania, Italy
| | - Emanuela Mazzon
- IRCCS (Scientific Institute for Research, Hospitalization and Healthcare) Centro Neurolesi 'Bonino-Pulejo', I-98124 Messina, Italy
| | - Katia Mangano
- IRCCS (Scientific Institute for Research, Hospitalization and Healthcare) Centro Neurolesi 'Bonino-Pulejo', I-98124 Messina, Italy
| | - Paolo Fagone
- Department of Biomedical and Biotechnological Sciences, University of Catania, I-95123 Catania, Italy
| | - Roberto Di Marco
- Department of Medicine and Health Sciences 'Vincenzo Tiberio', University of Molise, I-86100 Campobasso, Italy
| | - Luca Falzone
- Department of Biomedical and Biotechnological Sciences, University of Catania, I-95123 Catania, Italy
| | - Maria Sofia Basile
- Department of Biomedical and Biotechnological Sciences, University of Catania, I-95123 Catania, Italy
| | - Ferdinando Nicoletti
- Department of Biomedical and Biotechnological Sciences, University of Catania, I-95123 Catania, Italy
| | - Eugenio Cavalli
- IRCCS (Scientific Institute for Research, Hospitalization and Healthcare) Centro Neurolesi 'Bonino-Pulejo', I-98124 Messina, Italy
| |
Collapse
|
17
|
McFadden WC, Walsh H, Richter F, Soudant C, Bryce CH, Hof PR, Fowkes M, Crary JF, McKenzie AT. Perfusion fixation in brain banking: a systematic review. Acta Neuropathol Commun 2019; 7:146. [PMID: 31488214 PMCID: PMC6728946 DOI: 10.1186/s40478-019-0799-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 08/26/2019] [Indexed: 01/12/2023] Open
Abstract
Background Perfusing fixatives through the cerebrovascular system is the gold standard approach in animals to prepare brain tissue for spatial biomolecular profiling, circuit tracing, and ultrastructural studies such as connectomics. Translating these discoveries to humans requires examination of postmortem autopsy brain tissue. Yet banked brain tissue is routinely prepared using immersion fixation, which is a significant barrier to optimal preservation of tissue architecture. The challenges involved in adopting perfusion fixation in brain banks and the extent to which it improves histology quality are not well defined. Methodology We searched four databases to identify studies that have performed perfusion fixation in human brain tissue and screened the references of the eligible studies to identify further studies. From the included studies, we extracted data about the methods that they used, as well as any data comparing perfusion fixation to immersion fixation. The protocol was preregistered at the Open Science Framework: https://osf.io/cv3ys/. Results We screened 4489 abstracts, 214 full-text publications, and identified 35 studies that met our inclusion criteria, which collectively reported on the perfusion fixation of 558 human brains. We identified a wide variety of approaches to perfusion fixation, including perfusion fixation of the brain in situ and ex situ, perfusion fixation through different sets of blood vessels, and perfusion fixation with different washout solutions, fixatives, perfusion pressures, and postfixation tissue processing methods. Through a qualitative synthesis of data comparing the outcomes of perfusion and immersion fixation, we found moderate confidence evidence showing that perfusion fixation results in equal or greater subjective histology quality compared to immersion fixation of relatively large volumes of brain tissue, in an equal or shorter amount of time. Conclusions This manuscript serves as a resource for investigators interested in building upon the methods and results of previous research in designing their own perfusion fixation studies in human brains or other large animal brains. We also suggest several future research directions, such as comparing the in situ and ex situ approaches to perfusion fixation, studying the efficacy of different washout solutions, and elucidating the types of brain donors in which perfusion fixation is likely to result in higher fixation quality than immersion fixation. Electronic supplementary material The online version of this article (10.1186/s40478-019-0799-y) contains supplementary material, which is available to authorized users.
Collapse
|
18
|
Zhang H, Chen K, Wang N, Zhang D, Yang Q, Zhang Q, Liu P, Wan M, Gong C, Hong X, Qiu W, Qian X, Chen Y, Ma C. Analysis of Brain Donors’ Demographic and Medical Characteristics to Facilitate the Construction of a Human Brain Bank in China. J Alzheimers Dis 2018; 66:1245-1254. [DOI: 10.3233/jad-180779] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Hanlin Zhang
- Department of Human Anatomy, Institute of Basic Medical Sciences, Histology and Embryology, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
- Eight-year MD Program, Peking Union Medical College, Beijing, China
| | - Kang Chen
- Department of Human Anatomy, Institute of Basic Medical Sciences, Histology and Embryology, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
- Eight-year MD Program, Peking Union Medical College, Beijing, China
| | - Naili Wang
- Department of Human Anatomy, Institute of Basic Medical Sciences, Histology and Embryology, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
- National Experimental Demonstration Center of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Di Zhang
- Department of Human Anatomy, Institute of Basic Medical Sciences, Histology and Embryology, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
- National Experimental Demonstration Center of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Qian Yang
- Department of Human Anatomy, Institute of Basic Medical Sciences, Histology and Embryology, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
- Joint Laboratory of Anesthesia and Pain, Peking Union Medical College, Beijing, China
| | - Qing Zhang
- Department of Human Anatomy, Institute of Basic Medical Sciences, Histology and Embryology, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
- Joint Laboratory of Anesthesia and Pain, Peking Union Medical College, Beijing, China
| | - Pan Liu
- Department of Human Anatomy, Institute of Basic Medical Sciences, Histology and Embryology, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
- Joint Laboratory of Anesthesia and Pain, Peking Union Medical College, Beijing, China
| | - Mengyao Wan
- Eight-year MD Program, Peking Union Medical College, Beijing, China
| | - Changlin Gong
- Eight-year MD Program, Peking Union Medical College, Beijing, China
| | - Xinyu Hong
- Eight-year MD Program, Peking Union Medical College, Beijing, China
| | - Wenying Qiu
- Department of Human Anatomy, Institute of Basic Medical Sciences, Histology and Embryology, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Xiaojing Qian
- Department of Human Anatomy, Institute of Basic Medical Sciences, Histology and Embryology, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Yongmei Chen
- Department of Human Anatomy, Institute of Basic Medical Sciences, Histology and Embryology, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Chao Ma
- Department of Human Anatomy, Institute of Basic Medical Sciences, Histology and Embryology, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
- Joint Laboratory of Anesthesia and Pain, Peking Union Medical College, Beijing, China
| |
Collapse
|
19
|
Akinyemi RO, Salami A, Akinyemi J, Ojagbemi A, Olopade F, Coker M, Farombi T, Nweke M, Arulogun O, Jegede A, Owolabi M, Kalaria RN, Ogunniyi A. Brain banking in low and middle-income countries: Raison D'être for the Ibadan Brain Ageing, Dementia And Neurodegeneration (IBADAN) Brain Bank Project. Brain Res Bull 2018; 145:136-141. [PMID: 30149197 DOI: 10.1016/j.brainresbull.2018.08.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 08/15/2018] [Accepted: 08/21/2018] [Indexed: 02/08/2023]
Abstract
Brain banks are biorepositories of central nervous system (CNS) tissue including fixed and frozen whole brains, brain biopsies and spinal cord, as well as body fluids comprising the cerebrospinal fluid (CSF) and blood stored for research purposes. Though several independent brain banks exist in high income countries, only five low- and middle - income countries (LMIC) have brain banks. The African continent is yet to establish a formalized brain bank despite its huge human genomic diversity, ageing of her populations with concomitant increases in ageing - associated brain disorders and differential phenotypic expression and outcomes of brain disorders. Cellular and molecular clinicopathological studies are vital to shaping our understanding of the interaction between racial (genetic) and geographical (environmental) factors in the natural history and mechanisms of disease, and unravelling frameworks of diagnostic biomarkers, and new therapeutic and preventative interventions. The Ibadan Brain Ageing, Dementia And Neurodegeneration (IBADAN) Brain Bank, the first organized brain tissue biorepository in sub - Saharan Africa, is set up to accrue, process and store unique brain tissues for future research into a broad spectrum of neurological and psychiatric disorders. The potential unique discoveries and research breakthroughs will benefit people of African ancestry and other ancestral populations.
Collapse
Affiliation(s)
- Rufus O Akinyemi
- Institute for Advanced Medical Research and Training, College of Medicine, University of Ibadan, Ibadan, Nigeria.
| | - Ayodeji Salami
- Department of Pathology, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Joshua Akinyemi
- Department of Epidemiology and Medical Statistics, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Akin Ojagbemi
- Department of Psychiatry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Funmi Olopade
- Department of Anatomy, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Motunrayo Coker
- Institute for Advanced Medical Research and Training, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Temitope Farombi
- Chief Tony Anenih Geriatric Centre, University College Hospital, Ibadan, Nigeria
| | - Michael Nweke
- Department of Pathology, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Oyedunni Arulogun
- Department of Health Education and Promotion, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Ayodele Jegede
- Department of Sociology, Faculty of the Social Sciences, University of Ibadan, Ibadan, Nigeria
| | - Mayowa Owolabi
- Department of Medicine, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Rajesh N Kalaria
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Adesola Ogunniyi
- Institute for Advanced Medical Research and Training, College of Medicine, University of Ibadan, Ibadan, Nigeria; Department of Medicine, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
20
|
Bazov I, Sarkisyan D, Kononenko O, Watanabe H, Karpyak VM, Yakovleva T, Bakalkin G. Downregulation of the neuronal opioid gene expression concomitantly with neuronal decline in dorsolateral prefrontal cortex of human alcoholics. Transl Psychiatry 2018; 8:122. [PMID: 29925858 PMCID: PMC6010434 DOI: 10.1038/s41398-017-0075-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 10/02/2017] [Accepted: 11/01/2017] [Indexed: 01/03/2023] Open
Abstract
Molecular changes in cortical areas of addicted brain may underlie cognitive impairment and loss of control over intake of addictive substances and alcohol. Prodynorphin (PDYN) gives rise to dynorphin (DYNs) opioid peptides which target kappa-opioid receptor (KOR). DYNs mediate alcohol-induced impairment of learning and memory, while KOR antagonists block excessive, compulsive-like drug and alcohol self-administration in animal models. In human brain, the DYN/KOR system may undergo adaptive changes, which along with neuronal loss, may contribute to alcohol-associated cognitive deficit. We addressed this hypothesis by comparing the expression levels and co-expression (transcriptionally coordinated) patterns of PDYN and KOR (OPRK1) genes in dorsolateral prefrontal cortex (dlPFC) between human alcoholics and controls. Postmortem brain specimens of 53 alcoholics and 55 controls were analyzed. PDYN was found to be downregulated in dlPFC of alcoholics, while OPRK1 transcription was not altered. PDYN downregulation was confined to subgroup of subjects carrying C, a high-risk allele of PDYN promoter SNP rs1997794 associated with alcoholism. Changes in PDYN expression did not depend on the decline in neuronal proportion in alcoholics, and thereby may be attributed to transcriptional adaptations in alcoholic brain. Absolute expression levels of PDYN were lower compared to those of OPRK1, suggesting that PDYN expression is a limiting factor in the DYN/KOR signaling, and that the PDYN downregulation diminishes efficacy of DYN/KOR signaling in dlPFC of human alcoholics. The overall outcome of the DYN/KOR downregulation may be disinhibition of neurotransmission, which when overactivated could contribute to formation of alcohol-related behavior.
Collapse
Affiliation(s)
- Igor Bazov
- Division of Biological Research on Drug Dependence, Department of Pharmaceutical Biosciences, Uppsala University, SE-751 24, Uppsala, Sweden.
| | - Daniil Sarkisyan
- 0000 0004 1936 9457grid.8993.bDivision of Biological Research on Drug Dependence, Department of Pharmaceutical Biosciences, Uppsala University, SE-751 24 Uppsala, Sweden
| | - Olga Kononenko
- 0000 0004 1936 9457grid.8993.bDivision of Biological Research on Drug Dependence, Department of Pharmaceutical Biosciences, Uppsala University, SE-751 24 Uppsala, Sweden
| | - Hiroyuki Watanabe
- 0000 0004 1936 9457grid.8993.bDivision of Biological Research on Drug Dependence, Department of Pharmaceutical Biosciences, Uppsala University, SE-751 24 Uppsala, Sweden
| | - Victor M. Karpyak
- 0000 0004 0459 167Xgrid.66875.3aDepartment of Psychiatry and Psychology, Mayo Clinic College of Medicine, Rochester, MN 55905 USA
| | - Tatiana Yakovleva
- 0000 0004 1936 9457grid.8993.bDivision of Biological Research on Drug Dependence, Department of Pharmaceutical Biosciences, Uppsala University, SE-751 24 Uppsala, Sweden
| | - Georgy Bakalkin
- Division of Biological Research on Drug Dependence, Department of Pharmaceutical Biosciences, Uppsala University, SE-751 24, Uppsala, Sweden.
| |
Collapse
|
21
|
Oxytocin Reduces Alcohol Cue-Reactivity in Alcohol-Dependent Rats and Humans. Neuropsychopharmacology 2018; 43:1235-1246. [PMID: 29090683 PMCID: PMC5916348 DOI: 10.1038/npp.2017.257] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 10/08/2017] [Accepted: 10/24/2017] [Indexed: 12/25/2022]
Abstract
Approved pharmacological treatments for alcohol use disorder are limited in their effectiveness, and new drugs that can easily be translated into the clinic are warranted. One of those candidates is oxytocin because of its interaction with several alcohol-induced effects. Alcohol-dependent rats as well as post-mortem brains of human alcoholics and controls were analyzed for the expression of the oxytocin system by qRT-PCR, in situ hybridization, receptor autoradiography ([125I]OVTA binding), and immunohistochemistry. Alcohol self-administration and cue-induced reinstatement behavior was measured after intracerebroventricular injection of 10 nM oxytocin in dependent rats. Here we show a pronounced upregulation of oxytocin receptors in brain tissues of alcohol-dependent rats and deceased alcoholics, primarily in frontal and striatal areas. This upregulation stems most likely from reduced oxytocin expression in hypothalamic nuclei. Pharmacological validation showed that oxytocin reduced cue-induced reinstatement response in dependent rats-an effect that was not observed in non-dependent rats. Finally, a clinical pilot study (German clinical trial number DRKS00009253) using functional magnetic resonance imaging in heavy social male drinkers showed that intranasal oxytocin (24 IU) decreased neural cue-reactivity in brain networks similar to those detected in dependent rats and humans with increased oxytocin receptor expression. These studies suggest that oxytocin might be used as an anticraving medication and thus may positively affect treatment outcomes in alcoholics.
Collapse
|
22
|
Vetreno RP, Lawrimore CJ, Rowsey PJ, Crews FT. Persistent Adult Neuroimmune Activation and Loss of Hippocampal Neurogenesis Following Adolescent Ethanol Exposure: Blockade by Exercise and the Anti-inflammatory Drug Indomethacin. Front Neurosci 2018; 12:200. [PMID: 29643762 PMCID: PMC5882830 DOI: 10.3389/fnins.2018.00200] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 03/13/2018] [Indexed: 12/14/2022] Open
Abstract
Alcohol abuse and binge drinking are common during adolescence, a developmental period characterized by heightened neuroplasticity. Animal studies reveal that adolescent ethanol exposure decreases hippocampal neurogenesis that persists into adulthood, but the mechanism remains to be fully elucidated. Using a rodent model of adolescent intermittent ethanol (AIE; 5.0 g/kg, i.g., 2-days on/2-days off from postnatal day [P]25 to P55), we tested the hypothesis that AIE-induced upregulation of neuroimmune signaling contributes to the loss of hippocampal neurogenesis in adulthood. We found that AIE caused upregulation of multiple proinflammatory Toll-like receptors (TLRs), increased expression of phosphorylated NF-κB p65 (pNF-κB p65) and the cell death marker cleaved caspase 3, and reduced markers of neurogenesis in the adult (P80) hippocampus, which is consistent with persistently increased neuroimmune signaling reducing neurogenesis. We observed a similar increase of pNF-κB p65-immunoreactive cells in the post-mortem human alcoholic hippocampus, an effect that was negatively correlated with age of drinking onset. Voluntary wheel running from P24 to P80 prevented the AIE-induced loss of neurogenesis markers (i.e., nestin and doublecortin) in the adult hippocampus that was paralleled by blockade of increased expression of the cell death marker cleaved caspase 3. Wheel running also prevented the AIE-induced increase of hippocampal pNF-κB p65 and induction of neuroimmune NF-κB target genes, including TNFα and IκBα in the adult brain. Administration of the anti-inflammatory drug indomethacin during AIE prevented the loss of neurogenesis markers (i.e., nestin and doublecortin) and the concomitant increase of cleaved caspase 3, an effect that was accompanied by blockade of the increase of pNF-κB p65. Similarly, administration of the proinflammatory TLR4 activator lipopolysaccharide resulted in a loss of doublecortin that was paralleled by increased expression of cleaved caspase 3 and pNF-κB p65 in the hippocampal dentate gyrus of CON animals that mimicked the AIE-induced loss of neurogenesis. Taken together, these data suggest that exercise and anti-inflammatory drugs protect against adolescent binge ethanol-induced brain neuroimmune signaling and the loss of neurogenesis in the adult hippocampus.
Collapse
Affiliation(s)
- Ryan P. Vetreno
- Bowles Center for Alcohol Studies, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Colleen J. Lawrimore
- Bowles Center for Alcohol Studies, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Pamela J. Rowsey
- School of Nursing, The University of North Carolina at Greensboro, Greensboro, NC, United States
| | - Fulton T. Crews
- Bowles Center for Alcohol Studies, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
23
|
Bazov I, Sarkisyan D, Kononenko O, Watanabe H, Yakovleva T, Hansson AC, Sommer WH, Spanagel R, Bakalkin G. Dynorphin and κ-Opioid Receptor Dysregulation in the Dopaminergic Reward System of Human Alcoholics. Mol Neurobiol 2018; 55:7049-7061. [PMID: 29383684 PMCID: PMC6061161 DOI: 10.1007/s12035-017-0844-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 12/18/2017] [Indexed: 12/13/2022]
Abstract
Molecular changes induced by excessive alcohol consumption may underlie formation of dysphoric state during acute and protracted alcohol withdrawal which leads to craving and relapse. A main molecular addiction hypothesis is that the upregulation of the dynorphin (DYN)/κ-opioid receptor (KOR) system in the nucleus accumbens (NAc) of alcohol-dependent individuals causes the imbalance in activity of D1- and D2 dopamine receptor (DR) expressing neural circuits that results in dysphoria. We here analyzed post-mortem NAc samples of human alcoholics to assess changes in prodynorphin (PDYN) and KOR (OPRK1) gene expression and co-expression (transcriptionally coordinated) patterns. To address alterations in D1- and D2-receptor circuits, we studied the regulatory interactions between these pathways and the DYN/KOR system. No significant differences in PDYN and OPRK1 gene expression levels between alcoholics and controls were evident. However, PDYN and OPRK1 showed transcriptionally coordinated pattern that was significantly different between alcoholics and controls. A downregulation of DRD1 but not DRD2 expression was seen in alcoholics. Expression of DRD1 and DRD2 strongly correlated with that of PDYN and OPRK1 suggesting high levels of transcriptional coordination between these gene clusters. The differences in expression and co-expression patterns were not due to the decline in neuronal proportion in alcoholic brain and thereby represent transcriptional phenomena. Dysregulation of DYN/KOR system and dopamine signaling through both alterations in co-expression patterns of opioid genes and decreased DRD1 gene expression may contribute to imbalance in the activity of D1- and D2-containing pathways which may lead to the negative affective state in human alcoholics.
Collapse
Affiliation(s)
- Igor Bazov
- Division of Biological Research on Drug Dependence, Department of Pharmaceutical Biosciences, Uppsala University, Box 591, BMC Husargatan 3, SE-75124, Uppsala, Sweden.
| | - Daniil Sarkisyan
- Division of Biological Research on Drug Dependence, Department of Pharmaceutical Biosciences, Uppsala University, Box 591, BMC Husargatan 3, SE-75124, Uppsala, Sweden
| | - Olga Kononenko
- Division of Biological Research on Drug Dependence, Department of Pharmaceutical Biosciences, Uppsala University, Box 591, BMC Husargatan 3, SE-75124, Uppsala, Sweden
| | - Hiroyuki Watanabe
- Division of Biological Research on Drug Dependence, Department of Pharmaceutical Biosciences, Uppsala University, Box 591, BMC Husargatan 3, SE-75124, Uppsala, Sweden
| | - Tatiana Yakovleva
- Division of Biological Research on Drug Dependence, Department of Pharmaceutical Biosciences, Uppsala University, Box 591, BMC Husargatan 3, SE-75124, Uppsala, Sweden
| | - Anita C Hansson
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - Wolfgang H Sommer
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - Rainer Spanagel
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - Georgy Bakalkin
- Division of Biological Research on Drug Dependence, Department of Pharmaceutical Biosciences, Uppsala University, Box 591, BMC Husargatan 3, SE-75124, Uppsala, Sweden
| |
Collapse
|
24
|
Abstract
The National PTSD Brain Bank (NPBB) is a brain tissue biorepository established to support research on the causes, progression, and treatment of PTSD. It is a six-part consortium led by VA's National Center for PTSD with participating sites at VA medical centers in Boston, MA; Durham, NC; Miami, FL; West Haven, CT; and White River Junction, VT along with the Uniformed Services University of Health Sciences. It is also well integrated with VA's Boston-based brain banks that focus on Alzheimer's disease, ALS, chronic traumatic encephalopathy, and other neurological disorders. This article describes the organization and operations of NPBB with specific attention to: tissue acquisition, tissue processing, diagnostic assessment, maintenance of a confidential data biorepository, adherence to ethical standards, governance, accomplishments to date, and future challenges. Established in 2014, NPBB has already acquired and distributed brain tissue to support research on how PTSD affects brain structure and function.
Collapse
|
25
|
Hermann D, Hirth N, Reimold M, Batra A, Smolka MN, Hoffmann S, Kiefer F, Noori HR, Sommer WH, Reischl G, la Fougère C, Mann K, Spanagel R, Hansson AC. Low μ-Opioid Receptor Status in Alcohol Dependence Identified by Combined Positron Emission Tomography and Post-Mortem Brain Analysis. Neuropsychopharmacology 2017; 42:606-614. [PMID: 27510425 PMCID: PMC5240173 DOI: 10.1038/npp.2016.145] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 07/20/2016] [Accepted: 07/22/2016] [Indexed: 12/20/2022]
Abstract
Blockade of the μ-opioid receptor (MOR) by naltrexone reduces relapse risk in a subpopulation of alcohol-dependent patients. Previous positron-emission-tomography (PET) studies using the MOR ligand [11C]carfentanil have found increased MOR availability in abstinent alcoholics, which may reflect either increased MOR expression or lower endogenous ligand concentration. To differentiate between both effects, we investigated two cohorts of alcoholic subjects using either post-mortem or clinical PET analysis. Post-mortem brain tissue of alcohol-dependent subjects and controls (N=43/group) was quantitatively analyzed for MOR ([3H]DAMGO)-binding sites and OPRM1 mRNA in striatal regions. [11C]carfentanil PET was performed in detoxified, medication free alcohol-dependent patients (N=38), followed by a randomized controlled study of naltrexone versus placebo and follow-up for 1 year (clinical trial number: NCT00317031). Because the functional OPRM1 variant rs1799971:A>G affects the ligand binding, allele carrier status was considered in the analyses. MOR-binding sites were reduced by 23-51% in post-mortem striatal tissue of alcoholics. In the PET study, a significant interaction of OPRM1 genotype, binding potential (BPND) for [11C]carfentanil in the ventral striatum, and relapse risk was found. Particularly in G-allele carriers, lower striatal BPND was associated with a higher relapse risk. Interestingly, this effect was more pronounced in the naltrexone treatment group. Reduced MOR is interpreted as a neuroadaptation to an alcohol-induced release of endogenous ligands in patients with severe alcoholism. Low MOR availability may explain the ineffectiveness of naltrexone treatment in this subpopulation. Finally, low MOR-binding sites are proposed as a molecular marker for a negative disease course.
Collapse
Affiliation(s)
- Derik Hermann
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany,Central Institute of Mental Health (ZI), Square J5, Mannheim 68159, Germany, Tel: +49 621 1703 6293 or +49 621 1703 3522, Fax: 49 621 17036255,E-mail: or
| | - Natalie Hirth
- Institute of Psychopharmacology, Central Institute of Mental Health Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Matthias Reimold
- Department of Nuclear Medicine, University of Tübingen, Tübingen, Germany
| | - Anil Batra
- Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Michael N Smolka
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany,Department of Psychiatry and Psychotherapy, Technische Universität Dresden, Dresden, Germany
| | - Sabine Hoffmann
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Falk Kiefer
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Hamid R Noori
- Institute of Psychopharmacology, Central Institute of Mental Health Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Wolfgang H Sommer
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany,Institute of Psychopharmacology, Central Institute of Mental Health Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Gerald Reischl
- Department of Preclinical Imaging and Radiopharmacy, University of Tübingen, Tübingen, Germany
| | | | - Karl Mann
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Rainer Spanagel
- Institute of Psychopharmacology, Central Institute of Mental Health Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Anita C Hansson
- Institute of Psychopharmacology, Central Institute of Mental Health Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany,Central Institute of Mental Health (ZI), Square J5, Mannheim 68159, Germany, Tel: +49 621 1703 6293 or +49 621 1703 3522, Fax: 49 621 17036255,E-mail: or
| |
Collapse
|
26
|
Heilig M, Barbier E, Johnstone AL, Tapocik J, Meinhardt MW, Pfarr S, Wahlestedt C, Sommer WH. Reprogramming of mPFC transcriptome and function in alcohol dependence. GENES, BRAIN, AND BEHAVIOR 2017; 16:86-100. [PMID: 27657733 PMCID: PMC5555395 DOI: 10.1111/gbb.12344] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 08/30/2016] [Accepted: 09/19/2016] [Indexed: 01/07/2023]
Abstract
Despite its limited immediate reinforcement value, alcohol has a potent ability to induce neuroadaptations that promote its incentive salience, escalation of voluntary alcohol intake and aversion-resistant alcohol seeking. A constellation of these traits, collectively called 'post-dependent', emerges following brain exposure to repeated cycles of intoxication and withdrawal. The medial prefrontal cortex (mPFC) and its subdivisions exert top-down regulation of approach and avoidance behaviors, including those that lead to alcohol intake. Here, we review an emerging literature which indicates that a reprogramming of mPFC function occurs with prolonged exposure of the brain to cycles of alcohol intoxication and withdrawal. This reprogramming results in molecular dysregulations that contribute to the post-dependent syndrome. Convergent evidence has identified neuroadaptations resulting in altered glutamatergic and BDNF-mediated signaling, and for these pathways, direct evidence for a mechanistic role has been obtained. Additional evidence points to a dysregulation of pathways involving calcium homeostasis and neurotransmitter release. Recent findings indicate that global DNA hypermethylation is a key factor in reprogramming the mPFC genome after a history of dependence. As one of the results of this epigenetic remodeling, several histone modifying epigenetic enzymes are repressed. Among these, PR-domain zinc-finger protein 2, a methyltransferase that selectively mono-methylates histone H3 at lysine 9 has been functionally validated to drive several of the molecular and behavioral long-term consequences of alcohol dependence. Information processing within the mPFC involves formation of dynamic neuronal networks, or functional ensembles that are shaped by transcriptional responses. The epigenetic dysregulations identified by our molecular studies are likely to alter this dynamic processing in multiple ways. In summary, epigenetic molecular switches in the mPFC appear to be turned on as alcoholism develops. Strategies to reverse these processes may offer targets for disease-modifying treatments.
Collapse
Affiliation(s)
- M. Heilig
- Center for Social and Affective Neuroscience, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - E. Barbier
- Center for Social and Affective Neuroscience, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - A. L. Johnstone
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - J. Tapocik
- Center for Social and Affective Neuroscience, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - M. W. Meinhardt
- Department of Psychopharmacology, Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany
| | - S. Pfarr
- Department of Psychopharmacology, Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany
| | - C. Wahlestedt
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - W. H. Sommer
- Department of Psychopharmacology, Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany
- Department of Addiction Medicine, Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
27
|
Cortical grey matter volume reduction in people with schizophrenia is associated with neuro-inflammation. Transl Psychiatry 2016; 6:e982. [PMID: 27959331 PMCID: PMC5290336 DOI: 10.1038/tp.2016.238] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 09/28/2016] [Indexed: 11/09/2022] Open
Abstract
Cortical grey matter volume deficits and neuro-inflammation exist in patients with schizophrenia, although it is not clear whether elevated cytokines contribute to the cortical volume reduction. We quantified cortical and regional brain volumes in fixed postmortem brains from people with schizophrenia and matched controls using stereology. Interleukin (IL)-6, IL-1β, IL-8 and SERPINA3 messenger RNAs (mRNAs) were quantified in the contralateral fresh frozen orbitofrontal cortex. We found a small, but significant reduction in cortical grey matter (1.3%; F(1,85)=4.478, P=0.037) and superior frontal gyrus (6.5%; F(1,80)=5.700, P=0.019) volumes in individuals with schizophrenia compared with controls. Significantly reduced cortical grey matter (9.2%; F(1,24)=8.272, P=0.008) and superior frontal gyrus (13.9%; F(1,20)=5.374, P=0.031) volumes were found in cases with schizophrenia and 'high inflammation' status relative to schizophrenia cases with 'low inflammation' status in the prefrontal cortex. The expression of inflammatory mRNAs in the orbitofrontal cortex was significantly correlated with those in dorsolateral prefrontal cortex (all r>0.417, all P<0.022), except for IL-8. Moreover, average daily and lifetime antipsychotic intake negatively correlated with cortical grey matter and superior frontal gyrus volumes (all r<-0.362, all P<0.05). The results suggest that the reduction in cortical grey matter volume in people with schizophrenia is exaggerated in those who have high expression of inflammatory cytokines. Further, antipsychotic medication intake does not appear to ameliorate the reduction in brain volume.
Collapse
|
28
|
"Why throw away something useful?": Attitudes and opinions of people treated for bipolar disorder and their relatives on organ and tissue donation. Cell Tissue Bank 2016; 18:105-117. [PMID: 27900507 DOI: 10.1007/s10561-016-9601-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 11/12/2016] [Indexed: 10/20/2022]
Abstract
In regard to mental illness, brain donation is essential for the biological investigation of central pathology. Nevertheless, little is known about the thoughts of people with mental disorders on tissue donation for research. Here, our objective was to understand the attitudes and opinions of people treated for bipolar disorder and their relatives regarding donation in general, and particularly donation for research. This is a qualitative study that used in-depth interviews to determine the thoughts of participants regarding tissue donation for research. Theoretical sampling was used as a recruitment method. Grounded theory was used as a framework for content analyses of the interviews. A semi-structured interview guide was applied with the topics: donation in general; donation for research; mental health and body organs; opinion regarding donation; feelings aroused by the topic. Although all participants were aware of organ donation for transplant, they were surprised that tissue could be donated for research. Nevertheless, once they understood the concept they were usually in favor of the idea. Although participants demonstrated a general lack of knowledge on donation for research, they were willing to learn more and viewed it as a good thing, with altruistic reasons often cited as a motive for donation. We speculate that bridging this knowledge gap may be a fundamental step towards a more ethical postmortem tissue donation process.
Collapse
|
29
|
Palmer-Aronsten B, Sheedy D, McCrossin T, Kril J. An International Survey of Brain Banking Operation and Characterization Practices. Biopreserv Biobank 2016; 14:464-469. [PMID: 27399803 DOI: 10.1089/bio.2016.0003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Brain banks continue to make a major contribution to the study of neurological and psychiatric disorders. The current complexity and scope of research heighten the need for well-characterized cases and the demand for larger cohorts and necessitate strategies, such as the establishment of bank networks based in regional areas. While individual brain banks have developed protocols that meet researchers' needs within the confines of resources and funding, to further promote collaboration, standardization and scientific validity and understanding of the current protocols of participating banks are required. A survey was sent to brain banks, identified by an Internet search, to investigate operational protocols, case characterization, cohort management, data collection, standardization, and degree of collaboration between banks. The majority of the 24 banks that returned the survey have been established for more than 20 years, and most are affiliated with a regional network. While prospective donor programs were the primary source of donation, the data collected on donors varied. Longitudinal information assists case characterization and enhances the analysis capabilities of research. However, acquiring this information depended on the availability of qualified staff. Respondents indicated a high level of importance for standardization, but only 8 of 24 considered this occurred between banks. Standard diagnostic criteria were not achieved in the classification of controls, and some banks relied on the researcher to indicate the criteria for classification of controls. Although the capacity to collaborate with other banks was indicated by 16 of 24 banks, this occurred infrequently. Engagement of all brain banks to participate toward a consensus of diagnostic tools, especially for controls, will strengthen collaboration.
Collapse
Affiliation(s)
- Beatrix Palmer-Aronsten
- 1 NSW Brain Tissue Resource Centre, Charles Perkins Centre, and Discipline of Pathology, Sydney Medical School, University of Sydney , Sydney, Australia .,2 Schizophrenia Research Institute , Randwick, Australia
| | - Donna Sheedy
- 1 NSW Brain Tissue Resource Centre, Charles Perkins Centre, and Discipline of Pathology, Sydney Medical School, University of Sydney , Sydney, Australia
| | - Toni McCrossin
- 1 NSW Brain Tissue Resource Centre, Charles Perkins Centre, and Discipline of Pathology, Sydney Medical School, University of Sydney , Sydney, Australia
| | - Jillian Kril
- 1 NSW Brain Tissue Resource Centre, Charles Perkins Centre, and Discipline of Pathology, Sydney Medical School, University of Sydney , Sydney, Australia
| |
Collapse
|
30
|
Farris SP, Pietrzykowski AZ, Miles MF, O'Brien MA, Sanna PP, Zakhari S, Mayfield RD, Harris RA. Applying the new genomics to alcohol dependence. Alcohol 2015; 49:825-36. [PMID: 25896098 PMCID: PMC4586299 DOI: 10.1016/j.alcohol.2015.03.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 03/05/2015] [Accepted: 03/07/2015] [Indexed: 12/15/2022]
Abstract
This review summarizes the proceedings of a symposium presented at the "Alcoholism and Stress: A Framework for Future Treatment Strategies" conference held in Volterra, Italy on May 6-9, 2014. The overall goal of the symposium titled "Applying the New Genomics to Alcohol Dependence", chaired by Dr. Adron Harris, was to highlight recent genomic discoveries and applications for profiling alcohol use disorder (AUD). Dr. Sean Farris discussed the gene expression networks related to lifetime consumption of alcohol within human prefrontal cortex. Dr. Andrzej Pietrzykowski presented the effects of alcohol on microRNAs in humans and animal models. Alcohol-induced alterations in the synaptic transcriptome were discussed by Dr. Michael Miles. Dr. Pietro Sanna examined methods to probe the gene regulatory networks that drive excessive alcohol drinking, and Dr. Samir Zakhari served as a panel discussant and summarized the proceedings. Collectively, the presentations emphasized the power of integrating multiple levels of genetics and transcriptomics with convergent biological processes and phenotypic behaviors to determine causal factors of AUD. The combined use of diverse data types demonstrates how unique approaches and applications can help categorize genetic complexities into relevant biological networks using a systems-level model of disease.
Collapse
Affiliation(s)
- Sean P Farris
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, 2500 Speedway, Austin, TX 78712, USA
| | - Andrzej Z Pietrzykowski
- Department of Animal Sciences, Rutgers University, New Brunswick, NJ, USA; Department of Genetics, Rutgers University, New Brunswick, NJ, USA
| | - Michael F Miles
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Megan A O'Brien
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Pietro P Sanna
- Molecular and Cellular Neuroscience Department, The Scripps Research Institute, La Jolla, CA, USA
| | - Samir Zakhari
- Office of Science, Distilled Spirits Council of the United States, Washington, DC, USA
| | - R Dayne Mayfield
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, 2500 Speedway, Austin, TX 78712, USA
| | - R Adron Harris
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, 2500 Speedway, Austin, TX 78712, USA.
| |
Collapse
|
31
|
Sarkisyan D, Hussain MZ, Watanabe H, Kononenko O, Bazov I, Zhou X, Yamskova O, Krishtal O, Karpyak VM, Yakovleva T, Bakalkin G. Downregulation of the endogenous opioid peptides in the dorsal striatum of human alcoholics. Front Cell Neurosci 2015; 9:187. [PMID: 26029055 PMCID: PMC4428131 DOI: 10.3389/fncel.2015.00187] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Accepted: 04/28/2015] [Indexed: 01/18/2023] Open
Abstract
The endogenous opioid peptides dynorphins and enkephalins may be involved in brain-area specific synaptic adaptations relevant for different stages of an addiction cycle. We compared the levels of prodynorphin (PDYN) and proenkephalin (PENK) mRNAs (by qRT-PCR), and dynorphins and enkephalins (by radioimmunoassay) in the caudate nucleus and putamen between alcoholics and control subjects. We also evaluated whether PDYN promoter variant rs1997794 associated with alcoholism affects PDYN expression. Postmortem specimens obtained from 24 alcoholics and 26 controls were included in final statistical analysis. PDYN mRNA and Met-enkephalin-Arg-Phe, a marker of PENK were downregulated in the caudate of alcoholics, while PDYN mRNA and Leu-enkephalin-Arg, a marker of PDYN were decreased in the putamen of alcoholics carrying high risk rs1997794 C allele. Downregulation of opioid peptides in the dorsal striatum may contribute to development of alcoholism including changes in goal directed behavior and formation of a compulsive habit in alcoholics.
Collapse
Affiliation(s)
- Daniil Sarkisyan
- Division of Biological Research on Drug Dependence, Department of Pharmaceutical Biosciences, Uppsala University Uppsala, Sweden
| | | | - Hiroyuki Watanabe
- Division of Biological Research on Drug Dependence, Department of Pharmaceutical Biosciences, Uppsala University Uppsala, Sweden
| | - Olga Kononenko
- Division of Biological Research on Drug Dependence, Department of Pharmaceutical Biosciences, Uppsala University Uppsala, Sweden ; Department for Cellular Membranology, Bogomoletz Institute of Physiology Kyiv, Ukraine
| | - Igor Bazov
- Division of Biological Research on Drug Dependence, Department of Pharmaceutical Biosciences, Uppsala University Uppsala, Sweden
| | - Xingwu Zhou
- Division of Biological Research on Drug Dependence, Department of Pharmaceutical Biosciences, Uppsala University Uppsala, Sweden
| | - Olga Yamskova
- Department of Functional Pharmacology, Institute for Neuroscience, Uppsala University Uppsala, Sweden
| | - Oleg Krishtal
- Department for Cellular Membranology, Bogomoletz Institute of Physiology Kyiv, Ukraine
| | - Victor M Karpyak
- Department of Psychiatry and Psychology, Mayo Clinic Rochester, MN, USA
| | - Tatiana Yakovleva
- Division of Biological Research on Drug Dependence, Department of Pharmaceutical Biosciences, Uppsala University Uppsala, Sweden
| | - Georgy Bakalkin
- Division of Biological Research on Drug Dependence, Department of Pharmaceutical Biosciences, Uppsala University Uppsala, Sweden
| |
Collapse
|
32
|
Bhandage AK, Jin Z, Bazov I, Kononenko O, Bakalkin G, Korpi ER, Birnir B. GABA-A and NMDA receptor subunit mRNA expression is altered in the caudate but not the putamen of the postmortem brains of alcoholics. Front Cell Neurosci 2014; 8:415. [PMID: 25538565 PMCID: PMC4257153 DOI: 10.3389/fncel.2014.00415] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 11/15/2014] [Indexed: 01/16/2023] Open
Abstract
Chronic consumption of alcohol by humans has been shown to lead to impairment of executive and cognitive functions. Here, we have studied the mRNA expression of ion channel receptors for glutamate and GABA in the dorsal striatum of post-mortem brains from alcoholics (n = 29) and normal controls (n = 29), with the focus on the caudate nucleus that is associated with the frontal cortex executive functions and automatic thinking and on the putamen area that is linked to motor cortices and automatic movements. The results obtained by qPCR assay revealed significant changes in the expression of specific excitatory ionotropic glutamate and inhibitory GABA-A receptor subunit genes in the caudate but not the putamen. Thus, in the caudate we found reduced levels of mRNAs encoding the GluN2A glutamate receptor and the δ, ε, and ρ2 GABA-A receptor subunits, and increased levels of the mRNAs encoding GluD1, GluD2, and GABA-A γ1 subunits in the alcoholics as compared to controls. Interestingly in the controls, 11 glutamate and 5 GABA-A receptor genes were more prominently expressed in the caudate than the putamen (fold-increase varied from 1.24 to 2.91). Differences in gene expression patterns between the striatal regions may underlie differences in associated behavioral outputs. Our results suggest an altered balance between caudate-mediated voluntarily controlled and automatic behaviors in alcoholics, including diminished executive control on goal-directed alcohol-seeking behavior.
Collapse
Affiliation(s)
- Amol K Bhandage
- Molecular Physiology and Neuroscience, Biomedical Center, Uppsala University Uppsala, Sweden
| | - Zhe Jin
- Molecular Physiology and Neuroscience, Biomedical Center, Uppsala University Uppsala, Sweden
| | - Igor Bazov
- Pharmacology, Institute of Biomedicine, University of Helsinki Helsinki, Finland
| | - Olga Kononenko
- Pharmacology, Institute of Biomedicine, University of Helsinki Helsinki, Finland
| | - Georgy Bakalkin
- Pharmacology, Institute of Biomedicine, University of Helsinki Helsinki, Finland
| | - Esa R Korpi
- Department of Pharmaceutical Bioscience (Biological Research on Drug Dependence), Biomedical Center, Uppsala University Uppsala, Sweden
| | - Bryndis Birnir
- Molecular Physiology and Neuroscience, Biomedical Center, Uppsala University Uppsala, Sweden
| |
Collapse
|
33
|
Dennis CV, Sheahan PJ, Graeber MB, Sheedy DL, Kril JJ, Sutherland GT. Microglial proliferation in the brain of chronic alcoholics with hepatic encephalopathy. Metab Brain Dis 2014; 29:1027-39. [PMID: 24346482 PMCID: PMC4063896 DOI: 10.1007/s11011-013-9469-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 12/04/2013] [Indexed: 12/11/2022]
Abstract
Hepatic encephalopathy (HE) is a common complication of chronic alcoholism and patients show neurological symptoms ranging from mild cognitive dysfunction to coma and death. The HE brain is characterized by glial changes, including microglial activation, but the exact pathogenesis of HE is poorly understood. During a study investigating cell proliferation in the subventricular zone of chronic alcoholics, a single case with widespread proliferation throughout their adjacent grey and white matter was noted. This case also had concomitant HE raising the possibility that glial proliferation might be a pathological feature of the disease. In order to explore this possibility fixed postmortem human brain tissue from chronic alcoholics with cirrhosis and HE (n = 9), alcoholics without HE (n = 4) and controls (n = 4) were examined using immunohistochemistry and cytokine assays. In total, 4/9 HE cases had PCNA- and a second proliferative marker, Ki-67-positive cells throughout their brain and these cells co-stained with the microglial marker, Iba1. These cases were termed 'proliferative HE' (pHE). The microglia in pHEs displayed an activated morphology with hypertrophied cell bodies and short, thickened processes. In contrast, the microglia in white matter regions of the non-proliferative HE cases were less activated and appeared dystrophic. pHEs were also characterized by higher interleukin-6 levels and a slightly higher neuronal density . These findings suggest that microglial proliferation may form part of an early neuroprotective response in HE that ultimately fails to halt the course of the disease because underlying etiological factors such as high cerebral ammonia and systemic inflammation remain.
Collapse
Affiliation(s)
- Claude V Dennis
- Discipline of Pathology, Sydney Medical School, Camperdown, NSW, 2050, Australia
| | | | | | | | | | | |
Collapse
|
34
|
Buckow K, Quade M, Rienhoff O, Nussbeck SY. Changing requirements and resulting needs for IT-infrastructure for longitudinal research in the neurosciences. Neurosci Res 2014; 102:22-8. [PMID: 25152316 DOI: 10.1016/j.neures.2014.08.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 08/06/2014] [Accepted: 08/13/2014] [Indexed: 11/18/2022]
Abstract
The observation of growing "difficulties" in IT-infrastructures in neuroscience research during the last years led to a search for reasons and an analysis on how this phenomenon is reflected in the scientific literature. With a retrospective analysis of nine examples of multicenter research projects in the neurosciences and a literature review the observation was systematically analyzed. Results show that the rise in complexity mainly stems from two reasons: (1) more and more need for information on quality and context of research data (metadata) and (2) long-term requirements to handle the consent and identity/pseudonyms of study participants and biomaterials in relation to legal requirements. The combination of these two aspects together with very long study times and data evaluation periods are components of the subjectively perceived "difficulties". A direct consequence of this result is that big multicenter trials are becoming part of integrated research data environments and are not standing alone for themselves anymore. This drives up the resource needs regarding the IT-infrastructure in neuroscience research. In contrast to these findings, literature on this development is scarce and the problem probably underestimated.
Collapse
Affiliation(s)
- Karoline Buckow
- University Medical Center Göttingen, Department of Medical Informatics, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | - Matthias Quade
- University Medical Center Göttingen, Department of Medical Informatics, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | - Otto Rienhoff
- University Medical Center Göttingen, Department of Medical Informatics, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | - Sara Y Nussbeck
- University Medical Center Göttingen, Department of Medical Informatics, Robert-Koch-Str. 40, 37075 Göttingen, Germany.
| |
Collapse
|
35
|
Daunais JB, Davenport AT, Helms CM, Gonzales SW, Hemby SE, Friedman DP, Farro JP, Baker EJ, Grant KA. Monkey alcohol tissue research resource: banking tissues for alcohol research. Alcohol Clin Exp Res 2014; 38:1973-81. [PMID: 24942558 DOI: 10.1111/acer.12467] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 04/11/2014] [Indexed: 11/29/2022]
Abstract
BACKGROUND An estimated 18 million adults in the United States meet the clinical criteria for diagnosis of alcohol abuse or alcoholism, a disorder ranked as the third leading cause of preventable death. In addition to brain pathology, heavy alcohol consumption is comorbid with damage to major organs including heart, lungs, liver, pancreas, and kidneys. Much of what is known about risk for and consequences of heavy consumption derive from rodent or retrospective human studies. The neurobiological effects of chronic intake in rodent studies may not easily translate to humans due to key differences in brain structure and organization between species, including a lack of higher-order cognitive functions, and differences in underlying prefrontal cortical neural structures that characterize the primate brain. Further, rodents do not voluntarily consume large quantities of ethanol (EtOH) and they metabolize it more rapidly than primates. METHODS The basis of the Monkey Alcohol Tissue Research Resource (MATRR) is that nonhuman primates, specifically monkeys, show a range of drinking excessive amounts of alcohol (>3.0 g/kg or a 12 drink equivalent per day) over long periods of time (12 to 30 months) with concomitant pathological changes in endocrine, hepatic, and central nervous system (CNS) processes. The patterns and range of alcohol intake that monkeys voluntarily consume parallel what is observed in humans with alcohol use disorders and the longitudinal experimental design spans stages of drinking from the EtOH-naïve state to early exposure through chronic abuse. Age- and sex-matched control animals self-administer an isocaloric solution under identical operant procedures. RESULTS The MATRR is a unique postmortem tissue bank that provides CNS and peripheral tissues, and associated bioinformatics from monkeys that self-administer EtOH using a standardized experimental paradigm to the broader alcohol research community. CONCLUSIONS This resource provides a translational platform from which we can better understand the disease processes associated with alcoholism.
Collapse
Affiliation(s)
- James B Daunais
- Department of Physiology and Pharmacology , Wake Forest School of Medicine, Winston Salem, North Carolina
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Manzardo AM, Gunewardena S, Wang K, Butler MG. Exon microarray analysis of human dorsolateral prefrontal cortex in alcoholism. Alcohol Clin Exp Res 2014; 38:1594-601. [PMID: 24890784 PMCID: PMC4047192 DOI: 10.1111/acer.12429] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 03/20/2014] [Indexed: 12/14/2022]
Abstract
BACKGROUND Alcohol abuse is associated with cellular and biochemical disturbances that impact upon protein and nucleic acid synthesis, brain development, function, and behavioral responses. To further characterize the genetic influences in alcoholism and the effects of alcohol consumption on gene expression, we used a highly sensitive exon microarray to examine mRNA expression in human frontal cortex of alcoholics and control males. METHODS Messenger RNA was isolated from the dorsolateral prefrontal cortex (dlPFC; Brodmann area 9) of 7 adult alcoholic (6 males, 1 female, mean age 49 years) and 7 matched controls. Affymetrix Human Exon 1.0 ST array was performed according to standard procedures and the results analyzed at the gene level. Microarray findings were validated using quantitative reverse transcription polymerase chain reaction, and the ontology of disturbed genes characterized using Ingenuity Pathway Analysis (IPA). RESULTS Decreased mRNA expression was observed for genes involved in cellular adhesion (e.g., CTNNA3, ITGA2), transport (e.g., TF, ABCA8), nervous system development (e.g., LRP2, UGT8, GLDN), and signaling (e.g., RASGRP3, LGR5) with influence over lipid and myelin synthesis (e.g., ASPA, ENPP2, KLK6). IPA identified disturbances in network functions associated with neurological disease and development including cellular assembly and organization impacting on psychological disorders. CONCLUSIONS Our data in alcoholism support a reduction in expression of dlPFC mRNA for genes involved with neuronal growth, differentiation, and signaling that targets white matter of the brain.
Collapse
Affiliation(s)
- Ann M. Manzardo
- Department of Psychiatry and Behavioral Sciences, University of Kansas School of Medicine, Kansas City, KS
| | - Sumedha Gunewardena
- Department of Molecular and Integrative Physiology, University of Kansas School of Medicine, Kansas City, KS
- Department of Biostatistics, University of Kansas School of Medicine, Kansas City, KS
| | - Kun Wang
- Department of Psychiatry and Behavioral Sciences, University of Kansas School of Medicine, Kansas City, KS
| | - Merlin G. Butler
- Department of Psychiatry and Behavioral Sciences, University of Kansas School of Medicine, Kansas City, KS
- Department of Pediatrics, University of Kansas School of Medicine, Kansas City, KS
| |
Collapse
|
37
|
Jin Z, Bhandage AK, Bazov I, Kononenko O, Bakalkin G, Korpi ER, Birnir B. Selective increases of AMPA, NMDA, and kainate receptor subunit mRNAs in the hippocampus and orbitofrontal cortex but not in prefrontal cortex of human alcoholics. Front Cell Neurosci 2014; 8:11. [PMID: 24523671 PMCID: PMC3905203 DOI: 10.3389/fncel.2014.00011] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 01/08/2014] [Indexed: 12/31/2022] Open
Abstract
Glutamate is the main excitatory transmitter in the human brain. Drugs that affect the glutamatergic signaling will alter neuronal excitability. Ethanol inhibits glutamate receptors. We examined the expression level of glutamate receptor subunit mRNAs in human post-mortem samples from alcoholics and compared the results to brain samples from control subjects. RNA from hippocampal dentate gyrus (HP-DG), orbitofrontal cortex (OFC), and dorso-lateral prefrontal cortex (DL-PFC) samples from 21 controls and 19 individuals with chronic alcohol dependence were included in the study. Total RNA was assayed using quantitative RT-PCR. Out of the 16 glutamate receptor subunits, mRNAs encoding two AMPA [2-amino-3-(3-hydroxy-5-methyl-isoxazol-4-yl)propanoic acid] receptor subunits GluA2 and GluA3; three kainate receptor subunits GluK2, GluK3 and GluK5 and five NMDA (N-methyl-D-aspartate) receptor subunits GluN1, GluN2A, GluN2C, GluN2D, and GluN3A were significantly increased in the HP-DG region in alcoholics. In the OFC, mRNA encoding the NMDA receptor subunit GluN3A was increased, whereas in the DL-PFC, no differences in mRNA levels were observed. Our laboratory has previously shown that the expression of genes encoding inhibitory GABA-A receptors is altered in the HP-DG and OFC of alcoholics (Jin et al., 2011). Whether the changes in one neurotransmitter system drives changes in the other or if they change independently is currently not known. The results demonstrate that excessive long-term alcohol consumption is associated with altered expression of genes encoding glutamate receptors in a brain region-specific manner. It is an intriguing possibility that genetic predisposition to alcoholism may contribute to these gene expression changes.
Collapse
Affiliation(s)
- Zhe Jin
- Department of Neuroscience, Uppsala University Uppsala, Sweden
| | - Amol K Bhandage
- Department of Neuroscience, Uppsala University Uppsala, Sweden
| | - Igor Bazov
- Division of Biological Research on Drug Dependence, Department of Pharmaceutical Biosciences, Uppsala University Uppsala, Sweden
| | - Olga Kononenko
- Division of Biological Research on Drug Dependence, Department of Pharmaceutical Biosciences, Uppsala University Uppsala, Sweden
| | - Georgy Bakalkin
- Division of Biological Research on Drug Dependence, Department of Pharmaceutical Biosciences, Uppsala University Uppsala, Sweden
| | - Esa R Korpi
- Institute of Biomedicine, Pharmacology, University of Helsinki Helsinki, Finland
| | - Bryndis Birnir
- Department of Neuroscience, Uppsala University Uppsala, Sweden
| |
Collapse
|
38
|
Sutherland GT, Sheedy D, Sheahan PJ, Kaplan W, Kril JJ. Comorbidities, confounders, and the white matter transcriptome in chronic alcoholism. Alcohol Clin Exp Res 2014; 38:994-1001. [PMID: 24460866 DOI: 10.1111/acer.12341] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 11/18/2013] [Indexed: 11/28/2022]
Abstract
BACKGROUND Alcohol abuse is the world's third leading cause of disease and disability, and one potential sequel of chronic abuse is alcohol-related brain damage (ARBD). This clinically manifests as cognitive dysfunction and pathologically as atrophy of white matter (WM) in particular. The mechanism linking chronic alcohol intoxication with ARBD remains largely unknown but it is also complicated by common comorbidities such as liver damage and nutritional deficiencies. Liver cirrhosis, in particular, often leads to hepatic encephalopathy (HE), a primary glial disease. METHODS In a novel transcriptomic study, we targeted the WM only of chronic alcoholics in an attempt to tease apart the pathogenesis of ARBD. Specifically, in alcoholics with and without HE, we explored both the prefrontal and primary motor cortices, 2 regions that experience differential levels of neuronal loss. RESULTS Our results suggest that HE, along with 2 confounders, gray matter contamination, and low RNA quality are major drivers of gene expression in ARBD. All 3 exceeded the effects of alcohol itself. In particular, low-quality RNA samples were characterized by an up-regulation of translation machinery, while HE was associated with a down-regulation of mitochondrial energy metabolism pathways. CONCLUSIONS The findings in HE alcoholics are consistent with the metabolic acidosis seen in this condition. In contrast non-HE alcoholics had widespread but only subtle changes in gene expression in their WM. Notwithstanding the latter result, this study demonstrates that significant confounders in transcriptomic studies of human postmortem brain tissue can be identified, quantified, and "removed" to reveal disease-specific signals.
Collapse
Affiliation(s)
- Greg T Sutherland
- Discipline of Pathology, Sydney Medical School , University of Sydney, Sydney, NSW, 2006, Australia
| | | | | | | | | |
Collapse
|
39
|
Abstract
Chronic alcohol consumption results in structural changes to the brain. In alcoholics without coexisting thiamine deficiency or liver disease this is largely restricted to a loss of white-matter volume. When it occurs, neuronal loss is limited in anatomic distribution and only detected with quantitative techniques. This relative paucity of neurodegeneration is reflected in studies of gene and protein expression in postmortem brain where findings are subtle and discordant between studies. In alcoholics with coexisting pathologies, neuronal loss is more marked and affects a wider range of anatomic regions, especially subcortical nuclei. Although this more widespread damage may reflect a more severe drinking history, there is evidence linking thiamine deficiency and the consequences of liver disease to the pathogenesis of alcohol-related brain damage. Furthermore, a range of other factors, such as cigarette smoking and mood disorders, that are common in alcoholics, have the potential to influence studies of brain pathology and should be considered in further studies of the neuropathology of alcoholism.
Collapse
Affiliation(s)
- Greg T Sutherland
- Department of Pathology, Sydney Medical School, University of Sydney, Sydney, Australia
| | - Donna Sheedy
- Department of Pathology, Sydney Medical School, University of Sydney, Sydney, Australia
| | - Jillian J Kril
- Department of Pathology, Sydney Medical School, University of Sydney, Sydney, Australia; Department of Medicine, Sydney Medical School, University of Sydney, Sydney, Australia.
| |
Collapse
|
40
|
Spanagel R, Durstewitz D, Hansson A, Heinz A, Kiefer F, Köhr G, Matthäus F, Nöthen MM, Noori HR, Obermayer K, Rietschel M, Schloss P, Scholz H, Schumann G, Smolka M, Sommer W, Vengeliene V, Walter H, Wurst W, Zimmermann US, Stringer S, Smits Y, Derks EM. A systems medicine research approach for studying alcohol addiction. Addict Biol 2013; 18:883-96. [PMID: 24283978 DOI: 10.1111/adb.12109] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
According to the World Health Organization, about 2 billion people drink alcohol. Excessive alcohol consumption can result in alcohol addiction, which is one of the most prevalent neuropsychiatric diseases afflicting our society today. Prevention and intervention of alcohol binging in adolescents and treatment of alcoholism are major unmet challenges affecting our health-care system and society alike. Our newly formed German SysMedAlcoholism consortium is using a new systems medicine approach and intends (1) to define individual neurobehavioral risk profiles in adolescents that are predictive of alcohol use disorders later in life and (2) to identify new pharmacological targets and molecules for the treatment of alcoholism. To achieve these goals, we will use omics-information from epigenomics, genetics transcriptomics, neurodynamics, global neurochemical connectomes and neuroimaging (IMAGEN; Schumann et al. ) to feed mathematical prediction modules provided by two Bernstein Centers for Computational Neurosciences (Berlin and Heidelberg/Mannheim), the results of which will subsequently be functionally validated in independent clinical samples and appropriate animal models. This approach will lead to new early intervention strategies and identify innovative molecules for relapse prevention that will be tested in experimental human studies. This research program will ultimately help in consolidating addiction research clusters in Germany that can effectively conduct large clinical trials, implement early intervention strategies and impact political and healthcare decision makers.
Collapse
Affiliation(s)
- Rainer Spanagel
- Insitute of Psychopharmacology; Central Institute of Mental Health; Medical Faculty Mannheim; University of Heidelberg; Germany
| | - Daniel Durstewitz
- Bernstein Center for Computational Neuroscience; Central Institute of Mental Health; Germany
| | - Anita Hansson
- Insitute of Psychopharmacology; Central Institute of Mental Health; Medical Faculty Mannheim; University of Heidelberg; Germany
| | - Andreas Heinz
- Department of Addictive Behaviour and Addiction Medicine; Central Institute of Mental Health; Germany
| | - Falk Kiefer
- Department of Genetic Epidemiology in Psychiatry; Central Institute of Mental Health; Germany
| | - Georg Köhr
- Insitute of Psychopharmacology; Central Institute of Mental Health; Medical Faculty Mannheim; University of Heidelberg; Germany
| | | | - Markus M. Nöthen
- Department of Psychiatry; Charité University Medical Center; Germany
| | - Hamid R. Noori
- Insitute of Psychopharmacology; Central Institute of Mental Health; Medical Faculty Mannheim; University of Heidelberg; Germany
| | - Klaus Obermayer
- Institute of Applied Mathematics; University of Heidelberg; Germany
| | - Marcella Rietschel
- Department of Genomics, Life & Brain Centre; University of Bonn; Germany
| | - Patrick Schloss
- Neural Information Processing Group; Technical University of Berlin; Germany
| | - Henrike Scholz
- Behavioral Neurogenetics' Zoological Institute; University of Cologne; Germany
| | - Gunter Schumann
- MRC-SGDP Centre; Institute of Psychiatry; King's College; UK
| | - Michael Smolka
- Department of Psychiatry and Psychotherapy; Technical University Dresden; Germany
| | - Wolfgang Sommer
- Insitute of Psychopharmacology; Central Institute of Mental Health; Medical Faculty Mannheim; University of Heidelberg; Germany
| | - Valentina Vengeliene
- Insitute of Psychopharmacology; Central Institute of Mental Health; Medical Faculty Mannheim; University of Heidelberg; Germany
| | - Henrik Walter
- Department of Addictive Behaviour and Addiction Medicine; Central Institute of Mental Health; Germany
| | - Wolfgang Wurst
- Institute of Developmental Genetics; Helmholtz Center Munich; Germany
| | - Uli S. Zimmermann
- Department of Psychiatry and Psychotherapy; Technical University Dresden; Germany
| | - Sven Stringer
- Psychiatry Department; Academic Medical Center; The Netherlands
- Brain Center Rudolf Magnus; University Medical Center; The Netherlands
| | - Yannick Smits
- Psychiatry Department; Academic Medical Center; The Netherlands
| | - Eske M. Derks
- Psychiatry Department; Academic Medical Center; The Netherlands
| | | |
Collapse
|
41
|
Vetreno RP, Qin L, Crews FT. Increased receptor for advanced glycation end product expression in the human alcoholic prefrontal cortex is linked to adolescent drinking. Neurobiol Dis 2013; 59:52-62. [PMID: 23867237 PMCID: PMC3775891 DOI: 10.1016/j.nbd.2013.07.002] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 06/21/2013] [Accepted: 07/08/2013] [Indexed: 02/06/2023] Open
Abstract
Adolescence is characterized behaviorally by increased impulsivity and risk-taking that declines in parallel with maturation of the prefrontal cortex and executive function. In the brain, the receptor for advanced glycation end products (RAGE) is critically involved in neurodevelopment and neuropathology. In humans, the risk of alcoholism is greatly increased in those who begin drinking between 13 and 15years of age, and adolescents binge drink more than any other age group. We have previously found that alcoholism is associated with increased expression of neuroimmune genes. This manuscript tested the hypothesis that adolescent binge drinking upregulates RAGE and Toll-like receptor (TLR) 4 as well as their endogenous agonist, high-mobility group box 1 (HMGB1). Immunohistochemistry, Western blot, and mRNA analyses found that RAGE expression was increased in the human post-mortem alcoholic orbitofrontal cortex (OFC). Further, an earlier age of drinking onset correlated with increased expression of RAGE, TLR4, and HMGB1. To determine if alcohol contributed to these changes, we used an adolescent binge ethanol model in rats (5.0g/kg, i.g., 2-day on/2-day off from postnatal day [P] 25 to P55) and assessed neuroimmune gene expression. We found an age-associated decline of RAGE expression from late adolescence (P56) to young adulthood (P80). Adolescent intermittent ethanol exposure did not alter RAGE expression at P56, but increased RAGE in the young adult PFC (P80). Adolescent intermittent ethanol exposure also increased TLR4 and HMGB1 expression at P56 that persisted into young adulthood (P80). Assessment of young adult frontal cortex mRNA (RT-PCR) found increased expression of proinflammatory cytokines, oxidases, and neuroimmune agonists at P80, 25days after ethanol treatment. Together, these human and animal data support the hypothesis that an early age of drinking onset upregulates RAGE/TLR4-HMGB1 and other neuroimmune genes that persist into young adulthood and could contribute to risk of alcoholism or other brain diseases associated with neuroinflammation.
Collapse
Affiliation(s)
- Ryan P Vetreno
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | | | | |
Collapse
|
42
|
McClintick JN, Xuei X, Tischfield JA, Goate A, Foroud T, Wetherill L, Ehringer MA, Edenberg HJ. Stress-response pathways are altered in the hippocampus of chronic alcoholics. Alcohol 2013; 47:505-15. [PMID: 23981442 DOI: 10.1016/j.alcohol.2013.07.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 07/02/2013] [Accepted: 07/09/2013] [Indexed: 12/26/2022]
Abstract
The chronic high-level alcohol consumption seen in alcoholism leads to dramatic effects on the hippocampus, including decreased white matter, loss of oligodendrocytes and other glial cells, and inhibition of neurogenesis. Examining gene expression in post mortem hippocampal tissue from 20 alcoholics and 19 controls allowed us to detect differentially expressed genes that may play a role in the risk for alcoholism or whose expression is modified by chronic consumption of alcohol. We identified 639 named genes whose expression significantly differed between alcoholics and controls at a False Discovery Rate (FDR) ≤ 0.20; 52% of these genes differed by at least 1.2-fold. Differentially expressed genes included the glucocorticoid receptor and the related gene FK506 binding protein 5 (FKBP5), UDP glycosyltransferase 8 (UGT8), urea transporter (SLC14A1), zinc transporter (SLC39A10), Interleukin 1 receptor type 1 (IL1R1), thioredoxin interacting protein (TXNIP), and many metallothioneins. Pathways related to inflammation, hypoxia, and stress showed activation, and pathways that play roles in neurogenesis and myelination showed decreases. The cortisol pathway dysregulation and increased inflammation identified here are seen in other stress-related conditions such as depression and post-traumatic stress disorder and most likely play a role in addiction. Many of the detrimental effects on the hippocampus appear to be mediated through NF-κB signaling. Twenty-four of the differentially regulated genes were previously identified by genome-wide association studies of alcohol use disorders; this raises the potential interest of genes not normally associated with alcoholism, such as suppression of tumorigenicity 18 (ST18), BCL2-associated athanogene 3 (BAG3), and von Willebrand factor (VWF).
Collapse
|
43
|
Manzardo AM, Gunewardena S, Butler MG. Over-expression of the miRNA cluster at chromosome 14q32 in the alcoholic brain correlates with suppression of predicted target mRNA required for oligodendrocyte proliferation. Gene 2013; 526:356-63. [PMID: 23747354 PMCID: PMC3816396 DOI: 10.1016/j.gene.2013.05.052] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 05/20/2013] [Accepted: 05/23/2013] [Indexed: 10/26/2022]
Abstract
We examined miRNA expression from RNA isolated from the frontal cortex (Broadman area 9) of 9 alcoholics (6 males, 3 females, mean age 48 years) and 9 matched controls using both the Affymetrix GeneChip miRNA 2.0 and Human Exon 1.0 ST Arrays to further characterize genetic influences in alcoholism and the effects of alcohol consumption on predicted target mRNA expression. A total of 12 human miRNAs were significantly up-regulated in alcohol dependent subjects (fold change≥1.5, false discovery rate (FDR)≤0.3; p<0.05) compared with controls including a cluster of 4 miRNAs (e.g., miR-377, miR-379) from the maternally expressed 14q32 chromosome region. The status of the up-regulated miRNAs was supported using the high-throughput method of exon microarrays showing decreased predicted mRNA gene target expression as anticipated from the same RNA aliquot. Predicted mRNA targets were involved in cellular adhesion (e.g., THBS2), tissue differentiation (e.g., CHN2), neuronal migration (e.g., NDE1), myelination (e.g., UGT8, CNP) and oligodendrocyte proliferation (e.g., ENPP2, SEMA4D1). Our data support an association of alcoholism with up-regulation of a cluster of miRNAs located in the genomic imprinted domain on chromosome 14q32 with their predicted gene targets involved with oligodendrocyte growth, differentiation and signaling.
Collapse
Affiliation(s)
- A M Manzardo
- Department of Psychiatry and Behavioral Sciences, University of Kansas School of Medicine, Kansas City, KS 66160, USA.
| | | | | |
Collapse
|
44
|
Sutherland GT, Sheahan PJ, Matthews J, Dennis CVP, Sheedy DS, McCrossin T, Curtis MA, Kril JJ. The effects of chronic alcoholism on cell proliferation in the human brain. Exp Neurol 2013; 247:9-18. [PMID: 23541433 PMCID: PMC4709019 DOI: 10.1016/j.expneurol.2013.03.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 03/18/2013] [Accepted: 03/20/2013] [Indexed: 01/19/2023]
Abstract
Neurogenesis continues in the human subventricular zone and to a lesser extent in the hippocampal subgranular zone throughout life. Subventricular zone-derived neuroblasts migrate to the olfactory bulb where survivors become integrated as interneurons and are postulated to contribute to odor discrimination. Adult neurogenesis is dysregulated in many neurological, neurovascular and neurodegenerative diseases. Alcohol abuse can result in a neurodegenerative condition called alcohol-related brain damage. Alcohol-related brain damage manifests clinically as cognitive dysfunction and the loss of smell sensation (hyposmia) and pathologically as generalized white matter atrophy and focal neuronal loss. The exact mechanism linking chronic alcohol intoxication with alcohol-related brain damage remains largely unknown but rodent models suggest that decreased neurogenesis is an important component. We investigated this idea by comparing proliferative events in the subventricular zone and olfactory bulb of a well-characterized cohort of 15 chronic alcoholics and 16 age-matched controls. In contrast to the findings in animal models there was no difference in the number of proliferative cell nuclear antigen-positive cells in the subventricular zone of alcoholics (mean±SD=28.7±20.0) and controls (27.6±18.9, p=1.0). There were also no differences in either the total (p=0.89) or proliferative cells (p=0.98) in the granular cell layer of the olfactory bulb. Our findings show that chronic alcohol consumption does not affect cell proliferation in the human SVZ or olfactory bulb. In fact only microglial proliferation could be demonstrated in the latter. Therefore neurogenic deficits are unlikely to contribute to hyposmia in chronic alcoholics.
Collapse
Affiliation(s)
- G T Sutherland
- Discipline of Pathology, Sydney Medical School, The University of Sydney, NSW 2006, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Sutherland GT, Sheedy D, Kril JJ. Using autopsy brain tissue to study alcohol-related brain damage in the genomic age. Alcohol Clin Exp Res 2013; 38:1-8. [PMID: 24033426 DOI: 10.1111/acer.12243] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 06/12/2013] [Indexed: 11/29/2022]
Abstract
The New South Wales Tissue Resource Centre at the University of Sydney, Australia, is one of the few human brain banks dedicated to the study of the effects of chronic alcoholism. The bank was affiliated in 1994 as a member of the National Network of Brain Banks and also focuses on schizophrenia and healthy control tissue. Alcohol abuse is a major problem worldwide, manifesting in such conditions as fetal alcohol syndrome, adolescent binge drinking, alcohol dependency, and alcoholic neurodegeneration. The latter is also referred to as alcohol-related brain damage (ARBD). The study of postmortem brain tissue is ideally suited to determining the effects of long-term alcohol abuse, but it also makes an important contribution to understanding pathogenesis across the spectrum of alcohol misuse disorders and potentially other neurodegenerative diseases. Tissue from the bank has contributed to 330 peer-reviewed journal articles including 120 related to alcohol research. Using the results of these articles, this review chronicles advances in alcohol-related brain research since 2003, the so-called genomic age. In particular, it concentrates on transcriptomic approaches to the pathogenesis of ARBD and builds on earlier reviews of structural changes (Harper et al. Prog Neuropsychopharmacol Biol Psychiatry 2003;27:951) and proteomics (Matsumoto et al. Expert Rev Proteomics 2007;4:539).
Collapse
Affiliation(s)
- Greg T Sutherland
- Discipline of Pathology, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | | | | |
Collapse
|
46
|
Davenport AT, Grant KA, Szeliga KT, Friedman DP, Daunais JB. Standardized method for the harvest of nonhuman primate tissue optimized for multiple modes of analyses. Cell Tissue Bank 2013; 15:99-110. [PMID: 23709130 DOI: 10.1007/s10561-013-9380-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 05/15/2013] [Indexed: 11/24/2022]
Abstract
Appropriate animal models are critical to conduct translational studies of human disorders without variables that can confound clinical studies. Such analytic methods as patch-clamp electrophysiological and voltammetric recordings of neurons in brain slices require living brain tissue. In order to obtain viable tissue from nonhuman primate brains, tissue collection methods must be designed to preserve cardiovascular and respiratory functions for as long as possible. This paper describes a method of necropsy that has been used in three species of monkeys that satisfies this requirement. At necropsy, animals were maintained under a deep surgical plane of anesthesia while a craniotomy was conducted to expose the brain. Following the craniotomy, animals were perfused with ice-cold, oxygenated artificial cerebrospinal fluid to displace blood and to reduce the temperature of the entire brain. The brain was removed within minutes of death and specific brain regions were immediately dissected for subsequent in vitro electrophysiology or voltammetry experiments. This necropsy method also provided for the collection of tissue blocks containing all brain regions that were immediately frozen and stored for subsequent genomic, proteomic, autoradiographic and histological studies. An added benefit from the design of this necropsy method is that all major peripheral tissues were also collected and are now being utilized in a wide range of genomic, biochemical and histological assays. This necropsy method has resulted in the establishment and growth of a nonhuman primate alcohol tissue bank designed to distribute central nervous system and peripheral tissues to the larger scientific community.
Collapse
Affiliation(s)
- April T Davenport
- Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | | | | | | | | |
Collapse
|
47
|
Meinhardt MW, Hansson AC, Perreau-Lenz S, Bauder-Wenz C, Stählin O, Heilig M, Harper C, Drescher KU, Spanagel R, Sommer WH. Rescue of infralimbic mGluR2 deficit restores control over drug-seeking behavior in alcohol dependence. J Neurosci 2013; 33:2794-806. [PMID: 23407939 PMCID: PMC3711176 DOI: 10.1523/jneurosci.4062-12.2013] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 10/19/2012] [Accepted: 10/29/2012] [Indexed: 12/25/2022] Open
Abstract
A key deficit in alcohol dependence is disrupted prefrontal function leading to excessive alcohol seeking, but the molecular events underlying the emergence of addictive responses remain unknown. Here we show by convergent transcriptome analysis that the pyramidal neurons of the infralimbic cortex are particularly vulnerable for the long-term effects of chronic intermittent ethanol intoxication. These neurons exhibit a pronounced deficit in metabotropic glutamate receptor subtype 2 (mGluR(2)). Also, alcohol-dependent rats do not respond to mGluR(2/3) agonist treatment with reducing extracellular glutamate levels in the nucleus accumbens. Together these data imply a loss of autoreceptor feedback control. Alcohol-dependent rats show escalation of ethanol seeking, which was abolished by restoring mGluR(2) expression in the infralimbic cortex via viral-mediated gene transfer. Human anterior cingulate cortex from alcoholic patients shows a significant reduction in mGluR(2) transcripts compared to control subjects, suggesting that mGluR(2) loss in the rodent and human corticoaccumbal neurocircuitry may be a major consequence of alcohol dependence and a key pathophysiological mechanism mediating increased propensity to relapse. Normalization of mGluR(2) function within this brain circuit may be of therapeutic value.
Collapse
Affiliation(s)
- Marcus W. Meinhardt
- Institute of Psychopharmacology at Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, 68159 Mannheim, Germany
| | - Anita C. Hansson
- Institute of Psychopharmacology at Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, 68159 Mannheim, Germany
| | - Stephanie Perreau-Lenz
- Institute of Psychopharmacology at Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, 68159 Mannheim, Germany
| | - Christina Bauder-Wenz
- Institute of Psychopharmacology at Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, 68159 Mannheim, Germany
| | - Oliver Stählin
- Institute of Psychopharmacology at Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, 68159 Mannheim, Germany
| | - Markus Heilig
- Laboratory of Clinical and Translational Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland 20892
| | - Clive Harper
- New South Wales Tissue Resource Centre, University of Sydney, 2006 Sydney, Australia, and
| | | | - Rainer Spanagel
- Institute of Psychopharmacology at Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, 68159 Mannheim, Germany
| | - Wolfgang H. Sommer
- Institute of Psychopharmacology at Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, 68159 Mannheim, Germany
| |
Collapse
|
48
|
Bazov I, Kononenko O, Watanabe H, Kuntić V, Sarkisyan D, Taqi MM, Hussain MZ, Nyberg F, Yakovleva T, Bakalkin G. The endogenous opioid system in human alcoholics: molecular adaptations in brain areas involved in cognitive control of addiction. Addict Biol 2013; 18:161-9. [PMID: 21955155 DOI: 10.1111/j.1369-1600.2011.00366.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The endogenous opioid system (EOS) plays a critical role in addictive processes. Molecular dysregulations in this system may be specific for different stages of addiction cycle and neurocircuitries involved and therefore may differentially contribute to the initiation and maintenance of addiction. Here we evaluated whether the EOS is altered in brain areas involved in cognitive control of addiction including the dorsolateral prefrontal cortex (dl-PFC), orbitofrontal cortex (OFC) and hippocampus in human alcohol-dependent subjects. Levels of EOS mRNAs were measured by quantitative reverse transcription-polymerase chain reaction (qRT-PCR), and levels of dynorphins by radioimmunoassay (RIA) in post-mortem specimens obtained from 14 alcoholics and 14 controls. Prodynorphin mRNA and dynorphins in dl-PFC, κ-opioid receptor mRNA in OFC and dynorphins in hippocampus were up-regulated in alcoholics. No significant changes in expression of proenkephalin, and µ- and δ-opioid receptors were evident; pro-opiomelanocortin mRNA levels were below the detection limit. Activation of the κ-opioid receptor by up-regulated dynorphins in alcoholics may underlie in part neurocognitive dysfunctions relevant for addiction and disrupted inhibitory control.
Collapse
Affiliation(s)
- Igor Bazov
- Division of Biological Research on Drug Dependence, Department of Pharmaceutical Biosciences, Uppsala University, Sweden.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Walker BM, Valdez GR, McLaughlin JP, Bakalkin G. Targeting dynorphin/kappa opioid receptor systems to treat alcohol abuse and dependence. Alcohol 2012; 46:359-70. [PMID: 22459870 DOI: 10.1016/j.alcohol.2011.10.006] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 10/26/2011] [Accepted: 10/28/2011] [Indexed: 10/28/2022]
Abstract
This review represents the focus of a symposium that was presented at the "Alcoholism and Stress: A Framework for Future Treatment Strategies" conference in Volterra, Italy on May 3-6, 2011 and organized/chaired by Dr. Brendan M. Walker. The primary goal of the symposium was to evaluate and disseminate contemporary findings regarding the emerging role of kappa-opioid receptors (KORs) and their endogenous ligands dynorphins (DYNs) in the regulation of escalated alcohol consumption, negative affect and cognitive dysfunction associated with alcohol dependence, as well as DYN/KOR mediation of the effects of chronic stress on alcohol reward and seeking behaviors. Dr. Glenn Valdez described a role for KORs in the anxiogenic effects of alcohol withdrawal. Dr. Jay McLaughlin focused on the role of KORs in repeated stress-induced potentiation of alcohol reward and increased alcohol consumption. Dr. Brendan Walker presented data characterizing the effects of KOR antagonism within the extended amygdala on withdrawal-induced escalation of alcohol self-administration in dependent animals. Dr. Georgy Bakalkin concluded with data indicative of altered DYNs and KORs in the prefrontal cortex of alcohol dependent humans that could underlie diminished cognitive performance. Collectively, the data presented within this symposium identified the multifaceted contribution of KORs to the characteristics of acute and chronic alcohol-induced behavioral dysregulation and provided a foundation for the development of pharmacotherapeutic strategies to treat certain aspects of alcohol use disorders.
Collapse
|
50
|
Manzardo AM, Henkhaus RS, Butler MG. Global DNA promoter methylation in frontal cortex of alcoholics and controls. Gene 2012; 498:5-12. [PMID: 22353363 DOI: 10.1016/j.gene.2012.01.096] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 01/27/2012] [Accepted: 01/30/2012] [Indexed: 10/28/2022]
Abstract
To determine if ethanol consumption and alcoholism cause global DNA methylation disturbances, we examined alcoholics and controls using methylation specific microarrays to detect all annotated gene and non-coding microRNA promoters and their CpG islands. DNA was isolated and immunoprecipitated from the frontal cortex of 10 alcoholics and 10 age and gender-matched controls then labeled prior to co-hybridization. A modified Kolmogorov-Smirnov test was used to predict differentially enriched regions (peaks) from log-ratio estimates of amplified vs input DNA. More than 180,000 targets were identified for each subject which correlated with >30,000 distinct, integrated peaks or high probability methylation loci. Peaks were mapped to regions near 17,810 separate annotated genes per subject representing hypothetical methylation targets. No global methylation differences were observed between the two subject groups with 80% genetic overlap, but extreme methylation was observed in both groups at specific loci corresponding with known methylated genes (e.g., H19) and potentially other genes of unknown methylation status. Methylation density patterns targeting CpG islands visually correlated with recognized chromosome banding. Our study provides insight into global epigenetic regulation in the human brain in relationship to controls and potentially novel targets for hypothesis generation and follow-up studies of alcoholism.
Collapse
Affiliation(s)
- A M Manzardo
- Department of Psychiatry and Behavioral Sciences, University of Kansas School of Medicine, Kansas City, KS 66160, USA.
| | | | | |
Collapse
|