1
|
Yao Y, Hong Q, Ding S, Cui J, Li W, Zhang J, Sun Y, Yu Y, Yu M, Zhang C, Chen L, Jiang J, Hu Y. An umbrella review of meta-analyses on the effects of microbial therapy in metabolic dysfunction-associated steatotic liver disease. Clin Nutr 2025; 47:1-13. [PMID: 39978229 DOI: 10.1016/j.clnu.2025.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/09/2024] [Accepted: 02/04/2025] [Indexed: 02/22/2025]
Abstract
BACKGROUND Current pharmacological treatments for metabolic dysfunction-associated steatotic liver disease (MASLD) are often accompanied by adverse side effects. Consequently, probiotics, prebiotics, and synbiotics, which are bioactive compounds from fermented foods and offer fewer side effects, have garnered significant attention as alternative therapeutic strategies. OBJECTIVE This study aims to assess the efficacy of microbial therapies-probiotics, prebiotics, and synbiotics-in managing MASLD and to identify the optimal treatment modality for various clinical indicators through a comprehensive umbrella review of meta-analyses. METHODS A thorough literature search was conducted across PubMed, Web of Science, EMBASE, Cochrane Library, and Scopus to identify 23 meta-analyses over 18,999 MASLD patients as of November 2024. RESULTS The findings indicate that microbial treatments positively influence levels of total cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), alanine aminotransferase (ALT), aspartate aminotransferase (AST), gamma-glutamyl transferase (GGT), homeostasis model assessment of insulin resistance (HOMA-IR), insulin, tumour necrosis factor-alpha (TNF-α), C-reactive protein (CRP), and body mass index (BMI) in MASLD patients. Notably, probiotics were most effective in reducing TC, ALT, AST, GGT, insulin, TNF-α, and BMI; prebiotics were most effective in reducing TG; and synbiotics were most effective in reducing LDL-C, HOMA-IR, and CRP. CONCLUSION Our study provides robust evidence for microbial treatments of MASLD, enabling targeted interventions for different indicators.
Collapse
Affiliation(s)
- Yuanyue Yao
- College of Biological and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Qing Hong
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, 200436, China
| | - Siqi Ding
- College of Biological and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Jie Cui
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Wenhui Li
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Jian Zhang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Ye Sun
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Yiyang Yu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Mingzhou Yu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Chengcheng Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122, Wuxi, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Lianmin Chen
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210000, China; Nanjing Medical University, Nanjing, 21100, China
| | - Jinchi Jiang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China.
| | - Yonghong Hu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| |
Collapse
|
2
|
Durazzo M, Ferro A, Navarro-Tableros VM, Gaido A, Fornengo P, Altruda F, Romagnoli R, Moestrup SK, Calvo PL, Fagoonee S. Current Treatment Regimens and Promising Molecular Therapies for Chronic Hepatobiliary Diseases. Biomolecules 2025; 15:121. [PMID: 39858515 PMCID: PMC11763965 DOI: 10.3390/biom15010121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/06/2025] [Accepted: 01/11/2025] [Indexed: 01/27/2025] Open
Abstract
Chronic hepatobiliary damage progressively leads to fibrosis, which may evolve into cirrhosis and/or hepatocellular carcinoma. The fight against the increasing incidence of liver-related morbidity and mortality is challenged by a lack of clinically validated early-stage biomarkers and the limited availability of effective anti-fibrotic therapies. Current research is focused on uncovering the pathogenetic mechanisms that drive liver fibrosis. Drugs targeting molecular pathways involved in chronic hepatobiliary diseases, such as inflammation, hepatic stellate cell activation and proliferation, and extracellular matrix production, are being developed. Etiology-specific treatments, such as those for hepatitis B and C viruses, are already in clinical use, and efforts to develop new, targeted therapies for other chronic hepatobiliary diseases are ongoing. In this review, we highlight the major molecular changes occurring in patients affected by metabolic dysfunction-associated steatotic liver disease, viral hepatitis (Delta virus), and autoimmune chronic liver diseases (autoimmune hepatitis, primary biliary cholangitis, and primary sclerosing cholangitis). Further, we describe how this knowledge is linked to current molecular therapies as well as ongoing preclinical and clinical research on novel targeting strategies, including nucleic acid-, mesenchymal stromal/stem cell-, and extracellular vesicle-based options. Much clinical development is obviously still missing, but the plethora of promising potential treatment strategies in chronic hepatobiliary diseases holds promise for a future reversal of the current increase in morbidity and mortality in this group of patients.
Collapse
Affiliation(s)
- Marilena Durazzo
- Department of Medical Sciences, University of Turin, C.so A.M. Dogliotti 14, 10126 Turin, Italy; (M.D.); (A.F.); (A.G.); (P.F.)
| | - Arianna Ferro
- Department of Medical Sciences, University of Turin, C.so A.M. Dogliotti 14, 10126 Turin, Italy; (M.D.); (A.F.); (A.G.); (P.F.)
| | - Victor Manuel Navarro-Tableros
- 2i3T, Società per la Gestione dell’Incubatore di Imprese e per il Trasferimento Tecnologico, University of Turin, 10126 Turin, Italy;
| | - Andrea Gaido
- Department of Medical Sciences, University of Turin, C.so A.M. Dogliotti 14, 10126 Turin, Italy; (M.D.); (A.F.); (A.G.); (P.F.)
| | - Paolo Fornengo
- Department of Medical Sciences, University of Turin, C.so A.M. Dogliotti 14, 10126 Turin, Italy; (M.D.); (A.F.); (A.G.); (P.F.)
| | - Fiorella Altruda
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Centre “Guido Tarone”, University of Turin, 10126 Turin, Italy;
| | - Renato Romagnoli
- General Surgery 2U-Liver Transplant Unit, Department of Surgical Sciences, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, University of Turin, Corso Bramante 88-90, 10126 Turin, Italy;
| | - Søren K. Moestrup
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark;
- Department of Clinical Biochemistry, Aarhus University Hospital, 8000 Aarhus, Denmark
| | - Pier Luigi Calvo
- Pediatric Gastroenterology Unit, Regina Margherita Children’s Hospital, Città della Salute e della Scienza, 10126 Turin, Italy;
| | - Sharmila Fagoonee
- Institute for Biostructure and Bioimaging, National Research Council, Molecular Biotechnology Centre “Guido Tarone”, 10126 Turin, Italy
| |
Collapse
|
3
|
Wang LJ, Sun JG, Chen SC, Sun YL, Zheng Y, Feng JC. The role of intestinal flora in metabolic dysfunction-associated steatotic liver disease and treatment strategies. Front Med (Lausanne) 2025; 11:1490929. [PMID: 39839647 PMCID: PMC11746088 DOI: 10.3389/fmed.2024.1490929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/28/2024] [Indexed: 01/23/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a common multi-factorial liver disease, and its incidence is gradually increasing worldwide. Many reports have revealed that intestinal flora plays a crucial role for the occurrence and development of MASLD, through mechanisms such as flora translocation, endogenous ethanol production, dysregulation of choline metabolism and bile acid, and endotoxemia. Here, we review the relationship between intestinal flora and MASLD, as well as interventions for MASLD, such as prebiotics, probiotics, synbiotics, and intestinal flora transplantation. Intervention strategies targeting the intestinal flora along with its metabolites may be new targets for preventing and treating MASLD.
Collapse
Affiliation(s)
- Li Jun Wang
- Department of Traditional Chinese Medicine, Binzhou Medical University, Yantai, China
| | - Jian Guang Sun
- The First Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shu Cheng Chen
- School of Nursing, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Yu Li Sun
- Department of Hepatology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yang Zheng
- Department of Acupuncture and Moxibustion, Zibo Hospital, Zibo, China
| | - Jian Chao Feng
- Department of Acupuncture and Moxibustion, Zibo Hospital, Zibo, China
| |
Collapse
|
4
|
Yaghmaei H, Bahanesteh A, Soltanipur M, Takaloo S, Rezaei M, Siadat SD. The Role of Gut Microbiota Modification in Nonalcoholic Fatty Liver Disease Treatment Strategies. Int J Hepatol 2024; 2024:4183880. [PMID: 39444759 PMCID: PMC11498984 DOI: 10.1155/2024/4183880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 08/25/2024] [Accepted: 10/05/2024] [Indexed: 10/25/2024] Open
Abstract
One of the most common chronic liver diseases is nonalcoholic fatty liver disease (NAFLD), which affects many people around the world. Gut microbiota (GM) dysbiosis seems to be an influential factor in the pathophysiology of NAFLD because changes in GM lead to fundamental changes in host metabolism. Therefore, the study of the effect of dysbiosis on the pathogenicity of NAFLD is important. European clinical guidelines state that the best advice for people with NAFLD is to lose weight and improve their lifestyle, but only 40% of people can achieve this goal. Accordingly, it is necessary to provide new treatment approaches for prevention and treatment. In addition to dietary interventions and lifestyle modifications, GM modification-based therapies are of interest. These therapies include probiotics, synbiotics, fecal microbiota transplantation (FMT), and next-generation probiotics. All of these treatments have had promising results in animal studies, and it can be imagined that acceptable results will be obtained in human studies as well. However, further investigations are required to generalize the outcomes of animal studies to humans.
Collapse
Affiliation(s)
- Hessam Yaghmaei
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| | | | - Masood Soltanipur
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
- Cardiovascular Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sobhan Takaloo
- Biomedical Engineering Department, Hamedan University of Technology, Hamedan, Iran
| | - Mahdi Rezaei
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
- Cardiovascular Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Davar Siadat
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
5
|
Musazadeh V, Assadian K, Rajabi F, Faghfouri AH, Soleymani Y, Kavyani Z, Najafiyan B. The effect of synbiotics on liver enzymes, obesity indices, blood pressure, lipid profile, and inflammation in patients with non-alcoholic fatty liver: A systematic review and meta-analysis of randomized controlled trials. Pharmacol Res 2024; 208:107398. [PMID: 39241935 DOI: 10.1016/j.phrs.2024.107398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/30/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024]
Abstract
BACKGROUND Patients with non-alcoholic fatty liver disease (NAFLD) benefit from using synbiotics. However, findings from existing trials remain contentious. Therefore, this meta-analysis evaluated the effects of synbiotics on liver enzymes, blood pressure, inflammation, and lipid profiles in patients with NAFLD. METHODS We searched PubMed, Embase, Cochrane, Scopus, and Web of Science for randomized controlled trials (RCTs) regarding synbiotics supplementation in patients with NAFLD. RESULTS The meta-analysis revealed that synbiotics supplementation significantly improved liver enzymes (AST, WMD: -9.12 IU/L; 95 % CI: -13.19 to -5.05; ALT, WMD: -8.53 IU/L; 95 % CI: -15.07 to -1.99; GGT, WMD: -10.42 IU/L; 95 % CI: -15.19 to -5.65), lipid profile (TC, WMD: -7.74 mg/dL; 95 % CI: -12.56 to -2.92), obesity indices (body weight, WMD: -1.95 kg; 95 % CI: -3.69 to -0.22; WC, WMD: -1.40 cm; 95 % CI: -2.71 to -0.10), systolic blood pressure (SBP, WMD: -6.00 mmHg; 95 % CI: -11.52 to -0.49), and inflammatory markers (CRP, WMD: -0.69 mg/L; 95 % CI: -1.17 to -0.21; TNF-α, WMD: -14.01 pg/mL; 95 % CI: -21.81 to -6.20). CONCLUSION Overall, supplementation with synbiotics positively improved liver enzymes, obesity indices, and inflammatory cytokines in patients with NAFLD.
Collapse
Affiliation(s)
- Vali Musazadeh
- Student Research Committee, School of Public Health, Iran University of Medical Sciences, Tehran, Iran; Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | | | - Fatemeh Rajabi
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 14115-154, Iran
| | - Amir Hossein Faghfouri
- Maternal and Childhood Obesity Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Yosra Soleymani
- Department of Nursing, Islamic Azad University of Hamedan, Iran
| | - Zeynab Kavyani
- Department of Clinical Nutrition, Faculty of Nutrition Sciences and Food Industries, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Behnam Najafiyan
- Pharmaceutical Sciences Research Center, Faculty of pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
6
|
Kleerebezem M, Führen J. Synergistic vs. complementary synbiotics: the complexity of discriminating synbiotic concepts using a Lactiplantibacillus plantarum exemplary study. MICROBIOME RESEARCH REPORTS 2024; 3:46. [PMID: 39741951 PMCID: PMC11684985 DOI: 10.20517/mrr.2024.48] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/20/2024] [Accepted: 08/27/2024] [Indexed: 01/03/2025]
Abstract
Synbiotics are defined as "a mixture comprising live microorganisms and substrate(s) selectively utilized by host microorganisms that confers a health benefit on the host". The definition discriminates between synergistic and complementary synbiotics. Synergistic synbiotics involve a direct interaction between the substrate and co-administered microbe(s), while complementary synbiotics act through independent mechanisms. Here, we evaluate the complexity of discrimination between these two synbiotic concepts using an exemplary study performed with a panel of Lactiplantibacillus plantarum (L. plantarum) strains to identify strain-specific synergistic synbiotics that eventually turned out to work via a complementary synbiotic mechanism. This study highlights that assessing the in situ selectivity of synergistic synbiotics in the intestinal tract is challenging due to the confounding effects of the substrate ingredient on the endogenous microbiome, thereby raising doubts about the added value of distinguishing between synergistic and complementary concepts in synbiotics.
Collapse
Affiliation(s)
- Michiel Kleerebezem
- Department of Animal Sciences, Host Microbe Interactomics Group, Wageningen university and Research, Wageningen 6708 WD, the Netherlands
| | - Jori Führen
- Laboratory of Food Microbiology, Wageningen university and Research, Wageningen 6708 WG, the Netherlands
| |
Collapse
|
7
|
Saenz E, Montagut NE, Wang B, Stein-Thöringer C, Wang K, Weng H, Ebert M, Schneider KM, Li L, Teufel A. Manipulating the Gut Microbiome to Alleviate Steatotic Liver Disease: Current Progress and Challenges. ENGINEERING 2024; 40:51-60. [DOI: 10.1016/j.eng.2024.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
8
|
Serbis A, Polyzos SA, Paschou SA, Siomou E, Kiortsis DN. Diet, exercise, and supplements: what is their role in the management of the metabolic dysfunction-associated steatotic liver disease in children? Endocrine 2024; 85:988-1006. [PMID: 38519764 DOI: 10.1007/s12020-024-03783-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 03/13/2024] [Indexed: 03/25/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), previously known as nonalcoholic fatty liver disease (NAFLD), is the main cause of chronic liver disease in children and adolescents. Indeed, epidemiological studies have shown that MASLD affects up to 40% of children with obesity. Despite the recent approval of medications that target weight loss in adolescents that could have benefits on pediatric MASLD, lifestyle interventions, such as diet and exercise, remain the mainstay of our therapeutic approach. More specifically, studies on diet alone have focused on the possible role of carbohydrate or fat restriction, albeit without a definite answer on the best approach. Weight loss after dietary intervention in children with obesity and MASLD has a beneficial effect, regardless of the diet used. In relation to the role of exercise in MASLD reversal, indirect evidence comes from studies showing that a sedentary lifestyle leading to poor fitness, and low muscle mass is associated with MASLD. However, research on the direct effect of exercise on MASLD in children is scarce. A combination of diet and exercise seems to be beneficial with several studies showing improvement in surrogate markers of MASLD, such as serum alanine aminotransferase and hepatic fat fraction, the latter evaluated with imaging studies. Several dietary supplements, such as vitamin E, probiotics, and omega-3 fatty acid supplements have also been studied in children and adolescents with MASLD, but with equivocal results. This review aims to critically present available data on the effects of lifestyle interventions, including diet, exercise, and dietary supplements, on pediatric MASLD, thus suggesting a frame for future research that could enhance our knowledge on pediatric MASLD management and optimize clinicians' approach to this vexing medical condition.
Collapse
Affiliation(s)
- Anastasios Serbis
- Department of Pediatrics, School of Medicine, University of Ioannina, Ioannina, Greece.
| | - Stergios A Polyzos
- First Laboratory of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Stavroula A Paschou
- Endocrine Unit and Diabetes Center, Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Ekaterini Siomou
- Department of Pediatrics, School of Medicine, University of Ioannina, Ioannina, Greece
| | - Dimitrios N Kiortsis
- Laboratory of Physiology, Medical School, University of Ioannina, Ioannina, Greece
| |
Collapse
|
9
|
Pan Y, Yang Y, Wu J, Zhou H, Yang C. Efficacy of probiotics, prebiotics, and synbiotics on liver enzymes, lipid profiles, and inflammation in patients with non-alcoholic fatty liver disease: a systematic review and meta-analysis of randomized controlled trials. BMC Gastroenterol 2024; 24:283. [PMID: 39174901 PMCID: PMC11342484 DOI: 10.1186/s12876-024-03356-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 08/06/2024] [Indexed: 08/24/2024] Open
Abstract
BACKGROUND There is a contradiction in the use of microbiota-therapies, including probiotics, prebiotics, and synbiotics, to improve the condition of patients with nonalcoholic fatty liver disease (NAFLD). The aim of this review was to evaluate the effect of microbiota-therapy on liver injury, inflammation, and lipid levels in individuals with NAFLD. METHODS Using Pubmed, Embase, Cochrane Library, and Web of Science databases were searched for articles on the use of prebiotic, probiotic, or synbiotic for the treatment of patients with NAFLD up to March 2024. RESULTS Thirty-four studies involving 12,682 individuals were included. Meta-analysis indicated that probiotic, prebiotic, and synbiotic supplementation significantly improved liver injury (hepatic fibrosis, SMD = -0.31; 95% CI: -0.53, -0.09; aspartate aminotransferase, SMD = -0.35; 95% CI: -0.55, -0.15; alanine aminotransferase, SMD = -0.48; 95% CI: -0.71, -0.25; alkaline phosphatase, SMD = -0.81; 95% CI: -1.55, -0.08), lipid profiles (triglycerides, SMD = -0.22; 95% CI: -0.43, -0.02), and inflammatory factors (high-density lipoprotein, SMD = -0.47; 95% CI: -0.88, -0.06; tumour necrosis factor alpha, SMD = -0.86 95% CI: -1.56, -0.56). CONCLUSION Overall, supplementation with probiotic, prebiotic, or synbiotic had a positive effect on reducing liver enzymes, lipid profiles, and inflammatory cytokines in patients with NAFLD.
Collapse
Affiliation(s)
- Youwen Pan
- Nephrology Department, Lai'an County People's Hospital, Chuzhou, 239000, China
| | - Yafang Yang
- Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, No. 1800, Lihu Avenue, Binhu District, Wuxi, 214000, China
| | - Jiale Wu
- Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, No. 1800, Lihu Avenue, Binhu District, Wuxi, 214000, China
| | - Haiteng Zhou
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Chao Yang
- Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, No. 1800, Lihu Avenue, Binhu District, Wuxi, 214000, China.
| |
Collapse
|
10
|
Maddineni G, Obulareddy SJ, Paladiya RD, Korsapati RR, Jain S, Jeanty H, Vikash F, Tummala NC, Shetty S, Ghazalgoo A, Mahapatro A, Polana V, Patel D. The role of gut microbiota augmentation in managing non-alcoholic fatty liver disease: an in-depth umbrella review of meta-analyses with grade assessment. Ann Med Surg (Lond) 2024; 86:4714-4731. [PMID: 39118769 PMCID: PMC11305784 DOI: 10.1097/ms9.0000000000002276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/03/2024] [Indexed: 08/10/2024] Open
Abstract
Background and aim Currently, there are no authorized medications specifically for non-alcoholic fatty liver disease (NAFLD) treatment. Studies indicate that changes in gut microbiota can disturb intestinal balance and impair the immune system and metabolism, thereby elevating the risk of developing and exacerbating NAFLD. Despite some debate, the potential benefits of microbial therapies in managing NAFLD have been shown. Methods A systematic search was undertaken to identify meta-analyses of randomized controlled trials that explored the effects of microbial therapy on the NAFLD population. The goal was to synthesize the existing evidence-based knowledge in this field. Results The results revealed that probiotics played a significant role in various aspects, including a reduction in liver stiffness (MD: -0.38, 95% CI: [-0.49, -0.26]), hepatic steatosis (OR: 4.87, 95% CI: [1.85, 12.79]), decrease in body mass index (MD: -1.46, 95% CI: [-2.43, -0.48]), diminished waist circumference (MD: -1.81, 95% CI: [-3.18, -0.43]), lowered alanine aminotransferase levels (MD: -13.40, 95% CI: [-17.02, -9.77]), decreased aspartate aminotransferase levels (MD: -13.54, 95% CI: [-17.85, -9.22]), lowered total cholesterol levels (MD: -15.38, 95% CI: [-26.49, -4.26]), decreased fasting plasma glucose levels (MD: -4.98, 95% CI: [-9.94, -0.01]), reduced fasting insulin (MD: -1.32, 95% CI: [-2.42, -0.21]), and a decline in homeostatic model assessment of insulin resistance (MD: -0.42, 95% CI: [-0.72, -0.11]) (P<0.05). Conclusion Overall, the results demonstrated that gut microbiota interventions could ameliorate a wide range of indicators including glycemic profile, dyslipidemia, anthropometric indices, and liver injury, allowing them to be considered a promising treatment strategy.
Collapse
Affiliation(s)
| | | | | | | | - Shika Jain
- MVJ Medical College and Research Hospital, Bengaluru, Karnataka, India
| | | | - Fnu Vikash
- Jacobi Medical Center, Albert Einstein College of Medicine, Bronx
| | - Nayanika C. Tummala
- Gitam Institute of Medical Sciences and Research, Visakhapatnam, Andhra Pradesh
| | | | - Arezoo Ghazalgoo
- Student Research Committee, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | | | | | - Dhruvan Patel
- Drexel University College of Medicine, Philadelphia, Pennsylvania, PA
| |
Collapse
|
11
|
Chu NHS, Chow E, Chan JCN. The Therapeutic Potential of the Specific Intestinal Microbiome (SIM) Diet on Metabolic Diseases. BIOLOGY 2024; 13:498. [PMID: 39056692 PMCID: PMC11273990 DOI: 10.3390/biology13070498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024]
Abstract
Exploring the intricate crosstalk between dietary prebiotics and the specific intestinal microbiome (SIM) is intriguing in explaining the mechanisms of current successful dietary interventions, including the Mediterranean diet and high-fiber diet. This knowledge forms a robust basis for developing a new natural food therapy. The SIM diet can be measured and evaluated to establish a reliable basis for the management of metabolic diseases, such as diabetes, metabolic (dysfunction)-associated fatty liver disease (MAFLD), obesity, and metabolic cardiovascular disease. This review aims to delve into the existing body of research to shed light on the promising developments of possible dietary prebiotics in this field and explore the implications for clinical practice. The exciting part is the crosstalk of diet, microbiota, and gut-organ interactions facilitated by producing short-chain fatty acids, bile acids, and subsequent metabolite production. These metabolic-related microorganisms include Butyricicoccus, Akkermansia, and Phascolarctobacterium. The SIM diet, rather than supplementation, holds the promise of significant health consequences via the prolonged reaction with the gut microbiome. Most importantly, the literature consistently reports no adverse effects, providing a strong foundation for the safety of this dietary therapy.
Collapse
Affiliation(s)
- Natural H. S. Chu
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China; (E.C.); (J.C.N.C.)
| | - Elaine Chow
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China; (E.C.); (J.C.N.C.)
| | - Juliana C. N. Chan
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China; (E.C.); (J.C.N.C.)
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| |
Collapse
|
12
|
Leca BM, Lagojda L, Kite C, Karteris E, Kassi E, Randeva HS, Kyrou I. Maternal obesity and metabolic (dysfunction) associated fatty liver disease in pregnancy: a comprehensive narrative review. Expert Rev Endocrinol Metab 2024; 19:335-348. [PMID: 38860684 DOI: 10.1080/17446651.2024.2365791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 06/05/2024] [Indexed: 06/12/2024]
Abstract
INTRODUCTION Obesity and metabolic-associated fatty liver disease (MAFLD) during pregnancy constitute significant problems for routine antenatal care, with increasing prevalence globally. Similar to obesity, MAFLD is associated with a higher risk for maternal complications (e.g. pre-eclampsia and gestational diabetes) and long-term adverse health outcomes for the offspring. However, MAFLD during pregnancy is often under-recognized, with limited management/treatment options. AREAS COVERED PubMed/MEDLINE, EMBASE, and Scopus were searched based on a search strategy for obesity and/or MAFLD in pregnancy to identify relevant papers up to 2024. This review summarizes the pertinent evidence on the relationship between maternal obesity and MAFLD during pregnancy. Key mechanisms implicated in the underlying pathophysiology linking obesity and MAFLD during pregnancy (e.g. insulin resistance and dysregulated adipokine secretion) are highlighted. Moreover, a diagnostic approach for MAFLD diagnosis during pregnancy and its complications are presented. Finally, promising relevant areas for future research are covered. EXPERT OPINION Research progress regarding maternal obesity, MAFLD, and their impact on maternal and fetal/offspring health is expected to improve the relevant diagnostic methods and lead to novel treatments. Thus, routine practice could apply more personalized management strategies, incorporating individualized algorithms with genetic and/or multi-biomarker profiling to guide prevention, early diagnosis, and treatment.
Collapse
Affiliation(s)
- Bianca M Leca
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
- Warwick Medical School, University of Warwick, Coventry, UK
| | - Lukasz Lagojda
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
- Clinical Evidence-Based Information Service (CEBIS), University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
| | - Chris Kite
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
- School of Health and Society, Faculty of Education, Health and Wellbeing, University of Wolverhampton, Wolverhampton, UK
- Centre for Sport, Exercise and Life Sciences, Research Institute for Health & Wellbeing, Coventry University, Coventry, UK
- Chester Medical School, University of Chester, Shrewsbury, UK
| | - Emmanouil Karteris
- College of Health, Medicine and Life Sciences, Division of Biosciences, Brunel University London, Uxbridge, UK
| | - Eva Kassi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Endocrine Unit, 1st Department of Propaedeutic Internal Medicine, Laiko Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Harpal S Randeva
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
- Warwick Medical School, University of Warwick, Coventry, UK
- Centre for Sport, Exercise and Life Sciences, Research Institute for Health & Wellbeing, Coventry University, Coventry, UK
- Institute of Cardiometabolic Medicine, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
| | - Ioannis Kyrou
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
- Warwick Medical School, University of Warwick, Coventry, UK
- Centre for Sport, Exercise and Life Sciences, Research Institute for Health & Wellbeing, Coventry University, Coventry, UK
- Institute of Cardiometabolic Medicine, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
- Aston Medical School, College of Health and Life Sciences, Aston University, Birmingham, UK
- College of Health, Psychology and Social Care, University of Derby, Derby, UK
- Laboratory of Dietetics and Quality of Life, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, Athens, Greece
| |
Collapse
|
13
|
Amini-Salehi E, Hassanipour S, Keivanlou MH, Shahdkar M, Orang Goorabzarmakhi M, Vakilpour A, Joukar F, Hashemi M, Sattari N, Javid M, Mansour-Ghanaei F. The impact of gut microbiome-targeted therapy on liver enzymes in patients with nonalcoholic fatty liver disease: an umbrella meta-analysis. Nutr Rev 2024; 82:815-830. [PMID: 37550264 DOI: 10.1093/nutrit/nuad086] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023] Open
Abstract
CONTEXT Nonalcoholic fatty liver disease (NAFLD) is considered the leading cause of chronic liver disease worldwide. To date, no confirmed medication is available for the treatment of NAFLD. Previous studies showed the promising effects of gut microbiome-targeted therapies; however, the results were controversial and the strength of the evidence and their clinical significance remained unclear. OBJECTIVES This umbrella study summarizes the results of meta-analyses investigating the effects of probiotics, prebiotics, and synbiotics on liver enzymes in the NAFLD population. DATA SOURCE A comprehensive search of the PubMed, Scopus, Web of Science, and Cochrane Library databases was done up to December 20, 2022, to find meta-analyses on randomized control trials reporting the effects of gut microbial therapy on patients with NAFLD. DATA EXTRACTION Two independent investigators extracted data on the characteristics of meta-analyses, and any discrepancies were resolved by a third researcher. The AMSTAR2 checklist was used for evaluating the quality of studies. DATA ANALYSIS A final total of 15 studies were included in the analysis. Results showed that microbiome-targeted therapies could significantly reduce levels of alanine aminotransferase (ALT; effect size [ES], -10.21; 95% confidence interval [CI], -13.29, -7.14; P < 0.001), aspartate aminotransferase (AST; ES, -8.86; 95%CI, -11.39, -6.32; P < 0.001), and γ-glutamyltransferase (ES, -5.56; 95%CI, -7.92, -3.31; P < 0.001) in patients with NAFLD. Results of subgroup analysis based on intervention showed probiotics could significantly reduce levels of AST (ES, -8.69; 95%CI, -11.01, -6.37; P < 0.001) and ALT (ES, -9.82; 95%CI, -11.59, -8.05; P < 0.001). Synbiotics could significantly reduce levels of AST (ES, -11.40; 95%CI, -13.91, -8.88; P < 0.001) and ALT (ES, -11.87; 95%CI, -13.80, -9.95; P < 0.001). Prebiotics had no significant effects on AST and ALT levels (ES, -2.96; 95%CI, -8.12, 2.18, P = 0.259; and ES, -4.69; 95%CI, -13.53, 4.15, P = 0.299, respectively). CONCLUSION Gut microbiome-targeted therapies could be a promising therapeutic approach in the improvement of hepatic damage in patients with NAFLD. However, more studies are needed to better determine the best bacterial strains, duration of treatment, and optimum dosage of gut microbiome-targeted therapies in the treatment of the NAFLD population. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration no. CRD42022346998.
Collapse
Affiliation(s)
- Ehsan Amini-Salehi
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Soheil Hassanipour
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | | | - Milad Shahdkar
- School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | | | - Azin Vakilpour
- School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Farahnaz Joukar
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Mohammad Hashemi
- Student Research Committee, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Nazila Sattari
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | | | - Fariborz Mansour-Ghanaei
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
14
|
Vakilpour A, Amini-Salehi E, Soltani Moghadam A, Keivanlou MH, Letafatkar N, Habibi A, Hashemi M, Eslami N, Zare R, Norouzi N, Delam H, Joukar F, Mansour-Ghanaei F, Hassanipour S, Samethadka Nayak S. The effects of gut microbiome manipulation on glycemic indices in patients with non-alcoholic fatty liver disease: a comprehensive umbrella review. Nutr Diabetes 2024; 14:25. [PMID: 38729941 PMCID: PMC11087547 DOI: 10.1038/s41387-024-00281-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 03/26/2024] [Accepted: 04/10/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is a significant risk factor for non-alcoholic fatty liver disease (NAFLD). Increased fasting blood sugar (FBS), fasting insulin (FI), and insulin resistance (HOMA-IR) are observed in patients with NAFLD. Gut microbial modulation using prebiotics, probiotics, and synbiotics has shown promise in NAFLD treatment. This meta-umbrella study aimed to investigate the effects of gut microbial modulation on glycemic indices in patients with NAFLD and discuss potential mechanisms of action. METHODS A systematic search was conducted in PubMed, Web of Science, Scopus, and Cochrane Library until March 2023 for meta-analyses evaluating the effects of probiotics, prebiotics, and synbiotics on patients with NAFLD. Random-effect models, sensitivity analysis, and subgroup analysis were employed. RESULTS Gut microbial therapy significantly decreased HOMA-IR (ES: -0.41; 95%CI: -0.52, -0.31; P < 0.001) and FI (ES: -0.59; 95%CI: -0.77, -0.41; P < 0.001). However, no significant effect was observed on FBS (ES: -0.17; 95%CI: -0.36, 0.02; P = 0.082). Subgroup analysis revealed prebiotics had the most potent effect on HOMA-IR, followed by probiotics and synbiotics. For FI, synbiotics had the most substantial effect, followed by prebiotics and probiotics. CONCLUSION Probiotics, prebiotics, and synbiotics administration significantly reduced FI and HOMA-IR, but no significant effect was observed on FBS.
Collapse
Affiliation(s)
| | - Ehsan Amini-Salehi
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | | | - Mohammad-Hossein Keivanlou
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
- Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Negin Letafatkar
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
- Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Arman Habibi
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
- Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Mohammad Hashemi
- Student Research Committee, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Negar Eslami
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Reza Zare
- Student Research Committee, Larestan University of Medical Sciences, Larestan, Iran
| | - Naeim Norouzi
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Hamed Delam
- Student Research Committee, Larestan University of Medical Sciences, Larestan, Iran
| | - Farahnaz Joukar
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Fariborz Mansour-Ghanaei
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Soheil Hassanipour
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran.
| | | |
Collapse
|
15
|
Amini-Salehi E, Samethadka Nayak S, Maddineni G, Mahapatro A, Keivanlou MH, Soltani Moghadam S, Vakilpour A, Aleali MS, Joukar F, Hashemi M, Norouzi N, Bakhshi A, Bahrampourian A, Mansour-Ghanaei F, Hassanipour S. Can modulation of gut microbiota affect anthropometric indices in patients with non-alcoholic fatty liver disease? An umbrella meta-analysis of randomized controlled trials. Ann Med Surg (Lond) 2024; 86:2900-2910. [PMID: 38694388 PMCID: PMC11060227 DOI: 10.1097/ms9.0000000000001740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/08/2024] [Indexed: 05/04/2024] Open
Abstract
Background and aim Modulating the gut microbiota population by administration of probiotics, prebiotics, and synbiotics has shown to have a variety of health benefits in different populations, particularly those with metabolic disorders. Although the promising effects of these compounds have been observed in the management of patients with non-alcoholic fatty liver disease (NAFLD), the exact effects and the mechanisms of action are yet to be understood. In the present study, we aimed to evaluate how gut microbiota modulation affects anthropometric indices of NAFLD patients to achieve a comprehensive summary of current evidence-based knowledge. Methods Two researchers independently searched international databases, including PubMed, Scopus, and Web of Science, from inception to June 2023. Meta-analysis studies that evaluated the effects of probiotics, prebiotics, and synbiotics on patients with NAFLD were entered into our umbrella review. The data regarding anthropometric indices, including body mass index, weight, waist circumference (WC), and waist-to-hip ratio (WHR), were extracted by the investigators. The authors used random effect model for conducting the meta-analysis. Subgroup analysis and sensitivity analysis were also performed. Results A total number of 13 studies were finally included in our study. Based on the final results, BMI was significantly decreased in NAFLD patients by modulation of gut microbiota [effect size (ES): -0.18, 05% CI: -0.25, -0.11, P<0.001]; however, no significant alteration was observed in weight and WC (ES: -1.72, 05% CI: -3.48, 0.03, P=0.055, and ES: -0.24, 05% CI: -0.75, 0.26, P=0.353, respectively). The results of subgroup analysis showed probiotics had the most substantial effect on decreasing BMI (ES: -0.77, 95% CI: -1.16, -0.38, P<0.001) followed by prebiotics (ES: -0.51, 95% CI: -0.76, -0.27, P<0.001) and synbiotics (ES: -0.12, 95% CI: -0.20, -0.04, P=0.001). Conclusion In conclusion, the present umbrella meta-analysis showed that although modulation of gut microbiota by administration of probiotics, prebiotics, and synbiotics had promising effects on BMI, no significant change was observed in the WC and weight of the patients. No sufficient data were available for other anthropometric indices including waist-to-hip ratio and waist-to-height ratio and future meta-analyses should be done in this regard.
Collapse
Affiliation(s)
- Ehsan Amini-Salehi
- Gastrointestinal and Liver Diseases Research Center
- Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | | | | | | | | | | | - Azin Vakilpour
- School of Medicine, Guilan University of Medical Sciences, Rasht
| | | | | | - Mohammad Hashemi
- Student Research Committee, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | | | | | | | | | | |
Collapse
|
16
|
Rasaei N, Heidari M, Esmaeili F, Khosravi S, Baeeri M, Tabatabaei-Malazy O, Emamgholipour S. The effects of prebiotic, probiotic or synbiotic supplementation on overweight/obesity indicators: an umbrella review of the trials' meta-analyses. Front Endocrinol (Lausanne) 2024; 15:1277921. [PMID: 38572479 PMCID: PMC10987746 DOI: 10.3389/fendo.2024.1277921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 02/27/2024] [Indexed: 04/05/2024] Open
Abstract
Background There is controversial data on the effects of prebiotic, probiotic, or synbiotic supplementations on overweight/obesity indicators. Thus, we aimed to clarify this role of biotics through an umbrella review of the trials' meta-analyses. Methods All meta-analyses of the clinical trials conducted on the impact of biotics on overweight/obesity indicators in general populations, pregnant women, and infants published until June 2023 in PubMed, Web of Sciences, Scopus, Embase, and Cochrane Library web databases included. The meta-analysis of observational and systematic review studies without meta-analysis were excluded. We reported the results by implementing the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) flowchart. The Assessment of Multiple Systematic Reviews-2 (AMSTAR2) and Grading of Recommendations Assessment, Development, and Evaluation (GRADE) systems were used to assess the methodological quality and quality of evidence. Results Overall, 97 meta-analysis studies were included. Most studies were conducted on the effect of probiotics in both genders. Consumption of prebiotic: 8-66 g/day, probiotic: 104 -1.35×1015 colony-forming unit (CFU)/day, and synbiotic: 106-1.5×1011 CFU/day and 0.5-300 g/day for 2 to 104 weeks showed a favorable effect on the overweight/obesity indicators. Moreover, an inverse association was observed between biotics consumption and overweight/obesity risk in adults in most of the studies. Biotics did not show any beneficial effect on weight and body mass index (BMI) in pregnant women by 6.6×105-1010 CFU/day of probiotics during 1-25 weeks and 1×109-112.5×109 CFU/capsule of synbiotics during 4-8 weeks. The effect of biotics on weight and BMI in infants is predominantly non-significant. Prebiotics and probiotics used in infancy were from 0.15 to 0.8 g/dL and 2×106-6×109 CFU/day for 2-24 weeks, respectively. Conclusion It seems biotics consumption can result in favorable impacts on some anthropometric indices of overweight/obesity (body weight, BMI, waist circumference) in the general population, without any significant effects on birth weight or weight gain during pregnancy and infancy. So, it is recommended to intake the biotics as complementary medications for reducing anthropometric indices of overweight/obese adults. However, more well-designed trials are needed to elucidate the anti-obesity effects of specific strains of probiotics.
Collapse
Affiliation(s)
- Niloufar Rasaei
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
- Network of Interdisciplinarity in Neonates and Infants (NINI), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mohammadreza Heidari
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Fataneh Esmaeili
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepehr Khosravi
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Baeeri
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Ozra Tabatabaei-Malazy
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Solaleh Emamgholipour
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Rodrigues SG, van der Merwe S, Krag A, Wiest R. Gut-liver axis: Pathophysiological concepts and medical perspective in chronic liver diseases. Semin Immunol 2024; 71:101859. [PMID: 38219459 DOI: 10.1016/j.smim.2023.101859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/11/2023] [Accepted: 12/04/2023] [Indexed: 01/16/2024]
Affiliation(s)
- Susana G Rodrigues
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Schalk van der Merwe
- Department of Gastroenterology and Hepatology, University hospital Gasthuisberg, University of Leuven, Belgium
| | - Aleksander Krag
- Institute of Clinical Research, University of Southern Denmark, Odense, Denmark; Centre for Liver Research, Department of Gastroenterology and Hepatology, Odense University Hospital, Odense, Denmark, University of Southern Denmark, Odense, Denmark
| | - Reiner Wiest
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland.
| |
Collapse
|
18
|
Kuraji R, Ye C, Zhao C, Gao L, Martinez A, Miyashita Y, Radaic A, Kamarajan P, Le C, Zhan L, Range H, Sunohara M, Numabe Y, Kapila YL. Nisin lantibiotic prevents NAFLD liver steatosis and mitochondrial oxidative stress following periodontal disease by abrogating oral, gut and liver dysbiosis. NPJ Biofilms Microbiomes 2024; 10:3. [PMID: 38233485 PMCID: PMC10794237 DOI: 10.1038/s41522-024-00476-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 01/02/2024] [Indexed: 01/19/2024] Open
Abstract
Oral microbiome dysbiosis mediates chronic periodontal disease, gut microbial dysbiosis, and mucosal barrier disfunction that leads to steatohepatitis via the enterohepatic circulation. Improving this dysbiosis towards health may improve liver disease. Treatment with antibiotics and probiotics have been used to modulate the microbial, immunological, and clinical landscape of periodontal disease with some success. The aim of the present investigation was to evaluate the potential for nisin, an antimicrobial peptide produced by Lactococcus lactis, to counteract the periodontitis-associated gut dysbiosis and to modulate the glycolipid-metabolism and inflammation in the liver. Periodontal pathogens, namely Porphyromonas gingivalis, Treponema denticola, Tannerella forsythia and Fusobacterium nucleatum, were administrated topically onto the oral cavity to establish polymicrobial periodontal disease in mice. In the context of disease, nisin treatment significantly shifted the microbiome towards a new composition, commensurate with health while preventing the harmful inflammation in the small intestine concomitant with decreased villi structural integrity, and heightened hepatic exposure to bacteria and lipid and malondialdehyde accumulation in the liver. Validation with RNA Seq analyses, confirmed the significant infection-related alteration of several genes involved in mitochondrial dysregulation, oxidative phosphorylation, and metal/iron binding and their restitution following nisin treatment. In support of these in vivo findings indicating that periodontopathogens induce gastrointestinal and liver distant organ lesions, human autopsy specimens demonstrated a correlation between tooth loss and severity of liver disease. Nisin's ability to shift the gut and liver microbiome towards a new state commensurate with health while mitigating enteritis, represents a novel approach to treating NAFLD-steatohepatitis-associated periodontal disease.
Collapse
Affiliation(s)
- Ryutaro Kuraji
- Orofacial Sciences Department, School of Dentistry, University of California, San Francisco, San Francisco, CA, USA
- Department of Periodontology, The Nippon Dental University School of Life Dentistry at Tokyo, Tokyo, Japan
| | - Changchang Ye
- Orofacial Sciences Department, School of Dentistry, University of California, San Francisco, San Francisco, CA, USA
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontology, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Chuanjiang Zhao
- Orofacial Sciences Department, School of Dentistry, University of California, San Francisco, San Francisco, CA, USA
- Department of Periodontology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Li Gao
- Orofacial Sciences Department, School of Dentistry, University of California, San Francisco, San Francisco, CA, USA
- Department of Periodontology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - April Martinez
- Orofacial Sciences Department, School of Dentistry, University of California, San Francisco, San Francisco, CA, USA
| | - Yukihiro Miyashita
- Department of Periodontology, The Nippon Dental University School of Life Dentistry at Tokyo, Tokyo, Japan
| | - Allan Radaic
- Orofacial Sciences Department, School of Dentistry, University of California, San Francisco, San Francisco, CA, USA
- Sections of Biosystems and Function and Periodontics, School of Dentistry, University of California Los Angeles, Los Angeles, CA, USA
| | - Pachiyappan Kamarajan
- Orofacial Sciences Department, School of Dentistry, University of California, San Francisco, San Francisco, CA, USA
- Sections of Biosystems and Function and Periodontics, School of Dentistry, University of California Los Angeles, Los Angeles, CA, USA
| | - Charles Le
- Orofacial Sciences Department, School of Dentistry, University of California, San Francisco, San Francisco, CA, USA
| | - Ling Zhan
- Orofacial Sciences Department, School of Dentistry, University of California, San Francisco, San Francisco, CA, USA
| | - Helene Range
- Orofacial Sciences Department, School of Dentistry, University of California, San Francisco, San Francisco, CA, USA
- Department of Periodontology, University of Rennes, UFR of Odontology; Service d'Odontologie, CHU de Rennes, Rennes, France
- INSERM CHU Rennes, Institut NUMECAN (Nutrition Metabolisms and Cancer); CIC 1414, Rennes, France
| | - Masataka Sunohara
- Department of Anatomy, The Nippon Dental University School of Life Dentistry at Tokyo, Tokyo, Japan
| | - Yukihiro Numabe
- Department of Periodontology, The Nippon Dental University School of Life Dentistry at Tokyo, Tokyo, Japan
| | - Yvonne L Kapila
- Orofacial Sciences Department, School of Dentistry, University of California, San Francisco, San Francisco, CA, USA.
- Sections of Biosystems and Function and Periodontics, School of Dentistry, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
19
|
Ichikawa M, Okada H, Nakamoto N, Taniki N, Chu PS, Kanai T. The gut-liver axis in hepatobiliary diseases. Inflamm Regen 2024; 44:2. [PMID: 38191517 PMCID: PMC10773109 DOI: 10.1186/s41232-023-00315-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/17/2023] [Indexed: 01/10/2024] Open
Abstract
Recent advances in the analysis of intestinal bacteria have led to reports of variations in intestinal bacterial levels among hepatobiliary diseases. The mechanisms behind the changes in intestinal bacteria in various hepatobiliary diseases include the abnormal composition of intestinal bacteria, weakening of the intestinal barrier, and bacterial translocation outside the intestinal tract, along with their metabolites, but many aspects remain unresolved. Further research employing clinical studies and animal models is expected to clarify the direct relationship between intestinal bacteria and hepatobiliary diseases and to validate the utility of intestinal bacteria as a diagnostic biomarker and potential therapeutic target. This review summarizes the involvement of the microbiota in the pathogenesis of hepatobiliary diseases via the gut-liver axis.
Collapse
Affiliation(s)
- Masataka Ichikawa
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Shinanomachi, Tokyo, 1608582, Japan
| | - Haruka Okada
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Shinanomachi, Tokyo, 1608582, Japan
| | - Nobuhiro Nakamoto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Shinanomachi, Tokyo, 1608582, Japan.
| | - Nobuhito Taniki
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Shinanomachi, Tokyo, 1608582, Japan
| | - Po-Sung Chu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Shinanomachi, Tokyo, 1608582, Japan
| | - Takanori Kanai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Shinanomachi, Tokyo, 1608582, Japan.
| |
Collapse
|
20
|
Georgieva M, Xenodochidis C, Krasteva N. Old age as a risk factor for liver diseases: Modern therapeutic approaches. Exp Gerontol 2023; 184:112334. [PMID: 37977514 DOI: 10.1016/j.exger.2023.112334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/12/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023]
Abstract
Recent scientific interest has been directed towards age-related diseases, driven by the significant increase in global life expectancy and the growing population of individuals aged 65 and above. The ageing process encompasses various biological, physiological, environmental, psychological, behavioural, and social changes, leading to an augmented susceptibility to chronic illnesses. Cardiovascular, neurological, musculoskeletal, liver and oncological diseases are prevalent in the elderly. Moreover, ageing individuals demonstrate reduced regenerative capacity and decreased tolerance towards therapeutic interventions, including organ transplantation. Liver diseases, such as non-alcoholic fatty liver disease, alcoholic liver disease, hepatitis, fibrosis, and cirrhosis, have emerged as significant public health concerns. Paradoxically, these conditions remain underestimated despite their substantial global impact. Age-related factors are closely associated with the severity and unfavorable prognosis of various liver diseases, warranting further investigation to enhance clinical management and develop novel therapeutic strategies. This comprehensive review focuses specifically on age-related liver diseases, their treatment strategies, and contemporary practices. It provides a detailed account of the global burden, types, molecular mechanisms, and epigenetic alterations underlying these liver pathologies.
Collapse
Affiliation(s)
- Milena Georgieva
- Institute of Molecular Biology "Acad. Roumen Tsanev", Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria.
| | - Charilaos Xenodochidis
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Natalia Krasteva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria.
| |
Collapse
|
21
|
Pan H, Liu B, Luo X, Shen X, Sun J, Zhang A. Non-alcoholic fatty liver disease risk prediction model and health management strategies for older Chinese adults: a cross-sectional study. Lipids Health Dis 2023; 22:205. [PMID: 38007441 PMCID: PMC10675849 DOI: 10.1186/s12944-023-01966-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/08/2023] [Indexed: 11/27/2023] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is a common chronic liver condition that affects a quarter of the global adult population. To date, only a few NAFLD risk prediction models have been developed for Chinese older adults aged ≥ 60 years. This study presented the development of a risk prediction model for NAFLD in Chinese individuals aged ≥ 60 years and proposed personalised health interventions based on key risk factors to reduce NAFLD incidence among the population. METHODS A cross-sectional survey was carried out among 9,041 community residents in Shanghai. Three NAFLD risk prediction models (I, II, and III) were constructed using multivariate logistic regression analysis based on the least absolute shrinkage and selection operator regression analysis, and random forest model to select individual characteristics, respectively. To determine the optimal model, the three models' discrimination, calibration, clinical application, and prediction capability were evaluated using the receiver operating characteristic (ROC) curve, calibration plot, decision curve analysis, and net reclassification index (NRI), respectively. To evaluate the optimal model's effectiveness, the previously published NAFLD risk prediction models (Hepatic steatosis index [HSI] and ZJU index) were evaluated using the following five indicators: accuracy, precision, recall, F1-score, and balanced accuracy. A dynamic nomogram was constructed for the optimal model, and a Bayesian network model for predicting NAFLD risk in older adults was visually displayed using Netica software. RESULTS The area under the ROC curve of Models I, II, and III in the training dataset was 0.810, 0.826, and 0.825, respectively, and that of the testing data was 0.777, 0.797, and 0.790, respectively. No significant difference was found in the accuracy or NRI between the models; therefore, Model III with the fewest variables was determined as the optimal model. Compared with the HSI and ZJU index, Model III had the highest accuracy (0.716), precision (0.808), recall (0.605), F1 score (0.692), and balanced accuracy (0.723). The risk threshold for Model III was 20%-80%. Model III included body mass index, alanine aminotransferase level, triglyceride level, and lymphocyte count. CONCLUSIONS A dynamic nomogram and Bayesian network model were developed to identify NAFLD risk in older Chinese adults, providing personalized health management strategies and reducing NAFLD incidence.
Collapse
Affiliation(s)
- Hong Pan
- Department of Health Management, School of Public Health, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Baocheng Liu
- Shanghai Collaborative Innovation Centre of Health Service in Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xin Luo
- Department of Health Management, School of Public Health, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xinxin Shen
- School of Public Health, Shandong First Medical University, Shandong, China
| | - Jijia Sun
- Department of Mathematics and Physics, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - An Zhang
- Department of Health Management, School of Public Health, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
22
|
Mahapatro A, Bawna F, Kumar V, Daryagasht AA, Gupta S, Raghuma N, Moghdam SS, Kolla A, Mahapatra SS, Sattari N, Amini-Salehi E, Nayak SS. Anti-inflammatory effects of probiotics and synbiotics on patients with non-alcoholic fatty liver disease: An umbrella study on meta-analyses. Clin Nutr ESPEN 2023; 57:475-486. [PMID: 37739694 DOI: 10.1016/j.clnesp.2023.07.087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 07/28/2023] [Indexed: 09/24/2023]
Abstract
BACKGROUND AND AIM The impact of chronic low-grade inflammation in the development of non-alcoholic fatty liver disease (NAFLD) has been studied widely. Previous studies showed gut pathogens' effects on inflammation development in NAFLD patients; hence, hypothetically, gut microbial therapy by administration of probiotics, synbiotics, and prebiotics may alleviate inflammation in these individuals. Several studies were performed in this regard; however, conflicting results were obtained. In this study, we aimed to comprehensively evaluate the effects of gut microbial therapy on inflammatory markers in NAFLD patients in a meta-umbrella design. METHODS Two independent researchers investigated international databases, including PubMed, Web of Science, Scopus, and Cochrane Library, from inception until March 2023. Meta-analyses evaluating the impact of probiotics, synbiotics, or prebiotics on inflammatory markers of patients with NAFLD were eligible for our study. AMASTAR 2 checklist was used to evaluate the quality of included studies. Random effect model was performed for the analysis, and Egger's regression test was conducted to determine publication bias. RESULTS A total number of 12 studies were entered into our analysis. Our findings revealed that gut microbial therapy could significantly reduce serum C-reactive protein (CRP) levels among NAFLD patients (ES: -0.58; 95% CI: -0.73, -0.44, P < 0.001). In subgroup analysis, this reduction was observed with both probiotics (ES: -0.63; 95% CI: -0.81, -0.45, P < 0.001) and synbiotics (ES: -0.49; 95% CI: -0.74, -0.24, P < 0.001). In addition, gut microbial therapy could significantly decrease tumor necrosis factor-a (TNF-a) levels in NAFLD patients (ES: -0.48; 95% CI: -0.67 to -0.30, P < 0.001). In subgroup analysis, this decrease was observed with probiotics (ES: -0.32; 95% CI: -0.53, -0.11, P = 0.002) and synbiotics (ES: -0.96; 95% CI: -1.32, -0.60, P < 0.001). Not enough information was available for assessing prebiotics' impacts. CONCLUSION The results of this umbrella review suggest that probiotics and synbiotics have promising effects on inflammatory markers, including TNF-a and CRP; however, more research is needed regarding the effects of prebiotics. PROSPERO REGISTRATION CODE CRD42022346998.
Collapse
Affiliation(s)
| | - Fnu Bawna
- Dow University of Health Sciences, Karachi, Pakistan
| | | | | | - Siddharth Gupta
- Baptist Memorial Hospital, North Mississippi, Mississippi, USA
| | - Nakka Raghuma
- GSL Medical College and General Hospital, Rajamahendravaram, Andhra Pradesh, India
| | | | - Akshita Kolla
- SRM Medical College Hospital and Research Center, Chennai, India
| | | | - Nazila Sattari
- School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | | | - Sandeep S Nayak
- Department of Internal Medicine, Bridgeport Hospital, Bridgeport, USA
| |
Collapse
|
23
|
Cogorno L, Formisano E, Vignati A, Prigione A, Tramacere A, Borgarelli C, Sukkar SG, Pisciotta L. Non-alcoholic fatty liver disease: Dietary and nutraceutical approaches. LIVER RESEARCH 2023; 7:216-227. [PMID: 39958388 PMCID: PMC11791914 DOI: 10.1016/j.livres.2023.08.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/20/2023] [Accepted: 08/24/2023] [Indexed: 02/18/2025]
Abstract
Non-alcoholic fatty liver disease (NAFLD), defined as the presence of fat accumulation in imaging or histology in more than 5% of hepatocytes and exclusion of other causes for secondary hepatic fat accumulation, is one of the major causes of chronic liver disease worldwide. Metabolic syndrome is associated with an increased risk of progression from NAFLD to non-alcoholic steatohepatitis (NASH), fibrosis, and forthcoming liver failure. Also, genetic predisposition contributes to the risk of NAFLD development. This review explores the role of diets and nutraceuticals in delaying the development and the evolution of NAFLD to chronic liver disease. The Mediterranean diet, high-protein diet, low-carbohydrate/high-fat diet, high-carbohydrate/low-fat diet, and intermittent fasting are the dietary approaches investigated given the presence of relevant literature data. Moreover, this review focused on nutraceuticals with proven efficacy in ameliorating NAFLD and grouped them into four different categories: plant-based nutraceuticals (Ascophyllum nodosum and Fucus vesiculosus, Silymarin, Berberine, Curcumin, Resveratrol, Nigella sativa, Quercetin), vitamin-like substances (vitamin E, vitamin D, vitamin C, coenzyme Q10, inositol), fatty acids (omega-3), and microbiota-management tools (probiotics).
Collapse
Affiliation(s)
- Ludovica Cogorno
- Department of Experimental Medicine-Medical Pathophysiology, Food Science and Endocrinology Section, Sapienza University of Rome, Rome, Italy
| | - Elena Formisano
- Department of Internal Medicine, University of Genoa, Genoa, Italy
- Dietetics and Clinical Nutrition Unit, IRCCS Policlinic Hospital San Martino, Genoa, Italy
| | - Andrea Vignati
- Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Amalia Prigione
- Department of Internal Medicine, University of Genoa, Genoa, Italy
| | | | | | - Samir Giuseppe Sukkar
- Dietetics and Clinical Nutrition Unit, IRCCS Policlinic Hospital San Martino, Genoa, Italy
| | - Livia Pisciotta
- Department of Internal Medicine, University of Genoa, Genoa, Italy
- Dietetics and Clinical Nutrition Unit, IRCCS Policlinic Hospital San Martino, Genoa, Italy
| |
Collapse
|
24
|
Yang M, Wang JH, Shin JH, Lee D, Lee SN, Seo JG, Shin JH, Nam YD, Kim H, Sun X. Pharmaceutical efficacy of novel human-origin Faecalibacterium prausnitzii strains on high-fat-diet-induced obesity and associated metabolic disorders in mice. Front Endocrinol (Lausanne) 2023; 14:1220044. [PMID: 37711887 PMCID: PMC10497875 DOI: 10.3389/fendo.2023.1220044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/04/2023] [Indexed: 09/16/2023] Open
Abstract
Introduction Obesity and related metabolic issues are a growing global health concern. Recently, the discovery of new probiotics with anti-obesity properties has gained interest. Methods In this study, four Faecalibacte-rium prausnitzii strains were isolated from healthy human feces and evaluated on a high-fat diet-induced mouse model for 12 weeks. Results The F. prausnitzii strains reduced body weight gain, liver and fat weights, and calorie intake while improving lipid and glucose metabolism in the liver and adipose tissue, as evidenced by regulating lipid metabolism-associated gene expression, including ACC1, FAS, SREBP1c, leptin, and adiponectin. Moreover, the F. prausnitzii strains inhibited low-grade inflammation, restored gut integrity, and ameliorated hepatic function and insulin resistance. Interestingly, the F. prausnitzii strains modulated gut and neural hormone secretion and reduced appetite by affecting the gut-brain axis. Supplementation with F. prausnitzii strains noticeably changed the gut microbiota composition. Discussion In summary, the novel isolated F. prausnitzii strains have therapeutic effects on obesity and associated metabolic disorders through modulation of the gut-brain axis. Additionally, the effectiveness of different strains might not be achieved through identical mechanisms. Therefore, the present findings provide a reliable clue for developing novel therapeutic probiotics against obesity and associated metabolic disorders.
Collapse
Affiliation(s)
- Meng Yang
- Department of Nephrology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
- Department of Rehabilitation Medicine of Korean Medicine, Dongguk University, Goyang-si, Republic of Korea
| | - Jing-Hua Wang
- Institute of Bioscience & Integrative Medicine, Daejeon University, Daejeon, Republic of Korea
| | - Joo-Hyun Shin
- R&D Center, Enterobiome Inc., Goyang-si, Republic of Korea
| | - Dokyung Lee
- R&D Center, Enterobiome Inc., Goyang-si, Republic of Korea
| | - Sang-Nam Lee
- R&D Center, Enterobiome Inc., Goyang-si, Republic of Korea
| | - Jae-Gu Seo
- R&D Center, Enterobiome Inc., Goyang-si, Republic of Korea
| | - Ji-Hee Shin
- Research Group of Healthcare, Korea Food Research Institute, Wanju-gun, Republic of Korea
| | - Young-Do Nam
- Research Group of Healthcare, Korea Food Research Institute, Wanju-gun, Republic of Korea
| | - Hojun Kim
- Department of Rehabilitation Medicine of Korean Medicine, Dongguk University, Goyang-si, Republic of Korea
| | - Xiaomin Sun
- Department of Nephrology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
25
|
Naghipour A, Amini-Salehi E, Orang Gorabzarmakhi M, Shahdkar M, Fouladi B, Alipourfard I, Sanat ZM. Effects of gut microbial therapy on lipid profile in individuals with non-alcoholic fatty liver disease: an umbrella meta-analysis study. Syst Rev 2023; 12:144. [PMID: 37605283 PMCID: PMC10441764 DOI: 10.1186/s13643-023-02299-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 07/28/2023] [Indexed: 08/23/2023] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD), the most common liver disease, is closely associated with metabolic conditions such as obesity and diabetes mellitus, which significantly impact human health outcomes. The impaired lipid profiles observed in NAFLD individuals can further contribute to cardiovascular events. Despite the high prevalence of NAFLD, there is currently no confirmed intervention approved for its treatment. This study aimed to summarize the results of meta-analysis studies of randomized control trials assessing the impact of gut microbial therapy (probiotics, synbiotics, and prebiotics) on the lipid profile of individuals with NAFLD. METHODS A systematic search was conducted on PubMed, Scopus, Web of Science, and Cochrane Library up to November 1, 2022. Meta-analyses surveying the impact of microbial therapy on lipid profile parameters (triglyceride (TG), high-density lipoprotein (HDL), low-density lipoprotein (LDL), and total cholesterol (TC)) in the NAFLD population were included in our umbrella review. The final effect size (ES) was estimated, and sensitivity and subgroup analyses were performed to explore heterogeneity. RESULTS Fifteen studies were included in this umbrella review. Microbial therapy significantly reduced TG (ES - 0.31, 95% CI - 0.51, - 0.11, P < 0.01), TC (ES - 1.04, 95% CI - 1.46, - 0.61, P < 0.01), and LDL (ES - 0.77, 95% CI - 1.15, - 0.39, P < 0.01) in individuals with NAFLD. However, the effect on HDL was not statistically significant (ES - 0.06; 95% CI - 0.19, 0.07, P = 0.39). CONCLUSION Considering the absence of approved treatments for NAFLD and the promising role of microbial therapies in improving the three lipid profiles components in individuals with NAFLD, the use of these agents as alternative treatment options could be recommended. The findings underscore the potential of gut microbial therapy, including probiotics, synbiotics, and prebiotics, in managing NAFLD and its associated metabolic complications. TRIAL REGISTRATION PROSPERO ( CRD42022346998 ).
Collapse
Affiliation(s)
- Amirhossein Naghipour
- Department of Pharmaceutics, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Ehsan Amini-Salehi
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
- Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | | | | | - Bahman Fouladi
- Pediatric Gastroenterology and Hepatoloy Research center, Zabol University of Medical Sciences, Zabol, Iran
- Department of Parasitology and Mycology, School of Medicine, Zabol University of Medical Sciences, Zabol, Iran
| | - Iraj Alipourfard
- Institute of Physical Chemistry, Polish Academy of Sciences, Marsaw, Poland
| | - Zahra Momayez Sanat
- Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
26
|
Guo GJ, Yao F, Lu WP, Xu HM. Gut microbiome and metabolic-associated fatty liver disease: Current status and potential applications. World J Hepatol 2023; 15:867-882. [PMID: 37547030 PMCID: PMC10401411 DOI: 10.4254/wjh.v15.i7.867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/11/2023] [Accepted: 06/30/2023] [Indexed: 07/21/2023] Open
Abstract
Metabolic-associated fatty liver disease (MAFLD) is one of the most common chronic liver diseases worldwide. In recent years, the occurrence rate of MAFLD has been on the rise, mainly due to lifestyle changes, high-calorie diets, and imbalanced dietary structures, thereby posing a threat to human health and creating heavy social and economic burdens. With the development of 16S sequencing and integrated multi-omics analysis, the role of the gut microbiota (GM) and its metabolites in MAFLD has been further recognized. The GM plays a role in digestion, energy metabolism, vitamin synthesis, the prevention of pathogenic bacteria colonisation, and immunoregulation. The gut-liver axis is one of the vital links between the GM and the liver. Toxic substances in the intestine can enter the liver through the portal vascular system when the intestinal barrier is severely damaged. The liver also influences the GM in various ways, such as bile acid circulation. The gut-liver axis is essential in maintaining the body’s normal physiological state and plays a role in the onset and prognosis of many diseases, including MAFLD. This article reviews the status of the GM and MAFLD and summarizes the GM characteristics in MAFLD. The relationship between the GM and MAFLD is discussed in terms of bile acid circulation, energy metabolism, micronutrients, and signalling pathways. Current MAFLD treatments targeting the GM are also listed.
Collapse
Affiliation(s)
- Gong-Jing Guo
- Gastroenterology Department of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People’s Hospital of Shenzhen, Shenzhen 518172, Guangdong Province, China
| | - Fei Yao
- Department of Science and Education, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510370, Guangdong Province, China
| | - Wei-Peng Lu
- The First Clinical School, Guangzhou Medical University, Guangzhou 510120, Guangdong Province, China
| | - Hao-Ming Xu
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, Guangdong Province, China
| |
Collapse
|
27
|
Cai J, Dong J, Chen D, Ye H. The effect of synbiotics in patients with NAFLD: a systematic review and meta-analysis. Therap Adv Gastroenterol 2023; 16:17562848231174299. [PMID: 37388120 PMCID: PMC10302525 DOI: 10.1177/17562848231174299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 04/20/2023] [Indexed: 07/01/2023] Open
Abstract
Background Nonalcoholic fatty liver disease (NAFLD) is the highest incidence of chronic liver disease worldwide, seriously endangering human health, and its pathogenesis is still unclear. In the recent years, increasing evidence has shown that intestinal flora plays an important role in the occurrence and development of NAFLD. Synbiotics can alter gut microbiota and may be a treatment option for NAFLD in the future. Objectives To systematically investigate the therapeutic effect of synbiotic supplementation on NAFLD patients. Design A systematic review and meta-analysis were conducted. Data sources and methods We conducted a search on four databases (PubMed, Embase, Cochrane Library, and Web of Science) to identify relevant studies. Eligible studies were then screened, and data from the included studies were extracted, combined, and analyzed. Result This study analyzed 10 randomized controlled trials involving 634 patients with NAFLD. The results showed that synbiotic supplementation could significantly reduce the level of alanine aminotransferase (mean difference (MD) = -8.80; (95% CI [-13.06, -4.53]), p < 0.0001), aspartate aminotransferase (MD = -9.48; 95% CI [-12.54, -6.43], p < 0.0001), and γ-glutamyl transferase (MD = -12.55; 95% CI [-19.40, -5.69], p = 0.0003) in NAFLD patients. In the field of metabolism, synbiotic supplementation could significantly reduce the level of total cholesterol (MD = -11.93; 95% CI [-20.43, -3.42], p = 0.006) and low-density lipoprotein cholesterol (MD = -16.2; 95% CI [-19.79, -12.60], p < 0.0001) and increase the level of high-density lipoprotein cholesterol (MD = 1.56; 95% CI [0.43, 2.68], p = 0.007) in NAFLD patients. In addition, synbiotic supplementation could significantly reduce liver stiffness measurement indicator (MD = -1.09; 95% CI [-1.87, -0.30], p = 0.006) and controlled attenuation parameter indicator (MD = -37.04; 95% CI [-56.78, -17.30], p = 0.0002) in NAFLD patients. Conclusion Based on the current evidence, synbiotic supplementation can improve liver function, adjust lipid metabolism, and reduce the degree of liver fibrosis in patients with NAFLD, but these effects need to be confirmed by further studies.
Collapse
Affiliation(s)
- Jiacheng Cai
- The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, People’s Republic of China
| | - Jia Dong
- The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, People’s Republic of China
| | - Dahua Chen
- The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, People’s Republic of China
| | - Hua Ye
- The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang 315040, People’s Republic of China
| |
Collapse
|
28
|
Pabst O, Hornef MW, Schaap FG, Cerovic V, Clavel T, Bruns T. Gut-liver axis: barriers and functional circuits. Nat Rev Gastroenterol Hepatol 2023:10.1038/s41575-023-00771-6. [PMID: 37085614 DOI: 10.1038/s41575-023-00771-6] [Citation(s) in RCA: 104] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/23/2023] [Indexed: 04/23/2023]
Abstract
The gut and the liver are characterized by mutual interactions between both organs, the microbiome, diet and other environmental factors. The sum of these interactions is conceptualized as the gut-liver axis. In this Review we discuss the gut-liver axis, concentrating on the barriers formed by the enterohepatic tissues to restrict gut-derived microorganisms, microbial stimuli and dietary constituents. In addition, we discuss the establishment of barriers in the gut and liver during development and their cooperative function in the adult host. We detail the interplay between microbial and dietary metabolites, the intestinal epithelium, vascular endothelium, the immune system and the various host soluble factors, and how this interplay establishes a homeostatic balance in the healthy gut and liver. Finally, we highlight how this balance is disrupted in diseases of the gut and liver, outline the existing therapeutics and describe the cutting-edge discoveries that could lead to the development of novel treatment approaches.
Collapse
Affiliation(s)
- Oliver Pabst
- Institute of Molecular Medicine, RWTH Aachen University, Aachen, Germany.
| | - Mathias W Hornef
- Institute of Medical Microbiology, RWTH Aachen University, Aachen, Germany
| | - Frank G Schaap
- Department of General, Visceral and Transplantation Surgery, RWTH Aachen University, Aachen, Germany
- Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Vuk Cerovic
- Institute of Molecular Medicine, RWTH Aachen University, Aachen, Germany
| | - Thomas Clavel
- Functional Microbiome Research Group, Institute of Medical Microbiology, RWTH Aachen University, Aachen, Germany
| | - Tony Bruns
- Department of Internal Medicine III, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
29
|
Bischoff SC, Ockenga J, Eshraghian A, Barazzoni R, Busetto L, Campmans-Kuijpers M, Cardinale V, Chermesh I, Kani HT, Khannoussi W, Lacaze L, Léon-Sanz M, Mendive JM, Müller MW, Tacke F, Thorell A, Vranesic Bender D, Weimann A, Cuerda C. Practical guideline on obesity care in patients with gastrointestinal and liver diseases - Joint ESPEN/UEG guideline. Clin Nutr 2023; 42:987-1024. [PMID: 37146466 DOI: 10.1016/j.clnu.2023.03.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 05/07/2023]
Abstract
BACKGROUND Patients with chronic gastrointestinal disease such as inflammatory bowel disease (IBD), irritable bowel syndrome (IBS), celiac disease, gastroesophageal reflux disease (GERD), pancreatitis, and chronic liver disease (CLD) often suffer from obesity because of coincidence (IBD, IBS, celiac disease) or related pathophysiology (GERD, pancreatitis and CLD). It is unclear if such patients need a particular diagnostic and treatment that differs from the needs of lean gastrointestinal patients. The present guideline addresses this question according to current knowledge and evidence. OBJECTIVE The present practical guideline is intended for clinicians and practitioners in general medicine, gastroenterology, surgery and other obesity management, including dietitians and focuses on obesity care in patients with chronic gastrointestinal diseases. METHODS The present practical guideline is the shortened version of a previously published scientific guideline developed according to the standard operating procedure for ESPEN guidelines. The content has been re-structured and transformed into flow-charts that allow a quick navigation through the text. RESULTS In 100 recommendations (3× A, 33× B, 24 × 0, 40× GPP, all with a consensus grade of 90% or more) care of gastrointestinal patients with obesity - including sarcopenic obesity - is addressed in a multidisciplinary way. A particular emphasis is on CLD, especially metabolic associated liver disease, since such diseases are closely related to obesity, whereas liver cirrhosis is rather associated with sarcopenic obesity. A special chapter is dedicated to obesity care in patients undergoing bariatric surgery. The guideline focuses on adults, not on children, for whom data are scarce. Whether some of the recommendations apply to children must be left to the judgment of the experienced pediatrician. CONCLUSION The present practical guideline offers in a condensed way evidence-based advice how to care for patients with chronic gastrointestinal diseases and concomitant obesity, an increasingly frequent constellation in clinical practice.
Collapse
Affiliation(s)
- Stephan C Bischoff
- Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany.
| | - Johann Ockenga
- Medizinische Klinik II, Klinikum Bremen-Mitte, Bremen FRG, Bremen, Germany.
| | - Ahad Eshraghian
- Department of Gastroenterology and Hepatology, Avicenna Hospital, Shiraz, Iran.
| | - Rocco Barazzoni
- Department of Medical, Technological and Translational Sciences, University of Trieste, Ospedale di Cattinara, Trieste, Italy.
| | - Luca Busetto
- Department of Medicine, University of Padova, Padova, Italy.
| | - Marjo Campmans-Kuijpers
- Department of Gastroenterology and Hepatology, University Medical Centre Groningen, Groningen, the Netherlands.
| | - Vincenzo Cardinale
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy.
| | - Irit Chermesh
- Department of Gastroenterology, Rambam Health Care Campus, Affiliated with Technion-Israel Institute of Technology, Haifa, Israel.
| | - Haluk Tarik Kani
- Department of Gastroenterology, Marmara University, School of Medicine, Istanbul, Turkey.
| | - Wafaa Khannoussi
- Hepato-Gastroenterology Department, Mohammed VI University Hospital, Oujda, Morocco; and Laboratoire de Recherche des Maladies Digestives (LARMAD), Mohammed the First University, Oujda, Morocco.
| | - Laurence Lacaze
- Department of General Surgery, Mantes-la-Jolie Hospital, Mantes-la-Jolie, France.
| | - Miguel Léon-Sanz
- Department of Endocrinology and Nutrition, University Hospital Doce de Octubre, Medical School, University Complutense, Madrid, Spain.
| | - Juan M Mendive
- La Mina Primary Care Academic Health Centre, Catalan Institute of Health (ICS), University of Barcelona, Barcelona, Spain.
| | - Michael W Müller
- Department of General and Visceral Surgery, Regionale Kliniken Holding, Kliniken Ludwigsburg-Bietigheim gGmbH, Krankenhaus Bietigheim, Bietigheim-Bissingen, Germany.
| | - Frank Tacke
- Department of Hepatology & Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany.
| | - Anders Thorell
- Department of Clinical Science, Danderyds Hospital, Karolinska Institutet & Department of Surgery, Ersta Hospital, Stockholm, Sweden.
| | - Darija Vranesic Bender
- Unit of Clinical Nutrition, Department of Internal Medicine, University Hospital Centre Zagreb, Zagreb, Croatia.
| | - Arved Weimann
- Department of General, Visceral and Oncological Surgery, St. George Hospital, Leipzig, Germany.
| | - Cristina Cuerda
- Departamento de Medicina, Universidad Complutense de Madrid, Nutrition Unit, Hospital General Universitario Gregorio Marañón, Madrid, Spain.
| |
Collapse
|
30
|
Shahverdi S, Barzegari AA, Vaseghi Bakhshayesh R, Nami Y. In-vitro and in-vivo antibacterial activity of potential probiotic Lactobacillus paracasei against Staphylococcus aureus and Escherichia coli. Heliyon 2023; 9:e14641. [PMID: 37035350 PMCID: PMC10073747 DOI: 10.1016/j.heliyon.2023.e14641] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/11/2023] [Accepted: 03/14/2023] [Indexed: 03/22/2023] Open
Abstract
Previous studies documented that Lactobacillus paracasei has obvious in vitro cholesterol-lowering abilities. In this study, initially, L. paracasei was tested in terms of antibacterial properties as well as antibiogram profile. Then, the safety of the mentioned strain was evaluated in rats. Evaluation of antibiotic susceptibility revealed that the L. paracasei strain had high antibiotic resistance to several antibiotics as well as a great ability to autoaggregation. After identification of the probiotic aptitude, six groups of six rats from both sexes were used (three groups of each sex). L. paracasei was administered to the experimental groups via drinking water for 28 days (1 × 108 and 1 × 109, respectively). The negative control group received only tap water during this period. Hematological indicators, serum liver enzyme activity including (alanine transaminase (ALT), alkaline phosphatase (ALP), and aspartate transaminase (AST)) as well as serum creatinine and urea were evaluated at the end of 28 days. The blood and serum factors were not changed significantly during the 28 days. The only noticeable difference was the increase of blood urea in both sexes which was in a normal range. Furthermore, the evaluation of antagonistic properties revealed that L. paracasei had antibacterial aptitude against Escherichia coli and Staphylococcus aureus. In conclusion, this strain has good cholesterol-lowering and antibacterial properties and is a safe supplement in Wistar rats.
Collapse
Affiliation(s)
- Shadi Shahverdi
- Department of Biology, University of Maragheh, Maragheh, East Azerbaijan, Iran
| | - Amir Abbas Barzegari
- Department of Biology, University of Maragheh, Maragheh, East Azerbaijan, Iran
- Corresponding author.
| | - Reza Vaseghi Bakhshayesh
- Department of Food Bioprocess Engineering, Branch for Northwest & West Region, Agricultural Biotechnology Research, Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO), Tabriz, Iran
| | - Yousef Nami
- Department of Food Bioprocess Engineering, Branch for Northwest & West Region, Agricultural Biotechnology Research, Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO), Tabriz, Iran
- Corresponding author.
| |
Collapse
|
31
|
Musazadeh V, Mohammadi Anilou M, Vajdi M, Karimi A, Sedgh Ahrabi S, Dehghan P. Effects of synbiotics supplementation on anthropometric and lipid profile parameters: Finding from an umbrella meta-analysis. Front Nutr 2023; 10:1121541. [PMID: 36908920 PMCID: PMC9995782 DOI: 10.3389/fnut.2023.1121541] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 02/06/2023] [Indexed: 02/25/2023] Open
Abstract
Introduction Several systematic reviews and meta-analyses have been carried out to assess the impact of synbiotics on lipid profiles and anthropometric parameters. In this regard, an umbrella meta-analysis was performed to provide a more accurate view of the overall impacts of synbiotic supplementation on lipid profile and anthropometric parameters. Methods Databases such as PubMed, Scopus, Embase, Web of Science, and Google Scholar were searched for this study from inception to January 2022. A random-effects model was applied to evaluate the effects of synbiotic supplementation on lipid profile and anthropometric parameters. The methodological quality of eligible articles was evaluated using the AMSTAR2 questionnaire. The GRADE approach was used to evaluate the overall certainty of the evidence in the meta-analyses. Results Meta-analyses of 17 studies revealed significant decreases in body mass index (BMI) (ES: -0.13 kg/m2; 95% CI: -0.19, -0.06, p < 0.001, I2 = 0.0%, p = 0.870), BW (ES: -1.30 kg; 95% CI: -2.19, -0.41, p = 0.004, I2 = 88.9%, p < 0.001), waist circumference (WC) (ES: -1.80 cm; 95% CI: -3.26, -0.34, p = 0.016, I2 = 94.1%, p < 0.001), low-density lipoprotein cholesterol (LDL-C) (ES: -2.81 mg/dl; 95% CI: -3.90, -1.72, p < 0.001, I2 = 95.1%, p < 0.001), total cholesterol (TC) (ES = -2.24 mg/dl; 95% CI: -3.18, -1.30, p < 0.001, I2 = 94.5%, p < 0.001), and triglyceride (TG) (ES: -0.43 mg/dl; 95% CI: -0.79, -0.07, p = 0.019, I2 = 78.0%, p < 0.001) but not high-density lipoprotein cholesterol (HDL-C) (ES: 0.23 mg/dl; 95% CI: -0.11, 0.56, p = 0.193, I2 = 45.2%, p = 0.051) following synbiotic supplementation. Discussion The present umbrella meta-analysis suggests synbiotic supplementation can slightly improve lipid profile and anthropometric indices and might be a therapeutic option for obesity and its related disorders. Systematic review registration www.crd.york.ac.uk/prospero, identifier CRD42022304376.
Collapse
Affiliation(s)
- Vali Musazadeh
- Student Research Committee, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Mohammadi Anilou
- Department of Emergency Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Vajdi
- Student Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Community Nutrition, School of Nutrition and Food Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Arash Karimi
- Nutrition Research Center, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sana Sedgh Ahrabi
- Student Research Committee, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parvin Dehghan
- Nutrition Research Center, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
32
|
Kuraji R, Shiba T, Dong TS, Numabe Y, Kapila YL. Periodontal treatment and microbiome-targeted therapy in management of periodontitis-related nonalcoholic fatty liver disease with oral and gut dysbiosis. World J Gastroenterol 2023; 29:967-996. [PMID: 36844143 PMCID: PMC9950865 DOI: 10.3748/wjg.v29.i6.967] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/14/2022] [Accepted: 01/30/2023] [Indexed: 02/10/2023] Open
Abstract
A growing body of evidence from multiple areas proposes that periodontal disease, accompanied by oral inflammation and pathological changes in the microbiome, induces gut dysbiosis and is involved in the pathogenesis of nonalcoholic fatty liver disease (NAFLD). A subgroup of NAFLD patients have a severely progressive form, namely nonalcoholic steatohepatitis (NASH), which is characterized by histological findings that include inflammatory cell infiltration and fibrosis. NASH has a high risk of further progression to cirrhosis and hepatocellular carcinoma. The oral microbiota may serve as an endogenous reservoir for gut microbiota, and transport of oral bacteria through the gastro-intestinal tract can set up a gut microbiome dysbiosis. Gut dysbiosis increases the production of potential hepatotoxins, including lipopolysaccharide, ethanol, and other volatile organic compounds such as acetone, phenol and cyclopentane. Moreover, gut dysbiosis increases intestinal permeability by disrupting tight junctions in the intestinal wall, leading to enhanced translocation of these hepatotoxins and enteric bacteria into the liver through the portal circulation. In particular, many animal studies support that oral administration of Porphyromonas gingivalis, a typical periodontopathic bacterium, induces disturbances in glycolipid metabolism and inflammation in the liver with gut dysbiosis. NAFLD, also known as the hepatic phenotype of metabolic syndrome, is strongly associated with metabolic complications, such as obesity and diabetes. Periodontal disease also has a bidirectional relationship with metabolic syndrome, and both diseases may induce oral and gut microbiome dysbiosis with insulin resistance and systemic chronic inflammation cooperatively. In this review, we will describe the link between periodontal disease and NAFLD with a focus on basic, epidemiological, and clinical studies, and discuss potential mechanisms linking the two diseases and possible therapeutic approaches focused on the microbiome. In conclusion, it is presumed that the pathogenesis of NAFLD involves a complex crosstalk between periodontal disease, gut microbiota, and metabolic syndrome. Thus, the conventional periodontal treatment and novel microbiome-targeted therapies that include probiotics, prebiotics and bacteriocins would hold great promise for preventing the onset and progression of NAFLD and subsequent complications in patients with periodontal disease.
Collapse
Affiliation(s)
- Ryutaro Kuraji
- Department of Periodontology, The Nippon Dental University School of Life Dentistry at Tokyo, Tokyo 102-0071, Japan
- Department of Orofacial Sciences, University of California San Francisco, San Francisco, CA 94143, United States
| | - Takahiko Shiba
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA 02115, United States
- Department of Periodontology, Tokyo Medical and Dental University, Tokyo 113-8549, Japan
| | - Tien S Dong
- The Vatche and Tamar Manoukian Division of Digestive Diseases, University of California Los Angeles, Department of Medicine, University of California David Geffen School of Medicine, Los Angeles, CA 90095, United States
| | - Yukihiro Numabe
- Department of Periodontology, The Nippon Dental University School of Life Dentistry at Tokyo, Tokyo 102-8159, Japan
| | - Yvonne L Kapila
- Department of Orofacial Sciences, University of California San Francisco, San Francisco, CA 94143, United States
- Sections of Biosystems and Function and Periodontics, Professor and Associate Dean of Research, Felix and Mildred Yip Endowed Chair in Dentistry, University of California Los Angeles, Los Angeles, CA 90095, United States
| |
Collapse
|
33
|
Lessons on Drug Development: A Literature Review of Challenges Faced in Nonalcoholic Fatty Liver Disease (NAFLD) Clinical Trials. Int J Mol Sci 2022; 24:ijms24010158. [PMID: 36613602 PMCID: PMC9820446 DOI: 10.3390/ijms24010158] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/24/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
NAFLD is the most common chronic liver disease worldwide, occurring in both obese and lean patients. It can lead to life-threatening liver diseases and nonhepatic complications, such as cirrhosis and cardiovascular diseases, that burden public health and the health care system. Current care is weight loss through diet and exercise, which is a challenging goal to achieve. However, there are no FDA-approved pharmacotherapies for NAFLD. This review thoroughly examines the clinical trial findings from 22 drugs (Phase 2 and above) and evaluates the future direction that trials should take for further drug development. These trialed drugs can broadly be categorized into five groups-hypoglycemic, lipid-lowering, bile-pathway, anti-inflammatory, and others, which include nutraceuticals. The multitude of challenges faced in these yet-to-be-approved NAFLD drug trials provided insight into a few areas of improvement worth considering. These include drug repurposing, combinations, noninvasive outcomes, standardization, adverse event alleviation, and the need for precision medicine with more extensive consideration of NAFLD heterogenicity in drug trials. Understandably, every evolution of the drug development landscape lies with its own set of challenges. However, this paper believes in the importance of always learning from lessons of the past, with each potential improvement pushing clinical trials an additional step forward toward discovering appropriate drugs for effective NAFLD management.
Collapse
|
34
|
Musazadeh V, Faghfouri AH, Kavyani Z, Dehghan P. Synbiotic as an adjunctive agent can be useful in the management of hyperglycemia in adults: An umbrella review and meta-research of meta-analysis studies. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
|
35
|
Wang JS, Liu JC. Intestinal microbiota in the treatment of metabolically associated fatty liver disease. World J Clin Cases 2022; 10:11240-11251. [PMID: 36387806 PMCID: PMC9649557 DOI: 10.12998/wjcc.v10.i31.11240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/07/2022] [Accepted: 09/27/2022] [Indexed: 02/05/2023] Open
Abstract
Metabolically associated fatty liver disease (MAFLD) is a common cause of chronic liver disease, the hepatic manifestation of metabolic syndrome. Despite the increasing incidence of MAFLD, no effective treatment is available. Recent research indicates a link between the intestinal microbiota and liver diseases such as MAFLD. The composition and characteristics of the intestinal microbiota and therapeutic perspectives of MAFLD are reviewed in the current study. An imbalance in the intestinal microbiota increases intestinal permeability and exposure of the liver to adipokines. Furthermore, we focused on reviewing the latest "gut-liver axis" targeted therapy.
Collapse
Affiliation(s)
- Ji-Shuai Wang
- Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Jin-Chun Liu
- Department of Gastroenterology, The First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| |
Collapse
|
36
|
Xing W, Gao W, Lv X, Zhao Z, Mao G, Dong X, Zhang Z. The effects of supplementation of probiotics, prebiotics, or synbiotics on patients with non-alcoholic fatty liver disease: A meta-analysis of randomized controlled trials. Front Nutr 2022; 9:1024678. [PMID: 36386939 PMCID: PMC9640999 DOI: 10.3389/fnut.2022.1024678] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/03/2022] [Indexed: 09/28/2023] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver disease. Research on the efficacy of probiotics, prebiotics, and synbiotics on NAFLD patients continues to be inconsistent. The purpose of this study is to evaluate the effectiveness of these microbial therapies on NAFLD. METHODS Eligible randomized-controlled trials reporting the effect of probiotics, prebiotics, or synbiotics in NAFLD were searched in PubMed, Web of Science, Embase, Google scholar, and CNKI databases from 2020 to Jul 2022. The changes in the outcomes were analyzed using standard mean difference (SMD) and 95% confidence intervals (CIs) with a random- or fixed-effects model to examine the effect of microbial therapies. Subgroup analysis, influence and publication bias analysis were also performed. The quality of the eligible studies was evaluated using the Cochrane Risk of Bias Tool. RESULTS Eleven studies met the inclusion criteria involving 741 individuals. Microbial therapies could improve liver steatosis, total cholesterol (TC), triglyceride (TG), low-density lipoprotein (LDL-c), alanine aminotransferase (ALT), alkaline phosphatase (ALP), glutamyl transpeptidase (GGT), and homeostasis model assessment-insulin resistance (HOMAI-R) (all P < 0.05). But microbial therapies could not ameliorate body mass index (BMI), energy, carbohydrate, fat intake, fasting blood sugar, HbA1c, insulin, high-sensitivity C-reactive protein (hs-CRP), and hepatic fibrosis of patients with NAFLD. CONCLUSION Probiotics, prebiotics, and synbiotics supplementation can potentially improve liver enzymes, lipid profiles, and liver steatosis in patients with NAFLD.
Collapse
Affiliation(s)
- Wenmin Xing
- Zhejiang Provincial Key Laboratory of Geriatrics, Department of Geriatrics, Zhejiang Hospital, Hangzhou, China
| | - Wenyan Gao
- School of Pharmacy, Hangzhou Medical College, Hangzhou, China
| | - Xiaoling Lv
- Zhejiang Provincial Key Laboratory of Geriatrics, Department of Geriatrics, Zhejiang Hospital, Hangzhou, China
| | - Zhenlei Zhao
- Zhejiang Provincial Key Laboratory of Geriatrics, Department of Geriatrics, Zhejiang Hospital, Hangzhou, China
| | - Genxiang Mao
- Zhejiang Provincial Key Laboratory of Geriatrics, Department of Geriatrics, Zhejiang Hospital, Hangzhou, China
| | - Xiaoyan Dong
- College of Pharmacy and Traditional Chinese Medicine, Jiangsu College of Nursing, Huaian, China
| | - Zuyong Zhang
- The Third People’s Hospital of Hangzhou, Hangzhou, China
| |
Collapse
|
37
|
Xu D, Fu L, Pan D, Chu Y, Feng M, Lu Y, Yang C, Wang Y, Xia J, Sun G. Role of probiotics/synbiotic supplementation in glycemic control: A critical umbrella review of meta-analyses of randomized controlled trials. Crit Rev Food Sci Nutr 2022; 64:1467-1485. [PMID: 36052685 DOI: 10.1080/10408398.2022.2117783] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The evidence regarding the beneficial effects of probiotics/synbiotic supplementation have been revealed by several meta-analyses, however some of these studies have fielded inconsistent results and a conclusion has yet to be reached. Therefore, the aim of present umbrella meta-analyses was to assess relevant evidence and elucidate the efficacy of probiotics/synbiotic supplementation in glycemic control. A comprehensive search in four databases (Cochrane library, PubMed, Web of science and Scopus) was performed to collect relevant studies up to August 2022, the pooled effects were measured with the use of random/fix-effect model depends on the heterogeneity. A total of 47 eligible meta-analyses involving 47,720 participants were identified to evaluate the pooled effects. The overall results showed that probiotics/synbiotic supplementation delivered significant decreases in fast plasma glucose (ES = -0.408, 95% CI: -0.518, -0.298; P < 0.001; I2 = 82.996, P < 0.001), fast plasma insulin (ES = -1.165, 95% CI: -1.454, -0.876; P < 0.001; I2 = 89.629, P < 0.001), homeostasis model assessment of insulin resistance (ES = -0.539, 95% CI: -0.624, -0.454; P < 0.001; I2 = 56.716, P < 0.001), and glycosylated hemoglobin (ES = -0.186, 95% CI: -0.270, -0.102; P < 0.001; I2 = 59.647, P = 0.001). Subgroup analysis showed that patients with impaired glucose homeostasis might benefit the most from probiotics/synbiotic supplementation. In conclusion, current umbrella meta-analysis strongly supporting the beneficial health effects of probiotics/synbiotic supplementation in glycemic control.
Collapse
Affiliation(s)
- Dengfeng Xu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, P.R. China
| | - Lingmeng Fu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, P.R. China
- Department of Quality Management, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Da Pan
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, P.R. China
| | - YiFang Chu
- Department of R&D Life Science, PepsiCo, Inc, Barrington, IL, USA
| | - Meiyuan Feng
- Department of R&D Life Science, PepsiCo, Inc, Shanghai, China
| | - Yifei Lu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, P.R. China
| | - Chao Yang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, P.R. China
| | - Yuanyuan Wang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, P.R. China
| | - Jiayue Xia
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, P.R. China
| | - Guiju Sun
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, P.R. China
| |
Collapse
|
38
|
Zarezadeh M, Musazadeh V, Faghfouri AH, Sarmadi B, Jamilian P, Jamilian P, Tutunchi H, Dehghan P. Probiotic therapy, a novel and efficient adjuvant approach to improve glycemic status: An umbrella meta-analysis. Pharmacol Res 2022; 183:106397. [PMID: 35981707 DOI: 10.1016/j.phrs.2022.106397] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 07/16/2022] [Accepted: 08/12/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Probiotics exert several promoting effects on the glycemic status, however, the results of meta-analyses are inconsistent. we conducted an umbrella meta-analysis, across existing systematic reviews and meta-analyses of clinical trials to determine the definite effects of supplementation with probiotics on glycemic indices. METHODS A comprehensive systematic search of PubMed/Medline, Scopus, EMBASE, and Web of Science was carried out till August 2021. The random-effects model was employed to conduct meta-analysis. Meta-analysis studies of randomized clinical trials examining the impacts of probiotics supplementation on glycemic indices were qualified in the current umbrella meta-analysis. RESULTS 48 articles out of 693 in the literature search qualified for inclusion in the umbrella meta-analysis. Pooled effects of probiotics on fasting plasma glucose (FPG), hemoglobin A1C (HbA1c), homeostatic model assessment for insulin resistance (HOMA-IR), and insulin levels were reported in articles 45, 21, 35, and 33, respectively. The analysis indicated a significant decrease of FPG (ES= -0.51 mg/dL; 95% CI: -0.63, -0.38, p < 0.001), HbA1c (ES = -0.32 mg/dL; 95% CI: -0.44, -0.20, p < 0.001), HOMA-IR (ES= -0.56; 95% CI: -0.66, -0.47, p < 0.001), and insulin levels (ES= -1.09 IU/mL; 95% CI: -1.37, -0.81, p = 0.006) by probiotics supplementation. CONCLUSION Probiotics have amending effects on FPG, HbA1c, HOMA-IR, and insulin levels. A < 8-week period of probiotic supplementation in the moderate dosages (108 or 109 CFU) is an efficacious approach in improving glycemic parameters. Overall, probiotics could be recommended as an adjuvant anti-hyperglycemic agent.
Collapse
Affiliation(s)
- Meysam Zarezadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Nutrition Research Center, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vali Musazadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Community Nutrition, School of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Hossein Faghfouri
- Maternal and Childhood Obesity Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Bahareh Sarmadi
- Department of Nutrition sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Parsa Jamilian
- Keele University School of Medicine, Keele University, Staffordshire, UK
| | - Parmida Jamilian
- School of Pharmacy and Bio Engineering, Keele University, Staffordshire, UK
| | - Helda Tutunchi
- Endocrine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parvin Dehghan
- Nutrition Research Center, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
39
|
Bischoff SC, Barazzoni R, Busetto L, Campmans-Kuijpers M, Cardinale V, Chermesh I, Eshraghian A, Kani HT, Khannoussi W, Lacaze L, Léon-Sanz M, Mendive JM, Müller MW, Ockenga J, Tacke F, Thorell A, Vranesic Bender D, Weimann A, Cuerda C. European guideline on obesity care in patients with gastrointestinal and liver diseases - Joint ESPEN/UEG guideline. Clin Nutr 2022; 41:2364-2405. [PMID: 35970666 DOI: 10.1016/j.clnu.2022.07.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/03/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Patients with chronic gastrointestinal (GI) disease such as inflammatory bowel disease (IBD), irritable bowel syndrome (IBS), celiac disease, gastroesophageal reflux disease (GERD), pancreatitis, and chronic liver disease (CLD) often suffer from obesity because of coincidence (IBD, IBS, celiac disease) or related pathophysiology (GERD, pancreatitis and CLD). It is unclear if such patients need a particular diagnostic and treatment that differs from the needs of lean GI patients. The present guideline addresses this question according to current knowledge and evidence. OBJECTIVE The objective of the guideline is to give advice to all professionals working in the field of gastroenterology care including physicians, surgeons, dietitians and others how to handle patients with GI disease and obesity. METHODS The present guideline was developed according to the standard operating procedure for ESPEN guidelines, following the Scottish Intercollegiate Guidelines Network (SIGN) grading system (A, B, 0, and good practice point (GPP)). The procedure included an online voting (Delphi) and a final consensus conference. RESULTS In 100 recommendations (3x A, 33x B, 24x 0, 40x GPP, all with a consensus grade of 90% or more) care of GI patients with obesity - including sarcopenic obesity - is addressed in a multidisciplinary way. A particular emphasis is on CLD, especially fatty liver disease, since such diseases are closely related to obesity, whereas liver cirrhosis is rather associated with sarcopenic obesity. A special chapter is dedicated to obesity care in patients undergoing bariatric surgery. The guideline focuses on adults, not on children, for whom data are scarce. Whether some of the recommendations apply to children must be left to the judgment of the experienced pediatrician. CONCLUSION The present guideline offers for the first time evidence-based advice how to care for patients with chronic GI diseases and concomitant obesity, an increasingly frequent constellation in clinical practice.
Collapse
Affiliation(s)
- Stephan C Bischoff
- Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany.
| | - Rocco Barazzoni
- Department of Medical, Technological and Translational Sciences, University of Trieste, Ospedale di Cattinara, Trieste, Italy.
| | - Luca Busetto
- Department of Medicine, University of Padova, Padova, Italy.
| | - Marjo Campmans-Kuijpers
- Department of Gastroenterology and Hepatology, University Medical Centre Groningen, Groningen, the Netherlands.
| | - Vincenzo Cardinale
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy.
| | - Irit Chermesh
- Department of Gastroenterology, Rambam Health Care Campus, Affiliated with Technion-Israel Institute of Technology, Haifa, Israel.
| | - Ahad Eshraghian
- Department of Gastroenterology and Hepatology, Avicenna Hospital, Shiraz, Iran.
| | - Haluk Tarik Kani
- Department of Gastroenterology, Marmara University, School of Medicine, Istanbul, Turkey.
| | - Wafaa Khannoussi
- Hepato-Gastroenterology Department, Mohammed VI University Hospital, Oujda, Morocco; Laboratoire de Recherche des Maladies Digestives (LARMAD), Mohammed the First University, Oujda, Morocco.
| | - Laurence Lacaze
- Department of General Surgery, Mantes-la-Jolie Hospital, Mantes-la-Jolie, France; Department of Clinical Nutrition, Paul-Brousse-Hospital, Villejuif, France.
| | - Miguel Léon-Sanz
- Department of Endocrinology and Nutrition, University Hospital Doce de Octubre, Medical School, University Complutense, Madrid, Spain.
| | - Juan M Mendive
- La Mina Primary Care Academic Health Centre, Catalan Institute of Health (ICS), University of Barcelona, Barcelona, Spain.
| | - Michael W Müller
- Department of General and Visceral Surgery, Regionale Kliniken Holding, Kliniken Ludwigsburg-Bietigheim GGmbH, Krankenhaus Bietigheim, Bietigheim-Bissingen, Germany.
| | - Johann Ockenga
- Medizinische Klinik II, Klinikum Bremen-Mitte, Bremen FRG, Bremen, Germany.
| | - Frank Tacke
- Department of Hepatology & Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany.
| | - Anders Thorell
- Department of Clinical Science, Danderyds Hospital, Karolinska Institutet & Department of Surgery, Ersta Hospital, Stockholm, Sweden.
| | - Darija Vranesic Bender
- Unit of Clinical Nutrition, Department of Internal Medicine, University Hospital Centre Zagreb, Zagreb, Croatia.
| | - Arved Weimann
- Department of General, Visceral and Oncological Surgery, St. George Hospital, Leipzig, Germany.
| | - Cristina Cuerda
- Departamento de Medicina, Universidad Complutense de Madrid, Nutrition Unit, Hospital General Universitario Gregorio Marañón, Madrid, Spain.
| |
Collapse
|
40
|
Ghorbani Z, Kazemi A, Bartolomaeus TUP, Martami F, Noormohammadi M, Salari A, Löber U, Balou HA, Forslund SK, Mahdavi-Roshan M. The effect of probiotic and synbiotic supplementation on lipid parameters among patients with cardiometabolic risk factors: a systematic review and meta-analysis of clinical trials. Cardiovasc Res 2022; 119:933-956. [PMID: 35934838 DOI: 10.1093/cvr/cvac128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/28/2022] [Accepted: 07/08/2022] [Indexed: 11/12/2022] Open
Abstract
Although the available evidence emphasizes the beneficial effects of probiotics in normalizing various cardiometabolic markers, there is still substantial uncertainty in this regard. Thus, we set out to determine the effect sizes of probiotics on blood lipid parameters more coherently. A systematic literature search of the Medline (PubMed) and Scopus databases was conducted from inception to February 12, 2021, applying both MeSH terms and free text terms to find the relevant randomized controlled trials (RCTs). The meta-analysis was conducted based on a random-effect model to calculate the mean effect sizes demonstrated as weighted mean differences (WMD) and the 95% confidence intervals (95%CI). To explore the heterogeneity, the Cochrane Chi-squared test, and analysis of Galbraith plots were performed. Meta-analysis of data from 40 RCTs (n = 2795) indicated a significant decrease in serum/plasma triglyceride (WMD (95%CI) -12.26 (-17.11- -7.41) mg/dL; P-value <0.001; I2 (%)= 29.9; P heterogeneity = 0.034)), total cholesterol (with high heterogeneity) (WMD (95%CI) -8.43 (-11.90- -4.95) mg/dL; P-value <0.001; I2 (%) =56.8; P heterogeneity < 0.001), LDL-C (WMD (95%CI) -5.08 (-7.61, -2.56) mg/dL; P-value <0.001; I2 (%) =42.7; P heterogeneity =0.002), and HDL-C (with high heterogeneity) (WMD (95%CI) 1.14 (0.23, 2.05) mg/dL; P-value =0.014; I2 (%) = 59.8; P heterogeneity < 0.001) following receiving probiotic/synbiotic supplements. Collectively, the current preliminary evidence supports the effectiveness of probiotics/synbiotics in improving dyslipidemia and various lipid parameters more prominently among subjects with hyperlipidemia, diabetes, and metabolic syndrome. However, large and well conducted RCTs are required to provide further convincing support for these results.
Collapse
Affiliation(s)
- Zeinab Ghorbani
- Cardiovascular Diseases Research Center, Department of Cardiology, Heshmat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.,Department of Clinical Nutrition, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Asma Kazemi
- Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Theda U P Bartolomaeus
- Experimental and Clinical Research Center, A Cooperation of Charité-Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Lindenberger Weg 80, 13125, Berlin, Germany.,Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany.,Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site, Berlin, Berlin, Germany
| | - Fahimeh Martami
- School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Morvarid Noormohammadi
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Arsalan Salari
- Cardiovascular Diseases Research Center, Department of Cardiology, Heshmat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Ulrike Löber
- Experimental and Clinical Research Center, A Cooperation of Charité-Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Lindenberger Weg 80, 13125, Berlin, Germany.,Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany.,Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site, Berlin, Berlin, Germany
| | - Heydar Ali Balou
- Razi Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Sofia K Forslund
- Experimental and Clinical Research Center, A Cooperation of Charité-Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Lindenberger Weg 80, 13125, Berlin, Germany.,Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany.,Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site, Berlin, Berlin, Germany.,Structural and Computational Biology Unit, European Molecular Biology Laboratory, Structural and Computational Biology Unit, 69117 Heidelberg, Germany
| | - Marjan Mahdavi-Roshan
- Cardiovascular Diseases Research Center, Department of Cardiology, Heshmat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.,Department of Clinical Nutrition, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
41
|
Wang Y, Wang Y, Sun J. The clinical effect of probiotics on patients with non-alcoholic fatty liver disease: a meta-analysis. Bioengineered 2022; 13:14960-14973. [PMID: 37105767 DOI: 10.1080/21655979.2023.2185941] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a common chronic liver disease. The present study explores the clinical efficacy of probiotics in the treatment of patients with NAFLD by conducting a systematic search of relevant databases. The RevMan 5.4 software was used to evaluate the effects of probiotics on liver function (i.e. alanine aminotransferase [ALT], aspartate aminotransferase [AST], gamma-glutamyl transferase [GGT], lipid metabolism, blood glucose, inflammatory factors [e.g. tumor necrosis factor-α, TNF-α] and body mass index [BMI]) in patients with NAFLD. A total of 18 high-quality studies were included in the final meta-analysis. The results of the meta-analysis showed that the use of probiotics in the adjuvant treatment of patients with NAFLD improved liver function and reduced ALT levels (mean difference [MD]: -0.07; 95% confidence interval [CI]: -12.95, -7.19), AST levels (MD: -11.90; 95% CI: -16.55, -7.25) and GGT levels (MD: -8.61; 95% CI: -14.74, -2.48); additionally, the treatment effect was more obvious when the treatment time exceeded 12 weeks. Probiotic therapy reduced patients' triglyceride levels (MD: -9.71; 95% CI: -18.39, -1.03) and total cholesterol levels (MD: -22.31; 95% CI: -25.41, -19.21). Probiotic treatment improved patients' levels of fasting blood (MD: -8.22; 95% CI: -12.25, -4.20), insulin (MD: -2.68; 95% CI: -4.94, -0.41) and insulin resistance (MD: -0.72; 95% CI: -1.21, -0.24). Probiotic adjuvant therapy for patients with NAFLD reduced their BMI by approximately 1.67 (95% CI: -2.93, -0.41) and TNF-α levels. The adjuvant treatment of NAFLD with probiotics has a positive clinical effect, which is influenced by treatment time.
Collapse
Affiliation(s)
- Yuxue Wang
- Department of hepatology, The first clinical medical college of Shandong University of traditional Chinese Medicine Jinan, China
| | - Yarong Wang
- Department of Internal medicine of traditional Chinese Medicine, Jinan Shi Minzu Hospital
| | - Jianguang Sun
- Department of hepatology, The first clinical medical college of Shandong University of traditional Chinese Medicine Jinan, China
| |
Collapse
|
42
|
The Activity of Prebiotics and Probiotics in Hepatogastrointestinal Disorders and Diseases Associated with Metabolic Syndrome. Int J Mol Sci 2022; 23:ijms23137229. [PMID: 35806234 PMCID: PMC9266451 DOI: 10.3390/ijms23137229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 06/27/2022] [Indexed: 12/11/2022] Open
Abstract
The components of metabolic syndrome (MetS) and hepatogastrointestinal diseases are widespread worldwide, since many factors associated with lifestyle and diet influence their development and correlation. Due to these growing health problems, it is necessary to search for effective alternatives for prevention or adjuvants in treating them. The positive impact of regulated microbiota on health is known; however, states of dysbiosis are closely related to the development of the conditions mentioned above. Therefore, the role of prebiotics, probiotics, or symbiotic complexes has been extensively evaluated; the results are favorable, showing that they play a crucial role in the regulation of the immune system, the metabolism of carbohydrates and lipids, and the biotransformation of bile acids, as well as the modulation of their central receptors FXR and TGR-5, which also have essential immunomodulatory and metabolic activities. It has also been observed that they can benefit the host by displacing pathogenic species, improving the dysbiosis state in MetS. Current studies have reported that paraprobiotics (dead or inactive probiotics) or postbiotics (metabolites generated by active probiotics) also benefit hepatogastrointestinal health.
Collapse
|
43
|
Anti-obesity properties of probiotics; a considerable medical nutrition intervention: Findings from an umbrella meta-analysis. Eur J Pharmacol 2022; 928:175069. [PMID: 35659967 DOI: 10.1016/j.ejphar.2022.175069] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/09/2022] [Accepted: 05/24/2022] [Indexed: 11/22/2022]
Abstract
Although several studies have indicated that consumption of probiotics is effective in the treatment of obesity, the results in this regard have yielded controversial findings. The current umbrella meta-analysis was performed to evaluate the effects of probiotics supplementation on obesity indices in adults. Scopus, PubMed, Web of Science, Embase and Google Scholar were searched for relevant studies published till November 2021. Meta-analysis was conducted using the random-effects model. Sensitivity and subgroup analyses were performed. In total, 29 meta-analyses with 14,366 participants, including 112, 78, and 38 unique trials for body mass index (BMI), body weight (BW), and waist circumference (WC), were included in the study, respectively. The findings demonstrated that the probiotics supplementation was significantly effective on decreasing of BMI (ES = -0.21; 95% CI: -0.30, -0.13, p < 0.001; I2 = 83.0%, p < 0.001), BW (ES = -0.38, 95% CI: -0.60, -0.16; p < 0.001; I2 = 81.8%, p < 0.001), and WC (ES = -0.60; 95% CI: -0.89, -0.31; p < 0.001; I2 = 89.1%, p < 0.001). Greater effects on BW were observed when intervention duration was >8 weeks and on obese individuals. BMI was also greatly modified in participants with metabolic syndrome and when intervention duration lasted for ≥12 weeks. The methodological quality (AMSTAR2) was moderate in 83%, low in 10%, and critically low in 7% of included studies. The current umbrella meta-analysis indicated that supplementation of probiotics in adults led to a meaningful reduction in BW, BMI, and WC. Therefore, our findings strongly recommend supplementation with probiotics as a potent intervention in the management of obesity.
Collapse
|
44
|
Musazadeh V, Roshanravan N, Dehghan P, Ahrabi SS. Effect of Probiotics on Liver Enzymes in Patients With Non-alcoholic Fatty Liver Disease: An Umbrella of Systematic Review and Meta-Analysis. Front Nutr 2022; 9:844242. [PMID: 35677540 PMCID: PMC9169800 DOI: 10.3389/fnut.2022.844242] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 05/02/2022] [Indexed: 12/20/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become prevalent in recent decades, especially in developed countries; yet the approaches for preventing and treating NAFLD are not clear. This study aimed to summarize meta-analyses of randomized controlled trials that examined the effects of probiotics on NAFLD. We systematically searched PubMed, Scopus, Embase, Web of Science, and Cochrane Central Library databases up to August 2021. All Meta-analysis studies assessing the effect of probiotics on liver function tests [alanine aminotransferase (ALT), aspartate aminotransferase (AST), and Gamma-glutamyl transferase (GGT)] were included. Meta-analysis was conducted using a random-effects model. Sensitivity and subgroup analyses were also performed. The umbrella study covered ten eligible studies involving 5,162 individuals. Beneficial effects of probiotics supplementation were revealed on ALT (ES = −10.54 IU/L; 95% CI: −12.70, −8.39; p < 0.001; I2 = 60.9%, p = 0.006), AST (ES = −10.19 IU/L, 95%CI: −13.08, −7.29, p < 0.001; I2 = 79.8%, p < 0.001), and GGT (ES = −5.88 IU/L, 95% CI: −7.09, −4.67, p = 0.009; I2 = 0.0%, p = 0.591) levels. Probiotics have ameliorating effects on ALT, AST, and GGT levels in patients with NAFLD. Overall, Probiotics could be recommended as an adjuvant therapeutic method for the management of NAFLD.
Collapse
Affiliation(s)
- Vali Musazadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Community Nutrition, School of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Neda Roshanravan
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parvin Dehghan
- Faculty of Nutrition and Food Science, Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- *Correspondence: Parvin Dehghan,
| | - Sana Sedgh Ahrabi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
45
|
Coleman MJ, Espino LM, Lebensohn H, Zimkute MV, Yaghooti N, Ling CL, Gross JM, Listwan N, Cano S, Garcia V, Lovato DM, Tigert SL, Jones DR, Gullapalli RR, Rakov NE, Torrazza Perez EG, Castillo EF. Individuals with Metabolic Syndrome Show Altered Fecal Lipidomic Profiles with No Signs of Intestinal Inflammation or Increased Intestinal Permeability. Metabolites 2022; 12:431. [PMID: 35629938 PMCID: PMC9143200 DOI: 10.3390/metabo12050431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Metabolic Syndrome (MetS) is a clinical diagnosis where patients exhibit three out of the five risk factors: hypertriglyceridemia, low high-density lipoprotein (HDL) cholesterol, hyperglycemia, elevated blood pressure, or increased abdominal obesity. MetS arises due to dysregulated metabolic pathways that culminate with insulin resistance and put individuals at risk to develop various comorbidities with far-reaching medical consequences such as non-alcoholic fatty liver disease (NAFLD) and cardiovascular disease. As it stands, the exact pathogenesis of MetS as well as the involvement of the gastrointestinal tract in MetS is not fully understood. Our study aimed to evaluate intestinal health in human subjects with MetS. METHODS We examined MetS risk factors in individuals through body measurements and clinical and biochemical blood analysis. To evaluate intestinal health, gut inflammation was measured by fecal calprotectin, intestinal permeability through the lactulose-mannitol test, and utilized fecal metabolomics to examine alterations in the host-microbiota gut metabolism. RESULTS No signs of intestinal inflammation or increased intestinal permeability were observed in the MetS group compared to our control group. However, we found a significant increase in 417 lipid features of the gut lipidome in our MetS cohort. An identified fecal lipid, diacyl-glycerophosphocholine, showed a strong correlation with several MetS risk factors. Although our MetS cohort showed no signs of intestinal inflammation, they presented with increased levels of serum TNFα that also correlated with increasing triglyceride and fecal diacyl-glycerophosphocholine levels and decreasing HDL cholesterol levels. CONCLUSION Taken together, our main results show that MetS subjects showed major alterations in fecal lipid profiles suggesting alterations in the intestinal host-microbiota metabolism that may arise before concrete signs of gut inflammation or intestinal permeability become apparent. Lastly, we posit that fecal metabolomics could serve as a non-invasive, accurate screening method for both MetS and NAFLD.
Collapse
Affiliation(s)
- Mia J. Coleman
- University of New Mexico School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (M.J.C.); (L.M.E.); (H.L.)
| | - Luis M. Espino
- University of New Mexico School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (M.J.C.); (L.M.E.); (H.L.)
| | - Hernan Lebensohn
- University of New Mexico School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (M.J.C.); (L.M.E.); (H.L.)
| | - Marija V. Zimkute
- Clinical and Translational Science Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (M.V.Z.); (J.M.G.); (N.L.); (S.C.); (V.G.); (D.M.L.); (S.L.T.)
| | - Negar Yaghooti
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (N.Y.); (C.L.L.); (N.E.R.); (E.G.T.P.)
| | - Christina L. Ling
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (N.Y.); (C.L.L.); (N.E.R.); (E.G.T.P.)
| | - Jessica M. Gross
- Clinical and Translational Science Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (M.V.Z.); (J.M.G.); (N.L.); (S.C.); (V.G.); (D.M.L.); (S.L.T.)
| | - Natalia Listwan
- Clinical and Translational Science Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (M.V.Z.); (J.M.G.); (N.L.); (S.C.); (V.G.); (D.M.L.); (S.L.T.)
| | - Sandra Cano
- Clinical and Translational Science Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (M.V.Z.); (J.M.G.); (N.L.); (S.C.); (V.G.); (D.M.L.); (S.L.T.)
| | - Vanessa Garcia
- Clinical and Translational Science Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (M.V.Z.); (J.M.G.); (N.L.); (S.C.); (V.G.); (D.M.L.); (S.L.T.)
| | - Debbie M. Lovato
- Clinical and Translational Science Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (M.V.Z.); (J.M.G.); (N.L.); (S.C.); (V.G.); (D.M.L.); (S.L.T.)
| | - Susan L. Tigert
- Clinical and Translational Science Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (M.V.Z.); (J.M.G.); (N.L.); (S.C.); (V.G.); (D.M.L.); (S.L.T.)
| | - Drew R. Jones
- Metabolomics Core Resource Laboratory, New York University Langone Health, New York, NY 10016, USA;
| | - Rama R. Gullapalli
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA;
| | - Neal E. Rakov
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (N.Y.); (C.L.L.); (N.E.R.); (E.G.T.P.)
| | - Euriko G. Torrazza Perez
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (N.Y.); (C.L.L.); (N.E.R.); (E.G.T.P.)
| | - Eliseo F. Castillo
- Clinical and Translational Science Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (M.V.Z.); (J.M.G.); (N.L.); (S.C.); (V.G.); (D.M.L.); (S.L.T.)
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (N.Y.); (C.L.L.); (N.E.R.); (E.G.T.P.)
| |
Collapse
|
46
|
Glucocorticosteroids and the Risk of NAFLD in Inflammatory Bowel Disease. Can J Gastroenterol Hepatol 2022; 2022:4344905. [PMID: 35600209 PMCID: PMC9117063 DOI: 10.1155/2022/4344905] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 04/13/2022] [Indexed: 02/08/2023] Open
Abstract
Each year, the incidence of nonalcoholic fatty liver (NAFLD) disease increases. NAFLD is a chronic disease. One of the most common causes of NAFLD is an inadequate lifestyle, which is characterized by a lack or low physical activity and eating highly processed foods rich in saturated fat and salt and containing low amount of fiber. Moreover, disturbances in intestinal microbiome and the use of certain drugs may predispose to NAFLD. NAFLD is an increasingly described disease in patients with inflammatory bowel disease (IBD). Recent data also indicate a frequent coexistence of metabolic syndrome in this group of patients. Certain groups of drugs also increase the risk of developing inflammation, liver fibrosis, and cirrhosis. Particularly important in the development of NAFLD are steroids, which are used in the treatment of many diseases, for example, IBD. NAFLD is one of the most frequent parenteral manifestations of the disease in IBD patients. However, there is still insufficient information on what dose and exposure time of selected types of steroids may lead to the development of NAFLD. It is necessary to conduct further research in this direction. Therefore, patients with IBD should be constantly monitored for risk factors for the development of NAFLD.
Collapse
|
47
|
Branković M, Jovanović I, Dukić M, Radonjić T, Oprić S, Klašnja S, Zdravković M. Lipotoxicity as the Leading Cause of Non-Alcoholic Steatohepatitis. Int J Mol Sci 2022; 23:ijms23095146. [PMID: 35563534 PMCID: PMC9105530 DOI: 10.3390/ijms23095146] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/30/2022] [Accepted: 04/30/2022] [Indexed: 12/11/2022] Open
Abstract
The emerging issues nowadays are non-alcoholic fatty liver disease (NAFLD) and its advanced stage non-alcoholic steatohepatitis (NASH), which further can be a predisposing factor for chronic liver complications, such as cirrhosis and/or development of hepatocellular carcinoma (HCC). Liver lipotoxicity can influence the accumulation of reactive oxygen species (ROS), so oxidative stress is also crucial for the progression of NASH. Moreover, NASH is in strong connection with metabolic disorders, and supporting evidence shows that insulin resistance (IR) is in a close relation to NAFLD, as it is involved in the progression to NASH and further progression to hepatic fibrosis. The major issue is that, at the moment, NASH treatment is based on lifestyle changes only due to the fact that no approved therapeutic options are available. The development of new therapeutic strategies should be conducted towards the potential NAFLD and NASH treatment by the modulation of IR but also by dietary antioxidants. As it seems, NASH is going to be the leading indication for liver transplantation as a consequence of increased disease prevalence and the lack of approved treatment; thus, an effective solution is needed as soon as possible.
Collapse
Affiliation(s)
- Marija Branković
- University Hospital Medical Center Bežanijska kosa, Dr Žorža Matea bb, 11000 Belgrade, Serbia; (I.J.); (M.D.); (T.R.); (S.O.); (S.K.); (M.Z.)
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
- Correspondence:
| | - Igor Jovanović
- University Hospital Medical Center Bežanijska kosa, Dr Žorža Matea bb, 11000 Belgrade, Serbia; (I.J.); (M.D.); (T.R.); (S.O.); (S.K.); (M.Z.)
| | - Marija Dukić
- University Hospital Medical Center Bežanijska kosa, Dr Žorža Matea bb, 11000 Belgrade, Serbia; (I.J.); (M.D.); (T.R.); (S.O.); (S.K.); (M.Z.)
| | - Tijana Radonjić
- University Hospital Medical Center Bežanijska kosa, Dr Žorža Matea bb, 11000 Belgrade, Serbia; (I.J.); (M.D.); (T.R.); (S.O.); (S.K.); (M.Z.)
| | - Svetlana Oprić
- University Hospital Medical Center Bežanijska kosa, Dr Žorža Matea bb, 11000 Belgrade, Serbia; (I.J.); (M.D.); (T.R.); (S.O.); (S.K.); (M.Z.)
| | - Slobodan Klašnja
- University Hospital Medical Center Bežanijska kosa, Dr Žorža Matea bb, 11000 Belgrade, Serbia; (I.J.); (M.D.); (T.R.); (S.O.); (S.K.); (M.Z.)
| | - Marija Zdravković
- University Hospital Medical Center Bežanijska kosa, Dr Žorža Matea bb, 11000 Belgrade, Serbia; (I.J.); (M.D.); (T.R.); (S.O.); (S.K.); (M.Z.)
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| |
Collapse
|
48
|
Biogenic Phytochemicals Modulating Obesity: From Molecular Mechanism to Preventive and Therapeutic Approaches. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:6852276. [PMID: 35388304 PMCID: PMC8977300 DOI: 10.1155/2022/6852276] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/05/2022] [Indexed: 02/06/2023]
Abstract
The incidence of obesity and over bodyweight is emerging as a major health concern. Obesity is a complex metabolic disease with multiple pathophysiological clinical conditions as comorbidities are associated with obesity such as diabetes, hypertension, cardiovascular disorders, sleep apnea, osteoarthritis, some cancers, and inflammation-based clinical conditions. In obese individuals, adipocyte cells increased the expression of leptin, angiotensin, adipocytokines, plasminogen activators, and C-reactive protein. Currently, options for treatment and lifestyle behaviors interventions are limited, and keeping a healthy lifestyle is challenging. Various types of phytochemicals have been investigated for antiobesity potential. Here, we discuss pathophysiology and signaling pathways in obesity, epigenetic regulations, regulatory mechanism, functional ingredients in natural antiobesity products, and therapeutic application of phytochemicals in obesity.
Collapse
|
49
|
Michels N, Zouiouich S, Vanderbauwhede B, Vanacker J, Indave Ruiz BI, Huybrechts I. Human microbiome and metabolic health: An overview of systematic reviews. Obes Rev 2022; 23:e13409. [PMID: 34978141 DOI: 10.1111/obr.13409] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/05/2021] [Accepted: 11/28/2021] [Indexed: 12/16/2022]
Abstract
To summarize the microbiome's role in metabolic disorders (insulin resistance, hyperglycemia, type 2 diabetes, obesity, hyperlipidemia, hypertension, nonalcoholic fatty liver disease [NAFLD], and metabolic syndrome), systematic reviews on observational or interventional studies (prebiotics/probiotics/synbiotics/transplant) were searched in MEDLINE and Embase until September 2020. The 87 selected systematic reviews included 57 meta-analyses. Methodological quality (AMSTAR2) was moderate in 62%, 12% low, and 26% critically low. Observational studies on obesity (10 reviews) reported less gut bacterial diversity with higher Fusobacterium, Lactobacillus reuteri, Bacteroides fragilis, and Staphylococcus aureus, whereas lower Methanobrevibacter, Lactobacillus plantarum, Akkermansia muciniphila, and Bifidobacterium animalis compared with nonobese. For diabetes (n = 1), the same was found for Fusobacterium and A. muciniphila, whereas higher Ruminococcus and lower Faecalibacterium, Roseburia, Bacteroides vulgatus, and several Bifidobacterium spp. For NAFLD (n = 2), lower Firmicutes, Rikenellaceae, Ruminococcaceae, whereas higher Escherichia and Lactobacillus were detected. Discriminating bacteria overlapped between metabolic disorders, those with high abundance being often involved in inflammation, whereas those with low abundance being used as probiotics. Meta-analyses (n = 54) on interventional studies reported 522 associations: 54% was statistically significant with intermediate effect size and moderate between-study heterogeneity. Meta-evidence was highest for probiotics and lowest for fecal transplant. Future avenues include better methodological quality/comparability, testing functional differences, new intervention strategies, and considerating other body habitats and kingdoms.
Collapse
Affiliation(s)
- Nathalie Michels
- Department of Public Health and Primary Care, Ghent University, Ghent, Belgium
| | - Semi Zouiouich
- International Agency for Research on Cancer, Lyon, France
| | - Bert Vanderbauwhede
- Department of Public Health and Primary Care, Ghent University, Ghent, Belgium
| | - Judith Vanacker
- Department of Public Health and Primary Care, Ghent University, Ghent, Belgium
| | | | | |
Collapse
|
50
|
Kemas AM, Youhanna S, Lauschke VM. Non-alcoholic fatty liver disease - opportunities for personalized treatment and drug development. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2022. [DOI: 10.1080/23808993.2022.2053285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Aurino M. Kemas
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Sonia Youhanna
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Volker M. Lauschke
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tuebingen, Tuebingen, Germany
| |
Collapse
|