1
|
Ray A, Mondal D, Chakraborty N, Ganguly S. Toxicity effects of hexavalent chromium on hematological, biochemical and digestive enzyme profiles of Labeo rohita (Hamilton, 1822). ECOTOXICOLOGY (LONDON, ENGLAND) 2024:10.1007/s10646-024-02815-2. [PMID: 39433687 DOI: 10.1007/s10646-024-02815-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/02/2024] [Indexed: 10/23/2024]
Abstract
The study provides a descriptive understanding of the toxic effect of heavy metal chromium on the hematological, biochemical, and digestive enzyme profiles in the fingerlings of Labeo rohita. The 96-h LC50 of hexavalent chromium was found to be 15.76 mg/L. Further, the toxicity study was conducted with four different sub-lethal concentrations of 96-h LC50 viz. 1/40th, 1/20th, 1/10th, and 1/5th respectively. The blood samples from the control and treated groups exposed to different concentrations were examined for various physiological parameters. The obtained data showed that, with the increase in sub-lethal concentration, a significant decrease (p < 0.05) in red blood cell (RBCs), hemoglobin (Hb), and hematocrit (Hct) was observed, while total white blood cell (WBCs), mean corpuscular volume (MCV), and mean corpuscular hemoglobin (MCH) increased significantly (p < 0.05) in all the treatments. Fishes exposed to chromium for 30 days responded by becoming hyperglycemic, hyperproteineric, and hypoalbuminemia with a gradual rise in concentrations. Alteration in the intestinal digestive enzyme profiles was also observed after 30 days of study. The activity of protease (89.76%), and amylase (41.88%) decreased in the intestine with the highest concentration compared to the control. Conversely, compared to the control, the highest concentration resulted in an increase (146%) in lipase activity. Overall, this study has greatly enhanced our comprehension of the impact of chromium toxicity on various hematological, biochemical, and digestive enzyme parameters in Labeo rohita.
Collapse
Affiliation(s)
- Archisman Ray
- Department of Zoology, Raiganj University, Raiganj, West Bengal, India
| | - Debashri Mondal
- Department of Zoology, Raiganj University, Raiganj, West Bengal, India.
| | - Nabanita Chakraborty
- Department of Aquatic Animal Health, West Bengal University of Animal and Fishery Sciences, Kolkata, West Bengal, India
| | - Shreyosree Ganguly
- Department of Industrial Fish and Fisheries, Asutosh College, Kolkata, India
| |
Collapse
|
2
|
Zhu XR, Jin Y, Zhang X, Liu QN, Tang BP. Transcriptome Analysis Reveals Immune and Antioxidant Defense Mechanisms in the Eriocheir japonica sinensis after Exposure to Ammonia. Animals (Basel) 2024; 14:2981. [PMID: 39457912 PMCID: PMC11503868 DOI: 10.3390/ani14202981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/25/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
As a key species in freshwater aquaculture, Eriocheir japonica sinensis was subjected to ammonia stress to assess its impact on the hepatopancreas. A total of 4007 differentially expressed genes (DEGs) were identified between control and treatment groups, comprising 1838 upregulated and 2169 downregulated genes. Following exposure to 300 mg/L of ammonia, the oxidative phosphorylation pathway was activated, while the lysosomal pathway was suppressed, thereby influencing immune functions. Thirteen DEGs from these pathways were further validated via qRT-PCR, revealing gene expression changes of one- to two-fold. Both acid phosphatase (ACP) and alkaline phosphatase (AKP) levels in the hepatopancreas and hemolymph initially increased and then decreased, indicating a disruption in immune functionality. Additionally, alanine transaminase (ALT) and triglyceride (TG) levels were measured, alongside catalase (CAT) activity, total antioxidant capacity (T-AOC), and malondialdehyde (MDA) content, all of which showed an upward trend, signifying oxidative stress and tissue damage. These results offer critical insights into the antioxidant and immune mechanisms of E. j. sinensis in ammonia-enriched environments.
Collapse
Affiliation(s)
- Xi-Rong Zhu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-Agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, China
- College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing 210009, China
| | - Ye Jin
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-Agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, China
| | - Xue Zhang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-Agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, College of Aquaculture and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Qiu-Ning Liu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-Agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, China
| | - Bo-Ping Tang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-Agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, China
| |
Collapse
|
3
|
Bacchetta C, Cazenave J, Mora C, Michlig MP, Repetti MR, Rossi AS. Non-lethal biomarkers as promising tools for fish health assessment: In situ exposure to bifenthrin as a case study. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 276:107083. [PMID: 39265221 DOI: 10.1016/j.aquatox.2024.107083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/24/2024] [Accepted: 09/04/2024] [Indexed: 09/14/2024]
Abstract
Non-lethal biomonitoring should provide an innovative approach to establish bioethical protocols for the management of both aquaculture and wild fisheries resources. We aimed to assess non-lethal biomarkers in Piaractus mesopotamicus caged in a rice field during a bifenthrin (BF) application. We analyzed parameters related to the immune system, energy metabolism and oxidative stress in fish skin mucus and blood plasma. Fish exposed to BF showed a significant increase in skin mucus glucose levels and the enzymatic activities of protease, alkaline phosphatase and superoxide dismutase. Regarding plasmatic parameters, BF increased the levels of glucose, total protein and albumin, but decreased triglycerides. In addition, increased activities of lysozyme and alkaline phosphatase were found in the blood plasma of exposed fish. Our results indicated an increased energy demand, altered immune function and a mild oxidative stress response in fish exposed in situ to BF. We have shown that skin mucus and blood plasma are very promising matrices for the development of non-lethal biomarkers to assess fish health in a stressed environment.
Collapse
Affiliation(s)
- Carla Bacchetta
- Instituto Nacional de Limnología, CONICET, UNL, Santa Fe, Argentina; Paraje El Pozo, Ciudad Universitaria UNL, Santa Fe 3000, Argentina
| | - Jimena Cazenave
- Instituto Nacional de Limnología, CONICET, UNL, Santa Fe, Argentina; Paraje El Pozo, Ciudad Universitaria UNL, Santa Fe 3000, Argentina; Facultad de Humanidades y Ciencias, UNL, Paraje El Pozo, Ciudad Universitaria UNL, Santa Fe 3000, Argentina
| | - Celeste Mora
- Instituto Nacional de Limnología, CONICET, UNL, Santa Fe, Argentina; Paraje El Pozo, Ciudad Universitaria UNL, Santa Fe 3000, Argentina
| | - Melina P Michlig
- Programa de Investigación y Análisis de Residuos y Contaminantes Químicos (PRINARC), Facultad de Ingeniería Química, UNL, Santiago del Estero 2654, Santa Fe 3000, Argentina
| | - María R Repetti
- Programa de Investigación y Análisis de Residuos y Contaminantes Químicos (PRINARC), Facultad de Ingeniería Química, UNL, Santiago del Estero 2654, Santa Fe 3000, Argentina
| | - Andrea S Rossi
- Instituto Nacional de Limnología, CONICET, UNL, Santa Fe, Argentina; Paraje El Pozo, Ciudad Universitaria UNL, Santa Fe 3000, Argentina; Facultad de Humanidades y Ciencias, UNL, Paraje El Pozo, Ciudad Universitaria UNL, Santa Fe 3000, Argentina.
| |
Collapse
|
4
|
Habib SS, Maqaddas S, Fazio F, El Amouri R, Shaikh GS, Rahim A, Khan K, Ullah J, Mohany M, Parrino V, Al-Eman A. Evaluation of lead exposure effects on tissue accumulation, behavior, morphological and hemato-biochemical changes in common carp, Cyprinus carpio. J Trace Elem Med Biol 2024; 86:127523. [PMID: 39243732 DOI: 10.1016/j.jtemb.2024.127523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/31/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
BACKGROUND Heavy metal pollution, particularly lead (Pb), poses a significant threat to aquatic ecosystems and their inhabitants, threatening their delicate balance and long-term viability. This study highlights the urgent need to mitigate heavy metal pollution in aquatic ecosystems. OBJECTIVE This study investigates Pb(NO3)2 exposure effects on tissue accumulation, behavioral abnormalities, and hemato-biochemical parameters in common carp (Cyprinus carpio), a widely distributed freshwater fish species. METHODOLOGY Fish (115 ± 5.23 g) were exposed to various Pb(NO3)2 concentrations for 10 and 20 days, representing control (0 %), 25 %, 50 %, and 75 % of the LC50 equivalent to 19.33, 38.66, and 58.0 mg/l, respectively. The standard manual procedure was used for blood sampling. The lead concentration in fish tissue was determined using an atomic absorption spectrophotometer. RESULTS Results revealed that fish gills showed significant (P < 0.05) increase in Pb(NO3)2 after 10 days, further rising after 20 days. Liver concentrations also rose significantly (P < 0.05) with prolonged exposure and increasing Pb levels. Muscle had lower concentrations. Hematological parameters (RBC, WBC, HB, HCT) decreased with higher Pb(NO3)2 levels. Behavioral and morphological changes were significantly more pronounced in the exposure groups when compared to the control group. Hepatic enzyme activities (AST, ALT), glucose, and lipid levels increased, while total protein decreased. CONCLUSIONS The study highlights Pb(NO3)2 harmful effects on common carp, impacting tissue accumulation, hematological parameters, and biochemical disruptions. It emphasizes the need to monitor and mitigate heavy metal pollution in aquatic environments to safeguard freshwater organisms and ecosystems, and to further increase our understanding of Pb toxicity in freshwater ecosystems.
Collapse
Affiliation(s)
- Syed Sikandar Habib
- Department of Zoology, University of Sargodha, Sargodha, Punjab 40100, Pakistan
| | - Sawera Maqaddas
- Department of Zoology, Government College University Faisalabad, Faisalabad, Punjab 38000, Pakistan
| | - Francesco Fazio
- Department of Veterinary Sciences, University of Messina, Via Palatucci, n. 13, Messina 98168, Italy.
| | - Rim El Amouri
- College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai, 201306, China
| | - Ghulam Serwar Shaikh
- Department of Biochemistry, Chandka Medical College, Shaheed Mohtarma Benazir Bhutho Medical University Larkana, Pakistan
| | - Abdur Rahim
- Department of Zoology, University of Malakand, Dir Lower, Chakdara, KP 18800, Pakistan
| | - Kaleem Khan
- Institute of Environmental and Occupational Health Sciences, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Javed Ullah
- Department of Zoology, University of Balochistan, Quetta 0971, Pakistan
| | - Mohamed Mohany
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 55760, Riyadh 11451, Saudi Arabia
| | - Vincenzo Parrino
- Department of Biomedical, Dental and Morphological and Functional Imaging Sciences, University of Messina, Via Consolare Valeria, Messina, Italy
| | - Ahmed Al-Eman
- Department of Forensic Medicine and Clinical Toxicology, Mansoura University, Egypt
| |
Collapse
|
5
|
Huang J, Fu Z, Yu W, Bai Z, Ma Z. Toxic Effects of Carbaryl Exposure on Juvenile Asian Seabass ( Lates calcarifer). J Xenobiot 2024; 14:923-938. [PMID: 39051347 PMCID: PMC11270272 DOI: 10.3390/jox14030051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/27/2024] Open
Abstract
This study examines the physiological and immunological effects of 0.5 ppm carbaryl exposure on juvenile Asian seabass (Lates calcarifer) over 12 h to 72 h. Notable results include decreased activities of liver enzymes catalase (CAT), lactate dehydrogenase (LDH), and glutathione peroxidase (GSH-PX), while superoxide dismutase (SOD) levels remained stable, with the lowest activities of CAT and GSH-PX observed at 72 h. Serum biochemistry revealed increased alkaline phosphatase (AKP) and acid phosphatase (ACP) at 24 h, with declining aspartate aminotransferase (AST) and a peak in creatinine at 48 h. Histopathological analysis showed carbaryl-induced necrosis in liver and spleen cells, and increased melanomacrophage centers in both organs. Additionally, immune gene expression analysis indicated an upregulation of heat shock proteins and consistent elevation of complement component C3 and interleukin-8 (IL-8). These findings suggest that carbaryl exposure significantly impairs organ function and modulates immune responses in L. calcarifer, underlining the need for further research on protective strategies against pesticide impacts in aquaculture.
Collapse
Affiliation(s)
- Junhua Huang
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
- Tropical Aquaculture Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Sanya 572018, China
- Hainan Engineering Research Center for Deep-Sea Aquaculture and Processing, Sanya 572018, China
- International Joint Research Center for Conservation and Application of Fishery Resources in the South China Sea, Sanya 572018, China
| | - Zhengyi Fu
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
- Tropical Aquaculture Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Sanya 572018, China
- Hainan Engineering Research Center for Deep-Sea Aquaculture and Processing, Sanya 572018, China
- International Joint Research Center for Conservation and Application of Fishery Resources in the South China Sea, Sanya 572018, China
- College of Science and Engineering, Flinders University, Adelaide 5001, Australia
| | - Wei Yu
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
- Tropical Aquaculture Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Sanya 572018, China
- Hainan Engineering Research Center for Deep-Sea Aquaculture and Processing, Sanya 572018, China
- International Joint Research Center for Conservation and Application of Fishery Resources in the South China Sea, Sanya 572018, China
| | - Zemin Bai
- Yazhou Bay Agriculture and Aquaculture Co., Ltd., Sanya 572025, China
| | - Zhenhua Ma
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
- Tropical Aquaculture Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Sanya 572018, China
- Hainan Engineering Research Center for Deep-Sea Aquaculture and Processing, Sanya 572018, China
- International Joint Research Center for Conservation and Application of Fishery Resources in the South China Sea, Sanya 572018, China
- College of Science and Engineering, Flinders University, Adelaide 5001, Australia
| |
Collapse
|
6
|
Afzal G, Ali HM, Hussain T, Hussain S, Ahmad MZ, Naseer A, Iqbal R, Aslam J, Khan A, Elsadek MF, Al-Munqedhi BM, Hussain R. Effects of sub-lethal concentrations of lindane on histo-morphometric and physio-biochemical parameters of Labeo rohita. PLoS One 2024; 19:e0304387. [PMID: 38968252 PMCID: PMC11226008 DOI: 10.1371/journal.pone.0304387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 05/10/2024] [Indexed: 07/07/2024] Open
Abstract
Lindane is a broad-spectrum insecticide widely used on fruits, vegetables, crops, livestock and on animal premises to control the insects and pests. The extensive use of pesticides and their residues in the soil and water typically join the food chain and thus accumulate in the body tissues of human and animals causing severe health effects. The study was designed to determine the toxicity effects of sub-lethal concentrations of lindane on hemato-biochemical profile and histo-pathological changes in Rohu (Labeo rohita). A significant increase in the absolute (p<0.05) and relative (p<0.05) weights was observed along with severe histo-pathological alterations in liver, kidneys, gills, heart and brain at 30μg/L and 45μg/L concentration of lindane. A significant (p<0.05) decrease in RBCs count, PCV and Hb concentration while a significant (p<0.05) increased leukocytes were observed by 30μg/L and 45μg/L concentrations of lindane at 45 and 60 days of the experiment. Serum total protein and albumin were significantly (p<0.05) decreased while hepatic and renal enzymes were significantly (p<0.05) increased due to 30μg/L and 45μg/L concentrations of lindane at days-45 and 60 of experiment compared to control group. The observations of thin blood smear indicated significantly increased number of erythrocytes having nuclear abnormalities in the fish exposed at 30μg/L and 45μg/L concentrations of lindane. ROS and TBARS were found to be significantly increased while CAT, SOD, POD and GSH were significantly decreased with an increase in the concentration and exposure time of lindane. The results showed that lindane causes oxidative stress and severe hematological, serum biochemical and histo-pathological alterations in the fish even at sub-lethal concentrations.
Collapse
Affiliation(s)
- Gulnaz Afzal
- Department of Zoology, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Hafiz Muhammad Ali
- Faculty of Veterinary and Animals Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Tariq Hussain
- Department of Basic Sciences, College of Veterinary and Animal Science, Jhang, Pakistan
| | - Shujaat Hussain
- Faculty of Veterinary and Animals Sciences, PMAS Arid Agriculture University, Rawalpindi, Pakistan
| | - Muhammad Zishan Ahmad
- Faculty of Veterinary and Animals Sciences, PMAS Arid Agriculture University, Rawalpindi, Pakistan
| | - Adeeba Naseer
- Department of Zoology, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Rehana Iqbal
- Zoology Division, Institute of Pure and Applied Biology, Bahauddin Zakariya University, Multan, Pakistan
| | - Jawaria Aslam
- Bahawalpur Medical and Dental College, Bahawalpur, Pakistan
| | - Ahrar Khan
- Shandong Vocational Animal and Veterinary Science College, Weifang, China
| | - Mohamed Farouk Elsadek
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Bandar M. Al-Munqedhi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Riaz Hussain
- Faculty of Veterinary and Animals Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| |
Collapse
|
7
|
Melefa TD, Hinmikaiye FF, Andong FA, Echude DE, Ali D, Alarifi S, Abara PN, Nwani CD. Biomorphometric and hematobiochemical alterations in the juvenile african catfish Clarias gariepinus exposed to propranolol. BMC ZOOL 2024; 9:11. [PMID: 38902830 PMCID: PMC11188512 DOI: 10.1186/s40850-024-00196-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 03/01/2024] [Indexed: 06/22/2024] Open
Abstract
Propranolol (PRO) is a beta-blocker drug used for the treatment of anxiety, chest pain, migraine and tremors. The present study investigated whether sublethal concentrations of PRO have effects on the body condition, biochemistry, and hematology of Clarias gariepinus juveniles. The 96-h median lethal concentration (LC50) of the drug, which was established through an acute toxicity study, was 9.48 mg/L. Based on these values, the fish were exposed for 21 days to the control and sublethal concentrations of 1.90, 0.95, and 0.63 mg/L, which are equivalent to the 1/5th, 1/10th, and 1/20th of the LC50 of PRO, respectively. After 21 days of exposure, the fish were removed from the toxicant and kept in toxicant-free water for 7 days to recover. The standard length and body weight of each fish were measured after each exposure period. The condition factor (CF) and hepatosomatic index (HSI) were not significantly affected by the drug. The red blood cell (RBC) count, hemoglobin (Hb) count and packed cell volume (PCV) decreased from day 7 to 21 at the tested concentrations, while the white blood cell (WBC) count significantly increased. There were alterations in the mean corpuscular volume (MCV), mean corpuscular hemoglobin concentration (MCHC), and mean corpuscular hemoglobin (MCH) in the exposed groups compared to those in the control group. When neutrophil counts increased, the lymphocyte counts decreased, but the monocyte, basophil cell and eosinophil cell counts were not affected. Among the liver enzymes, only aspartate aminotransferase was significantly stimulated in the groups that were exposed to the drug. The protein and glucose levels of fish exposed to the drug decreased. Most of the studied parameters returned to their original values after the 7-day recovery period. The information provided in the current study will be helpful in the monitoring of PRO contamination in aquatic environments.
Collapse
Affiliation(s)
- Temitope D Melefa
- Department of Zoology and Environmental Biology, University of Nigeria, Nsukka, Nigeria
| | | | - Felix A Andong
- Department of Zoology and Environmental Biology, University of Nigeria, Nsukka, Nigeria
| | - Daniel E Echude
- Department of Zoology and Environmental Biology, University of Nigeria, Nsukka, Nigeria
| | - Daoud Ali
- Department of Zoology, College of Science, King Saud University, 11451, Riyadh, PO Box 2455, Saudi Arabia
| | - Saud Alarifi
- Department of Zoology, College of Science, King Saud University, 11451, Riyadh, PO Box 2455, Saudi Arabia
| | | | - Christopher D Nwani
- Department of Zoology and Environmental Biology, University of Nigeria, Nsukka, Nigeria.
| |
Collapse
|
8
|
Khalefa HS, AbuBakr HO, Aljuaydi SH, Kotp YH, Al-Mokaddem AK, Abdel-Moneam DA. Aquatic assessment of the chelating ability of Silica-stabilized magnetite nanocomposite to lead nitrate toxicity with emphasis to their impact on hepatorenal, oxidative stress, genotoxicity, histopathological, and bioaccumulation parameters in Oreochromis niloticus and Clarias gariepinus. BMC Vet Res 2024; 20:262. [PMID: 38890656 PMCID: PMC11184684 DOI: 10.1186/s12917-024-04094-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND In recent years, anthropogenic activities have released heavy metals and polluted the aquatic environment. This study investigated the ability of the silica-stabilized magnetite (Si-M) nanocomposite materials to dispose of lead nitrate (Pb(NO3)2) toxicity in Nile tilapia and African catfish. RESULTS Preliminary toxicity tests were conducted and determined the median lethal concentration (LC50) of lead nitrate (Pb(NO3)2) to Nile tilapia and African catfish to be 5 mg/l. The sublethal concentration, equivalent to 1/20 of the 96-hour LC50 Pb(NO3)2, was selected for our experiment. Fish of each species were divided into four duplicated groups. The first group served as the control negative group, while the second group (Pb group) was exposed to 0.25 mg/l Pb(NO3)2 (1/20 of the 96-hour LC50). The third group (Si-MNPs) was exposed to silica-stabilized magnetite nanoparticles at a concentration of 1 mg/l, and the fourth group (Pb + Si-MNPs) was exposed simultaneously to Pb(NO3)2 and Si-MNPs at the same concentrations as the second and third groups. Throughout the experimental period, no mortalities or abnormal clinical observations were recorded in any of the treated groups, except for melanosis and abnormal nervous behavior observed in some fish in the Pb group. After three weeks of sublethal exposure, we analyzed hepatorenal indices, oxidative stress parameters, and genotoxicity. Values of alkaline phosphatase (ALP), gamma-glutamyl transferase (GGT), urea, and creatinine were significantly higher in the Pb-intoxicated groups compared to the control and Pb + Si-MNPs groups in both fish species. Oxidative stress parameters showed a significant decrease in reduced glutathione (GSH) concentration, along with a significant increase in malondialdehyde (MDA) and protein carbonyl content (PCC) concentrations, as well as DNA fragmentation percentage in the Pb group. However, these values were nearly restored to control levels in the Pb + Si-MNPs groups. High lead accumulation was observed in the liver and gills of the Pb group, with the least accumulation in the muscles of tilapia and catfish in the Pb + Si-MNPs group. Histopathological analysis of tissue samples from Pb-exposed groups of tilapia and catfish revealed brain vacuolation, gill fusion, hyperplasia, and marked hepatocellular and renal necrosis, contrasting with Pb + Si-MNP group, which appeared to have an apparently normal tissue structure. CONCLUSIONS Our results demonstrate that Si-MNPs are safe and effective aqueous additives in reducing the toxic effects of Pb (NO3)2 on fish tissue through the lead-chelating ability of Si-MNPs in water before being absorbed by fish.
Collapse
Affiliation(s)
- Hanan S Khalefa
- Department of Veterinary Hygiene and Management, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
| | - Huda O AbuBakr
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
- Department of Biochemistry, Faculty of Veterinary Medicine, Egyptian Chinese University, Cairo, Egypt
| | - Samira H Aljuaydi
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Yousra H Kotp
- Hydrogeochemistry Department, Desert Research Center, Cairo, 11753, Egypt
| | - Asmaa K Al-Mokaddem
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Dalia A Abdel-Moneam
- Department of Aquatic Animal Medicine and Management, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
| |
Collapse
|
9
|
Peng FJ, Palazzi P, Mezzache S, Adelin E, Bourokba N, Bastien P, Appenzeller BMR. Glucocorticoid hormones in relation to environmental exposure to bisphenols and multiclass pesticides among middle aged-women: Results from hair analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123839. [PMID: 38522601 DOI: 10.1016/j.envpol.2024.123839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/15/2024] [Accepted: 03/20/2024] [Indexed: 03/26/2024]
Abstract
Bisphenols and pesticides have been shown to alter circulating glucocorticoids levels in animals, but there is limited human data. Moreover, measurements from biological fluids may not be able to reflect long-term status of non-persistent pollutants and glucocorticoids due to the high variability in their levels. Using hair analysis, we examined the associations between glucocorticoid hormones and environmental exposure to multi-class organic pollutants among a healthy female population aged 25-45 years old. Concentrations of four glucocorticoids, four polychlorinated biphenyl congeners (PCBs), seven polybrominated diphenyl ether congeners (PBDEs), two bisphenols and 140 pesticides and their metabolites were measured in hair samples collected from 196 Chinese women living in urban areas. Due to the low detection frequency of some pollutants, associations were explored only on 54 pollutants, i.e. PCB 180, bisphenol A, bisphenol S and 51 pesticides and their metabolites. Using stability-based Lasso regression, there were associations of cortisol, tetrahydrocortisol, cortisone, and tetrahydrocortisone with 14, 10, 13 and 17 biomarkers of exposure to pollutants, respectively, with bisphenol S, p,p'-dichlorodiphenyldichloroethylene, diethyl phosphate, 3,5,6-trichloro-2-pyridinol, thiamethoxam, imidacloprid, fipronil, tebuconazole, trifluralin, pyraclostrobin and 1-(3,4-dichlorophenyl)-3-methylurea being associated with at least three of the four hormones. There were also associations between cortisone/cortisol molar ratio and pollutants, namely dimethyl phosphate, 3-methyl-4-nitrophenol, carbofuran, λ-cyhalothrin, permethrin, fipronil, flusilazole, prometryn and fenuron. Some of these relationships were confirmed by single-pollutant linear regression analyses. Overall, our results suggest that background level of exposure to bisphenols and currently used pesticides may interfere with the glucocorticoid homeostasis in healthy women.
Collapse
Affiliation(s)
- Feng-Jiao Peng
- Human Biomonitoring Research Unit, Department of Precision Health, Luxembourg Institute of Health, 1 A-B Rue Thomas Edison, 1445, Strassen, Luxembourg
| | - Paul Palazzi
- Human Biomonitoring Research Unit, Department of Precision Health, Luxembourg Institute of Health, 1 A-B Rue Thomas Edison, 1445, Strassen, Luxembourg
| | - Sakina Mezzache
- L'Oréal Research and Innovation, 1 Avenue Eugène Schueller BP22, 93601, Aulnay Sous Bois, France
| | - Emilie Adelin
- L'Oréal Research and Innovation, 1 Avenue Eugène Schueller BP22, 93601, Aulnay Sous Bois, France
| | - Nasrine Bourokba
- L'Oréal Research and Innovation, Biopolis Drive, Synapse, 138623, Singapore
| | - Philippe Bastien
- L'Oréal Research and Innovation, 1 Avenue Eugène Schueller BP22, 93601, Aulnay Sous Bois, France
| | - Brice M R Appenzeller
- Human Biomonitoring Research Unit, Department of Precision Health, Luxembourg Institute of Health, 1 A-B Rue Thomas Edison, 1445, Strassen, Luxembourg.
| |
Collapse
|
10
|
Aliu C, Ajayi OO, Olawuyi TS, Gbadamosi OK, Barbosa F, Adedire CO, Adeyemi JA. Tissue Accumulation, Cytotoxicity, Oxidative Stress, and Immunotoxicity in African Catfish, Clarias gariepinus Exposed to Sublethal Concentrations of Hexavalent Chromium. Biol Trace Elem Res 2024; 202:2294-2307. [PMID: 37608130 DOI: 10.1007/s12011-023-03812-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 08/09/2023] [Indexed: 08/24/2023]
Abstract
Hexavalent chromium (Cr6+) is one of the stable oxidation states of chromium that has been reported to elicit various toxic effects in aquatic organisms. However, the mechanisms of Cr6+ toxicity are still poorly understood. Thus, the present study investigated the tissue accumulation, cytotoxic, oxidative stress, and immunotoxic effects of Cr6+ in juvenile Clarias gariepinus. The fish were exposed to waterborne Cr6+ concentrations (0, 0.42, 0.84, and 1.68 mg/L) for 28 days, after which they were sacrificed and various organs were harvested for the determination of Cr6+ levels. Other parameters that were indicators of oxidative stress, cytotoxicity, and immunotoxicity were measured. Cr6+ accumulated more in the kidney and liver of the exposed fish, especially at the highest concentration. The levels of lipid peroxidation and DNA fragmentation increased significantly in the exposed fish. The activities of superoxide dismutase and lactate dehydrogenase increased significantly in exposed fish compared to the control. The total white blood cells, lymphocytes, and neutrophils counts were significantly higher in the exposed fish compared to the control fish. The respiratory burst activity decreased significantly in the exposed fish while the myeloperoxidase content did not differ significantly. There were upregulations of TNF-α and HSP 70 while CYP II and MHC 2 were downregulated in the exposed fish. Also, exposure to Cr6+ resulted in various histopathological alterations in the architecture of the head kidney. The results indicate concentration-dependent toxic effects of Cr6+ in C. gariepinus. The study reveals the potentials of Cr6+ to accumulate in the different tissues of fish and caused cytotoxic, oxidative stress, and immunotoxic effects in the exposed fish.
Collapse
Affiliation(s)
- Christian Aliu
- Department of Biology, School of Life Sciences, Federal University of Technology, P.M.B. 704, Akure, Ondo State, Nigeria
| | - Ogooluwa O Ajayi
- Department of Biology, School of Life Sciences, Federal University of Technology, P.M.B. 704, Akure, Ondo State, Nigeria
| | - Toluwase S Olawuyi
- Department of Human Anatomy, School of Basic Medical Sciences, Federal University of Technology, P.M.B. 704, Akure, Ondo State, Nigeria
| | - Oluyemi K Gbadamosi
- Department of Fisheries and Aquaculture Technology, School of Agriculture and Agricultural Technology, Federal University of Technology, P.M.B. 704, Akure, Ondo State, Nigeria
| | - Fernando Barbosa
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Cafe´ s/no, CEP 14040-903 Ribeirão Preto, São Paulo, Brazil
| | - Chris O Adedire
- Department of Biology, School of Life Sciences, Federal University of Technology, P.M.B. 704, Akure, Ondo State, Nigeria
| | - Joseph A Adeyemi
- Department of Biology, School of Life Sciences, Federal University of Technology, P.M.B. 704, Akure, Ondo State, Nigeria.
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Cafe´ s/no, CEP 14040-903 Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
11
|
de Souza SS, Bruce KHR, da Costa JC, Pereira D, da Silva GS, Val AL. Effects of climate change and mixtures of pesticides on the Amazonian fish Colossoma macropomum. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171379. [PMID: 38431165 DOI: 10.1016/j.scitotenv.2024.171379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
Several studies highlighted the complexity of mixing pesticides present in Amazonian aquatic environments today. There is evidence that indicates that ongoing climate change can alter the pattern of pesticide use, increasing the concentration and frequency of pesticide applications. It is known that the combination of thermal and chemical stress can induce interactive effects in aquatic biota, which accentuates cell and molecular damage. However, considering that the effects of climate change go beyond the increase in temperature the objective of this study was to evaluate the effect of climate change scenarios proposed by 6 th IPCC report and a mixture of pesticides on the tambaqui (Colossoma macropomum). The hypothesis of this study is that the negative effects will be accentuated by the combination of an extreme climate changes scenario and a mixture of pesticides. To test the hypothesis, juvenile tambaqui were exposed to a combination of four pesticides (chlorpyrifos, malathion, carbendazim and atrazine) in two scenarios, one that simulates current environmental conditions and another that predicted the environmental scenario for the year 2100. Fish were subjected to the experimental conditions for 96 h. At the end of the experiment, samples of blood, gills, liver, brain, and muscle were obtained for hematological, genotoxic, biochemical, and histopathological analyses. The results demonstrate that environmentally realistic concentrations of pesticides, when mixed, can alter the biochemical responses of tambaqui. The extreme scenario promotes hematological adjustments, but impairs branchial antioxidant enzymes. There is an interaction between the mixture of pesticides and the extreme scenario, accentuating liver tissue damage, which demonstrates that even increased activity of antioxidant and biotransformation enzymes were not sufficient to prevent liver damage.
Collapse
Affiliation(s)
- Samara Silva de Souza
- Laboratory of Ecophysiology and Molecular Evolution, National Institute for Amazonian Research (INPA), Manaus, AM, Brazil.
| | - Kerem Hapuque Rodrigues Bruce
- Laboratory of Ecophysiology and Molecular Evolution, National Institute for Amazonian Research (INPA), Manaus, AM, Brazil
| | - Jaqueline Custódio da Costa
- Laboratory of Ecophysiology and Molecular Evolution, National Institute for Amazonian Research (INPA), Manaus, AM, Brazil
| | - Desyree Pereira
- Department of Morphology, Institute of Biological Science (ICB), Federal University of Amazonas (UFAM), Manaus, AM, Brazil
| | - Grazyelle Sebrenski da Silva
- Department of Morphology, Institute of Biological Science (ICB), Federal University of Amazonas (UFAM), Manaus, AM, Brazil
| | - Adalberto Luis Val
- Laboratory of Ecophysiology and Molecular Evolution, National Institute for Amazonian Research (INPA), Manaus, AM, Brazil
| |
Collapse
|
12
|
Banjare LK, Saha H, Acharya A, Khan MIR. Investigating the impact of external application of formalin and potassium permanganate on hematological, immunological, and biochemical profiles in Labeo rohita fingerlings. Drug Chem Toxicol 2024:1-13. [PMID: 38508688 DOI: 10.1080/01480545.2024.2318654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 02/08/2024] [Indexed: 03/22/2024]
Abstract
The present study aimed to elucidate the suitability of formalin and KMnO4 as therapeutics for fish diseases in Indian major carp, Labeo rohita, while considering their impact on fish stress levels. Acute toxicity tests revealed that the 96-hour LC50 values for formalin and KMnO4 were 66.58 ppm and 2.89 ppm, respectively. Sub-lethal concentrations of formalin (6.65 ppm, 3.32 ppm, and 2.21 ppm) and KMnO4 (0.289 ppm, 0.145 ppm, and 0.096 ppm), along with control groups, were administered to the fish for different exposure periods (24, 48, 72, and 96 hours) and different hematological, biochemical, and immunological parameters were analyzed. The findings demonstrated that formalin exposure resulted in a significant decrease (p < 0.05) in hematological parameters, immunological parameters, and serum protein levels. Conversely, formalin exposure led to significant increases (p < 0.05) in serum glucose, SGOT, SGPT, and ALP levels. In contrast, KMnO4 exposure significantly decreased (p < 0.05) hematological parameters and serum protein levels, while significantly increasing (p < 0.05) immunological parameters. To evaluate curative efficacy, challenge studies were conducted using three sub-lethal concentrations of formalin and KMnO4 against Aeromonas hydrophila (ATCC 7966) infection. Based on the aforementioned results, the recommended doses of formalin and KMnO4 were found to be 6.65 ppm and 0.289 ppm, respectively.
Collapse
Affiliation(s)
- Lukesh Kumar Banjare
- Department of Aquatic Health and Environment, College of Fisheries, Central Agricultural University (I), Lembucherra, India
| | - Himadri Saha
- Department of Aquatic Health and Environment, College of Fisheries, Central Agricultural University (I), Lembucherra, India
| | - Arpit Acharya
- Department of Aquatic Health and Environment, College of Fisheries, Central Agricultural University (I), Lembucherra, India
| | - Md Idrish Raja Khan
- Department of Aquatic Health and Environment, College of Fisheries, Central Agricultural University (I), Lembucherra, India
| |
Collapse
|
13
|
Abdel-Wahhab KG, Elqattan GM, El-Sahra DG, Hassan LK, Sayed RS, Mannaa FA. Immuno-antioxidative reno-modulatory effectiveness of Echinacea purpurea extract against bifenthrin-induced renal poisoning. Sci Rep 2024; 14:5892. [PMID: 38467789 PMCID: PMC10928203 DOI: 10.1038/s41598-024-56494-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 03/07/2024] [Indexed: 03/13/2024] Open
Abstract
This study was conducted to evaluate the ameliorative, anti-inflammatory, antioxidant, and chemical detoxifying activities of Echinacea purpurea ethanolic extract (EEE) against bifenthrin-induced renal injury. Adult male albino rats (160-200 g) were divided into four groups (10 rats each) and orally treated for 30 days as follows: (1) normal control; (2) healthy animals were treated with EEE (465 mg/kg/day) dissolved in water; (3) healthy animals were given bifenthrin (7 mg/kg/day) dissolved in olive oil; (4) animals were orally administered with EEE 1-h prior bifenthrin intoxication. The obtained results revealed that administration of the animals with bifenthrin caused significant elevations of serum values of urea, creatinine, ALAT and ASAT, as well as renal inflammatory (IL-1β, TNF-α & IFN-γ), apoptotic (Caspase-3) and oxidative stress (MDA and NO) markers coupled with a marked drop in the values of renal antioxidant markers (GSH, GPx, and SOD) in compare to those of normal control. Administration of EEE prior to bifenthrin resulted in a considerable amelioration of the mentioned deteriorated parameters near to that of control; moreover, the extract markedly improved the histological architecture of the kidney. In conclusion, Echinacea purpurea ethanolic extract has promising ameliorative, antioxidant, anti-inflammatory, renoprotective, and detoxifying efficiencies against bifenthrin-induced renal injury.
Collapse
Affiliation(s)
| | - Ghada M Elqattan
- Medical Physiology Department, National Research Centre, Giza, 12622, Egypt
| | - Doaa G El-Sahra
- Modern University for Technology and Information, Cairo, Egypt
| | - Laila K Hassan
- Dairy Department, National Research Centre, Giza, 12622, Egypt
| | - Rehab S Sayed
- Regional Center for Food and Feed, Agriculture Research Centre, Giza, Egypt
| | - Fathia A Mannaa
- Medical Physiology Department, National Research Centre, Giza, 12622, Egypt
| |
Collapse
|
14
|
Zaman M, Khan FU, Younas W, Noorullah M, Ullah I, Li L, Zuberi A, Wang Y. Physiological and histopathological effects of polystyrene nanoparticles on the filter-feeding fish Hypophthalmichthys molitrix. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169376. [PMID: 38104827 DOI: 10.1016/j.scitotenv.2023.169376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023]
Abstract
Excessive use of plastics in daily life is causing plastic pollution in aquatic environment and threatening the aquatic life. Therefore, research on the plastic pollution in aquatic environment is crucial to understand its impact and develop effective solution for safeguarding aquatic life and ecosystem. The current study investigated the effects of water borne polystyrene nanoparticles (PS-NPs) on hemato-immunological indices, serum metabolic enzymes, gills, and liver antioxidant parameters, plasma cortisol level and histopathological changes in liver and gill tissues of the widely distributed fish Hypophthalmichthys molitrix. The fingerlings of H. molitrix were exposed to different concentrations (T1-0.5, T2-1.0, and T3-2.0 mg/L) of PS-NPs respectively for 15 days consecutively. Our results indicated the dose dependent negative effects of PS-NPs on the physiology and histopathology of H. molitrix. Immuno-hematological indices showed significant increase in WBCs count, phagocytic activity, and lysozyme activity, while decreased RBC count, Hct%, Hb level, total proteins, IgM, and respiratory burst activity were observed. The levels of antioxidant enzymes like SOD, CAT and POD showed the decreasing trends while metabolic enzymes (AST, ALT, ALP and LDH), LPO, ROS activities and relative expressions of SOD1, CAT, HIF1-α and HSP-70 genes increased with increased concentrations of PS-NPs. Moreover, blood glucose and cortisol levels also showed significant increasing trends with dose dependent manner. Histopathological examination indicated moderate to severe changes in the gills and liver tissues of the group treated with 2.0 mg/L of PS-NPs. Overall, the results showed the deleterious effects of PS-NPs on physiology, immunity, metabolism, and gene expressions of H. molitrix. It is concluded that particulate plastic pollution has deleterious effects on filter feeding fish, which might affect human health through food chain and particulate chemical toxicity.
Collapse
Affiliation(s)
- Muhib Zaman
- Fisheries & Aquaculture Lab, Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Fahim Ullah Khan
- Fisheries & Aquaculture Lab, Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Waqar Younas
- Fisheries & Aquaculture Lab, Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Muhammad Noorullah
- Fisheries & Aquaculture Lab, Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Imdad Ullah
- Fisheries & Aquaculture Lab, Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Li'ang Li
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Amina Zuberi
- Fisheries & Aquaculture Lab, Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| | - Youji Wang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
15
|
Zhong GF, Zhang LF, Zhuang Y, Li Q, Huang H, Cao C, Zhu ZY, Huang ZY, Wang NA, Yuan K. Effects of Brown Fishmeal on Growth Performance, Digestibility, and Lipid Metabolism of the Chinese Soft-Shelled Turtle (Pelodiscus sinensis). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:28-36. [PMID: 38165638 DOI: 10.1007/s10126-023-10274-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/06/2023] [Indexed: 01/04/2024]
Abstract
The aim of this study was to evaluate the effect of brown fishmeal in replacement of white fishmeal in the diet of Chinese soft-shelled turtles and to find the optimal amount of brown fishmeal to add. Five experimental groups were set up and fed to animals, and they were composed by different proportions of white and brown fishmeal: G1 (30% white and 25% brown fishmeal), G2 (25% white and 30% brown fishmeal), G3 (20% white and 35% brown fishmeal), G4 (15% white and 40% brown fishmeal), G5 (10% white and 45% brown fishmeal). G1 is regarded as the control group. Turtles were randomly divided into five experimental groups with four replicates each. The experiment lasted 72 days. The results showed that the WGR, SGR, FCR, and HSI of the G3 group were not significantly different from those of the control group (P > 0.05). In addition, brown fishmeal can increase the crude protein content in the muscles of them. Among the serum biochemical indices, there was no significant difference between the G3 group and the G1 group, except for the level of TG (P > 0.05). Meanwhile, the activities of AST, ALT, and CAT in the liver of the G3 group did not differ significantly from those of the G1 group (P > 0.05). However, the activities of ACP, AKP, and T-AOC were significantly decreased in the G3 group (P < 0.05). In addition, the alteration of fishmeal did not affect the digestive enzyme activities in the stomach, liver, and intestine, and there is no significant difference (P > 0.05). Importantly, with increasing brown fishmeal addition, the expression of Fas, Pparγ, Scd, and Stat3 showed a significant increase, while the expression of Bmp4 decreased significantly (P < 0.05). In this study, the addition of 20% white fishmeal and 35% brown fishmeal to the diet of Chinese soft-shelled turtles did not adversely affect growth performance. Therefore, 20% white fishmeal and 35% brown fishmeal are the most practical feed formulations for Chinese soft-shelled turtles in this study.
Collapse
Affiliation(s)
- Guo-Fang Zhong
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China.
- Centre for Research on Environmental Ecology and Fish Nutrition (CREEFN) of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China.
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai, 201306, China.
| | - Liang-Fa Zhang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Yi Zhuang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Qi Li
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - He Huang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Cong Cao
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Zhan-Ying Zhu
- Zhejiang Huzhou Haihuang Bio-Technology Co., Ltd., Huzhou, 313000, China
| | - Zhong-Yuan Huang
- Zhejiang Huzhou Haihuang Bio-Technology Co., Ltd., Huzhou, 313000, China
| | - Nu-An Wang
- South China Agricultural University, Guangzhou, 510640, China
| | - Kun Yuan
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China.
| |
Collapse
|
16
|
Khan NH, Jiang E, Qureshi IZ. Effect of Fipronil Exposure on Hematological Aspects of Rhesus Monkeys ( Macaca mulatta): Risk and Toxicity Assessment in Agro-Workers. J Inflamm Res 2023; 16:5755-5765. [PMID: 38170119 PMCID: PMC10759453 DOI: 10.2147/jir.s386145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 09/05/2023] [Indexed: 01/05/2024] Open
Abstract
Background Fipronil (FPN) is a broad-spectrum phenylpyrazole insecticide, widely used in agriculture and veterinary medicine. Published research on FPN toxicity has established the fact that its inhalation or dermal exposure may lead to very serious clinical outcomes in non-target animals. In line to its exposure and toxicity related damage, FPN has been investigated in many invertebrates, however, its exposure-related noxiousness is less reported in higher animals. Objective To assess the FPN-induced effects to agro-workers in the field, in the present study, we used physiological human surrogates, adult rhesus monkeys as models. Method We exposed well habituated, chair restraint adult rhesus monkeys with a field spray concentration of FPN (0.3 mg/1 mL distilled water) through an inhalation route in the closed system. Animals were divided into control and treatment groups, each containing three animals. Inflammatory and hematological effects were determined by evaluating the kidney and liver biomarker enzymes; serum creatinine and alanine transaminase (ALT), aspartate transaminase (AST) levels respectively. Results Our findings reveal that FPN treated monkeys show significantly increased levels of ALT (p = 0.000461), AST (p = 0.0681) and creatinine (p = 0.00656) as compared to the control group. Furthermore, significant differences of red blood cells (RBCs) (p = 0.0139) and white blood cells (WBCs) (p = 0.00642) were also observed in the treated and control group monkeys which reflect strong toxic effects on the blood cells. Conclusion Our findings demonstrate that FPN exposure is very toxic to higher animals and causes severe damage to the liver and kidneys along with other clinical problems. The study highlights the effect and impact of passive inhalation of insecticides in intentionally carefree agro-workers and raises the concern of public awareness toward pesticides use.
Collapse
Affiliation(s)
- Nazeer Hussain Khan
- Human and Animal Physiology Laboratory, Department of Animal Sciences, Quaid-I-Azam University, Islamabad, 44000, Pakistan
- Institute of Nursing and Health, Henan University, Kaifeng, Henan, 475004, People’s Republic of China
| | - Enshe Jiang
- Institute of Nursing and Health, Henan University, Kaifeng, Henan, 475004, People’s Republic of China
| | - Irfan Zia Qureshi
- Human and Animal Physiology Laboratory, Department of Animal Sciences, Quaid-I-Azam University, Islamabad, 44000, Pakistan
| |
Collapse
|
17
|
Ishaq S, Jabeen G, Arshad M, Kanwal Z, Un Nisa F, Zahra R, Shafiq Z, Ali H, Samreen KB, Manzoor F. Heavy metal toxicity arising from the industrial effluents repercussions on oxidative stress, liver enzymes and antioxidant activity in brain homogenates of Oreochromis niloticus. Sci Rep 2023; 13:19936. [PMID: 37968305 PMCID: PMC10652000 DOI: 10.1038/s41598-023-47366-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/13/2023] [Indexed: 11/17/2023] Open
Abstract
Industrial effluents reaching to the aquatic ecosystem is one of the major causes of environmental pollution and exposure to industrial effluents containing harmful substances may be a serious threat to human health. Therefore, the present study aimed to determine the sub-lethal (1/5th of predetermined LC50) impact of industrial effluents from Sundar Industrial Estate on Oreochromis niloticus with proper negative control. The physicochemical analysis of industrial effluents showed enormous loads of inorganic pollutants and exhibited high mean levels of heavy metals, Mn, Fe, Pb, Ni, Cr, Hg, As, Zn and Fe with statistically significant differences at p < 0.05. Highest level of Mn and Fe was detected in effluent's samples as 147.36 ± 80.91 mg/L and 90.52 ± 32.08 mg/L, respectively. Exposure led to increase in serum biochemical parameters alanine aminotransferase + 25%, aspartate aminotransferase + 20% and alkaline phosphatase + 7% over control although superoxide dismutase, catalase, glutathione peroxidase and reduced glutathione significantly increased as 3.42, 2.44, 4.8 and 8 folds, respectively in metabolically active tissue brain which indicated stress caused by industrial effluents. The results concluded that industrial effluent has potent oxidative stress inducers on one hand whereas histoarchitectural and physiological toxicity causing contaminants on the other. This condition may adversely affect the health of aquatic organisms, the fish and ultimately the human beings.
Collapse
Affiliation(s)
- Sarwat Ishaq
- Department of Zoology, Lahore College for Women University, Lahore, Pakistan
| | - Ghazala Jabeen
- Department of Zoology, Lahore College for Women University, Lahore, Pakistan.
| | - Mateen Arshad
- Department of Zoology, Lahore College for Women University, Lahore, Pakistan
| | - Zakia Kanwal
- Department of Zoology, Lahore College for Women University, Lahore, Pakistan
| | - Fakhar Un Nisa
- Department of Zoology, Lahore College for Women University, Lahore, Pakistan
| | - Rida Zahra
- Department of Zoology, Lahore College for Women University, Lahore, Pakistan
| | - Zunaira Shafiq
- Department of Zoology, Lahore College for Women University, Lahore, Pakistan
| | - Hassan Ali
- Punjab Wildlife and Parks Department, Lahore, Pakistan
| | - Khush Bakht Samreen
- Department of Zoology, Lahore College for Women University, Lahore, Pakistan
| | - Farkhanda Manzoor
- Department of Zoology, Lahore College for Women University, Lahore, Pakistan
| |
Collapse
|
18
|
Shiry N, Darvishi P, Gholamhossieni A, Pastorino P, Faggio C. Exploring the combined interplays: Effects of cypermethrin and microplastic exposure on the survival and antioxidant physiology of Astacus leptodactylus. JOURNAL OF CONTAMINANT HYDROLOGY 2023; 259:104257. [PMID: 37922724 DOI: 10.1016/j.jconhyd.2023.104257] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/28/2023] [Accepted: 10/17/2023] [Indexed: 11/07/2023]
Abstract
Plastic waste and micro/nanoplastic particles pose a significant global environmental challenge, along with concerns surrounding certain pesticides' impact on aquatic organisms. This study investigated the effects of microplastic particles (MPPs) and cypermethrin (CYP) on crayfish, focusing on biochemical indices, lipid peroxidation, oxidative stress, hematological changes, and histopathological damage. After determining the LC50-96 h value (4.162 μg/L), crayfish were exposed to sub-lethal concentrations of CYP (1.00 ppb (20%) and 2.00 ppb (50%)) and fed a diet containing 100 mg/kg MPPs for 60 days. Hemolymph transfusion and histopathological examinations of the hepatopancreas were conducted. The results showed significant alterations in crayfish. Total protein levels decreased, indicating protein breakdown to counteract contaminants, while total cholesterol and triglyceride levels declined, suggesting impaired metabolism. Glucose levels increased in response to chemical stress. The decline in total antioxidant capacity highlighted the impact of prolonged xenobiotic exposure and oxidative stress, while increased CAT, SOD, and MDA activities helped mitigate oxidative stress and maintain cellular homeostasis. The elevated total hemocyte count, particularly in semi-granular cells, suggests their active involvement in the detoxification process. Further research is needed to fully understand the implications of these effects.
Collapse
Affiliation(s)
- Nima Shiry
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran; Iran Fisheries Organization, Administration of Khuzestan Province, Abadan, Iran
| | - Paria Darvishi
- Iran Fisheries Organization, Administration of Khuzestan Province, Abadan, Iran; Department of Fisheries, Faculty of Natural Resources, University of Tehran, Karaj, Iran
| | - Amin Gholamhossieni
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Paolo Pastorino
- The Veterinary Medical Research Institute for Piemonte, Liguria and Valle d'Aosta, via Bologna, Torino, Italy
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.
| |
Collapse
|
19
|
Khorshidi Z, Sarvi Moghanlou K, Imani A, Behrouzi S. Impact of dietary curcumin administration along with feed-born silver nanoparticle on growth, hemato-biochemical parameters, and digestive enzyme activity of common carp ( Cyprinus carpio). VETERINARY RESEARCH FORUM : AN INTERNATIONAL QUARTERLY JOURNAL 2023; 14:567-573. [PMID: 37901352 PMCID: PMC10612394 DOI: 10.30466/vrf.2023.1982714.3708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/09/2023] [Indexed: 10/31/2023]
Abstract
This research explored the impacts of feed-born silver nanoparticles (AgNPs) on common carp (Cyprinus carpio) and whether dietary curcumin supplementation could ameliorate the impacts of AgNPs on growth, hemato-biochemical parameters and digestive enzyme activity. Nine experimental diets were prepared containing 0.00, 0.05, and 0.15 g kg-1 AgNPs, as well as 0.00, 0.75, and 1.50 g kg-1 curcumin in a factorial design. Triplicate groups of common carp (4.82 ± 0.41 g) were fed on the test diets for 60 days. The results demonstrated that AgNPs reduced growth performance and enhanced the feed conversion ratio dose-dependently. Supplementing 0.75 g kg-1 curcumin at a low AgNP level improved the growth rate, while its inclusion at a high AgNP level led to further suppression of growth performance. The highest hematocrit value, hemoglobin concentration and white blood cell count were recorded in the group receiving 0.75 g kg-1 curcumin. Serum glucose, cholesterol and triglyceride concentrations were elevated by increasing AgNP levels. However, curcumin inclusion, particularly at the lower level of AgNPs significantly decreased their values. Similarly, intestinal alkaline protease and lipase activities were progressively reduced by increasing dietary AgNP contents, but, significant improvements were observed by curcumin application at the lower AgNP level. Our results revealed that curcumin supplementation could limit the toxic effects of lower dietary AgNP contents.
Collapse
Affiliation(s)
- Zohre Khorshidi
- Department of Fisheries, Faculty of Natural Resources, Urmia University, Urmia, Iran;
| | | | - Ahmad Imani
- Department of Fisheries, Faculty of Natural Resources, Urmia University, Urmia, Iran;
| | - Shahryar Behrouzi
- Department of Comparative Histology, Ecology Institute of Caspian Sea, Sari, Iran.
| |
Collapse
|
20
|
Sarkheil M, Zahedi S, Safari O, Ahmadniaye Motlagh H. Effects of humic acid on nutrient removal efficiency of aquatic duckweed ( Lemna minor) and both growth performance, and hemato-biochemical parameters of Nile tilapia ( Oreochromis niloticus) cultured in water recirculating system. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2023; 26:481-492. [PMID: 37626022 DOI: 10.1080/15226514.2023.2250459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2023]
Abstract
This study was carried out to evaluate the effects of humic acid (HA) on the nutrient removal efficiencies of aquatic duckweed plant (Lemna minor) from a water recirculating system used to culture Nile tilapia (Oreochromis niloticus) fish for 30 days. The HA was added to water at three concentrations of 0 (Control), 1.5, and 3 mg/L in triplicate. Water quality parameters, growth performance, and some hemato-biochemical parameters of the fish in variable HA concentrations were compared. The total ammonia nitrogen (TAN) and total phosphorous (TP) removal efficiency of L. minor increased with increasing the HA concentration from 0 mg/L to 3 mg/L (p < 0.05). The concentration of nitrate (NO3-) in the HA-3 mg/L was higher than that in the other groups on days 20 and 30 of the fish cultivation period (p < 0.05). The growth performance of fish improved in the HA-3 mg/L compared to the other groups. The addition of different concentrations of HA to water had no adverse effect on the hematological properties of the Nile tilapia. The plasma aspartate aminotransferase (AST), alanine aminotransferase (ALT), and alkaline phosphatase (ALP) levels in the HA-0 mg/L and HA-1.5 mg/L groups were higher than in the HA-3 mg/L (p < 0.05). No significant differences in the plasma glucose and cholesterol levels were observed between the HA-groups (p > 0.05), while the triglyceride level increased in the HA-3 mg/L compared to the control (p < 0.05). These results indicated that adding HA to water could be an effective method to enhance the bioremediation performance of the aquatic duckweed plants as biofilter and thus improve water quality, subsequently, fish growth performance in RASs.
Collapse
Affiliation(s)
- Mehrdad Sarkheil
- Department of Fisheries, Faculty of Natural Resources and Environment, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Saeed Zahedi
- Department of Fisheries, Faculty of Natural Resources and Environment, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Omid Safari
- Department of Fisheries, Faculty of Natural Resources and Environment, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Hamidreza Ahmadniaye Motlagh
- Department of Fisheries, Faculty of Natural Resources and Environment, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
21
|
Kumar Reddy CP, Manikandavelu D, Arisekar U, Ahilan B, Uma A, Jayakumar N, Kim W, Govarthanan M, Harini C, Vidya RS, Madhavan N, Kumar Reddy DR. Toxicological effect of endocrine disrupting insecticide (deltamethrin) on enzymatical, haematological and histopathological changes in the freshwater iridescent shark, Pangasius hypothalamus. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023:104201. [PMID: 37391053 DOI: 10.1016/j.etap.2023.104201] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/03/2023] [Accepted: 06/26/2023] [Indexed: 07/02/2023]
Abstract
This study investigated the deltamethrin (DMN) induced harmful effects on Pangasius hypophthalmus using enzymatic activity, haematological, and histopathological changes. LC50 value was 0.021mg/L at 96h, and sublethal toxicity was tested for 45 days at two `concentrations (i.e., 1/5th and 1/10th of LC50). Haematological parameters and enzymatic activities significantly changed between DMN-exposed and control groups (p<0.05). Histopathologically, both DMN doses induced liver hyperemia, hepatic cell rupture, necrosis, hypertrepheoid bile duct, shifting nuclei, vascular haemorrhage, and hepatocyte degeneration, while in gill, secondary lamellae destruction, a fusion of adjacent gill lamellae, hypertrophy, hyperplasia, adhesion, and fusion were noticed. Kidney developed melanomacrophages, increased periglomerular and peritubular space, vacuolation, decreased glomerulus, hyaline droplets in tubular cells, loss of tubular epithelium, distal convoluted segment hypertrophy, and granular layer in brain pyramid and Purkinje cell nucleus. But, limiting pesticide impacts on freshwater fish and their habitat requires a holistic, cradle-to-grave approach and toxicological studies.
Collapse
Affiliation(s)
| | - D Manikandavelu
- Dr. M.G. R. Fisheries College and Research Institute, Tamil Nadu Fisheries University,Ponneri - 601 204, India
| | - Ulaganathan Arisekar
- Department of Fish Quality Assurance and Management Fisheries College and Research Institute, Tamil Nadu Fisheries University, Thoothukudi - 628 008, Tamil Nadu, India.
| | - B Ahilan
- Dr. M.G. R. Fisheries College and Research Institute, Tamil Nadu Fisheries University,Ponneri - 601 204, India
| | - A Uma
- Dr. M.G. R. Fisheries College and Research Institute, Tamil Nadu Fisheries University,Ponneri - 601 204, India
| | - N Jayakumar
- Dr. M.G. R. Fisheries College and Research Institute, Tamil Nadu Fisheries University,Ponneri - 601 204, India
| | - Woong Kim
- Department of Environmental Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Muthusamy Govarthanan
- Department of Environmental Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu 600077, India.
| | - C Harini
- College of Fishery Science, Andhra Pradesh Fisheries University, Muthukur-524344, India
| | - R Sri Vidya
- College of Fishery Science, Andhra Pradesh Fisheries University, Muthukur-524344, India
| | - N Madhavan
- College of Fishery Science, Andhra Pradesh Fisheries University, Muthukur-524344, India
| | | |
Collapse
|
22
|
Kumar Reddy CP, Manikandavelu D, Arisekar U, Albeshr MF, Alrefaei AF, Ahilan B, Keerthana M, Packialakshmi JS. Toxicological effect of endocrine disrupting heavy metal (Pb) on Mekong silurid Pangasius catfish, Pangasius hypophthalmus. ENVIRONMENTAL RESEARCH 2023; 231:116033. [PMID: 37142082 DOI: 10.1016/j.envres.2023.116033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/26/2023] [Accepted: 05/01/2023] [Indexed: 05/06/2023]
Abstract
The current study aimed to investigate the effects of lead nitrate exposure on the enzymatical, haematological, and histological changes in the gill, liver, and kidney of Pangasius hypophthalmus. The fish were divided into six groups and treated with different Pb concentrations. The LC50 value of Pb was 55.57 mg/L at 96 h for P. hypophthalmus, and sublethal toxicity was assessed for 45 days at 1/5th (11.47 mg/L) and 1/10th (5.57 mg/L) of LC50 concentration. Enzymes such as aspartate aminotransferase (AST), alanine aminotransferase (ALT) levels, alkaline phosphate (ALP), and lactate dehydrogenase (LDH) content increased significantly during sublethal toxicity of Pb. The reduction of HCT and PCV indicates an anemic condition due to the toxicity of Pb. Differential leucocytes, lymphocytes, and monocytes and their % values significantly decreased, indicating Pb exposure. The main histological changes observed in the gills were the destruction of secondary lamellae, the fusion of adjacent gill lamellae, primary lamellae hypertrophy, and severe hyperplasia, while in kidney exposed to Pb showed melanomacrophages, increased periglomerular, peritubular space, vacuolation, shrunken glomerulus, destruction of tubular epithelium, and hypertrophy of distal convoluted segment. The liver showed severe necrosis and rupture of hepatic cells, hyper trepheoid bile duct, shifting of nuclei, and vascular hemorrhage, while in the brain, binucleus, mesoglea cells, vacuole, and ruptured nucleus were observed. In conclusion, P. hypophthalmus, which has been exposed to Pb has developed a number of toxicity markers. Consequently, prolonged exposure to higher Pb concentrations may be harmful to fish health. The findings strongly suggest that the lead had a detrimental impact on the P. hypophthalmus population, as well as on the water quality and non-target aquatic organisms.
Collapse
Affiliation(s)
| | - D Manikandavelu
- Dr. M.G. R. Fisheies College and Research Institute, Tamil Nadu Fisheries University, Ponneri, 601 204, India
| | - Ulaganathan Arisekar
- Department of Fish Quality Assurance and Management, Fisheries College and Research Institute, Tamil Nadu Fisheries University, Thoothukudi, 628 008, Tamil Nadu, India.
| | - Mohammed F Albeshr
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | | | - B Ahilan
- Dr. M.G. R. Fisheies College and Research Institute, Tamil Nadu Fisheries University, Ponneri, 601 204, India
| | - M Keerthana
- Department of Fisheries and Fishermen Welfare, Thoothukudi, 628 001, Tamil Nadu, India.
| | - J Saranya Packialakshmi
- Department of Food and Nutrition, Kyung Hee University (KHU), 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, South Korea
| |
Collapse
|
23
|
Salih AHM, Patra I, Sivaraman R, Alhamzawi R, Khalikov KM, Al-qaim ZH, Golgouneh S, Jawad MA, Adhab AH, Vázquez-Cárdenas AL, Abarghouei S. The Probiotic Lactobacillus sakei Subsp. Sakei and Hawthorn Extract Supplements Improved Growth Performance, Digestive Enzymes, Immunity, and Resistance to the Pesticide Acetamiprid in Common Carp ( Cyprinus carpio). AQUACULTURE NUTRITION 2023; 2023:8506738. [PMID: 36922956 PMCID: PMC10010885 DOI: 10.1155/2023/8506738] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/08/2022] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
This study evaluated the impacts of the probiotic, Lactobacillus sakei (L. sakei), and the extract of hawthorn, Crataegus elbursensis, on growth and immunity of the common carp exposed to acetamiprid. Fish (mean ± SE: 11.48 ± 0.1 g) feeding was done with formulated diets (T 1 (control): no supplementation, T 2: 1 × 106 CFU/g LS (Lactobacillus sakei), T3: 1 × 108 CFU/g LS, T 4: 0.5% hawthorn extract (HWE), and T 5: 1% HWE) for 60 days and then exposed to acetamiprid for 14 days. The growth performance improved in the fish fed LS at dietary level of 1 × 108 CFU/g, even after exposure to acetamiprid (P < 0.05). Intestinal Lactobacillus sakei (CFU/g) load increased (P < 0.05), following supplementation with the probiotic-enriched diet. The LS-treated fish had increases in the activity of digestive enzymes (P < 0.05). Both LS and HWE stimulated antioxidant enzymes and immune system components in serum and mucus (alkaline phosphatase (ALP), protease, total Ig, and lysozyme) (P < 0.05). However, the changes were different depending on the kind of the supplement. The malondialdehyde (MDA) levels decreased in HWE-treated fish after acetamiprid exposure (P < 0.05). Both LS and HWE reduced the liver metabolic enzymes (LDH, ALP, AST, ALT, and LDH) in serum both before and after exposure to the pesticide (P < 0.05). However, each enzyme exhibited a different change trend depending on the type of the supplement. HWE showed a stress-ameliorating effect, as glucose and cortisol levels declined in the HWE-treated fish (P < 0.05). This study indicated the immunomodulatory impacts of LS (1 × 108 CFU/g) and HWE (at dietary levels of 0.5-1%). The probiotic showed more performance compared to HWE. However, the HWE mitigated oxidative stress more efficiently than the probiotic.
Collapse
Affiliation(s)
| | | | - Ramaswamy Sivaraman
- Institution of Dwaraka Doss Goverdhan Doss Vaishnav College, Arumbakkam, University of Madras, Chennai, India
| | - Rahim Alhamzawi
- College of Administration and Economics, University of Al-Qadisiyah, Al Diwaniyah, Iraq
| | - Kakhor M. Khalikov
- Department of Biological Chemistry, Samarkand State Medical University, Samarkand, Uzbekistan
| | | | - Sahar Golgouneh
- Department of Fisheries, Faculty of Natural Resources, University of Tehran, Tehran, Iran
| | | | - Ali Hussein Adhab
- Department of Medical Laboratory Technics, Al-Zahrawi University College, Karbala, Iraq
| | | | - Safoura Abarghouei
- Baharavaran Nastaran Agricultural Applied Scientific Training Center, Applied Scientific University, Qom, Iran
| |
Collapse
|
24
|
El-Bouhy ZM, Mohamed FAS, Elashhab MWA, El-Houseiny W. Toxicity bioassay and sub-lethal effects of profenofos-based insecticide on behavior, biochemical, hematological, and histopathological responses in Grass carp (Ctenopharyngodon idella). ECOTOXICOLOGY (LONDON, ENGLAND) 2023; 32:196-210. [PMID: 36708414 PMCID: PMC10008772 DOI: 10.1007/s10646-023-02628-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 01/11/2023] [Indexed: 06/18/2023]
Abstract
Profenofos (organophosphate) is among the major toxicant polluting freshwater bodies, exerting a significant effect on fish health. The LC50 value of Profenofos (PRO) was resolved in Grass carp (Ctenopharyngodon idella) with average body weight (55.82 ± 5.42 g) and determined the 96 h LC50 value as 7.2 µg/L for the assay. Twenty-one-day exposures to 1.8 µg/ L and 3.6 µg/ L doses were conducted to evaluate the sub-lethal effects, and various toxicological endpoints were assessed on the 1st, 7th, 15th and 21st days of exposure. Acute toxic stress was observed with fish displaying behavioral toxicity. The most hematological change was extreme microcytic hypochromic anemia. Leucocyte count increased in experimented fish. Moderate neutrophilia, monocytosis and lymphocytosis were observed. Serum total protein, albumin, and globulin concentrations were significantly diminished. Overall, increments over control were recognized in serum urea, creatinine and acid phosphatase. However, serum glucose, total lipid, cholesterol, serum ALT and AST activity showed a significant decrease in fish exposed to both concentrations of PRO. Serum IgM concentrations insignificantly changed in treated fish except for on the 21st day of exposure to 3.6 µg/ L of PRO, while serum lysozyme significantly decreased. Furthermore, total protein, lipid and glycogen concentrations in muscles and the liver exhibited a decreasing trend at all concentrations. Moreover, histopathological alterations in the liver, kidney, and muscles occurred exclusively after treatment. From the obtained results, it is assumed that profenofos induced general toxic impacts under field conditions and might disturb ecologically relevant processes.
Collapse
Affiliation(s)
- Zeinab M El-Bouhy
- Aquatic Animal Medicine Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt
| | - Fatma A S Mohamed
- National Institute of Oceanography and Fisheries (NIOF), Cairo, Egypt
| | | | - Walaa El-Houseiny
- Aquatic Animal Medicine Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt.
| |
Collapse
|
25
|
Özçelik S, Canli M. Combined effects of metals (Cr6+, Hg2+, Ni2+, Zn2+) and calcium on the serum biochemistry and food quality of the Nile fish (Oreochromis niloticus). J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2022.104968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
26
|
Nha Khanh DN, Tuong Vy NT, Quoc Thang N, Trung Sy D, Quang Minh B, The Anh N, Bao Tran DV, Khue Tu L, Kim Phuong NT. Accumulation and response to stress in climbing perch ( Anabas testudineus) on exposure to high concentrations of lead and cadmium in water. THE EUROPEAN ZOOLOGICAL JOURNAL 2022. [DOI: 10.1080/24750263.2022.2096129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Affiliation(s)
- D. N. Nha Khanh
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Vietnam
- National Institute of Applied Mechanics and Informatics, Vietnam Academy of Science and Technology, Vietnam
| | - N. T. Tuong Vy
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Vietnam
- National Institute of Applied Mechanics and Informatics, Vietnam Academy of Science and Technology, Vietnam
| | - N. Quoc Thang
- Chemical Engineering Faculty, Industrial University of Ho Chi Minh City, Vietnam
| | - D. Trung Sy
- Institute of Chemistry, Vietnam Academy of Science and Technology, Vietnam
| | - B. Quang Minh
- Center for Research and Technology Transfer, Vietnam Academy of Science and Technology, Vietnam
| | - N. The Anh
- Chemistry Department, Bui Thi Xuan Highschool, Ho Chi Minh, Vietnam
| | - D. V. Bao Tran
- Chemistry Department, Bui Thi Xuan Highschool, Ho Chi Minh, Vietnam
| | - L. Khue Tu
- Chemistry Department, Bui Thi Xuan Highschool, Ho Chi Minh, Vietnam
| | - N. T. Kim Phuong
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Vietnam
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, Vietnam
| |
Collapse
|
27
|
Kumar V, Swain HS, Roy S, Das BK, Upadhyay A, Ramteke MH, Kumar V, Kole RK, Banerjee H. Integrated biomarker approach strongly explaining in vivo sub-lethal acute toxicity of butachlor on Labeo rohita. Comp Biochem Physiol C Toxicol Pharmacol 2022; 261:109427. [PMID: 35944825 DOI: 10.1016/j.cbpc.2022.109427] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/20/2022] [Accepted: 08/03/2022] [Indexed: 11/18/2022]
Abstract
Butachlor herbicide belongs to the family of chloroacetanilide group, widely used for control of grass and broadleaf weeds in paddy fields however, its repeated application may result in aquatic pollution. Butachlor residue has been detected in aquatic environments, which may produce toxic effects on non-target organisms including fish. Keeping this in mind, the present study was designed to estimate the LC50 of butachlor (Shaktiman®), and to evaluate the sub-lethal toxicity at two concentrations (12.42 μg L-1 and 62.10 μg L-1) in Labeo rohita for a period of 24, 48, and 72 h. Fish exposed to butachlor reduced the counts of red blood cells (RBC), haemoglobin (HGB), hematocrit (HCT), and white blood cells (WBC). A significant (p < 0.05) increase in the antioxidant enzyme (superoxide dismutase-SOD, glutathione-s-transferase-GST), and hepatic enzyme (glutamate-oxaloacetate transaminase-GOT, glutamate-pyruvate transaminase-GPT) were noticed in butachlor exposed fish. Heat shock protein 70 (HSP70) and HSP90 in gill; cortisol, protein, albumin, globulin, and triglyceride in serum were increased upon exposure of butachlor. On the contrary, complement 3 (C3) and immunoglobulin (IgM) in serum was found to be decreased compared to control fish. The findings thus suggest that the fish upon exposure to butachlor disrupts the biomarkers which ultimately leads to growth retardation in fish.
Collapse
Affiliation(s)
- Vikas Kumar
- Department of Agricultural Chemicals, Faculty of Agriculture, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia 741252, West Bengal, India; ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700120, West Bengal, India
| | - Himanshu Sekhar Swain
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700120, West Bengal, India
| | - Sankhajit Roy
- Department of Agricultural Chemicals, Faculty of Agriculture, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia 741252, West Bengal, India
| | - Basanta Kumar Das
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700120, West Bengal, India.
| | - Aurobinda Upadhyay
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700120, West Bengal, India
| | - Mitesh Hiradas Ramteke
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700120, West Bengal, India
| | - Vikash Kumar
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700120, West Bengal, India
| | - Ramen Kumar Kole
- Department of Agricultural Chemicals, Faculty of Agriculture, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia 741252, West Bengal, India
| | - Hemanta Banerjee
- Department of Agricultural Chemicals, Faculty of Agriculture, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia 741252, West Bengal, India
| |
Collapse
|
28
|
Younas W, Khan FU, Zaman M, Lin D, Zuberi A, Wang Y. Toxicity of synthesized silver nanoparticles in a widespread fish: A comparison between green and chemical. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157366. [PMID: 35843321 DOI: 10.1016/j.scitotenv.2022.157366] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/25/2022] [Accepted: 07/10/2022] [Indexed: 06/15/2023]
Abstract
Metallic nanoparticles are gaining importance in various fields of life due to their large surface area to volume ratio. However, metallic nanoparticles pose different toxic effects on fish when they appear with different shapes and compositions in water. Herein the present study was designed to evaluate the median (LC50) and sub-lethal (1/10th of LC50) concentrations of Ag-Green NPs, 700 μg/L for Ag-Chem NPs, and 50 μg/L for Ag2O-Chem NPs were confirmed in Hypophthalmichthys molitrix. Furthermore, exposure of H. molitrix fingerlings to 10 % of LC50 concentration of these particles induced significantly higher (p < 0.05) activities of serum alanine transaminase, aspartate aminotransferase, lactate dehydrogenase, white blood cells, acetylcholinesterase and catalase, superoxide dismutase, peroxidase, relative gene expressions of antioxidant enzymes, heat shock protein (Hsp70), hypoxia- inducible factor 1-alpha (HIF-1α) and lipid peroxidase level than the control, but decreased hematological parameters with less effects of Ag-Green NPs than chemically synthesized AgNPs. Moreover, the histopathological study also indicated morphological changes in the liver and gills of treated fish groups. The comparative toxicity evaluation revealed the maximum negative effect of Ag2O-Chem NPs followed by Ag-Chem NPs while Ag-Green NPs showed the least toxic effects. Based on our results, replacement of chemically synthesized NPs to green synthesized AgNPs can be recommended in large scale application to reduce the noxious effects to aquatic environment.
Collapse
Affiliation(s)
- Waqar Younas
- Fisheries and Aquaculture Lab, Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Fahim Ullah Khan
- Fisheries and Aquaculture Lab, Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Muhib Zaman
- Fisheries and Aquaculture Lab, Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Daohui Lin
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Amina Zuberi
- Fisheries and Aquaculture Lab, Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| | - Youji Wang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
29
|
Rohmah MK, Salahdin OD, Gupta R, Muzammil K, Qasim MT, Al-Qaim ZH, Abbas NF, Jawad MA, Yasin G, Mustafa YF, Heidary A, Abarghouei S. Modulatory role of dietary curcumin and resveratrol on growth performance, serum immunity responses, mucus enzymes activity, antioxidant capacity and serum and mucus biochemicals in the common carp, Cyprinus carpio exposed to abamectin. FISH & SHELLFISH IMMUNOLOGY 2022; 129:221-230. [PMID: 36007834 DOI: 10.1016/j.fsi.2022.08.042] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/06/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
In this study, we investigate the potentials of dietary curcumin and resveratrol on blood biochemistry, immune responses and resistance to the toxicity of the pesticide, abamectin. 540 common carps (30.78 ± 0.17 g) were randomly distributed into 18 tanks (30 fish per tank), as six experimental groups (T1: non-supplemented and on-exposed fish, T2: 300 mg/kg curcumin, T3: 300 mg/kg resveratrol, T4: 12.5% LC50 of abamectin, T5: 300 mg/kg curcumin +12.5% LC50 of abamectin, T6: 300 mg/kg resveratrol + 12.5% LC50 of abamectin). Use of 300 mg/kg resveratrol in the diet of non-abamectin exposed fish improved the growth performance (P < 0.05), while such effects were not observed for curcumin (P > 0.05). There were no differences in the final weight (FW), feed conversion ratio (FCR) and weight gain (WG) between control and fish of the treatments, resveratrol + abamectin and curcumin + abamectin (P < 0.05). The immune components in blood [lysozyme, complement activity, Total immunoglobulin (total Ig), protease, myeloperoxidase (MPO), nitro-blue-tetrazolium (NBT), peroxidase, albumin] and mucus [acid phosphatase (ACP), alkaline phosphatase (ALP), esterase, antiprotease)] and antioxidant enzymes [(superoxide dismutase (SOD), glutathione peroxidase (GPx)] exhibited various change patterns compared to the control group, however, these components were almost all higher in fish supplemented with curcumin and resveratrol in an abamectin-free medium than in control and other groups (P < 0.05). In most cases, the levels of immune and antioxidant components in the control did not show significant difference with the treatments, resveratrol + abamectin and curcumin + abamectin (P > 0.05). Abamectin induced oxidative stress in fish, as the malondialdehyde (MDA) levels significantly increased in the exposed fish compared to non-exposed groups (P < 0.05). It appears that neither curcumin nor resveratrol were as effective in preventing oxidative stress, because MDA levels were higher in exposed fish (abamectin, curcumin + abamectin, resveratrol + abamectin) than in control and non-exposed individuals (P < 0.05). Curcumin and resveratrol also showed protective effects on liver, since the levels of liver metabolic enzymes [aspartate transaminase (AST), ALP, lactate dehydrogenase (LDH)] were lower in the supplemented fish in a abamectin-free medium than in control (P < 0.05). Curcumin and resveratrol also mitigated the stress responses in the exposed fish, as cortisol and glucose levels showed significant decreases in the supplemented fish (P < 0.05). In conclusion, this study revealed that abamectin can depress the growth and immunity in the common carp. Although, both resveratrol and curcumin were mitigated the toxic effects of abamectin, it seems that resveratrol be more effective than curcumin.
Collapse
Affiliation(s)
- Martina Kurnia Rohmah
- Department of Pharmacy, Faculty of Health Science, Universitas Anwar Medika, Sidoarjo, Indonesia.
| | | | - Reena Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, 281406, India.
| | - Khursheed Muzammil
- Department of Public Health, College of Applied Medical Sciences, Khamis Mushait Campus, King Khalid University, Abha, Saudi Arabia
| | - Maytham T Qasim
- Department of Anesthesia, College of Health and Medical Technololgy, Al-Ayen University, Thi-Qar, Iraq
| | | | | | | | - Ghulam Yasin
- Department of Botany, Bahauddin Zakariya University, Multan, Pakistan
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq
| | - Aadel Heidary
- Environmental Expert of Farsan Municipality, Shahrekord, Iran
| | - Safoura Abarghouei
- Baharavaran Nastaran Agricultural Applied Scientific Training Center, Applied Scientific University, Qom, Iran
| |
Collapse
|
30
|
Rahman ANA, Mohamed AAR, Dahran N, Farag MFM, Alqahtani LS, Nassan MA, AlThobaiti SA, El-Naseery NI. Appraisal of sub-chronic exposure to lambada-cyhalothrin and/or methomyl on the behavior and hepato-renal functioning in Oreochromis niloticus: Supportive role of taurine-supplemented feed. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 250:106257. [PMID: 35933907 DOI: 10.1016/j.aquatox.2022.106257] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/31/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
The existing study was designed to inspect the toxicological consequences of two pesticides; lambda-cyhalothrin (LCT) and methomyl (MTM) and their combination on Nile tilapia (Oreochromis niloticus) behaviors, oxidative stress, hepato-renal function indices and microarchitectural alterations. In addition, the efficiency of taurine (TUR) to rescue their toxicity was also considered. Juvenile O. niloticus were assigned into eight groups. The control and TUR groups were fed on a basal diet and TUR-enriched (10 g kg1) diet, respectively. The other groups were fed on a basal diet, and exposed to LCT (0.079 µg L-1), MTM (20.39 µg L-1 and (LCT + MTM). The last three groups were (LCT + TUR), (MTM + TUR), and (LCT + MTM + TUR) and fed on a TUR-enriched diet during exposure to LCT and/or MTM for 60 days. The exposure to LCT and/or MTM resulted in several behavioral alterations and stress via enhanced cortisol and nor-epinephrine levels. A significant elevation of serum 8-hydroxy-2- deoxyguanosine, aspartate and alanine aminotransferases, lactate dehydrogenase, Alkaline phosphatase, urea, creatinine was also observed in these groups. Furthermore, reduced antioxidant enzymes activities, including (catlase, glutathione peroxidase, and superoxide dismutase) with marked histopathological lesions in both liver and kidney tissues were detected. The up-regulated Bax and down-regulated Bcl-2 proteins were expressed in the liver and kidney tissues of LCT and/or MTM -exposed groups. Interestingly, all the observed alterations in behaviors, biochemical indices, and histo-architecture of renal and hepatic tissues were mitigated by TUR supplementation. The findings suggest that feeding O. niloticus dietary TUR may help to reduce the negative effects of LCT and/or MTM, and can also support kidney and liver health in O. niloticus, making it a promising aquaculture feed supplement.
Collapse
Affiliation(s)
- Afaf N Abdel Rahman
- Department of Fish Diseases and Management, Faculty of Veterinary Medicine, Zagazig University, P.O. Box 44511, Sharkia, Zagazig, Egypt.
| | - Amany Abdel-Rahman Mohamed
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, P.O. Box 44511, Zagazig, Egypt.
| | - Naief Dahran
- Department of Anatomy, Faculty of Medicine, University of Jeddah, Jeddah, Saudi Arabia
| | - Mohamed F M Farag
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Leena S Alqahtani
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah 23445, Saudi Arabia
| | - Mohamed A Nassan
- Department of Clinical Laboratory Sciences, Turabah University College, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Saed Ayidh AlThobaiti
- Biology Department, Turabah University College, Taif University, Taif 21995, Saudi Arabia
| | - Nesma I El-Naseery
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Zagazig University, P.O. Box 44511, Zagazig, Egypt
| |
Collapse
|
31
|
Jeong JY, Kim M, Park SH, Kim B, Oh SI, Kim E, Jung H. Residual Level, Histology, and Blood Biochemistry of Tebuconazole: A Repeated Dose 28-Day Oral Toxicity Study in Pigs. Food Sci Anim Resour 2022; 42:712-722. [PMID: 35855269 PMCID: PMC9289805 DOI: 10.5851/kosfa.2022.e31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 11/06/2022] Open
Affiliation(s)
- Jin Young Jeong
- Animal Nutrition & Physiology Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
- Corresponding author: Jin Young Jeong, Animal Nutrition & Physiology Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea, Tel: +82-63-238-7487, Fax: +82-63-238-7497, E-mail:
| | - Minji Kim
- Animal Nutrition & Physiology Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| | - Seol Hwa Park
- Animal Nutrition & Physiology Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| | - Byeonghyeon Kim
- Animal Nutrition & Physiology Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| | - Sang-Ik Oh
- Division of Animal Disease & Health, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| | - Eunju Kim
- Division of Animal Disease & Health, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| | - Hyunjung Jung
- Animal Nutrition & Physiology Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| |
Collapse
|
32
|
Aytekin T. Evaluation of the Effects of Nitrilotriacetic Acid as a Chelating Agent on the Biochemical Toxicity of Lead in Oreochromis niloticus. Biol Trace Elem Res 2022; 200:2908-2914. [PMID: 34677762 DOI: 10.1007/s12011-021-02973-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/14/2021] [Indexed: 10/20/2022]
Abstract
In the present research, the effects of sublethal lead (Pb) concentrations on total antioxidant status (TAS), total oxidant status (TOS), oxidative stress index (OSI) levels, enzyme activities (aspartate transaminase, AST; alanine transaminase, ALT; lactate dehydrogenase, LDH), ion levels (magnesium, Mg; sodium, Na; potassium, K; chlorine, Cl; calcium, Ca), and some metabolite levels (cholesterol, triglyceride, HDL, LDL, albumin, total protein) in the blood serum of Oreochromis niloticus and the protective function of nitrilotriacetic acid (NTA) due to its chelating characteristic were investigated. O. niloticus, which has an important position in the food chain and is often preferred in toxicological studies, was exposed to 0.1 ppm Pb, 0.1 ppm Pb + 0.3 ppm NTA, 1 ppm Pb, and 1 ppm Pb + 3 ppm NTA concentrations for 7 and 21 days. At the end of the duration, serum TAS and TOS levels were measured spectrophotometrically with Rel Assay Diagnostics; other enzyme activities, ion levels, and metabolite parameters were done by an autoanalyzer using commercial kits. Depending on the exposure periods and concentrations, the changes in the parameters were determined. It is determined that, under the influence of high ambient concentration of lead, TOS, OSI, AST, ALT, LDH, LDL, triglyceride, and Mg levels increased, while TAS, albumin, and K levels decreased after 21 days. These increases/decreases in all serum biochemical parameters were generally higher in fish treated with Pb alone compared to fish treated with a mixture of Pb + NTA. This study shows that these changes in serum parameters could be used as an indicator to assess on metal toxicity.
Collapse
Affiliation(s)
- Tüzün Aytekin
- Vocational School of Imamoglu, Cukurova University, 01700, Adana, Turkey.
| |
Collapse
|
33
|
Mohamed IA, Hamed M, Abdel-Tawab HS, Mansour S, Soliman HAM, Lee JS, El-Din H Sayed A. Multi-biomarkers approach to assess the toxicity of novel insecticide (Voliam flexi®) on Clarias gariepinus: From behavior to immunotoxicity. FISH & SHELLFISH IMMUNOLOGY 2022; 125:54-64. [PMID: 35525411 DOI: 10.1016/j.fsi.2022.04.051] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 04/22/2022] [Accepted: 04/30/2022] [Indexed: 02/07/2023]
Abstract
This study was conducted to determine for the first time the immunological, histopathological, histochemical, and ultrastructural changes; hematological and biochemical alterations; and poikilocytosis induced in Clarias gariepinus by Voliam flexi® 40% WG (thiamethoxam + chlorantraniliprole). Beside control fish, juvenile C. gariepinus were subjected to three sublethal concentrations of Voliam flexi® (43.5, 87.5, and 175 mg/L) for 15 days. Voliam flexi® induced immunotoxic impairments in C. gariepinus, such as a decrease in some immunity variables (lysozyme and phagocyte activity, immunoglobulin concentration, and nitro blue tetrazolium level). It also caused an extreme increase in the levels of primary cytokines (interleukin-1β and IL-6), compared with the control. The toxic effects of Voliam flexi® increased gradually with the increasing concentrations tested. Histological examination of the liver demonstrated necrosis, vacuolated hepatocytes (fatty deposition), melanomacrophage centers, foci of inflammatory cells, congested and dilated blood sinusoids, hepatic degeneration, fibrosis increment (Sirius Red stain), and glycogen depletion, as well as cytopathological alterations. We conclude that the toxic effects of Voliam flexi® must be restricted or prevented by using control mechanisms in aquatic systems.
Collapse
Affiliation(s)
- Ibrahim A Mohamed
- Department of Plant Protection, Faculty of Agriculture, Assiut University, Assiut, 71526, Egypt
| | - Mohamed Hamed
- Department of Zoology, Faculty of Science, Al Azhar University (Assiut Branch), Assiut, 71524, Egypt
| | - Hanem S Abdel-Tawab
- Department of Zoology, Faculty of Sciences, Assiut University, Assiut, 71516, Egypt
| | - Salwa Mansour
- Department of Zoology, Faculty of Science, South Valley University, Qena, 83523, Egypt
| | - Hamdy A M Soliman
- Department of Zoology, Faculty of Science, Sohag University, Sohag, 8562, Egypt
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Alaa El-Din H Sayed
- Department of Zoology, Faculty of Sciences, Assiut University, Assiut, 71516, Egypt.
| |
Collapse
|
34
|
Qu B, Zhao H, Chen Y, Yu X. Effects of low-light stress on aquacultural water quality and disease resistance in Nile tilapia. PLoS One 2022; 17:e0268114. [PMID: 35522677 PMCID: PMC9075632 DOI: 10.1371/journal.pone.0268114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 04/23/2022] [Indexed: 11/30/2022] Open
Abstract
Light intensity has an important environmental influence on the quality and yield of aquatic products. It is essential to understand the effects of light intensity on water quality and fish metabolism before large-scale aquaculture is implemented. In this study, two low-intensity light levels, 0 lx and 100 lx, were used to stress Nile tilapia (Oreochromis niloticus), with a natural light level (500 lx) used as control. The pH, dissolved oxygen and ammonia contents were significantly lower in the water used in the 0 lx and 100 lx groups than in controls, while the levels of nitrite and total phosphorus were apparently higher. Moreover, the numbers of heterotrophic bacteria, Vibrio and total coliforms in aquaculture water were 157.1%, 314.2% and 502.4% higher, respectively, after 0 lx light stress for 15 days. The survival rate of Nile tilapia decreased significantly to 90.6% under 0 lx light on the 15th day. Of the immune-related genes, the expressions of IFN-γ, IL-12 and IL-4 were 390.3%, 757.8% and 387.5% higher under 0 lx light and 303.3%, 471.2% and 289.7% higher under 100 lx light, respectively. These results indicate that low-intensity light changes the physicochemical parameters of aquaculture water and increases the number of bacteria it hosts while decreasing the survival rate and increasing the disease resistance of Nile tilapia.
Collapse
Affiliation(s)
- Bingliang Qu
- College of Chemistry and Environment, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Hui Zhao
- College of Chemistry and Environment, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Ying Chen
- College of Chemistry and Environment, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Xiangyong Yu
- Ocean College, South China Agriculture University, Guangzhou, Guangdong, China
| |
Collapse
|
35
|
Magnuson JT, Fuller N, Huff Hartz KE, Anzalone S, Whitledge GW, Acuña S, Lydy MJ, Schlenk D. Dietary Exposure to Bifenthrin and Fipronil Impacts Swimming Performance in Juvenile Chinook Salmon ( Oncorhynchus tshawytscha). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:5071-5080. [PMID: 35353479 PMCID: PMC9354086 DOI: 10.1021/acs.est.1c06609] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Two commonly used insecticides, bifenthrin and fipronil, can accumulate in the prey of juvenile Chinook salmon, yet the effects of dietary exposure are not understood. Therefore, to better characterize the effect of a dietary exposure route, juvenile Chinook salmon were fed chironomids dosed with a concentration of 9 or 900 ng/g of bifenthrin, fipronil, or their mixture for 25 days at concentrations previously measured in field-collected samples. Chinook were assessed for maximum swimming performance (Umax) using a short-duration constant acceleration test and biochemical responses related to energetic processes (glucose levels) and liver health (aspartate aminotransferase (AST) activity). Chinook exposed to bifenthrin and bifenthrin and fipronil mixtures had a significantly reduced swimming performance, although not when exposed to fipronil alone. The AST activity was significantly increased in bifenthrin and mixture treatments and glucose levels were increased in Chinook following a mixture treatment, although not when exposed to fipronil alone. These findings suggest that there are different metabolic processes between bifenthrin and fipronil following dietary uptake that may influence toxicity. The significant reductions in swimming performance and increased levels of biochemical processes involved in energetics and fish heath could have implications for foraging activity and predator avoidance in wild fish at sensitive life stages.
Collapse
Affiliation(s)
- Jason T. Magnuson
- Department
of Environmental Sciences, University of
California, Riverside, 2460A Geology, Riverside, California 92521, United States
| | - Neil Fuller
- Department
of Zoology, Center for Fisheries, Aquaculture and Aquatic Sciences, Southern Illinois University, Carbondale, Illinois 62901, United States
| | - Kara E. Huff Hartz
- Department
of Zoology, Center for Fisheries, Aquaculture and Aquatic Sciences, Southern Illinois University, Carbondale, Illinois 62901, United States
| | - Sara Anzalone
- Department
of Zoology, Center for Fisheries, Aquaculture and Aquatic Sciences, Southern Illinois University, Carbondale, Illinois 62901, United States
| | - Gregory W. Whitledge
- Department
of Zoology, Center for Fisheries, Aquaculture and Aquatic Sciences, Southern Illinois University, Carbondale, Illinois 62901, United States
| | - Shawn Acuña
- Metropolitan
Water District of Southern California, 1121 L Street, Suite 900, Sacramento, California 95814, United States
| | - Michael J. Lydy
- Department
of Zoology, Center for Fisheries, Aquaculture and Aquatic Sciences, Southern Illinois University, Carbondale, Illinois 62901, United States
| | - Daniel Schlenk
- Department
of Environmental Sciences, University of
California, Riverside, 2460A Geology, Riverside, California 92521, United States
- Institute
of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
36
|
Hematobiochemical and histopathological alterations in Nile Tilapia (Oreochromis niloticus) exposed to ethidium bromide: The protective role of Spirulina platensis. AQUACULTURE AND FISHERIES 2022. [DOI: 10.1016/j.aaf.2022.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
37
|
Gouda AMR, Hagras AE, Okbah MA, El-Gammal MI. Influence of the Linear Alkylbenzene Sulfonate (LAS) on hematological and biochemical parameters of Nile Tilapia, Oreochromis niloticus. Saudi J Biol Sci 2022; 29:1006-1013. [PMID: 35197770 PMCID: PMC8847915 DOI: 10.1016/j.sjbs.2021.09.074] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/11/2021] [Accepted: 09/25/2021] [Indexed: 01/24/2023] Open
Abstract
The acute toxicity of household detergent (Ariel) on blood parameters and histology of Oreochromis niloticus was investigated using static bioassay for 96 h. Linear alkylbenzenesulfonate (LAS) is an anionic surfactant widely used in detergents and cleaners, both in industrial and household applications. LAS contaminating aquatic ecosystems as a potential toxic pollutant, was investigated in the present study for acute toxicity. The fish samples were divided into six groups, including 20 fish in each group. Normal feed was given to control group without detergents treatment. Hematological parameters (RBC count, Hb, Ht and platelets) were significantly declined, while WBC count showed a highly significant increase. Compared with the control group, significant elevation of serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) was recorded in fish treated with different concentrations of detergent. Catalase (CAT), Superoxide dismutase (SOD) activities and Reduced Glutathione (GSH) concentration showed a highly significant reduction. Total proteins showed significant decrease, while total lipids, cholesterol and triglycerides significantly increased. The mean lethal concentration (LC50) for 96 h of Ariel was at concentration 10 mg/L. Relative percentage of detergent residues in fish muscles was increased with higher detergent concentrations. In conclusion, exposure to detergents resulted in great alterations in the histological structure of liver and gills.
Collapse
Affiliation(s)
- Asmaa M R Gouda
- Ecology Division, Zoology Department, Faculty of Sciences, Mansoura University, Egypt
| | - Ahmed E Hagras
- Ecology Division, Zoology Department, Faculty of Sciences, Mansoura University, Egypt
| | - Mohamed A Okbah
- Marine Chemistry, National Institute of Oceanography and Fisheries, Egypt
| | - Maie I El-Gammal
- Environmental Sciences Department, Faculty of Science, Damietta University, Egypt
| |
Collapse
|
38
|
Singha J, Abraham TJ, Roy A, Bardhan A, Sar TK, Rajisha R, Krishna EKN, Kumar KA, Patil PK. Influence of dietary emamectin benzoate on the biological responses of monosex (all-male) Oreochromis niloticus (L.) fries. Comp Biochem Physiol C Toxicol Pharmacol 2022; 252:109223. [PMID: 34728388 DOI: 10.1016/j.cbpc.2021.109223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/08/2021] [Accepted: 10/27/2021] [Indexed: 11/03/2022]
Abstract
The application of antiparasitic drugs plays a crucial role in the removal of infectious parasites in aquaculture. Emamectin benzoate (EB) is predominantly used as a feed premix against ectoparasites on temperate fish. This study evaluated the influence of 14 days of EB-dosing at 0-10 times the recommended dose (1X: 50 μg/kg biomass/day) on the biological responses and accrual/depletion of EB-residues in a tropical fish monosex Oreochromis niloticus fries. A significant dose-dependent reduction in feed intake by 3.50% in 1X and 43.00% in 10X groups, and an increase in mortalities from 2.92% (1X) to 11.25% (10X) during the EB-dosing period was noted. A significant increase in glucose and alkaline phosphatase and reduction in calcium and chloride ions, superoxide dismutase (SOD) and acetylcholinesterase levels in the muscle and/or brain tissue was observed. On day 21 post-EB-dosing, the levels of muscle glucose and SOD reached normalcy in the 1X group, while the levels of other biomarkers failed to recuperate. The EB-residue levels peaked on day 14 EB-dosing (2.77 ng/g) in the 1X group and decreased later with detectable levels (0.03 ng/g) even on day 21 post-EB-dosing. The EB-residue levels were within the permissible limits of the Canadian Food Inspection Agency and the European Commission. The EB-dosing negatively influenced the health of O. niloticus by altering the physiological state in a dose- and time-dependent way. The results suggested that the use of EB might be plausibly risky in tropical aquaculture.
Collapse
Affiliation(s)
- Jasmine Singha
- Department of Aquatic Animal Health, Faculty of Fishery Sciences, West Bengal University of Animal and Fishery Sciences, Chakgaria, Kolkata 700094, India
| | - Thangapalam Jawahar Abraham
- Department of Aquatic Animal Health, Faculty of Fishery Sciences, West Bengal University of Animal and Fishery Sciences, Chakgaria, Kolkata 700094, India.
| | - Anwesha Roy
- Department of Aquatic Animal Health, Faculty of Fishery Sciences, West Bengal University of Animal and Fishery Sciences, Chakgaria, Kolkata 700094, India
| | - Avishek Bardhan
- Department of Aquatic Animal Health, Faculty of Fishery Sciences, West Bengal University of Animal and Fishery Sciences, Chakgaria, Kolkata 700094, India
| | - Tapas Kumar Sar
- Department of Veterinary Pharmacology, Faculty of Veterinary and Animal Sciences, West Bengal University of Animal and Fishery Sciences, Chakgaria, Kolkata 700037, India
| | - Ravindran Rajisha
- Fish Processing Division, ICAR-Central Institute of Fisheries Technology, Willington Island, Cochin 682029, India
| | | | - Kesavan Ashok Kumar
- Fish Processing Division, ICAR-Central Institute of Fisheries Technology, Willington Island, Cochin 682029, India
| | - Prasanna Kumar Patil
- Aquatic Animal Health and Environment Division, ICAR-Central Institute of Brackishwater Aquaculture, Raja Annamalai Puram, Chennai 600028, India
| |
Collapse
|
39
|
El-Sabbagh NM, Khalil RH, Khallaf MM, Shakweer MS, Ghetas HA, Atallah MM. Pharmacological and ameliorative effects of Withania somnifera against cadmium chloride-induced oxidative stress and immune suppression in Nile tilapia, Oreochromis niloticus. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:6777-6792. [PMID: 34458972 DOI: 10.1007/s11356-021-15630-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 07/21/2021] [Indexed: 06/13/2023]
Abstract
This study was carried out to evaluate the effects of dietary supplementation of aqueous extract of Withania somnifera (W. somnifera) against cadmium chloride-induced toxicity in the Nile tilapia, Oreochromis niloticus. Five experimental groups were designed: group (I) was free from cadmium chloride and W. somnifera and served as a control, group (II) was exposed to 1.775 mg L-1 of cadmium chloride only (which is equivalent to 1/4 96-h LC50), while groups (III), (IV), and (V) were exposed to 1.775 mg cadmium chloride L-1 with co-supplementation of dietary W. somnifera in doses of 1.0, 2.0, and 3.0 mL kg-1 body weight (bwt), respectively. The experiment lasted for 4 weeks. In the second and fourth weeks of the experiment, the following indicators were evaluated: hematological (hemogram and blood protein profile), biochemical (activities of serum liver enzymes, namely alanine transaminase (ALT) and aspartate transaminase (AST)), immunological (immunoglobulin M (IgM), serum lysozyme), and tissue antioxidant changes (malondialdehyde (MDA) levels and activities of catalase (CAT) and superoxide dismutase (SOD)). Additionally, gene expressions of glutathione-S-transferase (GST) in the liver were assessed. At the end of the experiment, all fish in all groups were experimentally challenged with Aeromonas hydrophila and the relative protection survival (RPS) was demonstrated. The results revealed that groups exposed to cadmium chloride toxicity and co-supplemented with dietary aqueous extract of W. somnifera at high doses showed significant ameliorative effects in hemogram parameters, total protein, globulin, IgM, and lysozyme against cadmium chloride-induced toxicity compared to the control group and the group exposed to a sublethal dose of cadmium chloride without co-suplemntation of W. somnifera. The results showed also that groups supplemented orally with W. somnifera at high doses have higher antioxidant activities of CAT and SOD and reduction of MDA formation. Levels of gene expressions of GST in the liver were higher in W. somnifera extract-supplemented groups more than those in the group exposed to cadmium chloride-induced toxicity without W. somnifera supplementation. In addition, the results revealed improved RPS with the dietary supply of W. somnifera extract in high doses. In conclusion, this study showed that the dietary supplementation of W. somnifera extract to diets of O. niloticus could be suggested as an effective way to overcome cadmium chloride-induced toxicity because it improves blood parameters and antioxidants, and it can be used as an immunostimulant against the invading bacterial pathogens.
Collapse
Affiliation(s)
- Nasser M El-Sabbagh
- Department of Veterinary Pharmacology, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt.
| | - Riad H Khalil
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Mohammed M Khallaf
- Department of Aquatic Animal Medicine and Management Department, Faculty of Veterinary Medicine, Sadat City University, Sadat, Egypt
| | - Medhat S Shakweer
- Department of Fish Diseases and Management, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Hanan A Ghetas
- Department of Aquatic Animal Medicine and Management Department, Faculty of Veterinary Medicine, Sadat City University, Sadat, Egypt
| | - Mohamed M Atallah
- Faculty of Aquaculture and Fish Wealth, Alexandria University, Alexandria, Egypt
| |
Collapse
|
40
|
Mosiichuk N, Husak V, Storey KB, Lushchak V. Acute Exposure to the Penconazole-Containing Fungicide Topas Induces Metabolic Stress in Goldfish. Chem Res Toxicol 2021; 34:2441-2449. [PMID: 34793142 DOI: 10.1021/acs.chemrestox.1c00174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Triazole fungicides are widely used in agriculture that leads to pollution of freshwater ecosystems. The mechanisms of toxicity to fish by the triazole fungicide Topas that contains penconazole (1-[2-(2,4-dichlorophenyl)pentyl]-1H-1,2,4-triazole) have not been studied. The present study aimed to evaluate the effect of goldfish exposure for 96 h to the fungicide Topas at concentrations of 1.5, 15, or 25 mg/L on the plasma and liver biochemical parameters and blood hematological profile. Goldfish exposure to Topas decreased alanine and aspartate transaminase activity and increased lactate dehydrogenase activity in the liver. Plasma lactate dehydrogenase and alanine transaminase activities were elevated in fungicide-treated fish. Topas exposure also enhanced plasma glucose and triacylglycerol concentrations. In the liver, fungicide treatment decreased levels of glucose but elevated triacylglycerols, glycogen, and protein. The results indicate that acute exposure of goldfish to Topas induced strong metabolic perturbations and disruptions of metabolic parameters, suggesting that these could be used to assess sublethal or acute toxic effects of pesticides on aquatic species.
Collapse
Affiliation(s)
- Nadiia Mosiichuk
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk 76018, Ukraine
| | - Viktor Husak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk 76018, Ukraine
| | - Kenneth B Storey
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - Volodymyr Lushchak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk 76018, Ukraine
| |
Collapse
|
41
|
Matouke MM, Sanusi HM, Eneojo AS. Interaction of copper with titanium dioxide nanoparticles induced hematological and biochemical effects in Clarias gariepinus. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:67646-67656. [PMID: 34255260 DOI: 10.1007/s11356-021-15148-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 06/22/2021] [Indexed: 06/13/2023]
Abstract
The increasing demand for engineered nanomaterials induces potential harmful impact into aquatic ecosystems and is a great concern for freshwater biodiversity. The present study showed that enhancing toxic property of titanium dioxide nanoparticles (TiO2 NPs) with copper (Cu) was responsible for the disruption of hormonal, hematological, and biochemical activities, in Clarias gariepinus. The study revealed that C. gariepinus intravenously injected with safe concentrations of TiO2 NPs (3μg g) and Cu (2.5 μg g) alone and binary mixtures (TiO2 NPs (3μg g) + Cu (2.5μg g)) for a period of 96h remarkably changed hormonal activities and hematological and biochemical indices of the fish. Our findings indicated that both chemicals accumulated in vital organs (the brain, serum, heart, gonad, liver, gills, serum, and kidney) and the presence of TiO2 NPs enhanced the bioavailability of copper. Fish exposed to TiO2 NPs alone significantly increased thyroxine (T4) and further decreased triidothyronine (T3). In addition, the binary mixtures showed antagonistic effects on both hormones. The hematological indices (WBC, RBC, HGt, MCV, MCH, MCHC, and Hct) were altered in all treatment groups. Decrease in WBC, RBC, HGt, Hct, and MCV were observed. Furthermore, the co-exposure further decreased WBC (60.28%), RBC (47.10%), HGt (75.99%), Hct (25.34%), and MCV (16.18%), in contrast, MCH and MCHC increased by of 2 folds, respectively. Metabolic enzymes alanine aminotransferase (ALT), aspartate aminotransferase (AST), and lactate dehydrogenase (LDH) showed significant (p<0.05) increase, with additive effect in co-exposure. However, the alkaline phosphatase (ALP) activity decreased significantly in co-exposure. Significant (p<0.05) decrease of antioxidants, superoxide dismutase (SOD), glutathione transferase (GST), catalase (CAT), and metallothionein (Met) was observed in all the treatments with additive effect of 64.9%, 30.77%, and 91.31% in SOD, GST, and CAT, respectively. However, there was an increase in lipid peroxidation (MDA) in all treated fish. The results indicate that combined mixture influences the accumulation, hormonal, hematological, and biochemical factors which could affect the health of the fish.
Collapse
|
42
|
Sayed AEDH, Hamed M, Badrey AEA, Soliman HAM. Bioremediation of hemotoxic and oxidative stress induced by polyethylene microplastic in Clarias gariepinus using lycopene, citric acid, and chlorella. Comp Biochem Physiol C Toxicol Pharmacol 2021; 250:109189. [PMID: 34517132 DOI: 10.1016/j.cbpc.2021.109189] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 02/07/2023]
Abstract
Despite extensive research on the toxic effects of microplastics (MPs), there is no obtainable data on the use of phytobioremediation against MPs toxicity in fish. This study aimed to investigate the protective role of lycopene, citric acid, and chlorella against the toxic effects of MPs in African catfish (Clarias gariepinus) using hematology, biochemical, antioxidants, erythron profiles (poikilocytosis and nuclear abnormalities) and the accumulation of MPs in tissues as biomarkers. Five groups of fish received: normal diet (control); MPs (500 mg/kg diet) (Group 2); MPs (500 mg/kg diet) + lycopene (500 mg/kg diet) (Group 3); MPs (500 mg/kg diet) + citric acid (30 g/kg diet) (Group 4); and MPs (500 mg/kg diet) + chlorella (50 g/kg diet) (Group 5) for 15 days. Group 2 had significantly higher amounts of MPs in the stomach, gills, and feces, electrolyte imbalances (HCO3, Fe, Na+, K+, Ca+2, Cl-, and anion gap, hematobiochemical alterations, and decreases in the activities of superoxide dismutase, catalase, total antioxidant capacity, and glutathione S-transferases compared to the control group. Additionally, Group 2 had significant increase in the percentage of poikilocytosis, and nuclear abnormalities in RBC's compared to the control group. The co-treatment of MPs-exposed fish with lycopene, citric acid, and chlorella-supplemented diets ameliorated the hematological, biochemical, and erythron profile alterations, but only slightly enhanced the antioxidant activity. Overall, lycopene, citric acid, and chlorella can be recommended as a feed supplement to improve hematobiochemical alterations and oxidative damage induced by MPs toxicity in the African catfish (C. gariepinus).
Collapse
Affiliation(s)
- Alaa El-Din H Sayed
- Zoology Department, Faculty of Science, Assiut University, 71516 Assiut, Egypt.
| | - Mohamed Hamed
- Department of Zoology, Faculty of Science, Al Azhar University, Assiut Branch, 71524 Assiut, Egypt
| | - Ahmed E A Badrey
- Department of Zoology, Faculty of Science, Al Azhar University, Assiut Branch, 71524 Assiut, Egypt
| | - Hamdy A M Soliman
- Department of Zoology, Faculty of Science, Sohag University, 8562 Sohag, Egypt
| |
Collapse
|
43
|
Chatterjee A, Bhattacharya R, Chatterjee S, Saha NC. λ cyhalothrin induced toxicity and potential attenuation of hematological, biochemical, enzymological and stress biomarkers in Cyprinus carpio L. at environmentally relevant concentrations: A multiple biomarker approach. Comp Biochem Physiol C Toxicol Pharmacol 2021; 250:109164. [PMID: 34390845 DOI: 10.1016/j.cbpc.2021.109164] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 08/03/2021] [Accepted: 08/06/2021] [Indexed: 12/11/2022]
Abstract
The present study was aimed to evaluate the toxic effects of a commonly used synthetic pyrethroid, λ cyhalothrin on the common carp, Cyprinus carpio L. The results depicted that 96 h LC50 value of λ cyhalothrin to the fish was 1.48 μg l-1. During 45 days of chronic exposure a significant reduction (p < 0.05) in the RBC, hemoglobin, and hematocrit value of fish was observed in λ cyhalothrin treated fish. Blood glucose, cholesterol and creatinine levels increased significantly, while total protein and albumin were significantly decreased (p < 0.05) in the exposed fish. Moreover, alanine aminotransferase and aspartate aminotransferase levels in the blood also increased significantly (p < 0.05) in the treated fish. In gills and liver, glutathione S-transferase (GST) and glutathione peroxidase (GPx) and in liver GST exhibited a significant initial augmentation followed by a subsequent reduction while catalase (CAT), superoxide dismutase (SOD), and malondialdehyde (MDA) level increased markedly with incrementing concentrations of λ cyhalothrin in both the organs. Acetylcholinesterase (AchE) activity in both gills and liver decreased in exposed fish upon addition λ cyhalothrin. However, the hazardous effects of λ cyhalothrin on C. carpio were characterized and portrayed by the development of integrated biomarker response (IBR), and biomarker response index (BRI). GUTS-SD and IT modeling were implied for a better interpretation of the toxicity. These results indicate that exposure to λ cyhalothrin alters the survivability at the acute level and the activity of hematological, plasma biochemical as well as enzymological and stress parameters (in gills and liver) at the sublethal level in C. carpio.
Collapse
Affiliation(s)
- Arnab Chatterjee
- Fishery and Ecotoxicology Research Laboratory (Vice-Chancellor's Research Group), Department of Zoology, The University of Burdwan, Burdwan 713104, West Bengal, India
| | - Ritwick Bhattacharya
- Fishery and Ecotoxicology Research Laboratory (Vice-Chancellor's Research Group), Department of Zoology, The University of Burdwan, Burdwan 713104, West Bengal, India
| | - Soumendranath Chatterjee
- Parasitology & Microbiology Research Laboratory, Department of Zoology, The University of Burdwan, Burdwan, West Bengal, India
| | - Nimai Chandra Saha
- Fishery and Ecotoxicology Research Laboratory (Vice-Chancellor's Research Group), Department of Zoology, The University of Burdwan, Burdwan 713104, West Bengal, India.
| |
Collapse
|
44
|
Ullah S, Li Z, Hassan S, Ahmad S, Guo X, Wanghe K, Nabi G. Heavy metals bioaccumulation and subsequent multiple biomarkers based appraisal of toxicity in the critically endangered Tor putitora. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 228:113032. [PMID: 34856487 DOI: 10.1016/j.ecoenv.2021.113032] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/20/2021] [Accepted: 11/24/2021] [Indexed: 05/27/2023]
Abstract
The construction of hydropower projects discharges effluents to aquatic bodies. The effluents consist of different chemicals including heavy metals. The current study assessed the effects of effluents discharged from an under-construction hydropower project on the bioaccumulation of heavy metals in the tissues of critically endangered Tor putitora (Hamilton, 1822) in the river Panjkora. The subsequent toxic impacts of higher bioaccumulation of heavy metals on different biochemical, hematological, and serum biochemical profiles were also studied. Different biochemical changes were observed in the tissues of T. putitora including stress biomarkers such as reactive oxygen species, lipid peroxidation, total protein contents, antioxidant enzymes (peroxidase, superoxide dismutase, catalase, reduced glutathione, glutathione reductase, and glutathione-s-transferase), acetylcholinesterase, and whole-body cortisol. The hematotoxic effects were also observed as the count of red blood cells, hematocrit, and hemoglobin decreased whereas the count of white blood cells increased. Serum biochemical analysis revealed that cholesterol, urea, total bilirubin, and glucose concentration increased, whereas total proteins and albumin decreased with an increase in the concentration of heavy metals across the sampling sites. The fish from the river was found to be under severe stress as compared to the fish from the reference site. To mitigate the current scenario, stocking fish in an appropriate amount is suggested. The fish diversity and water quality should be assessed at regular intervals to avoid further deterioration and diversity loss. The safety and conservation of wild fisheries should be ensured by implementing strict environmental protection and fishing laws.
Collapse
Affiliation(s)
- Sana Ullah
- Animal Behavior and Conservation Lab., School of Life Sciences, Nanjing University, Nanjing 210023, Jiangsu, China; Department of Zoology, Division of Science and Technology, University of Education, Lahore 54000, Pakistan
| | - Zhongqiu Li
- Animal Behavior and Conservation Lab., School of Life Sciences, Nanjing University, Nanjing 210023, Jiangsu, China.
| | - Said Hassan
- Department of Biotechnology, Bacha Khan University, Charsadda 24461, Khyber Pakhtunkhwa, Pakistan
| | - Shahid Ahmad
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang 050010, China
| | - Xinle Guo
- Academy of Plateau Science and Sustainability, College of Life Sciences, Qinghai Normal University, Xining, China
| | - Kunyuan Wanghe
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, 23th Xinning Road, Xining, Qinghai 810008, China.
| | - Ghulam Nabi
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang 050010, China.
| |
Collapse
|
45
|
Jeong JY, Kim B, Ji SY, Baek YC, Kim M, Park SH, Kim KH, Oh SI, Kim E, Jung H. Effect of Pesticide Residue in Muscle and Fat Tissue of Pigs Treated with Propiconazole. Food Sci Anim Resour 2021; 41:1022-1035. [PMID: 34796328 PMCID: PMC8564320 DOI: 10.5851/kosfa.2021.e53] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/06/2021] [Accepted: 09/09/2021] [Indexed: 01/15/2023] Open
Abstract
This study estimated the effect of exposure to propiconazole through
implementation and residues in finishing pigs. We analyzed the expression of
fibrosis-related genes and performed histological analysis of the blood, liver,
kidney, muscle, ileum, and fat tissues. The animals were exposed for 28 d to
different concentrations of propiconazole (0.09, 0.44, 0.88, 4.41, and 8.82
mg/kg bw/d). Quantitative, gene expression, and histological analyses in tissues
were performed using liquid chromatography mass spectrometry, real-time PCR, and
Masson’s trichrome staining, respectively. Final body weight did not
differ among groups. However, genes involved in fibrosis were significantly
differentially regulated in response to propiconazole concentrations. Glucose,
alanine aminotransferase, and total bilirubin levels were significantly
increased compared with those in the control group, while alkaline phosphatase
level was decreased (p<0.05) after exposure to propiconazole. The residue
limits of propiconazole were increased in the finishing phase at 4.41 and 8.82
mg/kg bw/d. The liver, kidney, and ileum showed blue staining after
propiconazole treatment, confirmed by Masson's trichrome staining. In
conclusion, these findings suggest that propiconazole exposure disturbs the
expression of fibrosis-related genes. This study on dietary propiconazole in
pigs can provide a basis for determining maximum residue limits and a better
understanding of metabolism in pigs and meat products.
Collapse
Affiliation(s)
- Jin Young Jeong
- Animal Nutrition & Physiology Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| | - Byeonghyeon Kim
- Animal Nutrition & Physiology Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| | - Sang Yun Ji
- Animal Nutrition & Physiology Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| | - Youl Chang Baek
- Animal Nutrition & Physiology Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| | - Minji Kim
- Animal Nutrition & Physiology Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| | - Seol Hwa Park
- Animal Nutrition & Physiology Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| | - Ki Hyun Kim
- Animal Welfare Research Team, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| | - Sang-Ik Oh
- Division of Animal Disease & Health, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| | - Eunju Kim
- Division of Animal Disease & Health, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| | - Hyunjung Jung
- Animal Nutrition & Physiology Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| |
Collapse
|
46
|
Kou H, Hu J, Vijayaraman SB, Wang AL, Zheng Y, Chen J, He G, Miao Y, Lin L. Evaluation of dietary zinc on antioxidant-related gene expression, antioxidant capability and immunity of soft-shelled turtles Pelodiscussinensis. FISH & SHELLFISH IMMUNOLOGY 2021; 118:303-312. [PMID: 34481088 DOI: 10.1016/j.fsi.2021.08.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/21/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
Zinc (Zn) plays a role in the antioxidant capacity and immunity of aquatic animals. A twelve-week feeding experiment was performed to estimate the impact of dietary zinc on antioxidant enzyme-related gene expression, antioxidant enzyme activity and non-specific immune functions of soft-shelled turtles, Pelodiscus sinensis. Six fishmeal-based experimental diets with 32.45% protein were formulated, which contained 35.43, 46.23, 55.38, 66.74, 75.06 and 85.24 mg/kg Zn, respectively. Catalase (CAT), glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) levels improved with an elevation in dietary Zn from 35.43 to 55.38 mg/kg and then reduced when dietary Zn was further elevated. The expression levels of Nrf2 and antioxidant-related genes CuZnSOD, MnSOD, CAT, GPX1, GPX2, GPX3 and GPX4 escalated with elevating Zn concentration up to 55.38 mg/kg in diets and then reduced as dietary Zn elevated. The expression levels of Kelch-like ECH-associating protein 1 (keap1) showed a reverse trend with that of Nrf2. The contents of malondialdehyde (MDA) in the 55.38 and 66.74 mg/kg Zn diet-fed groups were the lowest. Alkaline phosphatase activity (AKP), superoxide anion (O2-), lysozyme activity and total antioxidant capacity (T-AOC) improved with an escalation in dietary Zn concentration up to 66.74 mg/kg. Optimal dietary Zn improved antioxidant capability, immunity, and antioxidant enzyme-related gene expression. The dietary Zn demand for soft-shelled turtles were 60.93 and 61.63 mg/kg, based on second regression analysis of SOD and T-AOC activity, respectively.
Collapse
Affiliation(s)
- Hongyan Kou
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Junru Hu
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Key Laboratory of Animal Nutrition and Feed Science in South China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Sarath Babu Vijayaraman
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - An-Li Wang
- Key Laboratory of Ecology and Environment Science in Guangdong Higher Education, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Yanyun Zheng
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Jiajia Chen
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Guoping He
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Yutao Miao
- Key Laboratory of Ecology and Environment Science in Guangdong Higher Education, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, China; Institute of Modern Aquaculture Science and Engineering, South China Normal University, Guangzhou, 510631, China.
| | - Li Lin
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China.
| |
Collapse
|
47
|
Droma D, Kumar S, Paul T, Pal P, Saharan N, Kumar K, Poojary N. Biomarkers for assessing chronic toxicity of carbamazepine, an anticonvulsants drug on Pangasianodon hypophthalmus (Sauvage, 1878). ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 87:103691. [PMID: 34153508 DOI: 10.1016/j.etap.2021.103691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 06/03/2021] [Accepted: 06/16/2021] [Indexed: 06/13/2023]
Abstract
In recent times, carbamazepine (CBZ) as an anticonvulsants drug has raised attention because of its safety concern in the aquatic environment. The present study aimed to evaluate the sub-lethal effects of CBZ (1%, 0.1 % and 0.01 % of 96 h LC50) on P. hypophthalmus for 60 days based on haematological, biochemical, and genotoxicity biomarkers. Chronic exposure of CBZ altered blood profiles (total erythrocyte count, packed cell volume, haemoglobin) and serum biomarkers such as alkaline phosphates, cholesterol, lactate dehydrogenase and transaminase enzymes. Oxidative stress biomarkers such as superoxide dismutase (SOD) and catalase (CAT) activity were also substantially affected in all treatments. Genotoxicity study revealed the formation of micronucleus in erythrocytes of exposed fish. Integrated Biomarker Response (IBR) study showed cholesterol, serum glutamic oxaloacetic transaminase (SGOT) in serum and SOD, CAT in liver tissue are the best organ-based enzyme biomarkers. The present report concludes that an environmentally realistic concentration of CBZ can pose a serious threat to aquatic organisms.
Collapse
Affiliation(s)
- Dawa Droma
- Aquatic Environment and Health Management Division, ICAR- Central Institute of Fisheries Education, Mumbai, 400 061, India
| | - Saurav Kumar
- Aquatic Environment and Health Management Division, ICAR- Central Institute of Fisheries Education, Mumbai, 400 061, India.
| | - Tapas Paul
- Aquatic Environment and Health Management Division, ICAR- Central Institute of Fisheries Education, Mumbai, 400 061, India
| | - Prasenjit Pal
- College of Fisheries, Central Agricultural University (I), Lembucherra, Tripura, 799210, India
| | - Neelam Saharan
- Aquatic Environment and Health Management Division, ICAR- Central Institute of Fisheries Education, Mumbai, 400 061, India
| | - Kundan Kumar
- Aquatic Environment and Health Management Division, ICAR- Central Institute of Fisheries Education, Mumbai, 400 061, India
| | - Nalini Poojary
- Aquatic Environment and Health Management Division, ICAR- Central Institute of Fisheries Education, Mumbai, 400 061, India
| |
Collapse
|
48
|
Abalaka SE, Oyelowo FO, Akande MG, Tenuche OZ, Sani NA, Adeyemo BT, Idoko IS, Ogbe AO, Ejeh SA. Effects of Moringa oleifera leaves extract, vitamin C, and taurine co-exposures on calcium and metallothionein levels, oxidative stress, and gill histopathological changes in Clarias gariepinus exposed to sub-lethal cadmium. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:52258-52271. [PMID: 34003442 DOI: 10.1007/s11356-021-14426-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 05/10/2021] [Indexed: 06/12/2023]
Abstract
Cadmium aquatic environmental pollution poses great threats to fish and their would-be consumers. The present work investigated the effects of ethyl acetate extract of Moringa oleifera leaves (EAEMOL), vitamin C, and taurine co-exposures on calcium and metallothionein levels, oxidative stress, and gill histopathological changes in Clarias gariepinus exposed to sub-lethal cadmium (CdCl2) for 28 days. Fish were exposed to CdCl2 only (1.048 mg/L) as well as co-exposed with EAEMOL (20 mg/L), vitamin C (5 mg/L), and taurine (5 mg/L) separately. There was significant (p < 0.05) deterioration in fish water quality with increasing exposure period but no significant (p > 0.05) changes occurred between the exposed groups. However, the co-exposure of EAEMOL, vitamin C, and taurine did not significantly (p > 0.05) improve the CdCl2-induced fish water quality deterioration. Sub-lethal exposure to CdCl2 only caused significant (p < 0.05) increase in the serum malondialdehyde (MDA) and liver metallothionein (MT) levels with significant (p < 0.05) decrease in serum catalase activity only. However, EAEMOL, vitamin C, and taurine co-exposures did not significantly (p > 0.05) improve the MDA, superoxide dismutase, catalase, and glutathione activities, as well as MT and calcium (Ca2+) levels, condition factor (CF), hepatosomatic index (HSI), and gill histopathological changes induced by the CdCl2 exposure. Similarly, none of the present exposures, CdCl2 only or its co-exposures with EAEMOL, vitamin C, and taurine significantly (p > 0.05) altered the normal functioning of the gills despite the observed histopathological changes based on the degree of tissue change protocol. Therefore, EAEMOL, vitamin C, and taurine co-exposures, as administered in the present case, did not considerably alter the physicochemical parameters of the experimental fish water. However, outside significantly (p < 0.05) increasing MDA level, EAEMOL, vitamin C, and taurine co-exposures did not significantly (p > 0.05) improve the CdCl2-induced Ca2+, MT, CF, HSI, and gill histopathological alterations by sub-lethal CdCl2 exposure of C. gariepinus.
Collapse
Affiliation(s)
- Samson E Abalaka
- Department of Veterinary Pathology, University of Abuja, Abuja, Nigeria.
| | - Fatima O Oyelowo
- Department of Veterinary Anatomy, University of Abuja, Abuja, Nigeria
| | - Motunrayo G Akande
- Department of Veterinary Pharmacology and Toxicology, University of Abuja, Abuja, Nigeria
| | - Oremeyi Z Tenuche
- Department of Veterinary Pathology, University of Abuja, Abuja, Nigeria
| | - Nuhu A Sani
- Department of Veterinary Pathology, University of Abuja, Abuja, Nigeria
| | - Bolade T Adeyemo
- Department of Animal Production and Health, University of Abuja, Abuja, Nigeria
| | - Idoko S Idoko
- Department of Veterinary Pathology, University of Abuja, Abuja, Nigeria
| | - Adamu O Ogbe
- Department of Veterinary Medicine, University of Abuja, Abuja, Nigeria
| | - Sunday A Ejeh
- Department of Veterinary Physiology and Biochemistry, University of Abuja, Abuja, Nigeria
| |
Collapse
|
49
|
Shaaban NA, Tawfik S, El-Tarras W, El-Sayed Ali T. Potential health risk assessment of some bioaccumulated metals in Nile tilapia (Oreochromis niloticus) cultured in Kafr El-Shaikh farms, Egypt. ENVIRONMENTAL RESEARCH 2021; 200:111358. [PMID: 34043970 DOI: 10.1016/j.envres.2021.111358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 05/13/2021] [Accepted: 05/16/2021] [Indexed: 06/12/2023]
Abstract
In Egypt, using agricultural drainage water is a serious challenge for fish farming, due to water scaristy. Metals could be a potential threat to the quality of the cultured fish. Thus, this study aimed to assess the content of the metals in the cultured fish, their effect on the fish tissues, and the possible human health risk upon their consumption. This accomplished firstly, by determining the levels of essential Fe, Mn, Zn, Cu, beside the top three most toxic metals (Cr, Cd, and Pb) in the edible muscles and liver of 200 samples of Oreochromis niloticus cultured at three fish farms, using inductively coupled plasma optical emission spectroscopy (ICP-OES). The results showed the order of abundance: Fe > Zn > Cu ≥ Cr > Mn > Pb > Cd. Levels of Fe, Zn, Mn, and Cu in the fish liver were higher than corresponding values of muscles by 3, 3, 5, 9 order of magnitude, respectively. The histopathological examination showed alternations in muscles and liver tissues of fish farms irrigated with drainage water. However, the risk assessment indicated the safe human consumption of cultured fish produced from these fish farms.
Collapse
Affiliation(s)
- Nashwa A Shaaban
- Oceanography Department, Faculty of Science, Alexandria University, Egypt.
| | - Samar Tawfik
- Aquaculture Department, Faculty of Aquatic and Fisheries Sciences, Kafrelshaikh University, Egypt
| | - Wael El-Tarras
- Aquaculture Department, Faculty of Aquatic and Fisheries Sciences, Kafrelshaikh University, Egypt
| | - Tamer El-Sayed Ali
- Oceanography Department, Faculty of Science, Alexandria University, Egypt
| |
Collapse
|
50
|
De Cock A, De Troyer N, Eurie MAF, Garcia Arevalo I, Van Echelpoel W, Jacxsens L, Luca S, Du Laing G, Tack F, Dominguez Granda L, Goethals PLM. From Mangrove to Fork: Metal Presence in the Guayas Estuary (Ecuador) and Commercial Mangrove Crabs. Foods 2021; 10:foods10081880. [PMID: 34441657 PMCID: PMC8393220 DOI: 10.3390/foods10081880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 08/08/2021] [Accepted: 08/11/2021] [Indexed: 11/16/2022] Open
Abstract
Mangrove wetlands provide essential ecosystem services such as coastal protection and fisheries. Metal pollution due to industrial and agricultural activities represents an issue of growing concern for the Guayas River Basin and related mangroves in Ecuador. Fisheries and the related human consumption of mangrove crabs are in need of scientific support. In order to protect human health and aid river management, we analyzed several elements in the Guayas Estuary. Zn, Cu, Ni, Cr, As, Pb, Cd, and Hg accumulation were assessed in different compartments of the commercial red mangrove crab Ucides occidentalis (hepatopancreas, carapax, and white meat) and the environment (sediment, leaves, and water), sampled at fifteen sites over five stations. Consistent spatial distribution of metals in the Guayas estuary was found. Nickel levels in the sediment warn for ecological caution. The presence of As in the crabs generated potential concerns on the consumers' health, and a maximum intake of eight crabs per month for adults is advised. The research outcomes are of global importance for at least nine Sustainable Development Goals (SDGs). The results presented can support raising awareness about the ongoing contamination of food and their related ecosystems and the corresponding consequences for environmental and human health worldwide.
Collapse
Affiliation(s)
- Andrée De Cock
- Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (N.D.T.); (M.A.F.E.); (I.G.A.); (W.V.E.); (P.L.M.G.)
- Correspondence: ; Tel.: +32-92649001
| | - Niels De Troyer
- Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (N.D.T.); (M.A.F.E.); (I.G.A.); (W.V.E.); (P.L.M.G.)
| | - Marie Anne Forio Eurie
- Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (N.D.T.); (M.A.F.E.); (I.G.A.); (W.V.E.); (P.L.M.G.)
| | - Isabel Garcia Arevalo
- Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (N.D.T.); (M.A.F.E.); (I.G.A.); (W.V.E.); (P.L.M.G.)
- Laboratoire de Biogéochimie des Contaminants Métalliques, Ifremer, Centre Atlantique, CEDEX 3, 44311 Nantes, France
| | - Wout Van Echelpoel
- Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (N.D.T.); (M.A.F.E.); (I.G.A.); (W.V.E.); (P.L.M.G.)
| | - Liesbeth Jacxsens
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium;
| | - Stijn Luca
- Department of Data Analysis and Mathematical Modelling, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium;
| | - Gijs Du Laing
- Department of Applied Analytical and Physical Chemistry, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (G.D.L.); (F.T.)
| | - Filip Tack
- Department of Applied Analytical and Physical Chemistry, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (G.D.L.); (F.T.)
| | - Luis Dominguez Granda
- Facultad de Ciencias Naturales y Matemáticas, Escuela Superior Politécnica del Litoral ESPOL, Campus Gustavo Galindo, 090112 Guayaquil, Ecuador;
| | - Peter L. M. Goethals
- Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (N.D.T.); (M.A.F.E.); (I.G.A.); (W.V.E.); (P.L.M.G.)
| |
Collapse
|