1
|
Expósito A, Urbaneja-Bernat P, Boncompte S, Fullana AM, Giné A, Sorribas FJ, Riudavets J. Macrolophus pygmaeus induces systemic resistance in tomato against Meloidogyne. Sci Rep 2025; 15:7554. [PMID: 40038338 PMCID: PMC11880514 DOI: 10.1038/s41598-025-90233-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 02/11/2025] [Indexed: 03/06/2025] Open
Abstract
The ability of Macrolophus pygmaeus to induce systemic resistance in susceptible and Mi1.2 resistant tomato against Meloidogyne spp. was evaluated in 200cm3 pot experiments. The susceptible cv. Roma and the resistant cv. Caramba were exposed to 15 M. pygmaeus nymphs per plant in mesh bags for 48 h and then were inoculated with 200 stage juveniles (J2) of M. incognita or 600 J2 of a mixed community of M. arenaria, M. hapla, and M. javanica. Tomato plants were maintained in a growth chamber during 40 days. Then the number of egg masses and eggs per plant were determined. In addition, the preference of the insect was evaluated confronting nematode-infected vs. non-infected plants in a Y-tube olfactometer and in insect cages, where 10 females were released into each cage containing resistant or susceptible tomato plants. After 1, 2, 4, 24, 48 and 72 h, the number of M. pygmaeus was counted as well as the offspring after 14 days. The infectivity and reproduction of M. incognita were reduced by 37% and 53%, respectively, in susceptible tomato plants inoculated with M. pygmaeus. Inoculation with the nematode community resulted in a 52% reduction in infectivity and a 37% reduction in reproduction. However, no effect was observed in the Mi1.2 resistant tomato plants, regardless of the nematode inoculum. The preference and the offspring of M. pygmaeus was not negatively affected by the nematode infection or the tomato cultivar. In conclusion, pre-induction of tomato plants with M. pygmaeus reduces RKN infectivity and reproduction in susceptible but not in Mi1.2 resistant tomato.
Collapse
Affiliation(s)
- Alejandro Expósito
- Departament of Agri-Food Engineering and Biotechnology (DEAB), Barcelona School of Agri- Food and Biosystems Engineering (EEABB), Universitat Politècnica de Catalunya, BarcelonaTech (UPC), Campus Baix Llobregat, Edif, D4, C. Esteve Terradas, Castelldefels, 08860, Spain.
- Sustainable Plant Protection Program, IRTA, Ctra. Cabrils Km 2, Barcelona, Cabrils, 08348, Spain.
| | - Pablo Urbaneja-Bernat
- Sustainable Plant Protection Program, IRTA, Ctra. Cabrils Km 2, Barcelona, Cabrils, 08348, Spain
| | - Sara Boncompte
- Departament of Agri-Food Engineering and Biotechnology (DEAB), Barcelona School of Agri- Food and Biosystems Engineering (EEABB), Universitat Politècnica de Catalunya, BarcelonaTech (UPC), Campus Baix Llobregat, Edif, D4, C. Esteve Terradas, Castelldefels, 08860, Spain
| | - Aida Magdalena Fullana
- Departament of Agri-Food Engineering and Biotechnology (DEAB), Barcelona School of Agri- Food and Biosystems Engineering (EEABB), Universitat Politècnica de Catalunya, BarcelonaTech (UPC), Campus Baix Llobregat, Edif, D4, C. Esteve Terradas, Castelldefels, 08860, Spain
| | - Ariadna Giné
- Departament of Agri-Food Engineering and Biotechnology (DEAB), Barcelona School of Agri- Food and Biosystems Engineering (EEABB), Universitat Politècnica de Catalunya, BarcelonaTech (UPC), Campus Baix Llobregat, Edif, D4, C. Esteve Terradas, Castelldefels, 08860, Spain
| | - Francisco Javier Sorribas
- Departament of Agri-Food Engineering and Biotechnology (DEAB), Barcelona School of Agri- Food and Biosystems Engineering (EEABB), Universitat Politècnica de Catalunya, BarcelonaTech (UPC), Campus Baix Llobregat, Edif, D4, C. Esteve Terradas, Castelldefels, 08860, Spain
| | - Jordi Riudavets
- Sustainable Plant Protection Program, IRTA, Ctra. Cabrils Km 2, Barcelona, Cabrils, 08348, Spain
| |
Collapse
|
2
|
Liang M, Ji T, Li S, Wang X, Cui L, Gao L, Wan H, Ma S, Tian Y. Silencing CsMAP65-2 and CsMAP65-3 in cucumber reduces susceptibility to Meloidogyne incognita. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 219:109356. [PMID: 39637709 DOI: 10.1016/j.plaphy.2024.109356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/05/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024]
Abstract
Root knot nematodes (RKNs) induce hypertrophy and cell proliferation within the vascular cylinders of host plants, leading to the formation of giant cells (GCs) that are enlarged, multinucleate cells with high metabolic activity. These GCs are formed through repeated karyokinesis without cytokinesis and are accompanied by significant changes in cytoskeleton organization. In this study, two microtubule-binding protein genes, CsMAP65-2 and CsMAP65-3, are upregulated in cucumber roots upon RKNs infection, specifically at 3, 96, and 120 hpi. GUS expression analysis further confirmed the induction of CsMAP65-2 and CsMAP65-3 in both roots and nematode-induced galls. Silencing CsMAP65-2 or CsMAP65-3 using VIGS technology led to a reduction in gall size and number, as well as a decrease in GCs number (24.98% for CsMAP65-2; 19.48% for CsMAP65-3) and area (6% for CsMAP65-2; 4% for CsMAP65-3), compared to control plants. Furthermore, qRT-PCR analysis revealed upregulation of CsMYC2、CsPR1、CsPAD4, and CsPDF1 in CsMAP65-2 silenced lines and upregulation of CsFRK1 in CsMAP65-3 silenced lines, while CsJAZ1 was downregulated in both silenced lines. These findings suggest that CsMAP65-2 and CsMAP65-3 are critical for GCs development during RKN infection and provide a foundation for breeding nematode-resistant cucumber varieties. This research also offers insights for developing sustainable nematode management strategies in gourd crop cultivation.
Collapse
Affiliation(s)
- Meiting Liang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Tingting Ji
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Shihui Li
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xingyi Wang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Lujing Cui
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Lihong Gao
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Hongjian Wan
- Institute of Vegetables and State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Si Ma
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China.
| | - Yongqiang Tian
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
3
|
Chen Q, Zhang J, Ye L, Liu N, Wang F. Methyl jasmonate induced tolerance effect of Pinus koraiensis to Bursaphelenchus xylophilus. PEST MANAGEMENT SCIENCE 2025; 81:80-92. [PMID: 39258814 DOI: 10.1002/ps.8407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/24/2024] [Accepted: 08/27/2024] [Indexed: 09/12/2024]
Abstract
BACKGROUND Methyl jasmonate (MeJA) can affect the balance of hormones and regulate the disease resistance of plants. Exploring the application and mechanism of MeJA in inducing the tolerance of Pinus koraiensis to pine wood nematode (PWN) infection is of great significance for developing new strategies for pine wilt disease control. RESULTS Different concentrations (0.1, 1, 5 and 10 mm) of MeJA treatment groups showed differences in relative tolerance index and relative anti-nematode index of P. koraiensis seedlings to PWN infection. The treatment of 5 mm MeJA solution induced the best tolerance effect, followed by the 1 mm MeJA solution. Transcriptome analysis indicated that many plant defense-related genes upregulated after treatment with 1, 5 and 10 mm MeJA solutions. Among them, genes such as jasmonate ZIM domain-containing protein, phenylalanine ammonia-lyase and peroxidase also continuously upregulated after PWN infection. Metabolome analysis indicated that jasmonic acid (JA) was significantly increased at 7 days postinoculation with PWN, and after treatment with both 1 and 5 mm MeJA solutions. Integrated analysis of transcriptome and metabolome indicated that differences in JA accumulation might lead to ubiquitin-mediated proteolysis, and expression changes in trans-caffeic acid and trans-cinnamic acid-related genes, leading to the abundance differences of these two metabolisms and the formation of multiple lignin and glucosides. CONCLUSIONS MeJA treatment could activate the expression of defense-related genes that correlated with JA, regulate the abundance of defense-related secondary metabolites, and improve the tolerance of P. koraiensis seedlings to PWN infection. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Qiaoli Chen
- Key Laboratory of Alien Forest Pests Detection and Control-Heilongjiang Province, College of Forestry, Northeast Forestry University, Harbin, P. R. China
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin, P. R. China
| | - Jiawei Zhang
- Key Laboratory of Alien Forest Pests Detection and Control-Heilongjiang Province, College of Forestry, Northeast Forestry University, Harbin, P. R. China
| | - Lingfang Ye
- Key Laboratory of Alien Forest Pests Detection and Control-Heilongjiang Province, College of Forestry, Northeast Forestry University, Harbin, P. R. China
| | - Nian Liu
- Key Laboratory of Alien Forest Pests Detection and Control-Heilongjiang Province, College of Forestry, Northeast Forestry University, Harbin, P. R. China
| | - Feng Wang
- Key Laboratory of Alien Forest Pests Detection and Control-Heilongjiang Province, College of Forestry, Northeast Forestry University, Harbin, P. R. China
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin, P. R. China
- State Key Laboratory of Tree Genetics and Breeding, College of Forestry, Northeast Forestry University, Harbin, P. R. China
- Key Laboratory of Nation Forestry and Grassland Administration on Northeast Area Forest and Grass Dangerous Pest Management and Control, Shenyang Institute of Technology, Shenfu Reform and Innovation Demonstration Zone, Fushun, P. R. China
| |
Collapse
|
4
|
Huang H, Ma X, Sun L, Wang Y, Ma J, Hong Y, Zhao M, Zhao W, Yang R, Song S, Wang S. SlVQ15 recruits SlWRKY30IIc to link with jasmonate pathway in regulating tomato defence against root-knot nematodes. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:235-249. [PMID: 39501496 DOI: 10.1111/pbi.14493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 08/18/2024] [Accepted: 10/08/2024] [Indexed: 12/28/2024]
Abstract
Tomato is one of the most economically important vegetable crops in the world and has been seriously affected by the devastating agricultural pest root-knot nematodes (RKNs). Current understanding of tomato resistance to RKNs is quite limited. VQ motif-containing family proteins are plant-specific regulators; however, whether and how tomato VQs regulate resistance to RKNs is unknown. Here, we found that SlVQ15 recruited SlWRKY30IIc to coordinately control tomato defence against the RKN Meloidogyne incognita without affecting plant growth and productivity. The jasmonate (JA)-ZIM domain (JAZ) repressors of the phytohormone JAs signalling associated and interfered with the interaction of SlVQ15 and SlWRKY30IIc. In turn, SlWRKY30IIc bound to SlJAZs promoters and cooperated with SlVQ15 to repress their expression, whereas this inhibitory effect was antagonized by SlJAZ5, forming a feedback regulatory mechanism. Moreover, SlWRKY30IIc expression was directly regulated by SlMYC2, a SlJAZ-interacting negative regulator of resistance to RKNs. In conclusion, our findings revealed that a regulatory circuit of SlVQ15-SlWRKY30IIc and the JA pathway fine-tunes tomato defence against the RKN M. incognita, and provided candidate genes and clues with great potential for crop improvement.
Collapse
Affiliation(s)
- Huang Huang
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, China
| | - Xuechun Ma
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Lulu Sun
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, China
| | - Yingying Wang
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Jilin Ma
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Yihan Hong
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Mingjie Zhao
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Wenchao Zhao
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, China
| | - Rui Yang
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, China
| | - Susheng Song
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Shaohui Wang
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, China
| |
Collapse
|
5
|
Meresa BK, Matthys J, Kyndt T. Biochemical Defence of Plants against Parasitic Nematodes. PLANTS (BASEL, SWITZERLAND) 2024; 13:2813. [PMID: 39409684 PMCID: PMC11479011 DOI: 10.3390/plants13192813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/20/2024]
Abstract
Plant parasitic nematodes (PPNs), such as Meloidogyne spp., Heterodera spp. and Pratylenchus spp., are obligate parasites on a wide range of crops, causing significant agricultural production losses worldwide. These PPNs mainly feed on and within roots, impairing both the below-ground and the above-ground parts, resulting in reduced plant performance. Plants have developed a multi-component defence mechanism against diverse pathogens, including PPNs. Several natural molecules, ranging from cell wall components to secondary metabolites, have been found to protect plants from PPN attack by conferring nematode-specific resistance. Recent advances in omics analytical tools have encouraged researchers to shed light on nematode detection and the biochemical defence mechanisms of plants during nematode infection. Here, we discuss the recent progress on revealing the nematode-associated molecular patterns (NAMPs) and their receptors in plants. The biochemical defence responses of plants, comprising cell wall reinforcement; reactive oxygen species burst; receptor-like cytoplasmic kinases; mitogen-activated protein kinases; antioxidant activities; phytohormone biosynthesis and signalling; transcription factor activation; and the production of anti-PPN phytochemicals are also described. Finally, we also examine the role of epigenetics in regulating the transcriptional response to nematode attack. Understanding the plant defence mechanism against PPN attack is of paramount importance in developing new, effective and sustainable control strategies.
Collapse
Affiliation(s)
- Birhanu Kahsay Meresa
- Biotechnology Department, Mekelle University, Mekelle P.O. Box 231, Ethiopia;
- Biotechnology Department, Ghent University, B-9000 Ghent, Belgium;
| | - Jasper Matthys
- Biotechnology Department, Ghent University, B-9000 Ghent, Belgium;
| | - Tina Kyndt
- Biotechnology Department, Ghent University, B-9000 Ghent, Belgium;
| |
Collapse
|
6
|
Wu Q, Tong C, Chen Z, Huang S, Zhao X, Hong H, Li J, Feng M, Wang H, Xu M, Yan Y, Cui H, Shen D, Ai G, Xu Y, Li J, Zhang H, Huang C, Zhang Z, Dong S, Wang X, Zhu M, Dinesh-Kumar SP, Tao X. NLRs derepress MED10b- and MED7-mediated repression of jasmonate-dependent transcription to activate immunity. Proc Natl Acad Sci U S A 2023; 120:e2302226120. [PMID: 37399403 PMCID: PMC10334756 DOI: 10.1073/pnas.2302226120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/23/2023] [Indexed: 07/05/2023] Open
Abstract
Plant intracellular nucleotide-binding domain, leucine-rich repeat-containing receptors (NLRs) activate a robust immune response upon detection of pathogen effectors. How NLRs induce downstream immune defense genes remains poorly understood. The Mediator complex plays a central role in transducing signals from gene-specific transcription factors to the transcription machinery for gene transcription/activation. In this study, we demonstrate that MED10b and MED7 of the Mediator complex mediate jasmonate-dependent transcription repression, and coiled-coil NLRs (CNLs) in Solanaceae modulate MED10b/MED7 to activate immunity. Using the tomato CNL Sw-5b, which confers resistance to tospovirus, as a model, we found that the CC domain of Sw-5b directly interacts with MED10b. Knockout/down of MED10b and other subunits including MED7 of the middle module of Mediator activates plant defense against tospovirus. MED10b was found to directly interact with MED7, and MED7 directly interacts with JAZ proteins, which function as transcriptional repressors of jasmonic acid (JA) signaling. MED10b-MED7-JAZ together can strongly repress the expression of JA-responsive genes. The activated Sw-5b CC interferes with the interaction between MED10b and MED7, leading to the activation of JA-dependent defense signaling against tospovirus. Furthermore, we found that CC domains of various other CNLs including helper NLR NRCs from Solanaceae modulate MED10b/MED7 to activate defense against different pathogens. Together, our findings reveal that MED10b/MED7 serve as a previously unknown repressor of jasmonate-dependent transcription repression and are modulated by diverse CNLs in Solanaceae to activate the JA-specific defense pathways.
Collapse
Affiliation(s)
- Qian Wu
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing210095, P. R. China
| | - Cong Tong
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing210095, P. R. China
| | - Zhengqiang Chen
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing210095, P. R. China
| | - Shen Huang
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing210095, P. R. China
| | - Xiaohui Zhao
- Salinity Agriculture Research Laboratory, Jiangsu Coastal Area Institute of Agricultural Sciences, Yancheng224002, P. R. China
| | - Hao Hong
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing210095, P. R. China
| | - Jia Li
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing210095, P. R. China
| | - Mingfeng Feng
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing210095, P. R. China
| | - Huiyuan Wang
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing210095, P. R. China
- Institute of Biotechnology, Zhejiang University, Hangzhou310058, P. R. China
| | - Min Xu
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing210095, P. R. China
| | - Yuling Yan
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing210095, P. R. China
| | - Hongmin Cui
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing210095, P. R. China
| | - Danyu Shen
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing210095, P. R. China
| | - Gan Ai
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing210095, P. R. China
| | - Yi Xu
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing210095, P. R. China
| | - Junming Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing100081, P. R. China
| | - Hui Zhang
- Institute of Horticulture Science, Shanghai Academy of Agricultural Sciences, Shanghai201403, P. R. China
| | - Changjun Huang
- Yunnan Academy of Tobacco Agricultural Sciences, Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Kunming650021, P. R. China
| | - Zhongkai Zhang
- Yunnan Provincial Key Laboratory of Agri-Biotechnology, Institute of Biotechnology and Genetic Resources, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan650223, P. R. China
| | - Suomeng Dong
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing210095, P. R. China
| | - Xuan Wang
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing210095, P. R. China
| | - Min Zhu
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing210095, P. R. China
| | - Savithramma P. Dinesh-Kumar
- Department of Plant Biology and The Genome Center College of Biological Sciences, University of California, Davis, CA95616
| | - Xiaorong Tao
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing210095, P. R. China
| |
Collapse
|
7
|
Adigun OA, Pham TH, Grapov D, Nadeem M, Jewell LE, Cheema M, Galagedara L, Thomas R. Phyto-oxylipin mediated plant immune response to colonization and infection in the soybean- Phytophthora sojae pathosystem. FRONTIERS IN PLANT SCIENCE 2023; 14:1141823. [PMID: 37251755 PMCID: PMC10219219 DOI: 10.3389/fpls.2023.1141823] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/06/2023] [Indexed: 05/31/2023]
Abstract
Introduction Food security is a major challenge to sustainably supply food to meet the demands of the ever-growing global population. Crop loss due to pathogens is a major concern to overcoming this global food security challenge. Soybean root and stem rot caused by Phytophthora sojae results in approximately 20B $US crop loss annually. Phyto-oxylipins are metabolites biosynthesized in the plants by oxidative transformation of polyunsaturated fatty acids through an array of diverging metabolic pathways and play an important role in plant development and defense against pathogen colonization and infection. Lipid mediated plant immunity is a very attractive target for developing long term resistance in many plants' disease pathosystem. However, little is known about the phyto-oxylipin's role in the successful strategies used by tolerant soybean cultivar to mitigate Phytophthora sojae infection. Methods We used scanning electron microscopy to observe the alterations in root morphology and a targeted lipidomics approach using high resolution accurate mass tandem mass spectrometry to assess phyto-oxylipin anabolism at 48 h, 72 h and 96 h post infection. Results and discussion We observed the presence of biogenic crystals and reinforced epidermal walls in the tolerant cultivar suggesting a mechanism for disease tolerance when compared with susceptible cultivar. Similarly, the unequivocally unique biomarkers implicated in oxylipin mediated plant immunity [10(E),12(Z)-13S-hydroxy-9(Z),11(E),15(Z)-octadecatrienoic acid, (Z)-12,13-dihydroxyoctadec-9-enoic acid, (9Z,11E)-13-Oxo-9,11-octadecadienoic acid, 15(Z)-9-oxo-octadecatrienoic acid, 10(E),12(E)-9-hydroperoxyoctadeca-10,12-dienoic acid, 12-oxophytodienoic acid and (12Z,15Z)-9, 10-dihydroxyoctadeca-12,15-dienoic acid] generated from intact oxidized lipid precursors were upregulated in tolerant soybean cultivar while downregulated in infected susceptible cultivar relative to non-inoculated controls at 48 h, 72 h and 96 h post infection by Phytophthora sojae, suggesting that these molecules may be a critical component of the defense strategies used in tolerant cultivar against Phytophthora sojae infection. Interestingly, microbial originated oxylipins, 12S-hydroperoxy-5(Z),8(Z),10(E),14(Z)-eicosatetraenoic acid and (4Z,7Z,10Z,13Z)-15-[3-[(Z)-pent-2-enyl]oxiran-2-yl]pentadeca-4,7,10,13-tetraenoic acid were upregulated only in infected susceptible cultivar but downregulated in infected tolerant cultivar. These microbial originated oxylipins are capable of modulating plant immune response to enhance virulence. This study demonstrated novel evidence for phyto-oxylipin metabolism in soybean cultivars during pathogen colonization and infection using the Phytophthora sojae-soybean pathosystem. This evidence may have potential applications in further elucidation and resolution of the role of phyto-oxylipin anabolism in soybean tolerance to Phytophthora sojae colonization and infection.
Collapse
Affiliation(s)
- Oludoyin Adeseun Adigun
- School of Science and the Environment, Boreal Ecosystems and Agricultural Sciences, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, NL, Canada
| | - Thu Huong Pham
- School of Science and the Environment, Boreal Ecosystems and Agricultural Sciences, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, NL, Canada
| | - Dmitry Grapov
- Creative Data Solution (CDS), Colfax, CA, United States
| | - Muhammad Nadeem
- School of Science and the Environment, Boreal Ecosystems and Agricultural Sciences, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, NL, Canada
| | - Linda Elizabeth Jewell
- St. John’s Research and Development Centre, Agriculture and Agri-Food Canada, St. John’s, NL, Canada
| | - Mumtaz Cheema
- School of Science and the Environment, Boreal Ecosystems and Agricultural Sciences, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, NL, Canada
| | - Lakshman Galagedara
- School of Science and the Environment, Boreal Ecosystems and Agricultural Sciences, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, NL, Canada
| | - Raymond Thomas
- School of Science and the Environment, Boreal Ecosystems and Agricultural Sciences, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, NL, Canada
- Department of Biology/Biotron Climate Change Experimental Research Centre, Western University, London, ON, Canada
| |
Collapse
|
8
|
Zhao W, Liang J, Huang H, Yang J, Feng J, Sun L, Yang R, Zhao M, Wang J, Wang S. Tomato defence against Meloidogyne incognita by jasmonic acid-mediated fine-tuning of kaempferol homeostasis. THE NEW PHYTOLOGIST 2023; 238:1651-1670. [PMID: 36829301 DOI: 10.1111/nph.18837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Jasmonic acid (JA) is involved in the modulation of defence and growth activities in plants. The best-characterized growth-defence trade-offs stem from antagonistic crosstalk among hormones. In this study, we first confirmed that JA negatively regulates root-knot nematode (RKN) susceptibility via the root exudates (REs) of tomato plants. Omics and toxicological analyses implied that kaempferol, a type of flavonol, from REs has a negative effect on RKN infection. We demonstrated that SlMYB57 negatively regulated kaempferol contents in tomato roots, whereas SlMYB108/112 had the opposite effect. We revealed that JA fine-tuned the homeostasis of kaempferol via SlMYB-mediated transcriptional regulation and the interaction between SlJAZs and SlMYBs, thus ensuring a balance between lateral root (LR) development and RKN susceptibility. Overall, this work provides novel insights into JA-modulated LR development and RKN susceptibility mechanisms and elucidates a trade-off model mediated by JA in plants encountering stress.
Collapse
Affiliation(s)
- Wenchao Zhao
- College of Plant Science and Technology, Beijing University of Agriculture, No. 7 Beinong Road, Changping District, Beijing, 102206, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, 102206, China
| | - Jingjing Liang
- College of Plant Science and Technology, Beijing University of Agriculture, No. 7 Beinong Road, Changping District, Beijing, 102206, China
| | - Huang Huang
- College of Plant Science and Technology, Beijing University of Agriculture, No. 7 Beinong Road, Changping District, Beijing, 102206, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, 102206, China
| | - Jinshan Yang
- College of Plant Science and Technology, Beijing University of Agriculture, No. 7 Beinong Road, Changping District, Beijing, 102206, China
| | - Jiaping Feng
- College of Plant Science and Technology, Beijing University of Agriculture, No. 7 Beinong Road, Changping District, Beijing, 102206, China
| | - Lulu Sun
- College of Plant Science and Technology, Beijing University of Agriculture, No. 7 Beinong Road, Changping District, Beijing, 102206, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, 102206, China
| | - Rui Yang
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, 102206, China
| | - Mengjia Zhao
- College of Plant Science and Technology, Beijing University of Agriculture, No. 7 Beinong Road, Changping District, Beijing, 102206, China
| | - Jianli Wang
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, 102206, China
| | - Shaohui Wang
- College of Plant Science and Technology, Beijing University of Agriculture, No. 7 Beinong Road, Changping District, Beijing, 102206, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, 102206, China
| |
Collapse
|
9
|
Yu J, Yu X, Li C, Ayaz M, Abdulsalam S, Peng D, Qi R, Peng H, Kong L, Jia J, Huang W. Silicon Mediated Plant Immunity against Nematodes: Summarizing the Underline Defence Mechanisms in Plant Nematodes Interaction. Int J Mol Sci 2022; 23:ijms232214026. [PMID: 36430503 PMCID: PMC9692242 DOI: 10.3390/ijms232214026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/10/2022] [Accepted: 10/14/2022] [Indexed: 11/16/2022] Open
Abstract
Silicon (Si) is known to stimulate plant resistance against different phytopathogens, i.e., bacteria, fungi, and nematodes. It is an efficient plant growth regulator under various biotic and abiotic stresses. Silicon-containing compounds, including silicon dioxide, SiO2 nanoparticles (NPs), nano-chelated silicon fertilizer (NCSF), sodium siliconate, and sodium metasilicate, are effective in damaging various nematodes that reduce their reproduction, galling, and disease severity. The defence mechanisms in plant-nematodes interaction may involve a physical barrier, plant defence-associated enzyme activity, synthesis of antimicrobial compounds, and transcriptional regulation of defence-related genes. In the current review, we focused on silicon and its compounds in controlling plant nematodes and regulating different defence mechanisms involved in plant-nematodes interaction. Furthermore, the review aims to evaluate the potential role of Si application in improving plant resistance against nematodes and highlight its need for efficient plant-nematodes disease management.
Collapse
Affiliation(s)
- Jingwen Yu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiyue Yu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Caihong Li
- Cotton Sciences Research Institute of Hunan, Changde 415101, China
| | - Muhammad Ayaz
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei 230041, China
| | - Sulaiman Abdulsalam
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Department of Crop Protection, Division of Agricultural Colleges, Ahmadu Bello University, Zaria 810106, Nigeria
| | - Deliang Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Rende Qi
- Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei 230041, China
| | - Huan Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lingan Kong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jianping Jia
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wenkun Huang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Correspondence:
| |
Collapse
|
10
|
Huang H, Zhao W, Qiao H, Li C, Sun L, Yang R, Ma X, Ma J, Song S, Wang S. SlWRKY45 interacts with jasmonate-ZIM domain proteins to negatively regulate defense against the root-knot nematode Meloidogyne incognita in tomato. HORTICULTURE RESEARCH 2022; 9:uhac197. [PMID: 36338841 PMCID: PMC9630973 DOI: 10.1093/hr/uhac197] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/28/2022] [Indexed: 06/16/2023]
Abstract
Parasitic root-knot nematodes (RKNs) cause a severe reduction in crop yield and seriously threaten agricultural production. The phytohormones jasmonates (JAs) are important signals regulating resistance to multiple biotic and abiotic stresses. However, the molecular mechanism for JAs-regulated defense against RKNs in tomato remains largely unclear. In this study, we found that the transcription factor SlWRKY45 interacted with most JA-ZIM domain family proteins (JAZs), key repressors of the JA signaling. After infection by the RKN Meloidogyne incognita, the slwrky45 mutants exhibited lower gall numbers and egg numbers per gram of roots than wild type, whereas overexpression of SlWRKY45 attenuated resistance to Meloidogyne incognita. Under M. incognita infection, the contents of jasmonic acid (JA) and JA-isoleucine (JA-Ile) in roots were repressed by SlWRKY45-overexpression. Furthermore, SlWRKY45 bound to and inhibited the promoter of the JA biosynthesis gene ALLENE OXIDE CYCLASE (AOC), and repressed its expression. Overall, our findings revealed that the SlJAZ-interaction protein SlWRKY45 attenuated RKN-regulated JA biosynthesis and repressed defense against the RKN M. incognita in tomato.
Collapse
Affiliation(s)
| | | | - Hui Qiao
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Chonghua Li
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Lulu Sun
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, 102206, China
| | - Rui Yang
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, 102206, China
| | - Xuechun Ma
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Jilin Ma
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | | | | |
Collapse
|
11
|
Rutter WB, Franco J, Gleason C. Rooting Out the Mechanisms of Root-Knot Nematode-Plant Interactions. ANNUAL REVIEW OF PHYTOPATHOLOGY 2022; 60:43-76. [PMID: 35316614 DOI: 10.1146/annurev-phyto-021621-120943] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Root-knot nematodes (RKNs; Meloidogyne spp.) engage in complex parasitic interactions with many different host plants around the world, initiating elaborate feeding sites and disrupting host root architecture. Although RKNs have been the focus of research for many decades, new molecular tools have provided useful insights into the biological mechanisms these pests use to infect and manipulate their hosts. From identifying host defense mechanisms underlying resistance to RKNs to characterizing nematode effectors that alter host cellular functions, the past decade of research has significantly expanded our understanding of RKN-plant interactions, and the increasing number of quality parasite and host genomes promises to enhance future research efforts into RKNs. In this review, we have highlighted recent discoveries, summarized the current understanding within the field, and provided links to new and useful resources for researchers. Our goal is to offer insights and tools to support the study of molecular RKN-plant interactions.
Collapse
Affiliation(s)
- William B Rutter
- US Vegetable Laboratory, USDA Agricultural Research Service, Charleston, South Carolina, USA
| | - Jessica Franco
- Department of Plant Pathology, Washington State University, Pullman, Washington, USA;
| | - Cynthia Gleason
- Department of Plant Pathology, Washington State University, Pullman, Washington, USA;
| |
Collapse
|
12
|
Lizardo RCM, Pinili MS, Diaz MGQ, Cumagun CJR. Screening for Resistance in Selected Tomato Varieties against the Root-Knot Nematode Meloidogyne incognita in the Philippines Using a Molecular Marker and Biochemical Analysis. PLANTS 2022; 11:plants11101354. [PMID: 35631779 PMCID: PMC9147681 DOI: 10.3390/plants11101354] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 11/16/2022]
Abstract
Tomato is a high-value vegetable crop widely cultivated in the Philippines, and its production is threatened by various stresses including infection by the root-knot nematode M. incognita. In this study, we checked for resistance to M. incognita in selected tomato germplasm collections and commercially available varieties using a bioassay method, the molecular marker Mi23 and biochemical analysis. Among the eight varieties tested, none showed a resistant reaction against M. incognita. Use of the molecular marker Mi23 yielded 430 bp in all the tomato varieties screened. Phylogenetic analysis using the neighbor-joining method revealed the clustering of consensus sequence of the varieties tested with the susceptible variety S. lycopersicum cv. M82-1-8 and a wild relative, S. pimpinellifolium isolate LA2184. The biochemical analysis showed varying responses among the varieties when they were inoculated with M. incognita. Increased levels of total antioxidant activity were observed in Diamante Max F1, Ilocos Red and Tm 2016 11-1, while total phenolic content was found to be elevated in Athena, Avatar TY F1 and Rosanna. Increased levels of ascorbic acid were observed in Athena and Avatar TY F1 even at 45 dpi. Even though these varieties showed elevated levels of the abovementioned biochemical parameters related to a resistance reaction, all of them showed highly susceptible reactions. Hence, this study showed that these tomato varieties have no resistance against M. incognita and that there is a need to identify other sources of resistance against M. incongita and produce resistant tomato cultivars adapted to local conditions.
Collapse
Affiliation(s)
- Roden Carlo M. Lizardo
- Institute of Weed Science, Entomology and Plant Pathology, College of Agriculture and Food Science, University of the Philippines Los Baños, College, Los Baños 4031, Laguna, Philippines;
| | - Marita S. Pinili
- National Crop Protection Center, College of Agriculture and Food Science, University of the Philippines Los Baños, College, Los Baños 4031, Laguna, Philippines;
| | - Maria Genaleen Q. Diaz
- Institute of Biological Sciences, College of Arts and Science, University of the Philippines Los Baños, College, Los Baños 4031, Laguna, Philippines;
| | - Christian Joseph R. Cumagun
- Institute of Weed Science, Entomology and Plant Pathology, College of Agriculture and Food Science, University of the Philippines Los Baños, College, Los Baños 4031, Laguna, Philippines;
- Molecular Phytopathology and Mycotoxin Research, University of Göttingen, Grisebachstrasse, 637077 Göttingen, Germany
- Correspondence:
| |
Collapse
|
13
|
El-Saadony MT, Abuljadayel DA, Shafi ME, Albaqami NM, Desoky ESM, El-Tahan AM, Mesiha PK, Elnahal AS, Almakas A, Taha AE, Abd El-Mageed TA, Hassanin AA, Elrys AS, Saad AM. Control of foliar phytoparasitic nematodes through sustainable natural materials: Current progress and challenges. Saudi J Biol Sci 2021; 28:7314-7326. [PMID: 34867034 PMCID: PMC8626253 DOI: 10.1016/j.sjbs.2021.08.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/28/2021] [Accepted: 08/12/2021] [Indexed: 10/28/2022] Open
Abstract
Nematodes are hidden enemies that inhibit the entire ecosystem causing adverse effects on animals and plants, leading to economic losses. Management of foliar phytoparasitic nematodes is an excruciating task. Various approaches were used to control nematodes dispersal, i.e., traditional practices, resistant cultivars, plant extract, compost, biofumigants, induced resistance, nano-biotechnology applications, and chemical control. This study reviews the various strategies adopted in combating plant-parasitic nematodes while examining the benefits and challenges. The significant awareness of biological and environmental factors determines the effectiveness of nematode control, where the incorporation of alternative methods to reduce the nematodes population in plants with increasing crop yield. The researchers were interested in explaining the fundamental molecular mechanisms, providing an opportunity to deepen our understanding of the sustainable management of nematodes in croplands. Eco-friendly pesticides are effective as a sustainable nematodes management tool and safe for humans. The current review presents the eco-friendly methods in controlling nematodes to minimize yield losses, and benefit the agricultural production efficiency and the environment.
Collapse
Affiliation(s)
- Mohamed T. El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Dalia A. Abuljadayel
- Department of Biological Sciences, Zoology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Manal E. Shafi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21577, Saudi Arabia
| | - Najah M. Albaqami
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21577, Saudi Arabia
| | - El-Sayed M. Desoky
- Botany Department, Faculty of Agriculture, Zagazig University, 44511 Zagazig, Egypt
| | - Amira M. El-Tahan
- Plant Production Department, Arid Lands Cultivation Research Institute, the City of Scientific Research and Technological Applications, SRTA-City. Borg El Arab, Alexandria, Egypt
| | - Philemon K. Mesiha
- Plant pathology Department, Faculty of Agriculture, Zagazig University, 44511 Zagazig, Egypt
| | - Ahmed S.M. Elnahal
- Plant pathology Department, Faculty of Agriculture, Zagazig University, 44511 Zagazig, Egypt
| | - Aisha Almakas
- Department of Crops and Pastures, Faculty of Agriculture, Sana’a University, Yemen
| | - Ayman E. Taha
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, Edfina 22758, Egypt
| | - Taia A. Abd El-Mageed
- Soil and Water Department, Faculty of Agriculture, Fayoum University, 63514 Fayoum, Egypt
| | - Abdallah A. Hassanin
- Genetics department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Ahmed S. Elrys
- Soil Science Department, Faculty of Agriculture, Zagazig University, 44511 Zagazig, Egypt
| | - Ahmed M. Saad
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| |
Collapse
|
14
|
Martínez-Medina A, Mbaluto CM, Maedicke A, Weinhold A, Vergara F, van Dam NM. Leaf herbivory counteracts nematode-triggered repression of jasmonate-related defenses in tomato roots. PLANT PHYSIOLOGY 2021; 187:1762-1778. [PMID: 34618073 PMCID: PMC8566281 DOI: 10.1093/plphys/kiab368] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 07/06/2021] [Indexed: 05/17/2023]
Abstract
Shoot herbivores may influence the communities of herbivores associated with the roots via inducible defenses. However, the molecular mechanisms and hormonal signaling underpinning the systemic impact of leaf herbivory on root-induced responses against nematodes remain poorly understood. By using tomato (Solanum lycopersicum) as a model plant, we explored the impact of leaf herbivory by Manduca sexta on the performance of the root knot nematode Meloidogyne incognita. By performing glasshouse bioassays, we found that leaf herbivory reduced M. incognita performance in the roots. By analyzing the root expression profile of a set of oxylipin-related marker genes and jasmonate root content, we show that leaf herbivory systemically activates the 13-Lipoxigenase (LOX) and 9-LOX branches of the oxylipin pathway in roots and counteracts the M. incognita-triggered repression of the 13-LOX branch. By using untargeted metabolomics, we also found that leaf herbivory counteracts the M. incognita-mediated repression of putative root chemical defenses. To explore the signaling involved in this shoot-to-root interaction, we performed glasshouse bioassays with grafted plants compromised in jasmonate synthesis or perception, specifically in their shoots. We demonstrated the importance of an intact shoot jasmonate perception, whereas having an intact jasmonate biosynthesis pathway was not essential for this shoot-to-root interaction. Our results highlight the impact of leaf herbivory on the ability of M. incognita to manipulate root defenses and point to an important role for the jasmonate signaling pathway in shoot-to-root signaling.
Collapse
Affiliation(s)
- Ainhoa Martínez-Medina
- Molecular Interaction Ecology, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103 Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Dornburgerstraße 159, 07743 Jena, Germany
- Plant-Microorganism Interactions, Institute of Natural Resources and Agrobiology of Salamanca (IRNASA‐CSIC), Cordel de Merinas 40-52, 37008 Salamanca, Spain
- Author for communication:
| | - Crispus M Mbaluto
- Molecular Interaction Ecology, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103 Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Dornburgerstraße 159, 07743 Jena, Germany
| | - Anne Maedicke
- Molecular Interaction Ecology, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103 Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Dornburgerstraße 159, 07743 Jena, Germany
| | - Alexander Weinhold
- Molecular Interaction Ecology, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103 Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Dornburgerstraße 159, 07743 Jena, Germany
| | - Fredd Vergara
- Molecular Interaction Ecology, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103 Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Dornburgerstraße 159, 07743 Jena, Germany
| | - Nicole M van Dam
- Molecular Interaction Ecology, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103 Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Dornburgerstraße 159, 07743 Jena, Germany
| |
Collapse
|
15
|
Senthil-Nathan S. Effects of elevated CO 2 on resistant and susceptible rice cultivar and its primary host, brown planthopper (BPH), Nilaparvata lugens (Stål). Sci Rep 2021; 11:8905. [PMID: 33903626 PMCID: PMC8076292 DOI: 10.1038/s41598-021-87992-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 04/07/2021] [Indexed: 11/10/2022] Open
Abstract
The elevated CO2 (eCO2) has positive response on plant growth and negative response on insect pests. As a contemplation, the feeding pattern of the brown plant hopper, Nilaparvata lugens Stål on susceptible and resistant rice cultivars and their growth rates exposed to eCO2 conditions were analyzed. The eCO2 treatment showed significant differences in percentage of emergence and rice biomass that were consistent across the rice cultivars, when compared to the ambient conditions. Similarly, increase in carbon and decrese in nitrogen ratio of leaves and alterations in defensive peroxidase enzyme levels were observed, but was non-linear among the cultivars tested. Lower survivorship and nutritional indices of N. lugens were observed in conditions of eCO2 levels over ambient conditions. Results were nonlinear in manner. We conclude that the plant carbon accumulation increased due to eCO2, causing physiological changes that decreased nitrogen content. Similarly, eCO2 increased insect feeding, and did alter other variables such as their biology or reproduction.
Collapse
Affiliation(s)
- Sengottayan Senthil-Nathan
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tenkasi, Tamil Nadu, 627 412, India.
| |
Collapse
|
16
|
Zinovieva SV, Udalova ZV, Seiml-Buchinger VV, Khasanov FK. Gene Expression of Protease Inhibitors in Tomato Plants with Invasion by Root-Knot Nematode Meloidogyne incognita and Modulation of Their Activity with Salicylic and Jasmonic Acids. BIOL BULL+ 2021. [DOI: 10.1134/s1062359021020175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Abstract—
The expression of the genes encoding the inhibitors of serine (ISP) and cysteine proteinases (ICP) was studied in the roots of tomato plants resistant and susceptible to the root-knot nematode Meloidogyne incognita during infection and under the effects of signaling molecules: salicylic (SA) and jasmonic (JA) acids. It was shown that, upon infection, resistant plants are characterized by an increased accumulation of transcripts of the ICP and ISP genes at the stages of penetration and development in the roots, while the level of transcription does not change in susceptible plants. There was a significant decrease in nematode invasion in susceptible plants after treatment with SA or JA compared to untreated plants, which makes it possible to determine the role of the studied proteinase inhibitors in resistance induced by signaling molecules. It was revealed that an increase in expression of the genes of proteinase inhibitors is accompanied by inhibition of the reproductive potential and size of M. incognita females, as well as by a decrease in plant infection.
Collapse
|
17
|
Fitoussi N, Borrego E, Kolomiets MV, Qing X, Bucki P, Sela N, Belausov E, Braun Miyara S. Oxylipins are implicated as communication signals in tomato-root-knot nematode (Meloidogyne javanica) interaction. Sci Rep 2021; 11:326. [PMID: 33431951 PMCID: PMC7801703 DOI: 10.1038/s41598-020-79432-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 12/02/2020] [Indexed: 01/29/2023] Open
Abstract
Throughout infection, plant-parasitic nematodes activate a complex host defense response that will regulate their development and aggressiveness. Oxylipins-lipophilic signaling molecules-are part of this complex, performing a fundamental role in regulating plant development and immunity. At the same time, the sedentary root-knot nematode Meloidogyne spp. secretes numerous effectors that play key roles during invasion and migration, supporting construction and maintenance of nematodes' feeding sites. Herein, comprehensive oxylipin profiling of tomato roots, performed using LC-MS/MS, indicated strong and early responses of many oxylipins following root-knot nematode infection. To identify genes that might respond to the lipidomic defense pathway mediated through oxylipins, RNA-Seq was performed by exposing Meloidogyne javanica second-stage juveniles to tomato protoplasts and the oxylipin 9-HOT, one of the early-induced oxylipins in tomato roots upon nematode infection. A total of 7512 differentially expressed genes were identified. To target putative effectors, we sought differentially expressed genes carrying a predicted secretion signal peptide. Among these, several were homologous with known effectors in other nematode species; other unknown, potentially secreted proteins may have a role as root-knot nematode effectors that are induced by plant lipid signals. These include effectors associated with distortion of the plant immune response or manipulating signal transduction mediated by lipid signals. Other effectors are implicated in cell wall degradation or ROS detoxification at the plant-nematode interface. Being an integral part of the plant's defense response, oxylipins might be placed as important signaling molecules underlying nematode parasitism.
Collapse
Affiliation(s)
- Nathalia Fitoussi
- Department of Entomology, Nematology and Chemistry Units, Agricultural Research Organization (ARO), The Volcani Center, P.O. Box 15159, 50250, Rishon LeZion, Bet Dagan, Israel
- Department of Plant Pathology and Microbiology, The Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, 76100, Rehovot, Israel
| | - Eli Borrego
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, 14623, USA
| | - Michael V Kolomiets
- Department of Plant Pathology and Microbiology, Texas A&M University, TAMU 2132, College Station, 77843-2132, USA
| | - Xue Qing
- Department of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Patricia Bucki
- Department of Entomology, Nematology and Chemistry Units, Agricultural Research Organization (ARO), The Volcani Center, P.O. Box 15159, 50250, Rishon LeZion, Bet Dagan, Israel
| | - Noa Sela
- Department of Plant Pathology and Weed Research, ARO, The Volcani Center, 50250, Bet Dagan, Israel
| | - Eduard Belausov
- Department of Plant Sciences, Ornamental Plants and Agricultural Biotechnology, ARO, The Volcani Center, 50250, Bet Dagan, Israel
| | - Sigal Braun Miyara
- Department of Entomology, Nematology and Chemistry Units, Agricultural Research Organization (ARO), The Volcani Center, P.O. Box 15159, 50250, Rishon LeZion, Bet Dagan, Israel.
| |
Collapse
|
18
|
Ghaemi R, Pourjam E, Safaie N, Verstraeten B, Mahmoudi SB, Mehrabi R, De Meyer T, Kyndt T. Molecular insights into the compatible and incompatible interactions between sugar beet and the beet cyst nematode. BMC PLANT BIOLOGY 2020; 20:483. [PMID: 33092522 PMCID: PMC7583174 DOI: 10.1186/s12870-020-02706-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 10/18/2020] [Indexed: 05/23/2023]
Abstract
BACKGROUND Sugar beet (Beta vulgaris subsp. vulgaris) is an economically important crop that provides nearly one third of the global sugar production. The beet cyst nematode (BCN), Heterodera schachtii, causes major yield losses in sugar beet and other crops worldwide. The most effective and economic approach to control this nematode is growing tolerant or resistant cultivars. To identify candidate genes involved in susceptibility and resistance, the transcriptome of sugar beet and BCN in compatible and incompatible interactions at two time points was studied using mRNA-seq. RESULTS In the susceptible cultivar, most defense-related genes were induced at 4 dai while suppressed at 10 dai but in the resistant cultivar Nemakill, induction of genes involved in the plant defense response was observed at both time points. In the compatible interaction, alterations in phytohormone-related genes were detected. The effect of exogenous application of Methyl Jasmonate and ET-generator ethephon on susceptible plants was therefore investigated and the results revealed significant reduction in plant susceptibility. Genes putatively involved in the resistance of Nemakill were identified, such as genes involved in phenylpropanoid pathway and genes encoding CYSTM domain-containing proteins, F-box proteins, chitinase, galactono-1,4-lactone dehydrogenase and CASP-like protein. Also, the transcriptome of the BCN was analyzed in infected root samples and several novel potential nematode effector genes were found. CONCLUSIONS Our data provides detailed insights into the plant and nematode transcriptional changes occurring during compatible and incompatible interactions between sugar beet and BCN. Many important genes playing potential roles in susceptibility or resistance of sugar beet against BCN, as well as some BCN effectors with a potential role as avr proteins were identified. In addition, our findings indicate the effective role of jasmonate and ethylene in enhancing sugar beet defense response against BCN. This research provides new molecular insights into the plant-nematode interactions that can be used to design novel management strategies against BCN.
Collapse
Affiliation(s)
- Razieh Ghaemi
- Department of Plant Pathology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Ebrahim Pourjam
- Department of Plant Pathology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran.
| | - Naser Safaie
- Department of Plant Pathology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Bruno Verstraeten
- Department of Biotechnology, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Seyed Bagher Mahmoudi
- Sugar Beet Seed Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Rahim Mehrabi
- Department of Biotechnology, College of Agriculture, Isfahan University of Technology, P.O. Box 8415683111, Isfahan, Iran
| | - Tim De Meyer
- Department of Data Analysis and Mathematical Modelling, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Tina Kyndt
- Department of Biotechnology, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium.
| |
Collapse
|
19
|
Kihika R, Tchouassi DP, Ng'ang'a MM, Hall DR, Beck JJ, Torto B. Compounds Associated with Infection by the Root-Knot Nematode, Meloidogyne javanica, Influence the Ability of Infective Juveniles to Recognize Host Plants. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:9100-9109. [PMID: 32786872 DOI: 10.1021/acs.jafc.0c03386] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Plant root chemistry is altered by the parasitism of plant-parasitic nematodes (PPN). Here, we investigated the influence of the infective stage juveniles (J2) of Meloidogyne javanica in inducing tomato (Solanum lycopersicum) root volatiles and chemotactic effect on conspecifics. In olfactometer assays, J2 avoided the roots of 2-day infected plants but preferred 7-day-infected tomato compared to healthy plants. Chemical analysis showed a 2-7-fold increase in the amounts of monoterpenes emitted from tomato roots infected with M. javanica relative to healthy roots. In further bioassays, the monoterpenes β-pinene, (+)-(2)-carene, α-phellandrene, and β-phellandrene differentially attracted (51-87%) J2 relative to control. Concurrent reduction and increase in the levels of methyl salicylate and (Z)-methyl dihydrojasmonate, respectively, in the root volatiles reduced J2 responses. These results demonstrate that the host plant can alter its root volatile composition to inhibit PPN attack. The observed plant-produced inhibition of J2 warrants further investigation as a potential management tool for growers.
Collapse
Affiliation(s)
- Ruth Kihika
- Behavioral and Chemical Ecology Unit, International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100, Nairobi, Kenya
- Department of Chemistry, Kenyatta University, P.O. Box 43844-00100, Nairobi, Kenya
| | - David P Tchouassi
- Behavioral and Chemical Ecology Unit, International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100, Nairobi, Kenya
| | - Margaret M Ng'ang'a
- Department of Chemistry, Kenyatta University, P.O. Box 43844-00100, Nairobi, Kenya
| | - David R Hall
- Natural Resources Institute, University of Greenwich-Medway Campus, Central Avenue, Chatham Maritime, Kent ME4 4TB, United Kingdom
| | - John J Beck
- Chemistry Research Unit, Center for Medical, Agricultural, and Veterinary Entomology, Agricultural Research Service, U.S. Department of Agriculture, 1700 SW 23rd Drive, Gainesville, Florida 32608, United States
| | - Baldwyn Torto
- Behavioral and Chemical Ecology Unit, International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100, Nairobi, Kenya
| |
Collapse
|
20
|
Singh RR, Verstraeten B, Siddique S, Tegene AM, Tenhaken R, Frei M, Haeck A, Demeestere K, Pokhare S, Gheysen G, Kyndt T. Ascorbate oxidation activates systemic defence against root-knot nematode Meloidogyne graminicola in rice. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:4271-4284. [PMID: 32242224 DOI: 10.1093/jxb/eraa171] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 04/02/2020] [Indexed: 05/23/2023]
Abstract
Ascorbic acid (AA) is the major antioxidant buffer produced in the shoot tissue of plants. Previous studies on root-knot nematode (RKN; Meloidogyne graminicola)-infected rice (Oryza sativa) plants showed differential expression of AA-recycling genes, although their functional role was unknown. Our results confirmed increased dehydroascorbate (DHA) levels in nematode-induced root galls, while AA mutants were significantly more susceptible to nematode infection. External applications of ascorbate oxidase (AO), DHA, or reduced AA, revealed systemic effects of ascorbate oxidation on rice defence versus RKN, associated with a primed accumulation of H2O2 upon nematode infection. To confirm and further investigate these systemic effects, a transcriptome analysis was done on roots of foliar AO-treated plants, revealing activation of the ethylene (ET) response and jasmonic acid (JA) biosynthesis pathways in roots, which was confirmed by hormone measurements. Activation of these pathways by methyl-JA, or ethephon treatment can complement the susceptibility phenotype of the rice Vitamin C (vtc1) mutant. Experiments on the jasmonate signalling (jar1) mutant or using chemical JA/ET inhibitors confirm that the effects of ascorbate oxidation are dependent on both the JA and ET pathways. Collectively, our data reveal a novel pathway in which ascorbate oxidation induces systemic defence against RKNs.
Collapse
Affiliation(s)
| | | | - Shahid Siddique
- Institute of Crop Science and Resource Conservation, Department of Molecular Phytomedicine, University of Bonn, Bonn, Germany
- Department of Entomology and Nematology, UC Davis, One Shields Avenue, CA, USA
| | | | - Raimund Tenhaken
- Department of Bio Sciences; Plant Physiology, University of Salzburg, Salzburg, Austria
| | - Michael Frei
- Institute of Crop Science and Resource Conservation, Crop Science, University of Bonn, Bonn, Germany
| | - Ashley Haeck
- Department of Green Chemistry and Technology, Research Group EnVOC, Ghent University, Ghent, Belgium
| | - Kristof Demeestere
- Department of Green Chemistry and Technology, Research Group EnVOC, Ghent University, Ghent, Belgium
| | - Somnath Pokhare
- Institute of Crop Science and Resource Conservation, Department of Molecular Phytomedicine, University of Bonn, Bonn, Germany
| | | | - Tina Kyndt
- Department of Biotechnology, Ghent University, Ghent, Belgium
| |
Collapse
|
21
|
Warmerdam S, Sterken MG, Sukarta OCA, van Schaik CC, Oortwijn MEP, Lozano-Torres JL, Bakker J, Smant G, Goverse A. The TIR-NB-LRR pair DSC1 and WRKY19 contributes to basal immunity of Arabidopsis to the root-knot nematode Meloidogyne incognita. BMC PLANT BIOLOGY 2020; 20:73. [PMID: 32054439 PMCID: PMC7020509 DOI: 10.1186/s12870-020-2285-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 02/07/2020] [Indexed: 05/19/2023]
Abstract
BACKGROUND Root-knot nematodes transform vascular host cells into permanent feeding structures to withdraw nutrients from the host plant. Ecotypes of Arabidopsis thaliana can display large quantitative variation in susceptibility to the root-knot nematode Meloidogyne incognita, which is thought to be independent of dominant major resistance genes. However, in an earlier genome-wide association study of the interaction between Arabidopsis and M. incognita we identified a quantitative trait locus harboring homologs of dominant resistance genes but with minor effect on susceptibility to the M. incognita population tested. RESULTS Here, we report on the characterization of two of these genes encoding the TIR-NB-LRR immune receptor DSC1 (DOMINANT SUPPRESSOR OF Camta 3 NUMBER 1) and the TIR-NB-LRR-WRKY-MAPx protein WRKY19 in nematode-infected Arabidopsis roots. Nematode infection studies and whole transcriptome analyses using the Arabidopsis mutants showed that DSC1 and WRKY19 co-regulate susceptibility of Arabidopsis to M. incognita. CONCLUSION Given the head-to-head orientation of DSC1 and WRKY19 in the Arabidopsis genome our data suggests that both genes may function as a TIR-NB-LRR immune receptor pair. Unlike other TIR-NB-LRR pairs involved in dominant disease resistance in plants, DSC1 and WRKY19 most likely regulate basal levels of immunity to root-knot nematodes.
Collapse
Affiliation(s)
- Sonja Warmerdam
- Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Mark G. Sterken
- Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Octavina C. A. Sukarta
- Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Casper C. van Schaik
- Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Marian E. P. Oortwijn
- Laboratory of Plant breeding, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Jose L. Lozano-Torres
- Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Jaap Bakker
- Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Geert Smant
- Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Aska Goverse
- Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
22
|
Lahari Z, Ullah C, Kyndt T, Gershenzon J, Gheysen G. Strigolactones enhance root-knot nematode (Meloidogyne graminicola) infection in rice by antagonizing the jasmonate pathway. THE NEW PHYTOLOGIST 2019; 224:454-465. [PMID: 31125438 PMCID: PMC6852604 DOI: 10.1111/nph.15953] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 05/16/2019] [Indexed: 05/23/2023]
Abstract
Strigolactones (SLs) are carotenoid-derived plant hormones that also act in the rhizosphere to stimulate germination of root-parasitic plants and enhance plant symbiosis with beneficial microbes. Here, the role of SLs was investigated in the interaction of rice (Oryza sativa) roots with the root-knot nematode Meloidogyne graminicola. Genetic approaches and chemical sprays were used to manipulate SL signaling in rice before infection with M. graminicola. Then, nematode performance was evaluated and plant defense hormones were quantified. Meloidogyne graminicola infection induced SL biosynthesis and signaling and suppressed jasmonic acid (JA)-based defense in rice roots, suggesting a potential role of SLs during nematode infection. Whereas the application of a low dose of the SL analogue GR24 increased nematode infection and decreased jasmonate accumulation, the SL biosynthesis and signaling d mutants were less susceptible to M. graminicola, and constitutively accumulated JA and JA-isoleucine compared with wild-type plants. Spraying with 0.1 μM GR24 restored nematode susceptibility in SL-biosynthesis mutants but not in the signaling mutant. Furthermore, foliar application of the SL biosynthesis inhibitor TIS108 impeded nematode infection and increased jasmonate levels in rice roots. In conclusion, SL signaling in rice suppresses jasmonate accumulation and promotes root-knot nematode infection.
Collapse
Affiliation(s)
- Zobaida Lahari
- Department of BiotechnologyGhent UniversityGhent9000Belgium
| | - Chhana Ullah
- Department of BiochemistryMax Planck Institute for Chemical EcologyJena07745Germany
| | - Tina Kyndt
- Department of BiotechnologyGhent UniversityGhent9000Belgium
| | - Jonathan Gershenzon
- Department of BiochemistryMax Planck Institute for Chemical EcologyJena07745Germany
| | | |
Collapse
|
23
|
Ibrahim HMM, Ahmad EM, Martínez-Medina A, Aly MAM. Effective approaches to study the plant-root knot nematode interaction. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 141:332-342. [PMID: 31207494 DOI: 10.1016/j.plaphy.2019.06.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 05/26/2019] [Accepted: 06/08/2019] [Indexed: 05/24/2023]
Abstract
Plant-parasitic nematodes cause major agricultural losses worldwide. Examining the molecular mechanisms underlying plant-nematode interactions and how plants respond to different invading pathogens is attracting major attention to reduce the expanding gap between agricultural production and the needs of the growing world population. This review summarizes the most recent developments in plant-nematode interactions and the diverse approaches used to improve plant resistance against root knot nematode (RKN). We will emphasize the recent rapid advances in genome sequencing technologies, small interfering RNA techniques (RNAi) and targeted genome editing which are contributing to the significant progress in understanding the plant-nematode interaction mechanisms. Also, molecular approaches to improve plant resistance against nematodes are considered.
Collapse
Affiliation(s)
- Heba M M Ibrahim
- Department of Genetics, Faculty of Agriculture, Cairo University, Giza, Egypt.
| | - Esraa M Ahmad
- Department of Genetics, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Ainhoa Martínez-Medina
- Molecular Interaction Ecology, German Centre for Integrative Biodiversity Research, Leipzig, Germany
| | - Mohammed A M Aly
- Department of Genetics, Faculty of Agriculture, Cairo University, Giza, Egypt
| |
Collapse
|
24
|
Xu X, Fang P, Zhang H, Chi C, Song L, Xia X, Shi K, Zhou Y, Zhou J, Yu J. Strigolactones positively regulate defense against root-knot nematodes in tomato. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:1325-1337. [PMID: 30576511 PMCID: PMC6382333 DOI: 10.1093/jxb/ery439] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 11/30/2018] [Indexed: 05/20/2023]
Abstract
Strigolactones (SLs) are carotenoid-derived phytohormones that are known to influence various aspects of plant growth and development. As root-derived signals, SLs can enhance symbiosis between plants and arbuscular mycorrhizal fungi (AMF). However, little is known about the roles of SLs in plant defense against soil-borne pathogens. Here, we determined that infection with root-knot nematodes (RKNs; Meloidogyne incognita) induced SL biosynthesis in roots of tomato (Solanum lycopersicum). Silencing of SL biosynthesis genes compromised plant defense against RKNs, whilst application of the SL analog racGR24 enhanced it. Accumulation of endogenous jasmonic acid (JA) and abscisic acid (ABA) in the roots in response to RKN infection was enhanced by silencing of SL biosynthetic genes and was suppressed by application of racGR24. Genetic evidence showed that JA was a positive regulator of defense against RKNs while ABA was a negative regulator. In addition, racGR24 enhanced the defense against nematode in a JA-deficient mutant but not in an ABA-deficient mutant. Silencing of SL biosynthetic genes resulted in up-regulation of MYC2, which negatively regulated defense against RKNs. Our results demonstrate that SLs play a positive role in nematode defense in tomato and that MYC2 negatively regulates this defense, potentially by mediating hormone crosstalk among SLs, ABA and JA.
Collapse
Affiliation(s)
- Xuechen Xu
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, P.R. China
| | - Pingping Fang
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, P.R. China
| | - Hui Zhang
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, P.R. China
| | - Cheng Chi
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, P.R. China
| | - Liuxia Song
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, P.R. China
| | - Xiaojian Xia
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, P.R. China
| | - Kai Shi
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, P.R. China
| | - Yanhong Zhou
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, P.R. China
| | - Jie Zhou
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, P.R. China
| | - Jingquan Yu
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, P.R. China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou, P.R. China
- Correspondence:
| |
Collapse
|
25
|
Food decisions of an omnivorous thrips are independent from the indirect effects of jasmonate-inducible plant defences on prey quality. Sci Rep 2019; 9:1727. [PMID: 30741999 PMCID: PMC6370905 DOI: 10.1038/s41598-018-38463-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 12/28/2018] [Indexed: 11/25/2022] Open
Abstract
Plant defensive substances can affect the quality of herbivores as prey for predators either directly or indirectly. Directly when the prey has become toxic since it ingested toxic plant material and indirectly when these defences have affected the size and/or nutritional value (both quality parameters) of prey or their abundance. To disentangle direct and indirect effects of JA-defences on prey quality for predators, we used larvae of the omnivorous thrips Frankliniella occidentalis because these are not directly affected by the jasmonate-(JA)-regulated defences of tomato. We offered these thrips larvae the eggs of spider mites (Tetranychus urticae or T. evansi) that had been feeding from either normal tomato plants, JA-impaired plants, or plants treated with JA to artificially boost defences and assessed their performance. Thrips development and survival was reduced on the diet of T. evansi eggs relative to the diet of T. urticae eggs yet these effects were independent from the absence/presence of JA-defences. This indicates that the detrimental effects of tomato JA-defences on herbivores not necessarily also affects their quality as prey.
Collapse
|
26
|
Seiml-Buchinger VV, Zinovieva SV, Udalova ZV, Matveeva EM. Jasmonic acid modulates Meloidogyne incognita – tomato plant interactions. NEMATOLOGY 2019. [DOI: 10.1163/15685411-00003205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Summary
Molecular aspects of the responses of tomato (Solanum lycopersicum) plants to invasion by Meloidogyne incognita, as well as the nematode reproduction capacity, were investigated and the role of jasmonic acid (JA) in these interactions was evaluated. Real-time quantitative PCR analysis showed that resistant and susceptible plants had similar levels of Mi1.2, PR1 and PR6 gene expression in stress-free conditions. During nematode invasion resistant plants showed up-regulation of Mi1.2, PR1 and PR6 genes and no reproduction of M. incognita. By contrast, susceptible plants showed no response in gene expression and the nematode had a high level of reproduction. Treatment of tomato plants with JA modulated Mi1.2 and PR6 gene expression that was accompanied by a suppression of the M. incognita reproduction on the roots of JA-treated susceptible plants.
Collapse
Affiliation(s)
- Victoria V. Seiml-Buchinger
- 1Institute of Biology of the Karelian Research Centre of the Russian Academy of Sciences (IB KarRC RAS), 11 Pushkinskaya St., 185910 Petrozavodsk, Russian Federation
| | - Svetlana V. Zinovieva
- 2Center of Parasitology, Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, 33 Leninskii Pr., 119071 Moscow, Russian Federation
| | - Zhanna V. Udalova
- 2Center of Parasitology, Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, 33 Leninskii Pr., 119071 Moscow, Russian Federation
| | - Elizaveta M. Matveeva
- 1Institute of Biology of the Karelian Research Centre of the Russian Academy of Sciences (IB KarRC RAS), 11 Pushkinskaya St., 185910 Petrozavodsk, Russian Federation
| |
Collapse
|
27
|
Li X, Xing X, Tian P, Zhang M, Huo Z, Zhao K, Liu C, Duan D, He W, Yang T. Comparative Transcriptome Profiling Reveals Defense-Related Genes against Meloidogyne incognita Invasion in Tobacco. Molecules 2018; 23:E2081. [PMID: 30127271 PMCID: PMC6222693 DOI: 10.3390/molecules23082081] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 08/15/2018] [Accepted: 08/17/2018] [Indexed: 01/20/2023] Open
Abstract
Root-knot nematodes Meloidogyne incognita are one of the most destructive pathogens, causing severe losses to tobacco productivity and quality. However, the underlying resistance mechanism of tobacco to M. incognita is not clear. In this study, two tobacco genotypes, K326 and Changbohuang, which are resistant and susceptible to M. incognita, respectively, were used for RNA-sequencing analysis. An average of 35 million clean reads were obtained. Compared with their expression levels in non-infected plants of the same genotype, 4354 and 545 differentially expressed genes (DEGs) were detected in the resistant and susceptible genotype, respectively, after M. incognita invasion. Overall, 291 DEGs, involved in diverse biological processes, were common between the two genotypes. Genes encoding toxic compound synthesis, cell wall modification, reactive oxygen species and the oxidative burst, salicylic acid signal transduction, and production of some other metabolites were putatively associated with tobacco resistance to M. incognita. In particular, the complex resistance response needed to overcome M. incognita invasion may be regulated by several transcription factors, such as the ethylene response factor, MYB, basic helix⁻loop⁻helix transcription factor, and indole acetic acid⁻leucine-resistant transcription factor. These results may aid in the identification of potential genes of resistance to M. incognita for tobacco cultivar improvement.
Collapse
Affiliation(s)
- Xiaohui Li
- Department of Tobacco, College of Tobacco, Henan Agricultural University, Zhengzhou 450002, Henan, China.
| | - Xuexia Xing
- Nanyang Branch of Henan Province Tobacco Company, Nanyang 473003, Henan, China.
| | - Pei Tian
- Department of Tobacco, College of Tobacco, Henan Agricultural University, Zhengzhou 450002, Henan, China.
| | - Mingzhen Zhang
- Xiaogan Agricultural Technical Extension Station, Xiaogan 432000, Hubei, China.
| | - Zhaoguang Huo
- Department of Tobacco, College of Tobacco, Henan Agricultural University, Zhengzhou 450002, Henan, China.
| | - Ke Zhao
- Department of Tobacco, College of Tobacco, Henan Agricultural University, Zhengzhou 450002, Henan, China.
| | - Chao Liu
- Department of Tobacco, College of Tobacco, Henan Agricultural University, Zhengzhou 450002, Henan, China.
| | - Duwei Duan
- Department of Tobacco, College of Tobacco, Henan Agricultural University, Zhengzhou 450002, Henan, China.
| | - Wenjun He
- Department of Tobacco, College of Tobacco, Henan Agricultural University, Zhengzhou 450002, Henan, China.
| | - Tiezhao Yang
- Department of Tobacco, College of Tobacco, Henan Agricultural University, Zhengzhou 450002, Henan, China.
| |
Collapse
|
28
|
Khanam S, Bauters L, Singh RR, Verbeek R, Haeck A, Sultan SMD, Demeestere K, Kyndt T, Gheysen G. Mechanisms of resistance in the rice cultivar Manikpukha to the rice stem nematode Ditylenchus angustus. MOLECULAR PLANT PATHOLOGY 2018; 19:1391-1402. [PMID: 28990717 PMCID: PMC6638125 DOI: 10.1111/mpp.12622] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 10/05/2017] [Accepted: 10/05/2017] [Indexed: 05/23/2023]
Abstract
The incompatible interaction between the rice cultivar Manikpukha and the rice stem nematode Ditylenchus angustus has been reported recently. This research focuses on the underlying mechanisms of resistance in Manikpukha. Invasion, post-infection development and reproduction of D. angustus were compared in compatible and incompatible interactions to identify the stage in which resistance occurs. The results indicate that resistance in Manikpukha is associated with reduced development and reproduction, implying that resistance acts post-invasion. We studied the possible involvement of three classical defence hormones, salicylic acid (SA), jasmonic acid (JA) and ethylene (ET), in response to infection in a compatible interaction using biosynthesis/signalling-deficient transgenic rice lines. All three hormones appear to have an influence on the basal defence of Nipponbare against the stem nematode. Although hormone application increases basal defences, expression studies and hormone analyses after nematode infection in Manikpukha did not show a clear involvement of the hormone defense pathways for SA, ET and JA. However, it seems that OsPAL1 plays a pivotal role in resistance, indicating that the phenylpropanoid pathway and its products might be key players in the incompatible interaction. Lignin measurement showed that, although basal levels are similar, Manikpukha had a significantly higher lignin content on nematode infection, whereas it was decreased in the susceptible cultivar. The results presented here show that SA, ET and JA are involved in basal defences, but the resistance of Manikpukha against D. angustus probably relies on products of the phenylpropanoid pathway.
Collapse
Affiliation(s)
- Shakhina Khanam
- Department of Molecular Biotechnology, Faculty of Bioscience EngineeringGhent University9000 GhentBelgium
| | - Lander Bauters
- Department of Molecular Biotechnology, Faculty of Bioscience EngineeringGhent University9000 GhentBelgium
| | - Richard Raj Singh
- Department of Molecular Biotechnology, Faculty of Bioscience EngineeringGhent University9000 GhentBelgium
| | - Ruben Verbeek
- Department of Molecular Biotechnology, Faculty of Bioscience EngineeringGhent University9000 GhentBelgium
| | - Ashley Haeck
- Department of Sustainable Organic Chemistry and Technology (Research Group EnVOC), Faculty of Bioscience EngineeringGhent University9000 GhentBelgium
| | - Saeed M. D. Sultan
- Bangabandhu Sheikh Mujibur Rahman Agricultural UniversityGazipur City 1706Bangladesh
| | - Kristof Demeestere
- Department of Sustainable Organic Chemistry and Technology (Research Group EnVOC), Faculty of Bioscience EngineeringGhent University9000 GhentBelgium
| | - Tina Kyndt
- Department of Molecular Biotechnology, Faculty of Bioscience EngineeringGhent University9000 GhentBelgium
| | - Godelieve Gheysen
- Department of Molecular Biotechnology, Faculty of Bioscience EngineeringGhent University9000 GhentBelgium
| |
Collapse
|
29
|
Song LX, Xu XC, Wang FN, Wang Y, Xia XJ, Shi K, Zhou YH, Zhou J, Yu JQ. Brassinosteroids act as a positive regulator for resistance against root-knot nematode involving RESPIRATORY BURST OXIDASE HOMOLOG-dependent activation of MAPKs in tomato. PLANT, CELL & ENVIRONMENT 2018; 41:1113-1125. [PMID: 28370079 DOI: 10.1111/pce.12952] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 02/20/2017] [Accepted: 02/26/2017] [Indexed: 05/03/2023]
Abstract
Interplay of hormones with reactive oxygen species (ROS) fine-tunes the response of plants to stress; however, the crosstalk between brassinosteroids (BRs) and ROS in nematode resistance is unclear. In this study, we found that low BR biosynthesis or lack of BR receptor increased, whilst exogenous BR decreased the susceptibility of tomato plants to Meloidogyne incognita. Hormone quantification coupled with hormone mutant complementation experiments revealed that BR did not induce the defence response by triggering salicylic acid (SA), jasmonic acid/ethylene (JA/ET) or abscisic acid (ABA) signalling pathway. Notably, roots of BR-deficient plants had decreased apoplastic ROS accumulation, transcript of RESPIRATORY BURST OXIDASE HOMOLOG1 (RBOH1) and WHITEFLY INDUCED1 (WFI1), and reduced activation of mitogen-activated protein kinase 1/2 (MPK1/2) and MPK3. Silencing of RBOH1, WFI1, MPK1, MPK2 and MPK3 all increased the root susceptibility to nematode and attenuated BR-induced resistance against the nematode. Significantly, suppressed transcript of RBOH1 compromised BR-induced activation of MPK1/2 and MPK3. These results strongly suggest that RBOH-dependent MPK activation is involved in the BR-induced systemic resistance against the nematode.
Collapse
Affiliation(s)
- Liu-Xia Song
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Xue-Chen Xu
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Fa-Nan Wang
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Yu Wang
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Xiao-Jian Xia
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Kai Shi
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Yan-Hong Zhou
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Jie Zhou
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Jing-Quan Yu
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, 866 Yuhangtang Road, Hangzhou, 310058, China
| |
Collapse
|
30
|
Machado RAR, Arce CCM, McClure MA, Baldwin IT, Erb M. Aboveground herbivory induced jasmonates disproportionately reduce plant reproductive potential by facilitating root nematode infestation. PLANT, CELL & ENVIRONMENT 2018; 41:797-808. [PMID: 29327360 DOI: 10.1111/pce.13143] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 01/08/2018] [Indexed: 05/14/2023]
Abstract
Different plant feeders, including insects and parasitic nematodes, can influence each other by triggering systemic changes in their shared host plants. In most cases, however, the underlying mechanisms are unclear, and the consequences for plant fitness are not well understood. We studied the interaction between leaf feeding Manduca sexta caterpillars and root parasitic nematodes in Nicotiana attenuata. Simulated M. sexta attack increased the abundance of root parasitic nematodes in the field and facilitated Meloidogyne incognita reproduction in the glasshouse. Intact jasmonate biosynthesis was found to be required for both effects. Flower counts revealed that the jasmonate-dependent facilitation of nematode infestation following simulated leaf attack reduces the plant's reproductive potential to a greater degree than would be expected from the additive effects of the individual stresses. This work reveals that jasmonates mediate the interaction between a leaf herbivore and root parasitic nematodes and illustrates how plant-mediated interactions can alter plant's reproductive potential. The selection pressure resulting from the demonstrated fitness effects is likely to influence the evolution of plant defense traits in nature.
Collapse
Affiliation(s)
- Ricardo A R Machado
- Root-Herbivore Interactions Group, Max Planck Institute for Chemical Ecology, Jena, 07745, Germany
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, 07745, Germany
- Institute of Plant Sciences, Biotic Interaction Section, University of Bern, Bern, 3012, Switzerland
| | - Carla C M Arce
- Root-Herbivore Interactions Group, Max Planck Institute for Chemical Ecology, Jena, 07745, Germany
- Functional and Applied Research in Chemical Ecology, University of Neuchâtel, Neuchâtel, 2000, Switzerland
| | - Michael A McClure
- School of Plant Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, 07745, Germany
| | - Matthias Erb
- Root-Herbivore Interactions Group, Max Planck Institute for Chemical Ecology, Jena, 07745, Germany
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, 07745, Germany
- Institute of Plant Sciences, Biotic Interaction Section, University of Bern, Bern, 3012, Switzerland
| |
Collapse
|
31
|
Yimer HZ, Nahar K, Kyndt T, Haeck A, Van Meulebroek L, Vanhaecke L, Demeestere K, Höfte M, Gheysen G. Gibberellin antagonizes jasmonate-induced defense against Meloidogyne graminicola in rice. THE NEW PHYTOLOGIST 2018; 218:646-660. [PMID: 29464725 DOI: 10.1111/nph.15046] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 01/10/2018] [Indexed: 05/23/2023]
Abstract
Gibberellin (GA) regulates various plant growth and developmental processes, but its role in pathogen attack, and especially nematode-plant interactions, still remains to be elucidated. An in-depth characterization of the role of GA in nematode infection was conducted using mutant lines of rice, chemical inhibitors, and phytohormone measurements. Our results showed that GA influences rice-Meloidogyne graminicola interactions in a concentration-dependent manner. Foliar spray of plants with a low concentration of gibberellic acid enhanced nematode infection. Biosynthetic and signaling mutants confirmed the importance of gibberellin for rice susceptibility to M. graminicola infection. Our study also demonstrates that GA signaling suppresses jasmonate (JA)-mediated defense against M. graminicola, and likewise the JA-induced defense against M. graminicola requires SLENDER RICE1 (SLR1)-mediated repression of the GA pathway. In contrast to observations from other plant-pathogen interactions, GA plays a dominant role over JA in determining susceptibility to M. graminicola in rice. This GA-induced nematode susceptibility was largely independent of auxin biosynthesis, but relied on auxin transport. In conclusion, we showed that GA-JA antagonistic crosstalk is at the forefront of the interaction between rice and M. graminicola, and SLR1 plays a central role in the JA-mediated defense response in rice against this nematode.
Collapse
Affiliation(s)
- Henok Zemene Yimer
- Department of Molecular Biotechnology, Ghent University, 9000, Ghent, Belgium
- Department of Crop protection, Ghent University, Ghent, Belgium
| | - Kamrun Nahar
- Department of Molecular Biotechnology, Ghent University, 9000, Ghent, Belgium
| | - Tina Kyndt
- Department of Molecular Biotechnology, Ghent University, 9000, Ghent, Belgium
| | - Ashley Haeck
- Research Group EnVOC, Department of Sustainable Organic Chemistry and Technology, Ghent University, Ghent, Belgium
| | - Lieven Van Meulebroek
- Department of Veterinary Public Health and Food Safety, Laboratory of Chemical Analysis, Ghent University, Merelbeke, Belgium
| | - Lynn Vanhaecke
- Department of Veterinary Public Health and Food Safety, Laboratory of Chemical Analysis, Ghent University, Merelbeke, Belgium
| | - Kristof Demeestere
- Research Group EnVOC, Department of Sustainable Organic Chemistry and Technology, Ghent University, Ghent, Belgium
| | - Monica Höfte
- Department of Crop protection, Ghent University, Ghent, Belgium
| | - Godelieve Gheysen
- Department of Molecular Biotechnology, Ghent University, 9000, Ghent, Belgium
| |
Collapse
|
32
|
Lee MW, Huffaker A, Crippen D, Robbins RT, Goggin FL. Plant elicitor peptides promote plant defences against nematodes in soybean. MOLECULAR PLANT PATHOLOGY 2018; 19:858-869. [PMID: 28600875 PMCID: PMC6638146 DOI: 10.1111/mpp.12570] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 05/23/2017] [Accepted: 06/07/2017] [Indexed: 05/19/2023]
Abstract
Plant elicitor peptides (Peps) are widely distributed among angiosperms, and have been shown to amplify immune responses in multiple plant families. Here, we characterize three Peps from soybean (Glycine max) and describe their effects on plant defences against two damaging agricultural pests, the root-knot nematode (Meloidogyne incognita) and the soybean cyst nematode (Heterodera glycines). Seed treatments with exogenous GmPep1, GmPep2 or GmPep3 significantly reduced the reproduction of both nematodes. Pep treatment also protected plants from the inhibitory effects of root-knot nematodes on above-ground growth, and up-regulated basal expression levels of nematode-responsive defence genes. GmPep1 induced the expression of its propeptide precursor (GmPROPEP1), a nucleotide-binding site leucine-rich repeat protein (NBS-LRR), a pectin methylesterase inhibitor (PMEI), Respiratory Burst Oxidase Protein D (RBOHD) and the accumulation of reactive oxygen species (ROS) in leaves. In addition, GmPep2 and GmPep3 seed treatments up-regulated RBOHD expression and ROS accumulation in roots and leaves. These results suggest that GmPeps activate plant defences through systemic transcriptional reprogramming and ROS signalling, and that Pep seed treatments represent a potential strategy for nematode management.
Collapse
Affiliation(s)
- Min Woo Lee
- Department of EntomologyUniversity of ArkansasFayettevilleAR 72701USA
| | - Alisa Huffaker
- Section of Cell and Developmental BiologyUniversity of California San DiegoLa JollaCA 92903USA
| | - Devany Crippen
- Department of Plant PathologyUniversity of ArkansasFayettevilleAR 72701USA
| | - Robert T. Robbins
- Department of Plant PathologyUniversity of ArkansasFayettevilleAR 72701USA
| | - Fiona L. Goggin
- Department of EntomologyUniversity of ArkansasFayettevilleAR 72701USA
| |
Collapse
|
33
|
Bali S, Kaur P, Sharma A, Ohri P, Bhardwaj R, Alyemeni MN, Wijaya L, Ahmad P. Jasmonic acid-induced tolerance to root-knot nematodes in tomato plants through altered photosynthetic and antioxidative defense mechanisms. PROTOPLASMA 2018; 255:471-484. [PMID: 28905119 DOI: 10.1007/s00709-017-1160-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 08/28/2017] [Indexed: 05/04/2023]
Abstract
Plant parasitic nematodes cause severe damage to cultivated crops globally. Management of nematode population is a major concern as chemicals used as nematicides have negative impact on the environment. Natural plant products can be safely used for the control of nematodes. Among various plant metabolites, plant hormones play an essential role in developmental and physiological processes and also assist the plants to encounter stressful conditions. Keeping this in mind, the present study was designed to evaluate the effect of jasmonic acid (JA) on the growth, pigments, polyphenols, antioxidants, osmolytes, and organic acids under nematode infection in tomato seedlings. It was observed that nematode inoculation reduced the growth of seedlings. Treatment with JA improved root growth (32.79%), total chlorophylls (71.51%), xanthophylls (94.63%), anthocyanins (37.5%), and flavonoids content (21.11%) when compared to inoculated seedlings alone. The JA application enhanced the total antioxidant capacity (lipid- and water-soluble antioxidants) by 38.23 and 34.37%, respectively, in comparison to infected seedlings. Confocal studies revealed that there was higher accumulation of glutathione in hormone-treated seedlings under nematode infection. Treatment with JA increased total polyphenols content (74.56%) in comparison to nematode-infested seedlings. JA-treated seedlings also enhanced osmolyte and organic acid contents under nematode stress. Overall, treatment with JA improved growth, enhanced pigment levels, modulated antioxidant content, and enhanced osmolyte and organic acid content in nematode-infected seedlings.
Collapse
Affiliation(s)
- Shagun Bali
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Parminder Kaur
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Anket Sharma
- Department of Botany, DAV University, Sarmastpur, Jalandhar, 144012, India
| | - Puja Ohri
- Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Renu Bhardwaj
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India.
| | - M N Alyemeni
- Department of Botany and Microbiology, Faculty of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Leonard Wijaya
- Department of Botany and Microbiology, Faculty of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Parvaiz Ahmad
- Department of Botany and Microbiology, Faculty of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
- Department of Botany, S.P. College, Srinagar, Jammu and Kashmir, 190001, India.
| |
Collapse
|
34
|
Zhao W, Zhou X, Lei H, Fan J, Yang R, Li Z, Hu C, Li M, Zhao F, Wang S. Transcriptional evidence for cross talk between JA and ET or SA during root-knot nematode invasion in tomato. Physiol Genomics 2018; 50:197-207. [PMID: 29341868 DOI: 10.1152/physiolgenomics.00079.2017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
studies have demonstrated that jasmonic acid (JA) reduces root-knot nematode (RKN) infections in tomato plants. RKN invasion is sensed by roots, and root-derived JA signaling activates systemic defense responses, though this is poorly understood. Here, we investigate variations in the RKN-induced transcriptome in scion phloem between two tomato plant grafts: CM/CM ( Lycopersicum esculentum Mill. cv. Castlemart) and CM/ spr2 (a JA-deficient mutant). A total of 8,716 genes were differentially expressed in the scion phloem of the plants with JA-deficient rootstock via RNA sequencing. Among these genes, 535 upregulated and 153 downregulated genes with high copy numbers were identified as significantly differentially expressed. Among them, 34 predicted transcription factor genes were identified. Additionally, we used real-time quantitative PCR to analyze the expression patterns of 42 genes involved in the JA, ethylene, or salicylic acid pathway in phloem under RKN infection. The results suggested that in the absence of JA signaling, the ET signaling pathway is enhanced after RKN infection; however, alterations in the SA signaling pathway were not observed.
Collapse
Affiliation(s)
- Wenchao Zhao
- Beijing Key Laboratory for Agricultural Applications and New Techniques, Plant Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Xiaoxuan Zhou
- Beijing Key Laboratory for Agricultural Applications and New Techniques, Plant Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Hui Lei
- Beijing Key Laboratory for Agricultural Applications and New Techniques, Plant Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Jingwei Fan
- Beijing Key Laboratory for Agricultural Applications and New Techniques, Plant Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Rui Yang
- Beijing Key Laboratory for Agricultural Applications and New Techniques, Plant Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Zilong Li
- Beijing Key Laboratory for Agricultural Applications and New Techniques, Plant Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Canli Hu
- Beijing Key Laboratory for Agricultural Applications and New Techniques, Plant Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Mengyan Li
- Beijing Key Laboratory for Agricultural Applications and New Techniques, Plant Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Fukuan Zhao
- College of Biotechnology, Beijing University of Agriculture, Beijing, China
| | - Shaohui Wang
- Beijing Key Laboratory for Agricultural Applications and New Techniques, Plant Science and Technology College, Beijing University of Agriculture, Beijing, China
| |
Collapse
|
35
|
Lamovšek J, Stare BG, Pleško IM, Širca S, Urek G. Agrobacteria Enhance Plant Defense Against Root-Knot Nematodes on Tomato. PHYTOPATHOLOGY 2017; 107:681-691. [PMID: 28134593 DOI: 10.1094/phyto-07-16-0269-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The increased incidence of the crown gall disease caused by Agrobacterium tumefaciens has long been associated with activities of root-knot nematodes (Meloidogyne spp.). Pot experiments on tomato were designed to assess plant vitality, nematode reproduction, and crown gall incidence in combined infection with Agrobacterium and Meloidogyne spp. on tomato roots. Results suggest that tomato plants infected with pathogenic A. tumefaciens 2 days before the nematodes show enhanced plant defense against M. ethiopica resulting in lower egg and gall counts on roots 45 and 90 days postinoculation (dpi); no significantly enhanced defense was observed when the plant was inoculated with bacteria and nematodes at the same time. Split-root experiments also showed that the observed interaction was systemic. Reverse-transcription quantitative polymerase chain reaction analysis that targeted several genes under plant hormonal control suggests that the suppression was mediated via systemic acquired resistance by the pathogenesis-related protein 1 and that M. ethiopica did not enhance the defense reaction of tomato against Agrobacterium spp. Nematodes completely inhibited tumor growth in a 45-day experiment if inoculated onto the roots before the pathogenic bacteria. We conclude that the observed antagonism in the tested pathosystem was the result of initially strong plant defense that was later suppressed by the invading pathogen and pest.
Collapse
Affiliation(s)
- Janja Lamovšek
- Agricultural Institute of Slovenia, Plant Protection Department, Hacquetova ulica 17, SI-1000 Ljubljana, Slovenia
| | - Barbara Gerič Stare
- Agricultural Institute of Slovenia, Plant Protection Department, Hacquetova ulica 17, SI-1000 Ljubljana, Slovenia
| | - Irena Mavrič Pleško
- Agricultural Institute of Slovenia, Plant Protection Department, Hacquetova ulica 17, SI-1000 Ljubljana, Slovenia
| | - Saša Širca
- Agricultural Institute of Slovenia, Plant Protection Department, Hacquetova ulica 17, SI-1000 Ljubljana, Slovenia
| | - Gregor Urek
- Agricultural Institute of Slovenia, Plant Protection Department, Hacquetova ulica 17, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
36
|
Martínez-Medina A, Fernandez I, Lok GB, Pozo MJ, Pieterse CMJ, Van Wees SCM. Shifting from priming of salicylic acid- to jasmonic acid-regulated defences by Trichoderma protects tomato against the root knot nematode Meloidogyne incognita. THE NEW PHYTOLOGIST 2017; 213:1363-1377. [PMID: 27801946 DOI: 10.1111/nph.14251] [Citation(s) in RCA: 162] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 09/02/2016] [Indexed: 05/18/2023]
Abstract
Beneficial root endophytes such as Trichoderma spp. can reduce infections by parasitic nematodes through triggering host defences. Little is currently known about the complex hormone signalling underlying the induction of resistance. In this study, we investigated whether Trichoderma modulates the hormone signalling network in the host to induce resistance to nematodes. We investigated the role and the timing of the jasmonic acid (JA)- and salicylic acid (SA)-regulated defensive pathways in Trichoderma-induced resistance to the root knot nematode Meloidogyne incognita. A split-root system of tomato (Solanum lycopersicum) was used to study local and systemic induced defences by analysing nematode performance, defence gene expression, responsiveness to exogenous hormone application, and dependence on SA and JA signalling of Trichoderma-induced resistance. Root colonization by Trichoderma impeded nematode performance both locally and systemically at multiple stages of the parasitism, that is, invasion, galling and reproduction. First, Trichoderma primed SA-regulated defences, which limited nematode root invasion. Then, Trichoderma enhanced JA-regulated defences, thereby antagonizing the deregulation of JA-dependent immunity by the nematodes, which compromised galling and fecundity. Our results show that Trichoderma primes SA- and JA-dependent defences in roots, and that the priming of responsiveness to these hormones upon nematode attack is plastic and adaptive to the parasitism stage.
Collapse
Affiliation(s)
- Ainhoa Martínez-Medina
- Plant-Microbe Interactions, Department of Biology, Utrecht University, Padualaan 8, Utrecht, 3584 CH, the Netherlands
| | - Ivan Fernandez
- Plant-Microbe Interactions, Department of Biology, Utrecht University, Padualaan 8, Utrecht, 3584 CH, the Netherlands
| | - Gerrit B Lok
- Plant-Microbe Interactions, Department of Biology, Utrecht University, Padualaan 8, Utrecht, 3584 CH, the Netherlands
| | - María J Pozo
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, Granada, 18008, Spain
| | - Corné M J Pieterse
- Plant-Microbe Interactions, Department of Biology, Utrecht University, Padualaan 8, Utrecht, 3584 CH, the Netherlands
| | - Saskia C M Van Wees
- Plant-Microbe Interactions, Department of Biology, Utrecht University, Padualaan 8, Utrecht, 3584 CH, the Netherlands
| |
Collapse
|
37
|
Hu Y, You J, Li C, Hua C, Wang C. Exogenous application of methyl jasmonate induces defence against Meloidogyne hapla in soybean. NEMATOLOGY 2017. [DOI: 10.1163/15685411-00003049] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Phytohormones play important roles in plant defence against plant-parasitic nematodes, although the role of jasmonate (JA) in defence against root-knot nematodes (RKN, Meloidogyne spp.) in soybean (Glycine max) was unknown. In this study, two commercial soybean cultivars, cvs DongSheng1 (DS1) and SuiNong14 (SN14), were identified as susceptible and resistant, respectively, to M. hapla. Quantitative reverse transcription (qRT)-PCR analysis showed that the expression of genes involved in JA synthesis or signalling was significantly induced in both susceptible and resistant roots at 24 and 48 h after inoculation. Exogenous application of methyl jasmonate induced defence against RKN in susceptible cv. DS1, which might be involved in altered activities of defence-related enzymes (chitinase and β-1,3 glucanase) and pathogenesis-related gene PR5 expression. The results indicate that exogenous application of JA might be an alternative strategy to induce soybean resistance against RKN.
Collapse
Affiliation(s)
- Yanfeng Hu
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, P.R. China
| | - Jia You
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, P.R. China
| | - Chunjie Li
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, P.R. China
| | - Cui Hua
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, P.R. China
| | - Congli Wang
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, P.R. China
| |
Collapse
|
38
|
Biere A, Goverse A. Plant-Mediated Systemic Interactions Between Pathogens, Parasitic Nematodes, and Herbivores Above- and Belowground. ANNUAL REVIEW OF PHYTOPATHOLOGY 2016; 54:499-527. [PMID: 27359367 DOI: 10.1146/annurev-phyto-080615-100245] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Plants are important mediators of interactions between aboveground (AG) and belowground (BG) pathogens, arthropod herbivores, and nematodes (phytophages). We highlight recent progress in our understanding of within- and cross-compartment plant responses to these groups of phytophages in terms of altered resource dynamics and defense signaling and activation. We review studies documenting the outcome of cross-compartment interactions between these phytophage groups and show patterns of cross-compartment facilitation as well as cross-compartment induced resistance. Studies involving soilborne pathogens and foliar nematodes are scant. We further highlight the important role of defense signaling loops between shoots and roots to activate a full resistance complement. Moreover, manipulation of such loops by phytophages affects systemic interactions with other plant feeders. Finally, cross-compartment-induced changes in root defenses and root exudates extend systemic defense loops into the rhizosphere, enhancing or reducing recruitment of microbes that induce systemic resistance but also affecting interactions with root-feeding phytophages.
Collapse
Affiliation(s)
- Arjen Biere
- Department of Terrestrial Ecology, Netherlands Institute of Ecology, NIOO-KNAW, 6708 PB Wageningen, The Netherlands;
| | - Aska Goverse
- Lab of Nematology, Department of Plant Sciences, Wageningen University, 6700 PB Wageningen, The Netherlands
| |
Collapse
|
39
|
Nguyen PDT, Pike S, Wang J, Nepal Poudel A, Heinz R, Schultz JC, Koo AJ, Mitchum MG, Appel HM, Gassmann W. The Arabidopsis immune regulator SRFR1 dampens defences against herbivory by Spodoptera exigua and parasitism by Heterodera schachtii. MOLECULAR PLANT PATHOLOGY 2016; 17:588-600. [PMID: 26310916 PMCID: PMC6638418 DOI: 10.1111/mpp.12304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Plants have developed diverse mechanisms to fine tune defence responses to different types of enemy. Cross-regulation between signalling pathways may allow the prioritization of one response over another. Previously, we identified SUPPRESSOR OF rps4-RLD1 (SRFR1) as a negative regulator of ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1)-dependent effector-triggered immunity against the bacterial pathogen Pseudomonas syringae pv. tomato strain DC3000 expressing avrRps4. The use of multiple stresses is a powerful tool to further define gene function. Here, we examined whether SRFR1 also impacts resistance to a herbivorous insect in leaves and to a cyst nematode in roots. Interestingly, srfr1-1 plants showed increased resistance to herbivory by the beet army worm Spodoptera exigua and to parasitism by the cyst nematode Heterodera schachtii compared with the corresponding wild-type Arabidopsis accession RLD. Using quantitative real-time PCR (qRT-PCR) to measure the transcript levels of salicylic acid (SA) and jasmonate/ethylene (JA/ET) pathway genes, we found that enhanced resistance of srfr1-1 plants to S. exigua correlated with specific upregulation of the MYC2 branch of the JA pathway concurrent with suppression of the SA pathway. In contrast, the greater susceptibility of RLD was accompanied by simultaneously increased transcript levels of SA, JA and JA/ET signalling pathway genes. Surprisingly, mutation of either SRFR1 or EDS1 increased resistance to H. schachtii, indicating that the concurrent presence of both wild-type genes promotes susceptibility. This finding suggests a novel form of resistance in Arabidopsis to the biotrophic pathogen H. schachtii or a root-specific regulation of the SA pathway by EDS1, and places SRFR1 at an intersection between multiple defence pathways.
Collapse
Affiliation(s)
- Phuong Dung T Nguyen
- Division of Plant Sciences and Interdisciplinary Plant Group, University of Missouri, Columbia, MO, 65211-7310, USA
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211-7310, USA
| | - Sharon Pike
- Division of Plant Sciences and Interdisciplinary Plant Group, University of Missouri, Columbia, MO, 65211-7310, USA
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211-7310, USA
| | - Jianying Wang
- Division of Plant Sciences and Interdisciplinary Plant Group, University of Missouri, Columbia, MO, 65211-7310, USA
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211-7310, USA
| | - Arati Nepal Poudel
- Division of Plant Sciences and Interdisciplinary Plant Group, University of Missouri, Columbia, MO, 65211-7310, USA
- Division of Biochemistry and Interdisciplinary Plant Group, University of Missouri, Columbia, MO, 65211-7310, USA
| | - Robert Heinz
- Division of Plant Sciences and Interdisciplinary Plant Group, University of Missouri, Columbia, MO, 65211-7310, USA
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211-7310, USA
| | - Jack C Schultz
- Division of Plant Sciences and Interdisciplinary Plant Group, University of Missouri, Columbia, MO, 65211-7310, USA
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211-7310, USA
| | - Abraham J Koo
- Division of Biochemistry and Interdisciplinary Plant Group, University of Missouri, Columbia, MO, 65211-7310, USA
| | - Melissa G Mitchum
- Division of Plant Sciences and Interdisciplinary Plant Group, University of Missouri, Columbia, MO, 65211-7310, USA
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211-7310, USA
| | - Heidi M Appel
- Division of Plant Sciences and Interdisciplinary Plant Group, University of Missouri, Columbia, MO, 65211-7310, USA
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211-7310, USA
| | - Walter Gassmann
- Division of Plant Sciences and Interdisciplinary Plant Group, University of Missouri, Columbia, MO, 65211-7310, USA
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211-7310, USA
| |
Collapse
|
40
|
Abstract
Most reviews of climate change are epidemiological, focusing on impact assessment and risk mapping. However, there are many reports of the effects of environmental stress factors on defense mechanisms in plants against pathogens. We review those representative of key climate change-related stresses to determine whether there are any patterns or trends in adaptation responses. We recognize the complexity of climate change itself and the multitrophic nature of the complex biological interactions of plants, microbes, soil, and the environment and, therefore, the difficulty of reductionist dissection approaches to resolving the problems. We review host defense genes, germplasm, and environmental interactions in different types of organisms but find no significant group-specific trends. Similarly, we review by host defense mechanism type and by host-pathogen trophic relationship but identify no dominating mechanism for stress response. However, we do identify core stress response mechanisms playing key roles in multiple response pathways whether to biotic or abiotic stress. We suggest that these should be central to mechanistic climate change plant defense research. We also recognize biodiversity, heterogeneity, and the need for understanding stress in a true systems biology approach as being essential components of progressing our understanding of and response to climate change.
Collapse
|
41
|
Favery B, Quentin M, Jaubert-Possamai S, Abad P. Gall-forming root-knot nematodes hijack key plant cellular functions to induce multinucleate and hypertrophied feeding cells. JOURNAL OF INSECT PHYSIOLOGY 2016. [PMID: 26211599 DOI: 10.1016/j.jinsphys.2015.07.013] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Among plant-parasitic nematodes, the root-knot nematodes (RKNs) of the Meloidogyne spp. are the most economically important genus. RKN are root parasitic worms able to infect nearly all crop species and have a wide geographic distribution. During infection, RKNs establish and maintain an intimate relationship with the host plant. This includes the creation of a specialized nutritional structure composed of multinucleate and hypertrophied giant cells, which result from the redifferentiation of vascular root cells. Giant cells constitute the sole source of nutrients for the nematode and are essential for growth and reproduction. Hyperplasia of surrounding root cells leads to the formation of the gall or root-knot, an easily recognized symptom of plant infection by RKNs. Secreted effectors produced in nematode salivary glands and injected into plant cells through a specialized feeding structure called the stylet play a critical role in the formation of giant cells. Here, we describe the complex interactions between RKNs and their host plants. We highlight progress in understanding host plant responses, focusing on how RKNs manipulate key plant processes and functions, including cell cycle, defence, hormones, cellular scaffold, metabolism and transport.
Collapse
Affiliation(s)
- Bruno Favery
- INRA, UMR 1355 Institut Sophia Agrobiotech, 06900 Sophia-Antipolis, France; Univ. Nice Sophia Antipolis, UMR 7254 Institut Sophia Agrobiotech, 06900 Sophia-Antipolis, France; CNRS, UMR 7254 Institut Sophia Agrobiotech, 06900 Sophia-Antipolis, France
| | - Michaël Quentin
- INRA, UMR 1355 Institut Sophia Agrobiotech, 06900 Sophia-Antipolis, France; Univ. Nice Sophia Antipolis, UMR 7254 Institut Sophia Agrobiotech, 06900 Sophia-Antipolis, France; CNRS, UMR 7254 Institut Sophia Agrobiotech, 06900 Sophia-Antipolis, France
| | - Stéphanie Jaubert-Possamai
- INRA, UMR 1355 Institut Sophia Agrobiotech, 06900 Sophia-Antipolis, France; Univ. Nice Sophia Antipolis, UMR 7254 Institut Sophia Agrobiotech, 06900 Sophia-Antipolis, France; CNRS, UMR 7254 Institut Sophia Agrobiotech, 06900 Sophia-Antipolis, France
| | - Pierre Abad
- INRA, UMR 1355 Institut Sophia Agrobiotech, 06900 Sophia-Antipolis, France; Univ. Nice Sophia Antipolis, UMR 7254 Institut Sophia Agrobiotech, 06900 Sophia-Antipolis, France; CNRS, UMR 7254 Institut Sophia Agrobiotech, 06900 Sophia-Antipolis, France.
| |
Collapse
|
42
|
Sidonskaya E, Schweighofer A, Shubchynskyy V, Kammerhofer N, Hofmann J, Wieczorek K, Meskiene I. Plant resistance against the parasitic nematode Heterodera schachtii is mediated by MPK3 and MPK6 kinases, which are controlled by the MAPK phosphatase AP2C1 in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:107-18. [PMID: 26438412 PMCID: PMC4682428 DOI: 10.1093/jxb/erv440] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Plant-parasitic cyst nematodes infect plants and form highly sophisticated feeding sites in roots. It is not known which plant cell signalling mechanisms trigger plant defence during the early stages of nematode parasitism. Mitogen-activated protein kinases (MAPKs) are central components of protein phosphorylation cascades transducing extracellular signals to plant defence responses. MAPK phosphatases control kinase activities and the signalling outcome. The involvement and the role of MPK3 and MPK6, as well as the MAPK phosphatase AP2C1, is demonstrated during parasitism of the beet cyst nematode Heterodera schachtii in Arabidopsis. Our data reveal notable activation patterns of plant MAPKs and the induction of AP2C1 suggesting the attenuation of defence signalling in plant cells during early nematode infection. It is demonstrated that the ap2c1 mutant that is lacking AP2C1 is more attractive but less susceptible to nematodes compared with the AP2C1-overexpressing line. This implies that the function of AP2C1 is a negative regulator of nematode-induced defence. By contrast, the enhanced susceptibility of mpk3 and mpk6 plants indicates a positive role of stress-activated MAPKs in plant immunity against nematodes. Evidence is provided that phosphatase AP2C1, as well as AP2C1-targeted MPK3 and MPK6, are important regulators of plant-nematode interaction, where the co-ordinated action of these signalling components ensures the timely activation of plant defence.
Collapse
Affiliation(s)
- Ekaterina Sidonskaya
- Division of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences, Konrad-Lorenz-Straße 24, A-3430 Tulln on the Danube, Austria
| | - Alois Schweighofer
- Max F. Perutz Laboratories of the University and Medical University of Vienna, Dr Bohr-Gasse 9, A-1030 Vienna, Austria Institute of Biotechnology, University of Vilnius, Graiciuno 8, LT-02242 Vilnius, Lithuania
| | - Volodymyr Shubchynskyy
- Max F. Perutz Laboratories of the University and Medical University of Vienna, Dr Bohr-Gasse 9, A-1030 Vienna, Austria
| | - Nina Kammerhofer
- Division of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences, Konrad-Lorenz-Straße 24, A-3430 Tulln on the Danube, Austria
| | - Julia Hofmann
- Division of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences, Konrad-Lorenz-Straße 24, A-3430 Tulln on the Danube, Austria
| | - Krzysztof Wieczorek
- Division of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences, Konrad-Lorenz-Straße 24, A-3430 Tulln on the Danube, Austria
| | - Irute Meskiene
- Max F. Perutz Laboratories of the University and Medical University of Vienna, Dr Bohr-Gasse 9, A-1030 Vienna, Austria Institute of Biotechnology, University of Vilnius, Graiciuno 8, LT-02242 Vilnius, Lithuania Department of Ecogenomics and Systems Biology, University of Vienna, Althanstraße 14, A-1090 Vienna, Austria
| |
Collapse
|
43
|
Gleason C, Leelarasamee N, Meldau D, Feussner I. OPDA Has Key Role in Regulating Plant Susceptibility to the Root-Knot Nematode Meloidogyne hapla in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2016; 7:1565. [PMID: 27822219 PMCID: PMC5075541 DOI: 10.3389/fpls.2016.01565] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 10/05/2016] [Indexed: 05/19/2023]
Abstract
Jasmonic acid (JA) is a plant hormone that plays important roles in regulating plant defenses against necrotrophic pathogens and herbivorous insects, but the role of JA in mediating the plant responses to root-knot nematodes has been unclear. Here we show that an application of either methyl jasmonate (MeJA) or the JA-mimic coronatine (COR) on Arabidopsis significantly reduced the number of galls caused by the root-knot nematode Meloidogyne hapla. Interestingly, the MeJA-induced resistance was independent of the JA-receptor COI1 (CORONATINE INSENSITIVE 1). The MeJA-treated plants accumulated the JA precursor cis-(+)-12-oxo-phytodienoic acid (OPDA) in addition to JA/JA-Isoleucine, indicating a positive feedback loop in JA biosynthesis. Using mutants in the JA-biosynthetic pathway, we found that plants deficient in the biosynthesis of JA and OPDA were hyper-susceptible to M. hapla. However, the opr3 mutant, which cannot convert OPDA to JA, exhibited wild-type levels of nematode galling. In addition, mutants in the JA-biosynthesis and perception which lie downstream of opr3 also displayed wild-type levels of galling. The data put OPR3 (OPDA reductase 3) as the branch point between hyper-susceptibility and wild-type like levels of disease. Overall, the data suggests that the JA precursor, OPDA, plays a role in regulating plant defense against nematodes.
Collapse
Affiliation(s)
- Cynthia Gleason
- Department of Plant Molecular Biology and Physiology, Georg August University - Albrecht von Haller InstituteGöttingen, Germany
- Department of Plant Molecular Biology and Physiology, Georg August University - Göttingen Center for Molecular BiosciencesGöttingen, Germany
- *Correspondence: Cynthia Gleason,
| | - Natthanon Leelarasamee
- Department of Plant Molecular Biology and Physiology, Georg August University - Albrecht von Haller InstituteGöttingen, Germany
| | - Dorothea Meldau
- Department of Plant Biochemistry, Georg August University - Albrecht von Haller InstituteGöttingen, Germany
| | - Ivo Feussner
- Department of Plant Biochemistry, Georg August University - Albrecht von Haller InstituteGöttingen, Germany
- Department of Plant Biochemistry, Georg August University - Göttingen Center for Molecular BiosciencesGöttingen, Germany
| |
Collapse
|
44
|
Yan C, Xie D. Jasmonate in plant defence: sentinel or double agent? PLANT BIOTECHNOLOGY JOURNAL 2015; 13:1233-40. [PMID: 26096226 DOI: 10.1111/pbi.12417] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 05/07/2015] [Accepted: 05/13/2015] [Indexed: 05/21/2023]
Abstract
Plants and their biotic enemies, such as microbial pathogens and herbivorous insects, are engaged in a desperate battle which would determine their survival-death fate. Plants have evolved efficient and sophisticated systems to defend against such attackers. In recent years, significant progress has been made towards a comprehensive understanding of inducible defence system mediated by jasmonate (JA), a vital plant hormone essential for plant defence responses and developmental processes. This review presents an overview of JA action in plant defences and discusses how microbial pathogens evade plant defence system through hijacking the JA pathway.
Collapse
Affiliation(s)
- Chun Yan
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Daoxin Xie
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
45
|
Schouteden N, De Waele D, Panis B, Vos CM. Arbuscular Mycorrhizal Fungi for the Biocontrol of Plant-Parasitic Nematodes: A Review of the Mechanisms Involved. Front Microbiol 2015; 6:1280. [PMID: 26635750 PMCID: PMC4646980 DOI: 10.3389/fmicb.2015.01280] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 10/31/2015] [Indexed: 11/26/2022] Open
Abstract
Arbuscular mycorrhizal fungi (AMF) are obligate root symbionts that can protect their host plant against biotic stress factors such as plant-parasitic nematode (PPN) infection. PPN consist of a wide range of species with different life styles that can cause major damage in many important crops worldwide. Various mechanisms have been proposed to play a role in the biocontrol effect of AMF against PPN. This review presents an overview of the different mechanisms that have been proposed, and discusses into more detail the plausibility of their involvement in the biocontrol against PPN specifically. The proposed mechanisms include enhanced plant tolerance, direct competition for nutrients and space, induced systemic resistance (ISR) and altered rhizosphere interactions. Recent studies have emphasized the importance of ISR in biocontrol and are increasingly placing rhizosphere effects on the foreground as well, both of which will be the focal point of this review. Though AMF are not yet widely used in conventional agriculture, recent data help to develop a better insight into the modes of action, which will eventually lead toward future field applications of AMF against PPN. The scientific community has entered an exciting era that provides the tools to actually unravel the underlying molecular mechanisms, making this a timely opportunity for a review of our current knowledge and the challenges ahead.
Collapse
Affiliation(s)
- Nele Schouteden
- Laboratory of Tropical Crop Improvement, Department of Biosystems, KU Leuven, Heverlee, Belgium
| | - Dirk De Waele
- Laboratory of Tropical Crop Improvement, Department of Biosystems, KU Leuven, Heverlee, Belgium
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Bart Panis
- Bioversity International, Heverlee, Belgium
| | - Christine M. Vos
- Centre of Microbial and Plant Genetics, KU Leuven, Heverlee, Belgium
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, Gent, Belgium
- Commonwealth Scientific and Industrial Research Organisation Agriculture, Queensland Bioscience Precinct, Brisbane, QLD, Australia
| |
Collapse
|
46
|
Li R, Rashotte AM, Singh NK, Lawrence KS, Weaver DB, Locy RD. Transcriptome Analysis of Cotton (Gossypium hirsutum L.) Genotypes That Are Susceptible, Resistant, and Hypersensitive to Reniform Nematode (Rotylenchulus reniformis). PLoS One 2015; 10:e0143261. [PMID: 26571375 PMCID: PMC4646469 DOI: 10.1371/journal.pone.0143261] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 11/02/2015] [Indexed: 11/18/2022] Open
Abstract
Reniform nematode is a semi-endoparasitic nematode species causing significant yield loss in numerous crops, including cotton (Gossypium hirsutum L.). An RNA-sequencing analysis was conducted to measure transcript abundance in reniform nematode susceptible (DP90 & SG747), resistant (BARBREN-713), and hypersensitive (LONREN-1) genotypes of cotton (Gossypium hirsutum L.) with and without reniform nematode infestation. Over 90 million trimmed high quality reads were assembled into 84,711 and 80, 353 transcripts using the G. arboreum and the G. raimondii genomes as references. Many transcripts were significantly differentially expressed between the three different genotypes both prior to and during nematode pathogenesis, including transcripts corresponding to the gene ontology categories of cell wall, hormone metabolism and signaling, redox reactions, secondary metabolism, transcriptional regulation, stress responses, and signaling. Further analysis revealed that a number of these differentially expressed transcripts mapped to the G. raimondii and/or the G. arboreum genomes within 1 megabase of quantitative trait loci that had previously been linked to reniform nematode resistance. Several resistance genes encoding proteins known to be strongly linked to pathogen perception and resistance, including LRR-like and NBS-LRR domain-containing proteins, were among the differentially expressed transcripts mapping near these quantitative trait loci. Further investigation is required to confirm a role for these transcripts in reniform nematode susceptibility, hypersensitivity, and/or resistance. This study presents the first systemic investigation of reniform nematode resistance-associated genes using different genotypes of cotton. The candidate reniform nematode resistance-associated genes identified in this study can serve as the basis for further functional analysis and aid in further development of reniform a nematode resistant cotton germplasm.
Collapse
Affiliation(s)
- Ruijuan Li
- Department of Biological Sciences, Auburn University, Auburn, Alabama, United States of America
| | - Aaron M. Rashotte
- Department of Biological Sciences, Auburn University, Auburn, Alabama, United States of America
| | - Narendra K. Singh
- Department of Biological Sciences, Auburn University, Auburn, Alabama, United States of America
| | - Kathy S. Lawrence
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, United States of America
| | - David B. Weaver
- Department of Crop, Soil and Environmental Sciences, Auburn University, Auburn, Alabama, United States of America
| | - Robert D. Locy
- Department of Biological Sciences, Auburn University, Auburn, Alabama, United States of America
- * E-mail:
| |
Collapse
|
47
|
Huang WK, Ji HL, Gheysen G, Debode J, Kyndt T. Biochar-amended potting medium reduces the susceptibility of rice to root-knot nematode infections. BMC PLANT BIOLOGY 2015; 15:267. [PMID: 26537003 PMCID: PMC4632470 DOI: 10.1186/s12870-015-0654-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Accepted: 10/23/2015] [Indexed: 05/19/2023]
Abstract
BACKGROUND Biochar is a solid coproduct of biomass pyrolysis, and soil amended with biochar has been shown to enhance the productivity of various crops and induce systemic plant resistance to fungal pathogens. The aim of this study was to explore the ability of wood biochar to induce resistance to the root-knot nematode (RKN) Meloidogyne graminicola in rice (Oryza sativa cv. Nipponbare) and examine its histochemical and molecular impact on plant defense mechanisms. RESULTS A 1.2 % concentration of biochar added to the potting medium of rice was found to be the most effective at reducing nematode development in rice roots, whereas direct toxic effects of biochar exudates on nematode viability, infectivity or development were not observed. The increased plant resistance was associated with biochar-primed H2O2 accumulation as well as with the transcriptional enhancement of genes involved in the ethylene (ET) signaling pathway. The increased susceptibility of the Ein2b-RNAi line, which is deficient in ET signaling, further confirmed that biochar-induced priming acts at least partly through ET signaling. CONCLUSION These results suggest that biochar amendments protect rice plants challenged by nematodes. This priming effect partially depends on the ET signaling pathway and enhanced H2O2 accumulation.
Collapse
Affiliation(s)
- Wen-kun Huang
- Department of Molecular Biotechnology, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium.
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 100193, Beijing, P. R. China.
| | - Hong-li Ji
- Department of Molecular Biotechnology, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium.
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Jingjusi Road 20, 610066, Chengdu, P. R. China.
| | - Godelieve Gheysen
- Department of Molecular Biotechnology, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium.
| | - Jane Debode
- Plant Sciences Unit - Plant Protection, Institute for Agricultural and Fisheries Research (ILVO), Burg. van Gansberghelaan 96, 9820, Merelbeke, Belgium.
| | - Tina Kyndt
- Department of Molecular Biotechnology, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium.
| |
Collapse
|
48
|
Kammerhofer N, Radakovic Z, Regis JMA, Dobrev P, Vankova R, Grundler FMW, Siddique S, Hofmann J, Wieczorek K. Role of stress-related hormones in plant defence during early infection of the cyst nematode Heterodera schachtii in Arabidopsis. THE NEW PHYTOLOGIST 2015; 207:778-89. [PMID: 25825039 PMCID: PMC4657489 DOI: 10.1111/nph.13395] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 03/03/2015] [Indexed: 05/17/2023]
Abstract
Heterodera schachtii, a plant-parasitic cyst nematode, invades host roots and induces a specific syncytial feeding structure, from which it withdraws all required nutrients, causing severe yield losses. The system H. schachtii-Arabidopsis is an excellent research model for investigating plant defence mechanisms. Such responses are suppressed in well-established syncytia, whereas they are induced during early parasitism. However, the mechanisms by which the defence responses are modulated and the role of phytohormones are largely unknown. The aim of this study was to elucidate the role of hormone-based defence responses at the onset of nematode infection. First, concentrations of main phytohormones were quantified and the expression of several hormone-related genes was analysed using quantitative real-time (qRT)-PCR or GeneChip. Further, the effects of individual hormones were evaluated via nematode attraction and infection assays using plants with altered endogenous hormone concentrations. Our results suggest a pivotal and positive role for ethylene during nematode attraction, whereas jasmonic acid triggers early defence responses against H. schachtii. Salicylic acid seems to be a negative regulator during later syncytium and female development. We conclude that nematodes are able to impose specific changes in hormone pools, thus modulating hormone-based defence and signal transduction in strict dependence on their parasitism stage.
Collapse
Affiliation(s)
- Nina Kammerhofer
- Division of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences, UFT TullnKonrad Lorenz Str. 24, 3430, Tulln, Austria
| | - Zoran Radakovic
- Institute of Crop Science and Resource Conservation, Department Molecular Phytomedicine, University BonnKarlrobert-Kreiten-Str. 13, D-53115, Bonn, Germany
| | - Jully M A Regis
- Division of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences, UFT TullnKonrad Lorenz Str. 24, 3430, Tulln, Austria
| | - Petre Dobrev
- Institute of Experimental Botany, Academy of Sciences of the Czech RepublicRozvojová 263, 165 02, Prague 6, Lysolaje, Czech Republic
| | - Radomira Vankova
- Institute of Experimental Botany, Academy of Sciences of the Czech RepublicRozvojová 263, 165 02, Prague 6, Lysolaje, Czech Republic
| | - Florian M W Grundler
- Institute of Crop Science and Resource Conservation, Department Molecular Phytomedicine, University BonnKarlrobert-Kreiten-Str. 13, D-53115, Bonn, Germany
| | - Shahid Siddique
- Institute of Crop Science and Resource Conservation, Department Molecular Phytomedicine, University BonnKarlrobert-Kreiten-Str. 13, D-53115, Bonn, Germany
| | - Julia Hofmann
- Division of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences, UFT TullnKonrad Lorenz Str. 24, 3430, Tulln, Austria
| | - Krzysztof Wieczorek
- Division of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences, UFT TullnKonrad Lorenz Str. 24, 3430, Tulln, Austria
- Author for correspondence:,
Krzysztof Wieczorek
,
Tel: +43 1 47654 3397
,
| |
Collapse
|
49
|
Zhao W, Li Z, Fan J, Hu C, Yang R, Qi X, Chen H, Zhao F, Wang S. Identification of jasmonic acid-associated microRNAs and characterization of the regulatory roles of the miR319/TCP4 module under root-knot nematode stress in tomato. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:4653-67. [PMID: 26002970 PMCID: PMC4507771 DOI: 10.1093/jxb/erv238] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
MicroRNAs (miRNAs) are important transcriptional and post-transcriptional modulators of gene expression that play crucial roles in the responses to diverse stresses. To explore jasmonic acid (JA)-dependent miRNA-mediated regulatory networks that are responsive to root-knot nematode (RKN), two small RNA libraries were constructed from wild-type (WT) and JA mutant (spr2) plants. A total of 263 known miRNAs and 441 novel miRNAs were significantly regulated under RKN stress in the two libraries. The spatio-temporal expression of candidate miRNAs and their corresponding targets were analysed by qRT-PCR under RKN stress. A clear negative correlation was observed between miR319 and its target TEOSINTE BRANCHED1/CYCLOIDEA/PRO-LIFERATING CELL FACTOR 4 (TCP4) in leaf, stem, and root under RKN stress, implying that the miR319/TCP4 module is involved in the systemic defensive response. Reverse genetics demonstrated that the miR319/TCP4 module affected JA synthetic genes and the endogenous JA level in leaves, thereby mediating RKN resistance. These results suggested that the action of miR319 in serving as a systemic signal responder and regulator that modulated the RKN systemic defensive response was mediated via JA. The potential cross-talk between miR319/TCP4 and miR396/GRF (GROWTH RESPONDING FACTOR) in roots under RKN invasion is discussed, and a predictive model regarding miR319/TCP4-mediated RKN resistance is proposed.
Collapse
Affiliation(s)
- Wenchao Zhao
- Beijing Key Laboratory for Agricultural Application and New Technique, Plant Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Zilong Li
- Beijing Key Laboratory for Agricultural Application and New Technique, Plant Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Jingwei Fan
- Beijing Key Laboratory for Agricultural Application and New Technique, Plant Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Canli Hu
- Beijing Key Laboratory for Agricultural Application and New Technique, Plant Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Rui Yang
- Beijing Key Laboratory for Agricultural Application and New Technique, Plant Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Xin Qi
- Beijing Key Laboratory for Agricultural Application and New Technique, Plant Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Hua Chen
- Beijing Key Laboratory for Agricultural Application and New Technique, Plant Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Fukuan Zhao
- Biological Science and Engineering College, Beijing University of Agriculture, Beijing, 102206, China
| | - Shaohui Wang
- Beijing Key Laboratory for Agricultural Application and New Technique, Plant Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| |
Collapse
|
50
|
Shyu C, Brutnell TP. Growth-defence balance in grass biomass production: the role of jasmonates. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:4165-76. [PMID: 25711704 DOI: 10.1093/jxb/erv011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Growth-defence balance is the selective partitioning of resources between biomass accumulation and defence responses. Although it is generally postulated that reallocation of limited carbon pools drives the antagonism between growth and defence, little is known about the mechanisms underlying this regulation. Jasmonates (JAs) are a group of oxylipins that are required for a broad range of responses from defence against insects to reproductive growth. Application of JAs to seedlings also leads to inhibited growth and repression of photosynthesis, suggesting a role for JAs in regulating growth-defence balance. The majority of JA research uses dicot models such as Arabidopsis and tomato, while understanding of JA biology in monocot grasses, which comprise most bioenergy feedstocks, food for human consumption, and animal feed, is limited. Interestingly, JA mutants of grasses exhibit unique phenotypes compared with well-studied dicot models. Gene expression analyses in bioenergy grasses also suggest roles for JA in rhizome development, which has not been demonstrated in Arabidopsis. In this review we summarize current knowledge of JA biology in panicoid grasses-the group that consists of the world's emerging bioenergy grasses such as switchgrass, sugarcane, Miscanthus, and sorghum. We discuss outstanding questions regarding the role of JAs in panicoid grasses, and highlight the importance of utilizing emerging grass models for molecular studies to provide a basis for engineering bioenergy grasses that can maximize biomass accumulation while efficiently defending against stress.
Collapse
Affiliation(s)
- Christine Shyu
- Donald Danforth Plant Science Center, St Louis, MO 63132, USA
| | | |
Collapse
|