1
|
Volp TM, Zalucki MP, Furlong MJ. Ontogenetic Changes in the Feeding Behaviour of Helicoverpa armigera Larvae on Pigeonpea ( Cajanus cajan) Flowers and Pods. PLANTS (BASEL, SWITZERLAND) 2024; 13:696. [PMID: 38475544 DOI: 10.3390/plants13050696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/21/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024]
Abstract
Despite substantial research examining caterpillar-plant interactions, changes in the feeding behaviour of lepidopteran larvae as they develop are poorly understood. In this study, we investigated ontogenetic changes in the behaviour of Helicoverpa armigera larvae feeding on reproductive structures of pigeonpea (Cajanus cajan). Specifically, we examined the preference for and avoidance of pigeonpea flowers and pods of first, second, third, and fourth instar H. armigera larvae. We also conducted a no-choice assay to compare the ability of third and fourth instar larvae to penetrate pigeonpea pod walls, which act as a physical defence against herbivory. When presented with a choice between pigeonpea pods and flowers, different instars behaved differently. First and second instar larvae largely avoided pigeonpea pods, instead feeding on flowers; third instar larvae initially avoided pods, but by 24 h, did not strongly discriminate between the structures; and fourth instars demonstrated a preference for pods. When initially placed on pods, first instars were slower than other instars to leave these structures, despite pods being suboptimal feeding sites for small caterpillars. We identified a clear instar-specific ability to penetrate through the pod wall to reach the seeds. Most third instar larvae were unable to penetrate the pod wall, whereas most fourth instars succeeded. Third instars suffered a physiological cost (measured by relative growth rate) when boring through the pod wall, which was not observed in fourth instars. Our study further illuminates the insect-plant interactions of the H. armigera-pigeonpea system and provides evidence for the significant changes in feeding behaviour that may occur during lepidopteran larval development.
Collapse
Affiliation(s)
- Trevor M Volp
- Agri-Science Queensland, Department of Agriculture and Fisheries, Toowoomba, QLD 4350, Australia
- School of the Environment, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Myron P Zalucki
- School of the Environment, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Michael J Furlong
- School of the Environment, The University of Queensland, St. Lucia, QLD 4072, Australia
| |
Collapse
|
2
|
Montesinos Á, Sacristán S, Del Prado-Polonio P, Arnaiz A, Díaz-González S, Diaz I, Santamaria ME. Contrasting plant transcriptome responses between a pierce-sucking and a chewing herbivore go beyond the infestation site. BMC PLANT BIOLOGY 2024; 24:120. [PMID: 38369495 PMCID: PMC10875829 DOI: 10.1186/s12870-024-04806-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/08/2024] [Indexed: 02/20/2024]
Abstract
BACKGROUND Plants have acquired a repertoire of mechanisms to combat biotic stressors, which may vary depending on the feeding strategies of herbivores and the plant species. Hormonal regulation crucially modulates this malleable defense response. Jasmonic acid (JA) and salicylic acid (SA) stand out as pivotal regulators of defense, while other hormones like abscisic acid (ABA), ethylene (ET), gibberellic acid (GA) or auxin also play a role in modulating plant-pest interactions. The plant defense response has been described to elicit effects in distal tissues, whereby aboveground herbivory can influence belowground response, and vice versa. This impact on distal tissues may be contingent upon the feeding guild, even affecting both the recovery of infested tissues and those that have not suffered active infestation. RESULTS To study how phytophagous with distinct feeding strategies may differently trigger the plant defense response during and after infestation in both infested and distal tissues, Arabidopsis thaliana L. rosettes were infested separately with the chewing herbivore Pieris brassicae L. and the piercing-sucker Tetranychus urticae Koch. Moderate infestation conditions were selected for both pests, though no quantitative control of damage levels was carried out. Feeding mode did distinctly influence the transcriptomic response of the plant under these conditions. Though overall affected processes were similar under either infestation, their magnitude differed significantly. Plants infested with P. brassicae exhibited a short-term response, involving stress-related genes, JA and ABA regulation and suppressing growth-related genes. In contrast, T. urticae elicited a longer transcriptomic response in plants, albeit with a lower degree of differential expression, in particular influencing SA regulation. These distinct defense responses transcended beyond infestation and through the roots, where hormonal response, flavonoid regulation or cell wall reorganization were differentially affected. CONCLUSION These outcomes confirm that the existent divergent transcriptomic responses elicited by herbivores employing distinct feeding strategies possess the capacity to extend beyond infestation and even affect tissues that have not been directly infested. This remarks the importance of considering the entire plant's response to localized biotic stresses.
Collapse
Affiliation(s)
- Álvaro Montesinos
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC) Campus de Montegancedo, Pozuelo de Alarcón, 28223, Madrid, Spain
- Universidad de Zaragoza, Calle Pedro Cerbuna, 12, Zaragoza, 50009, Spain
| | - Soledad Sacristán
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC) Campus de Montegancedo, Pozuelo de Alarcón, 28223, Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | - Palmira Del Prado-Polonio
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC) Campus de Montegancedo, Pozuelo de Alarcón, 28223, Madrid, Spain
| | - Ana Arnaiz
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC) Campus de Montegancedo, Pozuelo de Alarcón, 28223, Madrid, Spain
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza de Misael Bañuelos s/n, Burgos, 09001, Spain
| | - Sandra Díaz-González
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC) Campus de Montegancedo, Pozuelo de Alarcón, 28223, Madrid, Spain
| | - Isabel Diaz
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC) Campus de Montegancedo, Pozuelo de Alarcón, 28223, Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | - M Estrella Santamaria
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC) Campus de Montegancedo, Pozuelo de Alarcón, 28223, Madrid, Spain.
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain.
| |
Collapse
|
3
|
Singh AA, Ghosh A, Agrawal M, Agrawal SB. Secondary metabolites responses of plants exposed to ozone: an update. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:88281-88312. [PMID: 37440135 DOI: 10.1007/s11356-023-28634-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 07/02/2023] [Indexed: 07/14/2023]
Abstract
Tropospheric ozone (O3) is a secondary pollutant that causes oxidative stress in plants due to the generation of excess reactive oxygen species (ROS). Phenylpropanoid metabolism is induced as a usual response to stress in plants, and induction of key enzyme activities and accumulation of secondary metabolites occur, upon O3 exposure to provide resistance or tolerance. The phenylpropanoid, isoprenoid, and alkaloid pathways are the major secondary metabolic pathways from which plant defense metabolites emerge. Chronic exposure to O3 significantly accelerates the direction of carbon flows toward secondary metabolic pathways, resulting in a resource shift in favor of the synthesis of secondary products. Furthermore, since different cellular compartments have different levels of ROS sensitivity and metabolite sets, intracellular compartmentation of secondary antioxidative metabolites may play a role in O3-induced ROS detoxification. Plants' responses to resource partitioning often result in a trade-off between growth and defense under O3 stress. These metabolic adjustments help the plants to cope with the stress as well as for achieving new homeostasis. In this review, we discuss secondary metabolic pathways in response to O3 in plant species including crops, trees, and medicinal plants; and how the presence of this stressor affects their role as ROS scavengers and structural defense. Furthermore, we discussed how O3 affects key physiological traits in plants, foliar chemistry, and volatile emission, which affects plant-plant competition (allelopathy), and plant-insect interactions, along with an emphasis on soil dynamics, which affect the composition of soil communities via changing root exudation, litter decomposition, and other related processes.
Collapse
Affiliation(s)
- Aditya Abha Singh
- Department of Botany, University of Lucknow, -226007, Lucknow, India
| | - Annesha Ghosh
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Madhoolika Agrawal
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Shashi Bhushan Agrawal
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
4
|
Bellec L, Cortesero AM, Marnet N, Faure S, Hervé MR. Age-specific allocation of glucosinolates within plant reproductive tissues. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 331:111690. [PMID: 36965631 DOI: 10.1016/j.plantsci.2023.111690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 06/18/2023]
Abstract
The Optimal Defense Theory (ODT) predicts that the distribution of defenses within a plant should mirror the value and vulnerability of each tissue. Although the ODT has received much experimental support, very few studies have examined defense allocation among reproductive tissues and none assessed simultaneously how these defenses evolve with age. We quantified glucosinolates in perianths, anthers and pistils at different bud maturity stages (i.e., intermediate flower buds, old flower buds and flowers) of undamaged and mechanically damaged plants of an annual brassicaceous species. The youngest leaf was used as a reference for vegetative organs, since it is predicted to be one of the most defended. In line with ODT predictions, reproductive tissues were more defended than vegetative tissues constitutively, and within the former, pistils and anthers more defended than perianths. No change in the overall defense level was found between bud maturity stages, but a significant temporal shift was observed between pistils and anthers. Contrary to ODT predictions, mechanical damage did not induce systemic defenses in leaves but only in pistils. Our results show that defense allocation in plant reproductive tissues occurs at fine spatial and temporal scales, extending the application framework of the ODT. They also demonstrate interactions between space and time in fine-scale defense allocation.
Collapse
Affiliation(s)
- Laura Bellec
- IGEPP, INRAE, Institut Agro, Univ Rennes, 35000 Rennes, France; Innolea, 6 Chemin de Panedautes, 31700 Mondonville, France.
| | | | | | | | - Maxime R Hervé
- IGEPP, INRAE, Institut Agro, Univ Rennes, 35000 Rennes, France
| |
Collapse
|
5
|
Wang Q, Dicke M, Haverkamp A. Sympatric Pieris butterfly species exhibit a high conservation of chemoreceptors. Front Cell Neurosci 2023; 17:1155405. [PMID: 37252192 PMCID: PMC10210156 DOI: 10.3389/fncel.2023.1155405] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/17/2023] [Indexed: 05/31/2023] Open
Abstract
Sensory processes have often been argued to play a central role in the selection of ecological niches and in the formation of new species. Butterflies are among the best studied animal groups with regards to their evolutionary and behavioral ecology and thereby offer an attractive system to investigate the role of chemosensory genes in sympatric speciation. We focus on two Pieris butterflies with overlapping host-plant ranges: P. brassicae and P. rapae. Host-plant choice in lepidopterans is largely based on their olfactory and gustatory senses. Although the chemosensory responses of the two species have been well characterized at the behavioral and physiological levels, little is known about their chemoreceptor genes. Here, we compared the chemosensory genes of P. brassicae and P. rapae to investigate whether differences in these genes might have contributed to their evolutionary separation. We identified a total of 130 and 122 chemoreceptor genes in the P. brassicae genome and antennal transcriptome, respectively. Similarly, 133 and 124 chemoreceptors were identified in the P. rapae genome and antennal transcriptome. We found some chemoreceptors being differentially expressed in the antennal transcriptomes of the two species. The motifs and gene structures of chemoreceptors were compared between the two species. We show that paralogs share conserved motifs and orthologs have similar gene structures. Our study therefore found surprisingly few differences in the numbers, sequence identities and gene structures between the two species, indicating that the ecological differences between these two butterflies might be more related to a quantitative shift in the expression of orthologous genes than to the evolution of novel receptors as has been found in other insects. Our molecular data supplement the wealth of behavioral and ecological studies on these two species and will thereby help to better understand the role of chemoreceptor genes in the evolution of lepidopterans.
Collapse
|
6
|
Aguirrebengoa M, Müller C, Hambäck PA, González-Megías A. Density-Dependent Effects of Simultaneous Root and Floral Herbivory on Plant Fitness and Defense. PLANTS (BASEL, SWITZERLAND) 2023; 12:283. [PMID: 36678999 PMCID: PMC9867048 DOI: 10.3390/plants12020283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/23/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Plants are attacked by multiple herbivores, and depend on a precise regulation of responses to cope with a wide range of antagonists. Simultaneous herbivory can occur in different plant compartments, which may pose a serious threat to plant growth and reproduction. In particular, plants often face co-occurring root and floral herbivory, but few studies have focused on such interactions. Here, we investigated in the field the combined density-dependent effects of root-chewing cebrionid beetle larvae and flower-chewing pierid caterpillars on the fitness and defense of a semiarid Brassicaceae herb. We found that the fitness impact of both herbivore groups was independent and density-dependent. Increasing root herbivore density non-significantly reduced plant fitness, while the relationship between increasing floral herbivore density and the reduction they caused in both seed number and seedling emergence was non-linear. The plant defensive response was non-additive with regard to the different densities of root and floral herbivores; high floral herbivore density provoked compensatory investment in reproduction, and this tolerance response was combined with aboveground chemical defense induction when also root herbivore density was high. Plants may thus prioritize specific trait combinations in response to varying combined below- and aboveground herbivore densities to minimize negative impacts on fitness.
Collapse
Affiliation(s)
| | - Caroline Müller
- Department of Chemical Ecology, Bielefeld University, 33615 Bielefeld, Germany
| | - Peter A. Hambäck
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91 Stockholm, Sweden
| | | |
Collapse
|
7
|
Dorey T, Schiestl FP. Plant phenotypic plasticity changes pollinator-mediated selection. Evolution 2022; 76:2930-2944. [PMID: 36250479 DOI: 10.1111/evo.14634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 08/19/2022] [Accepted: 09/03/2022] [Indexed: 01/22/2023]
Abstract
Many organisms change their phenotype in response to the environment, a phenomenon called phenotypic plasticity. Although plasticity can dramatically change the phenotype of an organism, we hardly understand how this can affect biotic interactions and the resulting phenotypic selection. Here, we use fast cycling Brassica rapa plants in an experiment in the greenhouse to study the link between plasticity and selection. We detected strong plasticity in morphology, nectar, and floral scent in response to different soil types and aphid herbivory. We found positive selection on nectar and morphological traits in hand- and bumblebee-pollinated plants. Bumblebee-mediated selection on a principal component representing plant height, flower number, and flowering time (mPC3) differed depending on soil type and herbivory. For plants growing in richer soil, selection was stronger in the absence of herbivores, whereas for plants growing in poorer soil selection was stronger with herbivory. We showed that bumblebees visited tall plants with many flowers overproportionally in plants in poor soil with herbivory (i.e., when tall plants were rare), thus causing stronger positive selection on this trait combination. We suggest that with strong plasticity under most stressful conditions, pollinator-mediated selection may promote adaptation to local environmental factors given sufficient heritability of the traits under selection.
Collapse
Affiliation(s)
- Thomas Dorey
- Department of Systematic and Evolutionary Botany, University of Zürich, Zürich, CH-8008, Switzerland
| | - Florian P Schiestl
- Department of Systematic and Evolutionary Botany, University of Zürich, Zürich, CH-8008, Switzerland
| |
Collapse
|
8
|
Huang L, Liu Y, Dou L, Pan S, Li Z, Zhang J, Li J. Mutualist- and antagonist-mediated selection contribute to trait diversification of flowers. PeerJ 2022; 10:e14107. [PMID: 36196403 PMCID: PMC9527018 DOI: 10.7717/peerj.14107] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 09/01/2022] [Indexed: 01/21/2023] Open
Abstract
Flowers are generally short-lived, and they all face a multidimensional challenge because they have to attract mutualists, compel them to vector pollen with minimal investment in rewards, and repel floral enemies during this short time window. Their displays are under complex selection, either consistent or conflicting, to maximize reproductive fitness under heterogeneous environments. The phenological or morphological mismatches between flowers and visitors will influence interspecific competition, resource access, mating success and, ultimately, population and community dynamics. To better understand the effects of the plant visitors on floral traits, it is necessary to determine the functional significance of specific floral traits for the visitors; how plants respond to both mutualists and antagonists through adaptive changes; and to evaluate the net fitness effects of biological mutualisms and antagonism on plants. In this review, we bring together insights from fields as diverse as floral biology, insect behavioral responses, and evolutionary biology to explain the processes and patterns of floral diversity evolution. Then, we discuss the ecological significance of plant responses to mutualists and antagonists from a community perspective, and propose a set of research questions that can guide the research field to integrate studies of plant defense and reproduction.
Collapse
Affiliation(s)
- Luyao Huang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yang Liu
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Liwen Dou
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shaobin Pan
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | | | - Jin Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jia Li
- Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
9
|
Keefover‐Ring K. The chemical biogeography of a widespread aromatic plant species shows both spatial and temporal variation. Ecol Evol 2022; 12:ECE39265. [PMID: 36177119 PMCID: PMC9461344 DOI: 10.1002/ece3.9265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 07/27/2022] [Accepted: 08/09/2022] [Indexed: 11/11/2022] Open
Abstract
Plants produce a wide variety of secondary metabolites, but intraspecific variation in space and time can alter the ecological interactions these compounds mediate. The aim of this work was to document the spatial and temporal chemical biogeography of Monarda fistulosa. I collected leaves from 1587 M. fistulosa individuals from 86 populations from Colorado to Manitoba, extracted and analyzed their terpenes with gas chromatography, mapped monoterpene chemotypes, and analyzed chemical variation with principal component analysis. I also measured the amounts of terpenes in different plant tissues to examine intraplant variation and monitored leaf terpene chemistry over a single growing season to examine temporal patterns. Finally, I extracted terpenes from herbarium samples up to 125 years old and compared the chemotypes with recent samples from the same sites. M. fistulosa populations consisted mostly of thymol (T) and carvacrol (C) chemotypes, but geraniol (G) and (R)-(-)-linalool (L), a chemotype new to this species, were also present. A principal component analysis showed that most of the chemical variation across populations was due to the amounts of the dominant terpene in plants. Intraplant tissue chemistry revealed that leaves mostly had the greatest amounts of terpenes, followed by floral structures, stems, and roots. Short-term temporal variation in leaf chemistry of T and C plants over a growing season showed that plants produced the highest levels of biosynthetic precursors early in the season and their dominant monoterpenes peaked in mid-summer. Plant chemotype was discernable in the oldest herbarium samples, and 15 of 18 historic samples matched the majority chemotype currently at the site, indicating that population chemotype ratios may remain stable over longer time scales. Overall, the results show that plant species' secondary chemistry can vary both spatially and temporally, which may alter the biological interactions that these compounds mediate over space and time.
Collapse
Affiliation(s)
- Ken Keefover‐Ring
- Department of BotanyUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Department of GeographyUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| |
Collapse
|
10
|
Chrétien LTS, Khalil A, Gershenzon J, Lucas-Barbosa D, Dicke M, Giron D. Plant metabolism and defence strategies in the flowering stage: Time-dependent responses of leaves and flowers under attack. PLANT, CELL & ENVIRONMENT 2022; 45:2841-2855. [PMID: 35611630 DOI: 10.1111/pce.14363] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/25/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Plants developing into the flowering stage undergo major physiological changes. Because flowers are reproductive tissues and resource sinks, strategies to defend them may differ from those for leaves. Thus, this study investigates the defences of flowering plants by assessing processes that sustain resistance (constitutive and induced) and tolerance to attack. We exposed the annual plant Brassica nigra to three distinct floral attackers (caterpillar, aphid and bacterial pathogen) and measured whole-plant responses at 4, 8 and 12 days after the attack. We simultaneously analysed profiles of primary and secondary metabolites in leaves and inflorescences and measured dry biomass of roots, leaves and inflorescences as proxies of resource allocation and regrowth. Regardless of treatments, inflorescences contained 1.2 to 4 times higher concentrations of primary metabolites than leaves, and up to 7 times higher concentrations of glucosinolates, which highlights the plant's high investment of resources into inflorescences. No induction of glucosinolates was detected in inflorescences, but the attack transiently affected the total concentration of soluble sugars in both leaves and inflorescences. We conclude that B. nigra evolved high constitutive rather than inducible resistance to protect their flowers; plants additionally compensated for damage by attackers via the regrowth of reproductive parts. This strategy may be typical of annual plants.
Collapse
Affiliation(s)
- Lucille T S Chrétien
- Laboratory of Entomology, Wageningen University, Wageningen, The Netherlands
- Institut de Recherche sur la Biologie de l'Insecte (IRBI), UMR 7261, CNRS/Université de Tours, Tours, France
| | - Alix Khalil
- Institut de Recherche sur la Biologie de l'Insecte (IRBI), UMR 7261, CNRS/Université de Tours, Tours, France
| | - Jonathan Gershenzon
- Max Planck Institute for Chemical Ecology (MPI CE), Department of Biochemistry, Jena, Germany
| | - Dani Lucas-Barbosa
- Laboratory of Entomology, Wageningen University, Wageningen, The Netherlands
| | - Marcel Dicke
- Laboratory of Entomology, Wageningen University, Wageningen, The Netherlands
| | - David Giron
- Institut de Recherche sur la Biologie de l'Insecte (IRBI), UMR 7261, CNRS/Université de Tours, Tours, France
| |
Collapse
|
11
|
Valsamakis G, Bittner N, Kunze R, Hilker M, Lortzing V. Priming of Arabidopsis resistance to herbivory by insect egg deposition depends on the plant's developmental stage. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4996-5015. [PMID: 35522985 PMCID: PMC9366327 DOI: 10.1093/jxb/erac199] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/05/2022] [Indexed: 06/14/2023]
Abstract
While traits of plant resistance to herbivory often change during ontogeny, it is unknown whether the primability of this resistance depends on the plant's developmental stage. Resistance in non-flowering Arabidopsis thaliana against Pieris brassicae larvae is known to be primable by prior egg deposition on leaves. We investigated whether this priming effect is maintained in plants at the flowering stage. Larval performance assays revealed that flowering plants' resistance to herbivory was not primable by egg deposition. Accordingly, transcriptomes of flowering plants showed almost no response to eggs. In contrast, egg deposition on non-flowering plants enhanced the expression of genes induced by subsequent larval feeding. Strikingly, flowering plants showed constitutively high expression levels of these genes. Larvae performed generally worse on flowering than on non-flowering plants, indicating that flowering plants constitutively resist herbivory. Furthermore, we determined the seed weight in regrown plants that had been exposed to eggs and larvae during the non-flowering or flowering stage. Non-flowering plants benefitted from egg priming with a smaller loss in seed yield. The seed yield of flowering plants was unaffected by the treatments, indicating tolerance towards the larvae. Our results show that the primability of anti-herbivore defences in Arabidopsis depends on the plant's developmental stage.
Collapse
Affiliation(s)
| | | | - Reinhard Kunze
- Applied Genetics, Institute of Biology, Freie Universität Berlin, Albrecht-Thaer-Weg 6, 14195 Berlin, Germany
| | - Monika Hilker
- Applied Zoology/ Animal Ecology, Institute of Biology, Freie Universität Berlin, Haderslebener Str. 9, 12163 Berlin, Germany
| | | |
Collapse
|
12
|
Rusman Q, Hooiveld‐Knoppers S, Dijksterhuis M, Bloem J, Reichelt M, Dicke M, Poelman EH. Flowers prepare thyselves: leaf and root herbivores induce specific changes in floral phytochemistry with consequences for plant interactions with florivores. THE NEW PHYTOLOGIST 2022; 233:2548-2560. [PMID: 34953172 PMCID: PMC9305281 DOI: 10.1111/nph.17931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
The phenotypic plasticity of flowering plants in response to herbivore damage to vegetative tissues can affect plant interactions with flower-feeding organisms. Such induced systemic responses are probably regulated by defence-related phytohormones that signal flowers to alter secondary chemistry that affects resistance to florivores. Current knowledge on the effects of damage to vegetative tissues on plant interactions with florivores and the underlying mechanisms is limited. We compared the preference and performance of two florivores on flowering Brassica nigra plants damaged by one of three herbivores feeding from roots or leaves. To investigate the underlying mechanisms, we quantified expression patterns of marker genes for defence-related phytohormonal pathways, and concentrations of phytohormones and glucosinolates in buds and flowers. Florivores displayed contrasting preferences for plants damaged by herbivores feeding on roots and leaves. Chewing florivores performed better on plants damaged by folivores, but worse on plants damaged by the root herbivore. Chewing root and foliar herbivory led to specific induced changes in the phytohormone profile of buds and flowers. This resulted in increased glucosinolate concentrations for leaf-damaged plants, and decreased glucosinolate concentrations for root-damaged plants. The outcome of herbivore-herbivore interactions spanning from vegetative tissues to floral tissues is unique for the inducing root/leaf herbivore and receiving florivore combination.
Collapse
Affiliation(s)
- Quint Rusman
- Laboratory of EntomologyWageningen University & ResearchDroevendaalsesteeg 1Wageningen6708PBthe Netherlands
- Present address:
Department of Systematic and Evolutionary BotanyUniversity of ZürichZollikerstrasse 1078008ZürichSwitzerland
| | - Sanne Hooiveld‐Knoppers
- Laboratory of EntomologyWageningen University & ResearchDroevendaalsesteeg 1Wageningen6708PBthe Netherlands
| | - Mirjam Dijksterhuis
- Laboratory of EntomologyWageningen University & ResearchDroevendaalsesteeg 1Wageningen6708PBthe Netherlands
| | - Janneke Bloem
- Laboratory of EntomologyWageningen University & ResearchDroevendaalsesteeg 1Wageningen6708PBthe Netherlands
| | - Michael Reichelt
- Department of BiochemistryMax Planck Institute for Chemical EcologyHans‐Knöll‐Strasse 807745JenaGermany
| | - Marcel Dicke
- Laboratory of EntomologyWageningen University & ResearchDroevendaalsesteeg 1Wageningen6708PBthe Netherlands
| | - Erik H. Poelman
- Laboratory of EntomologyWageningen University & ResearchDroevendaalsesteeg 1Wageningen6708PBthe Netherlands
| |
Collapse
|
13
|
Cibils-Stewart X, Kliebenstein DJ, Li B, Giles K, McCornack BP, Nechols J. Aphid Species and Feeding Location on Canola Influences the Impact of Glucosinolates on a Native Lady Beetle Predator. ENVIRONMENTAL ENTOMOLOGY 2022; 51:52-62. [PMID: 35171280 DOI: 10.1093/ee/nvab123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Indexed: 06/14/2023]
Abstract
Aphids that attack canola (Brassica napus L.) exhibit feeding preferences for different parts of canola plants, which may be associated with brassica-specific glucosinolates. However, this idea remains untested. Furthermore, canola aphid species employ different strategies for tolerating glucosinolates. While the green peach aphid, Myzus persicae (Sulzer) (Hemiptera: Aphididae), excretes glucosinolates, the cabbage aphid Brevicoryne brassicae (L.) (Hemiptera: Aphididae) sequesters them. Given the different detoxification mechanisms, we predicted that both aphid species and aphid feeding location would affect prey suitability for larvae of the predator, Hippodamia convergens (Guérin-Méneville) (Coleoptera: Coccinellidae). We hypothesized that aphids, specifically glucosinolate-sequestering cabbage aphid, reared on reproductive structures that harbor higher glucosinolates concentrations would have greater negative effects on predators than those reared on vegetative structures which have lower levels of glucosinolates, and that the impact of aphid feeding location would vary depending on the prey detoxification mechanism. To test these predictions, we conducted experiments to compare 1) glucosinolates profiles between B. brassicae and M. persicae reared on reproductive and vegetative canola structures, 2) aphid population growth on each structure, and 3) their subsequent impact on fitness traits of H. convergens. Results indicate that the population growth of both aphids was greater on reproductive structures, with B. brassicae having the highest population growth. B. brassicae reared on reproductive structures had the highest concentrations of glucosinolates, and the greatest adverse effects on H. convergens. These findings suggest that both aphid-prey species and feeding location on canola could influence populations of this predator and, thus, its potential for biological control of canola aphids.
Collapse
Affiliation(s)
- Ximena Cibils-Stewart
- Department of Entomology, Kansas State University, 123 Waters Hall, Manhattan, KS 66506, USA
- Instituto Nacional de Investigación Agropecuaria (INIA), Programa de Investigación en Pasturas y Forrajeras, INIA La Estanzuela, Ruta 50 Km 11, Colonia 70000, Uruguay
| | - Daniel J Kliebenstein
- Department of Plant Sciences, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
- DynaMo Center of Excellence, Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Baohua Li
- Department of Plant Sciences, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Kristopher Giles
- Department of Entomology and Plant Pathology, Oklahoma State University, 127 Noble Research Center, Stillwater, OK 74078, USA
| | - Brian P McCornack
- Department of Entomology, Kansas State University, 123 Waters Hall, Manhattan, KS 66506, USA
| | - James Nechols
- Department of Entomology, Kansas State University, 123 Waters Hall, Manhattan, KS 66506, USA
| |
Collapse
|
14
|
Boaventura MG, Villamil N, Teixido AL, Tito R, Vasconcelos HL, Silveira FAO, Cornelissen T. Revisiting florivory: an integrative review and global patterns of a neglected interaction. THE NEW PHYTOLOGIST 2022; 233:132-144. [PMID: 34363707 DOI: 10.1111/nph.17670] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
Florivory is an ancient interaction which has rarely been quantified due to a lack of standardized protocols, thus impairing biogeographical and phylogenetic comparisons. We created a global, continuously updated, open-access database comprising 180 species and 64 families to compare floral damage between tropical and temperate plants, to examine the effects of plant traits on floral damage, and to explore the eco-evolutionary dynamics of flower-florivore interactions. Flower damage is widespread across angiosperms, but was two-fold higher in tropical vs temperate species, suggesting stronger fitness impacts in the tropics. Flowers were mostly damaged by chewers, but neither flower color nor symmetry explained differences in florivory. Herbivory and florivory levels were positively correlated within species, even though the richness of the florivore community does not affect florivory levels. We show that florivory impacts plant fitness via multiple pathways and that ignoring this interaction makes it more difficult to obtain a broad understanding of the ecology and evolution of angiosperms. Finally, we propose a standardized protocol for florivory measurements, and identify key research avenues that will help fill persistent knowledge gaps. Florivory is expected to be a central research topic in an epoch characterized by widespread decreases in insect populations that comprise both pollinators and florivores.
Collapse
Affiliation(s)
- Maria Gabriela Boaventura
- Center for Ecological Synthesis and Conservation, Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Belo Horizonte, MG, CP 486, Brazil
| | - Nora Villamil
- Department of Ecology and Evolution, Université de Lausanne, Lausanne, CH-1015, Switzerland
| | - Alberto L Teixido
- Departamento de Botânica e Ecologia, Universidade Federal de Mato Grosso, Av. Fernando Corrêa 2367, Cuiabá, MT, E-78060-900, Brazil
| | - Richard Tito
- Instituto de Ciencias de la Naturaleza, Territorio y Energías Renovables, Pontificia Universidad Católica del Perú, Lima, 15088, Peru
| | - Heraldo L Vasconcelos
- Instituto de Biologia, Universidade Federal de Uberlândia, Av. Pará 1720, Uberlândia, MG, 38405-302, Brazil
| | - Fernando A O Silveira
- Center for Ecological Synthesis and Conservation, Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Belo Horizonte, MG, CP 486, Brazil
| | - Tatiana Cornelissen
- Center for Ecological Synthesis and Conservation, Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Belo Horizonte, MG, CP 486, Brazil
| |
Collapse
|
15
|
Drabińska N, Jeż M, Nogueira M. Variation in the Accumulation of Phytochemicals and Their Bioactive Properties among the Aerial Parts of Cauliflower. Antioxidants (Basel) 2021; 10:1597. [PMID: 34679732 PMCID: PMC8533432 DOI: 10.3390/antiox10101597] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/04/2021] [Accepted: 10/08/2021] [Indexed: 11/16/2022] Open
Abstract
Vegetables from the Brassicaceae family are excellent sources of bioactive phytochemicals and may reduce the risk of chronic diseases. Variation of phytochemicals in the edible part of cauliflower is known. However, information about the distribution of bioactive and nutritive compounds as well as antioxidant activity among aerial organs of cauliflower is unavailable. Therefore, this study aimed to evaluate the distribution of glucosinolates (GLS), phenolics, flavonoids, chlorophylls, nutritive compounds and antioxidant capacity between the aerial parts of the common variety of cauliflower and to evaluate whether these changes contribute to the differences in the antioxidant capacity between the plant organs. Our study showed that all the aerial organs of cauliflower are a rich source of health-promoting bioactive compounds, including GLS, phenolics and flavonoids, exhibiting antioxidant capacity. The highest contents of phytochemicals and the highest antioxidant capacity were found in leaves. Cauliflower organs were also found to be rich in nutritive compounds, including minerals, proteins and amino acids. Our study showed that the non-edible organs, such as stems and leaves, being neglected parts of cauliflower, if not consumed as the main ingredient, can be used as additives for developing new, functional foodstuff.
Collapse
Affiliation(s)
- Natalia Drabińska
- Department of Chemistry and Biodynamics of Food, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, 10-748 Olsztyn, Poland;
- Food Volatilomics and Sensomics Group, Faculty of Food Science and Nutrition, Poznan University of Life Sciences, 60-637 Poznań, Poland
| | - Maja Jeż
- Department of Chemical and Physical Properties of Food, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, 10-748 Olsztyn, Poland;
| | - Mariana Nogueira
- Department of Chemistry and Biodynamics of Food, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, 10-748 Olsztyn, Poland;
- Faculty of Biotechnology, Universidade Católica Portuguesa, 4169005 Porto, Portugal
| |
Collapse
|
16
|
Gupta S, Chaudhary A, Singh S, Arora S, Sohal SK. Broccoli ( Brassica oleracea L. var. italica) cultivars, Palam Samridhi and Palam Vichitra affect the growth of Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae). Heliyon 2021; 7:e07612. [PMID: 34355102 PMCID: PMC8322284 DOI: 10.1016/j.heliyon.2021.e07612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/30/2021] [Accepted: 07/14/2021] [Indexed: 11/26/2022] Open
Abstract
Effect of the ethyl acetate seed extracts of two cultivars of broccoli, Brassica oleracea Italica, Palam Samridhi (PS) and Palam Vichitra (PV) on growth, development and nutritional physiology of an economically important insect pest, Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae) was evaluated by conducting bioassays and nutritional assays. The insect larvae were fed on diets amended with the seed extracts of two cultivars at different concentrations viz. 5, 25, 125, 625 and 3125 ppm and taking water as control. The response of the insect varied with plant varieties. The extracts disrupted the developmental cycle of the pest. Larval mortality and total adult emergence were negatively affected. Larval period and total development period were also negatively influenced. Nutritional indices of S. litura also showed considerable decrease in the RGR, RCR, ECI and ECD as compared to control. The AD values were also enhanced with both the cultivars. The findings of the study revealed a considerable anti-insect potential of the two extracts and needs to be further explored for identification and isolation of bioactive constituents from broccoli for efficient management of the pest population.
Collapse
Affiliation(s)
- Shallina Gupta
- Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Ashun Chaudhary
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
- Department of Plant Sciences (Botany), Central University of Himachal Pradesh, Dharamshala, Himachal Pradesh, India
| | - Sumit Singh
- Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Saroj Arora
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Satwinder Kaur Sohal
- Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
- Corresponding author.
| |
Collapse
|
17
|
Kuczyk J, Müller C, Fischer K. Plant-mediated indirect effects of climate change on an insect herbivore. Basic Appl Ecol 2021. [DOI: 10.1016/j.baae.2021.03.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
18
|
Plant Allelochemicals as Sources of Insecticides. INSECTS 2021; 12:insects12030189. [PMID: 33668349 PMCID: PMC7996276 DOI: 10.3390/insects12030189] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 02/03/2021] [Accepted: 02/12/2021] [Indexed: 12/16/2022]
Abstract
In this review, we describe the role of plant-derived biochemicals that are toxic to insect pests. Biotic stress in plants caused by insect pests is one of the most significant problems, leading to yield losses. Synthetic pesticides still play a significant role in crop protection. However, the environmental side effects and health issues caused by the overuse or inappropriate application of synthetic pesticides forced authorities to ban some problematic ones. Consequently, there is a strong necessity for novel and alternative insect pest control methods. An interesting source of ecological pesticides are biocidal compounds, naturally occurring in plants as allelochemicals (secondary metabolites), helping plants to resist, tolerate or compensate the stress caused by insect pests. The abovementioned bioactive natural products are the first line of defense in plants against insect herbivores. The large group of secondary plant metabolites, including alkaloids, saponins, phenols and terpenes, are the most promising compounds in the management of insect pests. Secondary metabolites offer sustainable pest control, therefore we can conclude that certain plant species provide numerous promising possibilities for discovering novel and ecologically friendly methods for the control of numerous insect pests.
Collapse
|
19
|
The plant metabolome guides fitness-relevant foraging decisions of a specialist herbivore. PLoS Biol 2021; 19:e3001114. [PMID: 33600420 PMCID: PMC7924754 DOI: 10.1371/journal.pbio.3001114] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 03/02/2021] [Accepted: 01/26/2021] [Indexed: 01/01/2023] Open
Abstract
Plants produce complex mixtures of primary and secondary metabolites. Herbivores use these metabolites as behavioral cues to increase their fitness. However, how herbivores combine and integrate different metabolite classes into fitness-relevant foraging decisions in planta is poorly understood. We developed a molecular manipulative approach to modulate the availability of sugars and benzoxazinoid secondary metabolites as foraging cues for a specialist maize herbivore, the western corn rootworm. By disrupting sugar perception in the western corn rootworm and benzoxazinoid production in maize, we show that sugars and benzoxazinoids act as distinct and dynamically combined mediators of short-distance host finding and acceptance. While sugars improve the capacity of rootworm larvae to find a host plant and to distinguish postembryonic from less nutritious embryonic roots, benzoxazinoids are specifically required for the latter. Host acceptance in the form of root damage is increased by benzoxazinoids and sugars in an additive manner. This pattern is driven by increasing damage to postembryonic roots in the presence of benzoxazinoids and sugars. Benzoxazinoid- and sugar-mediated foraging directly improves western corn rootworm growth and survival. Interestingly, western corn rootworm larvae retain a substantial fraction of their capacity to feed and survive on maize plants even when both classes of chemical cues are almost completely absent. This study unravels fine-grained differentiation and combination of primary and secondary metabolites into herbivore foraging and documents how the capacity to compensate for the lack of important chemical cues enables a specialist herbivore to survive within unpredictable metabolic landscapes.
Collapse
|
20
|
Kumar P, Akhter T, Bhardwaj P, Kumar R, Bhardwaj U, Mazumdar-Leighton S. Consequences of 'no-choice, fixed time' reciprocal host plant switches on nutrition and gut serine protease gene expression in Pieris brassicae L. (Lepidoptera: Pieridae). PLoS One 2021; 16:e0245649. [PMID: 33471847 PMCID: PMC7817030 DOI: 10.1371/journal.pone.0245649] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 01/06/2021] [Indexed: 11/29/2022] Open
Abstract
Rapid adaptive responses were evident from reciprocal host-plant switches on performance, digestive physiology and relative gene expression of gut serine proteases in larvae of crucifer pest P. brassicae transferred from cauliflower (CF, Brassica oleracea var. botrytis, family Brassicaceae) to an alternate host, garden nasturtium, (GN, Tropaeolum majus L., family Tropaeolaceae) and vice-versa under laboratory conditions. Estimation of nutritional indices indicated that larvae of all instars tested consumed the least food and gained less weight on CF-GN diet (significant at p≤0.05) as compared to larvae feeding on CF-CF, GN-GN and GN-CF diets suggesting that the switch to GN was nutritionally less favorable for larval growth. Nevertheless, these larvae, especially fourth instars, were adroit in utilizing and digesting GN as a new host plant type. In vitro protease assays conducted to understand associated physiological responses within twelve hours indicated that levels and properties of gut proteases were significantly influenced by type of natal host-plant consumed, change in diet as well as larval age. Activities of gut trypsins and chymotrypsins in larvae feeding on CF-GN and GN-CF diets were distinct, and represented shifts toward profiles observed in larvae feeding continuously on GN-GN and CF-CF diets respectively. Results with diagnostic protease inhibitors like TLCK, STI and SBBI in these assays and gelatinolytic zymograms indicated complex and contrasting trends in gut serine protease activities in different instars from CF-GN diet versus GN-CF diet, likely due to ingestion of plant protease inhibitors present in the new diet. Cloning and sequencing of serine protease gene fragments expressed in gut tissues of fourth instar P. brassicae revealed diverse transcripts encoding putative trypsins and chymotrypsins belonging to at least ten lineages. Sequences of members of each lineage closely resembled lepidopteran serine protease orthologs including uncharacterized transcripts from Pieris rapae. Differential regulation of serine protease genes (Pbr1-Pbr5) was observed in larval guts of P. brassicae from CF-CF and GN-GN diets while expression of transcripts encoding two putative trypsins (Pbr3 and Pbr5) were significantly different in larvae from CF-GN and GN-CF diets. These results suggested that some gut serine proteases that were differentially expressed in larvae feeding on different species of host plants were also involved in rapid adaptations to dietary switches. A gene encoding nitrile-specifier protein (nsp) likely involved in detoxification of toxic products from interactions of ingested host plant glucosinolates with myrosinases was expressed to similar levels in these larvae. Taken together, these snapshots reflected contrasts in physiological and developmental plasticity of P. brassicae larvae to nutritional challenges from wide dietary switches in the short term and the prominent role of gut serine proteases in rapid dietary adaptations. This study may be useful in designing novel management strategies targeting candidate gut serine proteases of P. brassicae using RNA interference, gene editing or crops with transgenes encoding protease inhibitors from taxonomically-distant host plants.
Collapse
Affiliation(s)
- Pawan Kumar
- Faculty of Science, Department of Botany, University of Delhi, Delhi, India
| | - Tabasum Akhter
- Faculty of Science, Department of Botany, University of Delhi, Delhi, India
| | - Parul Bhardwaj
- Faculty of Science, Department of Botany, University of Delhi, Delhi, India
| | - Rakesh Kumar
- Faculty of Science, Department of Botany, University of Delhi, Delhi, India
| | - Usha Bhardwaj
- Faculty of Science, Department of Botany, University of Delhi, Delhi, India
| | | |
Collapse
|
21
|
Moisan K, Aragón M, Gort G, Dicke M, Cordovez V, Raaijmakers JM, Lucas‐Barbosa D. Fungal volatiles influence plant defence against above‐ground and below‐ground herbivory. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13633] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Kay Moisan
- Laboratory of Entomology Wageningen University and Research Wageningen the Netherlands
- Department of Microbial Ecology Netherlands Institute of Ecology Wageningen the Netherlands
| | - Marcela Aragón
- Laboratory of Entomology Wageningen University and Research Wageningen the Netherlands
- Department of Microbial Ecology Netherlands Institute of Ecology Wageningen the Netherlands
| | - Gerrit Gort
- Biometris Wageningen University and Research Wageningen the Netherlands
| | - Marcel Dicke
- Laboratory of Entomology Wageningen University and Research Wageningen the Netherlands
| | - Viviane Cordovez
- Department of Microbial Ecology Netherlands Institute of Ecology Wageningen the Netherlands
- Institute of Biology Leiden University Leiden the Netherlands
| | - Jos M. Raaijmakers
- Department of Microbial Ecology Netherlands Institute of Ecology Wageningen the Netherlands
- Institute of Biology Leiden University Leiden the Netherlands
| | - Dani Lucas‐Barbosa
- Laboratory of Entomology Wageningen University and Research Wageningen the Netherlands
| |
Collapse
|
22
|
Nakano S, Oguro M, Itagaki T, Sakai S. Florivory defence: are phenolic compounds distributed non-randomly within perianths? Biol J Linn Soc Lond 2020. [DOI: 10.1093/biolinnean/blaa099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Plants might allocate chemical defences unequally within attractive units of flowers including petals, sepals, and bracts because of variations in the probability of florivory. Based on optimal defence theory, which predicts that plants allocate higher chemical defences to tissues with higher probabilities of herbivore attack, we predicted that distal parts and sepals would have higher chemical defence allocations than proximal parts and petals. To test this prediction, we compared total phenolics and condensed tannins concentrations as well as presence of florivory within attractive units of ten angiosperm species. In agreement with the prediction, the overall results showed that the distal parts had higher total phenolics and condensed tannins than the proximal parts. On the other hand, contrary to the prediction, petals and sepals showed no tissue-specific variations. Florivory was more severe on the distal parts than the proximal parts, although statistical support for the variation was slightly weak, while the variations in presence of florivory between petals and sepals differed between the distal and proximal parts. These results may support the prediction of the optimal defence theory because distal parts of attractive units had higher presence of florivory and concentration of chemical defences.
Collapse
Affiliation(s)
- Saya Nakano
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Michio Oguro
- Forestry and Forest Products Research Institute, Tsukuba, Japan
| | - Tomoyuki Itagaki
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Satoki Sakai
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| |
Collapse
|
23
|
Schmitt L, Perfecto I. Who gives a flux? Synchronous flowering of
Coffea arabica
accelerates leaf litter decomposition. Ecosphere 2020. [DOI: 10.1002/ecs2.3186] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Lauren Schmitt
- School for Environment and Sustainability University of Michigan 440 Church Street Ann Arbor Michigan48109USA
| | - Ivette Perfecto
- School for Environment and Sustainability University of Michigan 440 Church Street Ann Arbor Michigan48109USA
| |
Collapse
|
24
|
Inpota P, Phonchai A, Wilairat P, Chantiwas R. Rapid measurement of indole levels in Brassica vegetables using one millilitre binary organic extraction solvent and capillary electrophoresis-UV analysis. PHYTOCHEMICAL ANALYSIS : PCA 2020; 31:522-530. [PMID: 31914485 DOI: 10.1002/pca.2916] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 12/16/2019] [Accepted: 12/19/2019] [Indexed: 06/10/2023]
Abstract
INTRODUCTION Brassica vegetables contain high levels of indole compounds which have been found to provide health benefits, especially as cancer-preventive agents. An efficient and rapid method using solvent extraction with capillary electrophoresis (CE) and ultraviolet (UV) detection was developed for the determination of four major indoles from four types of Brassica vegetables. MATERIALS AND METHODS Freeze-dried samples of four Brassica vegetables, i.e. broccoli, cauliflower, Chinese cabbage and cabbage, were selected. Hence, 1 mL of the binary solvent dimethylformamide (DMF)-methanol, 4:1 (v/v), was used for sample extraction. The extracts were diluted with the running buffer and directly analysed using CE with UV detection of four indole compounds. RESULTS The binary solvent DMF-methanol, 4:1 (v/v) was selected from studies of the extraction efficiency of standard indoles spiked in ivy gourd (as the negative control sample) and using diphenylamine as the internal standard. Recovery was 80(±10)-120(±3)% for the four indoles: indole-3-carbinol (I3C), indole-3-acetonitrile (I3A), indole-3-acetic acid (IAA), and 3,3'-diindolylmethane (DIM). For direct analysis suitable dilution of the extract with the running buffer was required. The linear range of the quantitation is 0.75-25.0 μg/mL, limit of detection (LOD) of 0.14-0.52 μg/mL and r2 > 0.998. The amount of indole in the Brassica vegetables are in the order I3C > > IAA, I3A > DIM. CONCLUSION A rapid method for extraction and quantitation of four indoles in four Brassica vegetables using CE with UV detection was developed. It has the potential as an efficient technique for generating data for use in agricultural and nutritional studies.
Collapse
Affiliation(s)
- Prawpan Inpota
- Department of Chemistry and Centre of Excellence for Innovation in Chemistry and Flow Innovation-Research for Science and Technology Laboratories (FIRST Labs), Faculty of Science, Mahidol University, Rama VI Rd, Bangkok, 10400, Thailand
| | - Apichai Phonchai
- Department of Applied Science, Faculty of Science, Prince of Songkla University, 15 Karnjanavanich Rd, Hat Yai, Songkhla, 90110, Thailand
| | - Prapin Wilairat
- National Doping Control Centre, Mahidol University, Rama VI Rd, Bangkok, 10400, Thailand
| | - Rattikan Chantiwas
- Department of Chemistry and Centre of Excellence for Innovation in Chemistry and Flow Innovation-Research for Science and Technology Laboratories (FIRST Labs), Faculty of Science, Mahidol University, Rama VI Rd, Bangkok, 10400, Thailand
| |
Collapse
|
25
|
Griese E, Pineda A, Pashalidou FG, Iradi EP, Hilker M, Dicke M, Fatouros NE. Plant responses to butterfly oviposition partly explain preference-performance relationships on different brassicaceous species. Oecologia 2020; 192:463-475. [PMID: 31932923 PMCID: PMC7002336 DOI: 10.1007/s00442-019-04590-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 12/27/2019] [Indexed: 10/26/2022]
Abstract
The preference-performance hypothesis (PPH) states that herbivorous female insects prefer to oviposit on those host plants that are best for their offspring. Yet, past attempts to show the adaptiveness of host selection decisions by herbivores often failed. Here, we tested the PPH by including often neglected oviposition-induced plant responses, and how they may affect both egg survival and larval weight. We used seven Brassicaceae species of which most are common hosts of two cabbage white butterfly species, the solitary Pieris rapae and gregarious P. brassicae. Brassicaceous species can respond to Pieris eggs with leaf necrosis, which can lower egg survival. Moreover, plant-mediated responses to eggs can affect larval performance. We show a positive correlation between P. brassicae preference and performance only when including the egg phase: 7-day-old caterpillars gained higher weight on those plant species which had received most eggs. Pieris eggs frequently induced necrosis in the tested plant species. Survival of clustered P. brassicae eggs was unaffected by the necrosis in most tested species and no relationship between P. brassicae egg survival and oviposition preference was found. Pieris rapae preferred to oviposit on plant species most frequently expressing necrosis although egg survival was lower on those plants. In contrast to the lower egg survival on plants expressing necrosis, larval biomass on these plants was higher than on plants without a necrosis. We conclude that egg survival is not a crucial factor for oviposition choices but rather egg-mediated responses affecting larval performance explained the preference-performance relationship of the two butterfly species.
Collapse
Affiliation(s)
- Eddie Griese
- Laboratory of Entomology, Wageningen University, Wageningen, The Netherlands
- Biosystematics Group, Wageningen University, Wageningen, The Netherlands
| | - Ana Pineda
- Laboratory of Entomology, Wageningen University, Wageningen, The Netherlands
- NIOO-KNAW, Wageningen, The Netherlands
| | - Foteini G Pashalidou
- Laboratory of Entomology, Wageningen University, Wageningen, The Netherlands
- UMR Agronomie, INRA, AgroParisTech, Universite Paris-Saclay, 78850, Thiverval-Grignon, France
| | - Eleonora Pizarro Iradi
- Laboratory of Entomology, Wageningen University, Wageningen, The Netherlands
- BASF Chile, Carrascal 3851, Quinta Normal, Santiago, Chile
| | - Monika Hilker
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - Marcel Dicke
- Laboratory of Entomology, Wageningen University, Wageningen, The Netherlands
| | - Nina E Fatouros
- Laboratory of Entomology, Wageningen University, Wageningen, The Netherlands.
- Biosystematics Group, Wageningen University, Wageningen, The Netherlands.
| |
Collapse
|
26
|
Duque L, Poelman EH, Steffan-Dewenter I. Plant-mediated effects of ozone on herbivores depend on exposure duration and temperature. Sci Rep 2019; 9:19891. [PMID: 31882632 PMCID: PMC6934497 DOI: 10.1038/s41598-019-56234-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 12/06/2019] [Indexed: 11/09/2022] Open
Abstract
Abiotic stress by elevated tropospheric ozone and temperature can alter plants’ metabolism, growth, and nutritional value and modify the life cycle of their herbivores. We investigated how the duration of exposure of Sinapis arvensis plants to high ozone and temperature levels affect the life cycle of the large cabbage white, Pieris brassicae. Plants were exposed to ozone-clean (control) or ozone-enriched conditions (120 ppb) for either 1 or 5 days and were afterwards kept in a greenhouse with variable temperature conditions. When given the choice, P. brassicae butterflies laid 49% fewer eggs on ozone-exposed than on control plants when the exposure lasted for 5 days, but showed no preference when exposure lasted for 1 day. The caterpillars took longer to hatch on ozone-exposed plants and at lower ambient temperatures. The ozone treatment had a positive effect on the survival of the eggs. Ozone decreased the growth of caterpillars reared at higher temperatures on plants exposed for 5 days, but not on plants exposed for 1 day. Overall, longer exposure of the plants to ozone and higher temperatures affected the life cycle of the herbivore more strongly. With global warming, the indirect impacts of ozone on herbivores are likely to become more common.
Collapse
Affiliation(s)
- Laura Duque
- Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, Würzburg, Germany.
| | - Erik H Poelman
- Laboratory of Entomology, Wageningen University, Wageningen, The Netherlands
| | - Ingolf Steffan-Dewenter
- Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, Würzburg, Germany
| |
Collapse
|
27
|
Papazian S, Girdwood T, Wessels BA, Poelman EH, Dicke M, Moritz T, Albrectsen BR. Leaf metabolic signatures induced by real and simulated herbivory in black mustard (Brassica nigra). Metabolomics 2019; 15:130. [PMID: 31563978 PMCID: PMC6765471 DOI: 10.1007/s11306-019-1592-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 09/12/2019] [Indexed: 12/16/2022]
Abstract
INTRODUCTION The oxylipin methyl jasmonate (MeJA) is a plant hormone active in response signalling and defence against herbivores. Although MeJA is applied experimentally to mimic herbivory and induce plant defences, its downstream effects on the plant metabolome are largely uncharacterized, especially in the context of primary growth and tissue-specificity of the response. OBJECTIVES We investigated the effects of MeJA-simulated and real caterpillar herbivory on the foliar metabolome of the wild plant Brassica nigra and monitored the herbivore-induced responses in relation to leaf ontogeny. METHODS As single or multiple herbivory treatments, MeJA- and mock-sprayed plants were consecutively exposed to caterpillars or left untreated. Gas chromatography (GC) and liquid chromatography (LC) time-of-flight mass-spectrometry (TOF-MS) were combined to analyse foliar compounds, including central primary and specialized defensive plant metabolites. RESULTS Plant responses were stronger in young leaves, which simultaneously induced higher chlorophyll levels. Both MeJA and caterpillar herbivory induced similar, but not identical, accumulation of tricarboxylic acids (TCAs), glucosinolates (GSLs) and phenylpropanoids (PPs), but only caterpillar feeding led to depletion of amino acids. MeJA followed by caterpillars caused higher induction of defence compounds, including a three-fold increase in the major defence compound allyl-GSL (sinigrin). When feeding on MeJA-treated plants, caterpillars gained less weight indicative of the reduced host-plant quality and enhanced resistance. CONCLUSIONS The metabolomics approach showed that plant responses induced by herbivory extend beyond the regulation of defence metabolism and are tightly modulated throughout leaf development. This leads to a new understanding of the plant metabolic potential that can be exploited for future plant protection strategies.
Collapse
Affiliation(s)
- Stefano Papazian
- 0000 0001 1034 3451grid.12650.30Department of Plant Physiology, Umeå University (Umeå Plant Science Centre), 90187 Umeå, Sweden
| | - Tristan Girdwood
- 0000 0001 1034 3451grid.12650.30Department of Plant Physiology, Umeå University (Umeå Plant Science Centre), 90187 Umeå, Sweden
| | - Bernard A. Wessels
- 0000 0001 1034 3451grid.12650.30Department of Plant Physiology, Umeå University (Umeå Plant Science Centre), 90187 Umeå, Sweden
| | - Erik H. Poelman
- 0000 0001 0791 5666grid.4818.5Laboratory of Entomology, Wageningen University, 6700 AA Wageningen, The Netherlands
| | - Marcel Dicke
- 0000 0001 0791 5666grid.4818.5Laboratory of Entomology, Wageningen University, 6700 AA Wageningen, The Netherlands
| | - Thomas Moritz
- 0000 0000 8578 2742grid.6341.0Department of Forest Genetic and Plant Physiology, Swedish University of Agricultural Sciences (Umeå Plant Science Centre), 90187 Umeå, Sweden
| | - Benedicte R. Albrectsen
- 0000 0001 1034 3451grid.12650.30Department of Plant Physiology, Umeå University (Umeå Plant Science Centre), 90187 Umeå, Sweden
| |
Collapse
|
28
|
Scopece G, Frachon L, Cozzolino S. Do native and invasive herbivores have an effect on Brassica rapa pollination? PLANT BIOLOGY (STUTTGART, GERMANY) 2019; 21:927-934. [PMID: 30884071 DOI: 10.1111/plb.12985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 03/11/2019] [Indexed: 06/09/2023]
Abstract
Mutualistic (e.g. pollination) and antagonistic (e.g. herbivory) plant-insect interactions shape levels of plant fitness and can have interactive effects. By using experimental plots of Brassica rapa plants infested with generalist (Mamestra brassicae) and specialised (Pieris brassicae) native herbivores and with a generalist invasive (Spodoptera littoralis) herbivore, we estimated both pollen movement among treatments and the visiting behaviour of honeybees versus other wild pollinators. Overall, we found that herbivory has weak effects on plant pollen export, either in terms of inter-treatment movements or of dispersion distance. Plants infested with the native specialised herbivore tend to export less pollen to other plants with the same treatment. Other wild pollinators preferentially visit non-infested plants that differ from those of honeybees, which showed no preferences. Honeybees and other wild pollinators also showed different behaviours on plants infested with different herbivores, with the former tending to avoid revisiting the same treatment and the latter showing no avoidance behaviour. When taking into account the whole pollinator community, i.e. the interactive effects of honeybees and other wild pollinators, we found an increased avoidance of plants infested by the native specialised herbivore and a decreased avoidance of plants infested by the invasive herbivore. Taken together, our results suggest that herbivory may have an effect on B. rapa pollination, but this effect depends on the relative abundance of honeybees and other wild pollinators.
Collapse
Affiliation(s)
- G Scopece
- Department of Biology, University of Naples Federico II, Complesso Universitario MSA, Naples, Italy
| | - L Frachon
- Department of Biology, University of Naples Federico II, Complesso Universitario MSA, Naples, Italy
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
| | - S Cozzolino
- Department of Biology, University of Naples Federico II, Complesso Universitario MSA, Naples, Italy
| |
Collapse
|
29
|
Fricke U, Lucas-Barbosa D, Douma JC. No evidence of flowering synchronization upon floral volatiles for a short lived annual plant species: revisiting an appealing hypothesis. BMC Ecol 2019; 19:29. [PMID: 31391049 PMCID: PMC6685148 DOI: 10.1186/s12898-019-0245-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 07/19/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Self-incompatible plants require simultaneous flowering mates for crosspollination and reproduction. Though the presence of flowering conspecifics and pollination agents are important for reproductive success, so far no cues that signal the flowering state of potential mates have been identified. Here, we empirically tested the hypothesis that plant floral volatiles induce flowering synchrony among self-incompatible conspecifics by acceleration of flowering and flower opening rate of non-flowering conspecifics. We exposed Brassica rapa Maarssen, a self-incompatible, in rather dense patches growing annual, to (1) flowering or non-flowering conspecifics or to (2) floral volatiles of conspecifics by isolating plants in separate containers with a directional airflow. In the latter, odors emitted by non-flowering conspecifics were used as control. RESULTS Date of first bud, duration of first flower bud, date of first flower, maximum number of open flowers and flower opening rate were not affected by the presence of conspecific flowering neighbors nor by floral volatiles directly. CONCLUSIONS This study presents a compelling approach to empirically test the role of flower synchronization by floral volatiles and challenges the premises that are underlying this hypothesis. We argue that the life history of the plant as well as its interaction with pollinators and insect herbivores, as well as the distance over which volatiles may serve as synchronization cue, set constraints on the fitness benefits of synchronized flowering which needs to be taken into account when testing the role of floral volatiles in synchronized flowering.
Collapse
Affiliation(s)
- Ute Fricke
- Centre for Crop Systems Analysis, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.,Laboratory of Entomology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.,Department of Animal Ecology and Tropical Biology, Biocentre, University of Würzburg, Würzburg, Germany
| | - Dani Lucas-Barbosa
- Laboratory of Entomology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.,Laboratory of Bio-Communication & Ecology, ETH Zurich, Zurich, Switzerland
| | - Jacob C Douma
- Centre for Crop Systems Analysis, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands. .,Laboratory of Entomology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.
| |
Collapse
|
30
|
Oberländer J, Lortzing V, Hilker M, Kunze R. The differential response of cold-experienced Arabidopsis thaliana to larval herbivory benefits an insect generalist, but not a specialist. BMC PLANT BIOLOGY 2019; 19:338. [PMID: 31375063 PMCID: PMC6679549 DOI: 10.1186/s12870-019-1943-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 07/23/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND In native environments plants frequently experience simultaneous or sequential unfavourable abiotic and biotic stresses. The plant's response to combined stresses is usually not the sum of the individual responses. Here we investigated the impact of cold on plant defense against subsequent herbivory by a generalist and specialist insect. RESULTS We determined transcriptional responses of Arabidopsis thaliana to low temperature stress (4 °C) and subsequent larval feeding damage by the lepidopteran herbivores Mamestra brassicae (generalist), Pieris brassicae (specialist) or artificial wounding. Furthermore, we compared the performance of larvae feeding upon cold-experienced or untreated plants. Prior experience of cold strongly affected the plant's transcriptional anti-herbivore and wounding response. Feeding by P. brassicae, M. brassicae and artificial wounding induced transcriptional changes of 1975, 1695, and 2239 genes, respectively. Of these, 125, 360, and 681 genes were differentially regulated when cold preceded the tissue damage. Overall, prior experience of cold mostly reduced the transcriptional response of genes to damage. The percentage of damage-responsive genes, which showed attenuated transcriptional regulation when cold preceded the tissue damage, was highest in M. brassicae damaged plants (98%), intermediate in artificially damaged plants (89%), and lowest in P. brassicae damaged plants (69%). Consistently, the generalist M. brassicae performed better on cold-treated than on untreated plants, whereas the performance of the specialist P. brassicae did not differ. CONCLUSIONS The transcriptional defense response of Arabidopsis leaves to feeding by herbivorous insects and artificial wounding is attenuated by a prior exposure of the plant to cold. This attenuation correlates with improved performance of the generalist herbivore M. brassicae, but not the specialist P. brassicae, a herbivore of the same feeding guild.
Collapse
Affiliation(s)
- Jana Oberländer
- Freie Universität Berlin, Institute of Biology - Applied Genetics, Dahlem Centre of Plant Sciences, Albrecht-Thaer-Weg 6, 14195 Berlin, Germany
- Present address: University of Bern, Molecular Plant Physiology, Altenbergrain 21, CH-3013 Bern, Switzerland
| | - Vivien Lortzing
- Freie Universität Berlin, Institute of Biology - Applied Zoology / Animal Ecology, Dahlem Centre of Plant Sciences, Haderslebener Str. 9, 12163 Berlin, Germany
| | - Monika Hilker
- Freie Universität Berlin, Institute of Biology - Applied Zoology / Animal Ecology, Dahlem Centre of Plant Sciences, Haderslebener Str. 9, 12163 Berlin, Germany
| | - Reinhard Kunze
- Freie Universität Berlin, Institute of Biology - Applied Genetics, Dahlem Centre of Plant Sciences, Albrecht-Thaer-Weg 6, 14195 Berlin, Germany
| |
Collapse
|
31
|
Buckley J, Pashalidou FG, Fischer MC, Widmer A, Mescher MC, De Moraes CM. Divergence in Glucosinolate Profiles between High- and Low-Elevation Populations of Arabidopsis halleri Correspond to Variation in Field Herbivory and Herbivore Behavioral Preferences. Int J Mol Sci 2019; 20:ijms20010174. [PMID: 30621284 PMCID: PMC6337533 DOI: 10.3390/ijms20010174] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 12/26/2018] [Accepted: 12/28/2018] [Indexed: 11/16/2022] Open
Abstract
Variation in local herbivore pressure along elevation gradients is predicted to drive variation in plant defense traits. Yet, the extent of intraspecific variation in defense investment along elevation gradients, and its effects on both herbivore preference and performance, remain relatively unexplored. Using populations of Arabidopsis halleri (Brassicaceae) occurring at different elevations in the Alps, we tested for associations between elevation, herbivore damage in the field, and constitutive chemical defense traits (glucosinolates) assayed under common-garden conditions. Additionally, we examined the feeding preferences and performance of a specialist herbivore, the butterfly Pieris brassicae, on plants from different elevations in the Alps. Although we found no effect of elevation on the overall levels of constitutive glucosinolates in leaves, relative amounts of indole glucosinolates increased significantly with elevation and were negatively correlated with herbivore damage in the field. In oviposition preference assays, P. brassicae females laid fewer eggs on plants from high-elevation populations, although larval performance was similar on populations from different elevations. Taken together, these results support the prediction that species distributed along elevation gradients exhibit genetic variation in chemical defenses, which can have consequences for interactions with herbivores in the field.
Collapse
Affiliation(s)
- James Buckley
- Center for Adaptation to a Changing Environment, Institute of Integrative Biology, ETH Zürich, 8092 Zürich, Switzerland.
- Biocommunication Group, Institute of Agricultural Sciences, ETH Zürich, 8092 Zürich, Switzerland.
| | - Foteini G Pashalidou
- Biocommunication Group, Institute of Agricultural Sciences, ETH Zürich, 8092 Zürich, Switzerland.
| | - Martin C Fischer
- Center for Adaptation to a Changing Environment, Institute of Integrative Biology, ETH Zürich, 8092 Zürich, Switzerland.
- Plant Ecological Genetics Group, Institute of Integrative Biology, ETH Zürich, 8092 Zürich, Switzerland.
| | - Alex Widmer
- Plant Ecological Genetics Group, Institute of Integrative Biology, ETH Zürich, 8092 Zürich, Switzerland.
| | - Mark C Mescher
- Evolutionary Biology Group, Institute of Integrative Biology, ETH Zürich, 8092 Zürich, Switzerland.
| | - Consuelo M De Moraes
- Biocommunication Group, Institute of Agricultural Sciences, ETH Zürich, 8092 Zürich, Switzerland.
| |
Collapse
|
32
|
Tsuji J, Logan T, Russo A. A Hierarchy of Cues Directs the Foraging of Pieris rapae (Lepidoptera: Pieridae) Larvae. ENVIRONMENTAL ENTOMOLOGY 2018; 47:1485-1492. [PMID: 30165377 DOI: 10.1093/ee/nvy124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Indexed: 06/08/2023]
Abstract
The foraging patterns of insects reflect a combination of biotic and abiotic constraints. Pieris rapae (L.) (Lepidoptera: Pieridae) larvae exhibit plasticity in their foraging behavior, and their movements in response to flowers, young foliage, light, and gravity were studied. As predicted for palatable cryptic larvae, young instars of P. rapae exhibited predator avoidance behaviors. First- and second-instar larvae fed underneath the leaves where their eggs were oviposited, while late second- and third-instar larvae migrated away from their feeding damage. Using taxis experiments and choice tests, the direction of larval movement was significantly influenced by a hierarchy of three cues. Third-instar larvae exhibited negative gravitaxis, which could be supplanted by positive trophotaxis to young leaves and flowers. The larvae exhibited a significantly greater attraction to the inflorescence than to young foliage. For both the inflorescence and young foliage, visual cues were sufficient to direct larval movement. Understanding the cues that guide larval foraging may lead to more efficient trap crops for pest management.
Collapse
Affiliation(s)
- Jun Tsuji
- Biology Department, Siena Heights University, E. Siena Heights Drive, Adrian, MI
| | - Tiffany Logan
- Biology Department, Siena Heights University, E. Siena Heights Drive, Adrian, MI
| | - Ashley Russo
- Biology Department, Siena Heights University, E. Siena Heights Drive, Adrian, MI
| |
Collapse
|
33
|
Kooke R, Morgado L, Becker F, van Eekelen H, Hazarika R, Zheng Q, de Vos RCH, Johannes F, Keurentjes JJB. Epigenetic mapping of the Arabidopsis metabolome reveals mediators of the epigenotype-phenotype map. Genome Res 2018; 29:96-106. [PMID: 30504416 PMCID: PMC6314165 DOI: 10.1101/gr.232371.117] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 11/27/2018] [Indexed: 11/24/2022]
Abstract
Identifying the sources of natural variation underlying metabolic differences between plants will enable a better understanding of plant metabolism and provide insights into the regulatory networks that govern plant growth and morphology. So far, however, the contribution of epigenetic variation to metabolic diversity has been largely ignored. In the present study, we utilized a panel of Arabidopsis thaliana epigenetic recombinant inbred lines (epiRILs) to assess the impact of epigenetic variation on the metabolic composition. Thirty epigenetic QTL (QTLepi) were detected, which partly overlap with QTLepi linked to growth and morphology. In an effort to identify causal candidate genes in the QTLepi regions and their putative trans-targets, we performed in silico small RNA and qPCR analyses. Differentially expressed genes were further studied by phenotypic and metabolic analyses of knockout mutants. Three genes were detected that recapitulated the detected QTLepi effects, providing evidence for epigenetic regulation in cis and in trans. These results indicate that epigenetic mechanisms impact metabolic diversity, possibly via small RNAs, and thus aid in further disentangling the complex epigenotype-phenotype map.
Collapse
Affiliation(s)
- Rik Kooke
- Laboratory of Genetics, Wageningen University and Research, 6708 PB Wageningen, The Netherlands.,Laboratory of Biometris, Wageningen University and Research, 6708 PB Wageningen, The Netherlands.,Centre for Biosystems Genomics, 6708 PB Wageningen, The Netherlands
| | - Lionel Morgado
- Groningen Bioinformatics Centre, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Frank Becker
- Laboratory of Genetics, Wageningen University and Research, 6708 PB Wageningen, The Netherlands
| | - Henriëtte van Eekelen
- Business Unit Bioscience, Wageningen Plant Research, 6708 PB Wageningen, The Netherlands
| | - Rashmi Hazarika
- Institute for Advanced Study, Technical University of Munich, 85748 Garching, Germany
| | - Qunfeng Zheng
- Business Unit Bioscience, Wageningen Plant Research, 6708 PB Wageningen, The Netherlands.,Tea Research Institute, Chinese Academy of Agricultural Sciences, 310008 Hangzhou, P.R. China
| | - Ric C H de Vos
- Centre for Biosystems Genomics, 6708 PB Wageningen, The Netherlands.,Business Unit Bioscience, Wageningen Plant Research, 6708 PB Wageningen, The Netherlands.,Netherlands Metabolomics Centre, 2333 CC Leiden, The Netherlands
| | - Frank Johannes
- Institute for Advanced Study, Technical University of Munich, 85748 Garching, Germany.,Population Epigenetics and Epigenomics, Department of Plant Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Joost J B Keurentjes
- Laboratory of Genetics, Wageningen University and Research, 6708 PB Wageningen, The Netherlands.,Centre for Biosystems Genomics, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
34
|
Bonnet C, Lassueur S, Ponzio C, Gols R, Dicke M, Reymond P. Combined biotic stresses trigger similar transcriptomic responses but contrasting resistance against a chewing herbivore in Brassica nigra. BMC PLANT BIOLOGY 2017; 17:127. [PMID: 28716054 PMCID: PMC5513356 DOI: 10.1186/s12870-017-1074-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 07/10/2017] [Indexed: 05/06/2023]
Abstract
BACKGROUND In nature, plants are frequently exposed to simultaneous biotic stresses that activate distinct and often antagonistic defense signaling pathways. How plants integrate this information and whether they prioritize one stress over the other is not well understood. RESULTS We investigated the transcriptome signature of the wild annual crucifer, Brassica nigra, in response to eggs and caterpillars of Pieris brassicae butterflies, Brevicoryne brassicae aphids and the bacterial phytopathogen Xanthomonas campestris pv. raphani (Xcr). Pretreatment with egg extract, aphids, or Xcr had a weak impact on the subsequent transcriptome profile of plants challenged with caterpillars, suggesting that the second stress dominates the transcriptional response. Nevertheless, P. brassicae larval performance was strongly affected by egg extract or Xcr pretreatment and depended on the site where the initial stress was applied. Although egg extract and Xcr pretreatments inhibited insect-induced defense gene expression, suggesting salicylic acid (SA)/jasmonic acid (JA) pathway cross talk, this was not strictly correlated with larval performance. CONCLUSION These results emphasize the need to better integrate plant responses at different levels of biological organization and to consider localized effects in order to predict the consequence of multiple stresses on plant resistance.
Collapse
Affiliation(s)
- Christelle Bonnet
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, 1015, Lausanne, Switzerland
| | - Steve Lassueur
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, 1015, Lausanne, Switzerland
| | - Camille Ponzio
- Laboratory of Entomology, Wageningen University, P.O. Box 16, 6700 AA, Wageningen, The Netherlands
| | - Rieta Gols
- Laboratory of Entomology, Wageningen University, P.O. Box 16, 6700 AA, Wageningen, The Netherlands
| | - Marcel Dicke
- Laboratory of Entomology, Wageningen University, P.O. Box 16, 6700 AA, Wageningen, The Netherlands
| | - Philippe Reymond
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, 1015, Lausanne, Switzerland.
| |
Collapse
|
35
|
Kelly CA, Bowers MD. The Perennial Penstemon: Variation in Defensive Chemistry Across Years, Populations, and Tissues. J Chem Ecol 2017; 43:599-607. [DOI: 10.1007/s10886-017-0854-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/17/2017] [Accepted: 05/28/2017] [Indexed: 10/19/2022]
|
36
|
Fei M, Harvey JA, Yin Y, Gols R. Oviposition Preference for Young Plants by the Large Cabbage Butterfly (Pieris brassicae ) Does not Strongly Correlate with Caterpillar Performance. J Chem Ecol 2017; 43:617-629. [PMID: 28620771 PMCID: PMC5501907 DOI: 10.1007/s10886-017-0853-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 05/08/2017] [Accepted: 05/28/2017] [Indexed: 11/27/2022]
Abstract
The effects of temporal variation in the quality of short-lived annual plants on oviposition preference and larval performance of insect herbivores has thus far received little attention. This study examines the effects of plant age on female oviposition preference and offspring performance in the large cabbage white butterfly Pieris brassicae. Adult female butterflies lay variable clusters of eggs on the underside of short-lived annual species in the family Brassicaceae, including the short-lived annuals Brassica nigra and Sinapis arvensis, which are important food plants for P. brassicae in The Netherlands. Here, we compared oviposition preference and larval performance of P. brassicae on three age classes (young, mature, and pre-senescing) of B. nigra and S. arvensis plants. Oviposition preference of P. brassicae declined with plant age in both plant species. Whereas larvae performed similarly on all three age classes in B. nigra, preference and performance were weakly correlated in S. arvensis. Analysis of primary (sugars and amino acids) and secondary (glucosinolates) chemistry in the plant shoots revealed that differences in their quality and quantity were more pronounced with respect to tissue type (leaves vs. flowers) than among different developmental stages of both plant species. Butterflies of P. brassicae may prefer younger and smaller plants for oviposition anticipating that future plant growth and size is optimally synchronized with the final larval instar, which contributes >80% of larval growth before pupation.
Collapse
Affiliation(s)
- Minghui Fei
- Department of Terrestrial Ecology, Netherlands Institute of Ecology, Wageningen, The Netherlands
| | - Jeffrey A Harvey
- Department of Terrestrial Ecology, Netherlands Institute of Ecology, Wageningen, The Netherlands
- Department of Ecological Sciences, Section Animal Ecology, VU University Amsterdam, Amsterdam, The Netherlands
| | - Yi Yin
- Department of Terrestrial Ecology, Netherlands Institute of Ecology, Wageningen, The Netherlands
| | - Rieta Gols
- Laboratory of Entomology, Wageningen University and Research, Wageningen, The Netherlands.
| |
Collapse
|
37
|
The effect of pollinators and herbivores on selection for floral signals: a case study in Brassica rapa. Evol Ecol 2016. [DOI: 10.1007/s10682-016-9878-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
38
|
Papazian S, Khaling E, Bonnet C, Lassueur S, Reymond P, Moritz T, Blande JD, Albrectsen BR. Central Metabolic Responses to Ozone and Herbivory Affect Photosynthesis and Stomatal Closure. PLANT PHYSIOLOGY 2016; 172:2057-2078. [PMID: 27758847 PMCID: PMC5100778 DOI: 10.1104/pp.16.01318] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 10/03/2016] [Indexed: 05/04/2023]
Abstract
Plants have evolved adaptive mechanisms that allow them to tolerate a continuous range of abiotic and biotic stressors. Tropospheric ozone (O3), a global anthropogenic pollutant, directly affects living organisms and ecosystems, including plant-herbivore interactions. In this study, we investigate the stress responses of Brassica nigra (wild black mustard) exposed consecutively to O3 and the specialist herbivore Pieris brassicae Transcriptomics and metabolomics data were evaluated using multivariate, correlation, and network analyses for the O3 and herbivory responses. O3 stress symptoms resembled those of senescence and phosphate starvation, while a sequential shift from O3 to herbivory induced characteristic plant defense responses, including a decrease in central metabolism, induction of the jasmonic acid/ethylene pathways, and emission of volatiles. Omics network and pathway analyses predicted a link between glycerol and central energy metabolism that influences the osmotic stress response and stomatal closure. Further physiological measurements confirmed that while O3 stress inhibited photosynthesis and carbon assimilation, sequential herbivory counteracted the initial responses induced by O3, resulting in a phenotype similar to that observed after herbivory alone. This study clarifies the consequences of multiple stress interactions on a plant metabolic system and also illustrates how omics data can be integrated to generate new hypotheses in ecology and plant physiology.
Collapse
Affiliation(s)
- Stefano Papazian
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 90187 Umeå (S.P., B.R.A.); Department of Forest Genetic and Plant Physiology, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden (T.M.)
- Department of Environmental and Biological Sciences, University of Eastern Finland, FIN-70211 Kuopio, Finland (E.K., J.D.B.); and
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland (C.B., S.L., P.R.)
| | - Eliezer Khaling
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 90187 Umeå (S.P., B.R.A.); Department of Forest Genetic and Plant Physiology, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden (T.M.)
- Department of Environmental and Biological Sciences, University of Eastern Finland, FIN-70211 Kuopio, Finland (E.K., J.D.B.); and
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland (C.B., S.L., P.R.)
| | - Christelle Bonnet
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 90187 Umeå (S.P., B.R.A.); Department of Forest Genetic and Plant Physiology, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden (T.M.)
- Department of Environmental and Biological Sciences, University of Eastern Finland, FIN-70211 Kuopio, Finland (E.K., J.D.B.); and
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland (C.B., S.L., P.R.)
| | - Steve Lassueur
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 90187 Umeå (S.P., B.R.A.); Department of Forest Genetic and Plant Physiology, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden (T.M.)
- Department of Environmental and Biological Sciences, University of Eastern Finland, FIN-70211 Kuopio, Finland (E.K., J.D.B.); and
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland (C.B., S.L., P.R.)
| | - Philippe Reymond
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 90187 Umeå (S.P., B.R.A.); Department of Forest Genetic and Plant Physiology, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden (T.M.)
- Department of Environmental and Biological Sciences, University of Eastern Finland, FIN-70211 Kuopio, Finland (E.K., J.D.B.); and
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland (C.B., S.L., P.R.)
| | - Thomas Moritz
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 90187 Umeå (S.P., B.R.A.); Department of Forest Genetic and Plant Physiology, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden (T.M.)
- Department of Environmental and Biological Sciences, University of Eastern Finland, FIN-70211 Kuopio, Finland (E.K., J.D.B.); and
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland (C.B., S.L., P.R.)
| | - James D Blande
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 90187 Umeå (S.P., B.R.A.); Department of Forest Genetic and Plant Physiology, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden (T.M.);
- Department of Environmental and Biological Sciences, University of Eastern Finland, FIN-70211 Kuopio, Finland (E.K., J.D.B.); and
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland (C.B., S.L., P.R.)
| | - Benedicte R Albrectsen
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 90187 Umeå (S.P., B.R.A.); Department of Forest Genetic and Plant Physiology, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden (T.M.);
- Department of Environmental and Biological Sciences, University of Eastern Finland, FIN-70211 Kuopio, Finland (E.K., J.D.B.); and
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland (C.B., S.L., P.R.)
| |
Collapse
|
39
|
Lucas‐Barbosa D, Dicke M, Kranenburg T, Aartsma Y, Beek TA, Huigens ME, Loon JJA. Endure and call for help: strategies of black mustard plants to deal with a specialized caterpillar. Funct Ecol 2016. [DOI: 10.1111/1365-2435.12756] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Dani Lucas‐Barbosa
- Laboratory of Entomology Wageningen University, PO Box 16 Wageningen AA 6700 The Netherlands
| | - Marcel Dicke
- Laboratory of Entomology Wageningen University, PO Box 16 Wageningen AA 6700 The Netherlands
| | - Twan Kranenburg
- Laboratory of Entomology Wageningen University, PO Box 16 Wageningen AA 6700 The Netherlands
| | - Yavanna Aartsma
- Laboratory of Entomology Wageningen University, PO Box 16 Wageningen AA 6700 The Netherlands
| | - Teris A. Beek
- Laboratory of Organic Chemistry Wageningen University PO Box 8026 Wageningen 6700 EH The Netherlands
| | - Martinus E. Huigens
- Dutch Butterfly Conservation Mennonietenweg 10 Wageningen 6702 AD The Netherlands
| | - Joop J. A. Loon
- Laboratory of Entomology Wageningen University, PO Box 16 Wageningen AA 6700 The Netherlands
| |
Collapse
|
40
|
Heinen R, Gols R, Harvey JA. Black and Garlic Mustard Plants Are Highly Suitable for the Development of Two Native Pierid Butterflies. ENVIRONMENTAL ENTOMOLOGY 2016; 45:671-676. [PMID: 27106821 DOI: 10.1093/ee/nvw024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 03/04/2016] [Indexed: 06/05/2023]
Abstract
In multivoltine insects that oviposit and develop on short-lived plants, different herbivore generations across a growing season often exploit different plant species. Here, we compare the development time, pupal mass, and survival of two closely related oligophagous herbivore species on two species of brassicaceous plants that grow in different habitats and which exhibit little overlap in temporal growth phenology. In central Europe, the green-veined white butterfly, Pieris napi L., is bivoltine, whereas the small cabbage white butterfly, Pieris rapae L., has two to three generations a year. Moreover, P. napi is primarily found in moist, open (e.g., meadow), and forest habitats, whereas P. rapae prefers drier, open habitats. Both butterflies were reared on Garlic mustard (Alliaria petiolata), which is shade-tolerant and grows early in spring in forest undergrowth, and Black mustard (Brassica nigra), which prefers open disturbed habitats and is most common in summer. Both host plant species differ in other traits such as secondary chemistry. We hypothesized that, owing to habitat preference, P. napi would develop equally well on both plants but that P. rapae would perform better on B. nigra. The results provide partial support for this hypothesis, as both herbivores performed equally well on A. petiolata and B. nigra. However, there were differences in these parameters that were species-specific: on both plants P. rapae developed faster and had larger pupae than P. napi. Our results show that specialized herbivores can exploit different species of related plants that grow at different times of the season, enabling them to have multiple generations.
Collapse
Affiliation(s)
- Robin Heinen
- 1Laboratory of Entomology, Wageningen University, P.O. Box 8031, 6700 EH Wageningen, The Netherlands (; )
- 2Department of Terrestrial Ecology, Netherlands Institute of Ecology, Droevendaalsesteeg 10, 6708-PB Wageningen, The Netherlands , and
| | - Rieta Gols
- 1Laboratory of Entomology, Wageningen University, P.O. Box 8031, 6700 EH Wageningen, The Netherlands (; )
| | - Jeffrey A Harvey
- 2Department of Terrestrial Ecology, Netherlands Institute of Ecology, Droevendaalsesteeg 10, 6708-PB Wageningen, The Netherlands , and
| |
Collapse
|
41
|
Humphrey PT, Gloss AD, Alexandre NM, Villalobos MM, Fremgen MR, Groen SC, Meihls LN, Jander G, Whiteman NK. Aversion and attraction to harmful plant secondary compounds jointly shape the foraging ecology of a specialist herbivore. Ecol Evol 2016; 6:3256-68. [PMID: 27096082 PMCID: PMC4829532 DOI: 10.1002/ece3.2082] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 02/17/2016] [Accepted: 02/22/2016] [Indexed: 01/15/2023] Open
Abstract
Most herbivorous insect species are restricted to a narrow taxonomic range of host plant species. Herbivore species that feed on mustard plants and their relatives in the Brassicales have evolved highly efficient detoxification mechanisms that actually prevent toxic mustard oils from forming in the bodies of the animals. However, these mechanisms likely were not present during the initial stages of specialization on mustard plants ~100 million years ago. The herbivorous fly Scaptomyza nigrita (Drosophilidae) is a specialist on a single mustard species, bittercress (Cardamine cordifolia; Brassicaceae) and is in a fly lineage that evolved to feed on mustards only in the past 10–20 million years. In contrast to many mustard specialists, S. nigrita does not prevent formation of toxic breakdown products (mustard oils) arising from glucosinolates (GLS), the primary defensive compounds in mustard plants. Therefore, it is an appealing model for dissecting the early stages of host specialization. Because mustard oils actually form in the bodies of S. nigrita, we hypothesized that in lieu of a specialized detoxification mechanism, S. nigrita may mitigate exposure to high GLS levels within plant tissues using behavioral avoidance. Here, we report that jasmonic acid (JA) treatment increased GLS biosynthesis in bittercress, repelled adult female flies, and reduced larval growth. S. nigrita larval damage also induced foliar GLS, especially in apical leaves, which correspondingly displayed the least S. nigrita damage in controlled feeding trials and field surveys. Paradoxically, flies preferred to feed and oviposit on GLS‐producing Arabidopsis thaliana despite larvae performing worse in these plants versus non‐GLS‐producing mutants. GLS may be feeding cues for S. nigrita despite their deterrent and defensive properties, which underscores the diverse relationship a mustard specialist has with its host when lacking a specialized means of mustard oil detoxification.
Collapse
Affiliation(s)
- Parris T Humphrey
- Ecology and Evolutionary Biology University of Arizona Tucson Arizona 85721; Rocky Mountain Biological Laboratory Gothic Colorado 81224; Present address: Organismic and Evolutionary Biology Harvard University Cambridge Massachusetts 02138
| | - Andrew D Gloss
- Ecology and Evolutionary Biology University of Arizona Tucson Arizona 85721; Rocky Mountain Biological Laboratory Gothic Colorado 81224
| | - Nicolas M Alexandre
- Ecology and Evolutionary Biology University of Arizona Tucson Arizona 85721; Rocky Mountain Biological Laboratory Gothic Colorado 81224
| | - Martha M Villalobos
- Ecology and Evolutionary Biology University of Arizona Tucson Arizona 85721; Rocky Mountain Biological Laboratory Gothic Colorado 81224
| | | | - Simon C Groen
- Ecology and Evolutionary Biology University of Arizona Tucson Arizona 85721; Rocky Mountain Biological Laboratory Gothic Colorado 81224
| | - Lisa N Meihls
- Boyce Thompson Institute for Plant Research Ithaca New York 14853; Present address: USDA-ARS Plant Genetics Research Unit Columbia Missouri 65211
| | - Georg Jander
- Boyce Thompson Institute for Plant Research Ithaca New York 14853
| | - Noah K Whiteman
- Ecology and Evolutionary Biology University of Arizona Tucson Arizona 85721; Rocky Mountain Biological Laboratory Gothic Colorado 81224; Present address: Department of Integrative Biology University of California Berkeley California 94720
| |
Collapse
|
42
|
Higginson AD, Speed MP, Ruxton GD. Florivory as an Opportunity Benefit of Aposematism. Am Nat 2015; 186:728-41. [DOI: 10.1086/683463] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
43
|
Enhanced emissions of floral volatiles by Diplotaxis erucoides (L.) in response to folivory and florivory by Pieris brassicae (L.). BIOCHEM SYST ECOL 2015. [DOI: 10.1016/j.bse.2015.09.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
44
|
Lucas‐Barbosa D, Sun P, Hakman A, Beek TA, Loon JJ, Dicke M. Visual and odour cues: plant responses to pollination and herbivory affect the behaviour of flower visitors. Funct Ecol 2015. [DOI: 10.1111/1365-2435.12509] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Dani Lucas‐Barbosa
- Laboratory of Entomology Wageningen University PO Box 16, 6700 AA Wageningen The Netherlands
| | - Pulu Sun
- Laboratory of Entomology Wageningen University PO Box 16, 6700 AA Wageningen The Netherlands
- Laboratory of Organic Chemistry Wageningen University PO Box 8026, 6700 EH Wageningen The Netherlands
| | - Anouk Hakman
- Laboratory of Entomology Wageningen University PO Box 16, 6700 AA Wageningen The Netherlands
| | - Teris A. Beek
- Laboratory of Organic Chemistry Wageningen University PO Box 8026, 6700 EH Wageningen The Netherlands
| | - Joop J.A. Loon
- Laboratory of Entomology Wageningen University PO Box 16, 6700 AA Wageningen The Netherlands
| | - Marcel Dicke
- Laboratory of Entomology Wageningen University PO Box 16, 6700 AA Wageningen The Netherlands
| |
Collapse
|
45
|
Pashalidou FG, Frago E, Griese E, Poelman EH, van Loon JJA, Dicke M, Fatouros NE. Early herbivore alert matters: plant-mediated effects of egg deposition on higher trophic levels benefit plant fitness. Ecol Lett 2015; 18:927-36. [DOI: 10.1111/ele.12470] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 04/24/2015] [Accepted: 06/01/2015] [Indexed: 01/18/2023]
Affiliation(s)
- Foteini G. Pashalidou
- Laboratory of Entomology; Wageningen University; P.O. Box 16 6700AA Wageningen The Netherlands
- Institute of Agricultural Sciences; Biocommunication & Entomology; ETH Zürich; 8092 Zürich Switzerland
| | - Enric Frago
- Laboratory of Entomology; Wageningen University; P.O. Box 16 6700AA Wageningen The Netherlands
| | - Eddie Griese
- Laboratory of Entomology; Wageningen University; P.O. Box 16 6700AA Wageningen The Netherlands
- Institute of Biology; Dahlem Centre of Plant Sciences; Freie Universität Berlin; 12163 Berlin Germany
| | - Erik H. Poelman
- Laboratory of Entomology; Wageningen University; P.O. Box 16 6700AA Wageningen The Netherlands
| | - Joop J. A. van Loon
- Laboratory of Entomology; Wageningen University; P.O. Box 16 6700AA Wageningen The Netherlands
| | - Marcel Dicke
- Laboratory of Entomology; Wageningen University; P.O. Box 16 6700AA Wageningen The Netherlands
| | - Nina E. Fatouros
- Laboratory of Entomology; Wageningen University; P.O. Box 16 6700AA Wageningen The Netherlands
- Institute of Biology; Dahlem Centre of Plant Sciences; Freie Universität Berlin; 12163 Berlin Germany
| |
Collapse
|
46
|
Desurmont GA, Laplanche D, Schiestl FP, Turlings TCJ. Floral volatiles interfere with plant attraction of parasitoids: ontogeny-dependent infochemical dynamics in Brassica rapa. BMC Ecol 2015; 15:17. [PMID: 26031290 PMCID: PMC4467598 DOI: 10.1186/s12898-015-0047-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 05/13/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The role of plant ontogeny on investment in direct defense against herbivores is well accepted, but the transition from the vegetative to the reproductive stage can also affect indirect resistance traits (i.e. attraction of the natural enemies of plant attackers). Here, we conducted behavioral bioassays in olfactometers to determine whether the developmental stage (vegetative, pre-flowering, and flowering) of Brassica rapa plants affects attraction of Cotesia glomerata, a parasitoid of the herbivore Pieris brassicae, and examined the blends of volatile compounds emitted by plants at each developmental stage. RESULTS Pieris-infested plants were always more attractive to parasitoids than control plants and plants infested by a non-host herbivore, independently of plant developmental stage. On the other hand, the relative attractiveness of Pieris-infested plants was ontogeny dependent: Pieris-infested plants were more attractive at the pre-flowering stage than at the vegetative stage, and more attractive at the vegetative stage than at the flowering stage. Chemical analyses revealed that the induction of leaf volatiles after herbivory is strongly reduced in flowering plants. The addition of synthetic floral volatiles to infested vegetative plants decreased their attractiveness to parasitoids, suggesting a trade-off between signaling to pollinators and parasitoids. CONCLUSION Our results show that putative indirect resistance traits are affected by plant development, and are reduced during B. rapa reproductive stage. The effects of ontogenetic shifts in resource allocation on the behavior of members of the third trophic level may have important implications for the evolution of plant defense strategies against herbivores.
Collapse
Affiliation(s)
- Gaylord A Desurmont
- Institute of Biology, University of Neuchâtel, Rue Emile-argand 11, 2000, Neuchâtel, Switzerland.
| | - Diane Laplanche
- Institute of Biology, University of Neuchâtel, Rue Emile-argand 11, 2000, Neuchâtel, Switzerland.
| | - Florian P Schiestl
- Institute of Systematic Botany, Zollikerstrasse 107, 8008, Zurich, Switzerland.
| | - Ted C J Turlings
- Institute of Biology, University of Neuchâtel, Rue Emile-argand 11, 2000, Neuchâtel, Switzerland.
| |
Collapse
|
47
|
Fatouros NE, Pineda A, Huigens ME, Broekgaarden C, Shimwela MM, Figueroa Candia IA, Verbaarschot P, Bukovinszky T. Synergistic effects of direct and indirect defences on herbivore egg survival in a wild crucifer. Proc Biol Sci 2015; 281:20141254. [PMID: 25009068 DOI: 10.1098/rspb.2014.1254] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Evolutionary theory of plant defences against herbivores predicts a trade-off between direct (anti-herbivore traits) and indirect defences (attraction of carnivores) when carnivore fitness is reduced. Such a trade-off is expected in plant species that kill herbivore eggs by exhibiting a hypersensitive response (HR)-like necrosis, which should then negatively affect carnivores. We used the black mustard (Brassica nigra) to investigate how this potentially lethal direct trait affects preferences and/or performances of specialist cabbage white butterflies (Pieris spp.), and their natural enemies, tiny egg parasitoid wasps (Trichogramma spp.). Both within and between black mustard populations, we observed variation in the expression of Pieris egg-induced HR. Butterfly eggs on plants with HR-like necrosis suffered lower hatching rates and higher parasitism than eggs that did not induce the trait. In addition, Trichogramma wasps were attracted to volatiles of egg-induced plants that also expressed HR, and this attraction depended on the Trichogramma strain used. Consequently, HR did not have a negative effect on egg parasitoid survival. We conclude that even within a system where plants deploy lethal direct defences, such defences may still act with indirect defences in a synergistic manner to reduce herbivore pressure.
Collapse
Affiliation(s)
- Nina E Fatouros
- Laboratory of Entomology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Ana Pineda
- Laboratory of Entomology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Martinus E Huigens
- Laboratory of Entomology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands Dutch Butterfly Conservation, Mennonietenweg 10, 6702 AD Wageningen, The Netherlands
| | - Colette Broekgaarden
- Department of Plant Breeding, Wageningen University and Research Centre, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Methew M Shimwela
- Plant Pathology Department, University of Florida, PO Box 110680, Gainesville, FL, USA
| | | | - Patrick Verbaarschot
- Laboratory of Entomology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Tibor Bukovinszky
- Resource Ecology Group, Wageningen University, Droevendaalsesteeg 3a, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
48
|
Gols R, Wagenaar R, Poelman EH, Kruidhof HM, Loon JJ, Harvey JA. Fitness consequences of indirect plant defence in the annual weed,
S
inapis arvensis. Funct Ecol 2015. [DOI: 10.1111/1365-2435.12415] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Rieta Gols
- Laboratory of Entomology Department of Plant Sciences Wageningen University P.O. Box 166700 AA Wageningen The Netherlands
| | - Roel Wagenaar
- Department of Terrestrial Ecology Netherlands Institute of Ecology Wageningen The Netherlands
| | - Erik H. Poelman
- Laboratory of Entomology Department of Plant Sciences Wageningen University P.O. Box 166700 AA Wageningen The Netherlands
| | - H. Marjolein Kruidhof
- Department of Terrestrial Ecology Netherlands Institute of Ecology Wageningen The Netherlands
- Wageningen UR Greenhouse Horticulture Postbus 202665 ZG Bleiswijk
| | - Joop J.A. Loon
- Laboratory of Entomology Department of Plant Sciences Wageningen University P.O. Box 166700 AA Wageningen The Netherlands
| | - Jeffrey A. Harvey
- Department of Terrestrial Ecology Netherlands Institute of Ecology Wageningen The Netherlands
| |
Collapse
|
49
|
Khaling E, Papazian S, Poelman EH, Holopainen JK, Albrectsen BR, Blande JD. Ozone affects growth and development of Pieris brassicae on the wild host plant Brassica nigra. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2015; 199:119-29. [PMID: 25645061 DOI: 10.1016/j.envpol.2015.01.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Revised: 01/22/2015] [Accepted: 01/25/2015] [Indexed: 05/07/2023]
Abstract
When plants are exposed to ozone they exhibit changes in both primary and secondary metabolism, which may affect their interactions with herbivorous insects. Here we investigated the performance and preferences of the specialist herbivore Pieris brassicae on the wild plant Brassica nigra under elevated ozone conditions. The direct and indirect effects of ozone on the plant-herbivore system were studied. In both cases ozone exposure had a negative effect on P. brassicae development. However, in dual-choice tests larvae preferentially consumed plant material previously fumigated with the highest concentration tested, showing a lack of correlation between larval preference and performance on ozone exposed plants. Metabolomic analysis of leaf material subjected to combinations of ozone and herbivore-feeding, and focussing on known defence metabolites, indicated that P. brassicae behaviour and performance were associated with ozone-induced alterations to glucosinolate and phenolic pools.
Collapse
Affiliation(s)
- Eliezer Khaling
- Department of Environmental Science, University of Eastern Finland, P.O.Box 1627, FIN-70211, Kuopio, Finland.
| | - Stefano Papazian
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 90187, Umeå, Sweden
| | - Erik H Poelman
- Laboratory of Entomology, Wageningen University, P.O. Box 8031, NL-6700, EH, Wageningen, The Netherlands
| | - Jarmo K Holopainen
- Department of Environmental Science, University of Eastern Finland, P.O.Box 1627, FIN-70211, Kuopio, Finland
| | - Benedicte R Albrectsen
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 90187, Umeå, Sweden; Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK 1871, Frederiksberg C, Denmark
| | - James D Blande
- Department of Environmental Science, University of Eastern Finland, P.O.Box 1627, FIN-70211, Kuopio, Finland
| |
Collapse
|
50
|
Kumar R, Bhardwaj U, Kumar P, Mazumdar-Leighton S. Midgut serine proteases and alternative host plant utilization in Pieris brassicae L. Front Physiol 2015; 6:95. [PMID: 25873901 PMCID: PMC4379908 DOI: 10.3389/fphys.2015.00095] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 03/12/2015] [Indexed: 11/13/2022] Open
Abstract
Pieris brassicae L. is a serious pest of cultivated crucifers in several parts of the world. Larvae of P. brassicae also feed prolifically on garden nasturtium (Tropaeolum majus L., of the family Tropaeolaceae). Proteolytic digestion was studied in larvae feeding on multiple hosts. Fourth instars were collected from cauliflower fields before transfer onto detached, aerial tissues of selected host plants in the lab. Variable levels of midgut proteases were detected in larvae fed on different hosts using protein substrates (casein and recombinant RBCL cloned from cauliflower) and diagnostic, synthetic substrates. Qualitative changes in midgut trypsin activities and quantitative changes in midgut chymotrypsin activities were implicated in physiological adaptation of larvae transferred to T. majus. Midgut proteolytic activities were inhibited to different extents by serine protease inhibitors, including putative trypsin inhibitors isolated from herbivore-attacked and herbivore-free leaves of cauliflower (CfTI) and T. majus (TpTI). Transfer of larvae to T. majus significantly influenced feeding parameters but not necessarily when transferred to different tissues of the same host. Results obtained are relevant for devising sustainable pest management strategies, including transgenic approaches using genes encoding plant protease inhibitors.
Collapse
Affiliation(s)
- Rakesh Kumar
- Insect-Plant Interactions Group, Department of Botany, Delhi University Delhi, India
| | - Usha Bhardwaj
- Insect-Plant Interactions Group, Department of Botany, Delhi University Delhi, India
| | - Pawan Kumar
- Insect-Plant Interactions Group, Department of Botany, Delhi University Delhi, India
| | | |
Collapse
|