1
|
Liu L, Tang L, Luo JM, Chen SY, Yi CY, Liu XM, Hu CH. Activation of the PERK-CHOP signaling pathway during endoplasmic reticulum stress contributes to olanzapine-induced dyslipidemia. Acta Pharmacol Sin 2024; 45:502-516. [PMID: 37880338 PMCID: PMC10834998 DOI: 10.1038/s41401-023-01180-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 10/03/2023] [Indexed: 10/27/2023] Open
Abstract
Olanzapine (OLZ) is a widely prescribed antipsychotic drug with a relatively ideal effect in the treatment of schizophrenia (SCZ). However, its severe metabolic side effects often deteriorate clinical therapeutic compliance and mental rehabilitation. The peripheral mechanism of OLZ-induced metabolic disorders remains abstruse for its muti-target activities. Endoplasmic reticulum (ER) stress is implicated in cellular energy metabolism and the progression of psychiatric disorders. In this study, we investigated the role of ER stress in the development of OLZ-induced dyslipidemia. A cohort of 146 SCZ patients receiving OLZ monotherapy was recruited, and blood samples and clinical data were collected at baseline, and in the 4th week, 12th week, and 24th week of the treatment. This case-control study revealed that OLZ treatment significantly elevated serum levels of endoplasmic reticulum (ER) stress markers GRP78, ATF4, and CHOP in SCZ patients with dyslipidemia. In HepG2 cells, treatment with OLZ (25, 50 μM) dose-dependently enhanced hepatic de novo lipogenesis accompanied by SREBPs activation, and simultaneously triggered ER stress. Inhibition of ER stress by tauroursodeoxycholate (TUDCA) and 4-phenyl butyric acid (4-PBA) attenuated OLZ-induced lipid dysregulation in vitro and in vivo. Moreover, we demonstrated that activation of PERK-CHOP signaling during ER stress was a major contributor to OLZ-triggered abnormal lipid metabolism in the liver, suggesting that PERK could be a potential target for ameliorating the development of OLZ-mediated lipid dysfunction. Taken together, ER stress inhibitors could be a potentially effective intervention against OLZ-induced dyslipidemia in SCZ.
Collapse
Affiliation(s)
- Lu Liu
- School of Pharmaceutical Sciences, Medical Research Institute, Southwest University, Chongqing, 400715, China
- NMPA Key Laboratory for Quality Monitoring of Narcotic Drugs and Psychotropic Substances, Chongqing, 400715, China
- School of Mental Health, North Sichuan Medical College, Nanchong, 637100, China
| | - Lei Tang
- School of Mental Health, North Sichuan Medical College, Nanchong, 637100, China
- Mental Health Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637100, China
| | - Jia-Ming Luo
- School of Mental Health, North Sichuan Medical College, Nanchong, 637100, China
- Mental Health Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637100, China
| | - Si-Yu Chen
- Affiliated Nanchong Psychosomatic Hospital of North Sichuan Medical College, Nanchong, 637100, China
| | - Chun-Yan Yi
- Affiliated Nanchong Psychosomatic Hospital of North Sichuan Medical College, Nanchong, 637100, China
| | - Xue-Mei Liu
- School of Pharmaceutical Sciences, Medical Research Institute, Southwest University, Chongqing, 400715, China
- NMPA Key Laboratory for Quality Monitoring of Narcotic Drugs and Psychotropic Substances, Chongqing, 400715, China
| | - Chang-Hua Hu
- School of Pharmaceutical Sciences, Medical Research Institute, Southwest University, Chongqing, 400715, China.
- NMPA Key Laboratory for Quality Monitoring of Narcotic Drugs and Psychotropic Substances, Chongqing, 400715, China.
| |
Collapse
|
2
|
Huang P, Ran J, Zhu W, Dai W, Tang Y, Lian P, Huang X, Li R. PCSK9 dysregulates cholesterol homeostasis and triglyceride metabolism in olanzapine-induced hepatic steatosis via both receptor-dependent and receptor-independent pathways. FASEB J 2024; 38:e23464. [PMID: 38358343 DOI: 10.1096/fj.202301748r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/06/2024] [Accepted: 01/22/2024] [Indexed: 02/16/2024]
Abstract
Schizophrenia, affecting approximately 1% of the global population, is often treated with olanzapine. Despite its efficacy, olanzapine's prolonged use has been associated with an increased risk of cardiovascular diseases and nonalcoholic fatty liver disease (NAFLD); however, the underlying mechanism remains unclear. Proprotein convertase subtilisin kexin type 9 (PCSK9) plays a crucial role in lipid metabolism and is involved in NAFLD pathogenesis via an unknown mechanism. This study aims to investigate the role of PCSK9 in olanzapine-induced NAFLD. C57BL/6J mice and HepG2 and AML12 cell lines were treated with varying concentrations of olanzapine to examine the effects of olanzapine on PCSK9 and lipid metabolism. PCSK9 levels were manipulated using recombinant proteins, plasmids, and small interfering RNAs in vitro, and the effects on hepatic lipid accumulation and gene expression related to lipid metabolism were assessed. Olanzapine treatment significantly increased PCSK9 levels in both animal and cell line models, correlating with elevated lipid accumulation. PCSK9 manipulation demonstrated its central role in mediating hepatic steatosis through both receptor-dependent pathways (impacting NPC1L1) and receptor-independent pathways (affecting lipid synthesis, uptake, and cholesterol biosynthesis). Interestingly, upregulation of SREBP-1c, rather than SREBP-2, was identified as a key driver of PCSK9 increase in olanzapine-induced NAFLD. Our findings establish PCSK9 as a pivotal factor in olanzapine-induced NAFLD, influencing both receptor-related and metabolic pathways. This highlights PCSK9 inhibitors as potential therapeutic agents for managing NAFLD in schizophrenia patients treated with olanzapine.
Collapse
Affiliation(s)
- Piaopiao Huang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Juanli Ran
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wenqiang Zhu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wen Dai
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Medicine, Columbia University Medical Center, New York, New York, USA
| | - Yaxin Tang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Pingan Lian
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiansheng Huang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Rong Li
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
3
|
Pozzi M, Vantaggiato C, Brivio F, Orso G, Bassi MT. Olanzapine, risperidone and ziprasidone differently affect lysosomal function and autophagy, reflecting their different metabolic risk in patients. Transl Psychiatry 2024; 14:13. [PMID: 38191558 PMCID: PMC10774340 DOI: 10.1038/s41398-023-02686-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 11/16/2023] [Accepted: 11/27/2023] [Indexed: 01/10/2024] Open
Abstract
The metabolic effects induced by antipsychotics in vitro depend on their action on the trafficking and biosynthesis of sterols and lipids. Previous research showed that antipsychotics with different adverse effects in patients cause similar alterations in vitro, suggesting the low clinical usefulness of cellular studies. Moreover, the inhibition of peripheral AMPK was suggested as potential aetiopathogenic mechanisms of olanzapine, and different effects on autophagy were reported for several antipsychotics. We thus assessed, in clinically-relevant culture conditions, the aetiopathogenic mechanisms of olanzapine, risperidone and ziprasidone, antipsychotics with respectively high, medium, low metabolic risk in patients, finding relevant differences among them. We highlighted that: olanzapine impairs lysosomal function affecting autophagy and autophagosome clearance, and increasing intracellular lipids and sterols; ziprasidone activates AMPK increasing the autophagic flux and reducing intracellular lipids; risperidone increases lipid accumulation, while it does not affect lysosomal function. These in vitro differences align with their different impact on patients. We also provided evidence that metformin add-on improved autophagy in olanzapine-treated cells and reduced lipid accumulation induced by both risperidone and olanzapine in an AMPK-dependent way; metformin also increased the production of bile acids to eliminate cholesterol accumulations caused by olanzapine. These results have different clinical implications. We demonstrated that antipsychotics with different metabolic impacts on patients actually have different mechanisms of action, thus supporting the possibility of a personalised antipsychotic treatment. Moreover, we found that metformin can fully revert the phenotype caused by risperidone but not the one caused by olanzapine, that still activates SREBP2.
Collapse
Affiliation(s)
- Marco Pozzi
- Scientific Institute IRCCS Eugenio Medea, Laboratory of Molecular Biology, Via D. L. Monza 20, 23842, Bosisio Parini, Lecco, Italy.
| | - Chiara Vantaggiato
- Scientific Institute IRCCS Eugenio Medea, Laboratory of Molecular Biology, Via D. L. Monza 20, 23842, Bosisio Parini, Lecco, Italy
| | - Francesca Brivio
- Scientific Institute IRCCS Eugenio Medea, Laboratory of Molecular Biology, Via D. L. Monza 20, 23842, Bosisio Parini, Lecco, Italy
| | - Genny Orso
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Largo E. Meneghetti 2, Padova, Italy
| | - Maria Teresa Bassi
- Scientific Institute IRCCS Eugenio Medea, Laboratory of Molecular Biology, Via D. L. Monza 20, 23842, Bosisio Parini, Lecco, Italy
| |
Collapse
|
4
|
Błaszczyk M, Kozioł A, Palko-Łabuz A, Środa-Pomianek K, Wesołowska O. Modulators of cellular cholesterol homeostasis as antiproliferative and model membranes perturbing agents. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184163. [PMID: 37172710 DOI: 10.1016/j.bbamem.2023.184163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 04/14/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023]
Abstract
Cholesterol is an important component of mammalian cell membranes affecting their fluidity and permeability. Together with sphingomyelin, cholesterol forms microdomains, called lipid rafts. They play important role in signal transduction forming platforms for interaction of signal proteins. Altered levels of cholesterol are known to be strongly associated with the development of various pathologies (e.g., cancer, atherosclerosis and cardiovascular diseases). In the present work, the group of compounds that share the property of affecting cellular homeostasis of cholesterol was studied. It contained antipsychotic and antidepressant drugs, as well as the inhibitors of cholesterol biosynthesis, simvastatin, betulin, and its derivatives. All compounds were demonstrated to be cytotoxic to colon cancer cells but not to non-cancerous cells. Moreover, the most active compounds decreased the level of free cellular cholesterol. The interaction of drugs with raft-mimicking model membranes was visualized. All compounds reduced the size of lipid domains, however, only some affected their number and shape. Membrane interactions of betulin and its novel derivatives were characterized in detail. Molecular modeling indicated that high dipole moment and significant lipophilicity were characteristic for the most potent antiproliferative agents. The importance of membrane interactions of cholesterol homeostasis-affecting compounds, especially betulin derivatives, for their anticancer potency was suggested.
Collapse
Affiliation(s)
- Maria Błaszczyk
- Department of Biophysics and Neuroscience, Wroclaw Medical University, ul. Chalubinskiego 3a, 50-368 Wroclaw, Poland.
| | - Agata Kozioł
- Department of Biochemistry and Immunochemistry, Wroclaw Medical University, Sklodowskiej-Curie 48/50, 50-369 Wroclaw, Poland.
| | - Anna Palko-Łabuz
- Department of Biophysics and Neuroscience, Wroclaw Medical University, ul. Chalubinskiego 3a, 50-368 Wroclaw, Poland.
| | - Kamila Środa-Pomianek
- Department of Biophysics and Neuroscience, Wroclaw Medical University, ul. Chalubinskiego 3a, 50-368 Wroclaw, Poland.
| | - Olga Wesołowska
- Department of Biophysics and Neuroscience, Wroclaw Medical University, ul. Chalubinskiego 3a, 50-368 Wroclaw, Poland.
| |
Collapse
|
5
|
Gangopadhyay A, Ibrahim R, Theberge K, May M, Houseknecht KL. Non-alcoholic fatty liver disease (NAFLD) and mental illness: Mechanisms linking mood, metabolism and medicines. Front Neurosci 2022; 16:1042442. [PMID: 36458039 PMCID: PMC9707801 DOI: 10.3389/fnins.2022.1042442] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/21/2022] [Indexed: 09/26/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease in the world and one of the leading indications for liver transplantation. It is one of the many manifestations of insulin resistance and metabolic syndrome as well as an independent risk factor for cardiovascular disease. There is growing evidence linking the incidence of NAFLD with psychiatric illnesses such as schizophrenia, bipolar disorder and depression mechanistically via genetic, metabolic, inflammatory and environmental factors including smoking and psychiatric medications. Indeed, patients prescribed antipsychotic medications, regardless of diagnosis, have higher incidence of NAFLD than population norms. The mechanistic pharmacology of antipsychotic-associated NAFLD is beginning to emerge. In this review, we aim to discuss the pathophysiology of NAFLD including its risk factors, insulin resistance and systemic inflammation as well as its intersection with psychiatric illnesses.
Collapse
Affiliation(s)
| | | | | | | | - Karen L. Houseknecht
- Department of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, ME, United States
| |
Collapse
|
6
|
Swathy B, Banerjee M. Understanding Pharmaco-Epigenomic Response of Antipsychotic Drugs Using Genome-Wide MicroRNA Expression Profile in Liver Cell Line. Front Mol Neurosci 2022; 15:786632. [PMID: 35392270 PMCID: PMC8980709 DOI: 10.3389/fnmol.2022.786632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 02/18/2022] [Indexed: 12/01/2022] Open
Abstract
Interindividual variability in drug response is a major concern among patients undergoing antipsychotic drug treatment. Apart from genetic and physiological factors, this variability in drug response could also be attributed to epigenetic mechanisms. The microRNAs (miRNAs) are key epigenetic markers that play an important role in pathogenesis and drug response. Several studies have shown that miRNAs are implicated in regulating the expression of various genes involved in drug metabolism and transport. In a conventional clinical setup, it is extremely difficult to distinguish the role of miRNA in pathogenesis and drug response as it is difficult to obtain drug naïve patients. To resolve this issue, we aimed to identify the role of antipsychotic drug treatment in inducing miRNA expression under an in vitro condition using a hepatic cell line. A liver cell line was treated with a maximum tolerable drug dosage model for haloperidol, clozapine in monotherapy, and their combination in polytherapy. Genome-wide miRNA profiling was performed using 60,000 miRNA probes in the microarray format in different treatment groups. Several miRNAs were observed to be differentially expressed impacting the pharmacokinetic, pharmacodynamics, and epigenomics properties of antipsychotic drug treatment. Interestingly, some of these miRNA expression patterns were similar to reported miRNA observations on schizophrenia pathogenesis. This study unravels the potential role of miRNAs in the mechanism of action of the antipsychotic drug and could also reflect in drug-induced side effects. This study also signifies the importance of pharmacoepigenomics approach while evaluating the role of miRNAs in pathogenesis.
Collapse
|
7
|
Fernández-Suárez ME, Daimiel L, Villa-Turégano G, Pavón MV, Busto R, Escolà-Gil JC, Platt FM, Lasunción MA, Martínez-Botas J, Gómez-Coronado D. Selective estrogen receptor modulators (SERMs) affect cholesterol homeostasis through the master regulators SREBP and LXR. Biomed Pharmacother 2021; 141:111871. [PMID: 34225017 DOI: 10.1016/j.biopha.2021.111871] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/10/2021] [Accepted: 06/28/2021] [Indexed: 01/08/2023] Open
Abstract
Selective estrogen receptor modulators (SERMs) are nonsteroidal drugs that display an estrogen-agonist or estrogen-antagonist effect depending on the tissue targeted. SERMs have attracted great clinical interest for the treatment of several pathologies, most notably breast cancer and osteoporosis. There is strong evidence that SERMs secondarily affect cholesterol metabolism, although the mechanism has not been fully elucidated. In this study, we analysed the effect of the SERMs tamoxifen, raloxifene, and toremifene on the expression of lipid metabolism genes by microarrays and quantitative PCR in different cell types, and ascertained the main mechanisms involved. The three SERMs increased the expression of sterol regulatory element-binding protein (SREBP) target genes, especially those targeted by SREBP-2. In consonance, SERMs increased SREBP-2 processing. These effects were associated to the interference with intracellular LDL-derived cholesterol trafficking. When the cells were exposed to LDL, but not to cholesterol/methyl-cyclodextrin complexes, the SERM-induced increases in gene expression were synergistic with those induced by lovastatin. Furthermore, the SERMs reduced the stimulation of the transcriptional activity of the liver X receptor (LXR) by exogenous cholesterol. However, their impact on the expression of the LXR canonical target ABCA1 in the presence of LDL was cell-type dependent. These actions of SERMs were independent of estrogen receptors. We conclude that, by inhibiting the intracellular trafficking of LDL-derived cholesterol, SERMs promote the activation of SREBP-2 and prevent the activation of LXR, two master regulators of cellular cholesterol metabolism. This study highlights the impact of SERMs on lipid homeostasis regulation beyond their actions as estrogen receptor modulators.
Collapse
Affiliation(s)
- María E Fernández-Suárez
- Servicio de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal, IRYCIS, Ctra. de Colmenar, km 9, 28034 Madrid, Spain; CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Spain.
| | - Lidia Daimiel
- Servicio de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal, IRYCIS, Ctra. de Colmenar, km 9, 28034 Madrid, Spain; CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Spain
| | - Gemma Villa-Turégano
- Servicio de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal, IRYCIS, Ctra. de Colmenar, km 9, 28034 Madrid, Spain
| | - María Vázquez Pavón
- Servicio de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal, IRYCIS, Ctra. de Colmenar, km 9, 28034 Madrid, Spain
| | - Rebeca Busto
- Servicio de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal, IRYCIS, Ctra. de Colmenar, km 9, 28034 Madrid, Spain; CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Spain
| | - Joan C Escolà-Gil
- Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau, Institut d'Investigacions Biomèdiques (IIB) Sant Pau, Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Spain; Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Spain
| | - Frances M Platt
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom
| | - Miguel A Lasunción
- Servicio de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal, IRYCIS, Ctra. de Colmenar, km 9, 28034 Madrid, Spain; CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Spain
| | - Javier Martínez-Botas
- Servicio de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal, IRYCIS, Ctra. de Colmenar, km 9, 28034 Madrid, Spain; CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Spain
| | - Diego Gómez-Coronado
- Servicio de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal, IRYCIS, Ctra. de Colmenar, km 9, 28034 Madrid, Spain; CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Spain.
| |
Collapse
|
8
|
Cataldi M, Citro V, Resnati C, Manco F, Tarantino G. New Avenues for Treatment and Prevention of Drug-Induced Steatosis and Steatohepatitis: Much More Than Antioxidants. Adv Ther 2021; 38:2094-2113. [PMID: 33761100 PMCID: PMC8107075 DOI: 10.1007/s12325-021-01669-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 02/11/2021] [Indexed: 12/12/2022]
Abstract
Drug-induced lipid accumulation in the liver may induce two clinically relevant conditions, drug-induced steatosis (DIS) and drug-induced steatohepatitis (DISH). The list of drugs that may cause DIS or DISH is long and heterogeneous and includes therapeutically relevant molecules that cannot be easily replaced by less hepatotoxic medicines, therefore making specific strategies necessary for DIS/DISH prevention or treatment. For years, the only available tools to achieve these goals have been antioxidant drugs and free radical scavengers, which counteract drug-induced mitochondrial dysfunction but, unfortunately, have only limited efficacy. In the present review we illustrate how in vitro preclinical research unraveled new key players in the pathogenesis of specific forms of DISH, and how, in a few cases, proof of concept of the beneficial effects of their pharmacological modulation has been obtained in vivo in animal models of this condition. The key issue emerging from these studies is that, in selected cases, liver toxicity depends on mechanisms unrelated to those responsible for the desired, primary pharmacological effects of the toxic drug and, therefore, specific strategies can be designed to overcome steatogenicity without making the drug ineffective. In particular, the hepatotoxic drug could be given in combination with a second molecule intended to selectively antagonize its liver toxicity whilst, ideally, potentiating its desired pharmacological activity. Although most of the evidence that we discuss is from in vitro or animal models and will need to be further explored and validated in humans, it highlights new avenues to be pursued in order to improve the safety of steatogenic drugs.
Collapse
|
9
|
Todorović Vukotić N, Đorđević J, Pejić S, Đorđević N, Pajović SB. Antidepressants- and antipsychotics-induced hepatotoxicity. Arch Toxicol 2021; 95:767-789. [PMID: 33398419 PMCID: PMC7781826 DOI: 10.1007/s00204-020-02963-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/26/2020] [Indexed: 02/06/2023]
Abstract
Drug-induced liver injury (DILI) is a serious health burden. It has diverse clinical presentations that can escalate to acute liver failure. The worldwide increase in the use of psychotropic drugs, their long-term use on a daily basis, common comorbidities of psychiatric and metabolic disorders, and polypharmacy in psychiatric patients increase the incidence of psychotropics-induced DILI. During the last 2 decades, hepatotoxicity of various antidepressants (ADs) and antipsychotics (APs) received much attention. Comprehensive review and discussion of accumulated literature data concerning this issue are performed in this study, as hepatotoxic effects of most commonly prescribed ADs and APs are classified, described, and discussed. The review focuses on ADs and APs characterized by the risk of causing liver damage and highlights the ones found to cause life-threatening or severe DILI cases. In parallel, an overview of hepatic oxidative stress, inflammation, and steatosis underlying DILI is provided, followed by extensive review and discussion of the pathophysiology of AD- and AP-induced DILI revealed in case reports, and animal and in vitro studies. The consequences of some ADs and APs ability to affect drug-metabolizing enzymes and therefore provoke drug–drug interactions are also addressed. Continuous collecting of data on drugs, mechanisms, and risk factors for DILI, as well as critical data reviewing, is crucial for easier DILI diagnosis and more efficient risk assessment of AD- and AP-induced DILI. Higher awareness of ADs and APs hepatotoxicity is the prerequisite for their safe use and optimal dosing.
Collapse
Affiliation(s)
- Nevena Todorović Vukotić
- Department of Molecular Biology and Endocrinology, "Vinča" Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 12-14 Mike Petrovića Alasa, P.O. Box 522-090, 11000, Belgrade, Serbia.
| | - Jelena Đorđević
- Institute of Physiology and Biochemistry "Ivan Đaja", Faculty of Biology, University of Belgrade, 16 Studentski Trg, 11000, Belgrade, Serbia
| | - Snežana Pejić
- Department of Molecular Biology and Endocrinology, "Vinča" Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 12-14 Mike Petrovića Alasa, P.O. Box 522-090, 11000, Belgrade, Serbia
| | - Neda Đorđević
- Department of Molecular Biology and Endocrinology, "Vinča" Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 12-14 Mike Petrovića Alasa, P.O. Box 522-090, 11000, Belgrade, Serbia
| | - Snežana B Pajović
- Department of Molecular Biology and Endocrinology, "Vinča" Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 12-14 Mike Petrovića Alasa, P.O. Box 522-090, 11000, Belgrade, Serbia.,Faculty of Medicine, University of Niš, 81 Blvd. Dr. Zorana Đinđića, 18000, Niš, Serbia
| |
Collapse
|
10
|
Risperidone Exacerbates Glucose Intolerance, Nonalcoholic Fatty Liver Disease, and Renal Impairment in Obese Mice. Int J Mol Sci 2021; 22:ijms22010409. [PMID: 33401717 PMCID: PMC7795724 DOI: 10.3390/ijms22010409] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 12/25/2020] [Accepted: 12/28/2020] [Indexed: 12/26/2022] Open
Abstract
Risperidone, a second-generation antipsychotic drug used for schizophrenia treatment with less-severe side effects, has recently been applied in major depressive disorder treatment. The mechanism underlying risperidone-associated metabolic disturbances and liver and renal adverse effects warrants further exploration. This research explores how risperidone influences weight, glucose homeostasis, fatty liver scores, liver damage, and renal impairment in high-fat diet (HFD)-administered C57BL6/J mice. Compared with HFD control mice, risperidone-treated obese mice exhibited increases in body, liver, kidney, and retroperitoneal and epididymal fat pad weights, daily food efficiency, serum triglyceride, blood urea nitrogen, creatinine, hepatic triglyceride, and aspartate aminotransferase, and alanine aminotransferase levels, and hepatic fatty acid regulation marker expression. They also exhibited increased insulin resistance and glucose intolerance but decreased serum insulin levels, Akt phosphorylation, and glucose transporter 4 expression. Moreover, their fatty liver score and liver damage demonstrated considerable increases, corresponding to increases in sterol regulatory element-binding protein 1 mRNA, fatty acid-binding protein 4 mRNA, and patatin-like phospholipid domain containing protein 3 expression. Finally, these mice demonstrated renal impairment, associated with decreases in glutathione peroxidase, superoxide dismutase, and catalase levels. In conclusion, long-term administration of risperidone may exacerbate diabetes syndrome, nonalcoholic fatty liver disease, and kidney injury.
Collapse
|
11
|
Mirtazapine Reduces Adipocyte Hypertrophy and Increases Glucose Transporter Expression in Obese Mice. Animals (Basel) 2020; 10:ani10081423. [PMID: 32824002 PMCID: PMC7459487 DOI: 10.3390/ani10081423] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/08/2020] [Accepted: 08/12/2020] [Indexed: 01/19/2023] Open
Abstract
Simple Summary Mirtazapine, a tetracyclic antidepressant, acts through noradrenergic and specific serotonergic systems. Consequently, it was recently applied in major depressive disorder treatment. Moreover, because mirtazapine may have effective glucose control function, its mechanism of action warrants further investigation. In our study, we examined how mirtazapine affects metabolic parameters, insulin profiles, glucose metabolism, and obesity changes in high-fat diet-fed C57BL6/J mice. Our results indicated that compared with untreated mice, mirtazapine-treated obese mice had lower insulin levels, daily food efficiency, body weight, serum triglyceride levels, aspartate aminotransferase levels, liver and epididymal fat pad weight, and fatty acid regulation marker expression. Moreover, the blood glucose levels and area under the curve for glucose levels observed over a 120 min assessment period were lower in the treated mice, but the insulin sensitivity and glucose transporter 4 expression levels were higher in these mice. They also demonstrated a considerable decrease in fatty liver scores and mean fat cell size in the epididymal white adipose tissue, paralleling adenosine monophosphate (AMP)-activated protein kinase expression activation. In conclusion, mirtazapine administration may alleviate type 2 diabetes mellitus with hyperglycemia. Abstract Metabolic syndrome is known to engender type 2 diabetes as well as some cardiac, cerebrovascular, and kidney diseases. Mirtazapine—an atypical second-generation antipsychotic drug with less severe side effects than atypical first-generation antipsychotics—may have positive effects on blood glucose levels and obesity. In our executed study, we treated male high-fat diet (HFD)-fed C57BL/6J mice with mirtazapine (10 mg/kg/day mirtazapine) for 4 weeks to understand its antiobesity effects. We noted these mice to exhibit lower insulin levels, daily food efficiency, body weight, serum triglyceride levels, aspartate aminotransferase levels, liver and epididymal fat pad weight, and fatty acid regulation marker expression when compared with their counterparts (i.e., HFD-fed control mice). Furthermore, we determined a considerable drop in fatty liver scores and mean fat cell size in the epididymal white adipose tissue in the treated mice, corresponding to AMP-activated protein kinase expression activation. Notably, the treated mice showed lower glucose tolerance and blood glucose levels, but higher glucose transporter 4 expression. Overall, the aforementioned findings signify that mirtazapine could reduce lipid accumulation and thus prevent HFD-induced increase in body weight. In conclusion, mirtazapine may be useful in body weight control and antihyperglycemia therapy.
Collapse
|
12
|
Ferreira V, Grajales D, Valverde ÁM. Adipose tissue as a target for second-generation (atypical) antipsychotics: A molecular view. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1865:158534. [PMID: 31672575 DOI: 10.1016/j.bbalip.2019.158534] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/18/2019] [Accepted: 10/23/2019] [Indexed: 12/14/2022]
Abstract
Schizophrenia is a neuropsychiatric disorder that chronically affects 21 million people worldwide. Second-generation antipsychotics (SGAs) are the cornerstone in the management of schizophrenia. However, despite their efficacy in counteracting both positive and negative symptomatology of schizophrenia, recent clinical observations have described an increase in the prevalence of metabolic disturbances in patients treated with SGAs, including abnormal weight gain, hyperglycemia and dyslipidemia. While the molecular mechanisms responsible for these side-effects remain poorly understood, increasing evidence points to a link between SGAs and adipose tissue depots of white, brown and beige adipocytes. In this review, we survey the present knowledge in this area, with a particular focus on the molecular aspects of adipocyte biology including differentiation, lipid metabolism, thermogenic function and the browning/beiging process.
Collapse
Affiliation(s)
- Vitor Ferreira
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, Madrid, Spain
| | - Diana Grajales
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, Madrid, Spain
| | - Ángela M Valverde
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, Madrid, Spain.
| |
Collapse
|
13
|
Repurposing Penfluridol in Combination with Temozolomide for the Treatment of Glioblastoma. Cancers (Basel) 2019; 11:cancers11091310. [PMID: 31492002 PMCID: PMC6770574 DOI: 10.3390/cancers11091310] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/23/2019] [Accepted: 08/30/2019] [Indexed: 12/16/2022] Open
Abstract
Despite the presence of aggressive treatment strategies, glioblastoma remains intractable, warranting a novel therapeutic modality. An oral antipsychotic agent, penflurido (PFD), used for schizophrenia treatment, has shown an antitumor effect on various types of cancer cells. As glioma sphere-forming cells (GSCs) are known to mediate drug resistance in glioblastoma, and considering that antipsychotics can easily penetrate the blood-brain barrier, we investigated the antitumor effect of PFD on patient-derived GSCs. Using five GSCs, we found that PFD exerts an antiproliferative effect in a time- and dose-dependent manner. At IC50, spheroid size and second-generation spheroid formation were significantly suppressed. Stemness factors, SOX2 and OCT4, were decreased. PFD treatment reduced cancer cell migration and invasion by reducing the Integrin α6 and uPAR levels and suppression of the expression of epithelial-to-mesenchymal transition (EMT) factors, vimentin and Zeb1. GLI1 was found to be involved in PFD-induced EMT inhibition. Furthermore, combinatorial treatment of PFD with temozolomide (TMZ) significantly suppressed tumor growth and prolonged survival in vivo. Immunostaining revealed decreased expression of GLI1, SOX2, and vimentin in the PFD treatment group but not in the TMZ-only treatment group. Therefore, PFD can be effectively repurposed for the treatment of glioblastoma by combining it with TMZ.
Collapse
|
14
|
Mouzaki M, Yodoshi T, Arce-Clachar AC, Bramlage K, Fei L, Ley SL, Xanthakos SA. Psychotropic Medications Are Associated With Increased Liver Disease Severity in Pediatric Nonalcoholic Fatty Liver Disease. J Pediatr Gastroenterol Nutr 2019; 69:339-343. [PMID: 31124886 PMCID: PMC8525622 DOI: 10.1097/mpg.0000000000002401] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVES The aim of the study was to determine whether pediatric patients with nonalcoholic fatty liver disease (NAFLD) exposed to psychotropic medications have more severe liver disease compared to their counterparts who are not on these medications. We hypothesize that use of psychotropic agents is associated with liver disease severity. METHODS Children and adolescents with biopsy-confirmed NAFLD were included in this study. Histology data, detailed clinical information, and results of serum biochemistries performed within 3 months of the liver biopsy were collected retrospectively. Univariate and multivariate modeling was used to determine differences between the groups and to control for confounders. RESULTS A total of 228 patients were included, 17 (8%) of whom where on psychotropic medications at the time of the liver biopsy. Patients on psychotropic medications were more likely to also be on metformin (53% vs 18%, P < 0.01) and antihypertensive medications (29% vs 8%, P < 0.01) compared to children with NAFLD who were not on psychotropic agents. There were no differences in regards to biochemical evidence of liver injury, insulin resistance, and dyslipidemia between the groups. On histology, however, the use of psychotropic medications was associated with increased steatosis severity (score 2.4 vs 1.9, P = 0.04) and increased likelihood of having an NAFLD Activity Score ≥5 (seen in 59% vs 35% or patients; P = 0.05, respectively). CONCLUSIONS In this large cohort of children with biopsy-confirmed NAFLD, the use of psychotropic medications was associated with increased liver disease severity. Exposure to psychotropic agents should be considered when risk stratifying children with NAFLD.
Collapse
Affiliation(s)
- Marialena Mouzaki
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati School of Medicine, Cincinnati, OH
| | - Toshifumi Yodoshi
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati School of Medicine, Cincinnati, OH
| | - Ana C. Arce-Clachar
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati School of Medicine, Cincinnati, OH
| | - Kristin Bramlage
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati School of Medicine, Cincinnati, OH
| | - Lin Fei
- Division of Biostatistics and Epidemiology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati School of Medicine, Cincinnati, OH
| | - Sanita L. Ley
- Division of Behavioral Medicine and Clinical Psychology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati School of Medicine, Cincinnati, OH
| | - Stavra A. Xanthakos
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati School of Medicine, Cincinnati, OH
| |
Collapse
|
15
|
Simvastatin improves olanzapine-induced dyslipidemia in rats through inhibiting hepatic mTOR signaling pathway. Acta Pharmacol Sin 2019; 40:1049-1057. [PMID: 30728467 DOI: 10.1038/s41401-019-0212-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 01/07/2019] [Indexed: 12/14/2022] Open
Abstract
Second-generation antipsychotic drug (SGA)-induced metabolic abnormalities, such as dyslipidemia, are a major clinical problem for antipsychotic therapy. Accumulated evidences have shown the efficacy of statins in reducing SGA-induced dyslipidemia, but the underlying mechanisms are unclear. In this study, we explored whether mTOR signaling was involved in olanzapine (OLZ)-induced dyslipidemia as well as the lipid-lowering effects of cotreatment of simvastatin (Sim) in rats. Model rats received OLZ (1.0 mg/kg, t.i.d.) for 7 weeks; from the third week a group of model rats were cotreatment of Sim (3.0 mg/kg, t.i.d.) for 5 weeks. We found that OLZ treatment significantly increased the plasma triglyceride (TG) and total cholesterol (TC) levels, and promoted lipid accumulation in the liver, whereas cotreatment of Sim reversed OLZ-induced dyslipidemia. Hepatic mTORC1 and p-mTORC1 expression was accelerated in the OLZ treatment group, with upregulation of mRNA expression of sterol regulatory element-binding protein 1c (SREBP1c) and its target genes, whereas these alterations were ameliorated by Sim cotreatment. In HepG2 cells, rapamycin (a mTOR inhibitor) significantly reduced the OLZ-stimulated hepatocellular lipid contents and weakened the ability of Sim to lower lipids via a mechanism associated with the upregulation of SREBP1c-mediated de novo lipogenesis. Our data suggest that OLZ induces lipid accumulation in both plasma and liver, and Sim ameliorates OLZ-induced lipid metabolic dysfunction through its effects on mTOR signaling via reducing SREBP1c activation and the downregulation of gene expression involved in lipogenesis. These data provide a new insight into the prevention of metabolic side effects induced by antipsychotic drugs.
Collapse
|
16
|
Zhao K, So HC. Drug Repositioning for Schizophrenia and Depression/Anxiety Disorders: A Machine Learning Approach Leveraging Expression Data. IEEE J Biomed Health Inform 2019; 23:1304-1315. [DOI: 10.1109/jbhi.2018.2856535] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
17
|
Vantaggiato C, Panzeri E, Citterio A, Orso G, Pozzi M. Antipsychotics Promote Metabolic Disorders Disrupting Cellular Lipid Metabolism and Trafficking. Trends Endocrinol Metab 2019; 30:189-210. [PMID: 30718115 DOI: 10.1016/j.tem.2019.01.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/04/2018] [Accepted: 01/03/2019] [Indexed: 12/21/2022]
Abstract
Antipsychotics frequently cause obesity and related metabolic disorders that current psychopharmacological/endocrinological theories do not explain consistently. An integrative/alternative theory implies metabolic alterations happening at the cellular level. Many observations in vitro and in vivo, and pivotal observations in humans, point towards chemical properties of antipsychotics, independent of receptor binding characteristics. Being amphiphilic weak bases, antipsychotics can disrupt lysosomal function, affecting cholesterol trafficking; moreover, by chemical mimicry, antipsychotics can inhibit cholesterol biosynthesis. These two molecular adverse effects may trigger a cascade of transcriptional and biochemical events, ultimately reducing available cholesterol while increasing cholesterol precursors and fatty acids. The macroscopic manifestation of these molecular alterations includes decreased high-density lipoprotein and increased very low-density lipoprotein and triglycerides that may translate into obesity and related metabolic disorders.
Collapse
Affiliation(s)
- Chiara Vantaggiato
- Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini (LC), 23842, Italy
| | - Elena Panzeri
- Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini (LC), 23842, Italy
| | - Andrea Citterio
- Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini (LC), 23842, Italy
| | - Genny Orso
- Department of Pharmacological Sciences, University of Padova (PD), 35131, Italy
| | - Marco Pozzi
- Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini (LC), 23842, Italy.
| |
Collapse
|
18
|
Xu H, Zhuang X. Atypical antipsychotics-induced metabolic syndrome and nonalcoholic fatty liver disease: a critical review. Neuropsychiatr Dis Treat 2019; 15:2087-2099. [PMID: 31413575 PMCID: PMC6659786 DOI: 10.2147/ndt.s208061] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 07/02/2019] [Indexed: 02/05/2023] Open
Abstract
The atypical antipsychotics (AAPs) have been used as first-line drugs in psychiatric practice for a wide range of psychotic disorders, including schizophrenia and bipolar mania. While effectively exerting therapeutic effects on positive and negative symptoms, as well as cognitive impairments in schizophrenia patients, these drugs are less likely to induce extrapyramidal symptoms compared to typical antipsychotics. However, the increasing application of them has raised questions on their tolerability and adverse effects over the endocrine, metabolic, and cardiovascular axes. Specifically, AAPs are associated to different extents, with weight gain, metabolic syndrome (MetS), and nonalcoholic fatty liver disease (NAFLD). This article summarized clinical evidence showing the metabolic side effects of AAPs in patients with schizophrenia, and experimental evidence of AAPs-induced metabolic side effects observed in animals and cell culture studies. In addition, it discussed potential mechanisms involved in the APPs-induced MetS and NAFLD.
Collapse
Affiliation(s)
- Haiyun Xu
- The Mental Health Center, Shantou University Medical College, Shantou, People’s Republic of China
- Correspondence: Haiyun XuThe Mental Health Center, Shantou University Medical College, Shantou 515041, People’s Republic of ChinaEmail
| | - Xiaoyin Zhuang
- The Mental Health Center, Shantou University Medical College, Shantou, People’s Republic of China
| |
Collapse
|
19
|
Swathy B, Saradalekshmi KR, Nair IV, Nair C, Banerjee M. Understanding the influence of antipsychotic drugs on global methylation events and its relevance in treatment response. Epigenomics 2018; 10:233-247. [DOI: 10.2217/epi-2017-0086] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Aim: The present study intends to evaluate whether antipsychotic drugs can modulate the host epigenome and if so whether drug-induced epigenetic modulation can explain the heterogeneity in drug response. Methods: Present study was conducted in in vitro cells and significance of these in vitro observations was further evaluated in a clinical setting, between drug responsive and nonresponsive schizophrenia patients. A number of DNA modifications were assessed at global level using 5-methylcytosine, 5-hydroxymethylcytosine and 5-formylcytosine followed by evaluating the expression of epigenetic modifier genes and their crosstalk with miRNAs. Results: In vitro data demonstrated that antipsychotic drugs induce epigenetic response by downregulating miRNA that target DNA methyltransferases, resulting in global hypermethylation. Similar trend was observed in clinical setting too and alterations were markedly associated with drug response rather than disease pathogenesis. Conclusion: Study demonstrates that antipsychotic drugs can influence host methylome and thereby indicating its role in mediating a strong pharmacoepigenomic response.
Collapse
Affiliation(s)
- Babu Swathy
- Human Molecular Genetics Laboratory, Rajiv Gandhi Centre for Biotechnology, Trivandrum, Kerala, India
| | | | - Indu V Nair
- Mental Health Centre, Trivandrum, Kerala, India
| | | | - Moinak Banerjee
- Human Molecular Genetics Laboratory, Rajiv Gandhi Centre for Biotechnology, Trivandrum, Kerala, India
| |
Collapse
|
20
|
Huang J, Zhao D, Liu Z, Liu F. Repurposing psychiatric drugs as anti-cancer agents. Cancer Lett 2018; 419:257-265. [PMID: 29414306 DOI: 10.1016/j.canlet.2018.01.058] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/17/2018] [Accepted: 01/19/2018] [Indexed: 01/11/2023]
Abstract
Cancer is a major public health problem and one of the leading contributors to the global disease burden. The high cost of development of new drugs and the increasingly severe burden of cancer globally have led to increased interest in the search and development of novel, affordable anti-neoplastic medications. Antipsychotic drugs have a long history of clinical use and tolerable safety; they have been used as good targets for drug repurposing. Being used for various psychiatric diseases for decades, antipsychotic drugs are now reported to have potent anti-cancer properties against a wide variety of malignancies in addition to their antipsychotic effects. In this review, an overview of repurposing various psychiatric drugs for cancer treatment is presented, and the putative mechanisms for the anti-neoplastic actions of these antipsychotic drugs are reviewed.
Collapse
Affiliation(s)
- Jing Huang
- Department of Neurosurgery, Xiangya Hospital, Central South University (CSU), Changsha, China; Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China; Mental Health Institute of the Second Xiangya Hospital, Central South University, Chinese National Clinical Research Center for Mental Disorders (Xiangya), Changsha, Hunan, 410011, China; Chinese National Technology Institute on Mental Disorders, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan, 410011, China
| | - Danwei Zhao
- Xiangya Medical School, Central South University, Changsha, Hunan, China
| | - Zhixiong Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University (CSU), Changsha, China
| | - Fangkun Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University (CSU), Changsha, China.
| |
Collapse
|
21
|
Abstract
Cellular lipid metabolism and homeostasis are controlled by sterol regulatory-element binding proteins (SREBPs). In addition to performing canonical functions in the transcriptional regulation of genes involved in the biosynthesis and uptake of lipids, genome-wide system analyses have revealed that these versatile transcription factors act as important nodes of convergence and divergence within biological signalling networks. Thus, they are involved in myriad physiological and pathophysiological processes, highlighting the importance of lipid metabolism in biology. Changes in cell metabolism and growth are reciprocally linked through SREBPs. Anabolic and growth signalling pathways branch off and connect to multiple steps of SREBP activation and form complex regulatory networks. In addition, SREBPs are implicated in numerous pathogenic processes such as endoplasmic reticulum stress, inflammation, autophagy and apoptosis, and in this way, they contribute to obesity, dyslipidaemia, diabetes mellitus, nonalcoholic fatty liver disease, nonalcoholic steatohepatitis, chronic kidney disease, neurodegenerative diseases and cancers. This Review aims to provide a comprehensive understanding of the role of SREBPs in physiology and pathophysiology at the cell, organ and organism levels.
Collapse
Affiliation(s)
- Hitoshi Shimano
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
- Life Science Center, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba 305-8577, Japan
- AMED-CREST, Japan Agency for Medical Research and Development, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Ryuichiro Sato
- AMED-CREST, Japan Agency for Medical Research and Development, Chiyoda-ku, Tokyo 100-0004, Japan
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan
| |
Collapse
|
22
|
Snopov SA, Teryukova NP, Sakhenberg EI, Teplyashina VV, Nasyrova RF. Use of HepG2 cell line for evaluation of toxic and metabolic antipsychotic action. ACTA ACUST UNITED AC 2017. [DOI: 10.1134/s1990519x17050078] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Chen CC, Hsu LW, Huang KT, Goto S, Chen CL, Nakano T. Overexpression of Insig-2 inhibits atypical antipsychotic-induced adipogenic differentiation and lipid biosynthesis in adipose-derived stem cells. Sci Rep 2017; 7:10901. [PMID: 28883496 PMCID: PMC5589828 DOI: 10.1038/s41598-017-11323-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 08/22/2017] [Indexed: 01/10/2023] Open
Abstract
Atypical antipsychotics (AAPs) are considered to possess superior efficacy for treating both the positive and negative symptoms of schizophrenia; however, AAP use often causes excessive weight gain and metabolic abnormalities. Recently, several reports have demonstrated that AAPs activate sterol regulatory element-binding protein (SREBP). SREBP, SREBP cleavage-activating protein (SCAP) and insulin-induced gene (Insig) regulate downstream cholesterol and fatty acid biosynthesis. In this study, we explored the effects of clozapine, olanzapine and risperidone on SREBP signaling and downstream lipid biosynthesis genes in the early events of adipogenic differentiation in adipose-derived stem cells (ASCs). After the induction of adipogenic differentiation for 2 days, all AAPs, notably clozapine treatment for 3 and 7 days, enhanced the expression of SREBP-1 and its downstream lipid biosynthesis genes without dexamethasone and insulin supplementation. Simultaneously, protein level of SREBP-1 was significantly enhanced via inhibition of Insig-2 expression. By contrast, SREBP-1 activation was suppressed when Insig-2 expression was upregulated by transfection with Insig-2 plasmid DNA. In summary, our results indicate that AAP treatment, notably clozapine treatment, induces early-stage lipid biosynthesis in ASCs. Such abnormal lipogenesis can be reversed when Insig-2 expression was increased, suggesting that Insig/SCAP/SREBP signaling may be a therapeutic target for AAP-induced weight gain and metabolic abnormalities.
Collapse
Affiliation(s)
- Chien-Chih Chen
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 833, Taiwan.,Graduate Institute of Clinical Medical Sciences, Chang Gung University College of Medicine, Kaohsiung, 833, Taiwan
| | - Li-Wen Hsu
- Liver Transplantation Center and Department of Surgery, Division of Transplant Immunology, Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 833, Taiwan
| | - Kuang-Tzu Huang
- Liver Transplantation Center and Department of Surgery, Division of Transplant Immunology, Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 833, Taiwan
| | - Shigeru Goto
- Liver Transplantation Center and Department of Surgery, Division of Transplant Immunology, Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 833, Taiwan
| | - Chao-Long Chen
- Liver Transplantation Center and Department of Surgery, Division of Transplant Immunology, Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 833, Taiwan
| | - Toshiaki Nakano
- Liver Transplantation Center and Department of Surgery, Division of Transplant Immunology, Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 833, Taiwan. .,Graduate Institute of Clinical Medical Sciences, Chang Gung University College of Medicine, Kaohsiung, 833, Taiwan.
| |
Collapse
|
24
|
Time-dependent changes and potential mechanisms of glucose-lipid metabolic disorders associated with chronic clozapine or olanzapine treatment in rats. Sci Rep 2017; 7:2762. [PMID: 28584269 PMCID: PMC5459828 DOI: 10.1038/s41598-017-02884-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 04/19/2017] [Indexed: 11/16/2022] Open
Abstract
Chronic treatment with second-generation antipsychotic drugs (SGAs) has been associated with an increased risk of metabolic syndrome. To evaluate the longitudinal changes in glucose-lipid homeostasis after SGA use, we studied the time-dependent effects of olanzapine (OLZ) (3 mg/kg, b.i.d.) or clozapine (CLZ) (20 mg/kg, b.i.d.) treatment on metabolic profiles for 9 weeks in rats. Although only OLZ significantly increased body weight in rats, both OLZ and CLZ elevated blood lipid levels. Chronic OLZ treatment induced significant weight gain leading to a higher fasting insulin level and impaired glucose tolerance, whereas CLZ lowered fasting insulin levels and impaired glucose tolerance independent of weight gain. Treatment with both drugs deranged AKT/GSK phosphorylation and up-regulated muscarinic M3 receptors in the rats’ livers. Consistent with an elevation in lipid levels, both OLZ and CLZ significantly increased the protein levels of nuclear sterol regulatory element-binding proteins (SREBPs) in the liver, which was associated with improvement in hepatic histamine H1R. However, enhanced carbohydrate response element binding protein (ChREBP) signalling was observed in only CLZ-treated rats. These results suggest that SGA-induced glucose-lipid metabolic disturbances could be independent of weight gain, possibly through activation of SREBP/ChREBP in the liver.
Collapse
|
25
|
Steen VM, Skrede S, Polushina T, López M, Andreassen OA, Fernø J, Hellard SL. Genetic evidence for a role of the SREBP transcription system and lipid biosynthesis in schizophrenia and antipsychotic treatment. Eur Neuropsychopharmacol 2017; 27:589-598. [PMID: 27492885 DOI: 10.1016/j.euroneuro.2016.07.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 07/15/2016] [Accepted: 07/19/2016] [Indexed: 12/21/2022]
Abstract
Schizophrenia is a serious psychotic disorder, with disabling symptoms and markedly reduced life expectancy. The onset is usually in late adolescence or early adulthood, which in time overlaps with the maturation of the brain including the myelination process. Interestingly, there seems to be a link between myelin abnormalities and schizophrenia. The oligodendrocyte-derived myelin membranes in the CNS are highly enriched for lipids (cholesterol, phospholipids and glycosphingolipids), thereby pointing at lipid homeostasis as a relevant target for studying the genetics and pathophysiology of schizophrenia. The biosynthesis of fatty acids and cholesterol is regulated by the sterol regulatory element binding protein (SREBP) transcription factors SREBP1 and SREBP2, which are encoded by the SREBF1 and SREBF2 genes on chromosome 17p11.2 and 22q13.2, respectively. Here we review the evidence for the involvement of SREBF1 and SREBF2 as genetic risk factors in schizophrenia and discuss the role of myelination and SREBP-mediated lipid biosynthesis in the etiology, pathophysiology and drug treatment of schizophrenia.
Collapse
Affiliation(s)
- Vidar M Steen
- NORMENT, K.G. Jebsen Centre for Psychosis Research, Department of Clinical Science, University of Bergen, Bergen, Norway; Dr. Einar Martens Research Group for Biological Psychiatry, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway.
| | - Silje Skrede
- NORMENT, K.G. Jebsen Centre for Psychosis Research, Department of Clinical Science, University of Bergen, Bergen, Norway; Dr. Einar Martens Research Group for Biological Psychiatry, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Tatiana Polushina
- NORMENT, K.G. Jebsen Centre for Psychosis Research, Department of Clinical Science, University of Bergen, Bergen, Norway; Dr. Einar Martens Research Group for Biological Psychiatry, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Miguel López
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela 15706, Spain
| | - Ole A Andreassen
- NORMENT, K.G. Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Johan Fernø
- NORMENT, K.G. Jebsen Centre for Psychosis Research, Department of Clinical Science, University of Bergen, Bergen, Norway; Dr. Einar Martens Research Group for Biological Psychiatry, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Stephanie Le Hellard
- NORMENT, K.G. Jebsen Centre for Psychosis Research, Department of Clinical Science, University of Bergen, Bergen, Norway; Dr. Einar Martens Research Group for Biological Psychiatry, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
26
|
Swathy B, Saradalekshmi KR, Nair IV, Nair C, Banerjee M. Pharmacoepigenomic responses of antipsychotic drugs on pharmacogenes are likely to be modulated by miRNAs. Epigenomics 2017; 9:811-821. [DOI: 10.2217/epi-2016-0181] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Aim: It is imperative to differentiate the role of host epigenetics from pharmacoepigenetics in resolving therapeutic response. Therefore, the objective was to identify how antipsychotic drugs influence epigenetic response on pharmacogenes. Materials & methods: The study design was based on in vitro evaluation of pharmacoepigenetic response of haloperidol, clozapine and olanzapine. Post antipsychotic treatment, the alterations in expression of ABCB1, CYP1A2 and CYP3A4 were monitored, and followed up by promoter methylation and their target miRNA expression studies. Critical observations were followed up in a restrictive clinical setting. Results: Under in vitro conditions increased expression of ABCB1, CYP1A2 and CYP3A4 was observed which seems to be regulated by miR-27a and miR-128a and not by methylation. A similar pattern was observed in clinical setting with ABCB1, which was reflective of good therapeutic response. Conclusion: The study demonstrates that antipsychotic drugs can influence miRNA-mediated epigenetic response in pharmacogenes resulting in modulating therapeutic response.
Collapse
Affiliation(s)
- Babu Swathy
- Human Molecular Genetics Laboratory, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Koramannil R Saradalekshmi
- Human Molecular Genetics Laboratory, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Indu V Nair
- Mental Health Centre, Thiruvananthapuram, Kerala, India
| | | | - Moinak Banerjee
- Human Molecular Genetics Laboratory, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| |
Collapse
|
27
|
Stefanidis A, Watt MJ, Cowley MA, Oldfield BJ. Prevention of the adverse effects of olanzapine on lipid metabolism with the antiepileptic zonisamide. Neuropharmacology 2017; 123:55-66. [PMID: 28400260 DOI: 10.1016/j.neuropharm.2017.04.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 04/05/2017] [Accepted: 04/07/2017] [Indexed: 01/06/2023]
Abstract
BACKGROUND Atypical antipsychotic drugs, particularly olanzapine, represent a mainstay in the treatment of psychoses; however, their use is commonly associated with weight gain and diabetes. The aim of this study was to determine whether combined administration of olanzapine and zonisamide can be used to prevent olanzapine-induced metabolic disturbances. METHODS AND RESULTS These experiments involved female Sprague Dawley rats (n = 6-8/group) that were administered olanzapine, either acutely (6 mg/kg, s. c) or via continuous osmotic minipump infusion (6 mg/kg/day for 6 or 14 days), in combination with zonisamide (26 mg/kg/day,i.p.). Continuous infusion of olanzapine induced accumulation of adipose tissue and an associated reduction in stimulated lipolysis and reduced protein expression of CGI-58, a critical co-activator of ATGL. Olanzapine treatment caused a preferential shift toward carbohydrate oxidation (or reduced fat oxidation), elevated blood triglycerides and a reduction in locomotor activity. Olanzapine had a direct effect on glucose regulation, causing rapid hyperglycemia, and a reduction in glucose tolerance and insulin sensitivity. Continuous administration of olanzapine caused significant hyperinsulinemia and a significant reduction in insulin sensitivity. Zonisamide did not affect the impact of olanzapine on glucose homeostasis. On the other hand, co-administration of olanzapine with zonisamide completely ameliorated olanzapine-mediated shifts in lipid metabolism resulting in a normalization of olanzapine-induced weight gain. CONCLUSION These data collectively show an impact of olanzapine on body weight and lipid metabolism, which is ameliorated by co-administration with zonisamide. These findings suggest that a combined olanzapine and zonisamide approach might reduce weight gain, but will not provide protection against olanzapine-induced glucose intolerance.
Collapse
Affiliation(s)
- Aneta Stefanidis
- Department of Physiology, Monash University, Clayton, Victoria, Australia, Metabolic Disease and Obesity Program, Biomedicine Discovery Institute, Monash University.
| | - Matthew J Watt
- Department of Physiology, Monash University, Clayton, Victoria, Australia, Metabolic Disease and Obesity Program, Biomedicine Discovery Institute, Monash University
| | - Michael A Cowley
- Department of Physiology, Monash University, Clayton, Victoria, Australia, Metabolic Disease and Obesity Program, Biomedicine Discovery Institute, Monash University
| | - Brian J Oldfield
- Department of Physiology, Monash University, Clayton, Victoria, Australia, Metabolic Disease and Obesity Program, Biomedicine Discovery Institute, Monash University
| |
Collapse
|
28
|
Chen Y, Bang S, McMullen MF, Kazi H, Talbot K, Ho MX, Carlson G, Arnold SE, Ong WY, Kim SF. Neuronal Activity-Induced Sterol Regulatory Element Binding Protein-1 (SREBP1) is Disrupted in Dysbindin-Null Mice-Potential Link to Cognitive Impairment in Schizophrenia. Mol Neurobiol 2017; 54:1699-1709. [PMID: 26873854 PMCID: PMC4982840 DOI: 10.1007/s12035-016-9773-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 02/02/2016] [Indexed: 12/30/2022]
Abstract
Schizophrenia is a chronic debilitating neuropsychiatric disorder that affects about 1 % of the population. Dystrobrevin-binding protein 1 (DTNBP1 or dysbindin) is one of the Research Domain Constructs (RDoC) associated with cognition and is significantly reduced in the brain of schizophrenia patients. To further understand the molecular underpinnings of pathogenesis of schizophrenia, we have performed microarray analyses of the hippocampi from dysbindin knockout mice, and found that genes involved in the lipogenic pathway are suppressed. Moreover, we discovered that maturation of a master transcriptional regulator for lipid synthesis, sterol regulatory element binding protein-1 (SREBP1) is induced by neuronal activity, and is required for induction of the immediate early gene ARC (activity-regulated cytoskeleton-associated protein), necessary for synaptic plasticity and memory. We found that nuclear SREBP1 is dramatically reduced in dysbindin-1 knockout mice and postmortem brain tissues from human patients with schizophrenia. Furthermore, activity-dependent maturation of SREBP1 as well as ARC expression were attenuated in dysbindin-1 knockout mice, and these deficits were restored by an atypical antipsychotic drug, clozapine. Together, results indicate an important role of dysbindin-1 in neuronal activity induced SREBP1 and ARC, which could be related to cognitive deficits in schizophrenia.
Collapse
Affiliation(s)
- Yong Chen
- Department of Psychiatry, Center for Neurobiology and Behavior, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Sookhee Bang
- Department of Psychiatry, Center for Neurobiology and Behavior, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Mary F McMullen
- Department of Psychiatry, Center for Neurobiology and Behavior, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Hala Kazi
- Department of Psychiatry, Center for Neurobiology and Behavior, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Konrad Talbot
- Department of Psychiatry, Center for Neurobiology and Behavior, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Mei-Xuan Ho
- Department of Anatomy and Neurobiology Research Programme, National University of Singapore, Singapore, 119260, Singapore
| | - Greg Carlson
- Department of Psychiatry, Center for Neurobiology and Behavior, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Steven E Arnold
- Department of Psychiatry, Center for Neurobiology and Behavior, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Wei-Yi Ong
- Department of Anatomy and Neurobiology Research Programme, National University of Singapore, Singapore, 119260, Singapore.
| | - Sangwon F Kim
- Department of Psychiatry, Center for Neurobiology and Behavior, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
29
|
Blackburn R, Osborn D, Walters K, Falcaro M, Nazareth I, Petersen I. Statin prescribing for people with severe mental illnesses: a staggered cohort study of 'real-world' impacts. BMJ Open 2017; 7:e013154. [PMID: 28270387 PMCID: PMC5353294 DOI: 10.1136/bmjopen-2016-013154] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 12/01/2016] [Accepted: 02/14/2017] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVES To estimate the 'real-world effectiveness of statins for primary prevention of cardiovascular disease (CVD) and for lipid modification in people with severe mental illnesses (SMI), including schizophrenia and bipolar disorder. DESIGN Series of staggered cohorts. We estimated the effect of statin prescribing on CVD outcomes using a multivariable Poisson regression model or linear regression for cholesterol outcomes. SETTING 587 general practice (GP) surgeries across the UK reporting data to The Health Improvement Network. PARTICIPANTS All permanently registered GP patients aged 40-84 years between 2002 and 2012 who had a diagnosis of SMI. Exclusion criteria were pre-existing CVD, statin-contraindicating conditions or a statin prescription within the 24 months prior to the study start. EXPOSURE One or more statin prescriptions during a 24-month 'baseline' period (vs no statin prescription during the same period). MAIN OUTCOME MEASURES The primary outcome was combined first myocardial infarction and stroke. All-cause mortality and total cholesterol concentration were secondary outcomes. RESULTS We identified 2944 statin users and 42 886 statin non-users across the staggered cohorts. Statin prescribing was not associated with significant reduction in CVD events (incident rate ratio 0.89; 95% CI 0.68 to 1.15) or all-cause mortality (0.89; 95% CI 0.78 to 1.02). Statin prescribing was, however, associated with statistically significant reductions in total cholesterol of 1.2 mmol/L (95% CI 1.1 to 1.3) for up to 2 years after adjusting for differences in baseline characteristics. On average, total cholesterol decreased from 6.3 to 4.6 in statin users and 5.4 to 5.3 mmol/L in non-users. CONCLUSIONS We found that statin prescribing to people with SMI in UK primary care was effective for lipid modification but not CVD events. The latter finding may reflect insufficient power to detect a smaller effect size than that observed in randomised controlled trials of statins in people without SMI.
Collapse
Affiliation(s)
- R Blackburn
- Institute for Health Informatics, UCL, London, UK
| | - D Osborn
- Division of Psychiatry, UCL, London, UK
| | - K Walters
- Primary Care and Population Health, UCL, London, UK
| | - M Falcaro
- Primary Care and Population Health, UCL, London, UK
| | - I Nazareth
- Primary Care and Population Health, UCL, London, UK
| | - I Petersen
- Primary Care and Population Health, UCL, London, UK
| |
Collapse
|
30
|
Finan GM, Realubit R, Chung S, Lütjohann D, Wang N, Cirrito JR, Karan C, Kim TW. Bioactive Compound Screen for Pharmacological Enhancers of Apolipoprotein E in Primary Human Astrocytes. Cell Chem Biol 2016; 23:1526-1538. [DOI: 10.1016/j.chembiol.2016.10.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Revised: 09/13/2016] [Accepted: 10/25/2016] [Indexed: 02/07/2023]
|
31
|
Koskinen S, Kampman O, Solismaa A, Lyytikäinen LP, Seppälä N, Viikki M, Hämäläinen M, Moilanen E, Mononen N, Lehtimäki T, Leinonen E. INSIG2 polymorphism and weight gain, dyslipidemia and serum adiponectin in Finnish patients with schizophrenia treated with clozapine. Pharmacogenomics 2016; 17:1987-1997. [DOI: 10.2217/pgs-2016-0117] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To investigate INSIG2's association with obesity, weight change and serum lipid profile during clozapine treatment. Materials & methods: Subjects with schizophrenia (n = 190) were genotyped, identifying seven SNPs. Genetic risk scores (GRSs) were calculated to adiponectin, high-density lipoprotein cholesterol, triglycerides and weight gain. Results: In the model for weight gain, SNPs rs12151787, rs17047733 and rs10490626 were selected. Explanatory variables were BMI (p = 5.05 × 10-5), age (p = 0.003) and GRS (p = 2.81 × 10-5, p = 0.0002 after permutation). No GRS resulted for adiponectin or high-density lipoprotein cholesterol. Rs2161829 and rs10490620 were selected for triglycerides; this GRS was insignificant after permutation. Conclusion: INSIG2 plays a role in weight gain and obesity during clozapine treatment.
Collapse
Affiliation(s)
- Suvi Koskinen
- School of Medicine, University of Tampere, 33014 Tampere, Finland
| | - Olli Kampman
- School of Medicine, University of Tampere, 33014 Tampere, Finland
- Department of Psychiatry, Seinäjoki Hospital District, Seinäjoki, Finland
| | - Anssi Solismaa
- School of Medicine, University of Tampere, 33014 Tampere, Finland
- Department of Psychiatry, Seinäjoki Hospital District, Seinäjoki, Finland
| | - Leo-Pekka Lyytikäinen
- School of Medicine, University of Tampere, 33014 Tampere, Finland
- University of Tampere, School of Medicine, Department of Clinical Chemistry and Fimlab Laboratories, Tampere, Finland
| | - Niko Seppälä
- Department of Psychiatry, Tampere University Hospital, Tampere, Finland
| | - Merja Viikki
- School of Medicine, University of Tampere, 33014 Tampere, Finland
- Tampere Mental Health Centre, Tampere, Finland
| | - Mari Hämäläinen
- The Immunopharmacology Research Group, School of Medicine & Tampere University Hospital, University of Tampere, Tampere, Finland
| | - Eeva Moilanen
- The Immunopharmacology Research Group, School of Medicine & Tampere University Hospital, University of Tampere, Tampere, Finland
| | - Nina Mononen
- University of Tampere, School of Medicine, Department of Clinical Chemistry and Fimlab Laboratories, Tampere, Finland
| | - Terho Lehtimäki
- School of Medicine, University of Tampere, 33014 Tampere, Finland
- University of Tampere, School of Medicine, Department of Clinical Chemistry and Fimlab Laboratories, Tampere, Finland
| | - Esa Leinonen
- School of Medicine, University of Tampere, 33014 Tampere, Finland
- Department of Psychiatry, Tampere University Hospital, Tampere, Finland
| |
Collapse
|
32
|
Li Y, Zhao X, Feng X, Liu X, Deng C, Hu CH. Berberine Alleviates Olanzapine-Induced Adipogenesis via the AMPKα-SREBP Pathway in 3T3-L1 Cells. Int J Mol Sci 2016; 17:E1865. [PMID: 27834848 PMCID: PMC5133865 DOI: 10.3390/ijms17111865] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 11/01/2016] [Accepted: 11/04/2016] [Indexed: 12/15/2022] Open
Abstract
The aim of this study was to investigate the mechanisms underlying the inhibitory effects of berberine (BBR) on olanzapine (OLZ)-induced adipogenesis in a well-replicated 3T3-L1 cell model. Oil-Red-O (ORO) staining showed that BBR significantly decreased OLZ-induced adipogenesis. Co-treatment with OLZ and BBR decreased the accumulation of triglyceride (TG) and total cholesterol (TC) by 55.58% ± 3.65% and 49.84% ± 8.31%, respectively, in 3T3-L1 adipocytes accompanied by reduced expression of Sterol regulatory element binding proteins 1 (SREBP1), fatty acid synthase (FAS), peroxisome proliferator activated receptor-γ (PPARγ), SREBP2, low-density lipoprotein receptor (LDLR), and hydroxymethylglutaryl-coenzyme A reductase (HMGR) genes compared with OLZ alone. Consistently, the co-treatment downregulated protein levels of SREBP1, SREBP2, and LDLR by 57.71% ± 9.42%, 73.05% ± 11.82%, and 59.46% ± 9.91%, respectively. In addition, co-treatment reversed the phosphorylation level of AMP-activated protein kinase-α (AMPKα), which was reduced by OLZ, determined via the ratio of pAMPKα:AMPKα (94.1%) compared with OLZ alone. The results showed that BBR may prevent lipid metabolism disorders caused by OLZ by reversing the degree of SREBP pathway upregulated and the phosphorylation of AMPKα downregulated. Collectively, these results indicated that BBR could be used as a potential adjuvant to prevent dyslipidemia and obesity caused by the use of second-generation antipsychotic medication.
Collapse
Affiliation(s)
- Yanjie Li
- School of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China.
- Engineer Research Center of Chongqing Pharmaceutical Process and Quality Control, Chongqing 400715, China.
| | - Xiaomin Zhao
- School of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China.
- Engineer Research Center of Chongqing Pharmaceutical Process and Quality Control, Chongqing 400715, China.
| | - Xiyu Feng
- School of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China.
- Engineer Research Center of Chongqing Pharmaceutical Process and Quality Control, Chongqing 400715, China.
| | - Xuemei Liu
- School of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China.
- Engineer Research Center of Chongqing Pharmaceutical Process and Quality Control, Chongqing 400715, China.
| | - Chao Deng
- Antipsychotic Research Laboratory, School of Medicine, and Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong 2522, NSW, Australia.
| | - Chang-Hua Hu
- School of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China.
- Engineer Research Center of Chongqing Pharmaceutical Process and Quality Control, Chongqing 400715, China.
| |
Collapse
|
33
|
Lack of association of SNPs from the FADS1-FADS2 gene cluster with major depression or suicidal behavior. Psychiatr Genet 2016; 26:81-6. [PMID: 26513616 DOI: 10.1097/ypg.0000000000000111] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Fatty acid desaturase genes (FADS1-FADS2) encode desaturases participating in the biosynthesis of long-chain polyunsaturated fatty acids. As long-chain polyunsaturated fatty acids are implicated in major depressive disorder (MDD) and suicide risk, and as both are partly heritable, we studied the association of FADS1-FADS2 polymorphisms with MDD (635 cases, 480 controls) and suicide attempt status (291 attempters, 344 MDD nonattempters). Eighteen FADS-related single-nucleotide polymorphisms were genotyped from Caucasians enrolled in Madrid (n=791) or New York City (n=324) and entered as predictors into logistic regression analyses with diagnostic group or suicide attempt history as outcomes and location and sex as covariates. No associations were observed between any single-nucleotide polymorphisms and diagnosis or attempt status. As statistical power was adequate, we conclude that FADS1-FADS2 genetic variants may not be a common determinant of MDD.
Collapse
|
34
|
Yang L, Chen J, Li Y, Wang Y, Liang S, Shi Y, Shi S, Xu Y. Association between SCAP and SREBF1 gene polymorphisms and metabolic syndrome in schizophrenia patients treated with atypical antipsychotics. World J Biol Psychiatry 2016; 17:467-74. [PMID: 26982812 DOI: 10.3109/15622975.2016.1165865] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVES The use of atypical antipsychotics (AAPs) in the treatment of schizophrenia has been relevant because of the high prevalence of metabolic syndrome (MetS). The sterol-regulatory element-binding protein (SREBP) pathway may contribute to the underlying pathophysiology of AAP-induced metabolic adverse effects. We explored the association between the variants of the sterol-regulatory element-binding transcription factor-1 (SREBF1) gene and the SREBP cleavage-activation protein (SCAP) gene with AAP-induced MetS in a genetic case-control study. METHODS Eleven single nucleotide polymorphisms (SNPs) of SREBF1 and five of SCAP were genotyped in a Han Chinese population in Beijing, China: a sample of 722 schizophrenia patients on monotherapy with AAPs (clozapine, olanzapine or risperidone). Metabolic parameters were collected and evaluated for MetS criteria. RESULTS The rs11654081 T-allele of the SREBF1 gene was significantly associated with an increased risk for MetS after correction (P = 0.019, odds ratio, OR =2.56, 95% confidence interval, CI: 1.4 4-4.54). The rs11654081-TT genotype appeared more frequently in MetS than in non-MetS after correction (P = 0.026, OR =2.37, 95% CI: 1.3 6-4.12). SCAP polymorphisms with drug-induced MetS were negative in this study. CONCLUSIONS The genetic polymorphisms of SREBF1 could play a role in the mechanism for interindividual variation of AAP-induced MetS.
Collapse
Affiliation(s)
- Lin Yang
- a Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center , Shanghai Jiao Tong University School of Medicine , Shanghai , 200030 , China ;,b Department of Psychiatry , Huashan Hospital, Fudan University , Shanghai , 200021 , China
| | - Jianhua Chen
- a Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center , Shanghai Jiao Tong University School of Medicine , Shanghai , 200030 , China
| | - Yan Li
- a Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center , Shanghai Jiao Tong University School of Medicine , Shanghai , 200030 , China
| | - Yan Wang
- a Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center , Shanghai Jiao Tong University School of Medicine , Shanghai , 200030 , China
| | - Shiqiao Liang
- a Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center , Shanghai Jiao Tong University School of Medicine , Shanghai , 200030 , China
| | - Yongyong Shi
- c Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Bio-X Institutes (Ministry of Education) , Shanghai Jiao Tong University , Shanghai , 200030 , China
| | - Shenxun Shi
- a Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center , Shanghai Jiao Tong University School of Medicine , Shanghai , 200030 , China ;,b Department of Psychiatry , Huashan Hospital, Fudan University , Shanghai , 200021 , China
| | - Yifeng Xu
- a Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center , Shanghai Jiao Tong University School of Medicine , Shanghai , 200030 , China ;,b Department of Psychiatry , Huashan Hospital, Fudan University , Shanghai , 200021 , China
| |
Collapse
|
35
|
Boland MR, Tatonetti NP. Investigation of 7-dehydrocholesterol reductase pathway to elucidate off-target prenatal effects of pharmaceuticals: a systematic review. THE PHARMACOGENOMICS JOURNAL 2016; 16:411-29. [PMID: 27401223 PMCID: PMC5028238 DOI: 10.1038/tpj.2016.48] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 04/15/2016] [Accepted: 05/02/2016] [Indexed: 12/18/2022]
Abstract
Mendelian diseases contain important biological information regarding developmental effects of gene mutations that can guide drug discovery and toxicity efforts. In this review, we focus on Smith–Lemli–Opitz syndrome (SLOS), a rare Mendelian disease characterized by compound heterozygous mutations in 7-dehydrocholesterol reductase (DHCR7) resulting in severe fetal deformities. We present a compilation of SLOS-inducing DHCR7 mutations and the geographic distribution of those mutations in healthy and diseased populations. We observed that several mutations thought to be disease causing occur in healthy populations, indicating an incomplete understanding of the condition and highlighting new research opportunities. We describe the functional environment around DHCR7, including pharmacological DHCR7 inhibitors and cholesterol and vitamin D synthesis. Using PubMed, we investigated the fetal outcomes following prenatal exposure to DHCR7 modulators. First-trimester exposure to DHCR7 inhibitors resulted in outcomes similar to those of known teratogens (50 vs 48% born-healthy). DHCR7 activity should be considered during drug development and prenatal toxicity assessment.
Collapse
Affiliation(s)
- M R Boland
- Department of Biomedical Informatics, Columbia University, New York, NY, USA.,Observational Health Data Sciences and Informatics, Columbia University, New York, NY, USA
| | - N P Tatonetti
- Department of Biomedical Informatics, Columbia University, New York, NY, USA.,Observational Health Data Sciences and Informatics, Columbia University, New York, NY, USA.,Department of Systems Biology, Columbia University, New York, NY, USA.,Department of Medicine, Columbia University, New York, NY, USA
| |
Collapse
|
36
|
Baber RJ, Panay N, Fenton A. 2016 IMS Recommendations on women’s midlife health and menopause hormone therapy. Climacteric 2016; 19:109-50. [DOI: 10.3109/13697137.2015.1129166] [Citation(s) in RCA: 520] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
37
|
Medici V, McClave SA, Miller KR. Common Medications Which Lead to Unintended Alterations in Weight Gain or Organ Lipotoxicity. Curr Gastroenterol Rep 2016; 18:2. [PMID: 26700070 DOI: 10.1007/s11894-015-0479-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Obesity is one of the most common chronic conditions in the world. Its management is difficult, partly due to the multiple associated comorbidities including fatty liver, diabetes, hypertension, and hyperlipidemia. As a result, the choice of prescription medications in overweight and obese patients has important implications as some of them can actually worsen the fat accumulation and its associated metabolic complications. Several prescription medications are associated with weight gain with mechanisms that are often poorly understood and under-recognized. Even less data are available on the distribution of fat and lipotoxicity (the organ damage related to fat accumulation). The present review will discuss the drugs associated with weight gain, their mechanism of action, and the magnitude and timing of their effect.
Collapse
Affiliation(s)
- Valentina Medici
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of California Davis, 4150 V Street, Sacramento, CA, 95816, USA.
| | - Stephen A McClave
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, University of Louisville School of Medicine, 550 South Jackson Street, Louisville, KY, 40202, USA.
| | - Keith R Miller
- Department of Surgery, University of Louisville, ACB 2nd Floor, 550 South Jackson Street, Louisville, KY, 40202, USA.
| |
Collapse
|
38
|
Liu X, Lian J, Hu CH, Deng C. Betahistine co-treatment ameliorates dyslipidemia induced by chronic olanzapine treatment in rats through modulation of hepatic AMPKα-SREBP-1 and PPARα-dependent pathways. Pharmacol Res 2015. [DOI: 10.1016/j.phrs.2015.07.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
39
|
Dang R, Jiang P, Cai H, Li H, Guo R, Wu Y, Zhang L, Zhu W, He X, Liu Y, Xu P. Vitamin D deficiency exacerbates atypical antipsychotic-induced metabolic side effects in rats: involvement of the INSIG/SREBP pathway. Eur Neuropsychopharmacol 2015; 25:1239-47. [PMID: 26003080 DOI: 10.1016/j.euroneuro.2015.04.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 01/07/2015] [Accepted: 04/29/2015] [Indexed: 02/06/2023]
Abstract
Metabolic syndrome is a major concern in psychotic patients receiving atypical antipsychotics. Recent evidence suggests that sterol regulatory element-binding proteins (SREBPs) and insulin-induced genes (INSIGs) are implicated in the antipsychotic-induced metabolic side-effects. Vitamin D (VD) deficiency, a highly prevalent phenomenon among patients with psychosis, might also predispose individuals to metabolic syndrome Considering that VD has modulating effects on the INSIG/SREBP pathway, it is possible that VD may have a role in the antipsychotic-induced metabolic disturbances involving its effects on the INSIG/SREBP system. Thus, the present study aimed to evaluate the effects of VD deficiency and VD supplementation on antipsychotic-induced metabolic changes in rats. After 4-week administration, clozapine (10mg/kg/d) and risperidone (1mg/kg/d) both caused glucose intolerance and insulin resistance in VD deficient rats, but not in rats with sufficient VD status. Antipsychotic treatments, especially clozapine, elevated serum lipid levels, which were most apparent in VD deficient rats, but alleviated in VD-supplemented rats. Additionally, antipsychotic treatments down-regulated INSIGs and up-regulated SREBPs expression in VD deficient rats, and these effects were attenuated when VD status was more sufficient. Collectively, this study disclose the novel findings that antipsychotic-induced metabolic disturbances is exacerbated by VD deficiency and can be alleviated by VD supplementation, providing new evidence for the promising role of VD in prevention and treatment of metabolic disorders caused by antipsychotic medications. Furthermore, our data also suggest the involvement of INSIG/SREBP pathway in the antipsychotic-induced hyperlipidemia and beneficial effects of VD on lipid profile.
Collapse
Affiliation(s)
- Ruili Dang
- Institute of Clinical Pharmacy & Pharmacology, Second Xiangya Hospital, Central South University, Changsha, China; Department of Pharmacy, Jining First People's Hospital, Jining, China
| | - Pei Jiang
- Institute of Clinical Pharmacy & Pharmacology, Second Xiangya Hospital, Central South University, Changsha, China; Department of Pharmacy, Jining First People's Hospital, Jining, China
| | - Hualin Cai
- Institute of Clinical Pharmacy & Pharmacology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Huande Li
- Institute of Clinical Pharmacy & Pharmacology, Second Xiangya Hospital, Central South University, Changsha, China.
| | - Ren Guo
- School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Yanqin Wu
- Institute of Clinical Pharmacy & Pharmacology, Second Xiangya Hospital, Central South University, Changsha, China; School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Lihong Zhang
- Institute of Clinical Pharmacy & Pharmacology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Wenye Zhu
- Institute of Clinical Pharmacy & Pharmacology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Xin He
- Institute of Clinical Pharmacy & Pharmacology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Yiping Liu
- Institute of Clinical Pharmacy & Pharmacology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Ping Xu
- Institute of Clinical Pharmacy & Pharmacology, Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
40
|
Fernø J, Ersland KM, Duus IH, González-García I, Fossan KO, Berge RK, Steen VM, Skrede S. Olanzapine depot exposure in male rats: Dose-dependent lipogenic effects without concomitant weight gain. Eur Neuropsychopharmacol 2015; 25:923-32. [PMID: 25823694 DOI: 10.1016/j.euroneuro.2015.03.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 01/29/2015] [Accepted: 03/09/2015] [Indexed: 11/28/2022]
Abstract
Treatment with second-generation antipsychotic agents such as olanzapine frequently results in metabolic adverse effects, e.g. hyperphagia, weight gain and dyslipidaemia in patients of both genders. The molecular mechanisms underlying metabolic adverse effects are still largely unknown, and studies in rodents represent an important approach in their exploration. However, the validity of the rodent model is hampered by the fact that antipsychotics induce weight gain in female, but not male, rats. When administered orally, the short half-life of olanzapine in rats prevents stable plasma concentrations of the drug. We recently showed that a single intramuscular injection of long-acting olanzapine formulation yields clinically relevant plasma concentrations accompanied by several dysmetabolic features in the female rat. In the current study, we show that depot injections of 100-250 mg/kg olanzapine yielded clinically relevant plasma olanzapine concentrations also in male rats. In spite of transient hyperphagia, however, olanzapine resulted in weight loss rather than weight gain. The resultant negative feed efficiency was accompanied by a slight elevation of thermogenesis markers in brown adipose tissue for the highest olanzapine dose, but the olanzapine-related reduction in weight gain remains to be explained. In spite of the absence of weight gain, an olanzapine dose of 200mg/kg or above induced significantly elevated plasma cholesterol levels and pronounced activation of lipogenic gene expression in the liver. These results confirm that olanzapine stimulates lipogenic effects, independent of weight gain, and raise the possibility that endocrine factors may influence gender specificity of metabolic effects of antipsychotics in the rat.
Collapse
Affiliation(s)
- J Fernø
- Dr. Einar Martens Research Group for Biological Psychiatry, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, N-5021 Bergen, Norway; The Norwegian Centre for Mental Disorders Research (NORMENT) and the K.G. Jebsen Centre for Psychosis Research, Department of Clinical Science, University of Bergen, Norway.
| | - K M Ersland
- Dr. Einar Martens Research Group for Biological Psychiatry, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, N-5021 Bergen, Norway; The Norwegian Centre for Mental Disorders Research (NORMENT) and the K.G. Jebsen Centre for Psychosis Research, Department of Clinical Science, University of Bergen, Norway
| | - I H Duus
- Dr. Einar Martens Research Group for Biological Psychiatry, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, N-5021 Bergen, Norway; The Norwegian Centre for Mental Disorders Research (NORMENT) and the K.G. Jebsen Centre for Psychosis Research, Department of Clinical Science, University of Bergen, Norway
| | - I González-García
- Dr. Einar Martens Research Group for Biological Psychiatry, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, N-5021 Bergen, Norway; The Norwegian Centre for Mental Disorders Research (NORMENT) and the K.G. Jebsen Centre for Psychosis Research, Department of Clinical Science, University of Bergen, Norway
| | - K O Fossan
- Section of Clinical Pharmacology, Laboratory of Clinical Biochemistry, Haukeland University Hospital, Bergen, Norway
| | - R K Berge
- The Lipid Research Group, Section for Medical Biochemistry, Department of Clinical Science, University of Bergen, 5021 Norway; Department of Heart Disease, University of Bergen, 5021 Norway
| | - V M Steen
- Dr. Einar Martens Research Group for Biological Psychiatry, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, N-5021 Bergen, Norway; The Norwegian Centre for Mental Disorders Research (NORMENT) and the K.G. Jebsen Centre for Psychosis Research, Department of Clinical Science, University of Bergen, Norway
| | - S Skrede
- Dr. Einar Martens Research Group for Biological Psychiatry, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, N-5021 Bergen, Norway; The Norwegian Centre for Mental Disorders Research (NORMENT) and the K.G. Jebsen Centre for Psychosis Research, Department of Clinical Science, University of Bergen, Norway
| |
Collapse
|
41
|
Acute effects of oral olanzapine treatment on the expression of fatty acid and cholesterol metabolism-related gene in rats. Life Sci 2015; 128:72-8. [DOI: 10.1016/j.lfs.2015.01.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 12/10/2014] [Accepted: 01/30/2015] [Indexed: 11/18/2022]
|
42
|
Yang L, Chen J, Liu D, Yu S, Cong E, Li Y, Wu H, Yue Y, Zuo S, Wang Y, Liang S, Shi Y, Shi S, Xu Y. Association between SREBF2 gene polymorphisms and metabolic syndrome in clozapine-treated patients with schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2015; 56:136-41. [PMID: 25201120 DOI: 10.1016/j.pnpbp.2014.08.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 08/27/2014] [Accepted: 08/27/2014] [Indexed: 11/29/2022]
Abstract
BACKGROUND Patients with schizophrenia using antipsychotics often develop metabolic side effects, especially with clozapine. Previous studies indicated that antipsychotics could activate the pathway of the sterol regulatory element-binding protein (SREBP). The sterol regulatory element binding transcription factor 2 (SREBF2) gene mainly regulates the cholesterol biosynthetic gene. Therefore, we hypothesized that the SREBF2 gene would be a candidate gene for interindividual variation in drug-induced metabolic syndrome (MetS). In this genetic case-control study, we examined the SREBF2 gene polymorphisms in the risk of MetS patients treated with clozapine. METHODS Ten single nucleotide polymorphisms (SNPs) of SREBF2 were genotyped in a CHB (Han Chinese in Beijing, China) population, a sample of 621 schizophrenia patients treated with clozapine. Patients were evaluated for metabolic parameters and screened for the MetS criteria. RESULTS The incidence of MetS among all subjects was 41.8% (260/621). Two markers of SREBF2 were associated with MetS induced by clozapine after False Discovery Rate (FDR) correction (rs1052717, corrected Pallele=0.010, corrected Pgenotype=0.022; and rs2267443, corrected Pgenotype=0.015). Patients who received clozapine and carried the A-allele of rs2267443 or rs1052717 had an increased risk of MetS (rs2267443, odds ratio (OR)=1.67, 95% confidence interval (CI): 1.20-2.34; and rs1052717, OR=1.81, 95% CI: 1.15-1.98), adjusted by logistic regression for clinical characteristics. CONCLUSION The results suggest that the genetic polymorphisms of SREBF2 gene may be associated with MetS in patients treated with clozapine.
Collapse
Affiliation(s)
- Lin Yang
- Department of Psychiatry, Huashan Hospital, Fudan University, 200021 Shanghai, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 200030 Shanghai, China
| | - Jianhua Chen
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 200030 Shanghai, China
| | - Dengtang Liu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 200030 Shanghai, China
| | - Shunying Yu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 200030 Shanghai, China
| | - Enzhao Cong
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 200030 Shanghai, China
| | - Yan Li
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 200030 Shanghai, China
| | - Haisu Wu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 200030 Shanghai, China
| | - Ying Yue
- Shanghai Luwan Mental Health Center, 1162 Quxi Road, 200023 Shanghai, China
| | - Sai Zuo
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 200030 Shanghai, China
| | - Yan Wang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 200030 Shanghai, China
| | - Shiqiao Liang
- Department of Psychiatry, Huashan Hospital, Fudan University, 200021 Shanghai, China
| | - Yongyong Shi
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Bio-X Institutes (Ministry of Education), Shanghai Jiao Tong University, 200030 Shanghai, China)
| | - Shenxun Shi
- Department of Psychiatry, Huashan Hospital, Fudan University, 200021 Shanghai, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 200030 Shanghai, China
| | - Yifeng Xu
- Department of Psychiatry, Huashan Hospital, Fudan University, 200021 Shanghai, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 200030 Shanghai, China.
| |
Collapse
|
43
|
Gonçalves P, Araújo JR, Martel F. Antipsychotics-induced metabolic alterations: focus on adipose tissue and molecular mechanisms. Eur Neuropsychopharmacol 2015; 25:1-16. [PMID: 25523882 DOI: 10.1016/j.euroneuro.2014.11.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 10/14/2014] [Accepted: 11/13/2014] [Indexed: 12/19/2022]
Abstract
The use of antipsychotic drugs for the treatment of mood disorders and psychosis has increased dramatically over the last decade. Despite its consumption being associated with beneficial neuropsychiatric effects in patients, atypical antipsychotics (which are the most frequently prescribed antipsychotics) use is accompanied by some secondary adverse metabolic effects such as weight gain, dyslipidemia and glucose intolerance. The molecular mechanisms underlying these adverse effects are not fully understood but have been suggested to involve a dysregulation of adipose tissue homeostasis. As such, the aim of this paper is to review and discuss the role of adipose tissue in the development of secondary adverse metabolic effects induced by atypical antipsychotics. Data analyzed in this article suggest that atypical antipsychotics may increase adipose tissue (particularly visceral adipose tissue) lipogenesis, differentiation/hyperplasia, pro-inflammatory mediator secretion and insulin resistance and decrease adipose tissue lipolysis. Consequently, patients receiving antipsychotic medication could be at risk of developing obesity, type 2 diabetes and cardiovascular disease. A better knowledge of the impact of these drugs on adipose tissue homeostasis may unveil strategies to develop novel antipsychotic drugs with less adverse metabolic effects and to develop adjuvant therapies (e.g. behavioral and nutritional therapies) to neuropsychiatric patients receiving antipsychotic medication.
Collapse
Affiliation(s)
- Pedro Gonçalves
- INSERM (French Institute of Health and Medical Research), Unit 1151, INEM (Research Center in Molecular Medicine), Faculty of Medicine of Paris Descartes University, Paris, France
| | - João Ricardo Araújo
- INSERM (French Institute of Health and Medical Research), Unit 786, Molecular Microbial Pathogenesis Unit, Institut Pasteur, Paris, France
| | - Fátima Martel
- Department of Biochemistry (U38-FCT), Faculty of Medicine, University of Porto, Porto, Portugal.
| |
Collapse
|
44
|
Chew WS, Ong WY. Regulation of Calcium-Independent Phospholipase A2 Expression by Adrenoceptors and Sterol Regulatory Element Binding Protein-Potential Crosstalk Between Sterol and Glycerophospholipid Mediators. Mol Neurobiol 2014; 53:500-517. [PMID: 25482049 DOI: 10.1007/s12035-014-9026-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 11/21/2014] [Indexed: 01/02/2023]
Abstract
Calcium-independent phospholipase A2 (iPLA2) is an 85-kDa enzyme that releases docosahexaenoic acid (DHA) from glycerophospholipids. DHA can be metabolized to resolvins and neuroprotectins that have anti-inflammatory properties and effects on neural plasticity. Recent studies show an important role of prefrontal cortical iPLA2 in hippocampo-prefrontal cortical LTP and antidepressant-like effect of the norepinephrine reuptake inhibitor (NRI) antidepressant, maprotiline. In this study, we elucidated the cellular mechanisms through which stimulation of adrenergic receptors could lead to increased iPLA2 expression. Treatment of SH-SY5Y neuroblastoma cells with maprotiline, another tricyclic antidepressant with noradrenaline reuptake inhibiting properties, nortriptyline, and the adrenergic receptor agonist, phenylephrine, resulted in increased iPLA2β mRNA expression. This increase was blocked by inhibitors to alpha-1 adrenergic receptor, mitogen-activated protein (MAP) kinase or extracellular signal-regulated kinase (ERK) 1/2, and sterol regulatory element-binding protein (SREBP). Maprotiline and phenylephrine induced binding of SREBP-2 to sterol regulatory element (SRE) region on the iPLA2 promoter, as determined by electrophoretic mobility shift assay (EMSA). Together, results indicate that stimulation of adrenoreceptors causes increased iPLA2 expression via MAP kinase/ERK 1/2 and SREBP, and suggest a possible mechanism for effect of CNS noradrenaline on neural plasticity and crosstalk between sterol and glycerophospholipid mediators, that may play a role in physiological or pathophysiological processes in the brain and other organs.
Collapse
Affiliation(s)
- Wee-Siong Chew
- Department of Anatomy, National University of Singapore, Singapore, 119260, Singapore
| | - Wei-Yi Ong
- Department of Anatomy, National University of Singapore, Singapore, 119260, Singapore. .,Neurobiology and Ageing Research Programme, National University of Singapore, Singapore, 119260, Singapore.
| |
Collapse
|
45
|
Vassas TJ, Burghardt KJ, Ellingrod VL. Pharmacogenomics of sterol synthesis and statin use in schizophrenia subjects treated with antipsychotics. Pharmacogenomics 2014; 15:61-7. [PMID: 24329191 DOI: 10.2217/pgs.13.157] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
OBJECTIVE Patients with schizophrenia treated with antipsychotics often develop metabolic side effects including dyslipidemia. Antipsychotics potentially upregulate gene expression of a lipid metabolism pathway protein called SREBP via SREB transcription factors (SREBFs). Genetic variation within SREBF may contribute to dyslipidemias and lipid medication efficacy within schizophrenia. RESULTS A cross-sectional study of 157 patients were genotyped for SREBF1 (rs11868035) and SREBF2 (rs1057217) variants, and assessed for fasting lipids. The cohort's mean age was 46.6 years, was 64% male and 86% were using atypical antipsychotics. When stratified by statin use, those receiving a statin and carrying the SREBF1 T allele exhibited higher total cholesterol levels (p = 0.01), triglyceride levels (p = 0.04) and low-density lipoprotein levels (p = 0.03). A regression analysis controlling for gender differences in lipids showed that the SREBF1 T allele and statin interaction remained only for total cholesterol levels (F[4,149] = 5.8; p < 0.0001). CONCLUSION For schizophrenia individuals with the SREBF1 rs11868035 T allele, incomplete response to statin medications may be seen. Future investigations may allow for personalizing dyslipidemia treatment based on pharmacogenetics within schizophrenia.
Collapse
Affiliation(s)
- Thomas J Vassas
- Clinical & Translational Pharmacy, University of Michigan College of Pharmacy, 428 Church Street, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|
46
|
Turpin E, Muscat A, Vatier C, Chetrite G, Corruble E, Moldes M, Fève B. Carbamazepine directly inhibits adipocyte differentiation through activation of the ERK 1/2 pathway. Br J Pharmacol 2014; 168:139-50. [PMID: 22889231 DOI: 10.1111/j.1476-5381.2012.02140.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 06/03/2012] [Accepted: 06/27/2012] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND AND PURPOSE Carbamazepine (CBZ), known for its anti-epileptic, analgesic and mood-stabilizing properties, is also known to induce weight gain but the pathophysiology of this adverse effect is still largely unknown. We tested the hypothesis that CBZ could have a direct effect on adipocyte development and metabolism. EXPERIMENTAL RESEARCH: We studied the effects of CBZ on morphological biochemical and molecular markers of adipogenesis, using several pre-adipocyte murine cell lines (3T3-L1, 3T3-F442A and T37i cells) and primary cultures of human pre-adipocytes. To delineate the mechanisms underlying the effect of CBZ, clonal expansion of pre-adipocytes, pro-adipogenic transcription factors, glucose uptake and lipolysis were also examined. KEY RESULTS CBZ strongly inhibited pre-adipocyte differentiation and triglyceride accumulation in a time- and dose-dependent manner in all models. Pleiotropic mechanisms were at the basis of the inhibitory effects of CBZ on adipogenesis and cell lipid accumulation. They included suppression of both clonal expansion and major adipogenic transcription factors such as PPAR-γ and CCAAT/enhancer binding protein-α, activation of basal lipolysis and decrease in insulin-stimulated glucose transport. CONCLUSIONS AND IMPLICATIONS The effect of CBZ on adipogenesis involves activation of the ERK1/2 pathway. Our results show that CBZ acts directly on pre-adipocytes and adipocytes to alter adipose tissue development and metabolism.
Collapse
Affiliation(s)
- E Turpin
- INSERM, U, Le Kremlin-Bicêtre, France
| | | | | | | | | | | | | |
Collapse
|
47
|
Potential mechanisms of atypical antipsychotic-induced hypertriglyceridemia. Psychopharmacology (Berl) 2013; 229:1-7. [PMID: 23832387 DOI: 10.1007/s00213-013-3193-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 06/17/2013] [Indexed: 10/26/2022]
Abstract
RATIONALE AND BACKGROUND The development of atypical antipsychotic (AAP) drugs has brought about dramatic improvement in the function of many patients with schizophrenia and related mental disorders. However, prescription of AAPs is frequently associated with the emergence of weight gain, hypertriglyceridemia, and other metabolic disturbances. Although the mechanisms involved in AAP-induced hypertriglyceridemia remain to be fully elucidated, several studies have proposed that this side effect may be associated with weight gain and obesity. Recently, special emphasis has been placed on the evidence indicating a direct effect of AAPs on triglyceride metabolism. OBJECTIVES In this review, we highlight recent findings discussing the potential mechanisms by which AAPs may contribute to hypertriglyceridemia. In addition, we summarize the adjunctive pharmacologic treatments for AAP-associated dyslipidemia. CONCLUSIONS There is evidence that AAPs may cause hypertriglyceridemia through several possible mechanisms: (1) a direct effect on triglyceride metabolism either by stimulation of hepatic triglyceride production and secretion or by inhibition of lipoprotein lipase-mediated triglyceride hydrolysis and (2) an indirect mechanism associated with obesity and insulin resistance. The practical applications of this manuscript provide new insights for the future investigation of AAPs.
Collapse
|
48
|
Menga A, Infantino V, Iacobazzi F, Convertini P, Palmieri F, Iacobazzi V. Insight into mechanism of in vitro insulin secretion increase induced by antipsychotic clozapine: role of FOXA1 and mitochondrial citrate carrier. Eur Neuropsychopharmacol 2013; 23:978-87. [PMID: 22959654 DOI: 10.1016/j.euroneuro.2012.08.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 08/03/2012] [Accepted: 08/20/2012] [Indexed: 12/13/2022]
Abstract
The use of clozapine and other antipsychotic drugs is known to be associated with a number of adverse metabolic side effects, including diabetes mellitus. These side effects could be, at least in part, the result of impaired islet cell function and abnormal insulin secretion, although the underlying mechanisms are unknown. The aim of this study is the identification of targets for clozapine related to the abnormal insulin secretion. We identify a specific activation of the transcriptional factor FOXA1, but not FOXA2 and FOXA3, by clozapine in HepG2 cells. Clozapine enhances FOXA1 DNA-binding and its transcriptional activity, increasing mitochondrial citrate carrier gene expression, which contains a FOXA1 site in its promoter. Haloperidol, a conventional antipsychotic drug, does not determine any increase of FOXA1 gene expression. We also demonstrate that clozapine upregulates FOXA1 and CIC gene expression in INS-1 cells only at basal glucose concentration. In addition, we find that abnormal insulin secretion in basal glucose conditions could be completely abolished by FOXA1 silencing in INS-1 cells treated with clozapine. The identification of FOXA1 as a novel target for clozapine may shed more light to understand molecular mechanism of abnormal insulin secretion during clozapine treatment.
Collapse
Affiliation(s)
- A Menga
- Department of Biosciences, Biotechnology and Pharmacological Sciences, University of Bari, Via Orabona 4, 70125 Bari, Italy
| | | | | | | | | | | |
Collapse
|
49
|
Moses L, Katz N, Weizman A. Metabolic profiles in adults with autism spectrum disorder and intellectual disabilities. Eur Psychiatry 2013; 29:397-401. [PMID: 23849396 DOI: 10.1016/j.eurpsy.2013.05.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Revised: 05/19/2013] [Accepted: 05/22/2013] [Indexed: 12/24/2022] Open
Abstract
INTRODUCTION Low levels of blood cholesterol have been found in some children with autism spectrum disorders (ASD). Psychotropic medications, commonly used by people with ASD and people with intellectual disabilities (ID) are frequently associated with altered metabolic profiles. PURPOSE We aimed to compare metabolic features of adults with ASD or ID with those of a community-based population. SUBJECTS AND METHODS Data on blood fasting glucose (FBG), lipid profile, liver enzyme profile, TSH, BMI, medications and diagnoses of 80 adults with ASD, 77 adults with ID and 828 control adults were drawn from medical charts/database. Candidates that used glucose or lipid lowering medications were not included. RESULTS Total-cholesterol levels of people with ASD and ID were significantly lower than those of the controls (168.3 ± 32.78, 168.2 ± 32.91, 185.4 ± 40.49 mg/dL, respectively, P<0.001) but after adjusting for gender, age and BMI and using Bonferroni correction, the significance was lost. Compared to controls, ASD and ID had significantly lower FBG (by -14.45 ± 1.81, -14.58 ± 1.54 mg/dl, respectively; P<0.001 for both) and liver enzymes, despite using psychotropic medications. DISCUSSION AND CONCLUSION In contrast to other psychiatric patients receiving similar medications, people with ASD and ID have unaltered lipid profiles and lower glucose and liver enzyme levels compared to a community-based population.
Collapse
Affiliation(s)
- L Moses
- Health Services, Division for Intellectual and Developmental Disabilities, Ministry of Social Affairs and Social Services, Jerusalem, Israel; Maccabi Health Services, South District, Israel.
| | - N Katz
- Geha Mental Health Center, Petah Tikva and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - A Weizman
- Geha Mental Health Center, Petah Tikva and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Laboratory of Biological Psychiatry, Felsenstein Medical Research Center, Sackler Faculty of Medicine, Tel Aviv University, Petah Tikva, Israel
| |
Collapse
|
50
|
Davis SR, Castelo-Branco C, Chedraui P, Lumsden MA, Nappi RE, Shah D, Villaseca P. Understanding weight gain at menopause. Climacteric 2013; 15:419-29. [PMID: 22978257 DOI: 10.3109/13697137.2012.707385] [Citation(s) in RCA: 351] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE The aim of this review was to summarize the literature regarding the impact of the menopause transition on body weight and body composition. METHODS We conducted a search of the literature using Medline (Ovid, 1946-present) and PubMed (1966-2012) for English-language studies that included the following search terms: 'menopause', 'midlife', 'hormone therapy' or 'estrogen' combined with 'obesity', 'body weight' or 'body composition'. RESULTS Whereas weight gain per se cannot be attributed to the menopause transition, the change in the hormonal milieu at menopause is associated with an increase in total body fat and an increase in abdominal fat. Weight excess at midlife is not only associated with a heightened risk of cardiovascular and metabolic disease, but also impacts adversely on health-related quality of life and sexual function. Animal and human studies indicate that this tendency towards central abdominal fat accumulation is ameliorated by estrogen therapy. Studies mostly indicate a reduction in overall fat mass with estrogen and estrogen-progestin therapy, improved insulin sensitivity and a lower rate of development of type 2 diabetes. CONCLUSION The hormonal changes across the perimenopause substantially contribute to increased abdominal obesity which leads to additional physical and psychological morbidity. There is strong evidence that estrogen therapy may partly prevent this menopause-related change in body composition and the associated metabolic sequelae. However, further studies are required to identify the women most likely to gain metabolic benefit from menopausal hormone therapy in order to develop evidence-based clinical recommendations.
Collapse
Affiliation(s)
- S R Davis
- Women's Health Research Program, Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Australia
| | | | | | | | | | | | | | | |
Collapse
|