1
|
Ma L, Shi Q, Ma Q, Wang X, Chen X, Han P, Luo Y, Hu H, Fei X, Wei A. Genome-wide analysis of AP2/ERF transcription factors that regulate fruit development of Chinese prickly ash. BMC PLANT BIOLOGY 2024; 24:565. [PMID: 38879490 PMCID: PMC11179286 DOI: 10.1186/s12870-024-05244-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 06/04/2024] [Indexed: 06/19/2024]
Abstract
BACKGROUND AP2/ERF is a large family of plant transcription factor proteins that play essential roles in signal transduction, plant growth and development, and responses to various stresses. The AP2/ERF family has been identified and verified by functional analysis in various plants, but so far there has been no comprehensive study of these factors in Chinese prickly ash. Phylogenetic, motif, and functional analyses combined with transcriptome analysis of Chinese prickly ash fruits at different developmental stages (30, 60, and 90 days after anthesis) were conducted in this study. RESULTS The analysis identified 146 ZbAP2/ERF genes that could be classified into 15 subgroups. The motif analysis revealed the presence of different motifs or elements in each group that may explain the functional differences between the groups. ZbERF13.2, ZbRAP2-12, and ZbERF2.1 showed high levels of expression in the early stages of fruit development. ZbRAP2-4, and ZbERF3.1 were significantly expressed at the fruit coloring stage (R2 and G2). ZbERF16 were significantly expressed at fruit ripening and expression level increased as the fruit continued to develop. Relative gene expression levels of 6 representative ZbAP2/ERFs assessed by RT-qPCR agreed with transcriptome analysis results. CONCLUSIONS These genes identified by screening can be used as candidate genes that affect fruit development. The results of the analysis can help guide future genetic improvement of Chinese prickly ash and enrich our understanding of AP2/ERF transcription factors and their regulatory functions in plants.
Collapse
Affiliation(s)
- Lei Ma
- College of Forestry, Northwest Agriculture and Forestry University, Yangling, Xianyang, 712100, China
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Yangling, Xianyang, 712100, China
| | - Qianqian Shi
- College of Forestry, Northwest Agriculture and Forestry University, Yangling, Xianyang, 712100, China
| | - Qin Ma
- College of Forestry, Northwest Agriculture and Forestry University, Yangling, Xianyang, 712100, China
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Yangling, Xianyang, 712100, China
| | - Xiaona Wang
- College of Forestry, Northwest Agriculture and Forestry University, Yangling, Xianyang, 712100, China
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Yangling, Xianyang, 712100, China
| | - Xin Chen
- College of Forestry, Northwest Agriculture and Forestry University, Yangling, Xianyang, 712100, China
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Yangling, Xianyang, 712100, China
| | - Peilin Han
- College of Forestry, Northwest Agriculture and Forestry University, Yangling, Xianyang, 712100, China
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Yangling, Xianyang, 712100, China
| | - Yingli Luo
- College of Forestry, Northwest Agriculture and Forestry University, Yangling, Xianyang, 712100, China
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Yangling, Xianyang, 712100, China
| | - Haichao Hu
- College of Forestry, Northwest Agriculture and Forestry University, Yangling, Xianyang, 712100, China
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Yangling, Xianyang, 712100, China
| | - Xitong Fei
- College of Forestry, Northwest Agriculture and Forestry University, Yangling, Xianyang, 712100, China.
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Yangling, Xianyang, 712100, China.
| | - Anzhi Wei
- College of Forestry, Northwest Agriculture and Forestry University, Yangling, Xianyang, 712100, China.
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Yangling, Xianyang, 712100, China.
| |
Collapse
|
2
|
Bian S, Zhao M, Zhang H, Ren Y. Differentially Expressed Genes Identification of Kohlrabi Seedlings ( Brassica oleracea var. caulorapa L.) under Polyethylene Glycol Osmotic Stress and AP2/ERF Transcription Factor Family Analysis. PLANTS (BASEL, SWITZERLAND) 2024; 13:1167. [PMID: 38674577 PMCID: PMC11054715 DOI: 10.3390/plants13081167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/16/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024]
Abstract
Osmotic stress is a condition in which plants do not get enough water due to changes in environmental factors. Plant response to osmotic stress is a complex process involving the interaction of different stress-sensitive mechanisms. Differentially expressed genes and response mechanisms of kohlrabi have not been reported under osmotic stress. A total of 196,642 unigenes and 33,040 differentially expressed unigenes were identified in kohlrabi seedlings under polyethylene glycol osmotic stress. AP2/ERF, NAC and eight other transcription factor family members with a high degree of interaction with CAT and SOD antioxidant enzyme activity were identified. Subsequently, 151 AP2/ERF genes were identified and analyzed. Twelve conserved motifs were searched and all AP2/ERF genes were clustered into four groups. A total of 149 AP2/ERF genes were randomly distributed on the chromosome, and relative expression level analysis showed that BocAP2/ERF genes of kohlrabi have obvious specificity in different tissues. This study lays a foundation for explaining the osmotic stress resistance mechanism of kohlrabi and provides a theoretical basis for the functional analysis of BocAP2/ERF transcription factor family members.
Collapse
Affiliation(s)
- Shuanling Bian
- State Key Laboratory of Plateau Ecology and Agriculture, Laboratory of Research and Utilization of Germplasm Resources in Qinghai-Tibet Plateau, Qinghai University, Xining 810016, China; (S.B.); (H.Z.)
| | - Mengliang Zhao
- State Key Laboratory of Plateau Ecology and Agriculture, Laboratory of Research and Utilization of Germplasm Resources in Qinghai-Tibet Plateau, Qinghai University, Xining 810016, China; (S.B.); (H.Z.)
| | - Huijuan Zhang
- State Key Laboratory of Plateau Ecology and Agriculture, Laboratory of Research and Utilization of Germplasm Resources in Qinghai-Tibet Plateau, Qinghai University, Xining 810016, China; (S.B.); (H.Z.)
| | - Yanjing Ren
- State Key Laboratory of Plateau Ecology and Agriculture, Laboratory of Research and Utilization of Germplasm Resources in Qinghai-Tibet Plateau, Qinghai University, Xining 810016, China; (S.B.); (H.Z.)
- Key Laboratory of Germplasm Resources Protection and Genetic Improvement of the Qinghai-Tibet Plateau in Ministry of Agriculture and Rural, Xining 810016, China
| |
Collapse
|
3
|
Cao L, Wang G, Ye X, Li F, Wang S, Li H, Wang P, Wang J. Physiological, Metabolic, and Transcriptomic Analyses Reveal Mechanisms of Proliferation and Somatic Embryogenesis of Litchi ( Litchi chinensis Sonn.) Embryogenic Callus Promoted by D-Arginine Treatment. Int J Mol Sci 2024; 25:3965. [PMID: 38612774 PMCID: PMC11012067 DOI: 10.3390/ijms25073965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/28/2024] [Accepted: 04/01/2024] [Indexed: 04/14/2024] Open
Abstract
D-arginine (D-Arg) can promote embryogenic callus (EC) proliferation and increase the rate of somatic embryo induction of litchi (Litchi chinensis Sonn.), yet the mechanism underlying the processes is incompletely understood. To investigate the mechanism, physiological responses of polyamines (PAs) [putrescine (Put), spermidine (Spd), and spermine (Spm)] were investigated for D-Arg-treated litchi EC and enzyme activity related to polyamine metabolism, plant endogenous hormones, and polyamine- and embryogenic-related genes were explored. Results showed that the exogenous addition of D-Arg reduces the activity of diamine oxidase (DAO) and polyamine oxidase (PAO) in EC, reduces the production of H2O2, promotes EC proliferation, and increases the (Spd + Spm)/Put ratio to promote somatic embryo induction. Exogenous D-Arg application promoted somatic embryogenesis (SE) by increasing indole-3-acetyl glycine (IAA-Gly), kinetin-9-glucoside (K9G), and dihydrozeatin-7-glucoside (DHZ7G) levels and decreasing trans-zeatin riboside (tZR), N-[(-)-jasmonoyl]-(L)-valine (JA-Val), jasmonic acid (JA), and jasmonoyl-L-isoleucine (Ja-ILE) levels on 18 d, as well as promoting cell division and differentiation. The application of exogenous D-Arg regulated EC proliferation and somatic embryo induction by altering gene expression levels of the WRKY family, AP2/ERF family, C3H family, and C2H2 family. These results indicate that exogenous D-Arg could regulate the proliferation of EC and the SE induction of litchi by changing the biosynthesis of PAs through the alteration of gene expression pattern and endogenous hormone metabolism.
Collapse
Affiliation(s)
- Ludan Cao
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China;
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (G.W.); (F.L.); (S.W.); (H.L.)
| | - Guo Wang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (G.W.); (F.L.); (S.W.); (H.L.)
| | - Xiuxu Ye
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China;
| | - Fang Li
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (G.W.); (F.L.); (S.W.); (H.L.)
| | - Shujun Wang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (G.W.); (F.L.); (S.W.); (H.L.)
| | - Huanling Li
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (G.W.); (F.L.); (S.W.); (H.L.)
| | - Peng Wang
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China;
| | - Jiabao Wang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (G.W.); (F.L.); (S.W.); (H.L.)
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China;
| |
Collapse
|
4
|
Wu YY, Wang LL, Lin YL, Li X, Liu XF, Xu ZH, Fu BL, Wang WQ, Allan AC, Tu MY, Yin XR. AcHZP45 is a repressor of chlorophyll biosynthesis and activator of chlorophyll degradation in kiwifruit. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:204-218. [PMID: 37712824 DOI: 10.1093/jxb/erad361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/12/2023] [Indexed: 09/16/2023]
Abstract
The degradation of chlorophyll during fruit development is essential to reveal a more 'ripe' color that signals readiness to wild dispersers of seeds and the human consumer. Here, comparative biochemical analysis of developing fruit of Actinidia deliciosa cv. Xuxiang ('XX', green-fleshed) and Actinidia chinensis cv. Jinshi No.1 ('JS', yellow-fleshed) indicated that variation in chlorophyll content is the major contributor to differences in flesh color. Four differentially expressed candidate genes were identified: the down-regulated genes AcCRD1 and AcPOR1 involved in chlorophyll biosynthesis, and the up-regulated genes AcSGR1 and AcSGR2 driving chlorophyll degradation. Prochlorophyllide and chlorophyllide, the metabolites produced by AcCRD1 and AcPOR1, progressively reduced in 'JS', but not in 'XX', indicating that chlorophyll biosynthesis was less active in yellow-fleshed fruit. AcSGR1 and AcSGR2 were verified to be involved in chlorophyll degradation, using both transient expression in tobacco and stable overexpression in kiwifruit. Furthermore, a homeobox-leucine zipper (HD-Zip II), AcHZP45, showed significantly increased expression during 'JS' fruit ripening, which led to both repressed expression of AcCRD1 and AcPOR1 and activated expression of AcSGR1 and AcSGR2. Collectively, the present study indicated that different dynamics of chlorophyll biosynthesis and degradation coordinate the changes in chlorophyll content in kiwifruit flesh, which are orchestrated by the key transcription factor AcHZP45.
Collapse
Affiliation(s)
- Ying-Ying Wu
- Horticulture Department, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Ling-Li Wang
- Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
- Key Laboratory of Horticultural Crop Biology and Germplasm Creation in Southwestern China, Ministry of Agriculture and Rural Affairs, Chengdu 610066, China
| | - Yi-Lai Lin
- Horticulture Department, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Xiang Li
- School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Xiao-Fen Liu
- Horticulture Department, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Zi-Hong Xu
- Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
- Key Laboratory of Horticultural Crop Biology and Germplasm Creation in Southwestern China, Ministry of Agriculture and Rural Affairs, Chengdu 610066, China
| | - Bei-Ling Fu
- Horticulture Department, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Wen-Qiu Wang
- Horticulture Department, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Andrew C Allan
- The New Zealand Institute for Plant & Food Research Limited (Plant & Food Research) Mt Albert, Private Bag 92169, Auckland 1142, New Zealand
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Mei-Yan Tu
- Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
- Key Laboratory of Horticultural Crop Biology and Germplasm Creation in Southwestern China, Ministry of Agriculture and Rural Affairs, Chengdu 610066, China
| | - Xue-Ren Yin
- Horticulture Department, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
5
|
Zhou Y, Zheng R, Peng Y, Chen J, Zhu X, Xie K, Su Q, Huang R, Zhan S, Peng D, Zhao K, Liu ZJ. Bioinformatic Assessment and Expression Profiles of the AP2/ERF Superfamily in the Melastoma dodecandrum Genome. Int J Mol Sci 2023; 24:16362. [PMID: 38003550 PMCID: PMC10671166 DOI: 10.3390/ijms242216362] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/07/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
AP2/ERF transcription factors play crucial roles in various biological activities, including plant growth, development, and responses to biotic and abiotic stressors. However, limited research has been conducted on the AP2/ERF genes of Melastoma dodecandrum for breeding of this potential fruit crop. Leveraging the recently published whole genome sequence, we conducted a comprehensive assessment of this superfamily and explored the expression patterns of AP2/ERF genes at a genome-wide level. A significant number of genes, totaling 218, were discovered to possess the AP2 domain sequence and displayed notable structural variations among five subfamilies. An uneven distribution of these genes was observed on 12 pseudochromosomes as the result of gene expansion facilitated by segmental duplications. Analysis of cis-acting elements within promoter sites and 87.6% miRNA splicing genes predicted their involvement in multiple hormone responses and abiotic stresses through transcriptional and post-transcriptional regulations. Transcriptome analysis combined with qRT-PCR results indicated that certain candidate genes are involved in tissue formation and the response to developmental changes induced by IAA hormones. Overall, our study provides valuable insights into the evolution of ERF genes in angiosperms and lays a solid foundation for future breeding investigations aimed at improving fruit quality and enhancing adaptation to barren land environments.
Collapse
Affiliation(s)
- Yuzhen Zhou
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (R.Z.); (Y.P.); (J.C.); (X.Z.); (K.X.); (Q.S.); (R.H.); (S.Z.); (D.P.)
| | - Ruiyue Zheng
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (R.Z.); (Y.P.); (J.C.); (X.Z.); (K.X.); (Q.S.); (R.H.); (S.Z.); (D.P.)
| | - Yukun Peng
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (R.Z.); (Y.P.); (J.C.); (X.Z.); (K.X.); (Q.S.); (R.H.); (S.Z.); (D.P.)
| | - Jiemin Chen
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (R.Z.); (Y.P.); (J.C.); (X.Z.); (K.X.); (Q.S.); (R.H.); (S.Z.); (D.P.)
| | - Xuanyi Zhu
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (R.Z.); (Y.P.); (J.C.); (X.Z.); (K.X.); (Q.S.); (R.H.); (S.Z.); (D.P.)
| | - Kai Xie
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (R.Z.); (Y.P.); (J.C.); (X.Z.); (K.X.); (Q.S.); (R.H.); (S.Z.); (D.P.)
| | - Qiuli Su
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (R.Z.); (Y.P.); (J.C.); (X.Z.); (K.X.); (Q.S.); (R.H.); (S.Z.); (D.P.)
| | - Ruiliu Huang
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (R.Z.); (Y.P.); (J.C.); (X.Z.); (K.X.); (Q.S.); (R.H.); (S.Z.); (D.P.)
| | - Suying Zhan
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (R.Z.); (Y.P.); (J.C.); (X.Z.); (K.X.); (Q.S.); (R.H.); (S.Z.); (D.P.)
| | - Donghui Peng
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (R.Z.); (Y.P.); (J.C.); (X.Z.); (K.X.); (Q.S.); (R.H.); (S.Z.); (D.P.)
| | - Kai Zhao
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Zhong-Jian Liu
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (R.Z.); (Y.P.); (J.C.); (X.Z.); (K.X.); (Q.S.); (R.H.); (S.Z.); (D.P.)
| |
Collapse
|
6
|
Lv Y, Ren S, Wu B, Jiang C, Jiang B, Zhou B, Zhong G, Zhong Y, Yan H. Transcriptomic and physiological comparison of Shatangju (Citrus reticulata) and its late-maturing mutant provides insights into auxin regulation of citrus fruit maturation. TREE PHYSIOLOGY 2023; 43:1841-1854. [PMID: 37462512 DOI: 10.1093/treephys/tpad089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 07/09/2023] [Indexed: 10/12/2023]
Abstract
Previous studies have shown that abscisic acid (ABA) and ethylene are involved in pulp maturation and peel coloration in the nonclimacteric citrus fruits. There are also signs indicating that other plant hormones may play some roles in citrus fruit ripening. In this study, we compared profiles of genome-wide gene expression and changes in hormones and peel pigments between fruits of Shatangju mandarin (Citrus reticulata Blanco, designated WT) and its natural mutant, Yuenongwanju (designated MT). The MT fruit matures ~2 months later than the WT fruit. Significant differences in fruit diameter, total soluble solids, titratable acid content, chlorophylls and carotenoids were detected between the fruits of the two genotypes at the sampled time points. Genome-wide transcriptome profiling showed that many genes involved in auxin and ABA metabolism and/or signaling pathways were differentially expressed between the MT and the WT fruits. Importantly, the expression of CrYUCCA8 was significantly lower and the expression of CrNCED5 was significantly higher in WT than in MT fruits at 230 and 250 DPA, respectively. In addition, the indole-3-acetic acid (IAA) level in the MT fruit was significantly higher than that in the WT counterpart, whereas a significantly lower level of ABA was detected in the mutant. Treatment of the WT fruit with exogenous IAA significantly delayed fruit maturation. Our results provide experimental evidence supporting the notion that auxin is a negative regulator of fruit maturation in citrus.
Collapse
Affiliation(s)
- Yuanda Lv
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences/Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs/Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, No. 80, Dafeng No. 2 street, Tianhe District, Guangzhou 510650, Guangdong Province, China
| | - Shuang Ren
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences/Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs/Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, No. 80, Dafeng No. 2 street, Tianhe District, Guangzhou 510650, Guangdong Province, China
| | - Bo Wu
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences/Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs/Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, No. 80, Dafeng No. 2 street, Tianhe District, Guangzhou 510650, Guangdong Province, China
| | - Caizhong Jiang
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Bo Jiang
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences/Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs/Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, No. 80, Dafeng No. 2 street, Tianhe District, Guangzhou 510650, Guangdong Province, China
| | - Birong Zhou
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences/Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs/Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, No. 80, Dafeng No. 2 street, Tianhe District, Guangzhou 510650, Guangdong Province, China
| | - Guangyan Zhong
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences/Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs/Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, No. 80, Dafeng No. 2 street, Tianhe District, Guangzhou 510650, Guangdong Province, China
| | - Yun Zhong
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences/Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs/Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, No. 80, Dafeng No. 2 street, Tianhe District, Guangzhou 510650, Guangdong Province, China
| | - Huaxue Yan
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences/Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs/Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, No. 80, Dafeng No. 2 street, Tianhe District, Guangzhou 510650, Guangdong Province, China
| |
Collapse
|
7
|
He W, Luo L, Xie R, Chai J, Wang H, Wang Y, Chen Q, Wu Z, Yang S, Li M, Lin Y, Zhang Y, Luo Y, Zhang Y, Tang H, Wang X. Genome-Wide Identification and Functional Analysis of the AP2/ERF Transcription Factor Family in Citrus Rootstock under Waterlogging Stress. Int J Mol Sci 2023; 24:ijms24108989. [PMID: 37240335 DOI: 10.3390/ijms24108989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/03/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Citrus plants are sensitive to waterlogging, and the roots are the first plant organ affected by hypoxic stress. The AP2/ERF (APETALA2/ethylene-responsive element binding factors) can modulate plant growth and development. However, the information on AP2/ERF genes in citrus rootstock and their involvement in waterlogging conditions is limited. Previously, a rootstock cultivar, Citrus junos cv. Pujiang Xiangcheng was found to be highly tolerant to waterlogging stress. In this study, a total of 119 AP2/ERF members were identified in the C. junos genome. Conserved motif and gene structure analyses indicated the evolutionary conservation of PjAP2/ERFs. Syntenic gene analysis revealed 22 collinearity pairs among the 119 PjAP2/ERFs. The expression profiles under waterlogging stress showed differential expression of PjAP2/ERFs, of which, PjERF13 was highly expressed in both root and leaf. Furthermore, the heterologous expression of PjERF13 significantly enhanced the tolerance of transgenic tobacco to waterlogging stress. The overexpression of PjERF13 decreased the oxidative damage in the transgenic plants by reducing the H2O2 and MDA contents and increasing the antioxidant enzyme activities in the root and leaf. Overall, the current study provided basic information on the AP2/ERF family in the citrus rootstock and uncovered their potential function in positively regulating the waterlogging stress response.
Collapse
Affiliation(s)
- Wen He
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Liang Luo
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Rui Xie
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiufeng Chai
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Hao Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Qing Chen
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhiwei Wu
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Shaofeng Yang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Mengyao Li
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuanxiu Lin
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yunting Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Ya Luo
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yong Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Haoru Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaorong Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
8
|
Xu Y, Li X, Yang X, Wassie M, Shi H. Genome-wide identification and molecular characterization of the AP2/ERF superfamily members in sand pear (Pyrus pyrifolia). BMC Genomics 2023; 24:32. [PMID: 36658499 PMCID: PMC9854111 DOI: 10.1186/s12864-022-09104-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 12/29/2022] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND 'Whangkeumbae' (Pyrus pyrifolia) is a typical climacteric fruit variety of sand pear with excellent taste. However, the rapid postharvest ethylene production limits the shelf life of 'Whangkeumbae' fruit. AP2/ERF superfamily is a large family of transcription factors involved in plant growth and development, including fruit ripening and senescence through the ethylene signaling pathway. The numbers and functions of AP2/ERF superfamily members in sand pear remain largely unknown. RESULTS In this study, a total of 234 AP2/ERF family members were identified through the transcriptome of Pyrus pyrifolia 'Whangkeumbae' (17 genes) and Pyrus pyrifolia genome (223 genes) analyses. Six genes (Accession: EVM0023062.1, EVM0034833.1, EVM0027049.1, EVM0034047.1, EVM0028755.1, EVM0015862.1) identified via genome analysis shared 100% identity with PpERF14-L, PpERF5-L, PpERF3a, PpERF3, PpERF017 and PpERF098, respectively, which were identified from transcriptome sequencing. Further, the AP2/ERF superfamily members were divided into AP2, ERF, and RAV subfamilies, each comprising 38, 188, and 8 members, respectively. Tissue-specific expression analysis showed that PpERF061, PpERF113, PpERF51L-B, PpERF5-L, and PpERF017 were predominantly expressed in fruits than in other tissues. Additionally, PpERF5-L and PpERF017 showed higher expressions at the early stage of fruit development. While, PpERF51B-L exhibited higher expression during the fruit ripening stage. Besides, PpERF061 and PpERF113 had pronounced expressions during fruit senescence. CONCLUSION These results indicate that PpERF061, PpERF113, PpERF51L-B, PpERF5-L, and PpERF017 could play crucial roles in sand pear fruit development, ripening, and senescence. Overall, this study provides valuable information for further functional analysis of the AP2/ERF genes during fruit ripening and senescence in sand pear.
Collapse
Affiliation(s)
- Yue Xu
- grid.274504.00000 0001 2291 4530College of Horticulture, Hebei Agricultural University, Baoding, 071001 Hebei China
| | - Xiaona Li
- grid.274504.00000 0001 2291 4530College of Horticulture, Hebei Agricultural University, Baoding, 071001 Hebei China
| | - Xiong Yang
- grid.274504.00000 0001 2291 4530College of Horticulture, Hebei Agricultural University, Baoding, 071001 Hebei China
| | - Misganaw Wassie
- grid.458515.80000 0004 1770 1110Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074 Hubei China
| | - Haiyan Shi
- grid.274504.00000 0001 2291 4530College of Horticulture, Hebei Agricultural University, Baoding, 071001 Hebei China
| |
Collapse
|
9
|
Jin X, Cheng C, Qi Q, Zhou S, Wang C, Zhang Y, Sun C, Wang Y, Dang R, Yang S. PpERF1b-like enhances lignin synthesis in pear ( Pyrus pyrifolia) 'hard-end' fruit. FRONTIERS IN PLANT SCIENCE 2022; 13:1087388. [PMID: 36589086 PMCID: PMC9797680 DOI: 10.3389/fpls.2022.1087388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
The hard-end is a disorder of pear fruit, however, the mechanisms underlying its development remain unknown. In this study, we found that the hard-end fruit contained a higher transcript abundance level of ethylene-response factor 1b-like (PpERF1b-like) and released more ethylene compared to normal pear. In the ethephon treated normal fruit, flesh tissues accumulated more lignin together with elevated expression of PpERF1b-like. Overexpressing PpERF1b-like transiently in fruit and stably in callus increased lignin accumulation and the expression of lignin biosynthesis genes; the opposite results were observed in fruit showing repressed expression of PpERF1b-like. These results confirmed the role of PpERF1b-like in promoting hard-end formation through promoting lignin synthesis. This study provided valuable information for further clarifying the regulation of hard-end formation in pear.
Collapse
Affiliation(s)
- Xiaoshan Jin
- College of Horticulture, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Chenxia Cheng
- College of Horticulture, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Qi Qi
- College of Horticulture, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Suping Zhou
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, Nashville, TN, United States
| | - Caihong Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Yong Zhang
- College of Horticulture, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Chao Sun
- College of Horticulture, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Yuling Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Ruihong Dang
- Bioengineering College, Aks Vocational and Technical College, Wensu County, Aks, Xinjiang, China
| | - Shaolan Yang
- College of Horticulture, Qingdao Agricultural University, Qingdao, Shandong, China
| |
Collapse
|
10
|
Genome-Wide Analysis of the ERF Family and Identification of Potential Genes Involved in Fruit Ripening in Octoploid Strawberry. Int J Mol Sci 2022; 23:ijms231810550. [PMID: 36142464 PMCID: PMC9502190 DOI: 10.3390/ijms231810550] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/31/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
Ethylene response factors (ERFs) belonging to the APETALA2/ERF superfamily acted at the end of the ethylene signaling pathway, and they were found to play important roles in plant growth and development. However, the information of ERF genes in strawberry and their involvement in fruit ripening have been limited. Here, a total of 235 ERF members were identified from 426 AP2/ERF genes at octoploid strawberry genome level and classified into six subgroups according to their sequence characteristics and phylogenetic relationship. Conserved motif and gene structure analysis supported the evolutionary conservation of FaERFs. Syntenic analysis showed that four types of duplication events occurred during the expansion of FaERF gene family. Of these, WGD/segmental duplication played a major role. Transcriptomic data of FaERF genes during fruit ripening and in response to abscisic acid screened one activator (FaERF316) and one repressor (FaERF118) that were involved in fruit ripening. Transcriptional regulation analysis showed some transcription factors related to ripening such as ABI4, TCP15, and GLK1 could bind to FaERF316 or FaERF118 promoters, while protein-protein interaction analysis displayed some proteins associated with plant growth and development could interact with FaERF118 or FaERF316. These results suggested that FaERF118 and FaERF316 were potential genes to regulate strawberry ripening. In summary, the present study provides the comprehensive and systematic information on FaERF family evolution and gains insights into FaERF's potential regulatory mechanism in strawberry ripening.
Collapse
|
11
|
Gao H, Wu X, Yang X, Sun M, Xiao Y, Peng F. Silicon inhibits gummosis in peach via ethylene and PpERF-PpPG1 pathway. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 322:111362. [PMID: 35753620 DOI: 10.1016/j.plantsci.2022.111362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/31/2022] [Accepted: 06/19/2022] [Indexed: 06/15/2023]
Abstract
Silicon (Si) is abundant in nature, and it has been proved to be beneficial for the healthy growth and development of many plant species, improve plant stress resistance. Gummosis in peach is an invasive disease that causes widespread and serious damage. Mechanical damage and ethylene (ETH) can induce gummosis in peach shoots in the field. In this research, we found that Si as a chemical substance or signal to enhance plant resistance can reduce the synthesis of ETH, thereby inhibiting gummosis in peach. The results showed that Si can decrease the rate of gummosis, reduce the expression level of PpACS1 (1-aminocyclopropane -1-carboxylate synthase gene) and reduce the enzyme activity of polygalacturonase (PG). It was further discovered that Si can regulate the gene expression of PpERF21 and PpERF27. Yeast one-hybrid and dual-luciferase reporter assays showed that PpERF21 and PpERF27, through direct interaction with the promoter of PpPG1, inhibited the transcriptional activation of PpPG1. Overexpression of PpERF21 and PpERF27 effectively reduced fruit colloid production when bacterial cells harbouring the expression vector were used to instantaneously infect peach fruit. These results show that Si can inhibit the synthesis of ETH and mediate PpERF21 and PpERF27 expression to inhibit the expression of PpPG1, thereby inhibiting gummosis in peach.
Collapse
Affiliation(s)
- Huaifeng Gao
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, China
| | - Xuelian Wu
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, China
| | - Xiaoqing Yang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, China
| | - Maoxiang Sun
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, China
| | - Yuansong Xiao
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, China.
| | - Futian Peng
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, China.
| |
Collapse
|
12
|
Mitalo OW, Asiche WO, Kang SW, Ezura H, Akagi T, Kubo Y, Ushijima K. Examining the Role of Low Temperature in Satsuma Mandarin Fruit Peel Degreening via Comparative Physiological and Transcriptomic Analysis. FRONTIERS IN PLANT SCIENCE 2022; 13:918226. [PMID: 35909736 PMCID: PMC9328020 DOI: 10.3389/fpls.2022.918226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Peel degreening is the most conspicuous aspect of fruit ripening in many citrus fruits because of its importance for marketability. In this study, peel degreening in response to propylene (an ethylene analog) and at varying storage temperatures was characterized in Satsuma mandarin (Citrus unshiu Marc.) fruit. Propylene treatment triggered rapid peel degreening (within 4-6 days), indicated by an increase in the citrus color index (CCI) and chlorophyll loss. Peel degreening was also observed in fruit at 10°C and 15°C after 28-42 days, with gradual CCI increase and chlorophyll reduction. However, fruit at 5°C, 20°C, and 25°C remained green, and no substantial changes in peel CCI and chlorophyll content were recorded during the 42-day storage duration. The transcriptomes of peels of fruit treated with propylene for 4 days and those stored at varying temperatures for 28 days were then analyzed by RNA-Seq. We identified three categories of differentially expressed genes that were regulated by (i) propylene (and by analogy, ethylene) alone, (ii) low temperature (5°C, 10°C, or 15°C vs. 25°C) alone, and (iii) either propylene or low temperature. Gene-encoding proteins associated with chlorophyll degradation (such as CuSGR1, CuNOL, CuACD2, CuCAB2, and CuLHCB2) and a transcription factor (CuERF114) were differentially expressed by propylene or low temperature. To further examine temperature-induced pathways, we also monitored gene expression during on-tree fruit maturation vs. postharvest. The onset of on-tree peel degreening coincided with autumnal drops in field temperatures, and it was accompanied by differential expression of low temperature-regulated genes. On the contrary, genes that were exclusively regulated by propylene (such as CuCOPT1 and CuPOX-A2) displayed insignificant expression changes during on-tree peel degreening. These findings indicate that low temperatures could be involved in the fruit ripening-related peel degreening independently of ethylene.
Collapse
Affiliation(s)
- Oscar W. Mitalo
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - William O. Asiche
- Department of Research and Development, Del Monte Kenya Ltd, Thika, Kenya
| | - Seung W. Kang
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Tsukuba Plant Innovation Research Center, University of Tsukuba, Tsukuba, Japan
| | - Hiroshi Ezura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Tsukuba Plant Innovation Research Center, University of Tsukuba, Tsukuba, Japan
| | - Takashi Akagi
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Yasutaka Kubo
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Koichiro Ushijima
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| |
Collapse
|
13
|
Zhu K, Sun Q, Chen H, Mei X, Lu S, Ye J, Chai L, Xu Q, Deng X. Ethylene activation of carotenoid biosynthesis by a novel transcription factor CsERF061. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:3137-3154. [PMID: 33543285 DOI: 10.1093/jxb/erab047] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 02/01/2021] [Indexed: 05/24/2023]
Abstract
Chromoplast-specific lycopene β-cyclase (LCYb2) is a critical carotenogenic enzyme, which controls the massive accumulation of downstream carotenoids, especially provitamin A carotenoids, in citrus. Its regulatory metabolism is largely unknown. Here, we identified a group I ethylene response factor, CsERF061, in citrus by yeast one-hybrid screen with the promoter of LCYb2. The expression of CsERF061 was induced by ethylene. Transcript and protein levels of CsERF061 were increased during fruit development and coloration. CsERF061 is a nucleus-localized transcriptional activator, which directly binds to the promoter of LCYb2 and activates its expression. Overexpression of CsERF061 in citrus calli and tomato fruits enhanced carotenoid accumulation by increasing the expression of key carotenoid pathway genes, and increased the number of chromoplasts needed to sequester the elevated concentrations of carotenoids, which was accompanied by changes in the concentrations of abscisic acid and gibberellin. Electrophoretic mobility shift and dual-luciferase assays verified that CsERF061 activates the promoters of nine other key carotenoid pathway genes, PSY1, PDS, CRTISO, LCYb1, BCH, ZEP, NCED3, CCD1, and CCD4, revealing the multitargeted regulation of CsERF061. Collectively, our findings decipher a novel regulatory network of carotenoid enhancement by CsERF061, induced by ethylene, which will be useful for manipulating carotenoid accumulation in citrus and other plants.
Collapse
Affiliation(s)
- Kaijie Zhu
- Key Laboratory of Horticultural Plant Biology of MOE (Ministry of Education), Huazhong Agricultural University, Wuhan, Hubei, China
| | - Quan Sun
- Key Laboratory of Horticultural Plant Biology of MOE (Ministry of Education), Huazhong Agricultural University, Wuhan, Hubei, China
| | - Hongyan Chen
- Key Laboratory of Horticultural Plant Biology of MOE (Ministry of Education), Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xuehan Mei
- Key Laboratory of Horticultural Plant Biology of MOE (Ministry of Education), Huazhong Agricultural University, Wuhan, Hubei, China
| | - Suwen Lu
- Key Laboratory of Horticultural Plant Biology of MOE (Ministry of Education), Huazhong Agricultural University, Wuhan, Hubei, China
| | - Junli Ye
- Key Laboratory of Horticultural Plant Biology of MOE (Ministry of Education), Huazhong Agricultural University, Wuhan, Hubei, China
| | - Lijun Chai
- Key Laboratory of Horticultural Plant Biology of MOE (Ministry of Education), Huazhong Agricultural University, Wuhan, Hubei, China
| | - Qiang Xu
- Key Laboratory of Horticultural Plant Biology of MOE (Ministry of Education), Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xiuxin Deng
- Key Laboratory of Horticultural Plant Biology of MOE (Ministry of Education), Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
14
|
Zhao C, Liu X, Gong Q, Cao J, Shen W, Yin X, Grierson D, Zhang B, Xu C, Li X, Chen K, Sun C. Three AP2/ERF family members modulate flavonoid synthesis by regulating type IV chalcone isomerase in citrus. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:671-688. [PMID: 33089636 PMCID: PMC8051604 DOI: 10.1111/pbi.13494] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/22/2020] [Accepted: 09/30/2020] [Indexed: 05/19/2023]
Abstract
Flavanones and flavones are excellent source of bioactive compounds but the molecular basis of their highly efficient production remains elusive. Chalcone isomerase (CHI) family proteins play essential roles in flavonoid biosynthesis but little are known about the transcription factors controlling their gene expression. Here, we identified a type IV CHI (designated as CitCHIL1) from citrus which enhances the accumulation of citrus flavanones and flavones (CFLs). CitCHIL1 participates in a CFL biosynthetic metabolon and assists the cyclization of naringenin chalcone to (2S)-naringenin, which leads to the efficient influx of substrates to chalcone synthase (CHS) and improves the catalytic efficiency of CHS. Overexpressing CitCHIL1 in Citrus and Arabidopsis significantly increased flavonoid content and RNA interference-induced silencing of CitCHIL1 in citrus led to a 43% reduction in CFL content. Three AP2/ERF transcription factors were identified as positive regulators of the CitCHIL1 expression. Of these, two dehydration-responsive element binding (DREB) proteins, CitERF32 and CitERF33, activated the transcription by directly binding to the CGCCGC motif in the promoter, while CitRAV1 (RAV: related to ABI3/VP1) formed a transcription complex with CitERF33 that strongly enhanced the activation efficiency and flavonoid accumulation. These results not only illustrate the specific function that CitCHIL1 executes in CFL biosynthesis but also reveal a new DREB-RAV transcriptional complex regulating flavonoid production.
Collapse
Affiliation(s)
- Chenning Zhao
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant GrowthDevelopment and Quality ImprovementZhejiang UniversityHangzhouChina
| | - Xiaojuan Liu
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant GrowthDevelopment and Quality ImprovementZhejiang UniversityHangzhouChina
| | - Qin Gong
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant GrowthDevelopment and Quality ImprovementZhejiang UniversityHangzhouChina
| | - Jinping Cao
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant GrowthDevelopment and Quality ImprovementZhejiang UniversityHangzhouChina
| | - Wanxia Shen
- Citrus Research InstituteSouthwest University/Chinese Academy of Agricultural SciencesChongqingChina
| | - Xueren Yin
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant GrowthDevelopment and Quality ImprovementZhejiang UniversityHangzhouChina
| | - Donald Grierson
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant GrowthDevelopment and Quality ImprovementZhejiang UniversityHangzhouChina
- Division of Plant and Crop SciencesSchool of BiosciencesUniversity of NottinghamLoughboroughUK
| | - Bo Zhang
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant GrowthDevelopment and Quality ImprovementZhejiang UniversityHangzhouChina
| | - Changjie Xu
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant GrowthDevelopment and Quality ImprovementZhejiang UniversityHangzhouChina
| | - Xian Li
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant GrowthDevelopment and Quality ImprovementZhejiang UniversityHangzhouChina
| | - Kunsong Chen
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant GrowthDevelopment and Quality ImprovementZhejiang UniversityHangzhouChina
| | - Chongde Sun
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant GrowthDevelopment and Quality ImprovementZhejiang UniversityHangzhouChina
| |
Collapse
|
15
|
Gao J, Liang D, Xu Q, Yang F, Zhu G. Involvement of CsERF2 in leaf variegation of Cymbidium sinense 'Dharma'. PLANTA 2020; 252:29. [PMID: 32725285 PMCID: PMC7387381 DOI: 10.1007/s00425-020-03426-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 07/08/2020] [Indexed: 05/15/2023]
Abstract
MAIN CONCLUSION CsERF2, an ethylene response factor, plays a role in leaf variegation. Leaf variegation is a main ornamental characteristic in Cymbidium sinense (C. sinense). However, the mechanisms of leaf color variegation remain largely unclear. In the present study, we analyzed the cytological and physiological features, as well as molecular analyses of leaves from wild-type (WT) and leaf variegation mutants of Cymbidium sinense 'Dharma'. Chloroplasts with typical and functional structures were discovered in WT and green sectors of the mutants leaves (MG), but not in yellow sectors of the mutant leaves (MY). The activities of key enzymes involved in chlorophyll (Chl) degradation and their substrate contents were significantly increased in MY. Genes related to Chl degradation also showed a significant up-regulation in MY. Transcriptomic analysis showed that the expression of all identified ethylene response factors (ERFs) was significantly up-regulated, and the 1-aminocyclopropane-1-carboxylic acid (ACC) content in MY was significantly higher compared with MG. QRT-PCR analysis validated that the expression levels of genes related to Chl degradation could be positively affected by ethylene (ETH) treatment. Stable overexpression of CsERF2 in Nicotiana tabacum (N. tabacum) led to a decrease in Chl content and abnormal chloroplast. Transcriptomic analysis and qRT-PCR results showed that the KEGG pathway related to chloroplast development and function showed significant change in transgenic N. tabacum. Therefore, the leaf color formation of C. sinense was greatly affected by chloroplast development and Chl metabolism. CsERF2 played an important role in leaf variegation of C. sinense.
Collapse
Affiliation(s)
- Jie Gao
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 People’s Republic of China
| | - Di Liang
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 People’s Republic of China
| | - Qingquan Xu
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 People’s Republic of China
| | - Fengxi Yang
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 People’s Republic of China
| | - Genfa Zhu
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 People’s Republic of China
| |
Collapse
|
16
|
Tripathi S, Srivastava Y, Sangwan RS, Sangwan NS. In silico mining and functional analysis of AP2/ERF gene in Withania somnifera. Sci Rep 2020; 10:4877. [PMID: 32184405 PMCID: PMC7078187 DOI: 10.1038/s41598-020-60090-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 11/28/2019] [Indexed: 12/03/2022] Open
Abstract
Withania somnifera owing to its strong and remarkable stress tolerance property is a reliable candidate for the determination of genes involved in mechanism of adaption/tolerance of various stress conditions. 187 AP2/ERF gene related transcripts (GRTs) were identified during comprehensive search in W. somnifera transcriptome repertoire. Major hits in homology search were observed from the model plant Arabidopsis and members of Solanaceae family. Cloning, expression analysis of the gene and genetic transient transformation with the gene (WsAP2) were performed to predict its functional role in planta. Enhanced expression of some of the pathway genes for terpenoid biosynthesis was observed in transformed tissues in comparison to the control tissues. It is speculated that WsAP2 gene crucially regulates the expression of GGPPS gene in addition to the regulation of other important genes of terpenoid pathway via induction of expression of other genes such as HMGR, CAS, DXS and DXR. To the best of our knowledge, this is the first report representing detailed study of AP2/ERF gene family in W. somnifera. It is also suggested from the study that gene might have role in eliciting responses to combat stress and attribute the strong stress tolerant property associated with the plant.
Collapse
Affiliation(s)
- Sandhya Tripathi
- Department of Metabolic and Structural Biology, CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, India.,Academy of Scientific and Innovative Research (AcSIR) (An Institution of National Importance by Act of Parliament), CSIR-HRDC Campus, Kamla Nehru Nagar, Sector-19, Ghaziabad, 201002, UP, India
| | - Yashdeep Srivastava
- Department of Metabolic and Structural Biology, CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, India
| | - Rajender Singh Sangwan
- Department of Metabolic and Structural Biology, CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, India.,Academy of Scientific and Innovative Research (AcSIR) (An Institution of National Importance by Act of Parliament), CSIR-HRDC Campus, Kamla Nehru Nagar, Sector-19, Ghaziabad, 201002, UP, India
| | - Neelam Singh Sangwan
- Department of Metabolic and Structural Biology, CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, India. .,Academy of Scientific and Innovative Research (AcSIR) (An Institution of National Importance by Act of Parliament), CSIR-HRDC Campus, Kamla Nehru Nagar, Sector-19, Ghaziabad, 201002, UP, India. .,Department of Biochemistry, School of Interdisciplinary and Applied Life Sciences, Central University of Haryana, Jant-Pali, Mahendergarh, Haryana, 123031, India.
| |
Collapse
|
17
|
Huang X, Song X, Chen R, Zhang B, Li C, Liang Y, Qiu L, Fan Y, Zhou Z, Zhou H, Lakshmanan P, Li Y, Wu J. Genome-Wide Analysis of the DREB Subfamily in Saccharum spontaneum Reveals Their Functional Divergence During Cold and Drought Stresses. Front Genet 2020; 10:1326. [PMID: 32117408 PMCID: PMC7013043 DOI: 10.3389/fgene.2019.01326] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 12/05/2019] [Indexed: 01/24/2023] Open
Abstract
Drought and cold stresses are the main environmental factors that affect the yield of sugarcane, and DREB genes play very important roles in tolerance to drought, cold, and other environmental stresses. In this study, bioinformatics analysis was performed to characterize Saccharum spontaneum SsDREB genes. RNA sequencing (RNA-seq) was used to detect the expression profiles of SsDREBs induced by cold and drought stresses. According to our results, there are 110 SsDREB subfamily proteins in S. spontaneum, which can be classified into six groups; 106 of these genes are distributed among 29 chromosomes. Inter- and intraspecies synteny analyses suggested that all DREB groups have undergone gene duplication, highlighting the polyploid events that played an important role in the expansion of the DREB subfamily. Furthermore, RNA-seq results showed that 45 SsDREBs were up- or downregulated under cold stress; 35 of them were found to be involved in responding to drought stress. According to protein–protein interaction analysis, SsDREB100, SsDREB102, and SsDREB105 play key roles during the response to cold stress. These results reveal that functional divergence exists between collinear homologous genes or among common origin genes in the DREB subfamily of S. spontaneum. This study presents a comprehensive analysis and systematic understanding of the precise mechanism of SsDREBs in response to abiotic stress and will lead to improvements in sugarcane.
Collapse
Affiliation(s)
- Xing Huang
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Ministry of Agriculture Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Nanning, China
| | - Xiupeng Song
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Ministry of Agriculture Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Nanning, China
| | - Rongfa Chen
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Ministry of Agriculture Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Nanning, China
| | - Baoqing Zhang
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Ministry of Agriculture Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Nanning, China
| | - Changning Li
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Ministry of Agriculture Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Nanning, China
| | - Yongsheng Liang
- Nanning Institute of Agricultural Sciences, Guangxi Academy of Agricultural Science, Nanning, China
| | - Lihang Qiu
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Ministry of Agriculture Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Nanning, China
| | - Yegeng Fan
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Ministry of Agriculture Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Nanning, China
| | - Zhongfeng Zhou
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Ministry of Agriculture Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Nanning, China
| | - Huiwen Zhou
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Ministry of Agriculture Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Nanning, China
| | - Prakash Lakshmanan
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Ministry of Agriculture Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Nanning, China
| | - Yangrui Li
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Ministry of Agriculture Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Nanning, China
| | - Jianming Wu
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Ministry of Agriculture Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Nanning, China
| |
Collapse
|
18
|
Li SJ, Xie XL, Liu SC, Chen KS, Yin XR. Auto- and mutual-regulation between two CitERFs contribute to ethylene-induced citrus fruit degreening. Food Chem 2019; 299:125163. [PMID: 31319344 DOI: 10.1016/j.foodchem.2019.125163] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 06/18/2019] [Accepted: 07/08/2019] [Indexed: 12/28/2022]
Abstract
Citrus fruit postharvest degreening is a critical stage in marketing, carried out by exposure to ethylene or ethephon. Genome-wide screening of the AP2/ERF superfamily indicated that a novel ERF-II (CitERF6) was shown to trans-activate the CitPPH promoter. Expression of CitERF6 is associated with both developmental and postharvest degreening in citrus fruit. Transient and stable over-expression of CitERF6 in Nicotiana tabacum leaves and 'Ponkan' fruit also results in rapid chlorophyll degradation. Auto- and mutual-regulation was also found between CitERF6 and the previously characterized CitERF13 using the dual-luciferase and yeast one-hybrid assays. Moreover, substitution of the 35S promoter for endogenous promoters showed that both pCitERF6::CitERF6 and pCitERF13::CitERF13 were effective in trans-activating their promoters or triggering chlorophyll degradation. It is proposed that ethylene is one of the triggers activating promoters of CitERF6 and CitERF13, and subsequent auto- and mutual-regulation between CitERF6 and CitERF13 might facilitate the effect of ethylene, leading to fruit degreening.
Collapse
Affiliation(s)
- Shao-Jia Li
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China; The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China
| | - Xiu-Lan Xie
- College of Life Science, Sichuan Agricultural University, Ya'an Campus, Ya'an 625014, PR China.
| | - Sheng-Chao Liu
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China; The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China
| | - Kun-Song Chen
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China; The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China
| | - Xue-Ren Yin
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China; The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China.
| |
Collapse
|
19
|
Molecular cloning and characterization of genes related to the ethylene signal transduction pathway in pomegranate (Punica granatum L.) under different temperature treatments. J Biosci 2019. [DOI: 10.1007/s12038-019-9951-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
20
|
Meng S, Cao Y, Li H, Bian Z, Wang D, Lian C, Yin W, Xia X. PeSHN1 regulates water-use efficiency and drought tolerance by modulating wax biosynthesis in poplar. TREE PHYSIOLOGY 2019; 39:1371-1386. [PMID: 30938421 DOI: 10.1093/treephys/tpz033] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 11/06/2018] [Accepted: 03/11/2019] [Indexed: 05/20/2023]
Abstract
Wax, a hydrophobic structure that provides an effective waterproof barrier to the leaves, is an important drought adaptation trait for preventing water loss. However, limited knowledge exists regarding the molecular mechanisms underlying wax biosynthesis in trees. Here, PeSHN1, an AP2/ethylene response factor transcription factor, was isolated from a fast-growing poplar Populus × euramericana cv. 'Neva' clone. To study the potential biological functions of PeSHN1, transgenic 84K poplar (Populus alba × Populus glandulosa) plants overexpressing PeSHN1 were generated. PeSHN1 overexpression resulted in decreased transpiration, increased water-use efficiency (WUE) and increased drought tolerance. The transgenic poplar plants exhibited increased wax accumulation and altered wax composition, mainly because of a substantial increase in long-chain (>C30) fatty acids, aldehydes and alkanes. Gene expression analyses revealed that many genes involved in wax biosynthesis were induced in the PeSHN1 overexpression plants. In addition, chromatin immunoprecipitation-PCR assays and dual luciferase assays revealed that at least one of those genes, LACS2, is likely targeted by PeSHN1. Moreover, the PeSHN1 overexpression plants maintained higher photosynthetic activity and accumulated more biomass under drought stress conditions. Taken together, these results suggest that PeSHN1 regulates both WUE and drought tolerance in poplar by modulating wax biosynthesis and that altered PeSHN1 expression could represent a novel approach (altering the wax trait on leaf surfaces to increase WUE) for breeding drought-tolerant plants.
Collapse
Affiliation(s)
- Sen Meng
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangdong, China
| | - Yang Cao
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, China
| | - Huiguang Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Zhan Bian
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, China
| | - Dongli Wang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Conglong Lian
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Weilun Yin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Xinli Xia
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| |
Collapse
|
21
|
Zhu Y, Li Y, Zhang S, Zhang X, Yao J, Luo Q, Sun F, Wang X. Genome-wide identification and expression analysis reveal the potential function of ethylene responsive factor gene family in response to Botrytis cinerea infection and ovule development in grapes (Vitis vinifera L.). PLANT BIOLOGY (STUTTGART, GERMANY) 2019; 21:571-584. [PMID: 30468551 DOI: 10.1111/plb.12943] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 11/16/2018] [Indexed: 05/02/2023]
Abstract
The prevention of Botrytis cinerea infection and the study of grape seedlessness are very important for grape industries. Finding correlated regulatory genes is an important approach towards understanding their molecular mechanisms. Ethylene responsive factor (ERF) gene family play critical roles in defence networks and the growth of plants. To date, no large-scale study of the ERF proteins associated with pathogen defence and ovule development has been performed in grape (Vitis vinifera L.). In the present study, we identified 113 ERF genes (VvERF) and named them based on their chromosome locations. The ERF genes could be divided into 11 groups based on a multiple sequence alignment and a phylogenetic comparison with homologues from Arabidopsis thaliana. Synteny analysis and Ka/Ks ratio calculation suggested that segmental and tandem duplications contributed to the expansion of the ERF gene family. The evolutionary relationships between the VvERF genes were investigated by exon-intron structure characterisation, and an analysis of the cis-acting regulatory elements in their promoters suggested potential regulation after stress or hormone treatments. Expression profiling after infection with the fungus, B. cinerea, indicated that ERF genes function in responses to pathogen attack. In addition, the expression levels of most ERF genes were much higher during ovule development in seedless grapes, suggesting a role in ovule abortion related to seedlessness. Taken together, these results indicate that VvERF proteins are involved in responses to Botrytis cinerea infection and in grape ovule development. This information may help guide strategies to improve grape production.
Collapse
Affiliation(s)
- Y Zhu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Shaanxi, Yangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Shaanxi, Yangling, China
| | - Y Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Shaanxi, Yangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Shaanxi, Yangling, China
| | - S Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Shaanxi, Yangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Shaanxi, Yangling, China
| | - X Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Shaanxi, Yangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Shaanxi, Yangling, China
| | - J Yao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Shaanxi, Yangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Shaanxi, Yangling, China
| | - Q Luo
- Research Institute of Grapes and Melon in Xinjiang Uygur Autonomous Region, Shanshan, Xinjiang, China
| | - F Sun
- Research Institute of Grapes and Melon in Xinjiang Uygur Autonomous Region, Shanshan, Xinjiang, China
| | - X Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Shaanxi, Yangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Shaanxi, Yangling, China
| |
Collapse
|
22
|
Shi H, Zhang Y, Chen L. Expression and Regulation of PpEIN3b during Fruit Ripening and Senescence via Integrating SA, Glucose, and ACC Signaling in Pear ( Pyrus pyrifolia Nakai. Whangkeumbae). Genes (Basel) 2019; 10:genes10060476. [PMID: 31234462 PMCID: PMC6627606 DOI: 10.3390/genes10060476] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/06/2019] [Accepted: 06/19/2019] [Indexed: 11/16/2022] Open
Abstract
The economic value of fruit is reduced by having a short shelf life. Whangkeumbae is a type of sand pear (Pyrus pyrifolia) considered a climacteric fruit. The pear is famous for its smooth surface and good flavor. However, its shelf life is very short because of senescence and disease after harvest and a burst of ethylene (ET) production prompting the onset of fruit ripening. In plants, ETHYLENE INSENSITIVE3 (EIN3) and EIN3like (EIL), located in the nucleus, are important components of the ET signaling pathway and act as transcription factors. EIN3s and EILs belong to a small family involved in regulating the expression of ethylene response factor gene (ERF), whose encoding protein is the final component in the ET signaling pathway. The mutation of these components will cause defects in the ethylene pathway. In this study, one gene encoding an EIN3 was cloned and identified from Whangkeumbae and designated PpEIN3b. The deduced PpEIN3b contained a conserved EIN3 domain, a bipartite nuclear localization signal profile (NLS_BP), and an N-6 adenine-specific DNA methylase signature (N6_MTASE). PpEIN3b belongs to the EIN3 super-family by phylogenetic analysis. Quantitative RT-PCR (qRT-PCR) analysis revealed that PpEIN3b was preferentially expressed in fruit. Additionally, its expression was developmentally regulated during fruit ripening and senescence. Furthermore, PpEIN3b transcripts were obviously repressed by salicylic acid (SA) and glucose treatment in pear fruit and in diseased fruit, while it was significantly induced by 1-aminocyclopropane-1-carboxylic acid (ACC) treatment. Taken together, our results reveal the expression and regulation profiles of PpEIN3b and suggest that PpEIN3b might integrate SA, glucose, and ACC signaling to regulate fruit ripening and senescence in pear, which would provide a candidate gene for this regulation to obtain fruit with a long shelf life and improved economic value.
Collapse
Affiliation(s)
- Haiyan Shi
- Pear Engineering and Technology Research Center of Hebei, College of Horticulture, Agricultural University of Hebei, Baoding 071001, China, .
| | - Yuxing Zhang
- Pear Engineering and Technology Research Center of Hebei, College of Horticulture, Agricultural University of Hebei, Baoding 071001, China, .
| | - Liang Chen
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.
| |
Collapse
|
23
|
He Y, Jia R, Qi J, Chen S, Lei T, Xu L, Peng A, Yao L, Long Q, Li Z, Li Q. Functional analysis of citrus AP2 transcription factors identified CsAP2-09 involved in citrus canker disease response and tolerance. Gene 2019; 707:178-188. [PMID: 30991097 DOI: 10.1016/j.gene.2019.04.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 03/12/2019] [Accepted: 04/05/2019] [Indexed: 11/27/2022]
Abstract
Genetic engineering approaches offer an alternative method to the citrus canker resistance breeding. The ethylene response factor (ERF) family is a member of families of transcription factors that are particular to plants and contribute significantly to biotic stress response and to plant growth. CsAP2-09 belongs to the citrus AP2/ERF transcription factor family. Initially, we proved the induction of CsAP2-09 in wild-types by Xcc and some hormones involved in pathogen response. We successfully cloned the CsAP2-09 and proved that CsAP2-09 protein is targeted to the nucleus. The CsAP2-09 was functionally characterized with over-expression and RNAi silencing strategy. In the overexpression lines, the diseased lesions and disease index were significantly decreased while in RNAi lines of CsAP2-09 the diseased lesions and disease index were significantly enhanced. Thus, the over-expression conferred Xcc resistance to transgenic citrus while silencing of CsAP2-09 in sweet orange leads to Xcc susceptibility. When the transcriptomes of WT and overexpression transcriptomes were compared, they revealed that some genes involved in phenylpropanoid biosynthesis, pathogen responses, transcript regulation etc. were modified. Our results provide a possibility for improving citrus canker disease resistance by over-expression of CsAP2s. Furthermore, various functions of CsAP2-09 provide significant information about the role of AP2/ERFs in plant disease resistance and stress tolerance.
Collapse
Affiliation(s)
- Yongrui He
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, 401331 Chongqing, PR China
| | - Ruirui Jia
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, 401331 Chongqing, PR China
| | - Jingjing Qi
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing 400712, PR China
| | - Shanchun Chen
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing 400712, PR China
| | - Tiangang Lei
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing 400712, PR China
| | - Lanzhen Xu
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing 400712, PR China
| | - Aihong Peng
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing 400712, PR China
| | - Lixiao Yao
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing 400712, PR China
| | - Qin Long
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing 400712, PR China
| | - Zhengguo Li
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, 401331 Chongqing, PR China.
| | - Qiang Li
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing 400712, PR China.
| |
Collapse
|
24
|
Liu M, Sun W, Ma Z, Zheng T, Huang L, Wu Q, Zhao G, Tang Z, Bu T, Li C, Chen H. Genome-wide investigation of the AP2/ERF gene family in tartary buckwheat (Fagopyum Tataricum). BMC PLANT BIOLOGY 2019; 19:84. [PMID: 30786863 PMCID: PMC6381666 DOI: 10.1186/s12870-019-1681-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 02/08/2019] [Indexed: 05/18/2023]
Abstract
BACKGROUND AP2/ERF transcription factors perform indispensable functions in various biological processes, such as plant growth, development, biotic and abiotic stresses responses. The AP2/ERF transcription factor family has been identified in many plants, and several AP2/ERF transcription factors from Arabidopsis thaliana (A. thaliana) have been functionally characterized. However, little research has been conducted on the AP2/ERF genes of tartary buckwheat (Fagopyum tataricum), which is an important edible and medicinal crop. The recently published whole genome sequence of tartary buckwheat allowed us to study the tissue and expression profiles of AP2/ERF genes in tartary buckwheat on a genome-wide basis. RESULTS In this study, 134 AP2/ERF genes of tartary buckwheat (FtAP2/ERF) were identified and renamed according to the chromosomal distribution of the FtAP2/ERF genes. According to the number conserved domains and gene structure, the AP2/ERF genes were divided into three subfamilies by phylogenetic tree analysis, namely, AP2 (15 members), ERF (116 members) and RAV (3 members). A total of 10 motifs were detected in tartary buckwheat AP2/ERF genes, and some of the unique motifs were found to be important for the function of AP2/ERF genes. CONCLUSION A comprehensive analysis of AP2/ERF gene expression patterns in different tissues and fruit development stages by quantitative real-time PCR (qRT-PCR) showed that they played an important role in the growth and development of tartary buckwheat, and genes that might regulate flower and fruit development were preliminarily identified. This systematic analysis establishes a foundation for further studies of the functional characteristics of FtAP2/ERF genes and improvement of tartary buckwheat crops.
Collapse
Affiliation(s)
- Moyang Liu
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| | - Wenjun Sun
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| | - Zhaotang Ma
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| | - Tianrun Zheng
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| | - Li Huang
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| | - Qi Wu
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| | - Gang Zhao
- College of Biological Industry, Chengdu University, Chengdu, Sichuan China
| | - Zizhong Tang
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| | - Tongliang Bu
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| | - Chenglei Li
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| | - Hui Chen
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| |
Collapse
|
25
|
Zhang Z, Li X. Genome-wide identification of AP2/ERF superfamily genes and their expression during fruit ripening of Chinese jujube. Sci Rep 2018; 8:15612. [PMID: 30353116 PMCID: PMC6199273 DOI: 10.1038/s41598-018-33744-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 10/07/2018] [Indexed: 02/06/2023] Open
Abstract
The Ethylene response factor (ERF) belongs to the APETALA2/ethylene response factor (AP2/ERF) superfamily, located at the end of the ethylene signalling pathway, and has important roles in regulating the ethylene-related response genes. Thus, identifying and charactering this transcription factor would be helpful to elucidate ethylene related fruit ripening regulation in Chinese jujube (Ziziphus jujuba Mill.). In the present study, 119 AP2/ERF genes, including 5 Related to ABI3/VPs (RAV), 17 AP2s, 57 ERFs, 39 dehydration-responsive element-binding (DREB) factors and 1 soloist gene, were identified from the jujube genome sequences. Genome localization, gene duplication, phylogenetic relationships and conserved motifs were simultaneously analysed. Using available transcriptomic data, 85 genes with differential transcripts in the flower, leaf and fruit were detected, suggesting a broad regulation of AP2/ERF genes in the growth and development of jujube. Among them, 44 genes were expressed in the fruit. As assessed by quantitative PCR, 15 up- and 23 downregulated genes corresponding to fruit full maturity were found, while in response to 100 μl l-1 ethylene, 6 up- and 16 downregulated genes were generated. By comparing the output, ZjERF54 and DREB39 were found to be the best candidate genes that positively participated in jujube fruit ripening, while ZjERF25 and ZjERF36, which had an ERF-associated amphiphilic repression (EAR) motif, were ripening repressors. These findings help to gain insights into AP2/ERF gene evolution and provide a useful resource to further understand the ethylene regulatory mechanisms underlying Chinese jujube fruit ripening.
Collapse
Affiliation(s)
- Zhong Zhang
- College of Forestry, Northwest A&F University, Yangling, 712100, Shaanxi, China.,Research Centre for Jujube Engineering and Technology of State Forestry Administration, Northwest A&F University, Yangling, 712100, Shaanxi, China.,Key Comprehensive Laboratory of Forestry of Shaanxi Province, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xingang Li
- College of Forestry, Northwest A&F University, Yangling, 712100, Shaanxi, China. .,Research Centre for Jujube Engineering and Technology of State Forestry Administration, Northwest A&F University, Yangling, 712100, Shaanxi, China. .,Key Comprehensive Laboratory of Forestry of Shaanxi Province, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
26
|
Low temperature conditioning alleviates loss of aroma-related esters of ‘Nanguo’ pears by regulation of ethylene signal transduction. Food Chem 2018; 264:263-269. [DOI: 10.1016/j.foodchem.2018.05.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 04/24/2018] [Accepted: 05/01/2018] [Indexed: 02/06/2023]
|
27
|
Wei Y, Chang Y, Zeng H, Liu G, He C, Shi H. RAV transcription factors are essential for disease resistance against cassava bacterial blight via activation of melatonin biosynthesis genes. J Pineal Res 2018; 64. [PMID: 29151275 DOI: 10.1111/jpi.12454] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 10/30/2017] [Indexed: 12/24/2022]
Abstract
With 1 AP2 domain and 1 B3 domain, 7 MeRAVs in apetala2/ethylene response factor (AP2/ERF) gene family have been identified in cassava. However, the in vivo roles of these remain unknown. Gene expression assays showed that the transcripts of MeRAVs were commonly regulated after Xanthomonas axonopodis pv manihotis (Xam) and MeRAVs were specifically located in plant cell nuclei. Through virus-induced gene silencing (VIGS) in cassava, we found that MeRAV1 and MeRAV2 are essential for plant disease resistance against cassava bacterial blight, as shown by the bacterial propagation of Xam in plant leaves. Through VIGS in cassava leaves and overexpression in cassava leave protoplasts, we found that MeRAV1 and MeRAV2 positively regulated melatonin biosynthesis genes and the endogenous melatonin level. Further investigation showed that MeRAV1 and MeRAV2 are direct transcriptional activators of 3 melatonin biosynthesis genes in cassava, as evidenced by chromatin immunoprecipitation-PCR in cassava leaf protoplasts and electrophoretic mobility shift assay. Moreover, cassava melatonin biosynthesis genes also positively regulated plant disease resistance. Taken together, this study identified MeRAV1 and MeRAV2 as common and upstream transcription factors of melatonin synthesis genes in cassava and revealed a model of MeRAV1 and MeRAV2-melatonin biosynthesis genes-melatonin level in plant disease resistance against cassava bacterial blight.
Collapse
Affiliation(s)
- Yunxie Wei
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources and College of Biology, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan province, China
| | - Yanli Chang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources and College of Biology, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan province, China
| | - Hongqiu Zeng
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources and College of Biology, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan province, China
| | - Guoyin Liu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources and College of Biology, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan province, China
| | - Chaozu He
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources and College of Biology, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan province, China
| | - Haitao Shi
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources and College of Biology, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan province, China
| |
Collapse
|
28
|
Li X, Xu Y, Shen S, Yin X, Klee H, Zhang B, Chen K. Transcription factor CitERF71 activates the terpene synthase gene CitTPS16 involved in the synthesis of E-geraniol in sweet orange fruit. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:4929-4938. [PMID: 28992329 PMCID: PMC5853461 DOI: 10.1093/jxb/erx316] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The unique flavor of Citrus fruit depends on complex combinations of soluble sugars, organic acids, and volatile compounds. The monoterpene E-geraniol is an important volatile, contributing to flavor in sweet orange (Citrus sinensis Osbeck). Moreover, antifungal activity of E-geraniol has also been observed. However, the terpene synthase (TPS) responsible for its synthesis has not been identified in sweet orange. Terpene synthase 16 (CitTPS16) was shown to catalyze synthesis of E-geraniol in vitro, and transient overexpression of CitTPS16 in fruits and leaves of Newhall sweet orange resulted in E-geraniol accumulation in vivo. Having identified the responsible enzyme, we next examined transcriptional regulation of CitTPS16 in the fruit. Among cloned members of the AP2/ERF transcription factor gene family, CitERF71 showed a similar expression pattern to CitTPS16. Moreover, CitERF71 was able to activate the CitTPS16 promoter based on results from transient dual-luciferase assays and yeast one-hybrid assays. EMSAs showed that CitERF71 directly binds to ACCCGCC and GGCGGG motifs in the CitTPS16 promoter. These results indicate an important role for CitERF71 in transcriptional regulation of CitTP16 and, therefore, in controlling production of E-geraniol in Citrus fruit.
Collapse
Affiliation(s)
- Xiang Li
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, PR China
| | - Yaying Xu
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, PR China
| | - Shuling Shen
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, PR China
| | - Xueren Yin
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, PR China
| | - Harry Klee
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, PR China
- Horticultural Sciences, Plant Innovation Center, Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Bo Zhang
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, PR China
- Correspondence:
| | - Kunsong Chen
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, PR China
| |
Collapse
|
29
|
Deng L, Yuan Z, Xie J, Yao S, Zeng K. Sensitivity to Ethephon Degreening Treatment Is Altered by Blue LED Light Irradiation in Mandarin Fruit. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:6158-6168. [PMID: 28671844 DOI: 10.1021/acs.jafc.7b01703] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Although citrus fruits are not climacteric, exogenous ethylene is widely used in the degreening treatment of citrus fruits. Irradiation with blue light-emitting diode (LED) light (450 nm) for 10 h can promote the formation of good coloration of ethephon-degreened fruit. This study evaluated the effect of blue LED light irradiation on the pigments contents of ethephon-degreened fruit and evaluated whether the blue LED light irradiation could influence the sensitivity of mandarin fruit to ethylene. The results indicated that blue light can accelerate the color change of ethephon-degreened fruit, accompanied by changes in plastid ultrastructure and chlorophyll and carotenoid contents. Ethephon-induced expressions of CitACS1, CitACO, CitETR1, CitEIN2, CitEIL1, and CitERF2 were enhanced by blue LED light irradiation, which increased the sensitivity to ethylene in ethephon-degreened fruits. These results indicate that blue LED light-induced changes in sensitivity to ethylene in mandarin fruit may be responsible for the improved coloration of ethephon-degreened mandarin fruits.
Collapse
Affiliation(s)
- Lili Deng
- College of Food Science, Southwest University , Chongqing 400715, P.R. China
| | - Ziyi Yuan
- College of Food Science, Southwest University , Chongqing 400715, P.R. China
| | - Jiao Xie
- College of Food Science, Southwest University , Chongqing 400715, P.R. China
| | - Shixiang Yao
- College of Food Science, Southwest University , Chongqing 400715, P.R. China
| | - Kaifang Zeng
- College of Food Science, Southwest University , Chongqing 400715, P.R. China
| |
Collapse
|
30
|
Xie XL, Xia XJ, Kuang S, Zhang XL, Yin XR, Yu JQ, Chen KS. A novel ethylene responsive factor CitERF13 plays a role in photosynthesis regulation. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 256:112-119. [PMID: 28167024 DOI: 10.1016/j.plantsci.2016.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 11/01/2016] [Accepted: 11/03/2016] [Indexed: 05/22/2023]
Abstract
Ethylene responsive factors (ERFs) act as critical downstream components of the ethylene signalling pathway in regulating plant development and stress responses. However little is known about its role in regulation of photosynthesis. Here, we identified an ethylene-inducible ERF gene in citrus, CitERF13. Transient over-expression of CitERF13 in N. tabacum leaves, resulted in a significant decrease in net photosynthetic rate. Closer examination of photosynthetic activity of PSII and PSI indicated that CitERF13 overexpression led to declines of Fv/Fm, Y(II) and Y(I). However, change in NPQ was less pronounced. CitERF13 overexpression also significantly reduced Vc,max, Jmax and AQY, indicating inhibition of the Calvin cycle. The expression of photosynthesis-related genes was suppressed to a variable extent in leaf blades transiently over-expressing CitERF13. CitERF13 transient overexpression in tobacco or citrus both resulted in a decline of Chlorophyll content and CitERF13 overexpressing tobacco leaf disc was more susceptible to chlorosis in response to MV-mediated oxidative stress. The results suggest that CitERF13 is potentially involved in suppressing photosynthesis through multiple pathways, for instance, inhibiting photochemical activity of photosynthesis, CO2 carboxylation capacity and chlorophyll metabolism.
Collapse
Affiliation(s)
- Xiu-Lan Xie
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, PR China; Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, PR China; The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, PR China
| | - Xiao-Jian Xia
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, PR China; Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, PR China; The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, PR China
| | - Sheng Kuang
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, PR China
| | - Xi-Li Zhang
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, PR China
| | - Xue-Ren Yin
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, PR China; Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, PR China; The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, PR China
| | - Jing-Quan Yu
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, PR China; Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, PR China; The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, PR China
| | - Kun-Song Chen
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, PR China; Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, PR China; The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, PR China.
| |
Collapse
|
31
|
Shen SL, Yin XR, Zhang B, Xie XL, Jiang Q, Grierson D, Chen KS. CitAP2.10 activation of the terpene synthase CsTPS1 is associated with the synthesis of (+)-valencene in 'Newhall' orange. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:4105-15. [PMID: 27194737 PMCID: PMC5301923 DOI: 10.1093/jxb/erw189] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Aroma is a vital characteristic that determines the quality and commercial value of citrus fruits, and characteristic volatiles have been analyzed in different citrus species. In sweet orange, Citrus sinensis, the sesquiterpene (+)-valencene is a key volatile compound in the fruit peel. Valencene synthesis is catalyzed by the terpene synthase CsTPS1, but the transcriptional mechanisms controlling its gene expression are unknown. Here, the AP2/ERF (APETALA2/ethylene response factor) transcription factor, CitAP2.10, is characterized as a regulator of (+)-valencene synthesis. The expression pattern of CitAP2.10 was positively correlated with (+)-valencene content and CsTPS1 expression. Dual-luciferase assays indicated that CitAP2.10 could trans-activate the CsTPS1 promoter. Ethylene enhanced expression of CitAP2.10 and this effect was abolished by the ethylene antagonist 1-methylcyclopropene. The role and function of CitAP2.10 in (+)-valencene biosynthesis were confirmed using the Arabidopsis homolog (AtWRI1), which also transiently activated the CsTPS1 promoter. Furthermore, transient over-expression of CitAP2.10 triggered (+)-valencene biosynthesis in sweet orange fruit. These results indicate that CitAP2.10 regulates (+)-valencene synthesis via induction of CsTPS1 mRNA accumulation.
Collapse
Affiliation(s)
- Shu-Ling Shen
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China
| | - Xue-Ren Yin
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China
| | - Bo Zhang
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China
| | - Xiu-Lan Xie
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China
| | - Qian Jiang
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China
| | - Donald Grierson
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Kun-Song Chen
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China
| |
Collapse
|
32
|
Yin XR, Xie XL, Xia XJ, Yu JQ, Ferguson IB, Giovannoni JJ, Chen KS. Involvement of an ethylene response factor in chlorophyll degradation during citrus fruit degreening. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 86:403-12. [PMID: 27037684 DOI: 10.1111/tpj.13178] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 03/19/2016] [Accepted: 03/23/2016] [Indexed: 05/07/2023]
Abstract
Chlorophyll degradation naturally occurs during plant senescence. However, in fruit such as citrus, it is a positive characteristic, as degreening is an important colour development contributing to fruit quality. In the present work, Citrus sinensis Osbeck, cv. Newhall fruit was used as a model for chlorophyll degradation. An ethylene response factor, CitERF13, was isolated and its transcriptional changes were closely correlated with fruit peel degreening during development or in response to ethylene. Dual-luciferase and yeast one-hybrid assays, as well as motif mutation, indicated that CitERF13 directly binds to the CitPPH promoter and enhances its activity. Transient and stable over-expression of CitERF13 resulted in rapid chlorophyll degradation in Nicotiana tabacum leaves and led to accumulation of pheophorbide (Pheide) a, a metabolite of pheophorbide hydrolase (PPH). Similar results were observed from transient transformation of CitERF13 in citrus fruit peel. Moreover, this function of CitERF13 was conserved within Arabidopsis and tomato, as the homologs AtERF17 and SlERF16 similarly acted as activators of PPH genes and accelerators of chlorophyll degradation.
Collapse
Affiliation(s)
- Xue-Ren Yin
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, People's Republic of China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, People's Republic of China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, People's Republic of China
| | - Xiu-Lan Xie
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, People's Republic of China
| | - Xiao-Jian Xia
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, People's Republic of China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, People's Republic of China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, People's Republic of China
| | - Jing-Quan Yu
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, People's Republic of China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, People's Republic of China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, People's Republic of China
| | - Ian B Ferguson
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, People's Republic of China
- New Zealand Institute for Plant & Food Research Limited, Private Bag, 92169, Auckland, New Zealand
| | - James J Giovannoni
- Boyce Thompson Institute for Plant Research, Ithaca, NY, 14853, USA
- US Department of Agriculture/Agriculture Research Service, Robert W. Holley Centre for Agriculture and Health, Ithaca, NY, 14853, USA
| | - Kun-Song Chen
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, People's Republic of China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, People's Republic of China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, People's Republic of China
| |
Collapse
|
33
|
Wu J, Fu L, Yi H. Genome-Wide Identification of the Transcription Factors Involved in Citrus Fruit Ripening from the Transcriptomes of a Late-Ripening Sweet Orange Mutant and Its Wild Type. PLoS One 2016; 11:e0154330. [PMID: 27104786 PMCID: PMC4841598 DOI: 10.1371/journal.pone.0154330] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 04/12/2016] [Indexed: 11/18/2022] Open
Abstract
Fruit ripening is a genetically programmed process. Transcription factors (TFs) play key roles in plant development and ripening by temporarily and spatially regulating the transcription of their target genes. In this study, a total of 159 TFs were identified from a spontaneous late-ripening mutant 'Fengwan' (C. sinensis L. Osbeck) sweet orange (MT) and its wild-type counterpart ('Fengjie 72–1', WT) along the ripening period via the Transcription Factor Prediction of PlantTFDB 3.0. Fifty-two differentially expressed TFs were identified between MT and WT; 92 and 120 differentially expressed TFs were identified in WT and MT, respectively. The Venn diagram analysis showed that 16 differentially expressed TFs were identified between MT and WT and during the ripening of WT and MT. These TFs were primarily assigned to the families of C2H2, Dof, bHLH, ERF, MYB, NAC and LBD. Particularly, the number of TFs of the ERF family was the greatest between MT and WT. According to the results of the WGCNA analysis, a weighted correlation network analysis tool, several important TFs correlated to abscisic acid (ABA), citric acid, fructose, glucose and sucrose were identified, such as RD26, NTT, GATA7 and MYB21/62/77. Hierarchical cluster analysis and the expression analysis conducted at five fruit ripening stages further validated the pivotal TFs that potentially function during orange fruit development and ripening.
Collapse
Affiliation(s)
- Juxun Wu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lili Fu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hualin Yi
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
- * E-mail:
| |
Collapse
|
34
|
Tang Y, Qin S, Guo Y, Chen Y, Wu P, Chen Y, Li M, Jiang H, Wu G. Genome-Wide Analysis of the AP2/ERF Gene Family in Physic Nut and Overexpression of the JcERF011 Gene in Rice Increased Its Sensitivity to Salinity Stress. PLoS One 2016; 11:e0150879. [PMID: 26943337 PMCID: PMC4778941 DOI: 10.1371/journal.pone.0150879] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 02/19/2016] [Indexed: 11/19/2022] Open
Abstract
The AP2/ERF transcription factors play crucial roles in plant growth, development and responses to biotic and abiotic stresses. A total of 119 AP2/ERF genes (JcAP2/ERFs) have been identified in the physic nut genome; they include 16 AP2, 4 RAV, 1 Soloist, and 98 ERF genes. Phylogenetic analysis indicated that physic nut AP2 genes could be divided into 3 subgroups, while ERF genes could be classed into 11 groups or 43 subgroups. The AP2/ERF genes are non-randomly distributed across the 11 linkage groups of the physic nut genome and retain many duplicates which arose from ancient duplication events. The expression patterns of several JcAP2/ERF duplicates in the physic nut showed differences among four tissues (root, stem, leaf, and seed), and 38 JcAP2/ERF genes responded to at least one abiotic stressor (drought, salinity, phosphate starvation, and nitrogen starvation) in leaves and/or roots according to analysis of digital gene expression tag data. The expression of JcERF011 was downregulated by salinity stress in physic nut roots. Overexpression of the JcERF011 gene in rice plants increased its sensitivity to salinity stress. The increased expression levels of several salt tolerance-related genes were impaired in the JcERF011-overexpressing plants under salinity stress.
Collapse
Affiliation(s)
- Yuehui Tang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, PR China
- University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Shanshan Qin
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, PR China
- University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yali Guo
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, PR China
- University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yanbo Chen
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, PR China
- University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Pingzhi Wu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, PR China
| | - Yaping Chen
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, PR China
| | - Meiru Li
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, PR China
| | - Huawu Jiang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, PR China
| | - Guojiang Wu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, PR China
- * E-mail:
| |
Collapse
|
35
|
Li SJ, Yin XR, Xie XL, Allan AC, Ge H, Shen SL, Chen KS. The Citrus transcription factor, CitERF13, regulates citric acid accumulation via a protein-protein interaction with the vacuolar proton pump, CitVHA-c4. Sci Rep 2016; 6:20151. [PMID: 26837571 PMCID: PMC4738278 DOI: 10.1038/srep20151] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 12/30/2015] [Indexed: 11/09/2022] Open
Abstract
Organic acids are essential to fruit flavor. The vacuolar H(+) transporting adenosine triphosphatase (V-ATPase) plays an important role in organic acid transport and accumulation. However, less is known of V-ATPase interacting proteins and their relationship with organic acid accumulation. The relationship between V-ATPase and citric acid was investigated, using the citrus tangerine varieties 'Ordinary Ponkan (OPK)' and an early maturing mutant 'Zaoshu Ponkan (ZPK)'. Five V-ATPase genes (CitVHA) were predicted as important to citric acid accumulation. Among the genes, CitVHA-c4 was observed, using a yeast two-hybrid screen, to interact at the protein level with an ethylene response factor, CitERF13. This was verified using bimolecular fluorescence complementation assays. A similar interaction was also observed between Arabidopsis AtERF017 (a CitERF13 homolog) and AtVHA-c4 (a CitVHA-c4 homolog). A synergistic effect on citric acid levels was observed between V-ATPase proteins and interacting ERFs when analyzed using transient over-expression in tobacco and Arabidopsis mutants. Furthermore, the transcript abundance of CitERF13 was concomitant with CitVHA-c4. CitERF13 or AtERF017 over-expression leads to significant citric acid accumulation. This accumulation was abolished in an AtVHA-c4 mutant background. ERF-VHA interactions appear to be involved in citric acid accumulation, which was observed in both citrus and Arabidopsis.
Collapse
Affiliation(s)
- Shao-jia Li
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, P.R. China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, P.R. China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, P.R. China
| | - Xue-ren Yin
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, P.R. China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, P.R. China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, P.R. China
| | - Xiu-lan Xie
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, P.R. China
| | - Andrew C. Allan
- New Zealand Institute for Plant & Food Research Limited, Private Bag 92169, Auckland, New Zealand
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Hang Ge
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, P.R. China
| | - Shu-ling Shen
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, P.R. China
| | - Kun-song Chen
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, P.R. China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, P.R. China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, P.R. China
| |
Collapse
|
36
|
Whole-Transcriptome Analysis of Differentially Expressed Genes in the Vegetative Buds, Floral Buds and Buds of Chrysanthemum morifolium. PLoS One 2015; 10:e0128009. [PMID: 26009891 PMCID: PMC4444331 DOI: 10.1371/journal.pone.0128009] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 04/21/2015] [Indexed: 11/19/2022] Open
Abstract
Background Chrysanthemum morifolium is an important floral crop that is cultivated worldwide. However, due to a lack of genomic resources, very little information is available concerning the molecular mechanisms of flower development in chrysanthemum. Results The transcriptomes of chrysanthemum vegetative buds, floral buds and buds were sequenced using Illumina paired-end sequencing technology. A total of 15.4 Gb of reads were assembled into 91,367 unigenes with an average length of 739 bp. A total of 43,137 unigenes showed similarity to known proteins in the Swissprot or NCBI non-redundant protein databases. Additionally, 25,424, 24,321 and 13,704 unigenes were assigned to 56 gene ontology (GO) categories, 25 EuKaryotic Orthologous Groups (KOG) categories, and 285 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, respectively. A total of 1,876 differentially expressed genes (DEGs) (1,516 up-regulated, 360 down-regulated) were identified between vegetative buds and floral buds, and 3,300 DEGs (1,277 up-regulated, 1,706 down-regulated) were identified between floral buds and buds. Many genes encoding important transcription factors (e.g., AP2, MYB, MYC, WRKY, NAC and CRT) as well as proteins involved in carbohydrate metabolism, protein kinase activity, plant hormone signal transduction, and the defense responses, among others, were considerably up-regulated in floral buds. Genes involved in the photoperiod pathway and flower organ determination were also identified. These genes represent important candidate genes for molecular cloning and functional analysis to study flowering regulation in chrysanthemum. Conclusion This comparative transcriptome analysis revealed significant differences in gene expression and signaling pathway components between the vegetative buds, floral buds and buds of Chrysanthemum morifolium. A wide range of genes was implicated in regulating the phase transition from vegetative to reproductive growth. These results should aid researchers in the study of flower-time regulation, breeding and molecular biology in chrysanthemum.
Collapse
|
37
|
Rao G, Sui J, Zeng Y, He C, Zhang J. Genome-wide analysis of the AP2/ERF gene family in Salix arbutifolia. FEBS Open Bio 2015; 5:132-7. [PMID: 25830086 PMCID: PMC4354408 DOI: 10.1016/j.fob.2015.02.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 02/15/2015] [Accepted: 02/18/2015] [Indexed: 01/08/2023] Open
Abstract
We identified 173 AP2/ERF superfamily genes in Salix arbutifolia. A comparative analysis of AP2/ERF superfamily genes was performed. The phylogenic trees of AP2/ERF superfamily have been constructed.
AP2/ERF genes encode transcriptional regulators with a variety of functions in plant growth and development and in response to biotic and abiotic stresses. To date, there are no detailed classification and expression profiles for AP2/ERF genes in Salix. In this study, a comprehensive computational analysis identified 173 AP2/ERF superfamily genes in willow (Salix arbutifolia), by using in silico cloning methods with the use of the AP2/ERF conserved domain amino acid sequence of Arabidopsis thaliana as a probe. Based on the results of phylogenetic analyses and the number of AP2/ERF domains, the AP2/ERF genes were classified into four groups: AP2, RAV, ERF and Soloist. The expression profile was analyzed using transcriptome data from different tissues. A comparative analysis of AP2/ERF superfamily genes among Salix, Populus and Arabidopsis was performed. The Salix DREB, AP2 and RAV groups had a similar number to those in Arabidopsis, and the size of the ERF subfamily in Salix was about 1.4-fold that of Arabidopsis. The Salix DREB subfamily was smaller compared to Populus, while the other families were similar in size to those in Populus. These results will be useful for future functional analyses of the ERF family genes.
Collapse
Affiliation(s)
- Guodong Rao
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China ; Collaborative Innovation Center of Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China ; Key Laboratory of Tree Breeding and Cultivation, State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Jinkai Sui
- Collaborative Innovation Center of Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Yanfei Zeng
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Caiyun He
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Jianguo Zhang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China ; Collaborative Innovation Center of Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China ; Key Laboratory of Tree Breeding and Cultivation, State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| |
Collapse
|