1
|
Kelly JJ, Bloodworth N, Shao Q, Shabanowitz J, Hunt D, Meiler J, Pires MM. A Chemical Approach to Assess the Impact of Post-translational Modification on MHC Peptide Binding and Effector Cell Engagement. ACS Chem Biol 2024; 19:1991-2001. [PMID: 39150956 PMCID: PMC11420952 DOI: 10.1021/acschembio.4c00312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2024]
Abstract
The human major histocompatibility complex (MHC) plays a pivotal role in the presentation of peptidic fragments from proteins, which can originate from self-proteins or from nonhuman antigens, such as those produced by viruses or bacteria. To prevent cytotoxicity against healthy cells, thymocytes expressing T cell receptors (TCRs) that recognize self-peptides are removed from circulation (negative selection), thus leaving T cells that recognize nonself-peptides. Current understanding suggests that post-translationally modified (PTM) proteins and the resulting peptide fragments they generate following proteolysis are largely excluded from negative selection; this feature means that PTMs can generate nonself-peptides that potentially contribute to the development of autoreactive T cells and subsequent autoimmune diseases. Although it is well-established that PTMs are prevalent in peptides present on MHCs, the precise mechanisms by which PTMs influence the antigen presentation machinery remain poorly understood. In the present work, we introduce chemical modifications mimicking PTMs on synthetic peptides. This is the first systematic study isolating the impact of PTMs on MHC binding and also their impact on TCR recognition. Our findings reveal various ways PTMs alter antigen presentation, which could have implications for tumor neoantigen presentation.
Collapse
Affiliation(s)
- Joey J Kelly
- Department of Chemistry University of Virginia Charlottesville, Virginia 22904, United States
| | - Nathaniel Bloodworth
- Division of Clinical Pharmacology, Department of MedicineVanderbilt University Medical Center, Nashville, Tennessee 37240, United States
| | - Qianqian Shao
- Department of Chemistry University of Virginia Charlottesville, Virginia 22904, United States
| | - Jeffrey Shabanowitz
- Department of Chemistry University of Virginia Charlottesville, Virginia 22904, United States
| | - Donald Hunt
- Department of Chemistry University of Virginia Charlottesville, Virginia 22904, United States
| | - Jens Meiler
- Division of Clinical Pharmacology, Department of MedicineVanderbilt University Medical Center, Nashville, Tennessee 37240, United States
- Institute of Drug Discovery, Faculty of MedicineUniversity of Leipzig, Leipzig, SAC 04103, Germany
- Center for Structural Biology Vanderbilt University, Nashville, Tennessee 37232, United States
- Department of Chemistry Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Marcos M Pires
- Department of Chemistry University of Virginia Charlottesville, Virginia 22904, United States
| |
Collapse
|
2
|
Chen H, Yang G, Xu DE, Du YT, Zhu C, Hu H, Luo L, Feng L, Huang W, Sun YY, Ma QH. Autophagy in Oligodendrocyte Lineage Cells Controls Oligodendrocyte Numbers and Myelin Integrity in an Age-dependent Manner. Neurosci Bull 2024:10.1007/s12264-024-01292-1. [PMID: 39283565 DOI: 10.1007/s12264-024-01292-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/10/2024] [Indexed: 12/08/2024] Open
Abstract
Oligodendrocyte lineage cells, including oligodendrocyte precursor cells (OPCs) and oligodendrocytes (OLs), are essential in establishing and maintaining brain circuits. Autophagy is a conserved process that keeps the quality of organelles and proteostasis. The role of autophagy in oligodendrocyte lineage cells remains unclear. The present study shows that autophagy is required to maintain the number of OPCs/OLs and myelin integrity during brain aging. Inactivation of autophagy in oligodendrocyte lineage cells increases the number of OPCs/OLs in the developing brain while exaggerating the loss of OPCs/OLs with brain aging. Inactivation of autophagy in oligodendrocyte lineage cells impairs the turnover of myelin basic protein (MBP). It causes MBP to accumulate in the cytoplasm as multimeric aggregates and fails to be incorporated into integral myelin, which is associated with attenuated endocytic recycling. Inactivation of autophagy in oligodendrocyte lineage cells impairs myelin integrity and causes demyelination. Thus, this study shows autophagy is required to maintain myelin quality during aging by controlling the turnover of myelin components.
Collapse
Affiliation(s)
- Hong Chen
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Gang Yang
- Lab Center, Medical College of Soochow University, Suzhou, 215021, China
| | - De-En Xu
- The Wuxi No.2 People Hospital, Wuxi, 214002, China
| | - Yu-Tong Du
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Chao Zhu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Hua Hu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Li Luo
- School of Physical Education and Sports Science, Soochow University, Suzhou, 215021, China
| | - Lei Feng
- Monash Suzhou Research Institute, Suzhou, 215000, China
| | - Wenhui Huang
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine, University of Saarland, 66421, Homburg, Germany
| | - Yan-Yun Sun
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China.
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123, China.
| | - Quan-Hong Ma
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China.
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
3
|
Chen Y, Teng Y, Xu P, Wang S. The Role of Citrullination Modification in CD4 + T Cells in the Pathogenesis of Immune-Related Diseases. Biomolecules 2024; 14:400. [PMID: 38672418 PMCID: PMC11047979 DOI: 10.3390/biom14040400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
The post-translational modifications (PTMs) of proteins play a crucial role in increasing the functional diversity of proteins and are associated with the pathogenesis of various diseases. This review focuses on a less explored PTM called citrullination, which involves the conversion of arginine to citrulline. This process is catalyzed by peptidyl arginine deiminases (PADs). Different members of the PAD family have distinct tissue distribution patterns and functions. Citrullination is a post-translational modification of native proteins that can alter their structure and convert them into autoantigens; thus, it mediates the occurrence of autoimmune diseases. CD4+ T cells, including Th1, Th2, and Th17 cells, are important immune cells involved in mediating autoimmune diseases, allergic reactions, and tumor immunity. PADs can induce citrullination in CD4+ T cells, suggesting a role for citrullination in CD4+ T cell subset differentiation and function. Understanding the role of citrullination in CD4+ T cells may provide insights into immune-related diseases and inflammatory processes.
Collapse
Affiliation(s)
- Yuhang Chen
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China;
- Jiangsu Key Laboratory of Laboratory Medicine, Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Yi Teng
- Jiangsu Key Laboratory of Laboratory Medicine, Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Ping Xu
- Department of Laboratory Medicine, The Fifth People’s Hospital of Suzhou, Suzhou 215505, China
| | - Shengjun Wang
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China;
- Jiangsu Key Laboratory of Laboratory Medicine, Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
4
|
Yusuf IO, Parsi S, Ostrow LW, Brown RH, Thompson PR, Xu Z. PAD2 dysregulation and aberrant protein citrullination feature prominently in reactive astrogliosis and myelin protein aggregation in sporadic ALS. Neurobiol Dis 2024; 192:106414. [PMID: 38253209 PMCID: PMC11003460 DOI: 10.1016/j.nbd.2024.106414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/11/2024] [Accepted: 01/19/2024] [Indexed: 01/24/2024] Open
Abstract
Alteration in protein citrullination (PC), a common posttranslational modification (PTM), contributes to pathogenesis in various inflammatory disorders. We previously reported that PC and protein arginine deiminase 2 (PAD2), the predominant enzyme isoform that catalyzes this PTM in the central nervous system (CNS), are altered in mouse models of amyotrophic lateral sclerosis (ALS). We now demonstrate that PAD2 expression and PC are altered in human postmortem ALS spinal cord and motor cortex compared to controls, increasing in astrocytes while trending lower in neurons. Furthermore, PC is enriched in protein aggregates that contain the myelin proteins PLP and MBP in ALS. These results confirm our findings in ALS mouse models and suggest that altered PAD2 and PC contribute to neurodegeneration in ALS.
Collapse
Affiliation(s)
- Issa O Yusuf
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Sepideh Parsi
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Medical School, Worcester, MA 01605, USA; Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02110, USA
| | - Lyle W Ostrow
- Department of Neurology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Robert H Brown
- Department of Neurology, RNA Therapeutic Institute, Neuroscience Program, University of Massachusetts Medical School, Worcester, MA, USA
| | - Paul R Thompson
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Medical School, Worcester, MA 01605, USA; Program in Chemical Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Zuoshang Xu
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
5
|
Dejbakht M, Akhzari M, Jalili S, Faraji F, Barazesh M. Multiple Sclerosis: New Insights into Molecular Pathogenesis and Novel Platforms for Disease Treatment. Curr Drug Res Rev 2024; 16:175-197. [PMID: 37724675 DOI: 10.2174/2589977516666230915103730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 06/23/2023] [Accepted: 07/03/2023] [Indexed: 09/21/2023]
Abstract
BACKGROUND Multiple sclerosis (MS), a chronic inflammatory disorder, affects the central nervous system via myelin degradation. The cause of MS is not fully known, but during recent years, our knowledge has deepened significantly regarding the different aspects of MS, including etiology, molecular pathophysiology, diagnosis and therapeutic options. Myelin basic protein (MBP) is the main myelin protein that accounts for maintaining the stability of the myelin sheath. Recent evidence has revealed that MBP citrullination or deamination, which is catalyzed by Ca2+ dependent peptidyl arginine deiminase (PAD) enzyme leads to the reduction of positive charge, and subsequently proteolytic cleavage of MBP. The overexpression of PAD2 in the brains of MS patients plays an essential role in new epitope formation and progression of the autoimmune disorder. Some drugs have recently entered phase III clinical trials with promising efficacy and will probably obtain approval in the near future. As different therapeutic platforms develop, finding an optimal treatment for each individual patient will be more challenging. AIMS This review provides a comprehensive insight into MS with a focus on its pathogenesis and recent advances in diagnostic methods and its present and upcoming treatment modalities. CONCLUSION MS therapy alters quickly as research findings and therapeutic options surrounding MS expand. McDonald's guidelines have created different criteria for MS diagnosis. In recent years, ever-growing interest in the development of PAD inhibitors has led to the generation of many reversible and irreversible PAD inhibitors against the disease with satisfactory therapeutic outcomes.
Collapse
Affiliation(s)
- Majid Dejbakht
- Department of Cellular and Molecular Research Center, Gerash University of Medical Sciences, Gerash, Iran
| | - Morteza Akhzari
- School of Nursing, Larestan University of Medical Sciences, Larestan, Iran
| | - Sajad Jalili
- Department of Orthopedics, School of Medicine, Ahvaz Jundishapour University of Medical Sciences, Ahvaz, Iran
| | - Fouziyeh Faraji
- Department of Cellular and Molecular Research Center, Gerash University of Medical Sciences, Gerash, Iran
| | - Mahdi Barazesh
- Department of Biotechnology, Cellular and Molecular Research Center, School of Paramedical, Gerash University of Medical Sciences, Gerash, Iran
| |
Collapse
|
6
|
Pasquero S, Gugliesi F, Biolatti M, Dell’Oste V, Albano C, Bajetto G, Griffante G, Trifirò L, Brugo B, Raviola S, Lacarbonara D, Yang Q, Sudeshna S, Barasa L, Haniff H, Thompson PR, Landolfo S, De Andrea M. Citrullination profile analysis reveals peptidylarginine deaminase 3 as an HSV-1 target to dampen the activity of candidate antiviral restriction factors. PLoS Pathog 2023; 19:e1011849. [PMID: 38055760 PMCID: PMC10727434 DOI: 10.1371/journal.ppat.1011849] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 12/18/2023] [Accepted: 11/20/2023] [Indexed: 12/08/2023] Open
Abstract
Herpes simplex virus 1 (HSV-1) is a neurotropic virus that remains latent in neuronal cell bodies but reactivates throughout an individual's life, causing severe adverse reactions, such as herpes simplex encephalitis (HSE). Recently, it has also been implicated in the etiology of Alzheimer's disease (AD). The absence of an effective vaccine and the emergence of numerous drug-resistant variants have called for the development of new antiviral agents that can tackle HSV-1 infection. Host-targeting antivirals (HTAs) have recently emerged as promising antiviral compounds that act on host-cell factors essential for viral replication. Here we show that a new class of HTAs targeting peptidylarginine deiminases (PADs), a family of calcium-dependent enzymes catalyzing protein citrullination, exhibits a marked inhibitory activity against HSV-1. Furthermore, we show that HSV-1 infection leads to enhanced protein citrullination through transcriptional activation of three PAD isoforms: PAD2, PAD3, and PAD4. Interestingly, PAD3-depletion by specific drugs or siRNAs dramatically inhibits HSV-1 replication. Finally, an analysis of the citrullinome reveals significant changes in the deimination levels of both cellular and viral proteins, with the interferon (IFN)-inducible proteins IFIT1 and IFIT2 being among the most heavily deiminated ones. As genetic depletion of IFIT1 and IFIT2 strongly enhances HSV-1 growth, we propose that viral-induced citrullination of IFIT1 and 2 is a highly efficient HSV-1 evasion mechanism from host antiviral resistance. Overall, our findings point to a crucial role of citrullination in subverting cellular responses to viral infection and demonstrate that PAD inhibitors efficiently suppress HSV-1 infection in vitro, which may provide the rationale for their repurposing as HSV-1 antiviral drugs.
Collapse
Affiliation(s)
- Selina Pasquero
- Department of Public Health and Pediatric Sciences, University of Turin – Medical School, Turin, Italy
| | - Francesca Gugliesi
- Department of Public Health and Pediatric Sciences, University of Turin – Medical School, Turin, Italy
| | - Matteo Biolatti
- Department of Public Health and Pediatric Sciences, University of Turin – Medical School, Turin, Italy
| | - Valentina Dell’Oste
- Department of Public Health and Pediatric Sciences, University of Turin – Medical School, Turin, Italy
| | - Camilla Albano
- Department of Public Health and Pediatric Sciences, University of Turin – Medical School, Turin, Italy
| | - Greta Bajetto
- Department of Public Health and Pediatric Sciences, University of Turin – Medical School, Turin, Italy
- CAAD Center for Translational Research on Autoimmune and Allergic Disease, University of Piemonte Orientale, Novara Medical School, Novara, Italy
| | - Gloria Griffante
- Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Linda Trifirò
- Department of Public Health and Pediatric Sciences, University of Turin – Medical School, Turin, Italy
| | - Bianca Brugo
- Department of Public Health and Pediatric Sciences, University of Turin – Medical School, Turin, Italy
| | - Stefano Raviola
- CAAD Center for Translational Research on Autoimmune and Allergic Disease, University of Piemonte Orientale, Novara Medical School, Novara, Italy
- Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Davide Lacarbonara
- CAAD Center for Translational Research on Autoimmune and Allergic Disease, University of Piemonte Orientale, Novara Medical School, Novara, Italy
- Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Qiao Yang
- Department of Public Health and Pediatric Sciences, University of Turin – Medical School, Turin, Italy
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, P.R. China
| | - Sen Sudeshna
- Department of Biochemistry and Molecular Pharmacology, UMass Medical School, Worcester, Massachusetts, United States of America
| | - Leonard Barasa
- Department of Biochemistry and Molecular Pharmacology, UMass Medical School, Worcester, Massachusetts, United States of America
| | - Hafeez Haniff
- Department of Biochemistry and Molecular Pharmacology, UMass Medical School, Worcester, Massachusetts, United States of America
| | - Paul R. Thompson
- Department of Biochemistry and Molecular Pharmacology, UMass Medical School, Worcester, Massachusetts, United States of America
| | - Santo Landolfo
- Department of Public Health and Pediatric Sciences, University of Turin – Medical School, Turin, Italy
| | - Marco De Andrea
- Department of Public Health and Pediatric Sciences, University of Turin – Medical School, Turin, Italy
- CAAD Center for Translational Research on Autoimmune and Allergic Disease, University of Piemonte Orientale, Novara Medical School, Novara, Italy
| |
Collapse
|
7
|
Ramya L, Helina Hilda S. Structural dynamics of moonlighting intrinsically disordered proteins - A black box in multiple sclerosis. J Mol Graph Model 2023; 124:108572. [PMID: 37494873 DOI: 10.1016/j.jmgm.2023.108572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 07/28/2023]
Abstract
Multiple Sclerosis (MS) is a demyelinating disease of the central nervous system that disturbs the flow of brain signals to other parts of the body. The actual cause of the disease is still not apparent. The intrinsically disordered proteins (IDP) play a crucial role in neurodegenerative diseases like Alzheimer's, Lewy bodies, Parkinson's, Amyotrophic Lateral Sclerosis, Multiple Sclerosis, etc. In MS, it was known that the immune system attacks the proteins like Myelin Basic Protein (MBP), Myelin-associated Oligodendrocyte Basic protein (MOBP), Myelin-Associated Protein (MAG), and Myelin Proteolipid Protein (PLP) and this leads to demyelination causing MS. Here the proteins MBP and MOBP are both moonlighting intrinsically disordered proteins and exist between the myelin sheath, unlike MAG which is a transmembrane protein. The main focus of the article was to examine the significant role of proteins intrinsically disordered regions (IDR) in maintaining their function. Molecular dynamics simulation studies were performed to study the conformational dynamics of these protein IDRs both in water and near the myelin sheath. The results suggest that the IDR dominates the structural dynamics of these proteins and IDR in both proteins was responsible for their interaction with the myelin sheath. Interestingly, it was noted that the known epitopes MBP83-96 and MOBP65-87 in the IDR have no interaction with the myelin sheath. Thus when the protein remains intrinsically disordered it maintains the proper function and myelin integrity and if it adopts folds the region was identified as an epitope by the immune system leading to demyelination causing MS.
Collapse
Affiliation(s)
- L Ramya
- Department of Bioinformatics, School of Chemical and Biotechnology, SASTRA Deemed University, Thirumalaisamudram, Thanjavur, 613401, Tamil Nadu, India.
| | - S Helina Hilda
- Department of Bioinformatics, School of Chemical and Biotechnology, SASTRA Deemed University, Thirumalaisamudram, Thanjavur, 613401, Tamil Nadu, India
| |
Collapse
|
8
|
Shi Y, Li Z, Wang B, Shi X, Ye H, Delafield DG, Lv L, Ye Z, Chen Z, Ma F, Li L. Enabling Global Analysis of Protein Citrullination via Biotin Thiol Tag-Assisted Mass Spectrometry. Anal Chem 2022; 94:17895-17903. [PMID: 36512406 DOI: 10.1021/acs.analchem.2c03844] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Citrullination is a key post-translational modification (PTM) that affects protein structures and functions. Although it has been linked to various biological processes and disease pathogenesis, the underlying mechanism remains poorly understood due to a lack of effective tools to enrich, detect, and localize this PTM. Herein, we report the design and development of a biotin thiol tag that enables derivatization, enrichment, and confident identification of citrullination via mass spectrometry. We perform global mapping of the citrullination proteome of mouse tissues. In total, we identify 691 citrullination sites from 432 proteins which represents the largest data set to date. We discover novel distribution and functions of this PTM. This study depicts a landscape of protein citrullination and lays the foundation for further deciphering their physiological and pathological roles.
Collapse
Affiliation(s)
- Yatao Shi
- School of Pharmacy, University of Wisconsin─Madison, Madison, Wisconsin 53705, United States
| | - Zihui Li
- Department of Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| | - Bin Wang
- School of Pharmacy, University of Wisconsin─Madison, Madison, Wisconsin 53705, United States
| | - Xudong Shi
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin─Madison, Madison, Wisconsin 53792, United States
| | - Hui Ye
- School of Pharmaceutical Sciences, China Pharmaceutical University, Nanjing, 210009, China
| | - Daniel G Delafield
- Department of Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| | - Langlang Lv
- School of Pharmaceutical Sciences, China Pharmaceutical University, Nanjing, 210009, China
| | - Zhengqing Ye
- Medicinal Chemistry Center, School of Pharmacy, University of Wisconsin─Madison, Madison, Wisconsin 53705, United States
| | - Zhengwei Chen
- Department of Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| | - Fengfei Ma
- School of Pharmacy, University of Wisconsin─Madison, Madison, Wisconsin 53705, United States
| | - Lingjun Li
- School of Pharmacy, University of Wisconsin─Madison, Madison, Wisconsin 53705, United States.,Department of Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
9
|
Post-Translational Modifications in Tumor-Associated Antigens as a Platform for Novel Immuno-Oncology Therapies. Cancers (Basel) 2022; 15:cancers15010138. [PMID: 36612133 PMCID: PMC9817968 DOI: 10.3390/cancers15010138] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/19/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
Post-translational modifications (PTMs) are generated by adding small chemical groups to amino acid residues after the translation of proteins. Many PTMs have been reported to correlate with tumor progression, growth, and survival by modifying the normal functions of the protein in tumor cells. PTMs can also elicit humoral and cellular immune responses, making them attractive targets for cancer immunotherapy. This review will discuss how the acetylation, citrullination, and phosphorylation of proteins expressed by tumor cells render the corresponding tumor-associated antigen more antigenic and affect the immune response in multiple cancers. In addition, the role of glycosylated protein mucins in anti-cancer immunotherapy will be considered. Mucin peptides in combination with stimulating adjuvants have, in fact, been utilized to produce anti-tumor antibodies and vaccines. Finally, we will also outline the results of the clinical trial exploiting glycosylated-MUC1 as a vaccine in different cancers. Overall, PTMs in TAAs could be considered in future therapies to result in lasting anti-tumor responses.
Collapse
|
10
|
Yusuf IO, Qiao T, Parsi S, Tilvawala R, Thompson PR, Xu Z. Protein citrullination marks myelin protein aggregation and disease progression in mouse ALS models. Acta Neuropathol Commun 2022; 10:135. [PMID: 36076282 PMCID: PMC9458309 DOI: 10.1186/s40478-022-01433-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 08/22/2022] [Indexed: 11/10/2022] Open
Abstract
Increased protein citrullination (PC) and dysregulated protein arginine deiminase (PAD) activity have been observed in several neurodegenerative diseases. PC is a posttranslational modification catalyzed by the PADs. PC converts peptidyl-arginine to peptidyl-citrulline, thereby reducing the positive charges and altering structure and function of proteins. Of the five PADs, PAD2 is the dominant isoform in the central nervous system (CNS). Abnormal PC and PAD dysregulation are associated with numerous pathological conditions, including inflammatory diseases and neurodegeneration. Animal model studies have shown therapeutic efficacy from inhibition of PADs, thus suggesting a role of PC in pathogenesis. To determine whether PC contribute to amyotrophic lateral sclerosis (ALS), a deadly neurodegenerative disease characterized by loss of motor neurons, paralysis, and eventual death, we investigated alterations of PC and PAD2 in two different transgenic mouse models of ALS expressing human mutant SOD1G93A and PFN1C71G, respectively. PC and PAD2 expression are altered dynamically in the spinal cord during disease progression in both models. PC and PAD2 increase progressively in astrocytes with the development of reactive astrogliosis, while decreasing in neurons. Importantly, in the spinal cord white matter, PC accumulates in protein aggregates that contain the myelin proteins PLP and MBP. PC also accumulates progressively in insoluble protein fractions during disease progression. Finally, increased PC and PAD2 expression spatially correlate with areas of the CNS with the most severe motor neuron degeneration. These results suggest that altered PC is an integral part of the neurodegenerative process and potential biomarkers for disease progression in ALS. Moreover, increased PC may contribute to disease-associated processes such as myelin protein aggregation, myelin degeneration, and astrogliosis.
Collapse
Affiliation(s)
- Issa O. Yusuf
- grid.168645.80000 0001 0742 0364Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Medical School, Worcester, MA 01605 USA
| | - Tao Qiao
- grid.168645.80000 0001 0742 0364Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Medical School, Worcester, MA 01605 USA ,grid.423286.90000 0004 0507 1326Present Address: Astellas Pharma, 33 Locke Dr, Marlborough, MA 01752 USA
| | - Sepideh Parsi
- grid.168645.80000 0001 0742 0364Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Medical School, Worcester, MA 01605 USA ,grid.38142.3c000000041936754XPresent Address: Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114 USA
| | - Ronak Tilvawala
- grid.168645.80000 0001 0742 0364Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Medical School, Worcester, MA 01605 USA ,grid.509226.aPresent Address: Scorpion Therapeutics, 1 Winthrop Square, Boston, MA 02110 USA
| | - Paul R. Thompson
- grid.168645.80000 0001 0742 0364Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Medical School, Worcester, MA 01605 USA ,grid.168645.80000 0001 0742 0364Program in Chemical Biology, University of Massachusetts Medical School, Worcester, MA 01605 USA
| | - Zuoshang Xu
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Medical School, Worcester, MA, 01605, USA.
| |
Collapse
|
11
|
Citrullination: A modification important in the pathogenesis of autoimmune diseases. Clin Immunol 2022; 245:109134. [DOI: 10.1016/j.clim.2022.109134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/13/2022] [Accepted: 09/19/2022] [Indexed: 11/18/2022]
|
12
|
Role of Citrullinated Collagen in Autoimmune Arthritis. Int J Mol Sci 2022; 23:ijms23179833. [PMID: 36077232 PMCID: PMC9456437 DOI: 10.3390/ijms23179833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/09/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Citrullination of proteins plays an important role in protein function and it has recently become clear that citrullinated proteins play a role in immune responses. In this study we examined how citrullinated collagen, an extracellular matrix protein, affects T-cell function during the development of autoimmune arthritis. Using an HLA-DR1 transgenic mouse model of rheumatoid arthritis, mice were treated intraperitoneally with either native type I collagen (CI), citrullinated CI (cit-CI), or phosphate buffered saline (PBS) prior to induction of autoimmune arthritis. While the mice given native CI had significantly less severe arthritis than controls administered PBS, mice receiving cit-CI had no decrease in the severity of autoimmune arthritis. Using Jurkat cells expressing the inhibitory receptor leukocyte-associated immunoglobulin-like receptor-1 (LAIR-1), Western blot analysis indicated that while CI and cit-CI bound to LAIR-1 with similar affinity, only CI induced phosphorylation of the LAIR ITIM tyrosines; cit-CI was ineffective. These data suggest that cit-CI acts as an antagonist of LAIR-1 signaling, and that the severity of autoimmune arthritis can effectively be altered by targeting T cells with citrullinated collagen.
Collapse
|
13
|
Upadhayay S, Mehan S, Prajapati A, Sethi P, Suri M, Zawawi A, Almashjary MN, Tabrez S. Nrf2/HO-1 Signaling Stimulation through Acetyl-11-Keto-Beta-Boswellic Acid (AKBA) Provides Neuroprotection in Ethidium Bromide-Induced Experimental Model of Multiple Sclerosis. Genes (Basel) 2022; 13:genes13081324. [PMID: 35893061 PMCID: PMC9331916 DOI: 10.3390/genes13081324] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 12/16/2022] Open
Abstract
Multiple sclerosis (MS) is a severe immune-mediated neurological disease characterized by neuroinflammation, demyelination, and axonal degeneration in the central nervous system (CNS). This is frequently linked to motor abnormalities and cognitive impairments. The pathophysiological hallmarks of MS include inflammatory demyelination, axonal injury, white matter degeneration, and the development of CNS lesions that result in severe neuronal degeneration. Several studies suggested downregulation of nuclear factor erythroid-2-related factor-2 (Nrf2)/Heme oxygenase-1 (HO-1) signaling is a causative factor for MS pathogenesis. Acetyl-11-keto-β-boswellic acid (AKBA) is an active pentacyclictriterpenoid obtained from Boswellia serrata, possessing antioxidant and anti-inflammatory properties. The present study explores the protective potential of AKBA on behavioral, molecular, neurochemical, and gross pathological abnormalitiesandhistopathological alterations by H&E and LFB staining techniques in an experimental model of multiple sclerosis, emphasizing the increase inNrf2/HO-1 levels in the brain. Moreover, we also examine the effect of AKBA on the intensity of myelin basic protein (MBP) in CSF and rat brain homogenate. Specific apoptotic markers (Bcl-2, Bax, andcaspase-3) were also estimated in rat brain homogenate. Neuro behavioralabnormalities in rats were examined using an actophotometer, rotarod test, beam crossing task (BCT),and Morris water maze (MWM). AKBA 50 mg/kg and 100 mg/kg were given orally from day 8 to 35 to alleviate MS symptoms in the EB-injected rats. Furthermore, cellular, molecular, neurotransmitter, neuroinflammatory cytokine, and oxidative stress markers in rat whole brain homogenate, blood plasma, and cerebral spinal fluid were investigated. This study shows that AKBA upregulates the level of antioxidant proteins such as Nrf2 and HO-1 in the rat brain. AKBA restores altered neurochemical levels, potentially preventing gross pathological abnormalities during MS progression.
Collapse
Affiliation(s)
- Shubham Upadhayay
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga 142001, Punjab, India; (S.U.); (A.P.); (P.S.); (M.S.)
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga 142001, Punjab, India; (S.U.); (A.P.); (P.S.); (M.S.)
- Correspondence: (S.M.); (S.T.)
| | - Aradhana Prajapati
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga 142001, Punjab, India; (S.U.); (A.P.); (P.S.); (M.S.)
| | - Pranshul Sethi
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga 142001, Punjab, India; (S.U.); (A.P.); (P.S.); (M.S.)
| | - Manisha Suri
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga 142001, Punjab, India; (S.U.); (A.P.); (P.S.); (M.S.)
| | - Ayat Zawawi
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.Z.); (M.N.A.)
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Majed N. Almashjary
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.Z.); (M.N.A.)
- Hematology Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Animal House Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Shams Tabrez
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.Z.); (M.N.A.)
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence: (S.M.); (S.T.)
| |
Collapse
|
14
|
Kim Y, Rebman AW, Johnson TP, Wang H, Yang T, Colantuoni C, Bhargava P, Levy M, Calabresi PA, Aucott JN, Soloski MJ, Darrah E. Peptidylarginine Deiminase 2 Autoantibodies Are Linked to Less Severe Disease in Multiple Sclerosis and Post-treatment Lyme Disease. Front Neurol 2022; 13:874211. [PMID: 35734473 PMCID: PMC9207393 DOI: 10.3389/fneur.2022.874211] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/10/2022] [Indexed: 01/22/2023] Open
Abstract
BackgroundPeptidylarginine deiminase 2 (PAD2) mediates the post-translational conversion of arginine residues in proteins to citrullines and is highly expressed in the central nervous system (CNS). Dysregulated PAD2 activity has been implicated in the pathogenesis of several neurologic diseases, including multiple sclerosis (MS). In this study, we sought to define the cellular and regional expression of the gene encoding for PAD2 (i.e. PADI2) in the human CNS using publicly available datasets and evaluate whether anti-PAD2 antibodies were present in patients with various neurologic diseases.MethodsA total of 491 study participants were included in this study: 91 people with MS, 32 people with neuromyelitis optica (NMO), 281 people with post-treatment Lyme disease (PTLD), and 87 healthy controls. To measure PADI2 expression in the CNS from healthy individuals, publicly available tissue and single cell RNA sequencing data was analyzed. Anti-PAD2 antibodies were measured in the serum of study participants using anti-PAD2 ELISA. Clinical and demographic variables were compared according to anti-PAD2 antibody positivity for the MS and PTLD groups and correlations between anti-PAD2 levels and disease severity were examined.ResultsPADI2 expression was highest in oligodendrocytes (mean ± SD; 6.4 ± 2.2), followed closely by astrocytes (5.5 ± 2.6), microglia/macrophages (4.5 ± 3.5), and oligodendrocyte precursor cells (3.2 ± 3.3). There was an increased proportion of anti-PAD2 positivity in the MS (19.8%; p = 0.007) and PTLD groups (13.9%; p = 0.057) relative to the healthy controls (5.7%), and these antibodies were not detected in NMO patients. There was a modest inverse correlation between anti-PAD2 levels and disease severity in people with MS (τ = −0.145, p = 0.02), with levels being the highest in those with relapsing-remitting disease. Similarly, there was a modest inverse correlation between anti-PAD2 levels and neurocognitive score (τ = −0.10, p = 0.027) in people with PTLD, with difficulty focusing, memory changes, fatigue, and difficulty finding words contributing most strongly to the effect.ConclusionPADI2 expression was observed in diverse regions and cells of the CNS, and anti-PAD2 autoantibodies were associated with less severe symptoms in subsets of patients with MS and PTLD. These data suggest that anti-PAD2 antibodies may attenuate inflammation in diseases of different etiologies, which are united by high PADI2 expression in the target tissue.
Collapse
Affiliation(s)
- Yaewon Kim
- Division of Rheumatology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Alison W. Rebman
- Division of Rheumatology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Lyme Disease Research Center, Division of Rheumatology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Tory P. Johnson
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Hong Wang
- Division of Rheumatology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Ting Yang
- Division of Rheumatology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Lyme Disease Research Center, Division of Rheumatology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Carlo Colantuoni
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Institute of Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Pavan Bhargava
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Michael Levy
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Peter A. Calabresi
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - John N. Aucott
- Division of Rheumatology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Lyme Disease Research Center, Division of Rheumatology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Mark J. Soloski
- Division of Rheumatology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Lyme Disease Research Center, Division of Rheumatology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Erika Darrah
- Division of Rheumatology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Lyme Disease Research Center, Division of Rheumatology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- *Correspondence: Erika Darrah
| |
Collapse
|
15
|
Christophorou MA. The virtues and vices of protein citrullination. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220125. [PMID: 35706669 PMCID: PMC9174705 DOI: 10.1098/rsos.220125] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/16/2022] [Indexed: 05/03/2023]
Abstract
The post-translational modification of proteins expands the regulatory scope of the proteome far beyond what is achievable through genome regulation. The field of protein citrullination has seen significant progress in the last two decades. The small family of peptidylarginine deiminase (PADI or PAD) enzymes, which catalyse citrullination, have been implicated in virtually all facets of molecular and cell biology, from gene transcription and epigenetics to cell signalling and metabolism. We have learned about their association with a remarkable array of disease states and we are beginning to understand how they mediate normal physiological functions. However, while the biochemistry of PADI activation has been worked out in exquisite detail in vitro, we still lack a clear mechanistic understanding of the processes that regulate PADIs within cells, under physiological and pathophysiological conditions. This review summarizes and discusses the current knowledge, highlights some of the unanswered questions of immediate importance and gives a perspective on the outlook of the citrullination field.
Collapse
|
16
|
Mamtimin M, Pinarci A, Han C, Braun A, Anders HJ, Gudermann T, Mammadova-Bach E. Extracellular DNA Traps: Origin, Function and Implications for Anti-Cancer Therapies. Front Oncol 2022; 12:869706. [PMID: 35574410 PMCID: PMC9092261 DOI: 10.3389/fonc.2022.869706] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/07/2022] [Indexed: 12/16/2022] Open
Abstract
Extracellular DNA may serve as marker in liquid biopsies to determine individual diagnosis and prognosis in cancer patients. Cell death or active release from various cell types, including immune cells can result in the release of DNA into the extracellular milieu. Neutrophils are important components of the innate immune system, controlling pathogens through phagocytosis and/or the release of neutrophil extracellular traps (NETs). NETs also promote tumor progression and metastasis, by modulating angiogenesis, anti-tumor immunity, blood clotting and inflammation and providing a supportive niche for metastasizing cancer cells. Besides neutrophils, other immune cells such as eosinophils, dendritic cells, monocytes/macrophages, mast cells, basophils and lymphocytes can also form extracellular traps (ETs) during cancer progression, indicating possible multiple origins of extracellular DNA in cancer. In this review, we summarize the pathomechanisms of ET formation generated by different cell types, and analyze these processes in the context of cancer. We also critically discuss potential ET-inhibiting agents, which may open new therapeutic strategies for cancer prevention and treatment.
Collapse
Affiliation(s)
- Medina Mamtimin
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany.,Division of Nephrology, Department of Medicine IV, Ludwig-Maximilians-University Hospital, Munich, Germany
| | - Akif Pinarci
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany
| | - Chao Han
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany.,Division of Nephrology, Department of Medicine IV, Ludwig-Maximilians-University Hospital, Munich, Germany
| | - Attila Braun
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany
| | - Hans-Joachim Anders
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany.,Division of Nephrology, Department of Medicine IV, Ludwig-Maximilians-University Hospital, Munich, Germany
| | - Thomas Gudermann
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany.,German Center for Lung Research, Munich, Germany
| | - Elmina Mammadova-Bach
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany.,Division of Nephrology, Department of Medicine IV, Ludwig-Maximilians-University Hospital, Munich, Germany
| |
Collapse
|
17
|
Sarnik J, Makowska J. Citrullination good or bad guy? Immunobiology 2022; 227:152233. [DOI: 10.1016/j.imbio.2022.152233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 04/11/2022] [Accepted: 05/21/2022] [Indexed: 11/16/2022]
|
18
|
Yang ML, Horstman S, Gee R, Guyer P, Lam TT, Kanyo J, Perdigoto AL, Speake C, Greenbaum CJ, Callebaut A, Overbergh L, Kibbey RG, Herold KC, James EA, Mamula MJ. Citrullination of glucokinase is linked to autoimmune diabetes. Nat Commun 2022; 13:1870. [PMID: 35388005 PMCID: PMC8986778 DOI: 10.1038/s41467-022-29512-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 03/15/2022] [Indexed: 02/06/2023] Open
Abstract
Inflammation, including reactive oxygen species and inflammatory cytokines in tissues amplify various post-translational modifications of self-proteins. A number of post-translational modifications have been identified as autoimmune biomarkers in the initiation and progression of Type 1 diabetes. Here we show the citrullination of pancreatic glucokinase as a result of inflammation, triggering autoimmunity and affecting glucokinase biological functions. Glucokinase is expressed in hepatocytes to regulate glycogen synthesis, and in pancreatic beta cells as a glucose sensor to initiate glycolysis and insulin signaling. We identify autoantibodies and autoreactive CD4+ T cells to glucokinase epitopes in the circulation of Type 1 diabetes patients and NOD mice. Finally, citrullination alters glucokinase biologic activity and suppresses glucose-stimulated insulin secretion. Our study define glucokinase as a Type 1 diabetes biomarker, providing new insights of how inflammation drives post-translational modifications to create both neoautoantigens and affect beta cell metabolism.
Collapse
Affiliation(s)
- Mei-Ling Yang
- Section of Rheumatology, Allergy and Immunology, Department of Internal Medicine, Yale University, New Haven, CT, USA
| | - Sheryl Horstman
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - Renelle Gee
- Section of Rheumatology, Allergy and Immunology, Department of Internal Medicine, Yale University, New Haven, CT, USA
| | - Perrin Guyer
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - TuKiet T Lam
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, USA
- Keck MS & Proteomics Resource, WM Keck Foundation Biotechnology Resource Laboratory, New Haven, CT, USA
| | - Jean Kanyo
- Keck MS & Proteomics Resource, WM Keck Foundation Biotechnology Resource Laboratory, New Haven, CT, USA
| | - Ana L Perdigoto
- Section of Endocrinology, Department of Internal Medicine, Yale University, New Haven, CT, USA
| | - Cate Speake
- Center for Interventional Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - Carla J Greenbaum
- Center for Interventional Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - Aïsha Callebaut
- Laboratory for Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Lut Overbergh
- Laboratory for Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Richard G Kibbey
- Section of Endocrinology, Department of Internal Medicine, Yale University, New Haven, CT, USA
- Department of Cellular & Molecular Physiology, Yale University, New Haven, CT, USA
| | - Kevan C Herold
- Section of Endocrinology, Department of Internal Medicine, Yale University, New Haven, CT, USA
- Department of Immunobiology, Yale University, New Haven, CT, USA
| | - Eddie A James
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - Mark J Mamula
- Section of Rheumatology, Allergy and Immunology, Department of Internal Medicine, Yale University, New Haven, CT, USA.
| |
Collapse
|
19
|
Reactivity of Rheumatoid Arthritis-Associated Citrulline-Dependent Antibodies to Epstein-Barr Virus Nuclear Antigen1-3. Antibodies (Basel) 2022; 11:antib11010020. [PMID: 35323194 PMCID: PMC8944695 DOI: 10.3390/antib11010020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/17/2022] [Accepted: 03/08/2022] [Indexed: 12/22/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic disease which causes joint inflammation and, ultimately, erosion of the underlying bone. Diagnosis of RA is based on the presence of biomarkers, such as anti-citrullinated protein antibodies (ACPA) and rheumatoid factors, along with clinical symptoms. Much evidence points to a link between the Epstein-Barr virus and RA. In this study, we analyzed ACPA reactivity to citrullinated peptides originating from Epstein-Barr nuclear antigens (EBNA1, EBNA2, and EBNA3) in order to elaborate the diagnostic potential of citrullinated EBNA peptides. Moreover, ACPA cross-reactivity to citrullinated peptides from myelin basic protein (MBP) was analyzed, as citrullinated MBP recently was described to be associated with multiple sclerosis, and some degree of sequence homology between MBP and citrullinated EBNA exists. A peptide from EBNA2, (EBNA2-A, GQGRGRWRG-Cit-GSKGRGRMH) reacted with approximately 70% of all RA sera, whereas only limited reactivity was detected to EBNA1 and EBNA3 peptides. Moreover, screening of ACPA reactivity to hybrid peptides of EBNA3-A (EPDSRDQQS-Cit-GQRRGDENRG) and EBNA2-A and peptides containing citrulline close to the N-terminal confirmed that ACPA sera contain different populations of ACPAs. No notable ACPA reactivity to MBP peptides was found, confirming that ACPAs are specific for RA, and that other factors than the presence of a central Cit-Gly motif are crucial for antibody binding. Collectively, these findings illustrate that citrullinated EBNA2 is an optimal candidate for ACPA detection, supporting current evidence that EBV is linked to RA onset.
Collapse
|
20
|
Maronek M, Gardlik R. The Citrullination-Neutrophil Extracellular Trap Axis in Chronic Diseases. J Innate Immun 2022; 14:393-417. [PMID: 35263752 PMCID: PMC9485962 DOI: 10.1159/000522331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 01/25/2022] [Indexed: 11/19/2022] Open
Abstract
Citrullination of proteins is crucial for the formation of neutrophil extracellular traps (NETs) − strands of nuclear DNA expulsed in the extracellular environment along with antimicrobial proteins in order to halt the spread of pathogens. Paradoxically, NETs may be immunogenic and contribute to inflammation. It is known that for the externalization of DNA, a group of enzymes called peptidyl arginine deiminases (PADs) is required. Current research often looks at citrullination, NET formation, PAD overexpression, and extracellular DNA (ecDNA) accumulation in chronic diseases as separate events. In contrast, we propose that citrullination can be viewed as the primary mechanism of autoimmunity, for instance by the formation of anti-citrullinated protein antibodies (ACPAs) but also as a process contributing to chronic inflammation. Therefore, citrullination could be at the center, connecting and impacting multiple inflammatory diseases in which ACPAs, NETs, or ecDNA have already been documented. In this review, we aimed to highlight the importance of citrullination in the etiopathogenesis of a number of chronic diseases and to explore the diagnostic, prognostic, and therapeutic potential of the citrullination-NET axis.
Collapse
Affiliation(s)
- Martin Maronek
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| | - Roman Gardlik
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| |
Collapse
|
21
|
Pasquero S, Gugliesi F, Griffante G, Dell’Oste V, Biolatti M, Albano C, Bajetto G, Delbue S, Signorini L, Dolci M, Landolfo S, De Andrea M. Novel antiviral activity of PAD inhibitors against human beta-coronaviruses HCoV-OC43 and SARS-CoV-2. Antiviral Res 2022; 200:105278. [PMID: 35288208 PMCID: PMC8915624 DOI: 10.1016/j.antiviral.2022.105278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/28/2022] [Accepted: 03/06/2022] [Indexed: 11/25/2022]
Abstract
The current SARS-CoV-2 pandemic, along with the likelihood that new coronavirus strains will appear in the nearby future, highlights the urgent need to develop new effective antiviral agents. In this scenario, emerging host-targeting antivirals (HTAs), which act on host-cell factors essential for viral replication, are a promising class of antiviral compounds. Here we show that a new class of HTAs targeting peptidylarginine deiminases (PADs), a family of calcium-dependent enzymes catalyzing protein citrullination, is endowed with a potent inhibitory activity against human beta-coronaviruses (HCoVs). Specifically, we show that infection of human fetal lung fibroblasts with HCoV-OC43 leads to enhanced protein citrullination through transcriptional activation of PAD4, and that inhibition of PAD4-mediated citrullination with either of the two pan-PAD inhibitors Cl-A and BB-Cl or the PAD4-specific inhibitor GSK199 curbs HCoV-OC43 replication. Furthermore, we show that either Cl-A or BB-Cl treatment of African green monkey kidney Vero-E6 cells, a widely used cell system to study beta-CoV replication, potently suppresses HCoV-OC43 and SARS-CoV-2 replication. Overall, our results demonstrate the potential efficacy of PAD inhibitors, in suppressing HCoV infection, which may provide the rationale for the repurposing of this class of inhibitors for the treatment of COVID-19 patients.
Collapse
|
22
|
Li Z, Wang B, Yu Q, Shi Y, Li L. 12-Plex DiLeu Isobaric Labeling Enabled High-Throughput Investigation of Citrullination Alterations in the DNA Damage Response. Anal Chem 2022; 94:3074-3081. [PMID: 35129972 PMCID: PMC9055876 DOI: 10.1021/acs.analchem.1c04073] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Protein citrullination is a key post-translational modification (PTM) that leads to the loss of positive charge on arginine and consequent protein structural and functional changes. Though it has been indicated to play critical roles in various physiological and pathological processes, effective analytical tools are largely limited due to a few challenges such as the small mass shift induced by this PTM and its low-abundance nature. Recently, we developed a biotin thiol tag, which enabled large-scale profiling of protein citrullination from complex biological samples via mass spectrometry. However, a high-throughput quantitative approach is still in great need to further improve the understanding of this PTM. In this study, we report an efficient pipeline using our custom-developed N,N-dimethyl leucine isobaric tags to achieve a multiplexed quantitative analysis of citrullination from up to 12 samples for the first time. We then apply this strategy to investigating citrullination alterations in response to DNA damage stress using human cell lines. We unveil important biological functions regulated by protein citrullination and observe hypercitrullination on RNA-binding proteins and DNA repair proteins, respectively. Our results reveal the involvement of citrullination in DNA damage pathways and may provide new insights into DNA-damage-related disease pathogenesis.
Collapse
Affiliation(s)
- Zihui Li
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Bin Wang
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Qinying Yu
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Yatao Shi
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States,School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States,Corresponding Author: . Phone: +1-608-265-8491. Fax: +1-608-262-5345
| |
Collapse
|
23
|
Pourmohammadi S, Roghani M, Kiasalari Z, Khalili M. Paeonol Ameliorates Cuprizone-Induced Hippocampal Demyelination and Cognitive Deficits through Inhibition of Oxidative and Inflammatory Events. J Mol Neurosci 2022; 72:748-758. [PMID: 35001353 DOI: 10.1007/s12031-021-01951-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 11/19/2021] [Indexed: 02/07/2023]
Abstract
Multiple sclerosis (MS) is a chronic and inflammatory disorder of the central nervous system with autoimmune nature that is typified by varying degrees of demyelination and axonal damage. Paeonol is an active ingredient in some medicinal plants with anti-inflammatory and neuroprotective property. This study was conducted to reveal whether paeonol can alleviate hippocampal demyelination and cognitive deficits in cuprizone-induced murine model of demyelination as a model of MS. C57BL/6 mice received oral cuprizone (400 mg/kg) for 6 weeks, and paeonol was administered p.o. at two doses of 25 or 100 mg/kg, starting from the second week post-cuprizone for 5 weeks. After assessment of learning and memory in different tasks, oxidative stress and inflammation were evaluated besides immunohistochemical assessment of hippocampal myelin basic protein (MBP). Paeonol (100 mg/kg) properly ameliorated cognitive deficits in Y maze, novel object discrimination (NOD) test, and Barnes maze with no significant improvement of performance in passive avoidance task. In addition, paeonol treatment at the higher dose was also associated with partial restoration of hippocampal level of oxidative stress and inflammatory markers including MDA, ROS, GSH, SOD, catalase, NF-kB, and TNF. Besides, paeonol improved MMP as an index of mitochondrial integrity and health and reduced MPO as a factor of neutrophil infiltration. Furthermore, paeonol treatment prevented hippocampal MBP immunoreactivity, indicating its prevention of demyelination. In conclusion, the current study showed the preventive effect of paeonol against cuprizone-induced demyelination and cognitive deficits through reversing most oxidative stress- and inflammation-related parameters in addition to its improvement of mitochondrial health.
Collapse
Affiliation(s)
- Soosan Pourmohammadi
- Department of Biology, Faculty of Basic Sciences, Shahed University, Tehran, Iran
| | - Mehrdad Roghani
- Neurophysiology Research Center, Shahed University, Tehran, Iran.
| | - Zahra Kiasalari
- Neurophysiology Research Center, Shahed University, Tehran, Iran
| | - Mohsen Khalili
- Neurophysiology Research Center, Shahed University, Tehran, Iran
| |
Collapse
|
24
|
Morgan ML, Teo W, Hernandez Y, Brideau C, Cummins K, Kuipers HF, Stys PK. Cuprizone-induced Demyelination in Mouse Brain is not due to Depletion of Copper. ASN Neuro 2022; 14:17590914221126367. [PMID: 36114624 PMCID: PMC9483969 DOI: 10.1177/17590914221126367] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
The cuprizone (CPZ) model allows the study of the biochemical processes underlying
nonautoimmune-mediated demyelination, remyelination, and chronic white matter disease
progression. CPZ is a copper (Cu) chelator that chiefly causes oligodendrocyte apoptosis
in the corpus callosum and cerebellum when administered in the mouse diet. While
disruption of Cu homeostasis is known to cause neurodegeneration (as is observed in
Wilson’s and Menkes disease), no consensus exists to date as to CPZ’s mechanism of action.
We sought to determine whether CPZ-induced pathology is due to Cu depletion as is
generally believed. Cu supplementation in chow, in stoichiometric excess to the added CPZ,
did not reduce CPZ-induced demyelination in C57Bl/6 mice. Moreover, equivalent doses of
other known Cu chelators neocuproine and D-penicillamine (D-Pen) failed to induce central
nervous system (CNS) demyelination. Since administration of D-Pen in the treatment of
Wilson’s disease can induce hypocupremia, we next sought to recreate penicillamine-induced
Cu deficiency to compare with purported CPZ-induced Cu deficiency. The resulting clinical
phenotype and histopathology were unlike that of CPZ. D-Pen-treated mice exhibited digit
paralysis, tail flaccidity, subcutaneous hemorrhaging, and optic and sciatic neuropathy,
all of which were prevented with Cu supplementation. No demyelination of the corpus
callosum or cerebellum was observed, even with D-Pen doses tenfold higher than CPZ.
Intriguingly, addition of D-Pen to the CPZ diet paradoxically prevented demyelination in a
dose-dependent manner.
Collapse
Affiliation(s)
- Megan L. Morgan
- Cumming School of Medicine, Department of Clinical Neurosciences, University of Calgary, Hotchkiss Brain Institute, Calgary, 3330 Hospital Drive N.W. HRIC 1B37A, Calgary, AB, T2N 4N1, Canada
| | - Wulin Teo
- Cumming School of Medicine, Department of Clinical Neurosciences, University of Calgary, Hotchkiss Brain Institute, Calgary, 3330 Hospital Drive N.W. HRIC 1B37A, Calgary, AB, T2N 4N1, Canada
| | - Yda Hernandez
- Cumming School of Medicine, Department of Clinical Neurosciences, University of Calgary, Hotchkiss Brain Institute, Calgary, 3330 Hospital Drive N.W. HRIC 1B37A, Calgary, AB, T2N 4N1, Canada
| | - Craig Brideau
- Cumming School of Medicine, Department of Clinical Neurosciences, University of Calgary, Hotchkiss Brain Institute, Calgary, 3330 Hospital Drive N.W. HRIC 1B37A, Calgary, AB, T2N 4N1, Canada
| | - Karen Cummins
- Cumming School of Medicine, Department of Clinical Neurosciences, University of Calgary, Hotchkiss Brain Institute, Calgary, 3330 Hospital Drive N.W. HRIC 1B37A, Calgary, AB, T2N 4N1, Canada
| | - Hedwich F. Kuipers
- Cumming School of Medicine, Department of Clinical Neurosciences, University of Calgary, Hotchkiss Brain Institute, Calgary, 3330 Hospital Drive N.W. HRIC 1B37A, Calgary, AB, T2N 4N1, Canada
| | - Peter K. Stys
- Cumming School of Medicine, Department of Clinical Neurosciences, University of Calgary, Hotchkiss Brain Institute, Calgary, 3330 Hospital Drive N.W. HRIC 1B37A, Calgary, AB, T2N 4N1, Canada
| |
Collapse
|
25
|
Ahmed D, Puthussery H, Basnett P, Knowles JC, Lange S, Roy I. Controlled Delivery of Pan-PAD-Inhibitor Cl-Amidine Using Poly(3-Hydroxybutyrate) Microspheres. Int J Mol Sci 2021; 22:ijms222312852. [PMID: 34884657 PMCID: PMC8658019 DOI: 10.3390/ijms222312852] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 12/13/2022] Open
Abstract
This study deals with the process of optimization and synthesis of Poly(3-hydroxybutyrate) microspheres with encapsulated Cl-amidine. Cl-amidine is an inhibitor of peptidylarginine deiminases (PADs), a group of calcium-dependent enzymes, which play critical roles in a number of pathologies, including autoimmune and neurodegenerative diseases, as well as cancer. While Cl-amidine application has been assessed in a number of in vitro and in vivo models; methods of controlled release delivery remain to be investigated. P(3HB) microspheres have proven to be an effective delivery system for several compounds applied in antimicrobial, wound healing, cancer, and cardiovascular and regenerative disease models. In the current study, P(3HB) microspheres with encapsulated Cl-amidine were produced in a size ranging from ~4–5 µm and characterized for surface morphology, porosity, hydrophobicity and protein adsorption, in comparison with empty P(3HB) microspheres. Cl-amidine encapsulation in P(3HB) microspheres was optimized, and these were found to be less hydrophobic, compared with the empty microspheres, and subsequently adsorbed a lower amount of protein on their surface. The release kinetics of Cl-amidine from the microspheres were assessed in vitro and expressed as a function of encapsulation efficiency. There was a burst release of ~50% Cl-amidine in the first 24 h and a zero order release from that point up to 16 days, at which time point ~93% of the drug had been released. As Cl-amidine has been associated with anti-cancer effects, the Cl-amidine encapsulated microspheres were assessed for the inhibition of vascular endothelial growth factor (VEGF) expression in the mammalian breast cancer cell line SK-BR-3, including in the presence of the anti-proliferative drug rapamycin. The cytotoxicity of the combinatorial effect of rapamycin with Cl-amidine encapsulated P(3HB) microspheres was found to be 3.5% more effective within a 24 h period. The cells treated with Cl-amidine encapsulated microspheres alone, were found to have 36.5% reduction in VEGF expression when compared with untreated SK-BR-3 cells. This indicates that controlled release of Cl-amidine from P(3HB) microspheres may be effective in anti-cancer treatment, including in synergy with chemotherapeutic agents. Using controlled drug-delivery of Cl-amidine encapsulated in Poly(3-hydroxybutyrate) microspheres may be a promising novel strategy for application in PAD-associated pathologies.
Collapse
Affiliation(s)
- Dina Ahmed
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London W1W 6XH, UK;
| | - Hima Puthussery
- School of Life Sciences, University of Westminster, London W1W 6XH, UK; (H.P.); (P.B.)
| | - Pooja Basnett
- School of Life Sciences, University of Westminster, London W1W 6XH, UK; (H.P.); (P.B.)
| | - Jonathan C. Knowles
- Department of Biomaterials and Tissue Engineering, Eastman Dental Institute, University College London, Royal Free Hospital, Rowland Hill Street, London NW3 2PF, UK;
| | - Sigrun Lange
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London W1W 6XH, UK;
- Correspondence: emails: (S.L.); (I.R.); Tel.: +44-(0)207-911-5000 (ext. 64832) (S.L.); +44-(0)114-222-5962 (ext. 64096) (I.R.)
| | - Ipsita Roy
- Department of Materials Science and Engineering, Faculty of Engineering, University of Sheffield, Sheffield S10 2TN, UK
- Correspondence: emails: (S.L.); (I.R.); Tel.: +44-(0)207-911-5000 (ext. 64832) (S.L.); +44-(0)114-222-5962 (ext. 64096) (I.R.)
| |
Collapse
|
26
|
Wang L, Chen H, Tang J, Guo Z, Wang Y. Peptidylarginine Deiminase and Alzheimer's Disease. J Alzheimers Dis 2021; 85:473-484. [PMID: 34842193 DOI: 10.3233/jad-215302] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Peptidylarginine deiminases (PADs) are indispensable enzymes for post-translational modification of proteins, which can convert Arg residues on the surface of proteins to citrulline residues. The PAD family has five isozymes, PAD1, 2, 3, 4, and 6, which have been found in multiple tissues and organs. PAD2 and PAD4 were detected in cerebral cortex and hippocampus from human and rodent brain. In the central nervous system, abnormal expression and activation of PADs are involved in the pathological changes and pathogenesis of Alzheimer's disease (AD). This article reviews the classification, distribution, and function of PADs, with an emphasis on the relationship between the abnormal activation of PADs and AD pathogenesis, diagnosis, and the therapeutic potential of PADs as drug targets for AD.
Collapse
Affiliation(s)
- Lai Wang
- Epigenetics & Translational Medicine Laboratory, School of Life Sciences, Henan University, Kaifeng, Henan Province, P.R. China
| | - Hongyang Chen
- Epigenetics & Translational Medicine Laboratory, School of Life Sciences, Henan University, Kaifeng, Henan Province, P.R. China
| | - Jing Tang
- Epigenetics & Translational Medicine Laboratory, School of Life Sciences, Henan University, Kaifeng, Henan Province, P.R. China
| | - Zhengwei Guo
- Epigenetics & Translational Medicine Laboratory, School of Life Sciences, Henan University, Kaifeng, Henan Province, P.R. China
| | - Yanming Wang
- Epigenetics & Translational Medicine Laboratory, School of Life Sciences, Henan University, Kaifeng, Henan Province, P.R. China
| |
Collapse
|
27
|
Wu Z, Li P, Tian Y, Ouyang W, Ho JWY, Alam HB, Li Y. Peptidylarginine Deiminase 2 in Host Immunity: Current Insights and Perspectives. Front Immunol 2021; 12:761946. [PMID: 34804050 PMCID: PMC8599989 DOI: 10.3389/fimmu.2021.761946] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/20/2021] [Indexed: 11/13/2022] Open
Abstract
Peptidylarginine deiminases (PADs) are a group of enzymes that catalyze post-translational modifications of proteins by converting arginine residues into citrullines. Among the five members of the PAD family, PAD2 and PAD4 are the most frequently studied because of their abundant expression in immune cells. An increasing number of studies have identified PAD2 as an essential factor in the pathogenesis of many diseases. The successes of preclinical research targeting PAD2 highlights the therapeutic potential of PAD2 inhibition, particularly in sepsis and autoimmune diseases. However, the underlying mechanisms by which PAD2 mediates host immunity remain largely unknown. In this review, we will discuss the role of PAD2 in different types of cell death signaling pathways and the related immune disorders contrasted with functions of PAD4, providing novel therapeutic strategies for PAD2-associated pathology.
Collapse
Affiliation(s)
- Zhenyu Wu
- Department of Surgery, University of Michigan Hospital, Ann Arbor, MI, United States,Department of Infectious Diseases, Xiangya 2 Hospital, Central South University, Changsha, China
| | - Patrick Li
- Department of Surgery, University of Michigan Hospital, Ann Arbor, MI, United States,Department of Internal Medicine, New York University (NYU) Langone Health, New York, NY, United States
| | - Yuzi Tian
- Department of Surgery, University of Michigan Hospital, Ann Arbor, MI, United States,Department of Rheumatology, Xiangya Hospital, Central South University, Changsha, China
| | - Wenlu Ouyang
- Department of Surgery, University of Michigan Hospital, Ann Arbor, MI, United States,Department of Infectious Diseases, Xiangya 2 Hospital, Central South University, Changsha, China
| | - Jessie Wai-Yan Ho
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Hasan B. Alam
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Yongqing Li
- Department of Surgery, University of Michigan Hospital, Ann Arbor, MI, United States,*Correspondence: Yongqing Li,
| |
Collapse
|
28
|
Kumar N, Singh A, Gulati HK, Bhagat K, Kaur K, Kaur J, Dudhal S, Duggal A, Gulati P, Singh H, Singh JV, Bedi PMS. Phytoconstituents from ten natural herbs as potent inhibitors of main protease enzyme of SARS-COV-2: In silico study. PHYTOMEDICINE PLUS : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021. [PMID: 35403086 DOI: 10.1016/j.phyplu.2021.100139] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
BACKGROUND Lack of treatment of novel Coronavirus disease led to the search of specific antivirals that are capable to inhibit the replication of the virus. The plant kingdom has demonstrated to be an important source of new molecules with antiviral potential. PURPOSE The present study aims to utilize various computational tools to identify the most eligible drug candidate that have capabilities to halt the replication of SARS-COV-2 virus by inhibiting Main protease (Mpro) enzyme. METHODS We have selected plants whose extracts have inhibitory potential against previously discovered coronaviruses. Their phytoconstituents were surveyed and a library of 100 molecules was prepared. Then, computational tools such as molecular docking, ADMET and molecular dynamic simulations were utilized to screen the compounds and evaluate them against Mpro enzyme. RESULTS All the phytoconstituents showed good binding affinities towards Mpro enzyme. Among them laurolitsine possesses the highest binding affinity i.e. -294.1533 kcal/mol. On ADMET analysis of best three ligands were simulated for 1.2 ns, then the stable ligand among them was further simulated for 20 ns. Results revealed that no conformational changes were observed in the laurolitsine w.r.t. protein residues and low RMSD value suggested that the Laurolitsine-protein complex was stable for 20 ns. CONCLUSION Laurolitsine, an active constituent of roots of Lindera aggregata, was found to be having good ADMET profile and have capabilities to halt the activity of the enzyme. Therefore, this makes laurolitsine a good drug candidate for the treatment of COVID-19.
Collapse
Key Words
- ACE-2, Angiotensin converting enzyme- 2
- ADMET
- ADMET, absorption, Distribution, metabolism, excretion and toxicity
- Ala, Alanine
- Approx., approximately
- Arg, arginine
- Asn, Asparagine
- Asp, Aspartic acid
- CADD, Computer Aided Drug Design
- CHARMM, Chemistry at Harvard Macromolecular Mechanics
- COV, coronavirus
- COVID, Novel corona-virus disease
- Covid-19
- Cys, cysteine
- DSBDS, Dassault's Systems Biovia's Discovery studio
- Gln, Glutamine
- Glu, glutamate
- Gly, Glycine
- His, histidine
- Ile, isoleucine
- K, Kelvin
- Kcal/mol, kilo calories per mol
- Leu, Leucine
- Leu, leucine
- Lys, Lysine
- MD, Molecular Dynamics
- Met, Methionine
- MoISA, Molecular Surface Area
- Molecular dynamic simulations
- Mpro protein
- Mpro, Main protease enzyme
- N protein, nucleocapsid protein
- NI, N-(4-methylpyridin-3-yl) acetamide inhibitor
- NPT, amount of substance (N), pressure (P) and temperature (T)
- NVT, amount of substance (N), volume (V) and temperature (T)
- Natural Antiviral herbs
- PDB, protein data bank
- PPB, plasma protein binding
- PSA, Polar Surface Area
- Phi, Phenylalanine
- Pro, Proline
- RCSB, Research Collaboratory for Structural Bioinformatics
- RMS, Root Mean Square
- RMSD, Root Mean Square Deviation
- RMSF, root mean square fluctuations
- RNA, Ribonucleic acid
- SAR-COV-2, severe acute respiratory syndrome coronavirus 2
- SDF, structure data format
- Ser, serine
- T, Temperature
- Thr, Threonine
- Trp, Tryptophan
- Tyr, Tyrosine
- Val, Valine
- kDa, kilo Dalton
- nCOV-19, Novel Coronavirus 2019
- ns/nsec, nano seconds
- ps, pentoseconds
- rGyr, Radius of gyration
- w.r.t., with respect to
- Å, angstrom
- α, alpha
- β, beta
Collapse
Affiliation(s)
- Nitish Kumar
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India, 143005
- Drug and Pollution testing Lab, Guru Nanak Dev University, Amritsar, Punjab, India, 143005
| | - Atamjit Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India, 143005
| | - Harmandeep Kaur Gulati
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India, 143005
| | - Kavita Bhagat
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India, 143005
| | - Komalpreet Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India, 143005
| | - Jaspreet Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India, 143005
| | - Shilpa Dudhal
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India, 143005
| | - Amit Duggal
- Drugs Control Wing, Sector 16, Chandigarh, India, 160015
| | - Puja Gulati
- School of Pharmacy, Desh Bhagat University, Mandi Gobindgarh, Punjab, India, 147301
| | - Harbinder Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India, 143005
| | - Jatinder Vir Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India, 143005
| | | |
Collapse
|
29
|
Impact of Posttranslational Modification in Pathogenesis of Rheumatoid Arthritis: Focusing on Citrullination, Carbamylation, and Acetylation. Int J Mol Sci 2021; 22:ijms221910576. [PMID: 34638916 PMCID: PMC8508717 DOI: 10.3390/ijms221910576] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/23/2021] [Accepted: 09/26/2021] [Indexed: 12/24/2022] Open
Abstract
Rheumatoid arthritis (RA) is caused by prolonged periodic interactions between genetic, environmental, and immunologic factors. Posttranslational modifications (PTMs) such as citrullination, carbamylation, and acetylation are correlated with the pathogenesis of RA. PTM and cell death mechanisms such as apoptosis, autophagy, NETosis, leukotoxic hypercitrullination (LTH), and necrosis are related to each other and induce autoantigenicity. Certain microbial infections, such as those caused by Porphyromonasgingivalis, Aggregatibacter actinomycetemcomitans, and Prevotella copri, can induce autoantigens in RA. Anti-modified protein antibodies (AMPA) containing anti-citrullinated protein/peptide antibodies (ACPAs), anti-carbamylated protein (anti-CarP) antibodies, and anti-acetylated protein antibodies (AAPAs) play a role in pathogenesis as well as in prediction, diagnosis, and prognosis. Interestingly, smoking is correlated with both PTMs and AMPAs in the development of RA. However, there is lack of evidence that smoking induces the generation of AMPAs.
Collapse
|
30
|
Guglietti B, Sivasankar S, Mustafa S, Corrigan F, Collins-Praino LE. Fyn Kinase Activity and Its Role in Neurodegenerative Disease Pathology: a Potential Universal Target? Mol Neurobiol 2021; 58:5986-6005. [PMID: 34432266 DOI: 10.1007/s12035-021-02518-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/03/2021] [Indexed: 12/14/2022]
Abstract
Fyn is a non-receptor tyrosine kinase belonging to the Src family of kinases (SFKs) which has been implicated in several integral functions throughout the central nervous system (CNS), including myelination and synaptic transmission. More recently, Fyn dysfunction has been associated with pathological processes observed in neurodegenerative diseases, such as multiple sclerosis (MS), Alzheimer's disease (AD) and Parkinson's disease (PD). Neurodegenerative diseases are amongst the leading cause of death and disability worldwide and, due to the ageing population, prevalence is predicted to rise in the coming years. Symptoms across neurodegenerative diseases are both debilitating and degenerative in nature and, concerningly, there are currently no disease-modifying therapies to prevent their progression. As such, it is important to identify potential new therapeutic targets. This review will outline the role of Fyn in normal/homeostatic processes, as well as degenerative/pathological mechanisms associated with neurodegenerative diseases, such as demyelination, pathological protein aggregation, neuroinflammation and cognitive dysfunction.
Collapse
Affiliation(s)
- Bianca Guglietti
- Department of Medical Sciences, University of Adelaide, SG31, Helen Mayo South, Adelaide, SA, 5005, Australia
| | - Srisankavi Sivasankar
- Department of Medical Sciences, University of Adelaide, SG31, Helen Mayo South, Adelaide, SA, 5005, Australia
| | - Sanam Mustafa
- Department of Medical Sciences, University of Adelaide, SG31, Helen Mayo South, Adelaide, SA, 5005, Australia.,ARC Centre of Excellence for Nanoscale BioPhotonics, University of Adelaide, Adelaide, Australia
| | - Frances Corrigan
- Department of Medical Sciences, University of Adelaide, SG31, Helen Mayo South, Adelaide, SA, 5005, Australia
| | - Lyndsey E Collins-Praino
- Department of Medical Sciences, University of Adelaide, SG31, Helen Mayo South, Adelaide, SA, 5005, Australia. .,ARC Centre of Excellence for Nanoscale BioPhotonics, University of Adelaide, Adelaide, Australia.
| |
Collapse
|
31
|
Proteomics of Multiple Sclerosis: Inherent Issues in Defining the Pathoetiology and Identifying (Early) Biomarkers. Int J Mol Sci 2021; 22:ijms22147377. [PMID: 34298997 PMCID: PMC8306353 DOI: 10.3390/ijms22147377] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 02/06/2023] Open
Abstract
Multiple Sclerosis (MS) is a demyelinating disease of the human central nervous system having an unconfirmed pathoetiology. Although animal models are used to mimic the pathology and clinical symptoms, no single model successfully replicates the full complexity of MS from its initial clinical identification through disease progression. Most importantly, a lack of preclinical biomarkers is hampering the earliest possible diagnosis and treatment. Notably, the development of rationally targeted therapeutics enabling pre-emptive treatment to halt the disease is also delayed without such biomarkers. Using literature mining and bioinformatic analyses, this review assessed the available proteomic studies of MS patients and animal models to discern (1) whether the models effectively mimic MS; and (2) whether reasonable biomarker candidates have been identified. The implication and necessity of assessing proteoforms and the critical importance of this to identifying rational biomarkers are discussed. Moreover, the challenges of using different proteomic analytical approaches and biological samples are also addressed.
Collapse
|
32
|
Griffante G, Gugliesi F, Pasquero S, Dell'Oste V, Biolatti M, Salinger AJ, Mondal S, Thompson PR, Weerapana E, Lebbink RJ, Soppe JA, Stamminger T, Girault V, Pichlmair A, Oroszlán G, Coen DM, De Andrea M, Landolfo S. Human cytomegalovirus-induced host protein citrullination is crucial for viral replication. Nat Commun 2021; 12:3910. [PMID: 34162877 PMCID: PMC8222335 DOI: 10.1038/s41467-021-24178-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 05/29/2021] [Indexed: 11/18/2022] Open
Abstract
Citrullination is the conversion of arginine-to-citrulline by protein arginine deiminases (PADs), whose dysregulation is implicated in the pathogenesis of various types of cancers and autoimmune diseases. Consistent with the ability of human cytomegalovirus (HCMV) to induce post-translational modifications of cellular proteins to gain a survival advantage, we show that HCMV infection of primary human fibroblasts triggers PAD-mediated citrullination of several host proteins, and that this activity promotes viral fitness. Citrullinome analysis reveals significant changes in deimination levels of both cellular and viral proteins, with interferon (IFN)-inducible protein IFIT1 being among the most heavily deiminated one. As genetic depletion of IFIT1 strongly enhances HCMV growth, and in vitro IFIT1 citrullination impairs its ability to bind to 5’-ppp-RNA, we propose that viral-induced IFIT1 citrullination is a mechanism of HCMV evasion from host antiviral resistance. Overall, our findings point to a crucial role of citrullination in subverting cellular responses to viral infection. Citrullination is a posttranslational modification of arginines. Here, the authors show that HCMV infection increases citrullination of host and virus proteins to promote infection and that citrullinated interferon-inducible protein IFIT1 is impaired in RNA binding, as a potential mechanism of evasion.
Collapse
Affiliation(s)
- Gloria Griffante
- Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy.,Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Francesca Gugliesi
- Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Selina Pasquero
- Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Valentina Dell'Oste
- Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Matteo Biolatti
- Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Ari J Salinger
- Department of Biochemistry and Molecular Pharmacology, UMass Medical School, Worcester, MA, USA.,Department of Chemistry, Boston College, Chestnut Hill, MA, USA
| | - Santanu Mondal
- Department of Biochemistry and Molecular Pharmacology, UMass Medical School, Worcester, MA, USA
| | - Paul R Thompson
- Department of Biochemistry and Molecular Pharmacology, UMass Medical School, Worcester, MA, USA
| | | | - Robert J Lebbink
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jasper A Soppe
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Virginie Girault
- Institute of Virology, Technical University of Munich, Munich, Germany
| | - Andreas Pichlmair
- Institute of Virology, Technical University of Munich, Munich, Germany
| | - Gábor Oroszlán
- Department of Biological Chemistry & Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Donald M Coen
- Department of Biological Chemistry & Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Marco De Andrea
- Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy. .,CAAD Center for Translational Research on Autoimmune and Allergic Disease, University of Piemonte Orientale, Novara, Italy.
| | - Santo Landolfo
- Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy.
| |
Collapse
|
33
|
Abstract
As the main protein components of chromatin, histones play central roles in gene regulation as spools of winding DNA. Histones are subject to various modifications, including phosphorylation, acetylation, glycosylation, methylation, ubiquitination and citrullination, which affect gene transcription. Histone citrullination, a posttranscriptional modification catalyzed by peptidyl arginine deiminase (PAD) enzymes, is involved in human carcinogenesis. In this study, we highlighted the functions of histone citrullination in physiological regulation and tumors. Additionally, because histone citrullination involves forming neutrophil extracellular traps (NETs), the relationship between NETs and tumors was illustrated. Finally, the clinical application of histone citrullination and PAD inhibitors was discussed.
Collapse
Affiliation(s)
- Dongwei Zhu
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, 212013, China
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yue Zhang
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, 212013, China.
| | - Shengjun Wang
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, 212013, China.
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China.
| |
Collapse
|
34
|
Alghamdi MF, Redwan EM. Advances in the diagnosis of autoimmune diseases based on citrullinated peptides/proteins. Expert Rev Mol Diagn 2021; 21:685-702. [PMID: 34024239 DOI: 10.1080/14737159.2021.1933946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Introduction: Autoimmune diseases are still one of the hard obstacles associated with humanity. There are many exogenous and endogenous etiological factors behind autoimmune diseases, which may be combined or dispersed to stimulate the autoimmune responses. Protein citrullination represents one of these factors. Harnessing specific citrullinated proteins/peptides could early predict and/or diagnose some of the autoimmune diseases. Many generations of diagnostic tools based on citrullinated peptides with comparable specificity/sensitivity are available worldwide.Areas covered: In this review, we discuss the deimination reaction behind the citrullination of most known autoantigens targeted, different generations of diagnostic tools based on citrullinated probes with specificity/sensitivity of each as well as newly developed assays. Furthermore, the most advanced molecular analytical tools to detect the citrullinated residues in the biological fluid and their performance are also evaluated, providing new avenues to early detect autoimmune diseases with high accuracy.Expert opinion: With the current specificity/sensitivity tools available for autoimmune disease detection, emphasis must be placed on developing more advance and effective, early, rapid, and simple diagnostic devices for autoimmune disease monitoring (similar to a portable device for sugar test at home). The molecular analytical devices with dual and/or multiplexe functions should be more simplified and invested in clinical laboratories.
Collapse
Affiliation(s)
- Mohammed F Alghamdi
- Biological Sciences Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.,Laboratory Department, University Medical Services Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Elrashdy M Redwan
- Biological Sciences Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.,Therapeutic and Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technology Applications, New Borg EL-Arab, Alexandria, Egypt
| |
Collapse
|
35
|
Kumashiro M, Izumi Y, Matsuo K. Conformation of myelin basic protein bound to phosphatidylinositol membrane characterized by vacuum-ultraviolet circular-dichroism spectroscopy and molecular-dynamics simulations. Proteins 2021; 89:1251-1261. [PMID: 33998060 DOI: 10.1002/prot.26146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 05/07/2021] [Indexed: 12/18/2022]
Abstract
The 18.5-kDa isoform of myelin basic protein (MBP) interacts with the membrane surface of the myelin sheath to construct its compact multilamellar structure. This study characterized the conformation of MBP in the membrane by measuring the vacuum-ultraviolet circular-dichroism (VUVCD) spectra of MBP in the bilayer liposome comprising the following essential lipid constituents of the myelin sheath: phosphatidylinositol (PI), phosphatidylinositol-4-phosphate (PIP), and phosphatidylinositol-4,5-bisphosphate (PIP2). The spectra of MBP exhibited the characteristic peaks of the helix structure in the presence of PI liposome, and the intensity increased markedly in the presence of PIP and PIP2 liposomes to show an isodichroic point. This suggests that the amount of the membrane-bound conformation of MBP enhanced due to the increased number of negative net charges on the liposome surfaces. Secondary-structure analysis revealed that MBP in the membrane comprised approximately 40% helix contents and eight helix segments. Molecular-dynamics (MD) simulations of the eight segments were conducted for 250 ns in the presence of PI membrane, which predicted two amphiphilic and three nonamphiphilic helices as the membrane-interaction sites. Further analysis of the distances of the amino-acid residues in each segment from the phosphate group suggested that the nonamphiphilic helices interact with the membrane surface electrostatically, while the amphiphilic ones invade the inside of the membrane to produce electrostatic and hydrophobic interactions. These results show that MBP can interact with the PI membrane via amphiphilic and nonamphiphilic helices under the control of a delicate balance between electrostatic and hydrophobic interactions.
Collapse
Affiliation(s)
- Munehiro Kumashiro
- Department of Physical Science, Graduate School of Science, Hiroshima University, Hiroshima, Japan
| | - Yudai Izumi
- Hiroshima Synchrotron Radiation Center, Hiroshima University, Hiroshima, Japan
| | - Koichi Matsuo
- Hiroshima Synchrotron Radiation Center, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
36
|
Kumar N, Sharma N, Khera R, Gupta R, Mehan S. Guggulsterone ameliorates ethidium bromide-induced experimental model of multiple sclerosis via restoration of behavioral, molecular, neurochemical and morphological alterations in rat brain. Metab Brain Dis 2021; 36:911-925. [PMID: 33635478 DOI: 10.1007/s11011-021-00691-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 02/11/2021] [Indexed: 11/30/2022]
Abstract
Multiple Sclerosis (MS) is a progressive neurodegenerative disease with clinical signs of neuroinflammation and the central nervous system's demyelination. Numerous studies have identified the role of the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) overexpression and the low level of peroxisome proliferator-activated receptor-gamma (PPAR-γ) in MS pathogenesis. Guggulsterone (GST), an active component derived from 'Commiphora Mukul,' has been used to treat various diseases. Traditional uses indicate that GST is a suitable agent for anti-inflammatory action. Therefore, we assessed the therapeutic potential of GST (30 and 60 mg/kg) in ethidium bromide (EB) induced demyelination in experimental rats and investigated the molecular mechanism by modulating the JAK/STAT and PPAR-γ receptor signaling. Wistar rats were randomly divided into six groups (n = 6). EB (0.1%/10 μl) was injected selectively in the intracerebropeduncle (ICP) region for seven days to cause MS-like manifestations. The present study reveals that long-term administration of GST for 28 days has a neuroprotective effect by improving behavioral deficits (spatial cognition memory, grip, and motor coordination) associated with lower STAT-3 levels. While elevating PPAR-γ and myelin basic protein levels in rat brains are consistent with the functioning of both signaling pathways. Also, GST modulates the neurotransmitter level by increasing Ach, dopamine, serotonin and by reducing glutamate. Moreover, GST ameliorates inflammatory cytokines (TNF, IL-1β), and oxidative stress markers (AchE, SOD, catalase, MDA, GSH, nitrite). In addition, GST prevented apoptosis, as demonstrated by the reduction of caspase-3 and Bax. Simultaneously, Bcl-2 elevation and the restoration of gross morphology alterations are also recovered by long-term GST treatment. Therefore, it can be concluded that GST may be a potential alternative drug candidate for MS-related motor neuron dysfunctions.
Collapse
Affiliation(s)
- Nitish Kumar
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Nidhi Sharma
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Rishabh Khera
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Ria Gupta
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Sidharth Mehan
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India.
| |
Collapse
|
37
|
Gugliesi F, Pasquero S, Griffante G, Scutera S, Albano C, Pacheco SFC, Riva G, Dell’Oste V, Biolatti M. Human Cytomegalovirus and Autoimmune Diseases: Where Are We? Viruses 2021; 13:260. [PMID: 33567734 PMCID: PMC7914970 DOI: 10.3390/v13020260] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/03/2021] [Accepted: 02/05/2021] [Indexed: 12/14/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a ubiquitous double-stranded DNA virus belonging to the β-subgroup of the herpesvirus family. After the initial infection, the virus establishes latency in poorly differentiated myeloid precursors from where it can reactivate at later times to cause recurrences. In immunocompetent subjects, primary HCMV infection is usually asymptomatic, while in immunocompromised patients, HCMV infection can lead to severe, life-threatening diseases, whose clinical severity parallels the degree of immunosuppression. The existence of a strict interplay between HCMV and the immune system has led many to hypothesize that HCMV could also be involved in autoimmune diseases (ADs). Indeed, signs of active viral infection were later found in a variety of different ADs, such as rheumatological, neurological, enteric disorders, and metabolic diseases. In addition, HCMV infection has been frequently linked to increased production of autoantibodies, which play a driving role in AD progression, as observed in systemic lupus erythematosus (SLE) patients. Documented mechanisms of HCMV-associated autoimmunity include molecular mimicry, inflammation, and nonspecific B-cell activation. In this review, we summarize the available literature on the various ADs arising from or exacerbating upon HCMV infection, focusing on the potential role of HCMV-mediated immune activation at disease onset.
Collapse
Affiliation(s)
- Francesca Gugliesi
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy; (F.G.); (S.P.); (S.S.); (C.A.); (S.F.C.P.); (V.D.)
| | - Selina Pasquero
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy; (F.G.); (S.P.); (S.S.); (C.A.); (S.F.C.P.); (V.D.)
| | - Gloria Griffante
- Department of Translational Medicine, Molecular Virology Unit, University of Piemonte Orientale Medical School, 28100 Novara, Italy;
| | - Sara Scutera
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy; (F.G.); (S.P.); (S.S.); (C.A.); (S.F.C.P.); (V.D.)
| | - Camilla Albano
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy; (F.G.); (S.P.); (S.S.); (C.A.); (S.F.C.P.); (V.D.)
| | - Sergio Fernando Castillo Pacheco
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy; (F.G.); (S.P.); (S.S.); (C.A.); (S.F.C.P.); (V.D.)
| | - Giuseppe Riva
- Otorhinolaryngology Division, Department of Surgical Sciences, University of Turin, 10126 Turin, Italy;
| | - Valentina Dell’Oste
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy; (F.G.); (S.P.); (S.S.); (C.A.); (S.F.C.P.); (V.D.)
| | - Matteo Biolatti
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy; (F.G.); (S.P.); (S.S.); (C.A.); (S.F.C.P.); (V.D.)
| |
Collapse
|
38
|
Onmaz DE, Isık SMT, Abusoglu S, Ekmekci AH, Sivrikaya A, Abusoglu G, Ozturk S, Aydemir HY, Unlu A. Serum ADMA levels were positively correlated with EDSS scores in patients with multiple sclerosis. J Neuroimmunol 2021; 353:577497. [PMID: 33549941 DOI: 10.1016/j.jneuroim.2021.577497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 01/21/2021] [Accepted: 01/21/2021] [Indexed: 11/16/2022]
Abstract
Multiple sclerosis (MS) is an autoinflammatory, chronic central nervous system disease. In the pathogenesis of the disease increased nitric oxide (NO) levels play an important role. Nitric oxide (NO) has neuroprotective effects in physiological conditions, however, it is thought that excessive NO formation in MS may lead to demyelination and axonal damage. Derivatives of methylarginine including asymmetric dimethyl arginine (ADMA), L-N monomethyl arginine (L-NMMA), symmetric dimethyl arginine (SDMA) directly or indirectly reduce NO production. Our aim was to measure the levels of methylarginine derivatives and citrulline, ornithine, arginine, homoarginine levels, which are metabolites associated with NO metabolism, in MS subgroups.
Collapse
Affiliation(s)
- Duygu Eryavuz Onmaz
- Department of Biochemistry, Selcuk University Faculty of Medicine, Konya, Turkey.
| | | | - Sedat Abusoglu
- Department of Biochemistry, Selcuk University Faculty of Medicine, Konya, Turkey
| | - Ahmet Hakan Ekmekci
- Department of Neurology, Selcuk University Faculty of Medicine, Konya, Turkey
| | - Abdullah Sivrikaya
- Department of Biochemistry, Selcuk University Faculty of Medicine, Konya, Turkey
| | - Gulsum Abusoglu
- Department of Medical Laboratory Techniques, Selcuk University Vocational School of Health, Konya, Turkey
| | - Serefnur Ozturk
- Department of Neurology, Selcuk University Faculty of Medicine, Konya, Turkey
| | | | - Ali Unlu
- Department of Biochemistry, Selcuk University Faculty of Medicine, Konya, Turkey
| |
Collapse
|
39
|
Chu HS, Peterson C, Jun A, Foster J. Targeting the integrated stress response in ophthalmology. Curr Eye Res 2021; 46:1075-1088. [PMID: 33474991 DOI: 10.1080/02713683.2020.1867748] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Purpose: To summarize the Integrated Stress Response (ISR) in the context of ophthalmology, with special interest on the cornea and anterior segment. Results: The ISR is a powerful and conserved signaling pathway that allows for cells to respond to a diverse array of both intracellular and extracellular stressors. The pathway is classically responsible for coordination of the cellular response to amino acid starvation, ultraviolet light, heme dysregulation, viral infection, and unfolded protein. Under normal circumstances, it is considered pro-survival and a necessary mechanism through which protein translation is controlled. However, in cases of severe or prolonged stress the pathway can promote apoptosis, and loss of normal cellular phenotype. The activation of this pathway culminates in the global inhibition of cap-dependent protein translation and the canonical expression of the activating transcription factor 4 (ATF4). Conclusion:The eye is uniquely exposed to ISR responsive stressors due to its environmental exposure and relative isolation from the circulatory system which are necessary for its function. We will discuss how this pathway is critical for the proper function of the tissue, its role in development, as well as how targeting of the pathway could alleviate key aspects of diverse ophthalmic diseases.
Collapse
Affiliation(s)
- Hsiao-Sang Chu
- Wilmer Eye Institute, Department of Ophthalmology, Johns Hopkins University, Baltimore, MD, USA.,Department of Ophthalmology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei City, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei City, Taiwan
| | - Cornelia Peterson
- Department of Molecular & Comparative Pathobiology, Johns Hopkins University, Baltimore, MD, USA
| | - Albert Jun
- Wilmer Eye Institute, Department of Ophthalmology, Johns Hopkins University, Baltimore, MD, USA
| | - James Foster
- Wilmer Eye Institute, Department of Ophthalmology, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
40
|
Dragoni G, De Hertogh G, Vermeire S. The Role of Citrullination in Inflammatory Bowel Disease: A Neglected Player in Triggering Inflammation and Fibrosis? Inflamm Bowel Dis 2021; 27:134-144. [PMID: 32426830 DOI: 10.1093/ibd/izaa095] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Indexed: 02/07/2023]
Abstract
Citrullination is a posttranslational modification of proteins mediated by a specific family of enzymes called peptidylarginine deiminases (PAD). Dysregulation of these enzymes is involved in the etiology of various diseases, from cancer to autoimmune disorders. In inflammatory bowel disease (IBD), data for a role of citrullination in the disease process are starting to accumulate at different experimental levels including gene expression analyses, RNA, and protein quantifications. Most data have been generated in ulcerative colitis, but data in Crohn disease are lacking so far. In addition, the citrullination of histones is the fundamental process promoting inflammation through the formation of neutrophil extracellular traps (NETs). Interestingly, NETs have also been shown to activate fibroblasts into myofibroblasts in fibrotic interstitial lung disease. Therefore, citrullination merits more thorough study in the bowel to determine its role in driving disease complications such as fibrosis. In this review we describe the process of citrullination and the different players in this pathway, the role of citrullination in autoimmunity with a special focus on IBD, the emerging role for citrullination and NETs in triggering fibrosis, and, finally, how this process could be therapeutically targeted.
Collapse
Affiliation(s)
- Gabriele Dragoni
- KU Leuven Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders, Leuven, Belgium.,Gastroenterology Research Unit, Department of Experimental and Clinical Biomedical Sciences Mario Serio, University of Florence, Florence, Italy.,Department of Medical Biotechnologies, University of Siena, Italy
| | - Gert De Hertogh
- KU Leuven, Department of Imaging and Pathology, Translational Cell & Tissue Research, Leuven, Belgium
| | - Séverine Vermeire
- KU Leuven Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders, Leuven, Belgium.,Department of Gastroenterology and Hepatology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| |
Collapse
|
41
|
Minati R, Perreault C, Thibault P. A Roadmap Toward the Definition of Actionable Tumor-Specific Antigens. Front Immunol 2020; 11:583287. [PMID: 33424836 PMCID: PMC7793940 DOI: 10.3389/fimmu.2020.583287] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/30/2020] [Indexed: 12/15/2022] Open
Abstract
The search for tumor-specific antigens (TSAs) has considerably accelerated during the past decade due to the improvement of proteogenomic detection methods. This provides new opportunities for the development of novel antitumoral immunotherapies to mount an efficient T cell response against one or multiple types of tumors. While the identification of mutated antigens originating from coding exons has provided relatively few TSA candidates, the possibility of enlarging the repertoire of targetable TSAs by looking at antigens arising from non-canonical open reading frames opens up interesting avenues for cancer immunotherapy. In this review, we outline the potential sources of TSAs and the mechanisms responsible for their expression strictly in cancer cells. In line with the heterogeneity of cancer, we propose that discrete families of TSAs may be enriched in specific cancer types.
Collapse
Affiliation(s)
- Robin Minati
- École Normale Supérieure de Lyon, Université Claude Bernard Lyon I, Université de Lyon, Lyon, France
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Claude Perreault
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
- Department of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Pierre Thibault
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
- Department of Chemistry, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
42
|
Chase Huizar C, Raphael I, Forsthuber TG. Genomic, proteomic, and systems biology approaches in biomarker discovery for multiple sclerosis. Cell Immunol 2020; 358:104219. [PMID: 33039896 PMCID: PMC7927152 DOI: 10.1016/j.cellimm.2020.104219] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 09/13/2020] [Accepted: 09/16/2020] [Indexed: 12/12/2022]
Abstract
Multiple sclerosis (MS) is a neuroinflammatory disorder characterized by autoimmune-mediated inflammatory lesions in CNS leading to myelin damage and axonal loss. MS is a heterogenous disease with variable and unpredictable disease course. Due to its complex nature, MS is difficult to diagnose and responses to specific treatments may vary between individuals. Therefore, there is an indisputable need for biomarkers for early diagnosis, prediction of disease exacerbations, monitoring the progression of disease, and for measuring responses to therapy. Genomic and proteomic studies have sought to understand the molecular basis of MS and find biomarker candidates. Advances in next-generation sequencing and mass-spectrometry techniques have yielded an unprecedented amount of genomic and proteomic data; yet, translation of the results into the clinic has been underwhelming. This has prompted the development of novel data science techniques for exploring these large datasets to identify biologically relevant relationships and ultimately point towards useful biomarkers. Herein we discuss optimization of omics study designs, advances in the generation of omics data, and systems biology approaches aimed at improving biomarker discovery and translation to the clinic for MS.
Collapse
Affiliation(s)
- Carol Chase Huizar
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, USA
| | - Itay Raphael
- Department of Neurological Surgery, University of Pittsburgh, UPMC Children's Hospital, Pittsburgh, PA, USA.
| | - Thomas G Forsthuber
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
43
|
Kiasalari Z, Afshin-Majd S, Baluchnejadmojarad T, Azadi-Ahmadabadi E, Esmaeil-Jamaat E, Fahanik-Babaei J, Fakour M, Fereidouni F, Ghasemi-Tarie R, Jalalzade-Ogvar S, Khodashenas V, Sanaierad A, Zahedi E, Roghani M. Ellagic acid ameliorates neuroinflammation and demyelination in experimental autoimmune encephalomyelitis: Involvement of NLRP3 and pyroptosis. J Chem Neuroanat 2020; 111:101891. [PMID: 33217488 DOI: 10.1016/j.jchemneu.2020.101891] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 11/07/2020] [Accepted: 11/14/2020] [Indexed: 10/23/2022]
Abstract
Multiple sclerosis (MS) is presented as the most common autoimmune and demyelinating neurological disorder with incapacitating complications and with no definite therapy. Most treatments for MS mainly focus on attenuation of its severity and recurrence. To model MS reliably to study pathogenesis and efficacy of possible chemicals, experimental autoimmune encephalomyelitis (EAE) condition is induced in rodents. Ellagic acid is a neuroprotective polyphenol that can protect against demyelination. This study was planned and conducted to assess its possible beneficial effect in MOG-induced EAE model of MS with emphasis on uncovering its modes of action. Ellagic acid was given p.o. (at doses of 10 or 50 mg/kg/day) after development of clinical signs of MS to C57BL/6 mice immunized with MOG35-55. Results showed that ellagic acid can ameliorate severity of the disease and partially restore tissue level of TNFα, IL-6, IL-17A and IL-10. Besides, ellagic acid lowered tissue levels of NLRP3 and caspase 1 in addition to its mitigation of neuroinflammation, demyelination and axonal damage in spinal cord specimens of EAE group. As well, ellagic acid treatment prevented reduction of MBP and decreased GFAP and Iba1 immunoreactivity. Taken together, ellagic acid can decrease severity of EAE via amelioration of astrogliosis, astrocyte activation, demyelination, neuroinflammation and axonal damage that is partly related to its effects on NLRP3 inflammasome and pyroptotic pathway.
Collapse
Affiliation(s)
- Zahra Kiasalari
- Neurophysiology Research Center, Shahed University, Tehran, Iran
| | | | | | | | | | - Javad Fahanik-Babaei
- School of Medicine, Iran University of Medical Sciences and Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Marzieh Fakour
- Department of Physiology, School of Medicine, Shahed University, Tehran, Iran
| | - Farzane Fereidouni
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | - Vahid Khodashenas
- Department of Physiology, School of Medicine, Shahed University, Tehran, Iran
| | - Ashkan Sanaierad
- Department of Physiology, School of Medicine, Shahed University, Tehran, Iran
| | - Elham Zahedi
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehrdad Roghani
- Neurophysiology Research Center, Shahed University, Tehran, Iran.
| |
Collapse
|
44
|
Bowden TJ, Kraev I, Lange S. Extracellular vesicles and post-translational protein deimination signatures in haemolymph of the American lobster (Homarus americanus). FISH & SHELLFISH IMMUNOLOGY 2020; 106:79-102. [PMID: 32731012 DOI: 10.1016/j.fsi.2020.06.053] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/21/2020] [Accepted: 06/27/2020] [Indexed: 06/11/2023]
Abstract
The American lobster (Homarus americanus) is a commercially important crustacean with an unusual long life span up to 100 years and a comparative animal model of longevity. Therefore, research into its immune system and physiology is of considerable importance both for industry and comparative immunology studies. Peptidylarginine deiminases (PADs) are a phylogenetically conserved enzyme family that catalyses post-translational protein deimination via the conversion of arginine to citrulline. This can lead to structural and functional protein changes, sometimes contributing to protein moonlighting, in health and disease. PADs also regulate the cellular release of extracellular vesicles (EVs), which is an important part of cellular communication, both in normal physiology and in immune responses. Hitherto, studies on EVs in Crustacea are limited and neither PADs nor associated protein deimination have been studied in a Crustacean species. The current study assessed EV and deimination signatures in haemolymph of the American lobster. Lobster EVs were found to be a poly-dispersed population in the 10-500 nm size range, with the majority of smaller EVs, which fell within 22-115 nm. In lobster haemolymph, 9 key immune and metabolic proteins were identified to be post-translationally deiminated, while further 41 deiminated protein hits were identified when searching against a Crustacean database. KEGG (Kyoto encyclopedia of genes and genomes) and GO (gene ontology) enrichment analysis of these deiminated proteins revealed KEGG and GO pathways relating to a number of immune, including anti-pathogenic (viral, bacterial, fungal) and host-pathogen interactions, as well as metabolic pathways, regulation of vesicle and exosome release, mitochondrial function, ATP generation, gene regulation, telomerase homeostasis and developmental processes. The characterisation of EVs, and post-translational deimination signatures, reported in lobster in the current study, and the first time in Crustacea, provides insights into protein moonlighting functions of both species-specific and phylogenetically conserved proteins and EV-mediated communication in this long-lived crustacean. The current study furthermore lays foundation for novel biomarker discovery for lobster aquaculture.
Collapse
Affiliation(s)
- Timothy J Bowden
- Aquaculture Research Institute, School of Food & Agriculture, University of Maine, Orono, ME, USA.
| | - Igor Kraev
- Electron Microscopy Suite, Faculty of Science,Technology, Engineering and Mathematics, Open University, Milton Keynes, MK7 6AA, UK.
| | - Sigrun Lange
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London, W1W 6UW, UK.
| |
Collapse
|
45
|
Sen MK, Almuslehi MSM, Shortland PJ, Coorssen JR, Mahns DA. Revisiting the Pathoetiology of Multiple Sclerosis: Has the Tail Been Wagging the Mouse? Front Immunol 2020; 11:572186. [PMID: 33117365 PMCID: PMC7553052 DOI: 10.3389/fimmu.2020.572186] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 08/27/2020] [Indexed: 12/18/2022] Open
Abstract
Multiple Sclerosis (MS) is traditionally considered an autoimmune-mediated demyelinating disease, the pathoetiology of which is unknown. However, the key question remains whether autoimmunity is the initiator of the disease (outside-in) or the consequence of a slow and as yet uncharacterized cytodegeneration (oligodendrocytosis), which leads to a subsequent immune response (inside-out). Experimental autoimmune encephalomyelitis has been used to model the later stages of MS during which the autoimmune involvement predominates. In contrast, the cuprizone (CPZ) model is used to model early stages of the disease during which oligodendrocytosis and demyelination predominate and are hypothesized to precede subsequent immune involvement in MS. Recent studies combining a boost, or protection, to the immune system with disruption of the blood brain barrier have shown CPZ-induced oligodendrocytosis with a subsequent immune response. In this Perspective, we review these recent advances and discuss the likelihood of an inside-out vs. an outside-in pathoetiology of MS.
Collapse
Affiliation(s)
- Monokesh K Sen
- School of Medicine, Western Sydney University, Penrith, NSW, Australia
| | - Mohammed S M Almuslehi
- School of Medicine, Western Sydney University, Penrith, NSW, Australia.,Department of Physiology, College of Veterinary Medicine, University of Diyala, Baqubah, Iraq
| | - Peter J Shortland
- School of Science, Western Sydney University, Penrith, NSW, Australia
| | - Jens R Coorssen
- Departments of Health Sciences and Biological Sciences, Faculties of Applied Health Sciences and Mathematics & Science, Brock University, St. Catharines, ON, Canada
| | - David A Mahns
- School of Medicine, Western Sydney University, Penrith, NSW, Australia
| |
Collapse
|
46
|
Bowden TJ, Kraev I, Lange S. Post-translational protein deimination signatures and extracellular vesicles (EVs) in the Atlantic horseshoe crab (Limulus polyphemus). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 110:103714. [PMID: 32335073 DOI: 10.1016/j.dci.2020.103714] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/13/2020] [Accepted: 04/14/2020] [Indexed: 06/11/2023]
Abstract
The horseshoe crab is a living fossil and a species of marine arthropod with unusual immune system properties which are also exploited commercially. Given its ancient status dating to the Ordovician period (450 million years ago), its standing in phylogeny and unusual immunological characteristics, the horseshoe crab may hold valuable information for comparative immunology studies. Peptidylarginine deiminases (PADs) are calcium dependent enzymes that are phylogenetically conserved and cause protein deimination via conversion of arginine to citrulline. This post-translational modification can lead to structural and functional protein changes contributing to protein moonlighting in health and disease. PAD-mediated regulation of extracellular vesicle (EV) release, a critical component of cellular communication, has furthermore been identified to be a phylogenetically conserved mechanism. PADs, protein deimination and EVs have hitherto not been studied in the horseshoe crab and were assessed in the current study. Horseshoe crab haemolymph serum-EVs were found to be a poly-dispersed population in the 20-400 nm size range, with the majority of EVs falling within 40-123 nm. Key immune proteins were identified to be post-translationally deiminated in horseshoe crab haemolymph serum, providing insights into protein moonlighting function of Limulus and phylogenetically conserved immune proteins. KEGG (Kyoto encyclopaedia of genes and genomes) and GO (gene ontology) enrichment analysis of deiminated proteins identified in Limulus revealed KEGG pathways relating to complement and coagulation pathways, Staphylococcus aureus infection, glycolysis/gluconeogenesis and carbon metabolism, while GO pathways of biological and molecular pathways related to a range of immune and metabolic functions, as well as developmental processes. The characterisation of EVs, and post-translational deimination signatures, revealed here in horseshoe crab, contributes to current understanding of protein moonlighting functions and EV-mediated communication in this ancient arthropod and throughout phylogeny.
Collapse
Affiliation(s)
- Timothy J Bowden
- Aquaculture Research Institute, School of Food & Agriculture, University of Maine, University of Maine, Orono, ME, USA.
| | - Igor Kraev
- Electron Microscopy Suite, Faculty of Science Technology, Engineering and Mathematics Open University, Milton Keynes, MK7 6AA, UK.
| | - Sigrun Lange
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London, W1W 6UW, UK.
| |
Collapse
|
47
|
Kiasalari Z, Afshin-Majd S, Baluchnejadmojarad T, Azadi-Ahmadabadi E, Fakour M, Ghasemi-Tarie R, Jalalzade-Ogvar S, Khodashenas V, Tashakori-Miyanroudi M, Roghani M. Sinomenine Alleviates Murine Experimental Autoimmune Encephalomyelitis Model of Multiple Sclerosis through Inhibiting NLRP3 Inflammasome. J Mol Neurosci 2020; 71:215-224. [PMID: 32812186 DOI: 10.1007/s12031-020-01637-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 06/16/2020] [Indexed: 12/14/2022]
Abstract
Multiple sclerosis (MS) is known as a chronic neuroinflammatory disorder typified by an immune-mediated demyelination process with ensuing axonal damage and loss. Sinomenine is a natural alkaloid with different therapeutic benefits, including anti-inflammatory and immunosuppressive activities. In this study, possible beneficial effects of sinomenine in an MOG-induced model of MS were determined. Sinomenine was given to MOG35-55-immunized C57BL/6 mice at doses of 25 or 100 mg/kg/day after onset of MS clinical signs till day 30 post-immunization. Analyzed data showed that sinomenine reduces severity of the clinical signs and to some extent decreases tissue level of pro-inflammatory cytokines IL-1β, IL-6, IL-18, TNFα, IL-17A, and increases level of anti-inflammatory IL-10. In addition, sinomenine successfully attenuated tissue levels of inflammasome NLRP3, ASC, and caspase 1 besides its reduction of intensity of neuroinflammation, demyelination, and axonal damage and loss in lumbar spinal cord specimens. Furthermore, immunoreactivity for MBP decreased and increased for GFAP and Iba1 after MOG-immunization, which was in part reversed upon sinomenine administration. Overall, sinomenine decreases EAE severity, which is attributed to its alleviation of microglial and astrocytic mobilization, demyelination, and axonal damage along with its suppression of neuroinflammation, and its beneficial effect is also associated with its inhibitory effects on inflammasome and pyroptotic pathways; this may be of potential benefit for the primary progressive phenotype of MS.
Collapse
MESH Headings
- Animals
- Astrocytes/drug effects
- Body Weight
- Cytokines/analysis
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Drug Evaluation, Preclinical
- Encephalomyelitis, Autoimmune, Experimental/drug therapy
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Female
- Inflammasomes/antagonists & inhibitors
- Mice
- Mice, Inbred C57BL
- Microglia/drug effects
- Morphinans/administration & dosage
- Morphinans/pharmacology
- Morphinans/therapeutic use
- Myelin-Oligodendrocyte Glycoprotein/immunology
- Myelin-Oligodendrocyte Glycoprotein/toxicity
- NLR Family, Pyrin Domain-Containing 3 Protein/antagonists & inhibitors
- Peptide Fragments/immunology
- Peptide Fragments/toxicity
- Pyroptosis/drug effects
- Random Allocation
- Specific Pathogen-Free Organisms
- Spinal Cord/chemistry
Collapse
Affiliation(s)
- Zahra Kiasalari
- Neurophysiology Research Center, Shahed University, Tehran, Iran
| | | | | | | | - Marzieh Fakour
- Department of Physiology, School of Medicine, Shahed University, Tehran, Iran
| | | | | | - Vahid Khodashenas
- Department of Physiology, School of Medicine, Shahed University, Tehran, Iran
| | | | - Mehrdad Roghani
- Neurophysiology Research Center, Shahed University, Tehran, Iran.
- Department of Physiology, School of Medicine, Shahed University, Tehran, Iran.
| |
Collapse
|
48
|
Petrozziello T, Mills AN, Vaine CA, Penney EB, Fernandez-Cerado C, Legarda GPA, Velasco-Andrada MS, Acuña PJ, Ang MA, Muñoz EL, Diesta CCE, Macalintal-Canlas R, Acuña-Sunshine G, Ozelius LJ, Sharma N, Bragg DC, Sadri-Vakili G. Neuroinflammation and histone H3 citrullination are increased in X-linked Dystonia Parkinsonism post-mortem prefrontal cortex. Neurobiol Dis 2020; 144:105032. [PMID: 32739252 DOI: 10.1016/j.nbd.2020.105032] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/17/2020] [Accepted: 07/26/2020] [Indexed: 12/16/2022] Open
Abstract
Neuroinflammation plays a pathogenic role in neurodegenerative diseases and recent findings suggest that it may also be involved in X-linked Dystonia-Parkinsonism (XDP) pathogenesis. Previously, fibroblasts and neuronal stem cells derived from XDP patients demonstrated hypersensitivity to TNF-α, dysregulation in NFκB signaling, and an increase in several pro-inflammatory markers. However, the role of inflammatory processes in XDP patient brain remains unknown. Here we demonstrate that there is a significant increase in astrogliosis and microgliosis in human post-mortem XDP prefrontal cortex (PFC) compared to control. Furthermore, there is a significant increase in histone H3 citrullination (H3R2R8R17cit3) with a concomitant increase in peptidylarginine deaminase 2 (PAD2) and 4 (PAD4), the enzymes catalyzing citrullination, in XDP post-mortem PFC. While there is a significant increase in myeloperoxidase (MPO) levels in XDP PFC, neutrophil elastase (NE) levels are not altered, suggesting that MPO may be released by activated microglia or reactive astrocytes in the brain. Similarly, there was an increase in H3R2R8R17cit3, PAD2 and PAD4 levels in XDP-derived fibroblasts. Importantly, treatment of fibroblasts with Cl-amidine, a pan inhibitor of PAD enzymes, reduced histone H3 citrullination and pro-inflammatory chemokine expression, without affecting cell survival. Taken together, our results demonstrate that inflammation is increased in XDP post-mortem brain and fibroblasts and unveil a new epigenetic potential therapeutic target.
Collapse
Affiliation(s)
- Tiziana Petrozziello
- NeuroEpigenetics Laboratory, Healey Center for ALS at Mass General, Massachusetts General Hospital, Boston, MA 02129, United States of America
| | - Alexandra N Mills
- NeuroEpigenetics Laboratory, Healey Center for ALS at Mass General, Massachusetts General Hospital, Boston, MA 02129, United States of America
| | - Christine A Vaine
- The Collaborative Center for X-linked Dystonia-Parkinsonism, Department of Neurology, Massachusetts General Hospital, Boston, MA 02129, United States of America
| | - Ellen B Penney
- The Collaborative Center for X-linked Dystonia-Parkinsonism, Department of Neurology, Massachusetts General Hospital, Boston, MA 02129, United States of America
| | | | | | | | - Patrick J Acuña
- The Collaborative Center for X-linked Dystonia-Parkinsonism, Department of Neurology, Massachusetts General Hospital, Boston, MA 02129, United States of America; Sunshine Care Foundation, Roxas City, 5800, Capiz, Philippines
| | - Mark A Ang
- Department of Pathology, College of Medicine, University of the Philippines, Manila, Philippines
| | - Edwin L Muñoz
- Department of Pathology, College of Medicine, University of the Philippines, Manila, Philippines
| | | | | | - Geraldine Acuña-Sunshine
- The Collaborative Center for X-linked Dystonia-Parkinsonism, Department of Neurology, Massachusetts General Hospital, Boston, MA 02129, United States of America; Sunshine Care Foundation, Roxas City, 5800, Capiz, Philippines
| | - Laurie J Ozelius
- The Collaborative Center for X-linked Dystonia-Parkinsonism, Department of Neurology, Massachusetts General Hospital, Boston, MA 02129, United States of America
| | - Nutan Sharma
- The Collaborative Center for X-linked Dystonia-Parkinsonism, Department of Neurology, Massachusetts General Hospital, Boston, MA 02129, United States of America
| | - D Cristopher Bragg
- The Collaborative Center for X-linked Dystonia-Parkinsonism, Department of Neurology, Massachusetts General Hospital, Boston, MA 02129, United States of America
| | - Ghazaleh Sadri-Vakili
- NeuroEpigenetics Laboratory, Healey Center for ALS at Mass General, Massachusetts General Hospital, Boston, MA 02129, United States of America.
| |
Collapse
|
49
|
Abstract
Multiple sclerosis (MS) is an aggravating autoimmune disease that cripples young patients slowly with physical, sensory and cognitive deficits. The break of self-tolerance to neuronal antigens is the key to the pathogenesis of MS, with autoreactive T cells causing demyelination that subsequently leads to inflammation-mediated neurodegenerative events in the central nervous system. The exact etiology of MS remains elusive; however, the interplay of genetic and environmental factors contributes to disease development and progression. Given that genetic variation only accounts for a fraction of risk for MS, extrinsic risk factors including smoking, infection and lack of vitamin D or sunshine, which cause changes in gene expression, contribute to disease development through epigenetic regulation. To date, there is a growing body of scientific evidence to support the important roles of epigenetic processes in MS. In this chapter, the three main layers of epigenetic regulatory mechanisms, namely DNA methylation, histone modification and microRNA-mediated gene regulation, will be discussed, with a particular focus on the role of epigenetics on dysregulated immune responses and neurodegenerative events in MS. Also, the potential for epigenetic modifiers as biomarkers and therapeutics for MS will be reviewed.
Collapse
Affiliation(s)
- Vera Sau-Fong Chan
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
- Queen Mary Hospital, Hong Kong SAR, China.
| |
Collapse
|
50
|
Falcão AM, Meijer M, Scaglione A, Rinwa P, Agirre E, Liang J, Larsen SC, Heskol A, Frawley R, Klingener M, Varas-Godoy M, Raposo AASF, Ernfors P, Castro DS, Nielsen ML, Casaccia P, Castelo-Branco G. PAD2-Mediated Citrullination Contributes to Efficient Oligodendrocyte Differentiation and Myelination. Cell Rep 2020; 27:1090-1102.e10. [PMID: 31018126 PMCID: PMC6486480 DOI: 10.1016/j.celrep.2019.03.108] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 12/13/2018] [Accepted: 03/27/2019] [Indexed: 11/25/2022] Open
Abstract
Citrullination, the deimination of peptidylarginine residues into peptidylcitrulline, has been implicated in the etiology of several diseases. In multiple sclerosis, citrullination is thought to be a major driver of pathology through hypercitrullination and destabilization of myelin. As such, inhibition of citrullination has been suggested as a therapeutic strategy for MS. Here, in contrast, we show that citrullination by peptidylarginine deiminase 2 (PAD2) contributes to normal oligodendrocyte differentiation, myelination, and motor function. We identify several targets for PAD2, including myelin and chromatin-related proteins, implicating PAD2 in epigenomic regulation. Accordingly, we observe that PAD2 inhibition and its knockdown affect chromatin accessibility and prevent the upregulation of oligodendrocyte differentiation genes. Moreover, mice lacking PAD2 display motor dysfunction and a decreased number of myelinated axons in the corpus callosum. We conclude that citrullination contributes to proper oligodendrocyte lineage progression and myelination. PAD2 is increased upon OL differentiation OL differentiation is facilitated by PAD2-mediated chromatin remodeling in myelin genes PAD2 contributes to efficient myelination and motor and cognitive functions Nuclear and myelin proteins interact and are citrullinated by PAD2
Collapse
Affiliation(s)
- Ana Mendanha Falcão
- Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Mandy Meijer
- Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Antonella Scaglione
- Neuroscience Initiative at the Advanced Science Research Center of the Graduate Center of the City University of New York, New York, NY, USA
| | - Puneet Rinwa
- Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Eneritz Agirre
- Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Jialiang Liang
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029
| | - Sara C Larsen
- Department of Proteomics, the Novo Nordisk Foundation Center for Protein Research, Faculty of Heath Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Abeer Heskol
- Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden; Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| | - Rebecca Frawley
- Neuroscience Initiative at the Advanced Science Research Center of the Graduate Center of the City University of New York, New York, NY, USA
| | - Michael Klingener
- Neuroscience Initiative at the Advanced Science Research Center of the Graduate Center of the City University of New York, New York, NY, USA
| | - Manuel Varas-Godoy
- Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden; Cancer Cell Biology Lab, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago 7510157, Chile
| | | | - Patrik Ernfors
- Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Diogo S Castro
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| | - Michael L Nielsen
- Department of Proteomics, the Novo Nordisk Foundation Center for Protein Research, Faculty of Heath Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Patrizia Casaccia
- Neuroscience Initiative at the Advanced Science Research Center of the Graduate Center of the City University of New York, New York, NY, USA
| | - Gonçalo Castelo-Branco
- Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden; Ming Wai Lau Centre for Reparative Medicine, Stockholm Node, Karolinska Institutet, 171 77 Stockholm, Sweden.
| |
Collapse
|