1
|
Du C, Liu M, Yan Y, Guo X, Cao X, Jiao Y, Zheng J, Ma Y, Xie Y, Li H, Yang C, Gao C, Zhao Q, Zhang Z. The U-box E3 ubiquitin ligase PUB35 negatively regulates ABA signaling through AFP1-mediated degradation of ABI5. THE PLANT CELL 2024; 36:3277-3297. [PMID: 38924024 PMCID: PMC11371175 DOI: 10.1093/plcell/koae194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/04/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024]
Abstract
Abscisic acid (ABA) signaling is crucial for plant responses to various abiotic stresses. The Arabidopsis (Arabidopsis thaliana) transcription factor ABA INSENSITIVE 5 (ABI5) is a central regulator of ABA signaling. ABI5 BINDING PROTEIN 1 (AFP1) interacts with ABI5 and facilitates its 26S-proteasome-mediated degradation, although the detailed mechanism has remained unclear. Here, we report that an ABA-responsive U-box E3 ubiquitin ligase, PLANT U-BOX 35 (PUB35), physically interacts with AFP1 and ABI5. PUB35 directly ubiquitinated ABI5 in a bacterially reconstituted ubiquitination system and promoted ABI5 protein degradation in vivo. ABI5 degradation was enhanced by AFP1 in response to ABA treatment. Phosphorylation of the T201 and T206 residues in ABI5 disrupted the ABI5-AFP1 interaction and affected the ABI5-PUB35 interaction and PUB35-mediated degradation of ABI5 in vivo. Genetic analysis of seed germination and seedling growth showed that pub35 mutants were hypersensitive to ABA as well as to salinity and osmotic stresses, whereas PUB35 overexpression lines were hyposensitive. Moreover, abi5 was epistatic to pub35, whereas the pub35-2 afp1-1 double mutant showed a similar ABA response to the two single mutants. Together, our results reveal a PUB35-AFP1 module involved in fine-tuning ABA signaling through ubiquitination and 26S-proteasome-mediated degradation of ABI5 during seed germination and seedling growth.
Collapse
Affiliation(s)
- Chang Du
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Meng Liu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Yujie Yan
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Xiaoyu Guo
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Xiuping Cao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Yuzhe Jiao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Jiexuan Zheng
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Yanchun Ma
- College of Life Sciences, Liaocheng University, Liaocheng, 252000, Shandong, China
| | - Yuting Xie
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Hongbo Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Chengwei Yang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Caiji Gao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Qingzhen Zhao
- College of Life Sciences, Liaocheng University, Liaocheng, 252000, Shandong, China
| | - Zhonghui Zhang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
2
|
Mandal D, Datta S, Mitra S, Nag Chaudhuri R. ABSCISIC ACID INSENSITIVE 3 promotes auxin signalling by regulating SHY2 expression to control primary root growth in response to dehydration stress. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5111-5129. [PMID: 38770693 DOI: 10.1093/jxb/erae237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/20/2024] [Indexed: 05/22/2024]
Abstract
Plants combat dehydration stress through different strategies including root architectural changes. Here we show that when exposed to varying levels of dehydration stress, primary root growth in Arabidopsis is modulated by regulating root meristem activity. Abscisic acid (ABA) in concert with auxin signalling adjust primary root growth according to stress levels. ABSCISIC ACID INSENSITIVE 3 (ABI3), an ABA-responsive transcription factor, stands at the intersection of ABA and auxin signalling and fine-tunes primary root growth in response to dehydration stress. Under low ABA or dehydration stress, induction of ABI3 expression promotes auxin signalling by decreasing expression of SHY2, a negative regulator of auxin response. This further enhances the expression of auxin transporter gene PIN1 and cell cycle gene CYCB1;1, resulting in an increase in primary root meristem size and root length. Higher levels of dehydration stress or ABA repress ABI3 expression and promote ABSCISIC ACID INSENSITIVE 5 (ABI5) expression. This elevates SHY2 expression, thereby impairing primary root meristem activity and retarding root growth. Notably, ABI5 can promote SHY2 expression only in the absence of ABI3. Such ABA concentration-dependent expression of ABI3 therefore functions as a regulatory sensor of dehydration stress levels and orchestrates primary root growth by coordinating its downstream regulation.
Collapse
Affiliation(s)
- Drishti Mandal
- Department of Biotechnology, St Xavier's College, 30, Mother Teresa Sarani, Kolkata-700016, India
| | - Saptarshi Datta
- Department of Biotechnology, St Xavier's College, 30, Mother Teresa Sarani, Kolkata-700016, India
| | - Sicon Mitra
- Department of Biotechnology, St Xavier's College, 30, Mother Teresa Sarani, Kolkata-700016, India
| | - Ronita Nag Chaudhuri
- Department of Biotechnology, St Xavier's College, 30, Mother Teresa Sarani, Kolkata-700016, India
| |
Collapse
|
3
|
Song P, Yang Z, Wang H, Wan F, Kang D, Zheng W, Gong Z, Li J. Regulation of cryptochrome-mediated blue light signaling by the ABI4-PIF4 module. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024. [PMID: 39185941 DOI: 10.1111/jipb.13769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 07/15/2024] [Accepted: 08/01/2024] [Indexed: 08/27/2024]
Abstract
ABSCISIC ACID-INSENSITIVE 4 (ABI4) is a pivotal transcription factor which coordinates multiple aspects of plant growth and development as well as plant responses to environmental stresses. ABI4 has been shown to be involved in regulating seedling photomorphogenesis; however, the underlying mechanism remains elusive. Here, we show that the role of ABI4 in regulating photomorphogenesis is generally regulated by sucrose, but ABI4 promotes hypocotyl elongation of Arabidopsis seedlings under blue (B) light under all tested sucrose concentrations. We further show that ABI4 physically interacts with PHYTOCHROME INTERACTING FACTOR 4 (PIF4), a well-characterized growth-promoting transcription factor, and post-translationally promotes PIF4 protein accumulation under B light. Further analyses indicate that ABI4 directly interacts with the B light photoreceptors cryptochromes (CRYs) and inhibits the interactions between CRYs and PIF4, thus relieving CRY-mediated repression of PIF4 protein accumulation. In addition, while ABI4 could directly activate its own expression, CRYs enhance, whereas PIF4 inhibits, ABI4-mediated activation of the ABI4 promoter. Together, our study demonstrates that the ABI4-PIF4 module plays an important role in mediating CRY-induced B light signaling in Arabidopsis.
Collapse
Affiliation(s)
- Pengyu Song
- Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
- State Key Laboratory of Wheat and Maize Crop Science, Postdoctoral Station of Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450046, China
| | - Zidan Yang
- Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
- MOE Key Laboratory of Crop Heterosis and Utilization, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
- Solid-State Fermentation Resource Utilization Key Laboratory of Sichuan Province, Yibin, 644000, China
| | - Huaichang Wang
- Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Fangfang Wan
- Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Dingming Kang
- MOE Key Laboratory of Crop Heterosis and Utilization, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Wenming Zheng
- State Key Laboratory of Wheat and Maize Crop Science, Postdoctoral Station of Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450046, China
| | - Zhizhong Gong
- Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jigang Li
- Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
4
|
Tuong HM, Méndez SG, Vandecasteele M, Willems A, Iancheva A, Ngoc PB, Phat DT, Ha CH, Goormachtig S. A novel Microbacterium strain SRS2 promotes the growth of Arabidopsis and MicroTom (S. lycopersicum) under normal and salt stress conditions. PLANTA 2024; 260:79. [PMID: 39182196 DOI: 10.1007/s00425-024-04510-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/14/2024] [Indexed: 08/27/2024]
Abstract
MAIN CONCLUSION Microbacterium strain SRS2 promotes growth and induces salt stress resistance in Arabidopsis and MicroTom in various growth substrates via the induction of the ABA pathway. Soil salinity reduces plant growth and development and thereby decreases the value and productivity of soils. Plant growth-promoting rhizobacteria (PGPR) have been shown to support plant growth such as in salt stress conditions. Here, Microbacterium strain SRS2, isolated from the root endosphere of tomato, was tested for its capability to help plants cope with salt stress. In a salt tolerance assay, SRS2 grew well up to medium levels of NaCl, but the growth was inhibited at high salt concentrations. SRS2 inoculation led to increased biomass of Arabidopsis and MicroTom tomato in various growth substrates, in the presence and in the absence of high NaCl concentrations. Whole-genome analysis revealed that the strain contains several genes involved in osmoregulation and reactive oxygen species (ROS) scavenging, which could potentially explain the observed growth promotion. Additionally, we also investigated via qRT-PCR, promoter::GUS and mutant analyses whether the abscisic acid (ABA)-dependent or -independent pathways for tolerance against salt stress were involved in the model plant, Arabidopsis. Especially in salt stress conditions, the plant growth-promotion effect of SRS2 was lost in aba1, abi4-102, abi3, and abi5-1 mutant lines. Furthermore, ABA genes related to salt stress in SRS2-inoculated plants were transiently upregulated compared to mock under salt stress conditions. Additionally, SRS2-inoculated ABI4::GUS and ABI5::GUS plants were slightly more activated compared to the uninoculated control under salt stress conditions. Together, these assays show that SRS2 promotes growth in normal and in salt stress conditions, the latter possibly via the induction of ABA-dependent and -independent pathways.
Collapse
Affiliation(s)
- Ho Manh Tuong
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052, Ghent, Belgium
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, CauGiay, Hanoi, 100000, Vietnam
| | - Sonia García Méndez
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052, Ghent, Belgium
- Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, 9000, Ghent, Belgium
| | - Michiel Vandecasteele
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052, Ghent, Belgium
| | - Anne Willems
- Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, 9000, Ghent, Belgium
| | - Anelia Iancheva
- AgroBioInstitute, Agricultural Academy, 1164, Sofia, Bulgaria
| | - Pham Bich Ngoc
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, CauGiay, Hanoi, 100000, Vietnam
| | - Do Tien Phat
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, CauGiay, Hanoi, 100000, Vietnam
| | - Chu Hoang Ha
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, CauGiay, Hanoi, 100000, Vietnam
| | - Sofie Goormachtig
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium.
- Center for Plant Systems Biology, VIB, 9052, Ghent, Belgium.
| |
Collapse
|
5
|
Liu J, Wang Z, Chen B, Wang G, Ke H, Zhang J, Jiao M, Wang Y, Xie M, Gu Q, Sun Z, Wu L, Wang X, Ma Z, Zhang Y. Genome-Wide Identification of the Alfin-like Gene Family in Cotton ( Gossypium hirsutum) and the GhAL19 Gene Negatively Regulated Drought and Salt Tolerance. PLANTS (BASEL, SWITZERLAND) 2024; 13:1831. [PMID: 38999670 PMCID: PMC11243875 DOI: 10.3390/plants13131831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/29/2024] [Accepted: 06/30/2024] [Indexed: 07/14/2024]
Abstract
Alfin-like (AL) is a small plant-specific gene family characterized by a PHD-finger-like structural domain at the C-terminus and a DUF3594 structural domain at the N-terminus, and these genes play prominent roles in plant development and abiotic stress response. In this study, we conducted genome-wide identification and analyzed the AL protein family in Gossypium hirsutum cv. NDM8 to assess their response to various abiotic stresses for the first time. A total of 26 AL genes were identified in NDM8 and classified into four groups based on a phylogenetic tree. Moreover, cis-acting element analysis revealed that multiple phytohormone response and abiotic stress response elements were highly prevalent in AL gene promoters. Further, we discovered that the GhAL19 gene could negatively regulate drought and salt stresses via physiological and biochemical changes, gene expression, and the VIGS assay. The study found there was a significant increase in POD and SOD activity, as well as a significant change in MDA in VIGS-NaCl and VIGS-PEG plants. Transcriptome analysis demonstrated that the expression levels of the ABA biosynthesis gene (GhNCED1), signaling genes (GhABI1, GhABI2, and GhABI5), responsive genes (GhCOR47, GhRD22, and GhERFs), and the stress-related marker gene GhLEA14 were regulated in VIGS lines under drought and NaCl treatment. In summary, GhAL19 as an AL TF may negatively regulate tolerance to drought and salt by regulating the antioxidant capacity and ABA-mediated pathway.
Collapse
Affiliation(s)
- Jie Liu
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071001, China
| | - Zhicheng Wang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071001, China
| | - Bin Chen
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071001, China
| | - Guoning Wang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071001, China
| | - Huifeng Ke
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071001, China
| | - Jin Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071001, China
| | - Mengjia Jiao
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071001, China
| | - Yan Wang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071001, China
| | - Meixia Xie
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071001, China
| | - Qishen Gu
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071001, China
| | - Zhengwen Sun
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071001, China
| | - Liqiang Wu
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071001, China
| | - Xingfen Wang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071001, China
| | - Zhiying Ma
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071001, China
| | - Yan Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071001, China
| |
Collapse
|
6
|
Chen J, Hu Y, Zhao T, Huang C, Chen J, He L, Dai F, Chen S, Wang L, Jin S, Zhang T. Comparative transcriptomic analysis provides insights into the genetic networks regulating oil differential production in oil crops. BMC Biol 2024; 22:110. [PMID: 38735918 PMCID: PMC11089805 DOI: 10.1186/s12915-024-01909-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 05/02/2024] [Indexed: 05/14/2024] Open
Abstract
BACKGROUND Plants differ more than threefold in seed oil contents (SOCs). Soybean (Glycine max), cotton (Gossypium hirsutum), rapeseed (Brassica napus), and sesame (Sesamum indicum) are four important oil crops with markedly different SOCs and fatty acid compositions. RESULTS Compared to grain crops like maize and rice, expanded acyl-lipid metabolism genes and relatively higher expression levels of genes involved in seed oil synthesis (SOS) in the oil crops contributed to the oil accumulation in seeds. Here, we conducted comparative transcriptomics on oil crops with two different SOC materials. In common, DIHYDROLIPOAMIDE DEHYDROGENASE, STEAROYL-ACYL CARRIER PROTEIN DESATURASE, PHOSPHOLIPID:DIACYLGLYCEROL ACYLTRANSFERASE, and oil-body protein genes were both differentially expressed between the high- and low-oil materials of each crop. By comparing functional components of SOS networks, we found that the strong correlations between genes in "glycolysis/gluconeogenesis" and "fatty acid synthesis" were conserved in both grain and oil crops, with PYRUVATE KINASE being the common factor affecting starch and lipid accumulation. Network alignment also found a conserved clique among oil crops affecting seed oil accumulation, which has been validated in Arabidopsis. Differently, secondary and protein metabolism affected oil synthesis to different degrees in different crops, and high SOC was due to less competition of the same precursors. The comparison of Arabidopsis mutants and wild type showed that CINNAMYL ALCOHOL DEHYDROGENASE 9, the conserved regulator we identified, was a factor resulting in different relative contents of lignins to oil in seeds. The interconnection of lipids and proteins was common but in different ways among crops, which partly led to differential oil production. CONCLUSIONS This study goes beyond the observations made in studies of individual species to provide new insights into which genes and networks may be fundamental to seed oil accumulation from a multispecies perspective.
Collapse
Affiliation(s)
- Jinwen Chen
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310029, Zhejiang, China
| | - Yan Hu
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310029, Zhejiang, China
- Hainan Institute of Zhejiang University, Sanya, 572025, Hainan, China
| | - Ting Zhao
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310029, Zhejiang, China
| | - Chujun Huang
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310029, Zhejiang, China
| | - Jiani Chen
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310029, Zhejiang, China
| | - Lu He
- Hainan Institute of Zhejiang University, Sanya, 572025, Hainan, China
| | - Fan Dai
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310029, Zhejiang, China
| | - Shuqi Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Luyao Wang
- Hainan Institute of Zhejiang University, Sanya, 572025, Hainan, China
| | - Shangkun Jin
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310029, Zhejiang, China
| | - Tianzhen Zhang
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310029, Zhejiang, China.
- Hainan Institute of Zhejiang University, Sanya, 572025, Hainan, China.
| |
Collapse
|
7
|
Ali A, Zareen S, Park J, Khan HA, Lim CJ, Bader ZE, Hussain S, Chung WS, Gechev T, Pardo JM, Yun DJ. ABA INSENSITIVE 2 promotes flowering by inhibiting OST1/ABI5-dependent FLOWERING LOCUS C transcription in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2481-2493. [PMID: 38280208 PMCID: PMC11016836 DOI: 10.1093/jxb/erae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 01/25/2024] [Indexed: 01/29/2024]
Abstract
The plant hormone abscisic acid (ABA) is an important regulator of plant growth and development and plays a crucial role in both biotic and abiotic stress responses. ABA modulates flowering time, but the precise molecular mechanism remains poorly understood. Here we report that ABA INSENSITIVE 2 (ABI2) is the only phosphatase from the ABA-signaling core that positively regulates the transition to flowering in Arabidopsis. Loss-of-function abi2-2 mutant shows significantly delayed flowering both under long day and short day conditions. Expression of floral repressor genes such as FLOWERING LOCUS C (FLC) and CYCLING DOF FACTOR 1 (CDF1) was significantly up-regulated in abi2-2 plants while expression of the flowering promoting genes FLOWERING LOCUS T (FT) and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) was down-regulated. Through genetic interactions we further found that ost1-3 and abi5-1 mutations are epistatic to abi2-2, as both of them individually rescued the late flowering phenotype of abi2-2. Interestingly, phosphorylation and protein stability of ABA INSENSITIVE 5 (ABI5) were enhanced in abi2-2 plants suggesting that ABI2 dephosphorylates ABI5, thereby reducing protein stability and the capacity to induce FLC expression. Our findings uncovered the unexpected role of ABI2 in promoting flowering by inhibiting ABI5-mediated FLC expression in Arabidopsis.
Collapse
Affiliation(s)
- Akhtar Ali
- Institute of Glocal Disease Control, Konkuk University, Seoul 05029, South Korea
- Department Molecular Stress Physiology, Center of Plant Systems Biology and Biotechnology, Plovdiv 4000, Bulgaria
| | - Shah Zareen
- Department of Biomedical Science & Engineering, Konkuk University, Seoul 05029, South Korea
| | - Junghoon Park
- Institute of Glocal Disease Control, Konkuk University, Seoul 05029, South Korea
| | - Haris Ali Khan
- Department of Biomedical Science & Engineering, Konkuk University, Seoul 05029, South Korea
| | - Chae Jin Lim
- Institute of Glocal Disease Control, Konkuk University, Seoul 05029, South Korea
| | - Zein Eddin Bader
- Department of Biomedical Science & Engineering, Konkuk University, Seoul 05029, South Korea
| | - Shah Hussain
- Division of Applied Life Science, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701, South Korea
| | - Woo Sik Chung
- Division of Applied Life Science, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701, South Korea
| | - Tsanko Gechev
- Department Molecular Stress Physiology, Center of Plant Systems Biology and Biotechnology, Plovdiv 4000, Bulgaria
- Department of Plant Physiology and Molecular Biology, Plovdiv University, Plovdiv 4000, Bulgaria
| | - Jose M Pardo
- Instituto de Bioquímica Vegetal y Fotosíntesis, cicCartuja, CSIC-Universidad de Sevilla, Americo Vespucio 49, Sevilla-41092, Spain
| | - Dae-Jin Yun
- Department of Biomedical Science & Engineering, Konkuk University, Seoul 05029, South Korea
| |
Collapse
|
8
|
Smolikova G, Krylova E, Petřík I, Vilis P, Vikhorev A, Strygina K, Strnad M, Frolov A, Khlestkina E, Medvedev S. Involvement of Abscisic Acid in Transition of Pea ( Pisum sativum L.) Seeds from Germination to Post-Germination Stages. PLANTS (BASEL, SWITZERLAND) 2024; 13:206. [PMID: 38256760 PMCID: PMC10819913 DOI: 10.3390/plants13020206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 12/30/2023] [Accepted: 01/07/2024] [Indexed: 01/24/2024]
Abstract
The transition from seed to seedling represents a critical developmental step in the life cycle of higher plants, dramatically affecting plant ontogenesis and stress tolerance. The release from dormancy to acquiring germination ability is defined by a balance of phytohormones, with the substantial contribution of abscisic acid (ABA), which inhibits germination. We studied the embryonic axis of Pisum sativum L. before and after radicle protrusion. Our previous work compared RNA sequencing-based transcriptomics in the embryonic axis isolated before and after radicle protrusion. The current study aims to analyze ABA-dependent gene regulation during the transition of the embryonic axis from the germination to post-germination stages. First, we determined the levels of abscisates (ABA, phaseic acid, dihydrophaseic acid, and neo-phaseic acid) using ultra-high-performance liquid chromatography-tandem mass spectrometry. Second, we made a detailed annotation of ABA-associated genes using RNA sequencing-based transcriptome profiling. Finally, we analyzed the DNA methylation patterns in the promoters of the PsABI3, PsABI4, and PsABI5 genes. We showed that changes in the abscisate profile are characterized by the accumulation of ABA catabolites, and the ABA-related gene profile is accompanied by the upregulation of genes controlling seedling development and the downregulation of genes controlling water deprivation. The expression of ABI3, ABI4, and ABI5, which encode crucial transcription factors during late maturation, was downregulated by more than 20-fold, and their promoters exhibited high levels of methylation already at the late germination stage. Thus, although ABA remains important, other regulators seems to be involved in the transition from seed to seedling.
Collapse
Affiliation(s)
- Galina Smolikova
- Department of Plant Physiology and Biochemistry, St. Petersburg State University, 199034 St. Petersburg, Russia; (E.K.); (S.M.)
| | - Ekaterina Krylova
- Department of Plant Physiology and Biochemistry, St. Petersburg State University, 199034 St. Petersburg, Russia; (E.K.); (S.M.)
- Federal Research Center N.I. Vavilov All-Russian Institute of Plant Genetic Resources, 190000 St. Petersburg, Russia;
| | - Ivan Petřík
- Laboratory of Growth Regulators, The Czech Academy of Sciences, Institute of Experimental Botany & Palacky University, Faculty of Science, Slechtitelu 27, CZ-78371 Olomouc, Czech Republic; (I.P.); (M.S.)
| | - Polina Vilis
- Department of Plant Physiology and Biochemistry, St. Petersburg State University, 199034 St. Petersburg, Russia; (E.K.); (S.M.)
| | - Aleksander Vikhorev
- School of Advanced Engineering Studies, Novosibirsk State University, 630090 Novosibirsk, Russia
| | | | - Miroslav Strnad
- Laboratory of Growth Regulators, The Czech Academy of Sciences, Institute of Experimental Botany & Palacky University, Faculty of Science, Slechtitelu 27, CZ-78371 Olomouc, Czech Republic; (I.P.); (M.S.)
| | - Andrej Frolov
- Laboratory of Analytical Biochemistry and Biotechnology, K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia;
| | - Elena Khlestkina
- Federal Research Center N.I. Vavilov All-Russian Institute of Plant Genetic Resources, 190000 St. Petersburg, Russia;
| | - Sergei Medvedev
- Department of Plant Physiology and Biochemistry, St. Petersburg State University, 199034 St. Petersburg, Russia; (E.K.); (S.M.)
| |
Collapse
|
9
|
Yang C, Li X, Chen S, Liu C, Yang L, Li K, Liao J, Zheng X, Li H, Li Y, Zeng S, Zhuang X, Rodriguez PL, Luo M, Wang Y, Gao C. ABI5-FLZ13 module transcriptionally represses growth-related genes to delay seed germination in response to ABA. PLANT COMMUNICATIONS 2023; 4:100636. [PMID: 37301981 PMCID: PMC10721476 DOI: 10.1016/j.xplc.2023.100636] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 05/05/2023] [Accepted: 06/06/2023] [Indexed: 06/12/2023]
Abstract
The bZIP transcription factor ABSCISIC ACID INSENSITIVE5 (ABI5) is a master regulator of seed germination and post-germinative growth in response to abscisic acid (ABA), but the detailed molecular mechanism by which it represses plant growth remains unclear. In this study, we used proximity labeling to map the neighboring proteome of ABI5 and identified FCS-LIKE ZINC FINGER PROTEIN 13 (FLZ13) as a novel ABI5 interaction partner. Phenotypic analysis of flz13 mutants and FLZ13-overexpressing lines demonstrated that FLZ13 acts as a positive regulator of ABA signaling. Transcriptomic analysis revealed that both FLZ13 and ABI5 downregulate the expression of ABA-repressed and growth-related genes involved in chlorophyll biosynthesis, photosynthesis, and cell wall organization, thereby repressing seed germination and seedling establishment in response to ABA. Further genetic analysis showed that FLZ13 and ABI5 function together to regulate seed germination. Collectively, our findings reveal a previously uncharacterized transcriptional regulatory mechanism by which ABA mediates inhibition of seed germination and seedling establishment.
Collapse
Affiliation(s)
- Chao Yang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University (SCNU), Guangzhou 510631, China.
| | - Xibao Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University (SCNU), Guangzhou 510631, China
| | - Shunquan Chen
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University (SCNU), Guangzhou 510631, China
| | - Chuanliang Liu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University (SCNU), Guangzhou 510631, China
| | - Lianming Yang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University (SCNU), Guangzhou 510631, China
| | - Kailin Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University (SCNU), Guangzhou 510631, China
| | - Jun Liao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University (SCNU), Guangzhou 510631, China
| | - Xuanang Zheng
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University (SCNU), Guangzhou 510631, China
| | - Hongbo Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University (SCNU), Guangzhou 510631, China
| | - Yongqing Li
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Shaohua Zeng
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Xiaohong Zhuang
- School of Life Sciences, Centre for Cell and Developmental Biology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Pedro L Rodriguez
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, 46022 Valencia, Spain
| | - Ming Luo
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
| | - Ying Wang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
| | - Caiji Gao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University (SCNU), Guangzhou 510631, China.
| |
Collapse
|
10
|
Varshney V, Hazra A, Rao V, Ghosh S, Kamble NU, Achary RK, Gautam S, Majee M. The Arabidopsis F-box protein SKP1-INTERACTING PARTNER 31 modulates seed maturation and seed vigor by targeting JASMONATE ZIM DOMAIN proteins independently of jasmonic acid-isoleucine. THE PLANT CELL 2023; 35:3712-3738. [PMID: 37462265 PMCID: PMC10533341 DOI: 10.1093/plcell/koad199] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 06/21/2023] [Indexed: 09/29/2023]
Abstract
F-box proteins have diverse functions in eukaryotic organisms, including plants, mainly targeting proteins for 26S proteasomal degradation. Here, we demonstrate the role of the F-box protein SKP1-INTERACTING PARTNER 31 (SKIP31) from Arabidopsis (Arabidopsis thaliana) in regulating late seed maturation events, seed vigor, and viability through biochemical and genetic studies using skip31 mutants and different transgenic lines. We show that SKIP31 is predominantly expressed in seeds and that SKIP31 interacts with JASMONATE ZIM DOMAIN (JAZ) proteins, key repressors in jasmonate (JA) signaling, directing their ubiquitination for proteasomal degradation independently of coronatine/jasmonic acid-isoleucine (JA-Ile), in contrast to CORONATINE INSENSITIVE 1, which sends JAZs for degradation in a coronatine/JA-Ile dependent manner. Moreover, JAZ proteins interact with the transcription factor ABSCISIC ACID-INSENSITIVE 5 (ABI5) and repress its transcriptional activity, which in turn directly or indirectly represses the expression of downstream genes involved in the accumulation of LATE EMBRYOGENESIS ABUNDANT proteins, protective metabolites, storage compounds, and abscisic acid biosynthesis. However, SKIP31 targets JAZ proteins, deregulates ABI5 activity, and positively regulates seed maturation and consequently seed vigor. Furthermore, ABI5 positively influences SKIP31 expression, while JAZ proteins repress ABI5-mediated transactivation of SKIP31 and exert feedback regulation. Taken together, our findings reveal the role of the SKIP31-JAZ-ABI5 module in seed maturation and consequently, establishment of seed vigor.
Collapse
Affiliation(s)
- Vishal Varshney
- MM's Laboratory, National Institute of Plant Genome Research (NIPGR), New Delhi 110067, India
| | - Abhijit Hazra
- MM's Laboratory, National Institute of Plant Genome Research (NIPGR), New Delhi 110067, India
| | - Venkateswara Rao
- MM's Laboratory, National Institute of Plant Genome Research (NIPGR), New Delhi 110067, India
| | - Shraboni Ghosh
- MM's Laboratory, National Institute of Plant Genome Research (NIPGR), New Delhi 110067, India
| | - Nitin Uttam Kamble
- MM's Laboratory, National Institute of Plant Genome Research (NIPGR), New Delhi 110067, India
| | - Rakesh Kumar Achary
- MM's Laboratory, National Institute of Plant Genome Research (NIPGR), New Delhi 110067, India
| | - Shikha Gautam
- MM's Laboratory, National Institute of Plant Genome Research (NIPGR), New Delhi 110067, India
| | - Manoj Majee
- MM's Laboratory, National Institute of Plant Genome Research (NIPGR), New Delhi 110067, India
| |
Collapse
|
11
|
Shao A, Xu X, Amombo E, Wang W, Fan S, Yin Y, Li X, Wang G, Wang H, Fu J. CdWRKY2 transcription factor modulates salt oversensitivity in bermudagrass [ Cynodon dactylon (L.) Pers.]. FRONTIERS IN PLANT SCIENCE 2023; 14:1164534. [PMID: 37528987 PMCID: PMC10388543 DOI: 10.3389/fpls.2023.1164534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/27/2023] [Indexed: 08/03/2023]
Abstract
Common bermudagrass [Cynodon dactylon (L.) Pers.] has higher utilization potential on saline soil due to its high yield potential and excellent stress tolerance. However, key functional genes have not been well studied partly due to its hard transformation. Here, bermudagrass "Wrangler" successfully overexpressing CdWRKY2 exhibited significantly enhanced salt and ABA sensitivity with severe inhibition of shoot and root growth compared to the transgenic negative line. The reduced auxin accumulation and higher ABA sensitivity of the lateral roots (LR) under salt stress were observed in CdWRKY2 overexpression Arabidopsis lines. IAA application could rescue or partially rescue the salt hypersensitivity of root growth inhibition in CdWRKY2-overexpressing Arabidopsis and bermudagrass, respectively. Subsequent experiments in Arabidopsis indicated that CdWRKY2 could directly bind to the promoter region of AtWRKY46 and downregulated its expression to further upregulate the expression of ABA and auxin pathway-related genes. Moreover, CdWRKY2 overexpression in mapk3 background Arabidopsis could partly rescue the salt-inhibited LR growth caused by CdWRKY2 overexpression. These results indicated that CdWRKY2 could negatively regulate LR growth under salt stress via the regulation of ABA signaling and auxin homeostasis, which partly rely on AtMAPK3 function. CdWRKY2 and its homologue genes could also be useful targets for genetic engineering of salinity-tolerance plants.
Collapse
|
12
|
Wang H, Peng J, Li Y, Xu L, Dai W, Zhao S. The role of walnut bZIP genes in explant browning. BMC Genomics 2023; 24:377. [PMID: 37407925 DOI: 10.1186/s12864-023-09492-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 06/29/2023] [Indexed: 07/07/2023] Open
Abstract
BACKGROUND Basic leucine zipper (bZIP) proteins are important transcription factors in plants. To study the role of bZIP transcription factors in walnut explant browning, this study used bioinformatics software to analyze walnut bZIP gene family members, along with their transcript levels in different walnut tissues, to evaluate the transcriptional expression of this gene family during the primary culture of walnut explants and to reveal the mechanism of action of walnut bZIP genes in walnut explant browning. RESULTS The results identified 65 JrbZIP genes in the walnut genome, which were divided into 8 subfamilies and distributed on 16 chromosomes. The results of transcriptome data analysis showed that there were significant differences in the expression of four genes, namely, JrbZIP55, JrbZIP70, JrbZIP72, and JrbZIP88, under both vermiculite and agar culture conditions. There were multiple hormone (salicylic acid, abscisic acid, auxin, and gibberellin) signaling and regulatory elements that are responsive to stress (low temperature, stress, and defense) located in the promoter regions of JrbZIP55, JrbZIP70, JrbZIP72, and JrbZIP88. The walnut JrbZIP55 protein and Arabidopsis bZIP42 protein are highly homologous, and the proteins interacting with Arabidopsis bZIP42 include the AT2G19940 oxidoreductases, which act on aldehyde or oxygen-containing donors. CONCLUSION It is speculated that JrbZIP55 may participate in the regulation of browning in walnut explants.
Collapse
Affiliation(s)
- Hui Wang
- College of Life Sciences, Hebei Agricultural University, Baoding, 071001, China
| | - Jiali Peng
- College of Horticulture, Hebei Agricultural University, Baoding, 071001, China
| | - Yaoling Li
- College of Life Sciences, Hebei Agricultural University, Baoding, 071001, China
| | - Lishan Xu
- College of Life Sciences, Hebei Agricultural University, Baoding, 071001, China
| | - Wenqiang Dai
- College of Life Sciences, Hebei Agricultural University, Baoding, 071001, China
| | - Shugang Zhao
- College of Life Sciences, Hebei Agricultural University, Baoding, 071001, China.
| |
Collapse
|
13
|
Zhang R, Dong Y, Li Y, Ren G, Chen C, Jin X. SLs signal transduction gene CsMAX2 of cucumber positively regulated to salt, drought and ABA stress in Arabidopsis thaliana L. Gene 2023; 864:147282. [PMID: 36822526 DOI: 10.1016/j.gene.2023.147282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/09/2023] [Accepted: 02/08/2023] [Indexed: 02/23/2023]
Abstract
Recent studies have demonstrated that strigolactones (SLs) participate in the regulation of stress adaptation, however, the mechanisms remain elusive. MAX2 (MORE AXILLARY GROWTH2) is the key gene in the signal transduction pathway of SLs. This study aimed to clone and functionally characterize the CsMAX2 gene of cucumber in Arabidopsis. The results showed that the expression levels of the CsMAX2 gene changed significantly after salt, drought, and ABA stresses in cucumber. Moreover, the overexpression of CsMAX2 promoted stress tolerance and increased the germination rate and root length of Arabidopsis thaliana. Meanwhile, the content of chlorophyll increased and malondialdehyde decreased in CsMAX2 OE lines under salt and drought stresses. Additionally, the expression levels of stress-related marker genes, especially AREB1 and COR15A, were significantly upregulated under salt stress, while the expression levels of all genes were upregulated under drought stress, except ABI4 and ABI5 genes. The level of NCED3 continued to rise under both salt and drought stresses. In addition, D10 and D27 gene expression level also showed a continuous increase under ABA stress. The result suggested the interaction between SL and ABA in the process of adapting to stress. Overall, CsMAX2 could positively regulate salt, drought, and ABA stress resistance, and this process correlated with ABA transduction.
Collapse
Affiliation(s)
- Runming Zhang
- College of Life Science and Technology, Harbin Normal University, Harbin, China
| | - Yanlong Dong
- College of Life Science and Technology, Harbin Normal University, Harbin, China; Horticulture Branch, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Yuanyuan Li
- College of Life Science and Technology, Harbin Normal University, Harbin, China
| | - Guangyue Ren
- College of Life Science and Technology, Harbin Normal University, Harbin, China
| | - Chao Chen
- College of Life Science and Technology, Harbin Normal University, Harbin, China
| | - Xiaoxia Jin
- College of Life Science and Technology, Harbin Normal University, Harbin, China.
| |
Collapse
|
14
|
Le QT, Truong HA, Nguyen DT, Yang S, Xiong L, Lee H. Enhanced growth performance of abi5 plants under high salt and nitrate is associated with reduced nitric oxide levels. JOURNAL OF PLANT PHYSIOLOGY 2023; 286:154000. [PMID: 37207503 DOI: 10.1016/j.jplph.2023.154000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 04/23/2023] [Accepted: 04/29/2023] [Indexed: 05/21/2023]
Abstract
Numerous environmental stresses have a significant impact on plant growth and development. By 2050, it is anticipated that high salinity will destroy more than fifty percent of the world's agricultural land. Understanding how plants react to the excessive use of nitrogen fertilizers and salt stress is crucial for enhancing crop yield. However, the effect of excessive nitrate treatment on plant development is disputed and poorly understood; so, we evaluated the effect of excessive nitrate supply and high salinity on abi5 plant growth performance. We demonstrated that abi5 plants are tolerant to the harmful environmental conditions of excessive nitrate and salt. abi5 plants have lower amounts of endogenous nitric oxide than Arabidopsis thaliana Columbia-0 plants due to their decreased nitrate reductase activity, caused by a decrease in the transcript level of NIA2, a gene encoding nitrate reductase. Nitric oxide appeared to have a critical role in reducing the salt stress tolerance of plants, which was diminished by an excess of nitrate. Discovering regulators such as ABI5 that can modulate nitrate reductase activity and comprehending the molecular activities of these regulators are crucial for the application of gene-editing techniques. This would result in the appropriate buildup of nitric oxide to increase the production of crops subjected to a variety of environmental stresses.
Collapse
Affiliation(s)
- Quang Tri Le
- Department of Plant Biotechnology, College of Life Sciences and Biotechnology, Korea University, Anam-dong 5-ga, Seongbuk-gu, Seoul, 136-713, Republic of Korea
| | - Hai An Truong
- Department of Plant Biotechnology, College of Life Sciences and Biotechnology, Korea University, Anam-dong 5-ga, Seongbuk-gu, Seoul, 136-713, Republic of Korea
| | - Dinh Thanh Nguyen
- Department of Plant Biotechnology, College of Life Sciences and Biotechnology, Korea University, Anam-dong 5-ga, Seongbuk-gu, Seoul, 136-713, Republic of Korea
| | - Seonyoung Yang
- Department of Plant Biotechnology, College of Life Sciences and Biotechnology, Korea University, Anam-dong 5-ga, Seongbuk-gu, Seoul, 136-713, Republic of Korea
| | - Liming Xiong
- Department of Biology, Hong Kong Baptist University, Kowloon Tang, Hong Kong, China
| | - Hojoung Lee
- Department of Plant Biotechnology, College of Life Sciences and Biotechnology, Korea University, Anam-dong 5-ga, Seongbuk-gu, Seoul, 136-713, Republic of Korea.
| |
Collapse
|
15
|
Mei S, Zhang M, Ye J, Du J, Jiang Y, Hu Y. Auxin contributes to jasmonate-mediated regulation of abscisic acid signaling during seed germination in Arabidopsis. THE PLANT CELL 2023; 35:1110-1133. [PMID: 36516412 PMCID: PMC10015168 DOI: 10.1093/plcell/koac362] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 10/21/2022] [Accepted: 12/09/2022] [Indexed: 05/30/2023]
Abstract
Abscisic acid (ABA) represses seed germination and postgerminative growth in Arabidopsis thaliana. Auxin and jasmonic acid (JA) stimulate ABA function; however, the possible synergistic effects of auxin and JA on ABA signaling and the underlying molecular mechanisms remain elusive. Here, we show that exogenous auxin works synergistically with JA to enhance the ABA-induced delay of seed germination. Auxin biosynthesis, perception, and signaling are crucial for JA-promoted ABA responses. The auxin-dependent transcription factors AUXIN RESPONSE FACTOR10 (ARF10) and ARF16 interact with JASMONATE ZIM-DOMAIN (JAZ) repressors of JA signaling. ARF10 and ARF16 positively mediate JA-increased ABA responses, and overaccumulation of ARF16 partially restores the hyposensitive phenotype of JAZ-accumulating plants defective in JA signaling in response to combined ABA and JA treatment. Furthermore, ARF10 and ARF16 physically associate with ABSCISIC ACID INSENSITIVE5 (ABI5), a critical regulator of ABA signaling, and the ability of ARF16 to stimulate JA-mediated ABA responses is mainly dependent on ABI5. ARF10 and ARF16 activate the transcriptional function of ABI5, whereas JAZ repressors antagonize their effects. Collectively, our results demonstrate that auxin contributes to the synergetic modulation of JA on ABA signaling, and explain the mechanism by which ARF10/16 coordinate with JAZ and ABI5 to integrate the auxin, JA, and ABA signaling pathways.
Collapse
Affiliation(s)
- Song Mei
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550025, China
| | - Minghui Zhang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingwen Ye
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Jiancan Du
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Yanjuan Jiang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Yanru Hu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| |
Collapse
|
16
|
Meng Y, Huang J, Jing H, Wu Q, Shen R, Zhu X. Exogenous abscisic acid alleviates Cd toxicity in Arabidopsis thaliana by inhibiting Cd uptake, translocation and accumulation, and promoting Cd chelation and efflux. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 325:111464. [PMID: 36130666 DOI: 10.1016/j.plantsci.2022.111464] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/06/2022] [Accepted: 09/16/2022] [Indexed: 06/15/2023]
Abstract
Exogenous abscisic acid (ABA) has been implicated in plant response to cadmium (Cd) stress, but the underlying mechanism remains unclear. In the present study, we found that exogenous ABA application decreased Cd fixation in wild type (WT) root cell wall through reducing the hemicelluloses content, in parallel with the decreased expression of IRT1, ZIP1, ZIP4, HMA2 and HMA4, which are related to Cd uptake and translocation, and the increased expression of PDF2.6, PDR8 and AIT1, which are related to Cd chelation, efflux, and accumulation inhibition. These changes might be associated with the reduced Cd accumulation in roots and shoots and the alleviated Cd toxicity. In contrast, the mutation of ABI4, a transcription factor in ABA signaling pathway, significantly increased the expression of IRT1, ZIP1, ZIP4, HMA2 and HMA4, while decreased the expression of AIT1, PDF2.6 and PDR8, enhancing Cd accumulation in roots and shoots of abi4. The enhanced Cd-sensitivity in abi4 mutant could not be rescued by exogenous ABA addition compared with WT. In a word, we conclude that exogenous ABA mitigates Cd toxicity in Arabidopsis thaliana via inhibiting Cd uptake, translocation and accumulation, promoting Cd chelation and efflux, a pathway that might be regulated by ABI4.
Collapse
Affiliation(s)
- Yuting Meng
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Huang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huaikang Jing
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Wu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Renfang Shen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaofang Zhu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
17
|
The ABCISIC ACID INSENSITIVE (ABI) 4 Transcription Factor Is Stabilized by Stress, ABA and Phosphorylation. PLANTS 2022; 11:plants11162179. [PMID: 36015481 PMCID: PMC9414092 DOI: 10.3390/plants11162179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022]
Abstract
The Arabidopsis transcription factor ABSCISIC ACID INSENSITIVE 4 (ABI4) is a key player in the plant hormone abscisic acid (ABA) signaling pathway and is involved in plant response to abiotic stress and development. Expression of the ABI4 gene is tightly regulated, with low basal expression. Maximal transcript levels occur during the seed maturation and early seed germination stages. Moreover, ABI4 is an unstable, lowly expressed protein. Here, we studied factors affecting the stability of the ABI4 protein using transgenic Arabidopsis plants expressing 35S::HA-FLAG-ABI4-eGFP. Despite the expression of eGFP-tagged ABI4 being driven by the highly active 35S CaMV promoter, low steady-state levels of ABI4 were detected in the roots of seedlings grown under optimal conditions. These levels were markedly enhanced upon exposure of the seedlings to abiotic stress and ABA. ABI4 is degraded rapidly by the 26S proteasome, and we report on the role of phosphorylation of ABI4-serine 114 in regulating ABI4 stability. Our results indicate that ABI4 is tightly regulated both post-transcriptionally and post-translationally. Moreover, abiotic factors and plant hormones have similar effects on ABI4 transcripts and ABI4 protein levels. This double-check mechanism for controlling ABI4 reflects its central role in plant development and cellular metabolism.
Collapse
|
18
|
Li C, Dong S, Beckles DM, Miao H, Sun J, Liu X, Wang W, Zhang S, Gu X. The qLTG1.1 candidate gene CsGAI regulates low temperature seed germination in cucumber. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:2593-2607. [PMID: 35764690 DOI: 10.1007/s00122-022-04097-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 04/07/2022] [Indexed: 06/15/2023]
Abstract
The CsGAI gene, identified by map-based, was involved in regulating seed germination in low temperature via the GA and ABA signaling pathways. Low temperature reduces the percentage of seeds germinating and delays seed germinating time, thus posing a threat to cucumber production. However, the molecular mechanism regulating low temperature germination in cucumber is unknown. We here dissected a major quantitative trait locus qLTG1.1 that controls seed germination at low temperature in cucumber. First, we fine-mapped qLTG1.1 to a 46.3-kb interval, containing three candidate genes. Sequence alignment and gene expression analysis identified Csa1G408720 as the gene of interest that was highly expressed in seeds, and encoded a highly conserved, low temperature-regulated DELLA family protein CsGAI. GUS expression analysis indicated that higher promoter activity underscored higher transcriptional expression of the CsGAI gene. Consistent with the known roles of GAI in ABA and GA signaling during germination, genes involved in the GA (CsGA2ox, CsGA3ox) and ABA biosynthetic pathways (CsABA1, CsABA2, CsAAO3 and CsNCED) were found to be differently regulated in the tolerant and sensitive genotypes under low temperatures, and this was reflected in differences in their ratio of GA-to-ABA. Based on these data, we proposed a working model explaining how CsGAI integrates the GA and ABA signaling pathways, to regulate cucumber seed germination at low temperature, thus providing new insights into this mechanism.
Collapse
Affiliation(s)
- Caixia Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shaoyun Dong
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Diane M Beckles
- Department of Plant Sciences, University of California, One Shield Avenue, Dav is Davis, CA, 95616, USA
| | - Han Miao
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jiaqiang Sun
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiaoping Liu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Weiping Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shengping Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Xingfang Gu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
19
|
Smolikova G, Strygina K, Krylova E, Vikhorev A, Bilova T, Frolov A, Khlestkina E, Medvedev S. Seed-to-Seedling Transition in Pisum sativum L.: A Transcriptomic Approach. PLANTS 2022; 11:plants11131686. [PMID: 35807638 PMCID: PMC9268910 DOI: 10.3390/plants11131686] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 12/13/2022]
Abstract
The seed-to-seedling transition is a crucial step in the plant life cycle. The transition occurs at the end of seed germination and corresponds to the initiation of embryonic root growth. To improve our understanding of how a seed transforms into a seedling, we germinated the Pisum sativum L. seeds for 72 h and divided them into samples before and after radicle protrusion. Before radicle protrusion, seeds survived after drying and formed normally developed seedlings upon rehydration. Radicle protrusion increased the moisture content level in seed axes, and the accumulation of ROS first generated in the embryonic root and plumule. The water and oxidative status shift correlated with the desiccation tolerance loss. Then, we compared RNA sequencing-based transcriptomics in the embryonic axes isolated from pea seeds before and after radicle protrusion. We identified 24,184 differentially expressed genes during the transition to the post-germination stage. Among them, 2101 genes showed more prominent expression. They were related to primary and secondary metabolism, photosynthesis, biosynthesis of cell wall components, redox status, and responses to biotic stress. On the other hand, 415 genes showed significantly decreased expression, including the groups related to water deprivation (eight genes) and response to the ABA stimulus (fifteen genes). We assume that the water deprivation group, especially three genes also belonging to ABA stimulus (LTI65, LTP4, and HVA22E), may be crucial for the desiccation tolerance loss during a metabolic switch from seed to seedling. The latter is also accompanied by the suppression of ABA-related transcription factors ABI3, ABI4, and ABI5. Among them, HVA22E, ABI4, and ABI5 were highly conservative in functional domains and showed homologous sequences in different drought-tolerant species. These findings elaborate on the critical biochemical pathways and genes regulating seed-to-seedling transition.
Collapse
Affiliation(s)
- Galina Smolikova
- Department of Plant Physiology and Biochemistry, St. Petersburg State University, 199034 St. Petersburg, Russia; (K.S.); (E.K.); (T.B.); (S.M.)
- Correspondence:
| | - Ksenia Strygina
- Department of Plant Physiology and Biochemistry, St. Petersburg State University, 199034 St. Petersburg, Russia; (K.S.); (E.K.); (T.B.); (S.M.)
| | - Ekaterina Krylova
- Department of Plant Physiology and Biochemistry, St. Petersburg State University, 199034 St. Petersburg, Russia; (K.S.); (E.K.); (T.B.); (S.M.)
- Postgenomic Studies Laboratory, Federal Research Center N.I. Vavilov All-Russian Institute of Plant Genetic Resources of Russian Academy of Sciences, 190000 St. Petersburg, Russia;
| | - Aleksander Vikhorev
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia;
| | - Tatiana Bilova
- Department of Plant Physiology and Biochemistry, St. Petersburg State University, 199034 St. Petersburg, Russia; (K.S.); (E.K.); (T.B.); (S.M.)
| | - Andrej Frolov
- Department of Biochemistry, St. Petersburg State University, 199034 St. Petersburg, Russia;
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany
| | - Elena Khlestkina
- Postgenomic Studies Laboratory, Federal Research Center N.I. Vavilov All-Russian Institute of Plant Genetic Resources of Russian Academy of Sciences, 190000 St. Petersburg, Russia;
| | - Sergei Medvedev
- Department of Plant Physiology and Biochemistry, St. Petersburg State University, 199034 St. Petersburg, Russia; (K.S.); (E.K.); (T.B.); (S.M.)
| |
Collapse
|
20
|
Xu G, Tao Z, He Y. Embryonic reactivation of FLOWERING LOCUS C by ABSCISIC ACID-INSENSITIVE 3 establishes the vernalization requirement in each Arabidopsis generation. THE PLANT CELL 2022; 34:2205-2221. [PMID: 35234936 PMCID: PMC9134069 DOI: 10.1093/plcell/koac077] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 02/26/2022] [Indexed: 06/14/2023]
Abstract
Many over-wintering plants grown in temperate climate acquire competence to flower upon prolonged cold exposure in winter, through vernalization. In Arabidopsis thaliana, prolonged cold exposure induces the silencing of the potent floral repressor FLOWERING LOCUS C (FLC) through repressive chromatin modifications by Polycomb proteins. This repression is maintained to enable flowering after return to warmth, but is reset during seed development. Here, we show that embryonic FLC reactivation occurs in two phases: resetting of cold-induced FLC silencing during embryogenesis and further FLC activation during embryo maturation. We found that the B3 transcription factor (TF) ABSCISIC ACID-INSENSITIVE 3 (ABI3) mediates both FLC resetting in embryogenesis and further activation of FLC expression in embryo maturation. ABI3 binds to the cis-acting cold memory element at FLC and recruits a scaffold protein with active chromatin modifiers to reset FLC chromatin into an active state in late embryogenesis. Moreover, in response to abscisic acid (ABA) accumulation during embryo maturation, ABI3, together with the basic leucine zipper TF ABI5, binds to an ABA-responsive cis-element to further activate FLC expression to high level. Therefore, we have uncovered the molecular circuitries underlying embryonic FLC reactivation following parental vernalization, which ensures that each generation must experience winter cold prior to flowering.
Collapse
|
21
|
Analysis of Global Gene Expression in Maize (Zea mays) Vegetative and Reproductive Tissues That Differ in Accumulation of Starch and Sucrose. PLANTS 2022; 11:plants11030238. [PMID: 35161219 PMCID: PMC8838981 DOI: 10.3390/plants11030238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 11/17/2022]
Abstract
Carbon allocation between vegetative and reproductive tissues impacts cereal grain production. Despite great agricultural importance, sink–source relationships have not been fully characterized at the early reproductive stages in maize. Here, we quantify the accumulation of non-structural carbohydrates and patterns of gene expression in the top internode of the stem and the female inflorescence of maize at the onset of grain filling (reproductive stage R1). Top internode stem and female inflorescence tissues of the Puma maize inbred line were collected at reproductive stage R1 (without pollination) and non-structural carbohydrates were quantified by spectrophotometry. The female inflorescence accumulated starch at higher levels than the top internode of the stem. Global mRNA transcript levels were then evaluated in both tissues by RNA sequencing. Gene expression analysis identified 491 genes differentially expressed between the female inflorescence and the top stem internode. Gene ontology classification of differentially expressed genes showed enrichment for sucrose synthesis, the light-dependent reactions of photosynthesis, and transmembrane transporters. Our results suggest that sugar transporters play a key role in sugar partitioning in the maize stem and reveal previously uncharacterized differences between the female inflorescence and the top internode of the stem at early reproductive stages.
Collapse
|
22
|
Kim H, Song E, Kim Y, Choi E, Hwang J, Lee JH. Loss-of-function of ARABIDOPSIS F-BOX PROTEIN HYPERSENSITIVE TO ABA 1 enhances drought tolerance and delays germination. PHYSIOLOGIA PLANTARUM 2021; 173:2376-2389. [PMID: 34687457 DOI: 10.1111/ppl.13588] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
ABA is a phytohormone involved in diverse plant events such as seed germination and drought response. An F-box protein functions as a substrate receptor of the SCF complex and is responsible for ubiquitination of target proteins, triggering their subsequent degradation mediated by ubiquitin proteasome system. Here, we have isolated a gene named ARABIDOPSIS F-BOX PROTEIN HYPERSENSITIVE TO ABA 1 (AFA1) that was upregulated by ABA. AFA1 interacted with adaptor proteins of the SCF complex, implying its role as a substrate receptor of the complex. Its loss of function mutants, afa1 seedlings, exhibited ABA-hypersensitivity, including delayed germination in the presence of ABA. Moreover, loss of AFA1 led to increased drought tolerance in adult plants. Microarray data with ABA treatments indicated that 129 and 219 genes were upregulated or downregulated, respectively, by more than three times in afa1 relative to the wild type. Among the upregulated genes in afa1, the expression of 28.7% was induced by more than three times in the presence of ABA, while only 9.3% was repressed to the same extent. These data indicate that AFA1 is involved in the downregulation of many ABA-inducible genes, in accordance with the ABA-hypersensitive phenotype of afa1. Epistasis analysis showed that AFA1 could play a role upstream of ABI4 and ABI5 in the ABA signaling for germination inhibition. Collectively, our findings suggest that AFA1 is a novel F-box protein that negatively regulates ABA signaling.
Collapse
Affiliation(s)
- Hani Kim
- Department of Biology Education, Pusan National University, Busan, Republic of Korea
- Department of Integrated Biological Science, Pusan National University, Busan, Republic of Korea
| | - Eunyoung Song
- Department of Biology Education, Pusan National University, Busan, Republic of Korea
| | - Yeojin Kim
- Department of Biology Education, Pusan National University, Busan, Republic of Korea
| | - Eunsil Choi
- Department of Microbiology, Pusan National University, Busan, Republic of Korea
| | - Jihwan Hwang
- Department of Microbiology, Pusan National University, Busan, Republic of Korea
| | - Jae-Hoon Lee
- Department of Biology Education, Pusan National University, Busan, Republic of Korea
| |
Collapse
|
23
|
MYB70 modulates seed germination and root system development in Arabidopsis. iScience 2021; 24:103228. [PMID: 34746697 PMCID: PMC8551079 DOI: 10.1016/j.isci.2021.103228] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/25/2021] [Accepted: 10/01/2021] [Indexed: 12/03/2022] Open
Abstract
Crosstalk among ABA, auxin, and ROS plays critical roles in modulating seed germination, root growth, and suberization. However, the underlying molecular mechanisms remain largely elusive. Here, MYB70, a R2R3-MYB transcription factor was shown to be a key component of these processes in Arabidopsis thaliana. myb70 seeds displayed decreased sensitivity, while MYB70-overexpressing OX70 seeds showed increased sensitivity in germination in response to exogenous ABA through MYB70 physical interaction with ABI5 protein, leading to enhanced stabilization of ABI5. Furthermore, MYB70 modulates root system development (RSA) which is associated with increased conjugated IAA content and H2O2/O2⋅− ratio but reduced root suberin deposition, consequently affecting nutrient uptake. In support of these data, MYB70 positively regulates the expression of auxin conjugation-related GH3, while negatively peroxidase-encoding and suberin biosynthesis-related genes. Our findings collectively revealed a previously uncharacterized component that modulates ABA and auxin signaling pathways, H2O2/O2⋅− balance, and suberization, consequently regulating RSA and seed germination. MYB70 regulates seed germination by enhancing ABA signaling via interaction with ABI5 MYB70 activates the IAA conjugation process by upregulating GH3 genes expression MYB70 mediates root growth via repression of PER genes MYB70 negatively regulates suberin biosynthesis in roots
Collapse
|
24
|
Shoaib Y, Hu J, Manduzio S, Kang H. Alpha-ketoglutarate-dependent dioxygenase homolog 10B, an N 6 -methyladenosine mRNA demethylase, plays a role in salt stress and abscisic acid responses in Arabidopsis thaliana. PHYSIOLOGIA PLANTARUM 2021; 173:1078-1089. [PMID: 34309025 DOI: 10.1111/ppl.13505] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/12/2021] [Indexed: 06/13/2023]
Abstract
N6 -methyladenosine (m6 A) is an abundant methylation mark in eukaryotic mRNAs. It is installed and removed by methyltransferases ("writers") and demethylases ("erasers"), respectively. A recent study has demonstrated that alpha-ketoglutarate-dependent dioxygenase homolog 10B (ALKBH10B) is an mRNA m6 A eraser affecting floral transition in Arabidopsis thaliana. However, the roles of m6 A eraser proteins, including ALKHB10B, in plant adaptation to abiotic stresses are largely unknown. In this study, we aimed to determine the role of ALKBH10B in the response of A. thaliana to abiotic stresses and abscisic acid (ABA). The m6 A level increased in response to salt stress, and m6 A levels in alkbh10b mutants were higher than those in the wild-type under both normal and salt stress conditions. Germination of alkbh10b mutant seeds was markedly delayed under salt stress but not under dehydration, cold, or ABA conditions. Seedling growth and survival rate of alkbh10b mutants were enhanced under salt stress. Notably, salt-tolerant phenotypes of alkbh10b mutants were correlated with decreased levels of several m6 A-modified genes, including ATAF1, BGLU22, and MYB73, which are negative effectors of salt stress tolerance. In response to ABA, both seedling and root growth of alkbh10b mutants were inhibited via upregulating ABA signaling-related genes, including ABI3 and ABI4. Collectively, these findings indicate that ALKBH10B-mediated m6 A demethylation affects the transcript levels of stress-responsive genes, which are important for seed germination, seedling growth, and survival of Arabidopsis thaliana in response to salt stress or ABA.
Collapse
Affiliation(s)
- Yasira Shoaib
- Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, South Korea
| | - Jianzhong Hu
- Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, South Korea
| | - Stefano Manduzio
- Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, South Korea
| | - Hunseung Kang
- Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, South Korea
| |
Collapse
|
25
|
Chen B, Fiers M, Dekkers BJW, Maas L, van Esse GW, Angenent GC, Zhao Y, Boutilier K. ABA signalling promotes cell totipotency in the shoot apex of germinating embryos. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6418-6436. [PMID: 34175924 PMCID: PMC8483786 DOI: 10.1093/jxb/erab306] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 06/25/2021] [Indexed: 05/03/2023]
Abstract
Somatic embryogenesis (SE) is a type of induced cell totipotency where embryos develop from vegetative tissues of the plant instead of from gamete fusion after fertilization. SE can be induced in vitro by exposing explants to growth regulators, such as the auxinic herbicide 2,4-dichlorophenoxyacetic acid (2,4-D). The plant hormone abscisic acid (ABA) has been proposed to be a downstream signalling component at the intersection between 2,4-D- and stress-induced SE, but it is not known how these pathways interact to induce cell totipotency. Here we show that 2,4-D-induced SE from the shoot apex of germinating Arabidopsis thaliana seeds is characterized by transcriptional maintenance of an ABA-dependent seed maturation pathway. Molecular-genetic analysis of Arabidopsis mutants revealed a role for ABA in promoting SE at three different levels: ABA biosynthesis, ABA receptor complex signalling, and ABA-mediated transcription, with essential roles for the ABSCISIC ACID INSENSITIVE 3 (ABI3) and ABI4 transcription factors. Our data suggest that the ability of mature Arabidopsis embryos to maintain the ABA seed maturation environment is an important first step in establishing competence for auxin-induced cell totipotency. This finding provides further support for the role of ABA in directing processes other than abiotic stress response.
Collapse
Affiliation(s)
- Baojian Chen
- Bioscience, Wageningen University and Research, AA Wageningen, Netherlands
- Laboratory for Molecular Biology, Wageningen University and Research, AP, Wageningen, Netherlands
| | - Martijn Fiers
- Bioscience, Wageningen University and Research, AA Wageningen, Netherlands
| | - Bas J W Dekkers
- Wageningen Seed Lab, Laboratory for Plant Physiology, Wageningen University and Research Centre, AA, Netherlands
| | - Lena Maas
- Bioscience, Wageningen University and Research, AA Wageningen, Netherlands
- Laboratory for Molecular Biology, Wageningen University and Research, AP, Wageningen, Netherlands
| | - G Wilma van Esse
- Bioscience, Wageningen University and Research, AA Wageningen, Netherlands
- Laboratory for Molecular Biology, Wageningen University and Research, AP, Wageningen, Netherlands
| | - Gerco C Angenent
- Bioscience, Wageningen University and Research, AA Wageningen, Netherlands
- Laboratory for Molecular Biology, Wageningen University and Research, AP, Wageningen, Netherlands
| | - Yang Zhao
- Shanghai Center for Plant Stress Biology, and CAS Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Kim Boutilier
- Bioscience, Wageningen University and Research, AA Wageningen, Netherlands
- Correspondence:
| |
Collapse
|
26
|
Yang M, Han X, Yang J, Jiang Y, Hu Y. The Arabidopsis circadian clock protein PRR5 interacts with and stimulates ABI5 to modulate abscisic acid signaling during seed germination. THE PLANT CELL 2021; 33:3022-3041. [PMID: 34152411 PMCID: PMC8462813 DOI: 10.1093/plcell/koab168] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 06/17/2021] [Indexed: 05/03/2023]
Abstract
Seed germination and postgerminative growth require the precise coordination of multiple intrinsic and environmental signals. The phytohormone abscisic acid (ABA) suppresses these processes in Arabidopsis thaliana and the circadian clock contributes to the regulation of ABA signaling. However, the molecular mechanism underlying circadian clock-mediated ABA signaling remains largely unknown. Here, we found that the core circadian clock proteins PSEUDO-RESPONSE REGULATOR5 (PRR5) and PRR7 physically associate with ABSCISIC ACID-INSENSITIVE5 (ABI5), a crucial transcription factor of ABA signaling. PRR5 and PRR7 positively modulate ABA signaling redundantly during seed germination. Disrupting PRR5 and PRR7 simultaneously rendered germinating seeds hyposensitive to ABA, whereas the overexpression of PRR5 enhanced ABA signaling to inhibit seed germination. Consistent with this, the expression of several ABA-responsive genes is upregulated by PRR proteins. Genetic analysis demonstrated that PRR5 promotes ABA signaling mainly dependently on ABI5. Further mechanistic investigation revealed that PRR5 stimulates the transcriptional function of ABI5 without affecting its stability. Collectively, our results indicate that these PRR proteins function synergistically with ABI5 to activate ABA responses during seed germination, thus providing a mechanistic understanding of how ABA signaling and the circadian clock are directly integrated through a transcriptional complex involving ABI5 and central circadian clock components.
Collapse
Affiliation(s)
- Milian Yang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao Han
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Jiajia Yang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanjuan Jiang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Yanru Hu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Author for correspondence:
| |
Collapse
|
27
|
Li X, Zhong M, Qu L, Yang J, Liu X, Zhao Q, Liu X, Zhao X. AtMYB32 regulates the ABA response by targeting ABI3, ABI4 and ABI5 and the drought response by targeting CBF4 in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 310:110983. [PMID: 34315599 DOI: 10.1016/j.plantsci.2021.110983] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/11/2021] [Accepted: 06/20/2021] [Indexed: 06/13/2023]
Abstract
The Arabidopsis thaliana R2R3-MYB transcription factor AtMYB32 and its homologs AtMYB4 and AtMYB7 play crucial roles in the regulation of phenylpropanoid metabolism. In addition, AtMYB4 and AtMYB7 are involved in the response to abiotic stress. However, the function of AtMYB32 remains unclear. In this study, we found that AtMYB32 is induced by abscisic acid (ABA) and repressed by drought stress. AtMYB32 positively regulates ABA-mediated seed germination and early seedling development. The expression of ABSCISIC ACID-INSENSITIVE 3 (ABI3), ABI4 and ABI5, which encode key positive regulators of ABA signaling, was upregulated in response to ABA in AtMYB32-overexpressing plants and downregulated in the atmyb32-1 mutant. In addition, we found that the atmyb32-1 mutant was drought resistant. Consistent with the drought-resistant phenotype, the transcript levels of C-repeat binding factor 4 (CBF4) were higher in the atmyb32-1 mutant in response to drought stress. Electrophoretic mobility shift assays (EMSAs) and chromatin immunoprecipitation (ChIP) assays revealed that AtMYB32 binds directly to the ABI3, ABI4, ABI5 and CBF4 promoters both in vitro and in vivo. Genetically, ABI4 was found to be epistatic to AtMYB32 for ABA-induced inhibition of seed germination and early seedling development. Taken together, our findings revealed that AtMYB32 regulates the ABA response by directly promoting ABI3, ABI4 and ABI5 expression and that the drought stress response likely occurs because of repression of CBF4 expression.
Collapse
Affiliation(s)
- Xinmei Li
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan Hybrid Rape Engineering and Technology Research Center, Hunan University, Changsha, 410082, China; Shenzhen Institute, Hunan University, Shenzhen, 518057, China
| | - Ming Zhong
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan Hybrid Rape Engineering and Technology Research Center, Hunan University, Changsha, 410082, China; Shenzhen Institute, Hunan University, Shenzhen, 518057, China
| | - Lina Qu
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan Hybrid Rape Engineering and Technology Research Center, Hunan University, Changsha, 410082, China; Shenzhen Institute, Hunan University, Shenzhen, 518057, China
| | - Jiaxin Yang
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan Hybrid Rape Engineering and Technology Research Center, Hunan University, Changsha, 410082, China; Shenzhen Institute, Hunan University, Shenzhen, 518057, China
| | - Xueqing Liu
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan Hybrid Rape Engineering and Technology Research Center, Hunan University, Changsha, 410082, China
| | - Qiang Zhao
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan Hybrid Rape Engineering and Technology Research Center, Hunan University, Changsha, 410082, China
| | - Xuanming Liu
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan Hybrid Rape Engineering and Technology Research Center, Hunan University, Changsha, 410082, China.
| | - Xiaoying Zhao
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan Hybrid Rape Engineering and Technology Research Center, Hunan University, Changsha, 410082, China; Shenzhen Institute, Hunan University, Shenzhen, 518057, China.
| |
Collapse
|
28
|
Lv Y, Pan J, Wang H, Reiter RJ, Li X, Mou Z, Zhang J, Yao Z, Zhao D, Yu D. Melatonin inhibits seed germination by crosstalk with abscisic acid, gibberellin, and auxin in Arabidopsis. J Pineal Res 2021; 70:e12736. [PMID: 33811388 DOI: 10.1111/jpi.12736] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 03/22/2021] [Indexed: 12/13/2022]
Abstract
Seed germination, an important developmental stage in the life cycle of seed plants, is regulated by complex signals. Melatonin is a signaling molecule associated with seed germination under stressful conditions, although the underlying regulatory mechanisms are largely unknown. In this study, we showed that a low concentration (10 µM or 100 µM) of melatonin had no effect on seed germination, but when the concentration of melatonin increased to 500 µM or 1000 µM, seed germination was significantly inhibited in Arabidopsis. RNA sequencing analysis showed that melatonin regulated seed germination correlated to phytohormones abscisic acid (ABA), gibberellin (GA), and auxin. Further investigation revealed that ABA and melatonin synergistically inhibited seed germination, while GA and auxin antagonized the inhibitory effect of seed germination by melatonin. Disruption of the melatonin biosynthesis enzyme gene serotonin N-acetyltransferase (SNAT) or N-acetylserotonin methyltransferase (ASMT) promoted seed germination, while overexpression of ASMT inhibited seed germination. Taken together, our study sheds new light on the function and mechanism of melatonin in modulating seed germination in Arabidopsis.
Collapse
Affiliation(s)
- Yan Lv
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
- Biocontrol Engineering Research Center of Plant Disease and Pest, Biocontrol Engineering Research Center of Crop Disease and Pest, School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Jinjing Pan
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Houping Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, Long School of Medicine, San Antonio, TX, USA
| | - Xia Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Zongmin Mou
- Biocontrol Engineering Research Center of Plant Disease and Pest, Biocontrol Engineering Research Center of Crop Disease and Pest, School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Jiemei Zhang
- Biocontrol Engineering Research Center of Plant Disease and Pest, Biocontrol Engineering Research Center of Crop Disease and Pest, School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Zhengping Yao
- Biocontrol Engineering Research Center of Plant Disease and Pest, Biocontrol Engineering Research Center of Crop Disease and Pest, School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Dake Zhao
- Biocontrol Engineering Research Center of Plant Disease and Pest, Biocontrol Engineering Research Center of Crop Disease and Pest, School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Diqiu Yu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| |
Collapse
|
29
|
Eisner N, Maymon T, Sanchez EC, Bar-Zvi D, Brodsky S, Finkelstein R, Bar-Zvi D. Phosphorylation of Serine 114 of the transcription factor ABSCISIC ACID INSENSITIVE 4 is essential for activity. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 305:110847. [PMID: 33691973 DOI: 10.1016/j.plantsci.2021.110847] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 02/04/2021] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
The transcription factor ABA-INSENSITIVE(ABI)4 has diverse roles in regulating plant growth, including inhibiting germination and reserve mobilization in response to ABA and high salinity, inhibiting seedling growth in response to high sugars, inhibiting lateral root growth, and repressing light-induced gene expression. ABI4 activity is regulated at multiple levels, including gene expression, protein stability, and activation by phosphorylation. Although ABI4 can be phosphorylated at multiple residues by MAPKs, we found that S114 is the preferred site of MPK3. To examine the possible biological role of S114 phosphorylation, we transformed abi4-1 mutant plants with ABI4pro::ABI4 constructs encoding wild type (114S), phosphorylation-null (S114A) or phosphomimetic (S114E) forms of ABI4. Phosphorylation of S114 is necessary for the response to ABA, glucose, salt stress, and lateral root development, where the abi4 phenotype could be complemented by expressing ABI4 (114S) or ABI4 (S114E) but not ABI4 (S114A). Comparison of root transcriptomes in ABA-treated roots of abi4-1 mutant plants transformed with constructs encoding the different phosphorylation-forms of S114 of ABI4 revealed that 85 % of the ABI4-regulated genes whose expression pattern could be restored by expressing ABI4 (114S) are down-regulated by ABI4. Phosphorylation of S114 was required for regulation of 35 % of repressed genes, but only 17 % of induced genes. The genes whose repression requires the phosphorylation of S114 are mainly involved in embryo and seedling development, growth and differentiation, and regulation of gene expression.
Collapse
Affiliation(s)
- Nadav Eisner
- Department of Life Sciences and The Doris and Bertie Black Center for Bioenergetics in Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 8410500, Israel
| | - Tzofia Maymon
- Department of Life Sciences and The Doris and Bertie Black Center for Bioenergetics in Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 8410500, Israel
| | - Ester Cancho Sanchez
- Department of Life Sciences and The Doris and Bertie Black Center for Bioenergetics in Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 8410500, Israel
| | - Dana Bar-Zvi
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Sagie Brodsky
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Ruth Finkelstein
- Department of Molecular, Cellular and Developmental Biology, University of California at Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Dudy Bar-Zvi
- Department of Life Sciences and The Doris and Bertie Black Center for Bioenergetics in Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 8410500, Israel.
| |
Collapse
|
30
|
González-Morales S, Solís-Gaona S, Valdés-Caballero MV, Juárez-Maldonado A, Loredo-Treviño A, Benavides-Mendoza A. Transcriptomics of Biostimulation of Plants Under Abiotic Stress. Front Genet 2021; 12:583888. [PMID: 33613631 PMCID: PMC7888440 DOI: 10.3389/fgene.2021.583888] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 01/06/2021] [Indexed: 12/20/2022] Open
Abstract
Plant biostimulants are compounds, living microorganisms, or their constituent parts that alter plant development programs. The impact of biostimulants is manifested in several ways: via morphological, physiological, biochemical, epigenomic, proteomic, and transcriptomic changes. For each of these, a response and alteration occur, and these alterations in turn improve metabolic and adaptive performance in the environment. Many studies have been conducted on the effects of different biotic and abiotic stimulants on plants, including many crop species. However, as far as we know, there are no reviews available that describe the impact of biostimulants for a specific field such as transcriptomics, which is the objective of this review. For the commercial registration process of products for agricultural use, it is necessary to distinguish the specific impact of biostimulants from that of other legal categories of products used in agriculture, such as fertilizers and plant hormones. For the chemical or biological classification of biostimulants, the classification is seen as a complex issue, given the great diversity of compounds and organisms that cause biostimulation. However, with an approach focused on the impact on a particular field such as transcriptomics, it is perhaps possible to obtain a criterion that allows biostimulants to be grouped considering their effects on living systems, as well as the overlap of the impact on metabolism, physiology, and morphology occurring between fertilizers, hormones, and biostimulants.
Collapse
|
31
|
Shahmir F, Pauls KP. Identification, Gene Structure, and Expression of BnMicEmUP: A Gene Upregulated in Embryogenic Brassica napus Microspores. FRONTIERS IN PLANT SCIENCE 2021; 11:576008. [PMID: 33519838 PMCID: PMC7845737 DOI: 10.3389/fpls.2020.576008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 11/09/2020] [Indexed: 06/12/2023]
Abstract
Microspores of Brassica napus can be diverted from normal pollen development into embryogenesis by treating them with a mild heat shock. As microspore embryogenesis closely resembles zygotic embryogenesis, it is used as model for studying the molecular mechanisms controlling embryo formation. A previous study comparing the transcriptomes of three-day-old sorted embryogenic and pollen-like (non-embryogenic) microspores identified a gene homologous to AT1G74730 of unknown function that was upregulated 8-fold in the embryogenic cells. In the current study, the gene was isolated and sequenced from B. napus and named BnMicEmUP (B. napus microspore embryogenesis upregulated gene). Four forms of BnMicEmUP mRNA and three forms of genomic DNA were identified. BnMicEmUP2,3 was upregulated more than 7-fold by day 3 in embryogenic microspore cultures compared to non-induced cultures. BnMicEmUP1,4 was highly expressed in leaves. Transient expression studies of BnMicEmUP3::GFP fusion protein in Nicotiana benthamiana and in stable Arabidopsis transgenics showed that it accumulates in chloroplasts. The features of the BnMicEmUP protein, which include a chloroplast targeting region, a basic region, and a large region containing 11 complete leucine-rich repeats, suggest that it is similar to a bZIP PEND (plastid envelope DNA-binding protein) protein, a DNA binding protein found in the inner envelope membrane of developing chloroplasts. Here, we report that the BnMicEmUP3 overexpression in Arabidopsis increases the sensitivity of seedlings to exogenous abscisic acid (ABA). The BnMicEmUP proteins appear to be transcription factors that are localized in plastids and are involved in plant responses to biotic and abiotic environmental stresses; as well as the results obtained from this study can be used to improve crop yield.
Collapse
|
32
|
Luo L, Wan Q, Zhang K, Zhang X, Guo R, Wang C, Zheng C, Liu F, Ding Z, Wan Y. AhABI4s Negatively Regulate Salt-Stress Response in Peanut. FRONTIERS IN PLANT SCIENCE 2021; 12:741641. [PMID: 34721468 PMCID: PMC8551806 DOI: 10.3389/fpls.2021.741641] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/13/2021] [Indexed: 05/04/2023]
Abstract
Soil salinity is one of the major factors that limit the area of cultivable land and yield potential of crops. The ability of salt tolerance varies with plant species. Peanut (Arachis hypogaea L.) is a moderately salt-sensitive and economically important crop, however, their biological processes involved in salt-stress response remain unclear. In this study, we investigated the role of A. hypogaea L. ABSCISIC ACID INSENSITIVE 4s (AhABI4s) in salt tolerance and elucidated its mode of action in peanuts. The results showed that the downregulation of AhABI4s via whole plant virus-induced gene silencing has enhanced the survival rate, biomass accumulation, and root/shoot ratio of peanut seedlings in response to salt-stress. Transcriptomics, quantitative proteomics, and phosphoproteomic analyses were performed using AhABI4s-silenced and Mock plants. The expression pattern of 15,247 genes, 1,900 proteins, and 2,620 phosphorylation sites were affected by silencing of AhABI4s in peanut leaf and root after sodium chloride (NaCl) treatment. Among them, 63 potential downstream target genes of ABI4 changed consistently at both transcription and translation levels, and the protein/phosphorylation levels of 31 ion transporters/channels were also affected. Electrophoretic mobility shift assays (EMSA) showed that ABI4 was able to bind to the promoters of HSP70, fructokinase (FRK), and pyruvate kinase (PK) coding genes in vitro. In addition, we also detected a binding preference of AhABI4 for CACT(G/T)GCA motif in the promoters of down-regulated genes in peanut leaf. Collectively, the potential downstream targets which were regulated at the levels of transcription and translation, binding preference, and in vivo phosphorylation sites that had been revealed in this study will provide new insight into the AhABI4s-mediated salt tolerance regulation mechanism in peanuts.
Collapse
Affiliation(s)
- Lu Luo
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, China
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, College of Life Sciences, Shandong University, Qingdao, China
| | - Qian Wan
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, China
| | - Kun Zhang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, China
| | - Xiurong Zhang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, China
| | - Ruijie Guo
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, China
| | - Cai Wang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, China
| | - Chengchao Zheng
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Fengzhen Liu
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, China
- *Correspondence: Fengzhen Liu
| | - Zhaojun Ding
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, College of Life Sciences, Shandong University, Qingdao, China
- Zhaojun Ding
| | - Yongshan Wan
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, China
- Yongshan Wan
| |
Collapse
|
33
|
Huong TT, Ngoc LNT, Kang H. Functional Characterization of a Putative RNA Demethylase ALKBH6 in Arabidopsis Growth and Abiotic Stress Responses. Int J Mol Sci 2020; 21:ijms21186707. [PMID: 32933187 PMCID: PMC7555452 DOI: 10.3390/ijms21186707] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 09/11/2020] [Accepted: 09/11/2020] [Indexed: 12/15/2022] Open
Abstract
RNA methylation and demethylation, which is mediated by RNA methyltransferases (referred to as “writers”) and demethylases (referred to as “erasers”), respectively, are emerging as a key regulatory process in plant development and stress responses. Although several studies have shown that AlkB homolog (ALKBH) proteins are potential RNA demethylases, the function of most ALKBHs is yet to be determined. The Arabidopsis thaliana genome contains thirteen genes encoding ALKBH proteins, the functions of which are largely unknown. In this study, we characterized the function of a potential eraser protein, ALKBH6 (At4g20350), during seed germination and seedling growth in Arabidopsis under abiotic stresses. The seeds of T-DNA insertion alkbh6 knockdown mutants germinated faster than the wild-type seeds under cold, salt, or abscisic acid (ABA) treatment conditions but not under dehydration stress conditions. Although no differences in seedling and root growth were observed between the alkbh6 mutant and wild-type under normal conditions, the alkbh6 mutant showed a much lower survival rate than the wild-type under salt, drought, or heat stress. Cotyledon greening of the alkbh6 mutants was much higher than that of the wild-type upon ABA application. Moreover, the transcript levels of ABA signaling-related genes, including ABI3 and ABI4, were down-regulated in the alkbh6 mutant compared to wild-type plants. Importantly, the ALKBH6 protein had an ability to bind to both m6A-labeled and m5C-labeled RNAs. Collectively, these results indicate that the potential eraser ALKBH6 plays important roles in seed germination, seedling growth, and survival of Arabidopsis under abiotic stresses.
Collapse
Affiliation(s)
- Trinh Thi Huong
- Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Korea; (T.T.H.); (L.N.T.N.)
- The Western Highlands Agriculture and Forestry Science Institute, Buon Ma Thuot, DakLak 63000, Vietnam
| | - Le Nguyen Tieu Ngoc
- Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Korea; (T.T.H.); (L.N.T.N.)
- Faculty of Forestry Agriculture, Tay Nguyen University, Buon Ma Thuot, DakLak 63000, Vietnam
| | - Hunseung Kang
- Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Korea; (T.T.H.); (L.N.T.N.)
- Correspondence: ; Tel.: +82-(62)-530-2181
| |
Collapse
|
34
|
Yu B, Wang Y, Zhou H, Li P, Liu C, Chen S, Peng Y, Zhang Y, Teng S. Genome-wide binding analysis reveals that ANAC060 directly represses sugar-induced transcription of ABI5 in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:965-979. [PMID: 32314488 DOI: 10.1111/tpj.14777] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/18/2020] [Accepted: 03/31/2020] [Indexed: 06/11/2023]
Abstract
The sugar status of a plant acts as a signal affecting growth and development. The phenomenon by which high levels of sugars inhibit seedling establishment has been widely used to gain insight into sugar-signaling pathways. Natural allelic variation has been identified at the ANAC060 locus. The Arabidopsis Columbia ecotype produces a short ANAC060 protein without a transmembrane domain that is constitutively located to the nucleus, causing sugar insensitivity when overexpressed. In this study, we generated a genome-wide DNA-binding map of ANAC060 via chromatin immunoprecipitation sequencing using transgenic lines that express a functional ANAC060-GFP fusion protein in an anac060 background. A total of 3282 genes associated with ANAC060-binding sites were identified. These genes were enriched in biotic and abiotic stress responses, and the G-box binding motif was highly enriched in ANAC060-bound genomic regions. Expression microarray analysis resulted in the identification of 8350 genes whose activities were altered in the anac060 mutant and upon sugar treatment. Cluster analysis revealed that ANAC060 attenuates sugar-regulated gene expression. Direct target genes of ANAC060 included equivalent numbers of genes that were upregulated or downregulated by ANAC060. The various functions of these target genes indicate that ANAC060 has several functions. Our results demonstrate that ANAC060 directly binds to the promoter of ABI5 and represses the sugar-induced transcription of ABI5. Genetic data indicate that ABI5 is epistatic to ANAC060 in both sugar and abscisic acid responses.
Collapse
Affiliation(s)
- Bo Yu
- Laboratory of Photosynthesis and Environmental Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Beijing, 100049, China
| | - Yuejun Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Beijing, 100049, China
| | - Hua Zhou
- Laboratory of Photosynthesis and Environmental Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
| | - Ping Li
- Laboratory of Photosynthesis and Environmental Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
| | - Chunmei Liu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Beijing, 100049, China
| | - Sunlu Chen
- Laboratory of Photosynthesis and Environmental Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, 1 Weigang Road, Nanjing, 210095, China
| | - Yu Peng
- Laboratory of Photosynthesis and Environmental Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
| | - Yijing Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Beijing, 100049, China
| | - Sheng Teng
- Laboratory of Photosynthesis and Environmental Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Beijing, 100049, China
| |
Collapse
|
35
|
Molecular and environmental factors regulating seed longevity. Biochem J 2020; 477:305-323. [PMID: 31967650 DOI: 10.1042/bcj20190165] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 12/20/2019] [Accepted: 01/03/2020] [Indexed: 12/18/2022]
Abstract
Seed longevity is a central pivot of the preservation of biodiversity, being of main importance to face the challenges linked to global climate change and population growth. This complex, quantitative seed quality trait is acquired on the mother plant during the second part of seed development. Understanding what factors contribute to lifespan is one of the oldest and most challenging questions in plant biology. One of these challenges is to recognize that longevity depends on the storage conditions that are experimentally used because they determine the type and rate of deleterious conditions that lead to cell death and loss of viability. In this review, we will briefly review the different storage methods that accelerate the deteriorative reactions during storage and argue that a minimum amount of information is necessary to interpret the longevity data. Next, we will give an update on recent discoveries on the hormonal factors regulating longevity, both from the ABA signaling pathway but also other hormonal pathways. In addition, we will review the effect of both maternal and abiotic factors that influence longevity. In the last section of this review, we discuss the problems in unraveling cause-effect relationship between the time of death during storage and deteriorative reactions leading to seed ageing. We focus on the three major types of cellular damage, namely membrane permeability, lipid peroxidation and RNA integrity for which germination data on seed stored in dedicated seed banks for long period times are now available.
Collapse
|
36
|
Ku YS, Ni M, Muñoz NB, Xiao Z, Lo AWY, Chen P, Li MW, Cheung MY, Xie M, Lam HM. ABAS1 from soybean is a 1R-subtype MYB transcriptional repressor that enhances ABA sensitivity. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:2970-2981. [PMID: 32061092 PMCID: PMC7260724 DOI: 10.1093/jxb/eraa081] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 02/11/2020] [Indexed: 05/06/2023]
Abstract
Transcription factors (TFs) help plants respond to environmental stresses by regulating gene expression. Up till now, studies on the MYB family of TFs have mainly focused on the highly abundant R2R3-subtype. While the less well-known 1R-subtype has been generally shown to enhance abscisic acid (ABA) sensitivity by acting as transcriptional activators, the mechanisms of their functions are unclear. Here we identified an ABA sensitivity-associated gene from soybean, ABA-Sensitive 1 (GmABAS1), of the 1R-subtype of MYB. Using the GFP-GmABAS1 fusion protein, we demonstrated that GmABAS1 is localized in the nucleus, and with yeast reporter systems, we showed that it is a transcriptional repressor. We then identified the target gene of GmABAS1 to be Glyma.01G060300, an annotated ABI five-binding protein 3 and showed that GmABAS1 binds to the promoter of Glyma.01G060300 both in vitro and in vivo. Furthermore, Glyma.01G060300 and GmABAS1 exhibited reciprocal expression patterns under osmotic stress, inferring that GmABAS1 is a transcriptional repressor of Glyma.01G060300. As a further confirmation, AtAFP2, an orthologue of Glyma.01G060300, was down-regulated in GmABAS1-transgenic Arabidopsis thaliana, enhancing the plant's sensitivity to ABA. This is the first time a 1R-subtype of MYB from soybean has been reported to enhance ABA sensitivity by acting as a transcriptional repressor.
Collapse
Affiliation(s)
- Yee-Shan Ku
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Meng Ni
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Nacira B Muñoz
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
- Instituto de Fisiología y Recursos Genéticos Vegetales, Centro de Investigaciones Agropecuarias–INTA, Córdoba, Argentina
- Cátedra de Fisiología Vegetal, Facultad de Ciencias Exactas Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Zhixia Xiao
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Annie Wing-Yi Lo
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Pei Chen
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
- Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Man-Wah Li
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Ming-Yan Cheung
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Min Xie
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Hon-Ming Lam
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| |
Collapse
|
37
|
Chandrasekaran U, Luo X, Zhou W, Shu K. Multifaceted Signaling Networks Mediated by Abscisic Acid Insensitive 4. PLANT COMMUNICATIONS 2020; 1:100040. [PMID: 33367237 PMCID: PMC7748004 DOI: 10.1016/j.xplc.2020.100040] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/24/2019] [Accepted: 03/04/2020] [Indexed: 05/04/2023]
Abstract
Although ABSCISIC ACID INSENSITIVE 4 (ABI4) was initially demonstrated as a key positive regulator in the phytohormone abscisic acid (ABA) signaling cascade, multiple studies have now shown that it is actually involved in the regulation of several other cascades, including diverse phytohormone biogenesis and signaling pathways, various developmental processes (such as seed dormancy and germination, seedling establishment, and root development), disease resistance and lipid metabolism. Consistent with its versatile biological functions, ABI4 either activates or represses transcription of its target genes. The upstream regulators of ABI4 at both the transcription and post-transcription levels have also been documented in recent years. Consequently, a complicated network consisting of the direct target genes and upstream regulators of ABI4, through which ABI4 participates in several phytohormone crosstalk networks, has been generated. In this review, we summarize current understanding of the sophisticated ABI4-mediated molecular networks, mainly focusing on diverse phytohormone (including ABA, gibberellin, cytokinin, ethylene, auxin, and jasmonic acid) crosstalks. We also discuss the potential mechanisms through which ABI4 receives the ABA signal, focusing on protein phosphorylation modification events.
Collapse
Affiliation(s)
| | - Xiaofeng Luo
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710012, China
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu 611130, China
| | - Wenguan Zhou
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710012, China
| | - Kai Shu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710012, China
| |
Collapse
|
38
|
A selective autophagy cargo receptor NBR1 modulates abscisic acid signalling in Arabidopsis thaliana. Sci Rep 2020; 10:7778. [PMID: 32385330 PMCID: PMC7211012 DOI: 10.1038/s41598-020-64765-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 04/18/2020] [Indexed: 12/17/2022] Open
Abstract
The plant selective autophagy cargo receptor neighbour of breast cancer 1 gene (NBR1) has been scarcely studied in the context of abiotic stress. We wanted to expand this knowledge by using Arabidopsis thaliana lines with constitutive ectopic overexpression of the AtNBR1 gene (OX lines) and the AtNBR1 Knock-Out (KO lines). Transcriptomic analysis of the shoots and roots of one representative OX line indicated differences in gene expression relative to the parental (WT) line. In shoots, many differentially expressed genes, either up- or down-regulated, were involved in responses to stimuli and stress. In roots the most significant difference was observed in a set of downregulated genes that is mainly related to translation and formation of ribonucleoprotein complexes. The link between AtNBR1 overexpression and abscisic acid (ABA) signalling was suggested by an interaction network analysis of these differentially expressed genes. Most hubs of this network were associated with ABA signalling. Although transcriptomic analysis suggested enhancement of ABA responses, ABA levels were unchanged in the OX shoots. Moreover, some of the phenotypes of the OX (delayed germination, increased number of closed stomata) and the KO lines (increased number of lateral root initiation sites) indicate that AtNBR1 is essential for fine-tuning of the ABA signalling pathway. The interaction of AtNBR1 with three regulatory proteins of ABA pathway (ABI3, ABI4 and ABI5) was observed in planta. It suggests that AtNBR1 might play role in maintaining the balance of ABA signalling by controlling their level and/or activity.
Collapse
|
39
|
Yu X, Han J, Li L, Zhang Q, Yang G, He G. Wheat PP2C-a10 regulates seed germination and drought tolerance in transgenic Arabidopsis. PLANT CELL REPORTS 2020; 39:635-651. [PMID: 32065246 PMCID: PMC7165162 DOI: 10.1007/s00299-020-02520-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 02/04/2020] [Indexed: 05/13/2023]
Abstract
A wheat protein phosphatase PP2C-a10, which interacted with TaDOG1L1 and TaDOG1L4, promoted seed germination and decreased drought tolerance of transgenic Arabidopsis. Seed dormancy and germination are critical to plant fitness. DELAY OF GERMINATION 1 (DOG1) is a quantitative trait locus for dormancy in Arabidopsis thaliana. Some interactions between DOG1 and the type 2C protein phosphatases (PP2Cs) have been reported in Arabidopsis. However, the research on molecular functions and regulations of DOG1Ls and group A PP2Cs in wheat (Triticum aestivum. L), an important crop plant, is rare. In this study, the whole TaDOG1L family was identified. Expression analysis revealed that TaDOG1L2, TaDOG1L4 and TaDOG1L-N2 specially expressed in wheat grains, while others displayed distinct expression patterns. Yeast two-hybrid analysis of TaDOG1Ls and group A TaPP2Cs revealed interaction patterns differed from those in Arabidopsis, and TaDOG1L1 and TaDOG1L4 interacted with TaPP2C-a10. The qRT-PCR analysis showed that TaPP2C-a10 exhibited the highest transcript level in wheat grains. Further investigation showed that ectopic expression of TaPP2C-a10 in Arabidopsis promoted seed germination and decreased sensitivity to ABA during germination stage. Additionally, TaPP2C-a10 transgenic Arabidopsis exhibited decreased tolerance to drought stress. Finally, the phylogenetic analysis indicated that TaPP2C-a10 gene was conserved in angiosperm during evolutionary process. Overall, our results reveal the role of TaPP2C-a10 in seed germination and abiotic stress response, as well as the functional diversity of TaDOG1L family.
Collapse
Affiliation(s)
- Xiaofen Yu
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Jiapeng Han
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Li Li
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Zhang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Guangxiao Yang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.
| | - Guangyuan He
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
40
|
Mohanta TK, Yadav D, Khan A, Hashem A, Tabassum B, Khan AL, Abd_Allah EF, Al-Harrasi A. Genomics, molecular and evolutionary perspective of NAC transcription factors. PLoS One 2020; 15:e0231425. [PMID: 32275733 PMCID: PMC7147800 DOI: 10.1371/journal.pone.0231425] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 03/23/2020] [Indexed: 01/05/2023] Open
Abstract
NAC (NAM, ATAF1,2, and CUC2) transcription factors are one of the largest transcription factor families found in the plants and are involved in diverse developmental and signalling events. Despite the availability of comprehensive genomic information from diverse plant species, the basic genomic, biochemical, and evolutionary details of NAC TFs have not been established. Therefore, NAC TFs family proteins from 160 plant species were analyzed in the current study. Study revealed, Brassica napus (410) encodes highest number and Klebsormidium flaccidum (3) encodes the lowest number of TFs. The study further revealed the presence of NAC TF in the Charophyte algae K. flaccidum. On average, the monocot plants encode higher number (141.20) of NAC TFs compared to the eudicots (125.04), gymnosperm (75), and bryophytes (22.66). Furthermore, our analysis revealed that several NAC TFs are membrane bound and contain monopartite, bipartite, and multipartite nuclear localization signals. NAC TFs were also found to encode several novel chimeric proteins and regulate a complex interactome network. In addition to the presence of NAC domain, several NAC proteins were found to encode other functional signature motifs as well. Relative expression analysis of NAC TFs in A. thaliana revealed root tissue treated with urea and ammonia showed higher level of expression and leaf tissues treated with urea showed lower level of expression. The synonymous codon usage is absent in the NAC TFs and it appears that they have evolved from orthologous ancestors and undergone vivid duplications to give rise to paralogous NAC TFs. The presence of novel chimeric NAC TFs are of particular interest and the presence of chimeric NAC domain with other functional signature motifs in the NAC TF might encode novel functional properties in the plants.
Collapse
Affiliation(s)
- Tapan Kumar Mohanta
- Natural and Medicinal Plant Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Dhananjay Yadav
- Dept. of Medical Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| | - Adil Khan
- Natural and Medicinal Plant Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Abeer Hashem
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
- Mycology and Plant Disease Survey Department, Plant Pathology Research Institute, ARC, Giza, Egypt
| | - Baby Tabassum
- Department of Zoology, Toxicology laboratory, Raza P.G. College, Rampur, Uttar Pradesh, India
| | - Abdul Latif Khan
- Natural and Medicinal Plant Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Elsayed Fathi Abd_Allah
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed Al-Harrasi
- Natural and Medicinal Plant Sciences Research Center, University of Nizwa, Nizwa, Oman
| |
Collapse
|
41
|
Choi MG, Kim EJ, Song JY, Choi SB, Cho SW, Park CS, Kang CS, Park YI. Peptide transporter2 (PTR2) enhances water uptake during early seed germination in Arabidopsis thaliana. PLANT MOLECULAR BIOLOGY 2020; 102:615-624. [PMID: 31997111 PMCID: PMC7062858 DOI: 10.1007/s11103-020-00967-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 01/10/2020] [Indexed: 05/12/2023]
Abstract
PTR2 in Arabidopsis thaliana is negatively regulated by ABI4 and plays a key role in water uptake by seeds, ensuring that imbibed seeds proceed to germination. Peptide transporters (PTRs) transport nitrogen-containing substrates in a proton-dependent manner. Among the six PTRs in Arabidopsis thaliana, the physiological role of the tonoplast-localized, seed embryo abundant PTR2 is unknown. In the present study, a molecular physiological analysis of PTR2 was conducted using ptr2 mutants and PTR2CO complementation lines. Compared with the wild type, the ptr2 mutant showed ca. 6 h delay in testa rupture and consequently endosperm rupture because of 17% lower water content and 10% higher free abscisic acid (ABA) content. Constitutive overexpression of the PTR2 gene under the control of the Cauliflower mosaic virus (CaMV) 35S promoter in ptr2 mutants rescued the mutant phenotypes. After cold stratification, a transient increase in ABA INSENSITIVE4 (ABI4) transcript levels during induction of testa rupture was followed by a similar increase in PTR2 transcript levels, which peaked prior to endosperm rupture. The PTR2 promoter region containing multiple CCAC motifs was recognized by ABI4 in electrophoretic mobility shift assays, and PTR2 expression was repressed by 67% in ABI4 overexpression lines compared with the wild type, suggesting that PTR2 is an immediate downstream target of ABI4. Taken together, the results suggest that ABI4-dependent temporal regulation of PTR2 expression may influence water status during seed germination to promote the post-germinative growth of imbibed seeds.
Collapse
Affiliation(s)
- Myoung-Goo Choi
- Department of Biological Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea
- National Institute of Crop Science, Rural Development Administration, Wanju, 55365, Republic of Korea
| | - Eui Joong Kim
- Department of Biological Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Ji-Young Song
- Department of Biological Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Sang-Bong Choi
- Division of Bioscience and Bioinformatics, Myongji University, Yongin, 17058, Gyunggi-do, Republic of Korea
| | - Seong-Woo Cho
- Department of Crop Science and Biotechnology, Chonbuk National University, Jeonju, 54896, Republic of Korea
| | - Chul Soo Park
- Department of Crop Science and Biotechnology, Chonbuk National University, Jeonju, 54896, Republic of Korea
| | - Chon-Sik Kang
- National Institute of Crop Science, Rural Development Administration, Wanju, 55365, Republic of Korea.
| | - Youn-Il Park
- Department of Biological Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
42
|
Li QF, Zhou Y, Xiong M, Ren XY, Han L, Wang JD, Zhang CQ, Fan XL, Liu QQ. Gibberellin recovers seed germination in rice with impaired brassinosteroid signalling. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 293:110435. [PMID: 32081273 DOI: 10.1016/j.plantsci.2020.110435] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 01/26/2020] [Accepted: 02/01/2020] [Indexed: 05/25/2023]
Abstract
Seed germination is essential for ensuring grain yield and quality. Germination rate, uniformity, and post-germination growth all contribute to cultivation. Although the phytohormones gibberellin (GA) and brassinosteroid (BR) are known to regulate germination, the underlying mechanism of their crosstalk in co-regulating rice seed germination remains unclear. In this study, the isobaric tags for relative and absolute quantitation (iTRAQ) proteomic approach was employed to identify target proteins responsive to GA during recovery of germination in BR-deficient and BR-insensitive rice. A total of 42 differentially abundant proteins were identified in both BR-deficient and BR-insensitive plants, and most were altered consistently in the two groups. Gene Ontology (GO) analysis revealed enrichment in proteins with binding and catalytic activity. A potential protein-protein interaction network was constructed using STRING analysis, and five Late Embryogenesis Abundant (LEA) family members were markedly down-regulated at both mRNA transcript and protein levels. These LEA genes were specifically expressed in rice seeds, especially during the latter stages of seed development. Mutation of LEA33 affected rice grain size and seed germination, possibly by reducing BR accumulation and enhancing GA biosynthesis. The findings improve our knowledge of the mechanisms by which GA and BR coordinate seed germination.
Collapse
Affiliation(s)
- Qian-Feng Li
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, 225009, China; Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China.
| | - Yu Zhou
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, 225009, China
| | - Min Xiong
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, 225009, China
| | - Xin-Yu Ren
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, 225009, China
| | - Li Han
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, 225009, China
| | - Jin-Dong Wang
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, 225009, China
| | - Chang-Quan Zhang
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, 225009, China; Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Xiao-Lei Fan
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, 225009, China; Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Qiao-Quan Liu
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, 225009, China; Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
43
|
Gören-Sağlam N, Harrison E, Breeze E, Öz G, Buchanan-Wollaston V. Analysis of the impact of indole-3-acetic acid (IAA) on gene expression during leaf senescence in Arabidopsis thaliana. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2020; 26:733-745. [PMID: 32255936 PMCID: PMC7113346 DOI: 10.1007/s12298-019-00752-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 11/25/2019] [Accepted: 12/23/2019] [Indexed: 06/11/2023]
Abstract
Leaf senescence is an important developmental process for the plant life cycle. It is controlled by endogenous and environmental factors and can be positively or negatively affected by plant growth regulators. It is characterised by major and significant changes in the patterns of gene expression. Auxin, especially indole-3-acetic acid (IAA), is a plant growth hormone that affects plant growth and development. The effect of IAA on leaf senescence is still unclear. In this study, we performed microarray analysis to investigate the role of IAA on gene expression during senescence in Arabidopsis thaliana. We sprayed IAA on plants at 3 different time points (27, 31 or 35 days after sowing). Following spraying, PSII activity of the eighth leaf was evaluated daily by measurement of chlorophyll fluorescence parameters. Our results show that PSII activity decreased following IAA application and the IAA treatment triggered different gene expression responses in leaves of different ages.
Collapse
Affiliation(s)
- Nihal Gören-Sağlam
- Division of Botany, Biology Department, Faculty of Science, Istanbul University, Istanbul, Turkey
| | | | - Emily Breeze
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL UK
| | - Gül Öz
- Division of Botany, Biology Department, Faculty of Science, Istanbul University, Istanbul, Turkey
| | | |
Collapse
|
44
|
Khan IU, Ali A, Khan HA, Baek D, Park J, Lim CJ, Zareen S, Jan M, Lee SY, Pardo JM, Kim WY, Yun DJ. PWR/HDA9/ABI4 Complex Epigenetically Regulates ABA Dependent Drought Stress Tolerance in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2020; 11:623. [PMID: 32528497 PMCID: PMC7266079 DOI: 10.3389/fpls.2020.00623] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/22/2020] [Indexed: 05/18/2023]
Abstract
Drought stress adversely affects plant growth and development and significantly reduces crop productivity and yields. The phytohormone abscisic acid (ABA) rapidly accumulates in response to drought stress and mediates the expression of stress-responsive genes that help the plant to survive dehydration. The protein Powerdress (PWR), which interacts with Histone Deacetylase 9 (HDA9), has been identified as a critical component regulating plant growth and development, flowering time, floral determinacy, and leaf senescence. However, the role and function of PWR and HDA9 in abiotic stress response had remained elusive. Here we report that a complex of PWR and HDA9 interacts with ABI4 and epigenetically regulates drought signaling in plants. T-DNA insertion mutants of PWR and HDA9 are insensitive to ABA and hypersensitive to dehydration. Furthermore, the expression of ABA-responsive genes (RD29A, RD29B, and COR15A) is also downregulated in pwr and hda9 mutants. Yeast two-hybrid assays showed that PWR and HDA9 interact with ABI4. Transcript levels of genes that are normally repressed by ABI4, such as CYP707A1, AOX1a and ACS4, are increased in pwr. More importantly, during dehydration stress, PWR and HDA9 regulate the acetylation status of the CYP707A1, which encodes a major enzyme of ABA catabolism. Taken together, our results indicate that PWR, in association with HDA9 and ABI4, regulates the chromatin modification of genes responsible for regulation of both the ABA-signaling and ABA-catabolism pathways in response to ABA and drought stress.
Collapse
Affiliation(s)
- Irfan Ullah Khan
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, South Korea
| | - Akhtar Ali
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, South Korea
| | - Haris Ali Khan
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, South Korea
| | - Dongwon Baek
- Division of Applied Life Science, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
| | - Junghoon Park
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, South Korea
| | - Chae Jin Lim
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, South Korea
| | - Shah Zareen
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, South Korea
| | - Masood Jan
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, South Korea
| | - Sang Yeol Lee
- Division of Applied Life Science, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
| | - Jose M. Pardo
- Instituto de Bioquímica Vegetal y Fotosíntesis, cicCartuja, CSIC-Universidad de Sevilla, Seville, Spain
| | - Woe Yeon Kim
- Division of Applied Life Science, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
| | - Dae-Jin Yun
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, South Korea
- *Correspondence: Dae-Jin Yun,
| |
Collapse
|
45
|
Mukherjee A, Mazumder M, Jana J, Srivastava AK, Mondal B, De A, Ghosh S, Saha U, Bose R, Chatterjee S, Dey N, Basu D. Enhancement of ABA Sensitivity Through Conditional Expression of the ARF10 Gene in Brassica juncea Reveals Fertile Plants with Tolerance Against Alternaria brassicicola. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:1429-1447. [PMID: 31184524 DOI: 10.1094/mpmi-05-19-0132-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Concomitant increase of auxin-responsive factors ARF16 and ARF17, along with enhanced expression of ARF10 in resistant Sinapis alba compared with that in susceptible Brassica juncea upon challenge with Alternaria brassicicola, revealed that abscisic acid (ABA)-auxin crosstalk is a critical factor for resistance response. Here, we induced the ABA response through conditional expression of ARF10 in B. juncea using the A. brassicicola-inducible GH3.3 promoter. Induced ABA sensitivity caused by conditional expression of ARF10 in transgenic B. juncea resulted in tolerance against A. brassicicola and led to enhanced expression of several ABA-responsive genes without affecting the auxin biosynthetic gene expression. Compared with ABI3 and ABI4, ABI5 showed maximum upregulation in the most tolerant transgenic lines upon pathogen challenge. Moreover, elevated expression of ARF10 by different means revealed a direct correlation between ARF10 expression and the induction of ABI5 protein in B. juncea. Through in vitro DNA-protein experiments and chromosome immunoprecipitation using the ARF10 antibody, we demonstrated that ARF10 interacts with the auxin-responsive elements of the ABI5 promoter. This suggests that ARF10 may function as a modulator of ABI5 to induce ABA sensitivity and mediate the resistance response against A. brassicicola.
Collapse
Affiliation(s)
- Amrita Mukherjee
- Division of Plant Biology, Bose Institute, Centenary Campus P-1/12 C.I.T., Scheme-VIIM Kolkata, 700054, West Bengal, India
| | - Mrinmoy Mazumder
- Division of Plant Biology, Bose Institute, Centenary Campus P-1/12 C.I.T., Scheme-VIIM Kolkata, 700054, West Bengal, India
| | - Jagannath Jana
- Division of Plant Biology, Bose Institute, Centenary Campus P-1/12 C.I.T., Scheme-VIIM Kolkata, 700054, West Bengal, India
- Institut Curie, CNRS UMR 3348, Orsay, France
| | - Archana Kumari Srivastava
- Plant and Microbial biotechnology, Institute of Life Sciences (ILS), NALCO Square, Bhubaneswar, 751023, Odisha, India
| | - Banani Mondal
- Division of Plant Biology, Bose Institute, Centenary Campus P-1/12 C.I.T., Scheme-VIIM Kolkata, 700054, West Bengal, India
| | - Aishee De
- Division of Plant Biology, Bose Institute, Centenary Campus P-1/12 C.I.T., Scheme-VIIM Kolkata, 700054, West Bengal, India
| | - Swagata Ghosh
- Division of Plant Biology, Bose Institute, Centenary Campus P-1/12 C.I.T., Scheme-VIIM Kolkata, 700054, West Bengal, India
| | - Upala Saha
- Division of Plant Biology, Bose Institute, Centenary Campus P-1/12 C.I.T., Scheme-VIIM Kolkata, 700054, West Bengal, India
- Department of Botany, Sister Nivedita Government General Degree College for Girls, 20B Judge's Court Road, Hastings House, Alipore, Kolkata, 700027, West Bengal, India
| | - Rahul Bose
- Department of Genetics, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, West Bengal, India
| | - Subhrangsu Chatterjee
- Division of Plant Biology, Bose Institute, Centenary Campus P-1/12 C.I.T., Scheme-VIIM Kolkata, 700054, West Bengal, India
| | - Nrisingha Dey
- Plant and Microbial biotechnology, Institute of Life Sciences (ILS), NALCO Square, Bhubaneswar, 751023, Odisha, India
| | - Debabrata Basu
- Division of Plant Biology, Bose Institute, Centenary Campus P-1/12 C.I.T., Scheme-VIIM Kolkata, 700054, West Bengal, India
| |
Collapse
|
46
|
Yi J, Zhao D, Chu J, Yan J, Liu J, Wu M, Cheng J, Jiang H, Zeng Y, Liu D. AtDPG1 is involved in the salt stress response of Arabidopsis seedling through ABI4. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 287:110180. [PMID: 31481194 DOI: 10.1016/j.plantsci.2019.110180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 06/20/2019] [Accepted: 06/25/2019] [Indexed: 05/08/2023]
Abstract
Although the genes controlling chloroplast development play important roles in plant responses to environmental stresses, the molecular mechanisms remain largely unclear. In this study, an Arabidopsis mutant dpg1 (delayed pale-greening1) with a chloroplast development defect was studied. By using quantitative RT-PCR and histochemical GUS assays, we demonstrated that AtDPG1 was mainly expressed in the green tissues of Arabidopsis seedlings and could be induced by salt stress. Phenotypic analysis showed that mutation in AtDPG1 lead to an enhanced sensitivity to salt stress in Arabidopsis seedlings. Further studies demonstrated that disruption of the AtDPG1 in Arabidopsis increases its sensitivity to salt stress in an ABA-dependent manner. Moreover, expression levels of various stress-responsive and ABA signal-related genes were remarkably altered in the dpg1 plants under NaCl treatment. Notably, the transcript levels of ABI4 in dpg1 mutant increased more significantly than that in wild type plants under salt conditions. The seedlings of dpg1/abi4 double mutant exhibited stronger resistance to salt stress after salt treatment compared with the dpg1 single mutant, suggesting that the salt-hypersensitive phenotype of dpg1 seedlings could be rescued via loss of ABI4 function. These results reveal that AtDPG1 is involved in the salt stress response of Arabidopsis seedling through ABI4.
Collapse
Affiliation(s)
- Jian Yi
- College of Agronomy/Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Dongming Zhao
- College of Agronomy/Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Jinfang Chu
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jijun Yan
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jinsong Liu
- College of Agronomy/Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Meijia Wu
- College of Agronomy/Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Jianfeng Cheng
- College of Agronomy/Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Haiyan Jiang
- College of Agronomy/Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Yongjun Zeng
- College of Agronomy/Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Dong Liu
- College of Agronomy/Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
47
|
Sánchez-Vicente I, Fernández-Espinosa MG, Lorenzo O. Nitric oxide molecular targets: reprogramming plant development upon stress. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4441-4460. [PMID: 31327004 PMCID: PMC6736187 DOI: 10.1093/jxb/erz339] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 07/18/2019] [Indexed: 05/09/2023]
Abstract
Plants are sessile organisms that need to complete their life cycle by the integration of different abiotic and biotic environmental signals, tailoring developmental cues and defense concomitantly. Commonly, stress responses are detrimental to plant growth and, despite the fact that intensive efforts have been made to understand both plant development and defense separately, most of the molecular basis of this trade-off remains elusive. To cope with such a diverse range of processes, plants have developed several strategies including the precise balance of key plant growth and stress regulators [i.e. phytohormones, reactive nitrogen species (RNS), and reactive oxygen species (ROS)]. Among RNS, nitric oxide (NO) is a ubiquitous gasotransmitter involved in redox homeostasis that regulates specific checkpoints to control the switch between development and stress, mainly by post-translational protein modifications comprising S-nitrosation of cysteine residues and metals, and nitration of tyrosine residues. In this review, we have sought to compile those known NO molecular targets able to balance the crossroads between plant development and stress, with special emphasis on the metabolism, perception, and signaling of the phytohormones abscisic acid and salicylic acid during abiotic and biotic stress responses.
Collapse
Affiliation(s)
- Inmaculada Sánchez-Vicente
- Departamento de Botánica y Fisiología Vegetal, Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), Facultad de Biología, Universidad de Salamanca, C/ Río Duero 12, 37185 Salamanca, Spain
| | - María Guadalupe Fernández-Espinosa
- Departamento de Botánica y Fisiología Vegetal, Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), Facultad de Biología, Universidad de Salamanca, C/ Río Duero 12, 37185 Salamanca, Spain
| | - Oscar Lorenzo
- Departamento de Botánica y Fisiología Vegetal, Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), Facultad de Biología, Universidad de Salamanca, C/ Río Duero 12, 37185 Salamanca, Spain
- Correspondence:
| |
Collapse
|
48
|
Hu Y, Han X, Yang M, Zhang M, Pan J, Yu D. The Transcription Factor INDUCER OF CBF EXPRESSION1 Interacts with ABSCISIC ACID INSENSITIVE5 and DELLA Proteins to Fine-Tune Abscisic Acid Signaling during Seed Germination in Arabidopsis. THE PLANT CELL 2019; 31:1520-1538. [PMID: 31123050 PMCID: PMC6635857 DOI: 10.1105/tpc.18.00825] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 04/19/2019] [Accepted: 05/06/2019] [Indexed: 05/04/2023]
Abstract
ABSCISIC ACID INSENSITIVE5 (ABI5) is a crucial regulator of abscisic acid (ABA) signaling pathways involved in repressing seed germination and postgerminative growth in Arabidopsis (Arabidopsis thaliana). ABI5 is precisely modulated at the posttranslational level; however, the transcriptional regulatory mechanisms underlying ABI5 and its interacting transcription factors remain largely unknown. Here, we found that INDUCER OF CBF EXPRESSION1 (ICE1) physically associates with ABI5. ICE1 negatively regulates ABA responses during seed germination and directly suppresses ABA-responsive LATE EMBRYOGENESIS ABUNDANT6 (EM6) and EM1 expression. Genetic analysis demonstrated that the ABA-hypersensitive phenotype of the ice1 mutant requires ABI5. ICE1 interferes with the transcriptional activity of ABI5 to mediate downstream regulons. Importantly, ICE1 also interacts with DELLA proteins, which stimulate ABI5 during ABA signaling. Disruption of ICE1 partially restored the ABA-hyposensitive phenotype of the della mutant, gai-t6 rga-t2 rgl1-1 rgl2-1, indicating that ICE1 functions antagonistically with DELLA in ABA signaling. Consistently, DELLA proteins repress ICE1's transcriptional function and the antagonistic effect of ICE1 on ABI5. Collectively, our study demonstrates that ICE1 antagonizes ABI5 and DELLA activity to maintain the appropriate level of ABA signaling during seed germination, providing a mechanistic understanding of how ABA signaling is fine-tuned by a transcriptional complex involving ABI5 and its interacting partners.
Collapse
Affiliation(s)
- Yanru Hu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Xiao Han
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Milian Yang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Minghui Zhang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinjing Pan
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Diqiu Yu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| |
Collapse
|
49
|
Ju L, Jing Y, Shi P, Liu J, Chen J, Yan J, Chu J, Chen KM, Sun J. JAZ proteins modulate seed germination through interaction with ABI5 in bread wheat and Arabidopsis. THE NEW PHYTOLOGIST 2019; 223:246-260. [PMID: 30802963 DOI: 10.1111/nph.15757] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 02/18/2019] [Indexed: 05/21/2023]
Abstract
Appropriate regulation of crop seed germination is of significance for agriculture production. In this study, we show that TaJAZ1, most closely related to Arabidopsis JAZ3, negatively modulates abscisic acid (ABA)-inhibited seed germination and ABA-responsive gene expression in bread wheat. Biochemical interaction assays demonstrate that the C-terminal part containing the Jas domain of TaJAZ1 physically interacts with TaABI5. Similarly, Arabidopsis jasmonate-ZIM domain (JAZ) proteins also negatively modulate ABA responses. Further we find that a subset of JAZ proteins could interact with ABI5 using the luciferase complementation imaging assays. Choosing JAZ3 as a representative, we demonstrate that JAZ3 interacts with ABI5 in vivo and represses the transcriptional activation activity of ABI5. ABA application could abolish the enrichment of JAZ proteins in the ABA-responsive gene promoter. Furthermore, we find that ABA application could induce the expression of jasmonate (JA) biosynthetic genes and then increase the JA concentrations partially dependent on the function of ABI5, consequently leading to the degradation of JAZ proteins. This study sheds new light on the crosstalk between JA and ABA in modulating seed germination in bread wheat and Arabidopsis.
Collapse
Affiliation(s)
- Lan Ju
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yexing Jing
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Pengtao Shi
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jie Liu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jiansheng Chen
- State Key Laboratory of Crop Biology/Group of Quality Wheat Breeding in Agronomy, Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Jijun Yan
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jinfang Chu
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Kun-Ming Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jiaqiang Sun
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
50
|
Rigoulot SB, Petzold HE, Williams SP, Brunner AM, Beers EP. Populus trichocarpa clade A PP2C protein phosphatases: their stress-induced expression patterns, interactions in core abscisic acid signaling, and potential for regulation of growth and development. PLANT MOLECULAR BIOLOGY 2019; 100:303-317. [PMID: 30945147 DOI: 10.1007/s11103-019-00861-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 03/26/2019] [Indexed: 05/26/2023]
Abstract
Overexpression of the poplar PP2C protein phosphatase gene PtrHAB2 resulted in increased tree height and altered leaf morphology and phyllotaxy, implicating PP2C phosphatases as growth regulators functioning under favorable conditions. We identified and studied Populus trichocarpa genes, PtrHAB1 through PtrHAB15, belonging to the clade A PP2C family of protein phosphatases known to regulate abscisic acid (ABA) signaling. PtrHAB1 through PtrHAB3 and PtrHAB12 through PtrHAB15 were the most highly expressed genes under non-stress conditions. The poplar PP2C genes were differentially regulated by drought treatments. Expression of PtrHAB1 through PtrHAB3 was unchanged or downregulated in response to drought, while all other PtrHAB genes were weakly to strongly upregulated in response to drought stress treatments. Yeast two-hybrid assays involving seven ABA receptor proteins (PtrRCAR) against 12 PtrHAB proteins detected 51 interactions involving eight PP2Cs and all PtrRCAR proteins with 22 interactions requiring the addition of ABA. PtrHAB2, PtrHAB12, PtrHAB13 and PtrHAB14 also interacted with the sucrose non-fermenting related kinase 2 proteins PtrSnRK2.10 and PtrSnRK2.11, supporting conservation of a SnRK2 signaling cascade regulated by PP2C in poplar. Additionally, PtrHAB2, PtrHAB12, PtrHAB13 and PtrHAB14 interacted with the mitogen-activated protein kinase protein PtrMPK7. Due to its interactions with PtrSnRK2 and PtrMPK7 proteins, and its reduced expression during drought stress, PtrHAB2 was overexpressed in poplar to test its potential as a growth regulator under non-stress conditions. 35S::PtrHAB2 transgenics exhibited increased growth rate for a majority of transgenic events and alterations in leaf phyllotaxy and morphology. These results indicate that PP2Cs have additional roles which extend beyond canonical ABA signaling, possibly coordinating plant growth and development in response to environmental conditions.
Collapse
Affiliation(s)
- Stephen B Rigoulot
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
| | - H Earl Petzold
- Department of Forest Resources and Environmental Conservation, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Sarah P Williams
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, 24061, USA
- Department of Biology, College of William and Mary, Williamsburg, VA, 23187, USA
| | - Amy M Brunner
- Department of Forest Resources and Environmental Conservation, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Eric P Beers
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, 24061, USA.
| |
Collapse
|