1
|
Lao TD, Nguyen NH, Le TAH, Nguyen PDT. Insights into Sucrose Metabolism and Its Ethylene-Dependent Regulation in Cucumis melo L. Mol Biotechnol 2025; 67:27-35. [PMID: 38102344 DOI: 10.1007/s12033-023-00987-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/05/2023] [Indexed: 12/17/2023]
Abstract
The melon (Cucumis melo L.), a fruit crop of significant economic importance, is prized for its sweet and succulent fruits. Among variations of soluble sugars, sucrose, a disaccharide composed of glucose and fructose, is a key carbohydrate present in melon fruits. The sucrose content also determines the quality and value of melon fruits. However, the accumulation of sucrose is a complex process involving the coordinated actions of multiple enzymes and pathways. In melon species, there are two types of fruit ripening modes including climacteric and non-climacteric. Due to this biological characteristic, melon is emerging as a good model for studying the ripening process. Ethylene is a well-known phytohormone regulating the ripening of climacteric fruits. Recently, a few studies have elucidated a primary ethylene-dependent signaling pathway of sucrose accumulation in melon fruits. This review aims to provide a careful overview of the sucrose biosynthesis pathways in melon. It is essential to understand the molecular mechanisms of sucrose metabolism as well as its regulation mode. The information will be useful for developing molecular marker-assisted breeding as well as genetic engineering strategies aiming to improve the sucrose content and quality of melon fruits. In addition, even though limited, the impacts of genetic background and environmental factors on sucrose accumulation in melon fruits are also discussed. These are useful for practical applications in melon cultivation and quality management.
Collapse
Affiliation(s)
- Thuan Duc Lao
- Faculty of Biotechnology, Ho Chi Minh City Open University, Ho Chi Minh City, Vietnam
| | - Nguyen Hoai Nguyen
- Faculty of Biotechnology, Ho Chi Minh City Open University, Ho Chi Minh City, Vietnam
| | - Thuy Ai Huyen Le
- Faculty of Biotechnology, Ho Chi Minh City Open University, Ho Chi Minh City, Vietnam
| | | |
Collapse
|
2
|
Cheng J, Wen S, Li K, Zhou Y, Zhu M, Neuhaus HE, Bie Z. The hexose transporters CsHT3 and CsHT16 regulate postphloem transport and fruit development in cucumber. PLANT PHYSIOLOGY 2024:kiae597. [PMID: 39679528 DOI: 10.1093/plphys/kiae597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 10/06/2024] [Indexed: 12/17/2024]
Abstract
Hexoses are essential for plant growth and fruit development. However, the precise roles of hexose/H+ symporters in postphloem sugar transport and cellular sugar homeostasis in rapidly growing fruits remain elusive. To elucidate the functions of hexose/H+ symporters in cucumber (Cucumis sativus L.) fruits, we conducted comprehensive analyses of their tissue-specific expression, localization, transport characteristics, and physiological functions. Our results demonstrate that CsHT3 (C. sativus hexose transporter), CsHT12, and CsHT16 are the primary hexose/H+ symporters expressed in cucumber fruits. CsHT3 and CsHT16 are localized in the sieve element-companion cell during the ovary and early fruit development stages. As the fruit develops and expands, the expression of both symporters shifts to phloem parenchyma cells. The CsHT16 knockout mutant produces shorter fruits with a larger circumference, likely due to impaired sugar and phytohormone homeostasis. Concurrent reduction of CsHT3, CsHT12, and CsHT16 expression leads to decreased fruit size. Conversely, CsHT3 overexpression results in increased fruit size and higher fruit sugar levels. These findings suggest that CsHT16 plays an important role in maintaining sugar homeostasis, which shapes the fruit, while CsHT3, CsHT12, and CsHT16 collectively regulate the supply of carbohydrates required for cucumber fruit enlargement.
Collapse
Affiliation(s)
- Jintao Cheng
- College of Horticulture and Forestry, Huazhong Agricultural University and Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan 430070, P. R. China
| | - Suying Wen
- College of Horticulture and Forestry, Huazhong Agricultural University and Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan 430070, P. R. China
| | - Kexin Li
- College of Horticulture and Forestry, Huazhong Agricultural University and Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan 430070, P. R. China
| | - Yixuan Zhou
- College of Horticulture and Forestry, Huazhong Agricultural University and Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan 430070, P. R. China
| | - Mengtian Zhu
- College of Horticulture and Forestry, Huazhong Agricultural University and Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan 430070, P. R. China
| | - H Ekkehard Neuhaus
- Plant Physiology, University of Kaiserslautern, Erwin Schrödinger Str., D-67663 Kaiserslautern, Germany
| | - Zhilong Bie
- College of Horticulture and Forestry, Huazhong Agricultural University and Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan 430070, P. R. China
| |
Collapse
|
3
|
Nguyen PDT, Tran DT, Thieu HH, Lao TD, Le TAH, Nguyen NH. Hybridization Between the Canary Melon and a Vietnamese Non-sweet Melon Cultivar Aiming to Improve the Growth Performance and Fruit Quality in Melon (Cucumis melo L.). Mol Biotechnol 2024; 66:1673-1683. [PMID: 37402957 DOI: 10.1007/s12033-023-00806-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/22/2023] [Indexed: 07/06/2023]
Abstract
Canary melon has been widely consumed as a dessert fruit due to its fragrance, sweetness, and flavorful taste. However, the cultivation of this cultivar has been challenged in Vietnam because of its weak growth performance and high susceptibility to local pathogens. In this study, we aim to generate the hybrid melon lines between the Canary melon and a local non-sweet melon that are expected to produce good quality fruits as well as to show better growth performance in the local cultivation conditions. Two crossing pairs including (1) MS hybrid (♂ non-sweet melon × ♀ Canary melon) and (2) MN-S hybrid (♂ Canary melon × ♀ non-sweet melon) were carried out and two hybrid lines were subsequently obtained. Next, different phenotypic and physiological parameters such as stem length, stem diameter, 10th leaf diameter, fruit size, fruit weight, and fruit sweetness (pH, °Brix, and soluble sugar contents) were examined and compared between the parental lines (Canary melon and non-sweet melon) and the hybrid lines (MS and MN-S). The results showed that the stem length and fruit size and weight of MS and MN-S hybrids were higher than those of Canary melon. Basically, the content of sugars (sucrose, glucose, and fructose) is a primary and important factor in determining the sweetness of the melon. The pH, °Brix, sucrose and glucose contents of MS hybrid and Canary melon fruits were higher in comparison to MN-S and non-sweet melon fruits. Accordingly, the transcript levels of different sugar metabolism-related genes including SUCROSE SYNTHASE 1 (SUS1), SUS2, UDPGLC EPIMERASE 3 (UGE3), and SUCROSE-P SYNTHASE 2 (SPS2) were examined in all studied lines. In the fruits, the expression levels of these genes were found to be highest in the Canary melon, average in the MS hybrid, and relatively low in the MN-S hybrid and non-sweet melons. Taken together, the heterosis in terms of plant and fruit size was obviously observed in this crossing approach. The relatively high fruit sweetness in the MS hybrid (the mother is Canary melon) also implies that the choice of the mother for crossing is very important since it can determine the fruit quality of the offspring.
Collapse
Affiliation(s)
- Phuong Dong Tran Nguyen
- Faculty of Biotechnology, Ho Chi Minh City Open University, 35-37 Ho Hao Hon Street, District 1, Ho Chi Minh City, Vietnam.
| | - Dat Tan Tran
- Faculty of Biotechnology, Ho Chi Minh City Open University, 35-37 Ho Hao Hon Street, District 1, Ho Chi Minh City, Vietnam
| | - Hue Hong Thieu
- Faculty of Biotechnology, Ho Chi Minh City Open University, 35-37 Ho Hao Hon Street, District 1, Ho Chi Minh City, Vietnam
| | - Thuan Duc Lao
- Faculty of Biotechnology, Ho Chi Minh City Open University, 35-37 Ho Hao Hon Street, District 1, Ho Chi Minh City, Vietnam
| | - Thuy Ai Huyen Le
- Faculty of Biotechnology, Ho Chi Minh City Open University, 35-37 Ho Hao Hon Street, District 1, Ho Chi Minh City, Vietnam
| | - Nguyen Hoai Nguyen
- Faculty of Biotechnology, Ho Chi Minh City Open University, 35-37 Ho Hao Hon Street, District 1, Ho Chi Minh City, Vietnam.
| |
Collapse
|
4
|
Tang L, Wang T, Hou L, Zhang G, Deng M, Guo X, Ji Y. Comparative and phylogenetic analyses of Loranthaceae plastomes provide insights into the evolutionary trajectories of plastome degradation in hemiparasitic plants. BMC PLANT BIOLOGY 2024; 24:406. [PMID: 38750463 PMCID: PMC11097404 DOI: 10.1186/s12870-024-05094-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/02/2024] [Indexed: 05/18/2024]
Abstract
BACKGROUND The lifestyle transition from autotrophy to heterotrophy often leads to extensive degradation of plastomes in parasitic plants, while the evolutionary trajectories of plastome degradation associated with parasitism in hemiparasitic plants remain poorly understood. In this study, phylogeny-oriented comparative analyses were conducted to investigate whether obligate Loranthaceae stem-parasites experienced higher degrees of plastome degradation than closely related facultative root-parasites and to explore the potential evolutionary events that triggered the 'domino effect' in plastome degradation of hemiparasitic plants. RESULTS Through phylogeny-oriented comparative analyses, the results indicate that Loranthaceae hemiparasites have undergone varying degrees of plastome degradation as they evolved towards a heterotrophic lifestyle. Compared to closely related facultative root-parasites, all obligate stem-parasites exhibited an elevated degree plastome degradation, characterized by increased downsizing, gene loss, and pseudogenization, thereby providing empirical evidence supporting the theoretical expectation that evolution from facultative parasitism to obligate parasitism may result in a higher degree of plastome degradation in hemiparasites. Along with infra-familial divergence in Loranthaceae, several lineage-specific gene loss/pseudogenization events occurred at deep nodes, whereas further independent gene loss/pseudogenization events were observed in shallow branches. CONCLUSIONS The findings suggest that in addition to the increasing levels of nutritional reliance on host plants, cladogenesis can be considered as another pivotal evolutionary event triggering the 'domino effect' in plastome degradation of hemiparasitic plants. These findings provide new insights into the evolutionary trajectory of plastome degradation in hemiparasitic plants.
Collapse
Affiliation(s)
- Lilei Tang
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Tinglu Wang
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Luxiao Hou
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650201, China
| | - Guangfei Zhang
- School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, 650504, China
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Institute of Biodiversity, Yunnan University, Kunming, Yunnan, 650504, China
| | - Min Deng
- School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, 650504, China.
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Institute of Biodiversity, Yunnan University, Kunming, Yunnan, 650504, China.
| | - Xiaorong Guo
- School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, 650504, China.
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Institute of Biodiversity, Yunnan University, Kunming, Yunnan, 650504, China.
| | - Yunheng Ji
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| |
Collapse
|
5
|
Liu H, Wang F, Liu B, Kong F, Fang C. Significance of Raffinose Family Oligosaccharides (RFOs) metabolism in plants. ADVANCED BIOTECHNOLOGY 2024; 2:13. [PMID: 39883346 DOI: 10.1007/s44307-024-00022-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/23/2024] [Accepted: 03/10/2024] [Indexed: 01/31/2025]
Abstract
Raffinose Family Oligosaccharides (RFOs) are a kind of polysaccharide containing D-galactose, and they widely exist in higher plants. Synthesis of RFOs begins with galactinol synthase (GolS; EC 2.4.1.123) to convert myo-inositol into galactinol. The subsequent formation of raffinose and stachyose are catalyzed by raffinose synthase (RS; EC 2.4.1.82) and stachyose synthase (STS; EC 2.4.1.67) using sucrose and galactinol as substrate, respectively. The hydrolysis of RFOs is finished by α-galactosidase (α-Gal; EC 3.2.1.22) to produce sucrose and galactose. Importance of RFOs metabolism have been summarized, e.g. In RFOs translocating plants, the phloem loading and unloading of RFOs are widely reported in mediating the plant development process. Interference function of RFOs synthesis or hydrolysis enzymes caused growth defect. In addition, the metabolism of RFOs involved in the biotic or abiotic stresses was discussed in this review. Overall, this literature summarizes our current understanding of RFOs metabolism and points out knowledge gaps that need to be filled in future.
Collapse
Affiliation(s)
- Huan Liu
- School of Life Sciences, Innovative Center of Molecular Genetics and Evolution, Guangzhou University, Guangzhou, 510006, China
| | - Fan Wang
- School of Life Sciences, Innovative Center of Molecular Genetics and Evolution, Guangzhou University, Guangzhou, 510006, China
| | - Baohui Liu
- School of Life Sciences, Innovative Center of Molecular Genetics and Evolution, Guangzhou University, Guangzhou, 510006, China
| | - Fanjiang Kong
- School of Life Sciences, Innovative Center of Molecular Genetics and Evolution, Guangzhou University, Guangzhou, 510006, China.
| | - Chao Fang
- School of Life Sciences, Innovative Center of Molecular Genetics and Evolution, Guangzhou University, Guangzhou, 510006, China.
| |
Collapse
|
6
|
Stroka MA, Reis L, Souza Los KKD, Pinto CA, Gustani FM, Forney CF, Etto RM, Galvão CW, Ayub RA. The maturation profile triggers differential expression of sugar metabolism genes in melon fruits. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108418. [PMID: 38346367 DOI: 10.1016/j.plaphy.2024.108418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 03/16/2024]
Abstract
Melons are commercially important crops that requires specific quality attributes for successful commercialization, including accumulation of sugars, particularly sucrose. This trait can be influenced by various factors, such as the type of ripening. Cucumis melo L. is an ideal species for studying sugar metabolism because it has both climacteric and non-climacteric cultivars. Thus, this study aimed to examine the gene expression of sucrose metabolism candidates using RT-qPCR, in conjunction with postharvest physiological analyzes and high-performance liquid chromatography-based sugar quantification, in the melon cultivars 'Gaúcho' (climacteric) and 'Eldorado' (non-climacteric). The results showed that sucrose synthase 1 played a role in the synthesis and accumulation of sucrose in both cultivars, whereas sucrose synthase 2 was more highly expressed in 'Gaúcho', contributing to lower hexose content. Invertase inhibitor 1 was more highly expressed in 'Eldorado' and may be involved in sugar-induced maturation. Neutral α-galactosidase had distinct functions, playing a role in substrate synthesis for the growth of young 'Eldorado' fruits, whereas in mature 'Gaúcho' fruits it participated in the metabolism of raffinose family oligosaccharides for sucrose accumulation. The expression of trehalose-6-phosphate synthase genes indicated a greater involvement of these enzymes in the sugar regulation in 'Gaúcho' melons. These findings shed light on the intraspecific differences related to fruit quality attributes in different types of maturation and contribute to a deeper understanding of the underlying molecular mechanisms involved in the metabolism of sugars in melons, which can inform breeding programs aimed at improving fruit quality attributes in this crop.
Collapse
Affiliation(s)
- Marília Aparecida Stroka
- State University of Ponta Grossa, Department of Plant Science and Phytosanitary, Ponta Grossa, Paraná, 84.030-900, Brazil.
| | - Letícia Reis
- State University of Ponta Grossa, Department of Plant Science and Phytosanitary, Ponta Grossa, Paraná, 84.030-900, Brazil.
| | - Kamila Karoline de Souza Los
- State University of Ponta Grossa, Department of Plant Science and Phytosanitary, Ponta Grossa, Paraná, 84.030-900, Brazil.
| | - Calistene Aparecida Pinto
- State University of Ponta Grossa, Department of Plant Science and Phytosanitary, Ponta Grossa, Paraná, 84.030-900, Brazil.
| | - Flávia Maria Gustani
- State University of Ponta Grossa, Department of Plant Science and Phytosanitary, Ponta Grossa, Paraná, 84.030-900, Brazil.
| | - Charles F Forney
- Agriculture and Agri-Food Canada (AAFC), Kentville, Nova Scotia, Canada, B4N 1J5.
| | - Rafael Mazer Etto
- State University of de Ponta Grossa, Department of Chemistry, Ponta Grossa, Paraná, 84.030-900, Brazil.
| | - Carolina Weigert Galvão
- State University of Ponta Grossa, Department of Molecular Biology, Structural and Genetics, Ponta Grossa, Paraná, 84.030-900, Brazil.
| | - Ricardo Antonio Ayub
- State University of Ponta Grossa, Department of Plant Science and Phytosanitary, Paraná, 84.030-900, Brazil.
| |
Collapse
|
7
|
Ren Y, Liao S, Xu Y. An update on sugar allocation and accumulation in fruits. PLANT PHYSIOLOGY 2023; 193:888-899. [PMID: 37224524 DOI: 10.1093/plphys/kiad294] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 04/26/2023] [Accepted: 05/04/2023] [Indexed: 05/26/2023]
Abstract
Fruit sweetness is determined by the amount and composition of sugars in the edible flesh. The accumulation of sugar is a highly orchestrated process that requires coordination of numerous metabolic enzymes and sugar transporters. This coordination enables partitioning and long-distance translocation of photoassimilates from source tissues to sink organs. In fruit crops, sugars ultimately accumulate in the sink fruit. Whereas tremendous progress has been achieved in understanding the function of individual genes associated with sugar metabolism and sugar transport in non-fruit crops, there is less known about the sugar transporters and metabolic enzymes responsible for sugar accumulation in fruit crop species. This review identifies knowledge gaps and can serve as a foundation for future studies, with comprehensive updates focusing on (1) the physiological roles of the metabolic enzymes and sugar transporters responsible for sugar allocation and partitioning and that contribute to sugar accumulation in fruit crops; and (2) the molecular mechanisms underlying the transcriptional and posttranslational regulation of sugar transport and metabolism. We also provide insights into the challenges and future directions of studies on sugar transporters and metabolic enzymes and name several promising genes that should be targeted with gene editing in the pursuit of optimized sugar allocation and partitioning to enhance sugar accumulation in fruits.
Collapse
Affiliation(s)
- Yi Ren
- National Watermelon and Melon Improvement Center, Beijing Academy of Agricultural and Forestry Sciences (BAAFS), State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| | - Shengjin Liao
- National Watermelon and Melon Improvement Center, Beijing Academy of Agricultural and Forestry Sciences (BAAFS), State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| | - Yong Xu
- National Watermelon and Melon Improvement Center, Beijing Academy of Agricultural and Forestry Sciences (BAAFS), State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| |
Collapse
|
8
|
Yan H, Wang K, Wang M, Feng L, Zhang H, Wei X. QTL Mapping and Genome-Wide Association Study Reveal Genetic Loci and Candidate Genes Related to Soluble Solids Content in Melon. Curr Issues Mol Biol 2023; 45:7110-7129. [PMID: 37754234 PMCID: PMC10530127 DOI: 10.3390/cimb45090450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/21/2023] [Accepted: 08/25/2023] [Indexed: 09/28/2023] Open
Abstract
Melon (Cucumis melo L.) is an economically important Cucurbitaceae crop grown around the globe. The sweetness of melon is a significant factor in fruit quality and consumer appeal, and the soluble solids content (SSC) is a key index of melon sweetness. In this study, 146 recombinant inbred lines (RILs) derived from two oriental melon materials with different levels of sweetness containing 1427 bin markers, and 213 melon accessions containing 1,681,775 single nucleotide polymorphism (SNP) markers were used to identify genomic regions influencing SSC. Linkage mapping detected 10 quantitative trait loci (QTLs) distributed on six chromosomes, seven of which were overlapped with the reported QTLs. A total of 211 significant SNPs were identified by genome-wide association study (GWAS), 138 of which overlapped with the reported QTLs. Two new stable, co-localized regions on chromosome 3 were identified by QTL mapping and GWAS across multiple environments, which explained large phenotypic variance. Five candidate genes related to SSC were identified by QTL mapping, GWAS, and qRT-PCR, two of which were involved in hydrolysis of raffinose and sucrose located in the new stable loci. The other three candidate genes were involved in raffinose synthesis, sugar transport, and production of substrate for sugar synthesis. The genomic regions and candidate genes will be helpful for molecular breeding programs and elucidating the mechanisms of sugar accumulation.
Collapse
|
9
|
Zhou Y, Li K, Wen S, Yang D, Gao J, Wang Z, Zhu P, Bie Z, Cheng J. Phloem unloading in cultivated melon fruits follows an apoplasmic pathway during enlargement and ripening. HORTICULTURE RESEARCH 2023; 10:uhad123. [PMID: 37554344 PMCID: PMC10405131 DOI: 10.1093/hr/uhad123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/31/2023] [Indexed: 08/10/2023]
Abstract
Melon (Cucumis melo L.) has a long history of cultivation worldwide. During cultivation, domestication, and selection breeding, the sugar content of mature melon fruits has been significantly increased. Compared with unsweet melon and wild melon, rapid sucrose accumulation can occur in the middle and late stages of sweet melon fruit development. The phloem unloading pathway during the evolution and development of melon fruit has not been identified and analyzed. In this study, the phloem unloading pathway and the function of related sugar transporters in cultivated and wild melon fruits were analyzed by CFDA [5(6)-carbofluorescein diacetate] and esculin tracing, cytological pathway observation, qRT-PCR, and gene function analysis, etc. Results show that the phloem unloading pathway of wild melon fruit is largely symplastic, whereas the phloem unloading pathway of cultivated melon fruit shifts from symplastic to apoplasmic during development. According to a fruit grafting experiment, the fruit sink accumulates sugars independently. Correlation analysis showed that the expression amounts of several sucrose transporter genes were positively correlated with the sucrose content of melon fruit. Furthermore, CmSWEET10 was proved to be a sucrose transporter located on the plasma membrane of the phloem and highly expressed in the premature stage of sweet melon fruits, which means it may be involved in phloem apoplast unloading and sucrose accumulation in sweet melon fruits. Finally, we summarize a functional model of related enzymes and sugar transporters involved in the apoplast unloading of sweet melon fruits during enlargement and sucrose accumulation.
Collapse
Affiliation(s)
- Yixuan Zhou
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Kexin Li
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Suying Wen
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Dong Yang
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Jun Gao
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Ziwei Wang
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Peilu Zhu
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Zhilong Bie
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Jintao Cheng
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| |
Collapse
|
10
|
Gao G, Yang F, Wang C, Duan X, Li M, Ma Y, Wang F, Qi H. The transcription factor CmERFI-2 represses CmMYB44 expression to increase sucrose levels in oriental melon fruit. PLANT PHYSIOLOGY 2023; 192:1378-1395. [PMID: 36938625 PMCID: PMC10231561 DOI: 10.1093/plphys/kiad155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 06/01/2023]
Abstract
Soluble sugar accumulation in fruit ripening determines fleshy fruit quality. However, the molecular mechanism for this process is not yet understood. Here, we showed a transcriptional repressor, CmMYB44 regulates sucrose accumulation and ethylene synthesis in oriental melon (Cucumis. melo var. makuwa Makino) fruit. Overexpressing CmMYB44 suppressed sucrose accumulation and ethylene production. Furthermore, CmMYB44 repressed the transcriptional activation of CmSPS1 (sucrose phosphate synthase 1) and CmACO1 (ACC oxidase 1), two key genes in sucrose and ethylene accumulation, respectively. During the later stages of fruit ripening, the repressive effect of CmMYB44 on CmSPS1 and CmACO1 could be released by overexpressing CmERFI-2 (ethylene response factor I-2) and exogenous ethylene in "HS" fruit (high sucrose accumulation fruit). CmERFI-2 acted upstream of CmMYB44 as a repressor by directly binding the CmMYB44 promoter region, indirectly stimulating the expression level of CmSPS1 and CmACO1. Taken together, we provided a molecular regulatory pathway mediated by CmMYB44, which determines the degree of sucrose and ethylene accumulation in oriental melon fruit and sheds light on transcriptional responses triggered by ethylene sensing that enable the process of fruit ripening.
Collapse
Affiliation(s)
- Ge Gao
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture of Education of Ministry and Liaoning Province/National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang 110866, China
| | - Fan Yang
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture of Education of Ministry and Liaoning Province/National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang 110866, China
| | - Cheng Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture of Education of Ministry and Liaoning Province/National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang 110866, China
| | - Xiaoyu Duan
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture of Education of Ministry and Liaoning Province/National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang 110866, China
| | - Meng Li
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture of Education of Ministry and Liaoning Province/National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang 110866, China
| | - Yue Ma
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Feng Wang
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Hongyan Qi
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture of Education of Ministry and Liaoning Province/National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang 110866, China
| |
Collapse
|
11
|
Abiala M, Sadhukhan A, Sahoo L. Isolation and Characterization of Stress-Tolerant Priestia Species from Cowpea Rhizosphere Under Drought and Nutrient Deficit Conditions. Curr Microbiol 2023; 80:140. [PMID: 36928438 DOI: 10.1007/s00284-023-03246-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 02/25/2023] [Indexed: 03/18/2023]
Abstract
This study aimed to isolate stress-tolerant phytobeneficial bacteria as bio-inoculants for cowpea's sustainable growth under drought and nutrient deficiency conditions. However, the application successful of phytobeneficial bacteria is subject to effective in vitro screening under different physiological conditions. We isolated several Priestia species from cowpea rhizosphere that tolerates polyethylene glycol (PEG6000)-induced drought and nutrient deficiency. Of them, C8 (Priestia filamentosa; basonym: Bacillus filamentosus), followed by C29 (Priestia aryabhattai; basonym: Bacillus aryabhattai), tolerated up to 20% PEG in a low-nutrient medium. In the presence of PEG, Priestia filamentosa and Bacillus aryabhattai exhibited optimal growth in different temperatures and pH but failed to survive at extreme temperatures of 45 °C and pH 11. Priestia filamentosa preferred L-proline and L-glutamate, while L-tryptophan and L-tyrosine were the least utilized. Interestingly, Priestia filamentosa and Bacillus aryabhattai used more complex nitrogen sources, peptone, and yeast extract, than inorganic nitrogen for growth. Most importantly, under drought and nutrient deficiency, Priestia filamentosa exhibited multiple plant growth-promoting traits and more amylase and protease production than C29. Our results indicate that Priestia filamentosa is a potential bacterium to enhance the growth of cowpea plants under stressful conditions.
Collapse
Affiliation(s)
- Moses Abiala
- Department of Biological Sciences, College of Basic and Applied Sciences, Mountain Top University, Prayer City, Ogun State, Nigeria.
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati, Assam, India.
| | - Ayan Sadhukhan
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| | - Lingaraj Sahoo
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati, Assam, India
| |
Collapse
|
12
|
Wang C, Zhou J, Zhang S, Gao X, Yang Y, Hou J, Chen G, Tang X, Wu J, Yuan L. Combined Metabolome and Transcriptome Analysis Elucidates Sugar Accumulation in Wucai ( Brassica campestris L.). Int J Mol Sci 2023; 24:ijms24054816. [PMID: 36902245 PMCID: PMC10003340 DOI: 10.3390/ijms24054816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/18/2023] [Accepted: 02/23/2023] [Indexed: 03/06/2023] Open
Abstract
Wucai (Brassica campestris L.) is a leafy vegetable that originated in China, its soluble sugars accumulate significantly to improve taste quality during maturation, and it is widely accepted by consumers. In this study, we investigated the soluble sugar content at different developmental stages. Two periods including 34 days after planting (DAP) and 46 DAP, which represent the period prior to and after sugar accumulation, respectively, were selected for metabolomic and transcriptomic profiling. Differentially accumulated metabolites (DAMs) were mainly enriched in the pentose phosphate pathway, galactose metabolism, glycolysis/gluconeogenesis, starch and sucrose metabolism, and fructose and mannose metabolism. By orthogonal projection to latent structures-discriminant s-plot (OPLS-DA S-plot) and MetaboAnalyst analyses, D-galactose and β-D-glucose were identified as the major components of sugar accumulation in wucai. Combined with the transcriptome, the pathway of sugar accumulation and the interact network between 26 DEGs and the two sugars were mapped. CWINV4, CEL1, BGLU16, and BraA03g023380.3C had positive correlations with the accumulation of sugar accumulation in wucai. The lower expression of BraA06g003260.3C, BraA08g002960.3C, BraA05g019040.3C, and BraA05g027230.3C promoted sugar accumulation during the ripening of wucai. These findings provide insights into the mechanisms underlying sugar accumulation during commodity maturity, providing a basis for the breeding of sugar-rich wucai cultivars.
Collapse
Affiliation(s)
- Chenggang Wang
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei 230036, China
| | - Jiajie Zhou
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei 230036, China
| | - Shengnan Zhang
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei 230036, China
| | - Xun Gao
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei 230036, China
| | - Yitao Yang
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei 230036, China
| | - Jinfeng Hou
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei 230036, China
| | - Guohu Chen
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei 230036, China
| | - Xiaoyan Tang
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei 230036, China
| | - Jianqiang Wu
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei 230036, China
| | - Lingyun Yuan
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei 230036, China
- Correspondence: ; Tel./Fax: +86-0551-65786212
| |
Collapse
|
13
|
Oren E, Dafna A, Tzuri G, Halperin I, Isaacson T, Elkabetz M, Meir A, Saar U, Ohali S, La T, Romay C, Tadmor Y, Schaffer AA, Buckler ES, Cohen R, Burger J, Gur A. Pan-genome and multi-parental framework for high-resolution trait dissection in melon (Cucumis melo). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:1525-1542. [PMID: 36353749 PMCID: PMC10100132 DOI: 10.1111/tpj.16021] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/27/2022] [Accepted: 10/29/2022] [Indexed: 06/16/2023]
Abstract
Linking genotype with phenotype is a fundamental goal in biology and requires robust data for both. Recent advances in plant-genome sequencing have expedited comparisons among multiple-related individuals. The abundance of structural genomic within-species variation that has been discovered indicates that a single reference genome cannot represent the complete sequence diversity of a species, leading to the expansion of the pan-genome concept. For high-resolution forward genetics, this unprecedented access to genomic variation should be paralleled and integrated with phenotypic characterization of genetic diversity. We developed a multi-parental framework for trait dissection in melon (Cucumis melo), leveraging a novel pan-genome constructed for this highly variable cucurbit crop. A core subset of 25 diverse founders (MelonCore25), consisting of 24 accessions from the two widely cultivated subspecies of C. melo, encompassing 12 horticultural groups, and 1 feral accession was sequenced using a combination of short- and long-read technologies, and their genomes were assembled de novo. The construction of this melon pan-genome exposed substantial variation in genome size and structure, including detection of ~300 000 structural variants and ~9 million SNPs. A half-diallel derived set of 300 F2 populations, representing all possible MelonCore25 parental combinations, was constructed as a framework for trait dissection through integration with the pan-genome. We demonstrate the potential of this unified framework for genetic analysis of various melon traits, including rind color intensity and pattern, fruit sugar content, and resistance to fungal diseases. We anticipate that utilization of this integrated resource will enhance genetic dissection of important traits and accelerate melon breeding.
Collapse
Affiliation(s)
- Elad Oren
- Cucurbits Section, Department of Vegetable SciencesAgricultural Research Organization, Newe Ya‘ar Research CenterP.O. Box 1021Ramat Yishay3009500Israel
| | - Asaf Dafna
- Cucurbits Section, Department of Vegetable SciencesAgricultural Research Organization, Newe Ya‘ar Research CenterP.O. Box 1021Ramat Yishay3009500Israel
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of AgricultureThe Hebrew University of JerusalemRehovotIsrael
| | - Galil Tzuri
- Cucurbits Section, Department of Vegetable SciencesAgricultural Research Organization, Newe Ya‘ar Research CenterP.O. Box 1021Ramat Yishay3009500Israel
| | - Ilan Halperin
- Cucurbits Section, Department of Vegetable SciencesAgricultural Research Organization, Newe Ya‘ar Research CenterP.O. Box 1021Ramat Yishay3009500Israel
| | - Tal Isaacson
- Cucurbits Section, Department of Vegetable SciencesAgricultural Research Organization, Newe Ya‘ar Research CenterP.O. Box 1021Ramat Yishay3009500Israel
| | - Meital Elkabetz
- Cucurbits Section, Department of Vegetable SciencesAgricultural Research Organization, Newe Ya‘ar Research CenterP.O. Box 1021Ramat Yishay3009500Israel
| | - Ayala Meir
- Cucurbits Section, Department of Vegetable SciencesAgricultural Research Organization, Newe Ya‘ar Research CenterP.O. Box 1021Ramat Yishay3009500Israel
| | - Uzi Saar
- Cucurbits Section, Department of Vegetable SciencesAgricultural Research Organization, Newe Ya‘ar Research CenterP.O. Box 1021Ramat Yishay3009500Israel
| | - Shachar Ohali
- Cucurbits Section, Department of Vegetable SciencesAgricultural Research Organization, Newe Ya‘ar Research CenterP.O. Box 1021Ramat Yishay3009500Israel
| | - Thuy La
- Institute for Genomic Diversity, Cornell UniversityIthacaNew York14853USA
| | - Cinta Romay
- Institute for Genomic Diversity, Cornell UniversityIthacaNew York14853USA
| | - Yaakov Tadmor
- Cucurbits Section, Department of Vegetable SciencesAgricultural Research Organization, Newe Ya‘ar Research CenterP.O. Box 1021Ramat Yishay3009500Israel
| | - Arthur A. Schaffer
- Department of Vegetable SciencesInstitute of Plant Sciences, Agricultural Research Organization, The Volcani CenterP.O. Box 15159Rishon LeZiyyon7507101Israel
| | - Edward S. Buckler
- Institute for Genomic Diversity, Cornell UniversityIthacaNew York14853USA
- United States Department of Agriculture‐Agricultural Research ServiceRobert W. Holley Center for Agriculture and HealthIthacaNew York14853USA
| | - Roni Cohen
- Cucurbits Section, Department of Vegetable SciencesAgricultural Research Organization, Newe Ya‘ar Research CenterP.O. Box 1021Ramat Yishay3009500Israel
| | - Joseph Burger
- Cucurbits Section, Department of Vegetable SciencesAgricultural Research Organization, Newe Ya‘ar Research CenterP.O. Box 1021Ramat Yishay3009500Israel
| | - Amit Gur
- Cucurbits Section, Department of Vegetable SciencesAgricultural Research Organization, Newe Ya‘ar Research CenterP.O. Box 1021Ramat Yishay3009500Israel
| |
Collapse
|
14
|
Xue S, Wan X, Lu S, Zhong Y, Xie D. A time-course transcriptome analysis of wax gourd fruit development reveals predominant genes regulating taste and nutrition. FRONTIERS IN PLANT SCIENCE 2022; 13:971274. [PMID: 36161022 PMCID: PMC9493329 DOI: 10.3389/fpls.2022.971274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/22/2022] [Indexed: 06/16/2023]
Abstract
Wax gourd, which belongs to Cucurbitaceae, is an excellent plant resource with the concomitant function of both medicine and foodstuff. Its unique taste and rich nutrition are deeply accepted by consumers. However, the main flavor and nutrients are still unclear, which restricts the quality breeding process of wax gourd. Here, we discovered that monosaccharides, malic acid and citrulline affect the flavor and nutrition of wax gourd and clarified the dynamic accumulation process of these metabolites. To gain insights into the underlying predominant genes regulating accumulation of these metabolites, we performed a time-course transcriptome analysis using RNA-sequencing analysis and compared the expression of screened genes among twenty-four germplasms with different metabolites levels. In addition, the expression abundance among the homologous genes were also analyzed. Finally, a total of 8 genes related to sugar [AGA2 (Bhi03G001926), SUS (Bhi12G001032)], malic acid [MDH (Bhi12G001426, Bhi01G000427), PEPC (Bhi12G000721, Bhi09G002867), ME (Bhi01G002616)] and citrulline [ASS (Bhi02G000401)], respectively were determined. In summary, understanding the core genes influencing taste or nutrition will provide a theoretical basis for fruit quality improvement in wax gourd.
Collapse
Affiliation(s)
- Shudan Xue
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Xiaotong Wan
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Sen Lu
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Yujuan Zhong
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Dasen Xie
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
15
|
Song L, Meng X, Yang L, Ma Z, Zhou M, Yu C, Zhang Z, Yu W, Wu J, Lou H. Identification of key genes and enzymes contributing to nutrition conversion of Torreya grandis nuts during post-ripening process. Food Chem 2022; 384:132454. [DOI: 10.1016/j.foodchem.2022.132454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 02/10/2022] [Accepted: 02/10/2022] [Indexed: 12/29/2022]
|
16
|
Cheng H, Kong W, Tang T, Ren K, Zhang K, Wei H, Lin T. Identification of Key Gene Networks Controlling Soluble Sugar and Organic Acid Metabolism During Oriental Melon Fruit Development by Integrated Analysis of Metabolic and Transcriptomic Analyses. FRONTIERS IN PLANT SCIENCE 2022; 13:830517. [PMID: 35646021 PMCID: PMC9135470 DOI: 10.3389/fpls.2022.830517] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 04/13/2022] [Indexed: 06/15/2023]
Abstract
Oriental melon (Cucumis melo var. acidulus) is one of the most economically important fruit crops worldwide. To elucidate the molecular basis related to soluble sugar and organic acid metabolism in the fruits of two oriental melon cultivars with different sweetness, we performed integrated metabolomic and transcriptomic analyses of the fruits of 'Tianbao' (A) with high sweetness and 'Xiaocuigua' (B) with low sweetness at different ripening stages. The high accumulation of sucrose, D-glucose, D-(+)-raffinose, and the relatively lower citric acid and malic acid might contribute to the sweet taste of A. By screening the differentially expressed genes (DEGs) and correlation analysis of the DEGs and differentially accumulated metabolites, we deduced that the B cultivar might promote the conversion of glucose and fructose into intermediate compounds for downstream processes such as glycolysis. The tricarboxylic acid (TCA) cycle might also be enhanced compared to A, thus resulting in the differential accumulation of soluble sugars and organic acids, ultimately causing the taste difference between the two oriental melon cultivars. Our finding provides important information for further exploring the metabolic mechanisms of soluble sugars and organic acids in oriental melon.
Collapse
Affiliation(s)
- Hong Cheng
- Vegetable Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Weiping Kong
- Vegetable Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Taoxia Tang
- Vegetable Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Kaili Ren
- Vegetable Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Kaili Zhang
- Vegetable Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Huxia Wei
- Vegetable Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Tao Lin
- College of Horticulture, China Agricultural University, Beijing, China
| |
Collapse
|
17
|
Liao G, Li Y, Wang H, Liu Q, Zhong M, Jia D, Huang C, Xu X. Genome-wide identification and expression profiling analysis of sucrose synthase (SUS) and sucrose phosphate synthase (SPS) genes family in Actinidia chinensis and A. eriantha. BMC PLANT BIOLOGY 2022; 22:215. [PMID: 35468728 PMCID: PMC9040251 DOI: 10.1186/s12870-022-03603-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 04/18/2022] [Indexed: 05/28/2023]
Abstract
Sucrose synthase (SUS) is a common sugar-base transfer enzyme in plants, and sucrose phosphate synthase (SPS) is one of the major enzymes in higher plants that regulates sucrose synthesis. However, information of the SPS and SUS gene families in Actinidia, as well as their evolutionary and functional properties, is limited. According to the SPS and SUS proteins conserved domain of Arabidopsis thaliana, we found 6 SPS genes and 6 SUS genes from A. chinensis (cultivar: 'Hongyang'), and 3 SPS genes and 6 SUS genes from A. eriantha (cultivar: 'White'). The novel CDC50 conserved domains were discovered on AcSUS2, and all members of the gene family contain similar distinctive conserved domains. The majority of SUS and SPS proteins were hydrophilic, lipid-soluble enzymes that were expected to be found in the cytoplasm. The tertiary structure of SPS and SUS protein indicated that there were many tertiary structures in SPS, and there were windmill-type and spider-type tertiary structures in SUS. The phylogenetic tree was created using the neighbor-joining method, and members of the SPS and SUS gene families are grouped into three subgroups. Genes with comparable intron counts, conserved motifs, and phosphorylation sites were clustered together first. SPS and SUS were formed through replication among their own family members. AcSPS1, AcSPS2, AcSPS4, AcSPS5, AcSUS5, AcSUS6, AeSPS3, AeSUS3 and AeSUS4 were the important genes in regulating the synthesis and accumulation of sucrose for Actinidia during the fruit growth stages.
Collapse
Affiliation(s)
- Guanglian Liao
- College of Forestry, Jiangxi Provincial Key Laboratory of Silviculture, Jiangxi Agricultural University, 330045 Nanchang Jiangxi, P. R. China
- College of Agronomy, Jiangxi Agricultural University, Kiwifruit Institute of Jiangxi Agricultural University, 330045 Nanchang Jiangxi, P. R. China
| | - Yiqi Li
- College of Agronomy, Jiangxi Agricultural University, Kiwifruit Institute of Jiangxi Agricultural University, 330045 Nanchang Jiangxi, P. R. China
| | - Hailing Wang
- College of Agronomy, Jiangxi Agricultural University, Kiwifruit Institute of Jiangxi Agricultural University, 330045 Nanchang Jiangxi, P. R. China
| | - Qing Liu
- College of Agronomy, Jiangxi Agricultural University, Kiwifruit Institute of Jiangxi Agricultural University, 330045 Nanchang Jiangxi, P. R. China
| | - Min Zhong
- College of Agronomy, Jiangxi Agricultural University, Kiwifruit Institute of Jiangxi Agricultural University, 330045 Nanchang Jiangxi, P. R. China
| | - Dongfeng Jia
- College of Agronomy, Jiangxi Agricultural University, Kiwifruit Institute of Jiangxi Agricultural University, 330045 Nanchang Jiangxi, P. R. China
| | - Chunhui Huang
- College of Agronomy, Jiangxi Agricultural University, Kiwifruit Institute of Jiangxi Agricultural University, 330045 Nanchang Jiangxi, P. R. China
| | - Xiaobiao Xu
- College of Forestry, Jiangxi Provincial Key Laboratory of Silviculture, Jiangxi Agricultural University, 330045 Nanchang Jiangxi, P. R. China
- College of Agronomy, Jiangxi Agricultural University, Kiwifruit Institute of Jiangxi Agricultural University, 330045 Nanchang Jiangxi, P. R. China
| |
Collapse
|
18
|
Chu S, Wang S, Zhang R, Yin M, Yang X, Shi Q. Integrative analysis of transcriptomic and metabolomic profiles reveals new insights into the molecular foundation of fruit quality formation in Citrullus lanatus (Thunb.) Matsum. & Nakai. FOOD QUALITY AND SAFETY 2022. [DOI: 10.1093/fqsafe/fyac015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
In this study, an integrated transcriptome and metabolome analysis was used to explore the molecular foundation of fruit quality in two parent lines of Citrullus lanatus with distinct flesh characteristics, including ‘14-1’ (sweet, red, and soft) and ‘W600’ (bitter, light yellow, and firm), as well as the corresponding F1 population (bitter, light yellow, and firm). Numerous differentially expressed genes (DEGs) were identified in the fruit samples: 3,766 DEGs for ‘14-1’ vs. ‘W600’, 2,767 for ‘14-1’ vs. F1, and 1,178 for F1 vs. ‘W600’ at the transition stage; and 4,221 for ‘14-1’ vs. ‘W600’, 2,447 for ‘14-1’ vs. F1, and 446 for F1 vs. ‘W600’ at the maturity stage. Weighted gene co-expression network analysis (WGCNA) revealed that a gene module including 1,111 DEGs was closely associated with flesh taste and color, and another gene module including 1,575 DEGs contributed significantly to flesh texture. The metabolomic results showed that there were 447 differential metabolites (DMs) for ‘14-1’ vs. ‘W600’ fruits, 394 for ‘14-1’ vs. F1, and 298 for F1 vs. ‘W600’ at the maturity stage. Combining WGNCA and metabolomic results, several DEGs and DMs were further identified as hub players in fruit quality formation: six DEGs with four DMs for flesh sweetness; six DEGs with 13 DMs for bitterness; nine DEGs with 10 DMs for flesh color; and nine DEGs with four DMs for flesh texture. Altogether, these observations not only expand our knowledge of the molecular basis of fruit quality in watermelon, but also provide potential targets for future watermelon improvement.
Collapse
|
19
|
Lama K, Chai L, Peer R, Ma H, Yeselson Y, Schaffer AA, Flaishman MA. Extreme sugar accumulation in late fig ripening is accompanied by global changes in sugar metabolism and transporter gene expression. PHYSIOLOGIA PLANTARUM 2022; 174:e13648. [PMID: 35150009 PMCID: PMC9305157 DOI: 10.1111/ppl.13648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 01/25/2022] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
Female fig (Ficus carica L.) fruit are characterized by a major increase in volume and sugar content during the final week of development. A detailed developmental analysis of water and dry matter accumulation during these final days indicated a temporal separation between the increase in volume due to increasing water content and a subsequent sharp increase in sugar content during a few days. The results present fig as an extreme example of sugar import and accumulation, with calculated import rates that are one order of magnitude higher than those of other sugar-accumulating sweet fruit species. To shed light on the metabolic changes occurring during this period, we followed the expression pattern of 80 genes encoding sugar metabolism enzymes and sugar transporter proteins identified in fig fruit. A parallel comparison with male fig fruits, which do not accumulate sugar during ripening, highlighted the genes specifically related to sugar accumulation. Tissue-specific analysis indicated that the expression of genes involved in sugar metabolism and transport undergoes a global transition.
Collapse
Affiliation(s)
- Kumar Lama
- Institute of Plant SciencesAgricultural Research OrganizationBet‐DaganIsrael
- Department of Life Sciences, School of ScienceKathmandu UniversityDhulikhelNepal
| | - Li‐Juan Chai
- Institute of Plant SciencesAgricultural Research OrganizationBet‐DaganIsrael
- National Engineering Laboratory for Cereal Fermentation TechnologyJiangnan UniversityWuxiChina
| | - Reut Peer
- Institute of Plant SciencesAgricultural Research OrganizationBet‐DaganIsrael
| | - Huiqin Ma
- College of HorticultureChina Agricultural UniversityBeijingChina
| | - Yelena Yeselson
- Institute of Postharvest and Food Sciences, Agricultural Research OrganizationBet‐DaganIsrael
| | - Arthur A. Schaffer
- Institute of Postharvest and Food Sciences, Agricultural Research OrganizationBet‐DaganIsrael
| | - Moshe A. Flaishman
- Institute of Plant SciencesAgricultural Research OrganizationBet‐DaganIsrael
| |
Collapse
|
20
|
CsAGA1 and CsAGA2 Mediate RFO Hydrolysis in Partially Distinct Manner in Cucumber Fruits. Int J Mol Sci 2021; 22:ijms222413285. [PMID: 34948084 PMCID: PMC8706097 DOI: 10.3390/ijms222413285] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/03/2021] [Accepted: 12/07/2021] [Indexed: 12/05/2022] Open
Abstract
A Raffinose family oligosaccharides (RFOs) is one of the major translocated sugars in the vascular bundle of cucumber, but little RFOs can be detected in fruits. Alpha-galactosidases (α-Gals) catalyze the first catabolism step of RFOs. Six α-Gal genes exist in a cucumber genome, but their spatial functions in fruits remain unclear. Here, we found that RFOs were highly accumulated in vascular tissues. In phloem sap, the stachyose and raffinose content was gradually decreased, whereas the content of sucrose, glucose and fructose was increased from pedicel to fruit top. Three alkaline forms instead of acid forms of α-Gals were preferentially expressed in fruit vascular tissues and alkaline forms have stronger RFO-hydrolysing activity than acid forms. By inducible gene silencing of three alkaline forms of α-Gals, stachyose was highly accumulated in RNAi-CsAGA2 plants, while raffinose and stachyose were highly accumulated in RNAi-CsAGA1 plants. The content of sucrose, glucose and fructose was decreased in both RNAi-CsAGA1 and RNAi-CsAGA2 plants after β-estradiol treatment. In addition, the fresh- and dry-weight of fruits were significantly decreased in RNAi-CsAGA1 and RNAi-CsAGA2 plants. In cucurbitaceous plants, the non-sweet motif within the promoter of ClAGA2 is widely distributed in the promoter of its homologous genes. Taken together, we found RFOs hydrolysis occurred in the vascular tissues of fruits. CsAGA1 and CsAGA2 played key but partly distinct roles in the hydrolysis of RFOs.
Collapse
|
21
|
Ren Y, Li M, Guo S, Sun H, Zhao J, Zhang J, Liu G, He H, Tian S, Yu Y, Gong G, Zhang H, Zhang X, Alseekh S, Fernie AR, Scheller HV, Xu Y. Evolutionary gain of oligosaccharide hydrolysis and sugar transport enhanced carbohydrate partitioning in sweet watermelon fruits. THE PLANT CELL 2021; 33:1554-1573. [PMID: 33570606 PMCID: PMC8254481 DOI: 10.1093/plcell/koab055] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 02/06/2021] [Indexed: 05/04/2023]
Abstract
How raffinose (Raf) family oligosaccharides, the major translocated sugars in the vascular bundle in cucurbits, are hydrolyzed and subsequently partitioned has not been fully elucidated. By performing reciprocal grafting of watermelon (Citrullus lanatus) fruits to branch stems, we observed that Raf was hydrolyzed in the fruit of cultivar watermelons but was backlogged in the fruit of wild ancestor species. Through a genome-wide association study, the alkaline alpha-galactosidase ClAGA2 was identified as the key factor controlling stachyose and Raf hydrolysis, and it was determined to be specifically expressed in the vascular bundle. Analysis of transgenic plants confirmed that ClAGA2 controls fruit Raf hydrolysis and reduces sugar content in fruits. Two single-nucleotide polymorphisms (SNPs) within the ClAGA2 promoter affect the recruitment of the transcription factor ClNF-YC2 (nuclear transcription factor Y subunit C) to regulate ClAGA2 expression. Moreover, this study demonstrates that C. lanatus Sugars Will Eventually Be Exported Transporter 3 (ClSWEET3) and Tonoplast Sugar Transporter (ClTST2) participate in plasma membrane sugar transport and sugar storage in fruit cell vacuoles, respectively. Knocking out ClAGA2, ClSWEET3, and ClTST2 affected fruit sugar accumulation. Genomic signatures indicate that the selection of ClAGA2, ClSWEET3, and ClTST2 for carbohydrate partitioning led to the derivation of modern sweet watermelon from non-sweet ancestors during domestication.
Collapse
Affiliation(s)
- Yi Ren
- National Watermelon and Melon Improvement Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
- Joint BioEnergy Institute and Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Maoying Li
- National Watermelon and Melon Improvement Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| | - Shaogui Guo
- National Watermelon and Melon Improvement Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| | - Honghe Sun
- National Watermelon and Melon Improvement Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| | - Jianyu Zhao
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint International Research Laboratory of Crop Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Jie Zhang
- National Watermelon and Melon Improvement Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| | - Guangmin Liu
- National Watermelon and Melon Improvement Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| | - Hongju He
- National Watermelon and Melon Improvement Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| | - Shouwei Tian
- National Watermelon and Melon Improvement Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| | - Yongtao Yu
- National Watermelon and Melon Improvement Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| | - Guoyi Gong
- National Watermelon and Melon Improvement Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| | - Haiying Zhang
- National Watermelon and Melon Improvement Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| | - Xiaolan Zhang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint International Research Laboratory of Crop Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Saleh Alseekh
- Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
- Center of Plant System Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
- Center of Plant System Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Henrik V Scheller
- Joint BioEnergy Institute and Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
| | - Yong Xu
- National Watermelon and Melon Improvement Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| |
Collapse
|
22
|
Lan Y, Wu L, Wu M, Liu H, Gao Y, Zhang K, Xiang Y. Transcriptome analysis reveals key genes regulating signaling and metabolic pathways during the growth of moso bamboo (Phyllostachys edulis) shoots. PHYSIOLOGIA PLANTARUM 2021; 172:91-105. [PMID: 33280114 DOI: 10.1111/ppl.13296] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 11/22/2020] [Accepted: 11/30/2020] [Indexed: 06/12/2023]
Abstract
Moso bamboo (Phyllostachys edulis), a high-value bamboo used to produce food (young shoots), building, and industrial goods. To explore key candidate genes regulating signal transduction and metabolic processes during the initiation of stem elongation in moso bamboo, a transcriptome analysis of the shoots during three successive early elongation stages was performed. From cluster and differential expression analyses, 2984 differentially expressed genes (DEGs) were selected for an enrichment analysis. The DEGs were significantly enriched in the plant hormone signal transduction, sugar and starch metabolism, and energy metabolism pathways. Consequently, the DEG expression patterns of these pathways were analyzed, and the plant endogenous hormone and carbon metabolite (including sucrose, total soluble sugar, and starch) contents for each growth stage, of the shoot, were determined. The cytokinin-signaling pathway was continuously active in the three successive elongation stages, in which several cytokinin-signaling genes played indispensable roles. Additionally, many key DEGs regulating sugar, starch metabolism, and energy conversion, which are actively involved in energy production and substrate synthesis during the continuous growth of the shoots, were found. In summary, our study lays a foundation for understanding the mechanisms of moso bamboo growth and provides useful gene resources for breeding through genetic engineering.
Collapse
Affiliation(s)
- Yangang Lan
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, China
| | - Lin Wu
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, China
| | - Min Wu
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, China
| | - Huanlong Liu
- College of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Yameng Gao
- College of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Kaimei Zhang
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, China
| | - Yan Xiang
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, China
| |
Collapse
|
23
|
Li M, He Q, Huang Y, Luo Y, Zhang Y, Chen Q, Wang Y, Lin Y, Zhang Y, Liu Z, Wang XR, Tang H. Sucrose synthase gene family in Brassica juncea: genomic organization, evolutionary comparisons, and expression regulation. PeerJ 2021; 9:e10878. [PMID: 33854830 PMCID: PMC7953879 DOI: 10.7717/peerj.10878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 01/11/2021] [Indexed: 12/12/2022] Open
Abstract
Sucrose synthase (SUS) plays an important role in sucrose metabolism and plant development. The SUS gene family has been identified in many plants, however, there is no definitive study of SUS gene in Brassica juncea. In this study, 14 SUS family genes were identified and comprehensively analyzed using bioinformatics tools. The analyzed parameters included their family member characteristics, chromosomal locations, gene structures and phylogenetic as well as transcript expression profiles. Phylogenetic analysis revealed that the 14 members could be allocated into three groups: SUS I, SUS II and SUS III. Comparisons of the exon/intron structure of the mustard SUS gene indicated that its structure is highly conserved. The conserved structure is attributed to purification selection during evolution. Expansion of the SUS gene family is associated with fragment and tandem duplications of the mustard SUS gene family. Collinearity analysis among species revealed that the SUS gene family could be lost or mutated to varying degrees after the genome was doubled, or when Brassica rapa and Brassica nigra hybridized to form Brassica juncea. The expression patterns of BjuSUSs vary among different stages of mustard stem swelling. Transcriptomics revealed that the BjuSUS01-04 expression levels were the most elevated. It has been hypothesized that they play an important role in sucrose metabolism during stem development. The expression levels of some BjuSUSs were significantly up-regulated when they were treated with plant hormones. However, when subjected to abiotic stress factors, their expression levels were suppressed. This study establishes SUS gene functions during mustard stem development and stress.
Collapse
Affiliation(s)
- Mengyao Li
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Qi He
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Ying Huang
- College of Agriculture and Forestry Science, Linyi University, Linyi, China
| | - Ya Luo
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Yong Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Qing Chen
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Yan Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China.,Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Yuanxiu Lin
- College of Horticulture, Sichuan Agricultural University, Chengdu, China.,Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Yunting Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China.,Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Zejing Liu
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Xiao-Rong Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China.,Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Haoru Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China.,Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
24
|
Mohammadi F, Naghavi MR, Peighambari SA, Dehaghi NK, Nasiri J, Khaldari I, Bravi E, Sileoni V, Marconi O, Perretti G. Comparison of carbohydrate partitioning and expression patterns of some genes involved in carbohydrate biosynthesis pathways in annual and biennial species of Cichorium spp. PHYTOCHEMISTRY 2021; 183:112620. [PMID: 33360645 DOI: 10.1016/j.phytochem.2020.112620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 12/04/2020] [Accepted: 12/05/2020] [Indexed: 06/12/2023]
Abstract
Variation in metabolism and partitioning of carbohydrates, particularly fructans, between annual and perennial Cichorium species remains a challenging topic. To address this problem, an annual (endive, Cichorium endive L. var. Crispum; Asteraceae) and a biennial species (chicory, Cichorium intybus L. var. Witloof; Asteraceae) were compared with in terms of variability in carbohydrate accumulation and expression patterns of fructan-active enzyme genes, as well as sucrose metabolism at various growth and developmental stages. In general, constituents such as 1-kestose, nystose, and inulin were detected only in the root of chicory and were not present in any of the endive tissues. For both species, flower tissue contained maximum levels of both fructose and glucose, while for sucrose, more fluctuations were observed. On the other hand, all the genes under study exhibited variation, not only between the two species but also among different tissues at different sampling times. In endive root compared to endive leaf, the expression of cell wall invertase genes and sucrose accumulation decreased simultaneously, indicating the limited capacity of its roots to absorb sucrose, a precursor to inulin production. In addition, low expression of fructan: fructan fructosyltransferase in endive root compared to chicory root confirmed the inability of endive to inulin synthesis. Overall, annual and biennial species were different in the production of inulin, transport, remobilization, and unloading of sucrose.
Collapse
Affiliation(s)
- Fatemeh Mohammadi
- Division of Biotechnology, Agronomy and Plant Breeding Dept, Agricultural and Natural Resources College, University of Tehran, Karaj, Iran
| | - Mohammad Reza Naghavi
- Division of Biotechnology, Agronomy and Plant Breeding Dept, Agricultural and Natural Resources College, University of Tehran, Karaj, Iran.
| | - Seyed Ali Peighambari
- Division of Biotechnology, Agronomy and Plant Breeding Dept, Agricultural and Natural Resources College, University of Tehran, Karaj, Iran
| | - Nafiseh Khosravi Dehaghi
- Evidence-based Phytotherapy & Complementary Medicine Research Center, Alborz University of Medical Sciences, Karaj, Iran; Department of Pharmacognosy, School of Pharmacy, Alborz University of Medical Sciences, Karaj, Iran
| | - Jaber Nasiri
- Division of Biotechnology, Agronomy and Plant Breeding Dept, Agricultural and Natural Resources College, University of Tehran, Karaj, Iran
| | - Iman Khaldari
- Division of Biotechnology, Agronomy and Plant Breeding Dept, Agricultural and Natural Resources College, University of Tehran, Karaj, Iran
| | - Elisabetta Bravi
- University of Perugia, Department of Agricultural, Food and Environmental Science, via San Costanzo s.n.c., 06126, Perugia, Italy.
| | - Valeria Sileoni
- University of Perugia, Department of Agricultural, Food and Environmental Science, via San Costanzo s.n.c., 06126, Perugia, Italy
| | - Ombretta Marconi
- University of Perugia, Department of Agricultural, Food and Environmental Science, via San Costanzo s.n.c., 06126, Perugia, Italy
| | - Giuseppe Perretti
- University of Perugia, Department of Agricultural, Food and Environmental Science, via San Costanzo s.n.c., 06126, Perugia, Italy
| |
Collapse
|
25
|
Sha J, Wang F, Xu X, Chen Q, Zhu Z, Jiang Y, Ge S. Studies on the translocation characteristics of 13C-photoassimilates to fruit during the fruit development stage in 'Fuji' apple. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 154:636-645. [PMID: 32912493 DOI: 10.1016/j.plaphy.2020.06.044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/24/2020] [Accepted: 06/24/2020] [Indexed: 06/11/2023]
Abstract
In order to define translocation characteristics of 13C-photoassimilates to fruit during the fruit development stage in 'Fuji' apple, the 13C labeled tracer method was used in whole five-year-old 'Fuji'3/M26/Malus hupehensis (Pamp.) Rehder apple trees at different days after flowering (DAF). The changes in 13C translocation to the fruit, source strength of the leaves, and sink strength of the fruits were assessed. The results indicated that the δ13C value and 13C distribution rate of the fruit increased first and then decreased with the increase in the fruit development period, being higher from 120 to 135 DAF. The leaves appeared to moderately senesce in an attempt to maintain high photosynthesis during 120-135 DAF, which promoted the outward transport of photoassimilates. The single fruit weight and longitudinal and transverse diameter of the fruit increased rapidly during 120-150 DAF, which increased the sink zone for the unloading of photoassimilates in the fruit. The activity of sorbitol dehydrogenase (SDH) and amylase (AM), the content of indole-3-acetic acid (IAA), the gibberellin (GA3) and abscisic acid (ABA) in the fruit flesh, and the gene expression levels of MdSOT1, MdSOT2, MdSOT3, MdSUT1, and MdSUT4 in the fruit stalk tissue were higher during 120-135 DAF. At this point, the difference in the sorbitol content between the fruit stalk and fruit flesh was also at the highest level of the entire year. These factors together increased the sink activity of the fruit, thus improving the photoassimilate transport efficiency to the fruit.
Collapse
Affiliation(s)
- Jianchuan Sha
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Fen Wang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Xinxiang Xu
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Qian Chen
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Zhanling Zhu
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Yuanmao Jiang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China.
| | - Shunfeng Ge
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China.
| |
Collapse
|
26
|
Jammer A, Albacete A, Schulz B, Koch W, Weltmeier F, van der Graaff E, Pfeifhofer HW, Roitsch TG. Early-stage sugar beet taproot development is characterized by three distinct physiological phases. PLANT DIRECT 2020; 4:e00221. [PMID: 32766510 PMCID: PMC7395582 DOI: 10.1002/pld3.221] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 02/04/2020] [Accepted: 04/13/2020] [Indexed: 05/21/2023]
Abstract
Despite the agronomic importance of sugar beet (Beta vulgaris L.), the early-stage development of its taproot has only been poorly investigated. Thus, the mechanisms that determine growth and sugar accumulation in sugar beet are largely unknown. In the presented study, a physiological characterization of early-stage sugar beet taproot development was conducted. Activities were analyzed for fourteen key enzymes of carbohydrate metabolism in developing taproots over the first 80 days after sowing. In addition, we performed in situ localizations of selected carbohydrate-metabolic enzyme activities, anatomical investigations, and quantifications of soluble carbohydrates, hexose phosphates, and phytohormones. Based on the accumulation dynamics of biomass and sucrose, as well as on anatomical parameters, the early phase of taproot development could be subdivided into three stages-prestorage, transition, secondary growth and sucrose accumulation stage-each of which was characterized by distinct metabolic and phytohormonal signatures. The enzyme activity signatures corresponding to these stages were also shown to be robustly reproducible in experiments conducted in two additional locations. The results from this physiological phenotyping approach contribute to the identification of the key regulators of sugar beet taproot development and open up new perspectives for sugar beet crop improvement concerning both physiological marker-based breeding and biotechnological approaches.
Collapse
Affiliation(s)
- Alexandra Jammer
- Institute of BiologyUniversity of GrazGrazAustria
- Department of Crop SciencesUFT TullnUniversity of Natural Resources and Life Sciences (BOKU)TullnAustria
| | - Alfonso Albacete
- Institute of BiologyUniversity of GrazGrazAustria
- Present address:
Department of Plant Production and AgrotechnologyInstitute for Agri‐Food Research and Development of Murcia (IMIDA)MurciaSpain
| | | | | | | | - Eric van der Graaff
- Institute of BiologyUniversity of GrazGrazAustria
- Department of Plant and Environmental SciencesCopenhagen Plant Science CentreUniversity of CopenhagenTaastrupDenmark
- Present address:
Koppert Cress B.V.MonsterThe Netherlands
| | | | - Thomas G. Roitsch
- Department of Crop SciencesUFT TullnUniversity of Natural Resources and Life Sciences (BOKU)TullnAustria
- Department of Plant and Environmental SciencesCopenhagen Plant Science CentreUniversity of CopenhagenTaastrupDenmark
- Department of Adaptive BiotechnologiesGlobal Change Research Institute CASBrnoCzech Republic
| |
Collapse
|
27
|
Schemberger MO, Stroka MA, Reis L, de Souza Los KK, de Araujo GAT, Sfeir MZT, Galvão CW, Etto RM, Baptistão ARG, Ayub RA. Transcriptome profiling of non-climacteric 'yellow' melon during ripening: insights on sugar metabolism. BMC Genomics 2020; 21:262. [PMID: 32228445 PMCID: PMC7106763 DOI: 10.1186/s12864-020-6667-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 03/12/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The non-climacteric 'Yellow' melon (Cucumis melo, inodorus group) is an economically important crop and its quality is mainly determined by the sugar content. Thus, knowledge of sugar metabolism and its related pathways can contribute to the development of new field management and post-harvest practices, making it possible to deliver better quality fruits to consumers. RESULTS The RNA-seq associated with RT-qPCR analyses of four maturation stages were performed to identify important enzymes and pathways that are involved in the ripening profile of non-climacteric 'Yellow' melon fruit focusing on sugar metabolism. We identified 895 genes 10 days after pollination (DAP)-biased and 909 genes 40 DAP-biased. The KEGG pathway enrichment analysis of these differentially expressed (DE) genes revealed that 'hormone signal transduction', 'carbon metabolism', 'sucrose metabolism', 'protein processing in endoplasmic reticulum' and 'spliceosome' were the most differentially regulated processes occurring during melon development. In the sucrose metabolism, five DE genes are up-regulated and 12 are down-regulated during fruit ripening. CONCLUSIONS The results demonstrated important enzymes in the sugar pathway that are responsible for the sucrose content and maturation profile in non-climacteric 'Yellow' melon. New DE genes were first detected for melon in this study such as invertase inhibitor LIKE 3 (CmINH3), trehalose phosphate phosphatase (CmTPP1) and trehalose phosphate synthases (CmTPS5, CmTPS7, CmTPS9). Furthermore, the results of the protein-protein network interaction demonstrated general characteristics of the transcriptome of young and full-ripe melon and provide new perspectives for the understanding of ripening.
Collapse
Affiliation(s)
- Michelle Orane Schemberger
- Laboratório de Biotecnologia Aplicada a Fruticultura, Departamento de Fitotecnia e Fitossanidade, Universidade Estadual de Ponta Grossa, Av. Carlos Cavalcanti, 4748, Ponta Grossa, Paraná, 84030-900, Brazil
| | - Marília Aparecida Stroka
- Laboratório de Biotecnologia Aplicada a Fruticultura, Departamento de Fitotecnia e Fitossanidade, Universidade Estadual de Ponta Grossa, Av. Carlos Cavalcanti, 4748, Ponta Grossa, Paraná, 84030-900, Brazil
| | - Letícia Reis
- Laboratório de Biotecnologia Aplicada a Fruticultura, Departamento de Fitotecnia e Fitossanidade, Universidade Estadual de Ponta Grossa, Av. Carlos Cavalcanti, 4748, Ponta Grossa, Paraná, 84030-900, Brazil
| | - Kamila Karoline de Souza Los
- Laboratório de Biotecnologia Aplicada a Fruticultura, Departamento de Fitotecnia e Fitossanidade, Universidade Estadual de Ponta Grossa, Av. Carlos Cavalcanti, 4748, Ponta Grossa, Paraná, 84030-900, Brazil
| | - Gillize Aparecida Telles de Araujo
- Laboratório de Biotecnologia Aplicada a Fruticultura, Departamento de Fitotecnia e Fitossanidade, Universidade Estadual de Ponta Grossa, Av. Carlos Cavalcanti, 4748, Ponta Grossa, Paraná, 84030-900, Brazil
| | - Michelle Zibetti Tadra Sfeir
- Departamento de Bioquímica, Centro Politécnico, Universidade Federal do Paraná, Jd. Das Américas, Caixa-Postal 19071, Curitiba, Paraná, 81531-990, Brazil
| | - Carolina Weigert Galvão
- Laboratório de Biologia Molecular Microbiana, Departamento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa, Av. Carlos Cavalcanti, 4748, Ponta Grossa, Paraná, 84030-900, Brazil
| | - Rafael Mazer Etto
- Laboratório de Biologia Molecular Microbiana, Departamento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa, Av. Carlos Cavalcanti, 4748, Ponta Grossa, Paraná, 84030-900, Brazil
| | - Amanda Regina Godoy Baptistão
- Laboratório de Biotecnologia Aplicada a Fruticultura, Departamento de Fitotecnia e Fitossanidade, Universidade Estadual de Ponta Grossa, Av. Carlos Cavalcanti, 4748, Ponta Grossa, Paraná, 84030-900, Brazil
| | - Ricardo Antonio Ayub
- Laboratório de Biotecnologia Aplicada a Fruticultura, Departamento de Fitotecnia e Fitossanidade, Universidade Estadual de Ponta Grossa, Av. Carlos Cavalcanti, 4748, Ponta Grossa, Paraná, 84030-900, Brazil.
| |
Collapse
|
28
|
Moing A, Allwood JW, Aharoni A, Baker J, Beale MH, Ben-Dor S, Biais B, Brigante F, Burger Y, Deborde C, Erban A, Faigenboim A, Gur A, Goodacre R, Hansen TH, Jacob D, Katzir N, Kopka J, Lewinsohn E, Maucourt M, Meir S, Miller S, Mumm R, Oren E, Paris HS, Rogachev I, Rolin D, Saar U, Schjoerring JK, Tadmor Y, Tzuri G, de Vos RC, Ward JL, Yeselson E, Hall RD, Schaffer AA. Comparative Metabolomics and Molecular Phylogenetics of Melon ( Cucumis melo, Cucurbitaceae) Biodiversity. Metabolites 2020; 10:metabo10030121. [PMID: 32213984 PMCID: PMC7143154 DOI: 10.3390/metabo10030121] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 01/04/2023] Open
Abstract
The broad variability of Cucumis melo (melon, Cucurbitaceae) presents a challenge to conventional classification and organization within the species. To shed further light on the infraspecific relationships within C. melo, we compared genotypic and metabolomic similarities among 44 accessions representative of most of the cultivar-groups. Genotyping-by-sequencing (GBS) provided over 20,000 single-nucleotide polymorphisms (SNPs). Metabolomics data of the mature fruit flesh and rind provided over 80,000 metabolomic and elemental features via an orchestra of six complementary metabolomic platforms. These technologies probed polar, semi-polar, and non-polar metabolite fractions as well as a set of mineral elements and included both flavor- and taste-relevant volatile and non-volatile metabolites. Together these results enabled an estimate of "metabolomic/elemental distance" and its correlation with the genetic GBS distance of melon accessions. This study indicates that extensive and non-targeted metabolomics/elemental characterization produced classifications that strongly, but not completely, reflect the current and extensive genetic classification. Certain melon Groups, such as Inodorous, clustered in parallel with the genetic classifications while other genome to metabolome/element associations proved less clear. We suggest that the combined genomic, metabolic, and element data reflect the extensive sexual compatibility among melon accessions and the breeding history that has, for example, targeted metabolic quality traits, such as taste and flavor.
Collapse
Affiliation(s)
- Annick Moing
- INRAE, Univ. Bordeaux, UMR1332 Fruit Biology and Pathology, Bordeaux Metabolome Facility MetaboHUB, Centre INRAE de Nouvelle Aquitaine - Bordeaux, 33140 Villenave d’Ornon, France; (A.M.); (B.B.); (C.D.); (D.J.); (M.M.); (D.R.)
| | - J. William Allwood
- The James Hutton Institute, Environmental & Biochemical Sciences, Invergowrie, Dundee, DD2 5DA Scotland, UK;
| | - Asaph Aharoni
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel; (A.A.); (S.M.); (S.B.-D.)
| | - John Baker
- Rothamsted Research, Harpenden, Herts AL5 2JQ, UK; (J.B.); (M.H.B.); (S.M.); (J.L.W.)
| | - Michael H. Beale
- Rothamsted Research, Harpenden, Herts AL5 2JQ, UK; (J.B.); (M.H.B.); (S.M.); (J.L.W.)
| | - Shifra Ben-Dor
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel; (A.A.); (S.M.); (S.B.-D.)
| | - Benoît Biais
- INRAE, Univ. Bordeaux, UMR1332 Fruit Biology and Pathology, Bordeaux Metabolome Facility MetaboHUB, Centre INRAE de Nouvelle Aquitaine - Bordeaux, 33140 Villenave d’Ornon, France; (A.M.); (B.B.); (C.D.); (D.J.); (M.M.); (D.R.)
| | - Federico Brigante
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm 14476, Germany; (F.B.); (A.E.); (J.K.)
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Dto. Química Orgánica, Córdoba 5000, Argentina
- CONICET, ICYTAC (Instituto de Ciencia y Tecnologia de Alimentos Córdoba), Córdoba 5000, Argentina
| | - Yosef Burger
- Institute of Plant Science, Agricultural Research Organization—Volcani Center, Rishon LeZiyyon 7515101, Israel; (Y.B.); (A.F.); (E.Y.)
| | - Catherine Deborde
- INRAE, Univ. Bordeaux, UMR1332 Fruit Biology and Pathology, Bordeaux Metabolome Facility MetaboHUB, Centre INRAE de Nouvelle Aquitaine - Bordeaux, 33140 Villenave d’Ornon, France; (A.M.); (B.B.); (C.D.); (D.J.); (M.M.); (D.R.)
| | - Alexander Erban
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm 14476, Germany; (F.B.); (A.E.); (J.K.)
| | - Adi Faigenboim
- Institute of Plant Science, Agricultural Research Organization—Volcani Center, Rishon LeZiyyon 7515101, Israel; (Y.B.); (A.F.); (E.Y.)
| | - Amit Gur
- Newe Ya‘ar Research Center, Agricultural Research Organization, P. O. Box 1021, Ramat Yishay 3009500, Israel; (A.G.); (N.K.); (E.L.); (E.O.); (H.S.P.); (U.S.); (Y.T.); (G.T.)
| | - Royston Goodacre
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK;
| | - Thomas H. Hansen
- Department of Plant and Environmental Sciences & Copenhagen Plant Science Center, Faculty of Science, University of Copenhagen, DK-1871 Frederiksberg C, Denmark; (T.H.H.); (J.K.S.)
| | - Daniel Jacob
- INRAE, Univ. Bordeaux, UMR1332 Fruit Biology and Pathology, Bordeaux Metabolome Facility MetaboHUB, Centre INRAE de Nouvelle Aquitaine - Bordeaux, 33140 Villenave d’Ornon, France; (A.M.); (B.B.); (C.D.); (D.J.); (M.M.); (D.R.)
| | - Nurit Katzir
- Newe Ya‘ar Research Center, Agricultural Research Organization, P. O. Box 1021, Ramat Yishay 3009500, Israel; (A.G.); (N.K.); (E.L.); (E.O.); (H.S.P.); (U.S.); (Y.T.); (G.T.)
| | - Joachim Kopka
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm 14476, Germany; (F.B.); (A.E.); (J.K.)
| | - Efraim Lewinsohn
- Newe Ya‘ar Research Center, Agricultural Research Organization, P. O. Box 1021, Ramat Yishay 3009500, Israel; (A.G.); (N.K.); (E.L.); (E.O.); (H.S.P.); (U.S.); (Y.T.); (G.T.)
| | - Mickael Maucourt
- INRAE, Univ. Bordeaux, UMR1332 Fruit Biology and Pathology, Bordeaux Metabolome Facility MetaboHUB, Centre INRAE de Nouvelle Aquitaine - Bordeaux, 33140 Villenave d’Ornon, France; (A.M.); (B.B.); (C.D.); (D.J.); (M.M.); (D.R.)
| | - Sagit Meir
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel; (A.A.); (S.M.); (S.B.-D.)
| | - Sonia Miller
- Rothamsted Research, Harpenden, Herts AL5 2JQ, UK; (J.B.); (M.H.B.); (S.M.); (J.L.W.)
| | - Roland Mumm
- Business Unit Bioscience, Wageningen University & Research, Post Box 16, 6700AA, Wageningen, Netherlands; (R.M.); (R.D.H.)
| | - Elad Oren
- Newe Ya‘ar Research Center, Agricultural Research Organization, P. O. Box 1021, Ramat Yishay 3009500, Israel; (A.G.); (N.K.); (E.L.); (E.O.); (H.S.P.); (U.S.); (Y.T.); (G.T.)
| | - Harry S. Paris
- Newe Ya‘ar Research Center, Agricultural Research Organization, P. O. Box 1021, Ramat Yishay 3009500, Israel; (A.G.); (N.K.); (E.L.); (E.O.); (H.S.P.); (U.S.); (Y.T.); (G.T.)
| | - Ilana Rogachev
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel; (A.A.); (S.M.); (S.B.-D.)
| | - Dominique Rolin
- INRAE, Univ. Bordeaux, UMR1332 Fruit Biology and Pathology, Bordeaux Metabolome Facility MetaboHUB, Centre INRAE de Nouvelle Aquitaine - Bordeaux, 33140 Villenave d’Ornon, France; (A.M.); (B.B.); (C.D.); (D.J.); (M.M.); (D.R.)
| | - Uzi Saar
- Newe Ya‘ar Research Center, Agricultural Research Organization, P. O. Box 1021, Ramat Yishay 3009500, Israel; (A.G.); (N.K.); (E.L.); (E.O.); (H.S.P.); (U.S.); (Y.T.); (G.T.)
| | - Jan K. Schjoerring
- Department of Plant and Environmental Sciences & Copenhagen Plant Science Center, Faculty of Science, University of Copenhagen, DK-1871 Frederiksberg C, Denmark; (T.H.H.); (J.K.S.)
| | - Yaakov Tadmor
- Newe Ya‘ar Research Center, Agricultural Research Organization, P. O. Box 1021, Ramat Yishay 3009500, Israel; (A.G.); (N.K.); (E.L.); (E.O.); (H.S.P.); (U.S.); (Y.T.); (G.T.)
| | - Galil Tzuri
- Newe Ya‘ar Research Center, Agricultural Research Organization, P. O. Box 1021, Ramat Yishay 3009500, Israel; (A.G.); (N.K.); (E.L.); (E.O.); (H.S.P.); (U.S.); (Y.T.); (G.T.)
| | - Ric C.H. de Vos
- Business Unit Bioscience, Wageningen University & Research, Post Box 16, 6700AA, Wageningen, Netherlands; (R.M.); (R.D.H.)
| | - Jane L. Ward
- Rothamsted Research, Harpenden, Herts AL5 2JQ, UK; (J.B.); (M.H.B.); (S.M.); (J.L.W.)
| | - Elena Yeselson
- Institute of Plant Science, Agricultural Research Organization—Volcani Center, Rishon LeZiyyon 7515101, Israel; (Y.B.); (A.F.); (E.Y.)
| | - Robert D. Hall
- Business Unit Bioscience, Wageningen University & Research, Post Box 16, 6700AA, Wageningen, Netherlands; (R.M.); (R.D.H.)
- Department of Plant Physiology, Wageningen University & Research, Laboratory of Plant Physiology, Post Box 16, 6700AA, Wageningen, Netherlands
| | - Arthur A. Schaffer
- Institute of Plant Science, Agricultural Research Organization—Volcani Center, Rishon LeZiyyon 7515101, Israel; (Y.B.); (A.F.); (E.Y.)
- Correspondence: ; Tel.: + 972(3)9683646
| |
Collapse
|
29
|
Cheng J, Wen S, Bie Z. Overexpression of hexose transporter CsHT3 increases cellulose content in cucumber fruit peduncle. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 145:107-113. [PMID: 31677541 DOI: 10.1016/j.plaphy.2019.10.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/01/2019] [Accepted: 10/23/2019] [Indexed: 06/10/2023]
Abstract
Hexose transporters play many important roles in plant development. However, the role of hexose transporter in secondary cell wall growth has not been reported before. Here, we report that the hexose transporter gene CsHT3 is mainly expressed in cells with secondary cell walls in cucumber. Spatiotemporal expression analysis revealed that the transcript of CsHT3 mainly accumulates in the stem, petiole, tendril, and peduncle, all of which contain high cellulose levels. Immunolocalization results show that CsHT3 is localized at the sclereids in young peduncles, shifts to the phloem fiber cells during peduncle development, and then shifts again to the companion cells when the development of secondary cell walls is almost completed. Carboxyfluoresce unloading experiment indicated that carbohydrate unloading in the phloem follows an apoplastic pathway. Overexpression of CsHT3 in cucumber plant can improve the cellulose content and cell wall thickness of phloem fiber cells in the peduncle. The expression of cellulose synthase genes were increased in the CsHT3 overexpression plants. These results indicated that CsHT3 may play an important role in cellulose synthesis through promoting the expression of cellulose synthase genes.
Collapse
Affiliation(s)
- Jintao Cheng
- College of Horticulture and Forestry, Huazhong Agricultural University and Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, 430070, PR China.
| | - Suying Wen
- College of Horticulture and Forestry, Huazhong Agricultural University and Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, 430070, PR China.
| | - Zhilong Bie
- College of Horticulture and Forestry, Huazhong Agricultural University and Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, 430070, PR China.
| |
Collapse
|
30
|
Roch L, Dai Z, Gomès E, Bernillon S, Wang J, Gibon Y, Moing A. Fruit Salad in the Lab: Comparing Botanical Species to Help Deciphering Fruit Primary Metabolism. FRONTIERS IN PLANT SCIENCE 2019; 10:836. [PMID: 31354750 PMCID: PMC6632546 DOI: 10.3389/fpls.2019.00836] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 06/12/2019] [Indexed: 05/08/2023]
Abstract
Although fleshy fruit species are economically important worldwide and crucial for human nutrition, the regulation of their fruit metabolism remains to be described finely. Fruit species differ in the origin of the tissue constituting the flesh, duration of fruit development, coordination of ripening changes (climacteric vs. non-climacteric type) and biochemical composition at ripeness is linked to sweetness and acidity. The main constituents of mature fruit result from different strategies of carbon transport and metabolism. Thus, the timing and nature of phloem loading and unloading can largely differ from one species to another. Furthermore, accumulations and transformations of major soluble sugars, organic acids, amino acids, starch and cell walls are very variable among fruit species. Comparing fruit species therefore appears as a valuable way to get a better understanding of metabolism. On the one hand, the comparison of results of studies about species of different botanical families allows pointing the drivers of sugar or organic acid accumulation but this kind of comparison is often hampered by heterogeneous analysis approaches applied in each study and incomplete dataset. On the other hand, cross-species studies remain rare but have brought new insights into key aspects of primary metabolism regulation. In addition, new tools for multi-species comparisons are currently emerging, including meta-analyses or re-use of shared metabolic or genomic data, and comparative metabolic flux or process-based modeling. All these approaches contribute to the identification of the metabolic factors that influence fruit growth and quality, in order to adjust their levels with breeding or cultural practices, with respect to improving fruit traits.
Collapse
Affiliation(s)
- Léa Roch
- UMR1332 Biologie du Fruit et Pathologie, Centre INRA de Bordeaux, INRA, Université de Bordeaux, Bordeaux, France
| | - Zhanwu Dai
- UMR 1287 EGFV, INRA, Bordeaux Sciences Agro, Université de Bordeaux, Bordeaux, France
| | - Eric Gomès
- UMR 1287 EGFV, INRA, Bordeaux Sciences Agro, Université de Bordeaux, Bordeaux, France
| | - Stéphane Bernillon
- UMR1332 Biologie du Fruit et Pathologie, Centre INRA de Bordeaux, INRA, Université de Bordeaux, Bordeaux, France
- Plateforme Métabolome Bordeaux, CGFB, MetaboHUB-PHENOME, IBVM, Centre INRA de Bordeaux, Bordeaux, France
| | - Jiaojiao Wang
- UMR1332 Biologie du Fruit et Pathologie, Centre INRA de Bordeaux, INRA, Université de Bordeaux, Bordeaux, France
| | - Yves Gibon
- UMR1332 Biologie du Fruit et Pathologie, Centre INRA de Bordeaux, INRA, Université de Bordeaux, Bordeaux, France
- Plateforme Métabolome Bordeaux, CGFB, MetaboHUB-PHENOME, IBVM, Centre INRA de Bordeaux, Bordeaux, France
| | - Annick Moing
- UMR1332 Biologie du Fruit et Pathologie, Centre INRA de Bordeaux, INRA, Université de Bordeaux, Bordeaux, France
- Plateforme Métabolome Bordeaux, CGFB, MetaboHUB-PHENOME, IBVM, Centre INRA de Bordeaux, Bordeaux, France
| |
Collapse
|
31
|
Mori K, Beauvoit BP, Biais B, Chabane M, Allwood JW, Deborde C, Maucourt M, Goodacre R, Cabasson C, Moing A, Rolin D, Gibon Y. Central Metabolism Is Tuned to the Availability of Oxygen in Developing Melon Fruit. FRONTIERS IN PLANT SCIENCE 2019; 10:594. [PMID: 31156666 PMCID: PMC6529934 DOI: 10.3389/fpls.2019.00594] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 04/24/2019] [Indexed: 06/09/2023]
Abstract
Respiration of bulky plant organs such as fleshy fruits depends on oxygen (O2) availability and often decreases with O2 concentration to avoid anoxia, but the relationship between O2 diffusional resistance and metabolic adjustments remains unclear. Melon fruit (Cucumis melo L.) was used to study relationships between O2 availability and metabolism in fleshy fruits. Enzyme activities, primary metabolites and O2 partial pressure were quantified from the periphery to the inner fruit mesocarp, at three stages of development. Hypoxia was gradually established during fruit development, but there was no strong oxygen gradient between the outer- and the inner mesocarp. These trends were confirmed by a mathematical modeling approach combining O2 diffusion equations and O2 demand estimates of the mesocarp tissue. A multivariate analysis of metabolites, enzyme activities, O2 demand and concentration reveals that metabolite gradients and enzyme capacities observed in melon fruits reflect continuous metabolic adjustments thus ensuring a timely maturation of the mesocarp. The present results suggest that the metabolic adjustments, especially the tuning of the capacity of cytochrome c oxidase (COX) to O2-availability that occurs during growth development, contribute to optimizing the O2-demand and avoiding the establishment of an O2 gradient within the flesh.
Collapse
Affiliation(s)
- Kentaro Mori
- UMR1332 BFP, INRA, Univ. Bordeaux, Villenave d’Ornon, France
| | | | - Benoît Biais
- UMR1332 BFP, INRA, Univ. Bordeaux, Villenave d’Ornon, France
- Plateforme Métabolome Bordeaux, MetaboHUB, Bordeaux Functional Genomic Centre, Villenave d’Ornon, France
| | - Maxime Chabane
- UMR1332 BFP, INRA, Univ. Bordeaux, Villenave d’Ornon, France
| | - J. William Allwood
- Environmental and Biochemical Sciences Group, The James Hutton Institute, Dundee, United Kingdom
| | - Catherine Deborde
- UMR1332 BFP, INRA, Univ. Bordeaux, Villenave d’Ornon, France
- Plateforme Métabolome Bordeaux, MetaboHUB, Bordeaux Functional Genomic Centre, Villenave d’Ornon, France
| | - Mickaël Maucourt
- UMR1332 BFP, INRA, Univ. Bordeaux, Villenave d’Ornon, France
- Plateforme Métabolome Bordeaux, MetaboHUB, Bordeaux Functional Genomic Centre, Villenave d’Ornon, France
| | - Royston Goodacre
- Manchester Institute of Biotechnology, University of Manchester, Manchester, United Kingdom
| | - Cécile Cabasson
- UMR1332 BFP, INRA, Univ. Bordeaux, Villenave d’Ornon, France
- Plateforme Métabolome Bordeaux, MetaboHUB, Bordeaux Functional Genomic Centre, Villenave d’Ornon, France
| | - Annick Moing
- UMR1332 BFP, INRA, Univ. Bordeaux, Villenave d’Ornon, France
- Plateforme Métabolome Bordeaux, MetaboHUB, Bordeaux Functional Genomic Centre, Villenave d’Ornon, France
| | - Dominique Rolin
- UMR1332 BFP, INRA, Univ. Bordeaux, Villenave d’Ornon, France
- Plateforme Métabolome Bordeaux, MetaboHUB, Bordeaux Functional Genomic Centre, Villenave d’Ornon, France
| | - Yves Gibon
- UMR1332 BFP, INRA, Univ. Bordeaux, Villenave d’Ornon, France
- Plateforme Métabolome Bordeaux, MetaboHUB, Bordeaux Functional Genomic Centre, Villenave d’Ornon, France
| |
Collapse
|
32
|
Jiang CC, Fang ZZ, Zhou DR, Pan SL, Ye XF. Changes in secondary metabolites, organic acids and soluble sugars during the development of plum fruit cv. 'Furongli' (Prunus salicina Lindl). JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:1010-1019. [PMID: 30009532 DOI: 10.1002/jsfa.9265] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 06/28/2018] [Accepted: 07/12/2018] [Indexed: 05/18/2023]
Abstract
BACKGROUND Organic acids, sugars and pigments are key components that determine the taste and flavor of plum fruit. However, metabolism of organic acid and sugar is not fully understood during the development of plum fruit cv. 'Furongli'. RESULTS Mature fruit of 'Furongli' has the highest content of anthocyanins and the lowest content of total phenol compounds and flavonoids. Malate is the predominant organic acid anion in 'Furongli' fruit, followed by citrate and isocitrate. Glucose was the predominant sugar form, followed by fructose and sucrose. Correlation analysis indicated that malate content increased with increasing phosphoenolpyruvate carboxylase (PEPC) activity and decreasing nicotinamide adenine dinucleotide-malate dehydrogenase (NAD-MDH) activity. Citrate and isocitrate content increased with increasing PEPC and aconitase (ACO) activities, respectively. Both acid invertase and neutral invertase had higher activities at the early stage than later stage of fruit development. Fructose content decreased with increasing phosphoglucoisomerase (PGI) activity, whereas glucose content increased with decreasing hexokinase (HK) activity. CONCLUSION Dynamics in organic acid anions were not solely controlled by a single enzyme but regulated by the integrated activity of enzymes such as nicotinamide adenine dinucleotide phosphate-malic enzyme (NADP-ME), NAD-ME, PEPC, ACO and NADP-isocitrate dehydrogenase. Sugar metabolism enzymes such as PGI, invertase and HK may play vital roles in the regulation of individual sugar metabolic processes. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Cui-Cui Jiang
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Zhi-Zhen Fang
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Dan-Rong Zhou
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Shao-Lin Pan
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Xin-Fu Ye
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| |
Collapse
|
33
|
Sucrose synthesis in Unpollinated ovaries of pomegranate (Punica granatum L.), as well as, in reproductive and vegetative shoot apices. Biologia (Bratisl) 2018. [DOI: 10.2478/s11756-018-0154-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
34
|
Cheng J, Wen S, Xiao S, Lu B, Ma M, Bie Z. Overexpression of the tonoplast sugar transporter CmTST2 in melon fruit increases sugar accumulation. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:511-523. [PMID: 29309616 PMCID: PMC5853577 DOI: 10.1093/jxb/erx440] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 11/18/2017] [Indexed: 05/06/2023]
Abstract
Fruits are an important part of the human diet and sugar content is a major criterion used to evaluate fruit quality. Melon fruit accumulate high sugar concentrations during their development; however, the mechanism through which these sugars are transported into the vacuoles of fruit cells for storage remains unclear. In this study, three tonoplast sugar transporters (TSTs), CmTST1, CmTST2, and CmTST3, were isolated from melon plants. Analysis of subcellular localization revealed that all these proteins were targeted to the tonoplast, and evaluation of spatial expression and promoter-GUS activity indicated that they had different expression patterns in the plant. RT-PCR and qRT-PCR results indicated that CmTST2 exhibited the highest expression level among the TST isoforms during melon fruit development. Histochemical and immunohistochemistry localization experiments were performed to identify the tissue- and cell-type localization of CmTST2 in the fruit, and the results indicated that both its transcription and translation were in the mesocarp and vascular cells. Overexpressing the CmTST2 gene in strawberry fruit and cucumber plants by transient expression and stable transformation, respectively, both increased sucrose, fructose, and glucose accumulation in the fruit. The results indicate that CmTST2 plays an important role in sugar accumulation in melon fruit.
Collapse
Affiliation(s)
- Jintao Cheng
- College of Horticulture and Forestry, Huazhong Agricultural University and Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, P. R. China
| | - Suying Wen
- College of Horticulture and Forestry, Huazhong Agricultural University and Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, P. R. China
| | - Shuang Xiao
- College of Horticulture and Forestry, Huazhong Agricultural University and Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, P. R. China
| | - Baiyi Lu
- College of Horticulture and Forestry, Huazhong Agricultural University and Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, P. R. China
| | - Mingru Ma
- College of Horticulture and Forestry, Huazhong Agricultural University and Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, P. R. China
| | - Zhilong Bie
- College of Horticulture and Forestry, Huazhong Agricultural University and Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, P. R. China
- Correspondence:
| |
Collapse
|
35
|
Karppinen K, Tegelberg P, Häggman H, Jaakola L. Abscisic Acid Regulates Anthocyanin Biosynthesis and Gene Expression Associated With Cell Wall Modification in Ripening Bilberry ( Vaccinium myrtillus L.) Fruits. FRONTIERS IN PLANT SCIENCE 2018; 9:1259. [PMID: 30210522 PMCID: PMC6124387 DOI: 10.3389/fpls.2018.01259] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 08/09/2018] [Indexed: 05/18/2023]
Abstract
Ripening of non-climacteric bilberry (Vaccinium myrtillus L.) fruit is characterized by a high accumulation of health-beneficial anthocyanins. Plant hormone abscisic acid (ABA) and sucrose have been shown to be among the central signaling molecules coordinating non-climacteric fruit ripening and anthocyanin accumulation in some fruits such as strawberry. Our earlier studies have demonstrated an elevation in endogenous ABA level in bilberry fruit at the onset of ripening indicating a role for ABA in the regulation of bilberry fruit ripening. In the present study, we show that the treatment of unripe green bilberry fruits with exogenous ABA significantly promotes anthocyanin biosynthesis and accumulation both in fruits attached and detached to the plant. In addition, ABA biosynthesis inhibitor, fluridone, delayed anthocyanin accumulation in bilberries. Exogenous ABA also induced the expression of several genes involved in cell wall modification in ripening bilberry fruits. Furthermore, silencing of VmNCED1, the key gene in ABA biosynthesis, was accompanied by the down-regulation in the expression of key anthocyanin biosynthetic genes. In contrast, the treatment of unripe green bilberry fruits with exogenous sucrose or glucose did not lead to an enhancement in the anthocyanin accumulation neither in fruits attached to plant nor in post-harvest fruits. Moreover, sugars failed to induce the expression of genes associated in anthocyanin biosynthesis or ABA biosynthesis while could elevate expression of some genes associated with cell wall modification in post-harvest bilberry fruits. Our results demonstrate that ABA plays a major role in the regulation of ripening-related processes such as anthocyanin biosynthesis and cell wall modification in bilberry fruit, whereas sugars seem to have minor regulatory roles in the processes. The results indicate that the regulation of bilberry fruit ripening differs from strawberry that is currently considered as a model of non-climacteric fruit ripening. In this study, we also identified transcription factors, which expression was enhanced by ABA, as potential regulators of ABA-mediated bilberry fruit ripening processes.
Collapse
Affiliation(s)
- Katja Karppinen
- Department of Ecology and Genetics, University of Oulu, Oulu, Finland
- Climate laboratory Holt, Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Pinja Tegelberg
- Department of Ecology and Genetics, University of Oulu, Oulu, Finland
| | - Hely Häggman
- Department of Ecology and Genetics, University of Oulu, Oulu, Finland
| | - Laura Jaakola
- Climate laboratory Holt, Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
- Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway
- *Correspondence: Laura Jaakola,
| |
Collapse
|
36
|
Farcuh M, Li B, Rivero RM, Shlizerman L, Sadka A, Blumwald E. Sugar metabolism reprogramming in a non-climacteric bud mutant of a climacteric plum fruit during development on the tree. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:5813-5828. [PMID: 29186495 PMCID: PMC5854140 DOI: 10.1093/jxb/erx391] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 10/06/2017] [Indexed: 05/08/2023]
Abstract
We investigated sugar metabolism in leaves and fruits of two Japanese plum (Prunus salicina Lindl.) cultivars, the climacteric Santa Rosa and its bud sport mutant the non-climacteric Sweet Miriam, during development on the tree. We previously characterized differences between the two cultivars. Here, we identified key sugar metabolic pathways. Pearson coefficient correlations of metabolomics and transcriptomic data and weighted gene co-expression network analysis (WGCNA) of RNA sequencing (RNA-Seq) data allowed the identification of 11 key sugar metabolism-associated genes: sucrose synthase, sucrose phosphate synthase, cytosolic invertase, vacuolar invertase, invertase inhibitor, α-galactosidase, β-galactosidase, galactokinase, trehalase, galactinol synthase, and raffinose synthase. These pathways were further assessed and validated through the biochemical characterization of the gene products and with metabolite analysis. Our results demonstrated the reprogramming of sugar metabolism in both leaves and fruits in the non-climacteric plum, which displayed a shift towards increased sorbitol synthesis. Climacteric and non-climacteric fruits showed differences in their UDP-galactose metabolism towards the production of galactose and raffinose, respectively. The higher content of galactinol, myo-inositol, raffinose, and trehalose in the non-climacteric fruits could improve the ability of the fruits to cope with the oxidative processes associated with fruit ripening. Overall, our results support a relationship between sugar metabolism, ethylene, and ripening behavior.
Collapse
Affiliation(s)
| | - Bosheng Li
- Department of Plant Sciences, University of California, USA
| | | | | | - Avi Sadka
- Department of Fruit Tree Sciences, ARO, Israel
| | - Eduardo Blumwald
- Department of Plant Sciences, University of California, USA
- Correspondence:
| |
Collapse
|
37
|
Argyris JM, Díaz A, Ruggieri V, Fernández M, Jahrmann T, Gibon Y, Picó B, Martín-Hernández AM, Monforte AJ, Garcia-Mas J. QTL Analyses in Multiple Populations Employed for the Fine Mapping and Identification of Candidate Genes at a Locus Affecting Sugar Accumulation in Melon ( Cucumis melo L.). FRONTIERS IN PLANT SCIENCE 2017; 8:1679. [PMID: 29018473 PMCID: PMC5623194 DOI: 10.3389/fpls.2017.01679] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 09/12/2017] [Indexed: 05/24/2023]
Abstract
Sugar content is the major determinant of both fruit quality and consumer acceptance in melon (Cucumis melo L), and is a primary target for crop improvement. Near-isogenic lines (NILs) derived from the intraspecific cross between a "Piel de Sapo" (PS) type and the exotic cultivar "Songwhan Charmi" (SC), and several populations generated from the cross of PS × Ames 24294 ("Trigonus"), a wild melon, were used to identify QTL related to sugar and organic acid composition. Seventy-eight QTL were detected across several locations and different years, with three important clusters related to sugar content located on chromosomes 4, 5, and 7. Two PS × SC NILs (SC5-1 and SC5-2) sharing a common genomic interval of 1.7 Mb at the top of chromosome 5 contained QTL reducing soluble solids content (SSC) and sucrose content by an average of 29 and 68%, respectively. This cluster collocated with QTL affecting sugar content identified in other studies in lines developed from the PS × SC cross and supported the presence of a stable consensus locus involved in sugar accumulation that we named SUCQSC5.1. QTL reducing soluble solids and sucrose content identified in the "Trigonus" mapping populations, as well as QTL identified in previous studies from other ssp. agrestis sources, collocated with SUCQSC5.1, suggesting that they may be allelic and implying a role in domestication. In subNILs derived from the PS × SC5-1 cross, SUCQSC5.1 reduced SSC and sucrose content by an average of 18 and 34%, respectively, and was fine-mapped to a 56.1 kb interval containing four genes. Expression analysis of the candidate genes in mature fruit showed differences between the subNILs with PS alleles that were "high" sugar and SC alleles of "low" sugar phenotypes for MELO3C014519, encoding a putative BEL1-like homeodomain protein. Sequence differences in the gene predicted to affect protein function were restricted to SC and other ssp. agrestis cultivar groups. These results provide the basis for further investigation of genes affecting sugar accumulation in melon.
Collapse
Affiliation(s)
- Jason M. Argyris
- Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Barcelona, Spain
- Institut de Recerca i Tecnologia Agroalimentàries, Barcelona, Spain
| | - Aurora Díaz
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Valentino Ruggieri
- Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Barcelona, Spain
- Institut de Recerca i Tecnologia Agroalimentàries, Barcelona, Spain
| | | | | | - Yves Gibon
- UMR1332 Biologie du Fruit et Pathologie, Plateforme Métabolome Bordeaux, INRA, University of Bordeaux, Villenave d'Ornon, France
| | - Belén Picó
- Institute for the Conservation and Breeding of the Agricultural Biodiversity, Universitat Politècnica de València (COMAV-UPV), Valencia, Spain
| | - Ana M. Martín-Hernández
- Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Barcelona, Spain
- Institut de Recerca i Tecnologia Agroalimentàries, Barcelona, Spain
| | - Antonio J. Monforte
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Jordi Garcia-Mas
- Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Barcelona, Spain
- Institut de Recerca i Tecnologia Agroalimentàries, Barcelona, Spain
| |
Collapse
|
38
|
Wang XQ, Zheng LL, Lin H, Yu F, Sun LH, Li LM. Grape hexokinases are involved in the expression regulation of sucrose synthase- and cell wall invertase-encoding genes by glucose and ABA. PLANT MOLECULAR BIOLOGY 2017; 94:61-78. [PMID: 28247243 DOI: 10.1007/s11103-017-0593-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 02/09/2017] [Indexed: 05/18/2023]
Abstract
Hexokinase (HXK, EC 2.7.1.1) is a multifunctional protein that both is involved in catalyzing the first step of glycolysis and plays an important role in sugar signaling. However, the supporting genetic evidence on hexokinases (CsHXKs) from grape (Vitis vinifera L. cv. Cabernet Sauvignon) berries has been lacking. Here, to investigate the role of CsHXK isoforms as glucose (Glc) and abscisic acid (ABA) sensors, we cloned two hexokinase isozymes, CsHXK1 and CsHXK2 with highly conserved genomic structure of nine exons and eight introns. We also found adenosine phosphate binding, substrate recognition and connection sites in their putative proteins. During grape berry development, the expression profiles of two CsHXK isoforms, sucrose synthases (SuSys) and cell wall invertase (CWINV) genes increased concomitantly with high levels of endogenous Glc and ABA. Furthermore, we showed that in wild type grape berry calli (WT), glucose repressed the expression levels of sucrose synthase (SuSy) and cell wall invertase (CWINV) genes, while ABA increased their expression levels. ABA could not only effectively improve the expression levels of SuSy and CWINV, but also block the repression induced by glucose on the expression of both genes. However, after silencing CsHXK1 or CsHXK2 in grape calli, SuSy and CWINV expression were enhanced, and the expressions of the two genes are insensitive in response to Glc treatment. Interestingly, exogenous ABA alone could not or less increase SuSy and CWINV expression in silencing CsHXK1 or CsHXK2 grape calli compared to WT. Meantime, ABA could not block the repression induced by glucose on the expression of SuSy and CWINV in CsHXK1 or CsHXK2 mutants. Therefore, Glc signal transduction depends on the regulation of CsHXK1 or CsHXK2. ABA signal was also disturbed by CsHXK1 or CsHXK2 silencing. The present results provide new insights into the regulatory role of Glc and ABA on the enzymes related to sugar metabolism in grape berry.
Collapse
Affiliation(s)
- Xiu-Qin Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Qinghua East Road No 17, Haidian District, Beijing, 100083, China.
| | - Li-Li Zheng
- College of Food Science and Nutritional Engineering, China Agricultural University, Qinghua East Road No 17, Haidian District, Beijing, 100083, China
| | - Hao Lin
- College of Food Science and Nutritional Engineering, China Agricultural University, Qinghua East Road No 17, Haidian District, Beijing, 100083, China
| | - Fei Yu
- College of Food Science and Nutritional Engineering, China Agricultural University, Qinghua East Road No 17, Haidian District, Beijing, 100083, China
| | - Li-Hui Sun
- College of Food Science and Nutritional Engineering, China Agricultural University, Qinghua East Road No 17, Haidian District, Beijing, 100083, China
| | - Li-Mei Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Qinghua East Road No 17, Haidian District, Beijing, 100083, China
| |
Collapse
|
39
|
Wyatt LE, Strickler SR, Mueller LA, Mazourek M. Comparative analysis of Cucurbita pepo metabolism throughout fruit development in acorn squash and oilseed pumpkin. HORTICULTURE RESEARCH 2016; 3:16045. [PMID: 27688889 PMCID: PMC5030761 DOI: 10.1038/hortres.2016.45] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Revised: 08/20/2016] [Accepted: 08/22/2016] [Indexed: 05/23/2023]
Abstract
Both the fruit mesocarp and the seeds of winter squash can be used for consumption, although the focus of breeding efforts varies by cultivar. Cultivars bred for fruit consumption are selected for fruit mesocarp quality traits such as carotenoid content, percent dry matter, and percent soluble solids, while these traits are essentially ignored in oilseed pumpkins. To compare fruit development in these two types of squash, we sequenced the fruit transcriptome of two cultivars bred for different purposes: an acorn squash, 'Sweet REBA', and an oilseed pumpkin, 'Lady Godiva'. Putative metabolic pathways were developed for carotenoid, starch, and sucrose synthesis in winter squash fruit and squash homologs were identified for each of the structural genes in the pathways. Gene expression, especially of known rate-limiting and branch point genes, corresponded with metabolite accumulation both across development and between the two cultivars. Thus, developmental regulation of metabolite genes is an important factor in winter squash fruit quality.
Collapse
Affiliation(s)
- Lindsay E Wyatt
- School of Integrative Plant Sciences, Section of Plant Breeding and Genetics, Cornell University, Ithaca, NY 14850, USA
| | | | - Lukas A Mueller
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, USA
| | - Michael Mazourek
- School of Integrative Plant Sciences, Section of Plant Breeding and Genetics, Cornell University, Ithaca, NY 14850, USA
| |
Collapse
|
40
|
Zhang H, Yi H, Wu M, Zhang Y, Zhang X, Li M, Wang G. Mapping the Flavor Contributing Traits on "Fengwei Melon" (Cucumis melo L.) Chromosomes Using Parent Resequencing and Super Bulked-Segregant Analysis. PLoS One 2016; 11:e0148150. [PMID: 26840947 PMCID: PMC4739687 DOI: 10.1371/journal.pone.0148150] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 01/13/2016] [Indexed: 11/30/2022] Open
Abstract
We used a next-generation high-throughput sequencing platform to resequence the Xinguowei and Shouxing melon cultivars, the parents of Fengwei melon. We found 84% of the reads (under a coverage rate of “13×”) placed on the reference genome DHL92. There were 2,550,000 single-nucleotide polymorphisms and 140,000 structural variations in the two genomes. We also identified 1,290 polymorphic genes between Xinguowei and Shouxing. We combined specific length amplified fragment sequencing (SLAF-seq) and bulked-segregant analysis (super-BSA) to analyze the two parents and the F2 extreme phenotypes. This combined method yielded 12,438,270 reads, 46,087 SLAF tags, and 4,480 polymorphic markers (average depth of 161.81×). There were six sweet trait-related regions containing 13 differential SLAF markers, and 23 sour trait-related regions containing 48 differential SLAF markers. We further fine-mapped the sweet trait to the genomic regions on chromosomes 6, 10, 11, and 12. Correspondingly, we mapped the sour trait-related genomic regions to chromosomes 2, 3, 4, 5, 9, and 12. Finally, we positioned nine of the 61 differential markers in the sweet and sour trait candidate regions on the parental genome. These markers corresponded to one sweet and eight sour trait-related genes. Our study provides a basis for marker-assisted breeding of desirable sweet and sour traits in Fengwei melons.
Collapse
Affiliation(s)
- Hong Zhang
- Hami Melon Research Center, Xinjiang Academy of Agricultural Science, Urumqi, Xinjiang, China
- * E-mail:
| | - Hongping Yi
- Hami Melon Research Center, Xinjiang Academy of Agricultural Science, Urumqi, Xinjiang, China
| | - Mingzhu Wu
- Hami Melon Research Center, Xinjiang Academy of Agricultural Science, Urumqi, Xinjiang, China
| | - Yongbin Zhang
- Hami Melon Research Center, Xinjiang Academy of Agricultural Science, Urumqi, Xinjiang, China
| | - Xuejin Zhang
- Hami Melon Research Center, Xinjiang Academy of Agricultural Science, Urumqi, Xinjiang, China
| | - Meihua Li
- Hami Melon Research Center, Xinjiang Academy of Agricultural Science, Urumqi, Xinjiang, China
| | - Guangzhi Wang
- Hami Melon Research Center, Xinjiang Academy of Agricultural Science, Urumqi, Xinjiang, China
| |
Collapse
|
41
|
Wang J, Sun L, Xie L, He Y, Luo T, Sheng L, Luo Y, Zeng Y, Xu J, Deng X, Cheng Y. Regulation of cuticle formation during fruit development and ripening in 'Newhall' navel orange (Citrus sinensis Osbeck) revealed by transcriptomic and metabolomic profiling. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 243:131-44. [PMID: 26795158 DOI: 10.1016/j.plantsci.2015.12.010] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Revised: 12/19/2015] [Accepted: 12/21/2015] [Indexed: 05/18/2023]
Abstract
Fruit cuticle, which is composed of cutin and wax and biosynthesized during fruit development, plays important roles in the prevention of water loss and the resistance to pathogen infection during fruit development and postharvest storage. However, the key factors and mechanisms regarding the cuticle biosynthesis in citrus fruits are still unclear. Here, fruit cuticle of 'Newhall' navel orange (Citrus sinensis Osbeck) was studied from the stage of fruit expansion to postharvest storage from the perspectives of morphology, transcription and metabolism. The results demonstrated that cutin accumulation is synchronous with fruit expansion, while wax synthesis is synchronous with fruit maturation. Metabolic profile of fruits peel revealed that transition of metabolism of fruit peel occurred from 120 to 150 DAF and ABA was predicted to regulate citrus wax synthesis during the development of Newhall fruits. RNA-seq analysis of the peel from the above two stages manifested that the genes involved in photosynthesis were repressed, while the genes involved in the biosynthesis of wax, cutin and lignin were significantly induced at later stages. Further real-time PCR predicted that MYB transcription factor GL1-like regulates citrus fruits wax synthesis. These results are valuable for improving the fruit quality during development and storage.
Collapse
Affiliation(s)
- Jinqiu Wang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), MOA, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, People's Republic of China.
| | - Li Sun
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), MOA, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, People's Republic of China.
| | - Li Xie
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), MOA, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, People's Republic of China.
| | - Yizhong He
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), MOA, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, People's Republic of China.
| | - Tao Luo
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), MOA, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, People's Republic of China.
| | - Ling Sheng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), MOA, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, People's Republic of China.
| | - Yi Luo
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), MOA, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, People's Republic of China.
| | - Yunliu Zeng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), MOA, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, People's Republic of China.
| | - Juan Xu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), MOA, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, People's Republic of China.
| | - Xiuxin Deng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), MOA, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, People's Republic of China.
| | - Yunjiang Cheng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), MOA, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, People's Republic of China.
| |
Collapse
|
42
|
|
43
|
Zhang H, Wang H, Yi H, Zhai W, Wang G, Fu Q. Transcriptome profiling of Cucumis melo fruit development and ripening. HORTICULTURE RESEARCH 2016; 3:16014. [PMID: 27162641 PMCID: PMC4847005 DOI: 10.1038/hortres.2016.14] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 03/13/2016] [Accepted: 03/14/2016] [Indexed: 05/06/2023]
Abstract
Hami melon (Cucumis melo) is the most important melon crop grown in the north-western provinces of China. In order to elucidate the genetic and molecular basis of developmental changes related to size, flesh, sugar and sour content, we performed a transcriptome profiling of its fruit development. Over 155 000 000 clean reads were mapped to MELONOMICS genome, yielding a total of 23 299 expressed genes. Of these, 554 genes were specifically expressed in flowers, and 3260 genes in fruit flesh tissues. The 7892 differentially expressed genes (DEGs) were related to fruit development and mediated diverse metabolic processes and pathways; 83 DEGs and 13 DEGs were possibly associated with sucrose and citric acid accumulation, respectively. The quantitative real-time PCR results showed that six out of eight selected candidate genes displayed expression trends similar to our DEGs. This study profiled the gene expression related to different growing stages of flower and fruit at the whole transcriptome level to provide an insight into the regulatory mechanism underlying Hami melon fruit development.
Collapse
Affiliation(s)
- Hong Zhang
- Hami Melon Research Center, Xinjiang Academy of Agricultural Science, Urumqi 830091, China
- ()
| | - Huaisong Wang
- The Department of Cucurbitaceae Vegetables Genetics and Breeding, Institute of Vegetables and Flowers of the Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hongping Yi
- Hami Melon Research Center, Xinjiang Academy of Agricultural Science, Urumqi 830091, China
| | - Wenqiang Zhai
- Hami Melon Research Center, Xinjiang Academy of Agricultural Science, Urumqi 830091, China
| | - Guangzhi Wang
- Hami Melon Research Center, Xinjiang Academy of Agricultural Science, Urumqi 830091, China
| | - Qiushi Fu
- The Department of Cucurbitaceae Vegetables Genetics and Breeding, Institute of Vegetables and Flowers of the Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
44
|
Kong Q, Gao L, Cao L, Liu Y, Saba H, Huang Y, Bie Z. Assessment of Suitable Reference Genes for Quantitative Gene Expression Studies in Melon Fruits. FRONTIERS IN PLANT SCIENCE 2016; 7:1178. [PMID: 27536316 PMCID: PMC4971084 DOI: 10.3389/fpls.2016.01178] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 07/21/2016] [Indexed: 05/03/2023]
Abstract
Melon (Cucumis melo L.) is an attractive model plant for investigating fruit development because of its morphological, physiological, and biochemical diversity. Quantification of gene expression by quantitative reverse transcription polymerase chain reaction (qRT-PCR) with stably expressed reference genes for normalization can effectively elucidate the biological functions of genes that regulate fruit development. However, the reference genes for data normalization in melon fruits have not yet been systematically validated. This study aims to assess the suitability of 20 genes for their potential use as reference genes in melon fruits. Expression variations of these genes were measured in 24 samples that represented different developmental stages of fertilized and parthenocarpic melon fruits by qRT-PCR analysis. GeNorm identified ribosomal protein L (CmRPL) and cytosolic ribosomal protein S15 (CmRPS15) as the best pair of reference genes, and as many as five genes including CmRPL, CmRPS15, TIP41-like family protein (CmTIP41), cyclophilin ROC7 (CmCYP7), and ADP ribosylation factor 1 (CmADP) were required for more reliable normalization. NormFinder ranked CmRPS15 as the best single reference gene, and RAN GTPase gene family (CmRAN) and TATA-box binding protein (CmTBP2) as the best combination of reference genes in melon fruits. Their effectiveness was further validated by parallel analyses on the activities of soluble acid invertase and sucrose phosphate synthase, and expression profiles of their respective encoding genes CmAIN2 and CmSPS1, as well as sucrose contents during melon fruit ripening. The validated reference genes will help to improve the accuracy of gene expression studies in melon fruits.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zhilong Bie
- *Correspondence: Qiusheng Kong, Zhilong Bie,
| |
Collapse
|
45
|
Yaari M, Doron-Faigenboim A, Koltai H, Salame L, Glazer I. Transcriptome analysis of stress tolerance in entomopathogenic nematodes of the genus Steinernema. Int J Parasitol 2015; 46:83-95. [PMID: 26598027 DOI: 10.1016/j.ijpara.2015.08.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Revised: 08/13/2015] [Accepted: 08/14/2015] [Indexed: 11/16/2022]
Abstract
Entomopathogenic nematodes of the genus Steinernema are effective biological control agents. The infective stage of these parasites can withstand environmental stresses such as desiccation and heat, but the molecular and physiological mechanisms involved in this tolerance are poorly understood. We used 454 pyrosequencing to analyse transcriptome expression in Steinernema spp. that differ in their tolerance to stress. We compared these species, following heat and desiccation treatments, with their non-stressed counterparts. More than 98% of the transcripts found matched homologous sequences in the UniRef90 database, mostly nematode genes (85%). Among those, 60.8% aligned to the vertebrate parasites including Ascaris suum, Loa loa, and Brugia malayi, 23.3% aligned to bacteriovores, mostly from the genus Caenorhabditis, and 1% aligned to EPNs. Analysing gene expression patterns of the stress response showed a large fraction of down-regulated genes in the desiccation-tolerant nematode Steinernema riobrave, whereas a larger fraction of the genes in the susceptible Steinernema feltiae Carmiel and Gvulot strains were up-regulated. We further compared metabolic pathways and the expression of specific stress-related genes. In the more tolerant nematode, more genes were down-regulated whereas in the less tolerant strains, more genes were up-regulated. This phenomenon warrants further exploration of the mechanism governing induction of the down-regulation process. The present study revealed many genes and metabolic cycles that are differentially expressed in the stressed nematodes. Some of those are well known in other nematodes or anhydrobiotic organisms, but several are new and should be further investigated for their involvement in desiccation and heat tolerance. Our data establish a foundation for further exploration of stress tolerance in entomopathogenic nematodes and, in the long term, for improving their ability to withstand suboptimal environmental conditions.
Collapse
Affiliation(s)
- Mor Yaari
- Department of Entomology and Nematology, Agricultural Research Organization, The Volcani Center, P.O. Box 6, Bet Dagan 50250, Israel
| | - Adi Doron-Faigenboim
- Department of Ornamental Horticulture, Agricultural Research Organization, Israel
| | - Hinanit Koltai
- Department of Ornamental Horticulture, Agricultural Research Organization, Israel
| | - Liora Salame
- Department of Entomology and Nematology, Agricultural Research Organization, The Volcani Center, P.O. Box 6, Bet Dagan 50250, Israel
| | - Itamar Glazer
- Department of Entomology and Nematology, Agricultural Research Organization, The Volcani Center, P.O. Box 6, Bet Dagan 50250, Israel.
| |
Collapse
|
46
|
Chayut N, Yuan H, Ohali S, Meir A, Yeselson Y, Portnoy V, Zheng Y, Fei Z, Lewinsohn E, Katzir N, Schaffer AA, Gepstein S, Burger J, Li L, Tadmor Y. A bulk segregant transcriptome analysis reveals metabolic and cellular processes associated with Orange allelic variation and fruit β-carotene accumulation in melon fruit. BMC PLANT BIOLOGY 2015; 15:274. [PMID: 26553015 PMCID: PMC4640158 DOI: 10.1186/s12870-015-0661-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 11/03/2015] [Indexed: 05/19/2023]
Abstract
BACKGROUND Melon fruit flesh color is primarily controlled by the "golden" single nucleotide polymorhism of the "Orange" gene, CmOr, which dominantly triggers the accumulation of the pro-vitamin A molecule, β-carotene, in the fruit mesocarp. The mechanism by which CmOr operates is not fully understood. To identify cellular and metabolic processes associated with CmOr allelic variation, we compared the transcriptome of bulks of developing fruit of homozygous orange and green fruited F3 families derived from a cross between orange and green fruited parental lines. RESULTS Pooling together F3 families that share same fruit flesh color and thus the same CmOr allelic variation, normalized traits unrelated to CmOr allelic variation. RNA sequencing analysis of these bulks enabled the identification of differentially expressed genes. These genes were clustered into functional groups. The relatively enriched functional groups were those involved in photosynthesis, RNA and protein regulation, and response to stress. CONCLUSIONS The differentially expressed genes and the enriched processes identified here by bulk segregant RNA sequencing analysis are likely part of the regulatory network of CmOr. Our study demonstrates the resolution power of bulk segregant RNA sequencing in identifying genes related to commercially important traits and provides a useful tool for better understanding the mode of action of CmOr gene in the mediation of carotenoid accumulation.
Collapse
Affiliation(s)
- Noam Chayut
- Plant Science Institute, Agricultural Research Organization, Newe Ya'ar Research Center, P.O. Box 1021, Ramat Yishay, 30095, Israel.
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, 32000, Israel.
| | - Hui Yuan
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA.
| | - Shachar Ohali
- Plant Science Institute, Agricultural Research Organization, Newe Ya'ar Research Center, P.O. Box 1021, Ramat Yishay, 30095, Israel.
| | - Ayala Meir
- Plant Science Institute, Agricultural Research Organization, Newe Ya'ar Research Center, P.O. Box 1021, Ramat Yishay, 30095, Israel.
| | - Yelena Yeselson
- Plant Science Institute, Agricultural Research Organization, The Volcani Center, P.O.B. 6, Bet-Dagan, 50250, ISRAEL.
| | - Vitaly Portnoy
- Plant Science Institute, Agricultural Research Organization, Newe Ya'ar Research Center, P.O. Box 1021, Ramat Yishay, 30095, Israel.
| | - Yi Zheng
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY, 14853, USA.
| | - Zhangjun Fei
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY, 14853, USA.
| | - Efraim Lewinsohn
- Plant Science Institute, Agricultural Research Organization, Newe Ya'ar Research Center, P.O. Box 1021, Ramat Yishay, 30095, Israel.
| | - Nurit Katzir
- Plant Science Institute, Agricultural Research Organization, Newe Ya'ar Research Center, P.O. Box 1021, Ramat Yishay, 30095, Israel.
| | - Arthur A Schaffer
- Plant Science Institute, Agricultural Research Organization, The Volcani Center, P.O.B. 6, Bet-Dagan, 50250, ISRAEL.
| | - Shimon Gepstein
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, 32000, Israel.
| | - Joseph Burger
- Plant Science Institute, Agricultural Research Organization, Newe Ya'ar Research Center, P.O. Box 1021, Ramat Yishay, 30095, Israel.
| | - Li Li
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA.
- US Department of Agriculture-Agricultural Research Service, Robert W Holly Center for Agriculture and Health, Cornell University, Ithaca, NY, 14853, USA.
| | - Yaakov Tadmor
- Plant Science Institute, Agricultural Research Organization, Newe Ya'ar Research Center, P.O. Box 1021, Ramat Yishay, 30095, Israel.
| |
Collapse
|
47
|
Argyris JM, Pujol M, Martín-Hernández AM, Garcia-Mas J. Combined use of genetic and genomics resources to understand virus resistance and fruit quality traits in melon. PHYSIOLOGIA PLANTARUM 2015; 155:4-11. [PMID: 25594580 DOI: 10.1111/ppl.12323] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 12/23/2014] [Indexed: 05/03/2023]
Abstract
The availability of the genome sequence of many crop species during the past few years has opened a new era in plant biology, allowing for the performance of massive genomic studies in plant species other than the classical models Arabidopsis and rice. One of these crop species is melon (Cucumis melo), a cucurbit of high economic value that has become an interesting model for the study of biological processes such as fruit ripening, sex determination and phloem transport. The recent availability of the melon genome sequence, together with a number of genetic and genomic resources, provides powerful tools that can be used to assist in the main melon breeding targets, namely disease resistance and fruit quality. In this review, we will describe recent data obtained combining the use of a melon near isogenic line (NIL) population and genomic resources to gain insight into agronomically important traits as fruit ripening, resistance to Cucumber Mosaic virus (CMV) and the accumulation of sugars in fruits.
Collapse
Affiliation(s)
- Jason M Argyris
- Institut de Recerca i Tecnologia Agroalimentàries, Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Barcelona, Spain
| | - Marta Pujol
- Institut de Recerca i Tecnologia Agroalimentàries, Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Barcelona, Spain
| | - Ana Montserrat Martín-Hernández
- Institut de Recerca i Tecnologia Agroalimentàries, Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Barcelona, Spain
| | - Jordi Garcia-Mas
- Institut de Recerca i Tecnologia Agroalimentàries, Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Barcelona, Spain
| |
Collapse
|
48
|
Saladié M, Cañizares J, Phillips MA, Rodriguez-Concepcion M, Larrigaudière C, Gibon Y, Stitt M, Lunn JE, Garcia-Mas J. Comparative transcriptional profiling analysis of developing melon (Cucumis melo L.) fruit from climacteric and non-climacteric varieties. BMC Genomics 2015; 16:440. [PMID: 26054931 PMCID: PMC4460886 DOI: 10.1186/s12864-015-1649-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 05/20/2015] [Indexed: 11/14/2022] Open
Abstract
Background In climacteric fruit-bearing species, the onset of fruit ripening is marked by a transient rise in respiration rate and autocatalytic ethylene production, followed by rapid deterioration in fruit quality. In non-climacteric species, there is no increase in respiration or ethylene production at the beginning or during fruit ripening. Melon is unusual in having climacteric and non-climacteric varieties, providing an interesting model system to compare both ripening types. Transcriptomic analysis of developing melon fruits from Védrantais and Dulce (climacteric) and Piel de sapo and PI 161375 (non-climacteric) varieties was performed to understand the molecular mechanisms that differentiate the two fruit ripening types. Results Fruits were harvested at 15, 25, 35 days after pollination and at fruit maturity. Transcript profiling was performed using an oligo-based microarray with 75 K probes. Genes linked to characteristic traits of fruit ripening were differentially expressed between climacteric and non-climacteric types, as well as several transcription factor genes and genes encoding enzymes involved in sucrose catabolism. The expression patterns of some genes in PI 161375 fruits were either intermediate between. Piel de sapo and the climacteric varieties, or more similar to the latter. PI 161375 fruits also accumulated some carotenoids, a characteristic trait of climacteric varieties. Conclusions Simultaneous changes in transcript abundance indicate that there is coordinated reprogramming of gene expression during fruit development and at the onset of ripening in both climacteric and non-climacteric fruits. The expression patterns of genes related to ethylene metabolism, carotenoid accumulation, cell wall integrity and transcriptional regulation varied between genotypes and was consistent with the differences in their fruit ripening characteristics. There were differences between climacteric and non-climacteric varieties in the expression of genes related to sugar metabolism suggesting that they may be potential determinants of sucrose content and post-harvest stability of sucrose levels in fruit. Several transcription factor genes were also identified that were differentially expressed in both types, implicating them in regulation of ripening behaviour. The intermediate nature of PI 161375 suggested that classification of melon fruit ripening behaviour into just two distinct types is an over-simplification, and that in reality there is a continuous spectrum of fruit ripening behaviour. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1649-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Montserrat Saladié
- IRTA, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Barcelona, 08193, Spain. .,Present address: School of Chemistry and Biochemistry, Biochemistry and Molecular Biology, The University of Western Australia, Crawley, WA, 6009, Australia.
| | - Joaquin Cañizares
- COMAV, Institute for the Conservation and Breeding of Agricultural Biodiversity, Universitat Politècnica de València (UPV), Camino de Vera s/n, Valencia, 46022, Spain.
| | - Michael A Phillips
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Barcelona, 08193, Spain.
| | - Manuel Rodriguez-Concepcion
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Barcelona, 08193, Spain.
| | - Christian Larrigaudière
- IRTA, Parc Científic i Tecnològic Agroalimentari, Parc de Gardeny, Edifici Fruitcentre, Lleida, 25003, Spain.
| | - Yves Gibon
- Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Golm, Am Mühlenberg 1, Potsdam, 14476, (OT) Golm, Germany. .,Present address: INRA Bordeaux, University of Bordeaux, UMR1332 Fruit Biology and Pathology, Villenave d'Ornon, F-33883, France.
| | - Mark Stitt
- Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Golm, Am Mühlenberg 1, Potsdam, 14476, (OT) Golm, Germany.
| | - John Edward Lunn
- Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Golm, Am Mühlenberg 1, Potsdam, 14476, (OT) Golm, Germany.
| | - Jordi Garcia-Mas
- IRTA, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Barcelona, 08193, Spain.
| |
Collapse
|
49
|
Leida C, Moser C, Esteras C, Sulpice R, Lunn JE, de Langen F, Monforte AJ, Picó B. Variability of candidate genes, genetic structure and association with sugar accumulation and climacteric behavior in a broad germplasm collection of melon (Cucumis melo L.). BMC Genet 2015; 16:28. [PMID: 25886993 PMCID: PMC4380257 DOI: 10.1186/s12863-015-0183-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 02/18/2015] [Indexed: 11/15/2022] Open
Abstract
Background A collection of 175 melon (Cucumis melo L.) accessions (including wild relatives, feral types, landraces, breeding lines and commercial cultivars) from 50 countries was selected to study the phenotypic variability for ripening behavior and sugar accumulation. The variability of single nucleotide polymorphisms (SNPs) at 53 selected candidate genes involved in sugar accumulation and fruit ripening processes was studied, as well as their association with phenotypic variation of related traits. Results The collection showed a strong genetic structure, defining seven groups plus a number of accessions that could not be associated to any of the groups (admixture), which fitted well with the botanical classification of melon varieties. The variability in candidate genes for ethylene, cell wall and sugar-related traits was high and similar to SNPs located in reference genes. Variability at ripening candidate genes had an important weight on the genetic stratification of melon germplasm, indicating that traditional farmers might have selected for ripening traits during cultivar diversification. A strong relationship was also found between the genetic structure and phenotypic diversity, which could hamper genetic association studies. Accessions belonging to the ameri group are the most appropriate for association analysis given the high phenotypic and molecular diversity within the group, and lack of genetic structure. The most remarkable association was found between sugar content and SNPs in LG III, where a hotspot of sugar content QTLs has previously been defined. By studying the differences in allelic variation of SNPs within horticultural groups with specific phenotypic features, we also detected differential variation in sugar-related candidates located in LGIX and LGX, and in ripening-related candidates located in LGII and X, all in regions with previously mapped QTLs for the corresponding traits. Conclusions In the current study we have found an important variability at both the phenotypic and candidate gene levels for ripening behavior and sugar accumulation in melon fruit. By combination of differences in allelic diversity and association analysis, we have identified several candidate genes that may be involved in the melon phenotypic diversity. Electronic supplementary material The online version of this article (doi:10.1186/s12863-015-0183-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Carmen Leida
- Research and Innovation Center, Department Genomics and Biology of Fruit Crops, Fondazione Edmund Mach (FEM), Via E. Mach 1, 38010, San Michele, Italy.
| | - Claudio Moser
- Research and Innovation Center, Department Genomics and Biology of Fruit Crops, Fondazione Edmund Mach (FEM), Via E. Mach 1, 38010, San Michele, Italy.
| | - Cristina Esteras
- Institute for the Conservation and Breeding of Agricultural Biodiversity (COMAV-UPV), Universitat Politècnica de Valencia, Camino de Vera s/n, 46022, Valencia, Spain.
| | - Ronan Sulpice
- Max-Planck-Institute of Molecular Plant Physiology, Wissenschaftspark Golm, Am Mühlenberg 1, 14476, Potsdam, Germany. .,Plant Systems Biology Research Laboratory, Department of Botany and Plant Science, Plant and AgriBiosciences Research Centre, National University of Galway, University Road, Galway, Ireland.
| | - John E Lunn
- Max-Planck-Institute of Molecular Plant Physiology, Wissenschaftspark Golm, Am Mühlenberg 1, 14476, Potsdam, Germany.
| | - Frank de Langen
- HMCLAUSE (Business Unit of Limagrain), Station de Mas Saint Pierre, La Galine, 13210, Saint-Rémy-de-Provence, France.
| | - Antonio J Monforte
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), Ciudad Politécnica de la Innovación (CPI), Ed. 8E, C/Ingeniero Fausto Elio s/n, 46022, Valencia, Spain.
| | - Belen Picó
- Institute for the Conservation and Breeding of Agricultural Biodiversity (COMAV-UPV), Universitat Politècnica de Valencia, Camino de Vera s/n, 46022, Valencia, Spain.
| |
Collapse
|
50
|
Freilich S, Lev S, Gonda I, Reuveni E, Portnoy V, Oren E, Lohse M, Galpaz N, Bar E, Tzuri G, Wissotsky G, Meir A, Burger J, Tadmor Y, Schaffer A, Fei Z, Giovannoni J, Lewinsohn E, Katzir N. Systems approach for exploring the intricate associations between sweetness, color and aroma in melon fruits. BMC PLANT BIOLOGY 2015; 15:71. [PMID: 25887588 PMCID: PMC4448286 DOI: 10.1186/s12870-015-0449-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 02/04/2015] [Indexed: 05/02/2023]
Abstract
BACKGROUND Melon (Cucumis melo) fruits exhibit phenotypic diversity in several key quality determinants such as taste, color and aroma. Sucrose, carotenoids and volatiles are recognized as the key compounds shaping the above corresponding traits yet the full network of biochemical events underlying their synthesis have not been comprehensively described. To delineate the cellular processes shaping fruit quality phenotypes, a population of recombinant inbred lines (RIL) was used as a source of phenotypic and genotypic variations. In parallel, ripe fruits were analyzed for both the quantified level of 77 metabolic traits directly associated with fruit quality and for RNA-seq based expression profiles generated for 27,000 unigenes. First, we explored inter-metabolite association patterns; then, we described metabolites versus gene association patterns; finally, we used the correlation-based associations for predicting uncharacterized synthesis pathways. RESULTS Based on metabolite versus metabolite and metabolite versus gene association patterns, we divided metabolites into two key groups: a group including ethylene and aroma determining volatiles whose accumulation patterns are correlated with the expression of genes involved in the glycolysis and TCA cycle pathways; and a group including sucrose and color determining carotenoids whose accumulation levels are correlated with the expression of genes associated with plastid formation. CONCLUSIONS The study integrates multiple processes into a genome scale perspective of cellular activity. This lays a foundation for deciphering the role of gene markers associated with the determination of fruit quality traits.
Collapse
Affiliation(s)
- Shiri Freilich
- Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, 30095, Israel.
| | - Shery Lev
- Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, 30095, Israel.
| | - Itay Gonda
- Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, 30095, Israel.
| | - Eli Reuveni
- Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, 30095, Israel.
| | - Vitaly Portnoy
- Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, 30095, Israel.
| | - Elad Oren
- Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, 30095, Israel.
| | | | - Navot Galpaz
- Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, 30095, Israel.
- Migal Research Institute, Kiryat Shmona, 11016, Israel.
| | - Einat Bar
- Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, 30095, Israel.
| | - Galil Tzuri
- Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, 30095, Israel.
| | - Guy Wissotsky
- Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, 30095, Israel.
| | - Ayala Meir
- Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, 30095, Israel.
| | - Joseph Burger
- Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, 30095, Israel.
| | - Yaakov Tadmor
- Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, 30095, Israel.
| | - Arthur Schaffer
- Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, 30095, Israel.
| | - Zhangjun Fei
- USDA-ARS and Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York, USA.
| | - James Giovannoni
- USDA-ARS and Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York, USA.
| | - Efraim Lewinsohn
- Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, 30095, Israel.
| | - Nurit Katzir
- Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, 30095, Israel.
| |
Collapse
|