1
|
Li X, Liu H, Li C, Li Y. A systematic review on the morphology structure, propagation characteristics, resistance physiology and exploitation and utilization of Nitraria tangutorum Bobrov. PeerJ 2024; 12:e17830. [PMID: 39161968 PMCID: PMC11332387 DOI: 10.7717/peerj.17830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/08/2024] [Indexed: 08/21/2024] Open
Abstract
Nitraria tangutorum Bobrov., belonging to the family Nitrariaceae, is a drought-tolerant and salt-loving plant and has drawn attention for its good economic and ecological value. As one of the main group species and dominant species in China's desert and semi-desert regions, N. tangutorum possesses superior tolerance to drought, high temperature, cold, barren, high salinity and alkalinity and wind and sand. Its root system is well developed, with many branches and a strong germination capacity. Once buried in sandy soil, N. tangutorum can quickly produce a large number of adventitious roots, forming new plants and continuously expanding the shrubs, forming fixed and semi-fixed shrub sand dunes. Sand dune shrubs can trap and fix a large amounts of quicksand, prevent desert expansion and erosion, and play an important role in maintaining regional ecosystem balance and improving ecological environmental quality. In addition, the phytochemical screening studies report that N. tangutorum contains an abundance of various compounds including flavonoids, alkaloids, phenolic acids and polysaccharides. These compounds confer a range of beneficial bioactivities such as antioxidant, anti-inflammatory, anti-tumor, anti-fatigue, liver protection, neuroprotection, cardiovascular protection, lowering blood lipid, regulating blood sugar level and immunoregulation. The fruits of N. tangutorum also contain vitamin C, amino acids, minerals and microelements. It has been traditionally used as a nutritional food source and in folk medicine to treat diseases of the spleen and stomach, abnormal menstruation, indigestion, and hyperlipidemia. N. tangutorum, as a wild plant with medicinal and edible homology, possesses remarkable economic and medicinal values. This detailed, comprehensive review gathers and presents all the information related to the morphological structure, propagation characteristics, resistance physiology and exploitation and utilization of N. tangutorum, providing a theoretical basis for the researchers to conduct future in-depth research on N. tangutorum.
Collapse
Affiliation(s)
- Xiaolan Li
- Gansu Agricultural University, Lanzhou, China
| | | | - Chaoqun Li
- Gansu Agricultural University, Lanzhou, China
| | - Yi Li
- Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
2
|
Rohman MM, Begum S, Mohi-Ud-Din M. A 7×7 diallel cross for developing high-yielding and saline-tolerant barley ( Hordeum vulgare L.). Heliyon 2024; 10:e34278. [PMID: 39082039 PMCID: PMC11284426 DOI: 10.1016/j.heliyon.2024.e34278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/25/2024] [Accepted: 07/07/2024] [Indexed: 08/02/2024] Open
Abstract
In this experiment, F1s produced from a 7 × 7 half-diallel cross along with their parents were evaluated to develop high yielding and saline-tolerant barley lines. The investigation focused on the general combining ability (GCA) of parents, specific combining ability (SCA) of offspring, genetic action, and heterosis of eight quantitative variables. Genetic analysis and potence ratio suggested that different degrees of dominance controlling the inheritance of the studied traits. Significant GCA and SCA variances suggested the presence of both additive and non-additive gene actions controlling the traits. However, a GCA:SCA ratio lower than 1 indicated the preponderance of the non-additive gene action involved in the expression of the traits. The parents P5 and P6 possess the genetic potential favorable for early and short stature in their F1s. Conversely, P2 and P4 were more likely to produce short F1s with high yield potential. Based on the mean performance, SCA, and heterobeltiosis, crosses P2 × P3, P2 × P7, P3 × P4, P4 × P5, P5 × P6, and P6 × P7 were selected as promising F1s for earliness, short stature, and high yield potential. These crosses are recommended for further breeding to obtain early-maturing and high-yielding segregants. To identify saline-tolerant F1s, screening was conducted in saline media prepared in half-strength Hoagland solution. The salinity stress involved exposing F1s to 100 mM NaCl for first 10 days, and followed by an increase to 150 mM until maturity. Among the F1s, five crosses (P1 × P2, P2 × P3, P3 × P5, P4 × P6, and P4 × P7) exhibited promising signs of saline tolerance based on a comprehensive evaluation of healthy seed set, K+/Na+ ratio, root volume, generation of reactive oxygen species (O2 •- and H2O2), and activities of key antioxidant enzymes like superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), ascorbate peroxidase (APX), and glutathione reductase (GR). These crosses will undergo further evaluation in the next filial generation to confirm heritable saline tolerance.
Collapse
Affiliation(s)
- Md. Motiar Rohman
- Plant Breeding Division, Bangladesh Agricultural Research Institute, Gazipur, Bangladesh
| | - Shahnewaz Begum
- Plant Breeding Division, Bangladesh Agricultural Research Institute, Gazipur, Bangladesh
| | - Mohammed Mohi-Ud-Din
- Department of Crop Botany, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| |
Collapse
|
3
|
Kong W, Huang H, Du W, Jiang Z, Luo Y, Yi D, Yang G, Pang Y. Overexpression of MsNIP2 improves salinity tolerance in Medicago sativa. JOURNAL OF PLANT PHYSIOLOGY 2024; 295:154207. [PMID: 38430574 DOI: 10.1016/j.jplph.2024.154207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/24/2024] [Accepted: 02/24/2024] [Indexed: 03/04/2024]
Abstract
Alfalfa (Medicago sativa) is one of the most widely cultivated forage crops in the world. However, alfalfa yield and quality are adversely affected by salinity stress. Nodulin 26-like intrinsic proteins (NIPs) play essential roles in water and small molecules transport and response to salt stress. Here, we isolated a salt stress responsive MsNIP2 gene and demonstrated its functions by overexpression in alfalfa. The open reading frame of MsNIP2 is 816 bp in length, and it encodes 272 amino acids. It has six transmembrane domains and two NPA motifs. MsNIP2 showed high identity to other known NIP proteins, and its tertiary model was similar to the crystal structure of OsNIP2-1 (7cjs) tetramer. Subcellular localization analysis showed that MsNIP2 protein fused with green fluorescent protein (GFP) was localized to the plasma membrane. Transgenic alfalfa lines overexpressing MsNIP2 showed significantly higher height and branch number compared with the non-transgenic control. The POD and CAT activity of the transgenic alfalfa lines was significantly increased and their MDA content was notably reduced compared with the control group under the treatment of NaCl. The transgenic lines showed higher capability in scavenging oxygen radicals with lighter NBT staining than the control under salt stress. The transgenic lines showed relative lower water loss rate and electrolyte leakage, but relatively higher Na+ content than the control line under salt stress. The relative expression levels of abiotic-stress-related genes (MsHSP23, MsCOR47, MsATPase, and MsRD2) in three transgenic lines were compared with the control, among them, only the expression of MsCOR47 was up-regulated. Consequently, this study offers a novel perspective for exploring the function of MsNIP2 in improving salt tolerance of alfalfa.
Collapse
Affiliation(s)
- Weiye Kong
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, China; Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Haijun Huang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Wenxuan Du
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Zhihu Jiang
- West Arid Region Grassland Resource and Ecology Key Laboratory, College of Grassland and Environmental Sciences, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Yijing Luo
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| | - Dengxia Yi
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Guofeng Yang
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, China.
| | - Yongzhen Pang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
4
|
Giannelli G, Mattarozzi M, Gentili S, Fragni R, Maccari C, Andreoli R, Visioli G. A novel PGPR strain homologous to Beijerinckia fluminensis induces biochemical and molecular changes involved in Arabidopsis thaliana salt tolerance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108187. [PMID: 38100889 DOI: 10.1016/j.plaphy.2023.108187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 10/17/2023] [Accepted: 11/08/2023] [Indexed: 12/17/2023]
Abstract
The use of PGPR is widely accepted as a promising tool for a more sustainable agricultural production and improved plant abiotic stress resistance. This study tested the ability of PVr_9, a novel bacterial strain, homologous to Beijerinckia fluminensis, to increase salt stress tolerance in A. thaliana. In vitro plantlets inoculated with PVr_9 and treated with 150 mM NaCl showed a reduction in primary root growth inhibition compared to uninoculated ones, and a leaf area significantly less affected by salt. Furthermore, salt-stressed PVr_9-inoculated plants had low ROS and 8-oxo-dG, osmolytes, and ABA content along with a modulation in antioxidant enzymatic activities. A significant decrease in Na+ in the leaves and a corresponding increase in the roots were also observed in salt-stressed inoculated plants. SOS1, NHX1 genes involved in plant salt tolerance, were up-regulated in PVr_9-inoculated plants, while different MYB genes involved in salt stress signal response were down-regulated in both roots and shoots. Thus, PVr_9 was able to increase salt tolerance in A. thaliana, thereby suggesting a role in ion homeostasis by reducing salt stress rather than inhibiting total Na+ uptake. These results showed a possible molecular mechanism of crosstalk between PVr_9 and plant roots to enhance salt tolerance, and highlighted this bacterium as a promising PGPR for field applications on agronomical crops.
Collapse
Affiliation(s)
- Gianluigi Giannelli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Monica Mattarozzi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Silvia Gentili
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Rosaria Fragni
- SSICA, Experimental Station for the Food Preserving Industry, Parma, Italy
| | - Chiara Maccari
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Roberta Andreoli
- Department of Medicine and Surgery, University of Parma, Parma, Italy; Centre for Research in Toxicology (CERT), University of Parma, Parma, Italy
| | - Giovanna Visioli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy.
| |
Collapse
|
5
|
Hmissi M, Krouma A, García-Sánchez F, Chaieb M. Potential of Seed Halopriming in the Mitigation of Salinity Stress during Germination and Seedling Establishment in Durum Wheat ( Triticum durum Desf.). PLANTS (BASEL, SWITZERLAND) 2023; 13:66. [PMID: 38202374 PMCID: PMC10780596 DOI: 10.3390/plants13010066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/30/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024]
Abstract
The salinity of soils and irrigation water is among the main factors that limit plant productivity worldwide. Several alternatives have been proposed to get around this problem. However, these alternatives have faced difficulties in their implementation. As an alternative, the adverse effects of salinity on crop yield can be minimized by selecting species and varieties better adapted to salinity and/or by finding priming agents that give plants a certain tolerance during the vegetative and reproductive stages. The latter are strictly dependent on germination and seedling establishment. For this purpose, a laboratory experiment was conducted on three Tunisian wheat cultivars (Karim, Razeg, and Maali) subjected to moderate salinity stress (MSS, 5 g L-1 NaCl), severe salinity stress (SSS, 10 g L-1 NaCl), or control (0 NaCl) after soaking the seeds in a solution of KNO3 or ZnSO4 (0.5 g L-1). Salinity stress significantly decreased germination capacity (GC) and induced osmotic stress under MSS, which declined under SSS in favor of toxic stress. Pretreatment of seeds with KNO3 or ZnSO4 alleviated the toxic effect, and seedlings recovered initial vigor and GC even under SSS. The Karim cultivar showed better tolerance to salinity and a higher ability to react to priming agents. The calculated sensitivity tolerance index (STI) based on germination capacity, seedling growth, and initial vigor decreased in all cultivars under salt stress; however, this parameter clearly discriminated the studied cultivars. Karim was the most tolerant as compared to Razeg and Maali. We conclude that halopriming provides a benefit by alleviating the harmful effects of salt toxicity and that cultivars differ in their response to priming and extent of salt stress. KNO3 and ZnSO4 effectively alleviated the inhibitory effect of salt stress on seed germination and seedling establishment while significantly improving initial vigor.
Collapse
Affiliation(s)
- Manel Hmissi
- Laboratory of Ecosystems and Biodiversity in Arid Land of Tunisia, Faculty of Sciences, University of Sfax, Sfax 3029, Tunisia; (M.H.); (M.C.)
| | - Abdelmajid Krouma
- Laboratory of Ecosystems and Biodiversity in Arid Land of Tunisia, Faculty of Sciences, University of Sfax, Sfax 3029, Tunisia; (M.H.); (M.C.)
- Faculty of Sciences and Techniques of Sidi Bouzid, University of Kairouan, Kairouan 3100, Tunisia
| | | | - Mohamed Chaieb
- Laboratory of Ecosystems and Biodiversity in Arid Land of Tunisia, Faculty of Sciences, University of Sfax, Sfax 3029, Tunisia; (M.H.); (M.C.)
| |
Collapse
|
6
|
Feng S, Yao YT, Wang BB, Li YM, Li L, Bao AK. Flavonoids are involved in salt tolerance through ROS scavenging in the halophyte Atriplex canescens. PLANT CELL REPORTS 2023; 43:5. [PMID: 38127154 DOI: 10.1007/s00299-023-03087-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/26/2023] [Indexed: 12/23/2023]
Abstract
KEY MESSAGE The content of flavonoids could increase in A. canescens under saline conditions. Overexpression of AcCHI in transgenic A. thaliana promotes flavonoid biosynthesis, thereby functioning in the tolerance of transgenic plants to salt and osmotic stress by maintaining ROS homeostasis. Atriplex canescens is a halophytic forage shrub with excellent adaptation to saline environment. Our previous study showed that a large number of genes related to the biosynthesis of flavonoids in A. canescens were significantly up-regulated by NaCl treatments. However, it remains unclear whether flavonoids are involved in A. canescens response to salinity. In this study, we found that the accumulation of flavonoids significantly increased in either the leaves or roots of A. canescens seedling under 100 and 300 mM NaCl treatments. Correspondingly, AcCHS, AcCHI and AcF3H, which encode three key enzymes (chalcone synthases (CHS), chalcone isomerase (CHI), and flavanone 3-hydroxylase (F3H), respectively) of flavonoids biosynthesis, were significantly induced in the roots or leaves of A. canescens by 100 or 300 mM NaCl. Then, we generated the transgenic Arabidopsis thaliana overexpressing AcCHI and found that transgenic plants accumulated more flavonoids through enhancing the pathway of flavonoids biosynthesis. Furthermore, overexpression of AcCHI conferred salt and osmotic stress tolerance in transgenic A. thaliana. Contrasted with wild-type A. thaliana, transgenic lines grew better with greater biomass, less H2O2 content as well as lower relative plasma permeability in either salt or osmotic stress conditions. In conclusion, our results indicate that flavonoids play an important role in A. canescens response to salt stress through reactive oxygen species (ROS) scavenging and the key enzyme gene AcCHI in flavonoids biosynthesis pathway of A. canescens has the potential to improve the stress tolerance of forages and crops.
Collapse
Affiliation(s)
- Shan Feng
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, China
| | - Yu-Ting Yao
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, China
| | - Bei-Bei Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, China
| | - Yi-Meng Li
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Li Li
- Institute of Grassland, Xinjiang Academy of Animal Science, Urumqi, 830000, Xinjiang, China
| | - Ai-Ke Bao
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
7
|
Hou J, Wan H, Liang K, Cui B, Ma Y, Chen Y, Liu J, Wang Y, Liu X, Zhang J, Wei Z, Liu F. Biochar amendment combined with partial root-zone drying irrigation alleviates salinity stress and improves root morphology and water use efficiency in cotton plant. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166978. [PMID: 37704141 DOI: 10.1016/j.scitotenv.2023.166978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/04/2023] [Accepted: 09/08/2023] [Indexed: 09/15/2023]
Abstract
An adsorption experiment and a pot experiment were executed in order to explore the mechanisms by which biochar amendment in combination with reduced irrigation affects sodium and potassium uptake, root morphology, water use efficiency, and salinity tolerance of cotton plants. In the adsorption experiment, ten NaCl concentration gradients (0, 50, 100, 150, 200, 250, 300, 350, 400, and 500 mM) were set for testing isotherm adsorption of Na+ by biochar. It was found that the isotherms of Na+ adsorption by wheat straw biochar (WSP) and softwood biochar (SWP) were in accordance with the Langmuir isotherm model, and the Na+ adsorption ability of WSP (55.20 mg g-1) was superior to that of SWP (47.38 mg g-1). The pot experiment consisted three factors, viz., three biochar amendments (no biochar, WSP, and SWP), three irrigation strategies (deficit irrigation, partial root-zone drying irrigation - PRD, full irrigation), and two NaCl concentrations gradients (0 mM and 200 mM). The findings indicated that salinity stress lowered K+ concentration, root length, root surface area, and root volume (RV), but increased Na+ concentration, root average diameter, and root tissue density. However, biochar amendment decreased Na+ concentration, increased K+ concentration, and improved root morphology. In particular, the combination of WSP and PRD increased K+/Na+ ratio, RV, root weight density, root surface area density, water use efficiency, and partial factor productivity under salt stress, which can be a promising strategy to cope with drought and salinity stress in cotton production.
Collapse
Affiliation(s)
- Jingxiang Hou
- College of Water Resources and Architectural Engineering, Northwest A&F University, Weihui Road 23, 712100 Yangling, Shaanxi, China; Department of Plant and Environmental Science, Faculty of Science, University of Copenhagen, Højbakkegård Allé 13, DK-2630 Tåstrup, Denmark; Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Heng Wan
- College of Water Resources and Architectural Engineering, Northwest A&F University, Weihui Road 23, 712100 Yangling, Shaanxi, China; Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling, Shaanxi 712100, China; Soil Physics and Land Management Group, Wageningen University, P.O. Box 47, Wageningen, 6700 AA, Netherlands
| | - Kehao Liang
- Department of Plant and Environmental Science, Faculty of Science, University of Copenhagen, Højbakkegård Allé 13, DK-2630 Tåstrup, Denmark
| | - Bingjing Cui
- College of Water Resources and Architectural Engineering, Northwest A&F University, Weihui Road 23, 712100 Yangling, Shaanxi, China; Department of Plant and Environmental Science, Faculty of Science, University of Copenhagen, Højbakkegård Allé 13, DK-2630 Tåstrup, Denmark; Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yingying Ma
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, Shaanxi 710129, China
| | - Yiting Chen
- Department of Plant and Environmental Science, Faculty of Science, University of Copenhagen, Højbakkegård Allé 13, DK-2630 Tåstrup, Denmark
| | - Jie Liu
- College of Water Resources and Architectural Engineering, Northwest A&F University, Weihui Road 23, 712100 Yangling, Shaanxi, China; Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yin Wang
- College of Resources and Environmental Sciences, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Xuezhi Liu
- School of Civil and Hydraulic Engineering, Ningxia University, Yinchuan 750021, China
| | - Jiarui Zhang
- College of Water Resources and Architectural Engineering, Northwest A&F University, Weihui Road 23, 712100 Yangling, Shaanxi, China; Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhenhua Wei
- College of Water Resources and Architectural Engineering, Northwest A&F University, Weihui Road 23, 712100 Yangling, Shaanxi, China; Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Fulai Liu
- Department of Plant and Environmental Science, Faculty of Science, University of Copenhagen, Højbakkegård Allé 13, DK-2630 Tåstrup, Denmark.
| |
Collapse
|
8
|
Song W, Gao X, Li H, Li S, Wang J, Wang X, Wang T, Ye Y, Hu P, Li X, Fu B. Transcriptome analysis and physiological changes in the leaves of two Bromus inermis L. genotypes in response to salt stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1313113. [PMID: 38162311 PMCID: PMC10755925 DOI: 10.3389/fpls.2023.1313113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 11/24/2023] [Indexed: 01/03/2024]
Abstract
Soil salinity is a major factor threatening the production of crops around the world. Smooth bromegrass (Bromus inermis L.) is a high-quality grass in northern and northwestern China. Currently, selecting and utilizing salt-tolerant genotypes is an important way to mitigate the detrimental effects of salinity on crop productivity. In our research, salt-tolerant and salt-sensitive varieties were selected from 57 accessions based on a comprehensive evaluation of 22 relevant indexes, and their salt-tolerance physiological and molecular mechanisms were further analyzed. Results showed significant differences in salt tolerance between 57 genotypes, with Q25 and Q46 considered to be the most salt-tolerant and salt-sensitive accessions, respectively, compared to other varieties. Under saline conditions, the salt-tolerant genotype Q25 not only maintained significantly higher photosynthetic performance, leaf relative water content (RWC), and proline content but also exhibited obviously lower relative conductivity and malondialdehyde (MDA) content than the salt-sensitive Q46 (p < 0.05). The transcriptome sequencing indicated 15,128 differentially expressed genes (DEGs) in Q46, of which 7,885 were upregulated and 7,243 downregulated, and 12,658 DEGs in Q25, of which 6,059 were upregulated and 6,599 downregulated. The Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that the salt response differences between Q25 and Q46 were attributed to the variable expression of genes associated with plant hormone signal transduction and MAPK signaling pathways. Furthermore, a large number of candidate genes, related to salt tolerance, were detected, which involved transcription factors (zinc finger proteins) and accumulation of compatible osmolytes (glutathione S-transferases and pyrroline-5-carboxylate reductases), etc. This study offers an important view of the physiological and molecular regulatory mechanisms of salt tolerance in two smooth bromegrass genotypes and lays the foundation for further identification of key genes linked to salt tolerance.
Collapse
Affiliation(s)
- Wenxue Song
- College of Forestry and Prataculture, Ningxia University, Yinchuan, Ningxia, China
| | - Xueqin Gao
- College of Forestry and Prataculture, Ningxia University, Yinchuan, Ningxia, China
- Ningxia Grassland and Animal Husbandry Engineering Technology Research Center, Yinchuan, Ningxia, China
| | - Huiping Li
- College of Forestry and Prataculture, Ningxia University, Yinchuan, Ningxia, China
| | - Shuxia Li
- College of Forestry and Prataculture, Ningxia University, Yinchuan, Ningxia, China
- Ningxia Grassland and Animal Husbandry Engineering Technology Research Center, Yinchuan, Ningxia, China
| | - Jing Wang
- College of Forestry and Prataculture, Ningxia University, Yinchuan, Ningxia, China
| | - Xing Wang
- College of Forestry and Prataculture, Ningxia University, Yinchuan, Ningxia, China
| | - Tongrui Wang
- College of Forestry and Prataculture, Ningxia University, Yinchuan, Ningxia, China
| | - Yunong Ye
- College of Forestry and Prataculture, Ningxia University, Yinchuan, Ningxia, China
| | - Pengfei Hu
- College of Forestry and Prataculture, Ningxia University, Yinchuan, Ningxia, China
| | - Xiaohong Li
- College of Forestry and Prataculture, Ningxia University, Yinchuan, Ningxia, China
| | - Bingzhe Fu
- College of Forestry and Prataculture, Ningxia University, Yinchuan, Ningxia, China
- Ningxia Grassland and Animal Husbandry Engineering Technology Research Center, Yinchuan, Ningxia, China
- Key Laboratory for Model Innovation in Forage Production Efficiency, Ministry of Agriculture and Rural Affairs, Yinchuan, Ningxia, China
| |
Collapse
|
9
|
Chen C, Cheng D, Li L, Sun X, He S, Li M, Chen J. Physiological Characteristics and Transcriptome Analysis of Exogenous Brassinosteroid-Treated Kiwifruit. Int J Mol Sci 2023; 24:17252. [PMID: 38139080 PMCID: PMC10744020 DOI: 10.3390/ijms242417252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/24/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Brassinosteroids (BRs) play pivotal roles in improving plant stress tolerance. To investigate the mechanism of BR regulation of salt tolerance in kiwifruit, we used 'Hongyang' kiwifruit as the test material. We exposed the plants to 150 mmol/L NaCl stress and irrigated them with exogenous BR (2,4-epibrassinolide). The phenotypic analysis showed that salt stress significantly inhibited photosynthesis in kiwifruit, leading to a significant increase in the H2O2 content of leaves and roots and a significant increase in Na+/K+, resulting in oxidative damage and an ion imbalance. BR treatment resulted in enhanced photosynthesis, reduced H2O2 content, and reduced Na+/K+ in leaves, alleviating the salt stress injury. Furthermore, transcriptome enrichment analysis showed that the differentially expressed genes (DEGs) related to BR treatment are involved in pathways such as starch and sucrose metabolism, pentose and glucuronate interconversions, and plant hormone signal transduction, among others. Among the DEGs involved in plant hormone signal transduction, those with the highest expression were involved in abscisic acid signal transduction. Moreover, there was a significant increase in the expression of the AcHKT1 gene, which regulates ion transduction, and the antioxidant enzyme AcFSD2 gene, which is a key gene for improving salt tolerance. The data suggest that BRs can improve salt tolerance by regulating ion homeostasis and reducing oxidative stress.
Collapse
Affiliation(s)
- Chen Chen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Dawei Cheng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Lan Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Xiaoxu Sun
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Shasha He
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Ming Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang 453514, China
| | - Jinyong Chen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| |
Collapse
|
10
|
Xia D, Guan L, Yin Y, Wang Y, Shi H, Li W, Zhang D, Song R, Hu T, Zhan X. Genome-Wide Analysis of MBF1 Family Genes in Five Solanaceous Plants and Functional Analysis of SlER24 in Salt Stress. Int J Mol Sci 2023; 24:13965. [PMID: 37762268 PMCID: PMC10531278 DOI: 10.3390/ijms241813965] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Multiprotein bridging factor 1 (MBF1) is an ancient family of transcription coactivators that play a crucial role in the response of plants to abiotic stress. In this study, we analyzed the genomic data of five Solanaceae plants and identified a total of 21 MBF1 genes. The expansion of MBF1a and MBF1b subfamilies was attributed to whole-genome duplication (WGD), and the expansion of the MBF1c subfamily occurred through transposed duplication (TRD). Collinearity analysis within Solanaceae species revealed collinearity between members of the MBF1a and MBF1b subfamilies, whereas the MBF1c subfamily showed relative independence. The gene expression of SlER24 was induced by sodium chloride (NaCl), polyethylene glycol (PEG), ABA (abscisic acid), and ethrel treatments, with the highest expression observed under NaCl treatment. The overexpression of SlER24 significantly enhanced the salt tolerance of tomato, and the functional deficiency of SlER24 decreased the tolerance of tomato to salt stress. SlER24 enhanced antioxidant enzyme activity to reduce the accumulation of reactive oxygen species (ROS) and alleviated plasma membrane damage under salt stress. SlER24 upregulated the expression levels of salt stress-related genes to enhance salt tolerance in tomato. In conclusion, this study provides basic information for the study of the MBF1 family of Solanaceae under abiotic stress, as well as a reference for the study of other plants.
Collapse
Affiliation(s)
- Dongnan Xia
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Xianyang 712100, China; (D.X.); (Y.Y.); (Y.W.); (H.S.); (W.L.); (D.Z.); (R.S.)
| | - Lulu Guan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Xianyang 712100, China;
| | - Yue Yin
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Xianyang 712100, China; (D.X.); (Y.Y.); (Y.W.); (H.S.); (W.L.); (D.Z.); (R.S.)
| | - Yixi Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Xianyang 712100, China; (D.X.); (Y.Y.); (Y.W.); (H.S.); (W.L.); (D.Z.); (R.S.)
| | - Hongyan Shi
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Xianyang 712100, China; (D.X.); (Y.Y.); (Y.W.); (H.S.); (W.L.); (D.Z.); (R.S.)
| | - Wenyu Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Xianyang 712100, China; (D.X.); (Y.Y.); (Y.W.); (H.S.); (W.L.); (D.Z.); (R.S.)
| | - Dekai Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Xianyang 712100, China; (D.X.); (Y.Y.); (Y.W.); (H.S.); (W.L.); (D.Z.); (R.S.)
| | - Ran Song
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Xianyang 712100, China; (D.X.); (Y.Y.); (Y.W.); (H.S.); (W.L.); (D.Z.); (R.S.)
| | - Tixu Hu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Xianyang 712100, China; (D.X.); (Y.Y.); (Y.W.); (H.S.); (W.L.); (D.Z.); (R.S.)
| | - Xiangqiang Zhan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Xianyang 712100, China; (D.X.); (Y.Y.); (Y.W.); (H.S.); (W.L.); (D.Z.); (R.S.)
| |
Collapse
|
11
|
Balasubramaniam T, Shen G, Esmaeili N, Zhang H. Plants' Response Mechanisms to Salinity Stress. PLANTS (BASEL, SWITZERLAND) 2023; 12:2253. [PMID: 37375879 DOI: 10.3390/plants12122253] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023]
Abstract
Soil salinization is a severe abiotic stress that negatively affects plant growth and development, leading to physiological abnormalities and ultimately threatening global food security. The condition arises from excessive salt accumulation in the soil, primarily due to anthropogenic activities such as irrigation, improper land uses, and overfertilization. The presence of Na⁺, Cl-, and other related ions in the soil above normal levels can disrupt plant cellular functions and lead to alterations in essential metabolic processes such as seed germination and photosynthesis, causing severe damage to plant tissues and even plant death in the worst circumstances. To counteract the effects of salt stress, plants have developed various mechanisms, including modulating ion homeostasis, ion compartmentalization and export, and the biosynthesis of osmoprotectants. Recent advances in genomic and proteomic technologies have enabled the identification of genes and proteins involved in plant salt-tolerance mechanisms. This review provides a short overview of the impact of salinity stress on plants and the underlying mechanisms of salt-stress tolerance, particularly the functions of salt-stress-responsive genes associated with these mechanisms. This review aims at summarizing recent advances in our understanding of salt-stress tolerance mechanisms, providing the key background knowledge for improving crops' salt tolerance, which could contribute to the yield and quality enhancement in major crops grown under saline conditions or in arid and semiarid regions of the world.
Collapse
Affiliation(s)
| | - Guoxin Shen
- Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Nardana Esmaeili
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Hong Zhang
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
12
|
Giannelli G, Potestio S, Visioli G. The Contribution of PGPR in Salt Stress Tolerance in Crops: Unravelling the Molecular Mechanisms of Cross-Talk between Plant and Bacteria. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112197. [PMID: 37299176 DOI: 10.3390/plants12112197] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023]
Abstract
Soil salinity is a major abiotic stress in global agricultural productivity with an estimated 50% of arable land predicted to become salinized by 2050. Since most domesticated crops are glycophytes, they cannot be cultivated on salt soils. The use of beneficial microorganisms inhabiting the rhizosphere (PGPR) is a promising tool to alleviate salt stress in various crops and represents a strategy to increase agricultural productivity in salt soils. Increasing evidence underlines that PGPR affect plant physiological, biochemical, and molecular responses to salt stress. The mechanisms behind these phenomena include osmotic adjustment, modulation of the plant antioxidant system, ion homeostasis, modulation of the phytohormonal balance, increase in nutrient uptake, and the formation of biofilms. This review focuses on the recent literature regarding the molecular mechanisms that PGPR use to improve plant growth under salinity. In addition, very recent -OMICs approaches were reported, dissecting the role of PGPR in modulating plant genomes and epigenomes, opening up the possibility of combining the high genetic variations of plants with the action of PGPR for the selection of useful plant traits to cope with salt stress conditions.
Collapse
Affiliation(s)
- Gianluigi Giannelli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| | - Silvia Potestio
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| | - Giovanna Visioli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| |
Collapse
|
13
|
Apon TA, Ahmed SF, Bony ZF, Chowdhury MR, Asha JF, Biswas A. Sett priming with salicylic acid improves salinity tolerance of sugarcane ( Saccharum officinarum L.) during early stages of crop development. Heliyon 2023; 9:e16030. [PMID: 37215815 PMCID: PMC10192769 DOI: 10.1016/j.heliyon.2023.e16030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/04/2023] [Accepted: 05/03/2023] [Indexed: 05/24/2023] Open
Abstract
Sugarcane (Saccharum officinarum L.), a globally cultivated carbohydrate producing crop of industrial importance is being challenged by soil salinity due to its glycophytic nature. Water stress coupled with cellular and metabolic alterations resulting from excess sodium (Na+) ion accumulation is irreversibly damaging during early crop developmental stages that often results in complete crop failure. This study therefore aimed to explore the potential of salicylic acid as a sett priming material to mitigate the negative effects of salt stress on sugarcane during germination and early growth stages. Five doses of salicylic acid (0 [hydropriming] [control], 0.5 mM, 1 mM, 1.5 mM and 2 mM) were tested against three levels of salinity (0.5 dS m-1 [control], 4 dS m-1, and 8 dS m-1) within a polyhouse environment. Results revealed 11.2%, 18.5%, 25.4%, and 38.6%, average increase in final germination, germination energy, seedling length and seedling vigor index respectively with a subsequent reduction of 21% mean germination time. Investigations during early seedling growth revealed 21.6%, 17.5%, 27.0%, 39.9%, 10.7%, 11.5%, 17.5%, 47.9%, 35.3% and 20.5% overall increase in plant height, total leaf area, shoot dry matter, root dry matter, leaf greenness, relative water content, membrane stability index, proline content, total antioxidant activity and potassium (K+) ion accumulation respectively with a subsequent reduction of 24.9% Na+ ion accumulation and 35.8% Na+/K+ ratio due to salicylic acid priming. Germination, seedling growth and recovery of physiochemical traits were highly satisfactory in primed setts than non-primed ones even under 8 dS m-1 salinity level. This study should provide useful information for strategizing salinity management approaches for better productivity of sugarcane.
Collapse
Affiliation(s)
- Tasfiqure Amin Apon
- Pathology Division, Bangladesh Sugarcrop Research Institute (BSRI), Ishurdi, 6620, Pabna, Bangladesh
| | - Sheikh Faruk Ahmed
- Department of Crop Botany, Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, 1706, Bangladesh
| | - Zannatul Ferdaous Bony
- Department of Agroforestry and Environment, Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, 1706, Bangladesh
| | - Md. Rizvi Chowdhury
- Department of Plant Pathology, Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, 1706, Bangladesh
| | - Jannatul Ferdoushi Asha
- Department of Agricultural Chemistry, Hajee Mohammad Danesh Science and Technology University (HSTU), Dinajpur 5200, Bangladesh
| | - Arindam Biswas
- Bangladesh Agricultural Research Institute (BARI), Joydebpur, Gazipur, 1701, Bangladesh
| |
Collapse
|
14
|
Si Y, Fan H, Lu H, Li Y, Guo Y, Liu C, Chai L, Du C. Cucumis sativus PHLOEM PROTEIN 2-A1 like gene positively regulates salt stress tolerance in cucumber seedlings. PLANT MOLECULAR BIOLOGY 2023; 111:493-504. [PMID: 37016105 DOI: 10.1007/s11103-023-01336-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 01/27/2023] [Indexed: 06/19/2023]
Abstract
PHLOEM PROTEIN 2-A1 like (PP2-A1) gene is a member of the PP2 multigene family, and the protein encoded by which has the function of stress defense. Based on our previous proteomic study of cucumber phloem sap, CsPP2-A1 protein expression was significantly enriched under salt stress. In this paper, we obtained CsPP2-A1 interfering (CsPP2-A1-RNAi) cucumber by Agrobacterium tumefaciens-mediated method. The phenotypic changes of wild-type (WT) cucumber, CsPP2-A1-overexpressing (OE) cucumber, and CsPP2-A1-RNAi cucumber under salt treatment were observed and compared. Furthermore, physiological indicators were measured in four aspects: osmoregulation, membrane permeability, antioxidant system, and photosynthetic system. The analysis of contribution and correlation for each variable were conducted by principal component analysis (PCA) and Pearson's correlation coefficient. The above results showed that CsPP2-A1-RNAi cucumber plants exhibited weaker salt tolerance compared to WT cucumber and CsPP2-A1-OE cucumber plants in terms of phenotype and physiological indicators in response to salt stress, while CsPP2-A1-OE cucumber always showed the robust salt tolerance. Together, these results indicated that CsPP2-A1 brought a salinity tolerance ability to cucumber through osmoregulation and reactive oxygen species (ROS) homeostasis. The results of the study provided evidence for the function of CsPP2-A1 in plant salt tolerance enhancement, and they will serve as a reference for future salt-tolerant cucumber genetic manipulation.
Collapse
Affiliation(s)
- Yuyang Si
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Huaifu Fan
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Hongjie Lu
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Yapeng Li
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Yuting Guo
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Chen Liu
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Li'ang Chai
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Changxia Du
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China.
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China.
| |
Collapse
|
15
|
Li Y, Zhang T, Kang Y, Wang P, Yu W, Wang J, Li W, Jiang X, Zhou Y. Integrated metabolome, transcriptome analysis, and multi-flux full-length sequencing offer novel insights into the function of lignin biosynthesis as a Sesuvium portulacastrum response to salt stress. Int J Biol Macromol 2023; 237:124222. [PMID: 36990407 DOI: 10.1016/j.ijbiomac.2023.124222] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023]
Abstract
Sesuvium portulacastrum is a typical halophyte. However, few studies have investigated its salt-tolerant molecular mechanism. In this study, metabolome, transcriptome, and multi-flux full-length sequencing analysis were conducted to investigate the significantly different metabolites (SDMs) and differentially expressed genes (DEGs) of S. portulacastrum samples under salinity. The complete-length transcriptome of S. portulacastrum was developed, which contained 39,659 non-redundant unigenes. RNA-seq results showed that 52 DEGs involved in lignin biosynthesis may be responsible for S. portulacastrum salt tolerance. Furthermore, 130 SDMs were identified, and the salt response could be attributed to the p-coumaryl alcohol-rich in lignin biosynthesis. The co-expression network that was constructed after comparing the different salt treatment processes showed that the p-Coumaryl alcohol was linked to 30 DEGs. Herein, 8 structures genes, i.e., Sp4CL, SpCAD, SpCCR, SpCOMT, SpF5H, SpCYP73A, SpCCoAOMT, and SpC3'H were identified as significant factors in regulating lignin biosynthesis. Further investigation revealed that 64 putative transcription factors (TFs) may interact with the promoters of the above-mentioned genes. Together, the data revealed a potential regulatory network comprising important genes, putative TFs, and metabolites involved in the lignin biosynthesis of S. portulacastrum roots under salt stress, which could serve as a rich useful genetic resource for breeding excellent salt-tolerant plants.
Collapse
|
16
|
Identification of Small RNAs Associated with Salt Stress in Chrysanthemums through High-Throughput Sequencing and Bioinformatics Analysis. Genes (Basel) 2023; 14:genes14030561. [PMID: 36980835 PMCID: PMC10048073 DOI: 10.3390/genes14030561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/12/2023] [Accepted: 02/20/2023] [Indexed: 02/27/2023] Open
Abstract
The Chrysanthemum variety “Niu 9717” exhibits excellent characteristics as an ornamental plant and has good salt resistance. In this study, this plant was treated with 200 mM NaCl for 12 h followed by high-throughput sequencing of miRNA and degradome. Subsequently, the regulatory patterns of potential miRNAs and their target genes were searched to elucidate how Chrysanthemum miRNAs respond to salt. From the root and leaf samples, we identified a total of 201 known miRNAs belonging to 40 families; furthermore, we identified 79 new miRNAs, of which 18 were significantly differentially expressed (p < 0.05). The expressed miRNAs, which targeted a total of 144 mRNAs in the leaf and 215 mRNAs in the root, formed 144 and 226 miRNA–target pairs in roots and leaves, respectively. Combined with the miRNA expression profile, degradome and transcriptome data were then analyzed to understand the possible effects of the miRNA target genes and their pathways on salt stress. The identified genes were mostly located in pathways related to hormone signaling during plant growth and development. Overall, these findings suggest that conserved and novel miRNAs may improve salt tolerance through the regulation of hormone signal synthesis or expression of genes involved in hormone synthesis.
Collapse
|
17
|
Magni NN, Veríssimo ACS, Silva H, Pinto DCGA. Metabolomic Profile of Salicornia perennis Plant's Organs under Diverse In Situ Stress: The Ria de Aveiro Salt Marshes Case. Metabolites 2023; 13:metabo13020280. [PMID: 36837899 PMCID: PMC9960996 DOI: 10.3390/metabo13020280] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/07/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
Salicornia perennis is a halophyte belonging to the botanical subfamily Salicornioideae that forms extensive perennial salt marsh patches. This subfamily has excellent potential, still unexplored, as a source of food, medicine, and phytoremediation. This study aimed to evaluate the lipophilic composition of the Salicornia perennis different organs inhabiting salt marshes of Ria de Aveiro under different stress regimes. For this purpose, the lipophilic content was extracted with hexane and subsequent GC-MS analysis of the extracts for each plant organ, which was collected in three different salt marshes of the Ria de Aveiro. High sugar content was detected in the stems, whereas in fruiting articles, the higher content was in fatty acids. Shorter-chain organic acids were concentrated in the stems and vegetative articles; waxes were detected in greater quantity in photosynthetic organs. More or less stressful environments induce changes in the ratio and composition of molecules, such as acclimatization and oxidative stress reduction strategies; for example, fatty acid content was higher in plants subjected to a higher stress regime. These data contribute to understand the metabolic pathways of the species under study, suggesting new research approaches to its potential as food, medicine, and phytoremediator.
Collapse
Affiliation(s)
- Natasha N. Magni
- LAQV-REQUIMTE, Department of Chemistry, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal
- CESAM, Department of Biology, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ana C. S. Veríssimo
- LAQV-REQUIMTE, Department of Chemistry, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Helena Silva
- CESAM, Department of Biology, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Diana C. G. A. Pinto
- LAQV-REQUIMTE, Department of Chemistry, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal
- Correspondence: ; +351-234-401407
| |
Collapse
|
18
|
Song Q, Zhou M, Wang X, Brestic M, Liu Y, Yang X. RAP2.6 enhanced salt stress tolerance by reducing Na + accumulation and stabilizing the electron transport in Arabidopsis thaliana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 195:134-143. [PMID: 36634508 DOI: 10.1016/j.plaphy.2023.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/09/2022] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
The transcription factors of the AP2/ERF family are involved in plant growth and development and responses to biotic and abiotic stresses. Here, we found RAP2.6, a transcription factor which belongs to the ERF subfamily, was responsive to salt stress in Arabidopsis. Under salt stress conditions, rap2.6 mutant seedlings were the sensitivity deficiency to salt stress which was reflected in higher germination rate and longer root length compared to the wild type. Also, the expressions of salt-related gene including SOS1, SOS2, SOS3, NHX1, NHX3, NHX5 and HKT1 in rap2.6 mutant seedlings were lower than the wild type under salt stress. rap2.6 mutant adult lacked salt stress tolerance based on the results of the phenotype, survival rates and ion leakage. Compared to wild type, rap2.6 mutant adult accumulated more Na+ in leaves and roots while the salt-related gene expressions were lower. In addition, the photosynthetic electron transport and PSII energy distribution in rap2.6 mutant plant leaves had been more seriously affected under salt stress conditions compared to the wild type. In summary, this study identified essential roles of RAP2.6 in regulating salt stress tolerance in Arabidopsis.
Collapse
Affiliation(s)
- Qiping Song
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271018, China
| | - Min Zhou
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271018, China
| | - Xipan Wang
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271018, China
| | - Marian Brestic
- Department of Plant Physiology, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 76, Nitra, Slovak Republic
| | - Yang Liu
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271018, China.
| | - Xinghong Yang
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271018, China.
| |
Collapse
|
19
|
Rao Y, Peng T, Xue S. Mechanisms of plant saline-alkaline tolerance. JOURNAL OF PLANT PHYSIOLOGY 2023; 281:153916. [PMID: 36645936 DOI: 10.1016/j.jplph.2023.153916] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/28/2022] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
Saline-alkaline soil affects crop growth and development, thereby suppressing the yields. Human activities and climate changes are putting arable land under the threat of saline-alkalization. To feed a growing global population in limited arable land, it is of great urgence to breed saline-alkaline tolerant crops to cope with food security. Plant salt-tolerance mechanisms have already been explored for decades. However, to date, the molecular mechanisms underlying plants responses to saline-alkaline stress have remained largely elusive. Here, we summarize recent advances in plant response to saline-alkaline stress and propose some points deserving of further exploration.
Collapse
Affiliation(s)
- Ying Rao
- College of Agriculture, Guizhou University, Guiyang, 550025, China
| | - Ting Peng
- College of Agriculture, Guizhou University, Guiyang, 550025, China.
| | - Shaowu Xue
- College of Life Science and Technology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
20
|
Wang J, Cheng Y, Shi X, Feng L. GT Transcription Factors of Rosa rugosa Thunb. Involved in Salt Stress Response. BIOLOGY 2023; 12:biology12020176. [PMID: 36829455 PMCID: PMC9952457 DOI: 10.3390/biology12020176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023]
Abstract
Rosa rugosa was a famous aromatic plant while poor salt tolerance of commercial cultivars has hindered its culture in saline-alkali soil. In many plants, the roles of GT (or trihelix) genes in salt stresses responses have been emerging. In the wild R. rugosa, a total of 37 GTs (RrGTs) were grouped into GT-1, GT-2, GTγ, SH4, and SIP1 lineages. SIP1 lineage expanded by transposition. The motifs involved in the binding of GT cis-elements were conserved. Four RrGTs (RrGT11/14/16/18) significantly differentially expressed in roots or leaves under salt stress. The responsive patterns within 8 h NaCl treatment indicated that RrGTγ-4 (RrGT18) and RrGT-1 (RrGT16) were significantly induced by salt in roots of R. rugosa. Subcellular localizations of RrSIP1 (RrGT11) and RrGTγ-4 were on chloroplasts while RrGT-1 and RrSIP2 (RrGT14) located on cell nucleus. Regulation of ion transport could be the most important role of RrSIPs and RrGTγ-4. And RrGT-1 could be a halophytic gene with higher transcription abundance than glycophytic GT-1. These results provide key clue for further investigations of roles of RrGTs in salt stress response and would be helpful in the understanding the salt tolerance regulation mechanism of R. rugosa.
Collapse
Affiliation(s)
| | | | | | - Liguo Feng
- Correspondence: ; Tel.: +86-514-8797-1026
| |
Collapse
|
21
|
Ullah A, Ali I, Noor J, Zeng F, Bawazeer S, Eldin SM, Asghar MA, Javed HH, Saleem K, Ullah S, Ali H. Exogenous γ-aminobutyric acid (GABA) mitigated salinity-induced impairments in mungbean plants by regulating their nitrogen metabolism and antioxidant potential. FRONTIERS IN PLANT SCIENCE 2023; 13:1081188. [PMID: 36743556 PMCID: PMC9897288 DOI: 10.3389/fpls.2022.1081188] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/23/2022] [Indexed: 06/18/2023]
Abstract
BACKGROUND Increasing soil salinization has a detrimental effect on agricultural productivity.Therefore, strategies are needed to induce salinity-tolerance in crop species for sustainable foodproduction. γ-aminobutyric acid (GABA) plays a key role in regulating plant salinity stresstolerance. However, it remains largely unknown how mungbean plants (Vigna radiata L.) respondto exogenous GABA under salinity stress. METHODS Thus, we evaluated the effect of exogenous GABA (1.5 mM) on the growth and physiobiochemicalresponse mechanism of mungbean plants to saline stress (0-, 50-, and 100 mM [NaCland Na2SO4, at a 1:1 molar ratio]). RESULTS Increased saline stress adversely affected mungbean plants' growth and metabolism. Forinstance, leaf-stem-root biomass (34- and 56%, 31- and 53%, and 27- and 56% under 50- and 100mM, respectively]) and chlorophyll concentrations declined. The carotenoid level increased (10%)at 50 mM and remained unaffected at 100 mM. Hydrogen peroxide (H2O2), malondialdehyde(MDA), osmolytes (soluble sugars, soluble proteins, proline), total phenolic content, andenzymatic activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), peroxidase(POD), glutathione reductase (GTR), and polyphenol oxidation (PPO) were significantlyincreased. In leaves, salinity caused a significant increase in Na+ concentration but a decrease inK+ concentration, resulting in a low K+/Na+ concentration (51- and 71% under 50- and 100- mMstress). Additionally, nitrogen concentration and the activities of nitrate reductase (NR) andglutamine synthetase (GS) decreased significantly. The reduction in glutamate synthase (GOGAT)activity was only significant (65%) at 100 mM stress. Exogenous GABA decreased Na+, H2O2,and MDA concentrations but enhanced photosynthetic pigments, K+ and K+/Na+ ratio, Nmetabolism, osmolytes, and enzymatic antioxidant activities, thus reducing salinity-associatedstress damages, resulting in improved growth and biomass. CONCLUSION Exogenous GABA may have improved the salinity tolerance of mungbean plants by maintaining their morpho-physiological responses and reducing the accumulation of harmfulsubstances under salinity. Future molecular studies can contribute to a better understanding of themolecular mechanisms by which GABA regulates mungbean salinity tolerance.
Collapse
Affiliation(s)
- Abd Ullah
- Xinjiang Key Laboratory of Desert Plant Root Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Iftikhar Ali
- Center for Plant Sciences and Biodiversity, University of Swat, Charbagh Swat, Pakistan
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, United States
| | - Javaria Noor
- Department of Botany, Islamia College University, Peshawar, Pakistan
| | - Fanjiang Zeng
- Xinjiang Key Laboratory of Desert Plant Root Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Sami Bawazeer
- Umm Al-Qura University, Faculty of Pharmacy, Department of Pharmacognosy, Makkah, Saudi Arabia
| | - Sayed M Eldin
- Center of Research, Faculty of Engineering, Future University in Egypt, New Cairo, Egypt
| | - Muhammad Ahsan Asghar
- Department of Biological Resources, Agricultural Institute, Centre for Agricultural Research, ELKH, 2 Brunszvik St. Martonvásár, Hungary
| | | | - Khansa Saleem
- Department of Horticultural Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Sami Ullah
- Department of Botany, University of Peshawar, Peshawar, Pakistan
| | - Haider Ali
- Center for Plant Sciences and Biodiversity, University of Swat, Charbagh Swat, Pakistan
| |
Collapse
|
22
|
Transcriptomic Analysis Provides Insight into the ROS Scavenging System and Regulatory Mechanisms in Atriplex canescens Response to Salinity. Int J Mol Sci 2022; 24:ijms24010242. [PMID: 36613685 PMCID: PMC9820716 DOI: 10.3390/ijms24010242] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Atriplex canescens is a representative halophyte with excellent tolerance to salt. Previous studies have revealed certain physiological mechanisms and detected functional genes associated with salt tolerance. However, knowledge on the ROS scavenging system and regulatory mechanisms in this species when adapting to salinity is limited. Therefore, this study further analyzed the transcriptional changes in genes related to the ROS scavenging system and important regulatory mechanisms in A. canescens under saline conditions using our previous RNA sequencing data. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway annotation revealed that the differentially expressed genes (DEGs) were highly enriched in signal transduction- and reactive oxygen species-related biological processes, including "response to oxidative stress", "oxidoreductase activity", "protein kinase activity", "transcription factor activity", and "plant hormone signal transduction". Further analyses suggested that the transcription abundance of many genes involved in SOD, the AsA-GSH cycle, the GPX pathway, PrxR/Trx, and the flavonoid biosynthesis pathway were obviously enhanced. These pathways are favorable for scavenging excessive ROS induced by salt and maintaining the integrity of the cell membrane. Meanwhile, many vital transcription factor genes (WRKY, MYB, ZF, HSF, DREB, and NAC) exhibited increased transcripts, which is conducive to dealing with saline conditions by regulating downstream salt-responsive genes. Furthermore, a larger number of genes encoding protein kinases (RLK, CDPK, MAPK, and CTR1) were significantly induced by saline conditions, which is beneficial to the reception/transduction of salt-related signals. This study describes the abundant genetic resources for enhancing the salt tolerance in salt-sensitive plants, especially in forages and crops.
Collapse
|
23
|
Li Z, Zhong F, Guo J, Chen Z, Song J, Zhang Y. Improving Wheat Salt Tolerance for Saline Agriculture. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14989-15006. [PMID: 36442507 DOI: 10.1021/acs.jafc.2c06381] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Salinity is a major abiotic stress that threatens crop yield and food supply in saline soil areas. Crops have evolved various strategies to facilitate survival and production of harvestable yield under salinity stress. Wheat (Triticum aestivum L.) is the main crop in arid and semiarid land areas, which are often affected by soil salinity. In this review, we summarize the conventional approaches to enhance wheat salt tolerance, including cross-breeding, exogenous application of chemical compounds, beneficial soil microorganisms, and transgenic engineering. We also propose several new breeding techniques for increasing salt tolerance in wheat, such as identifying new quantitative trait loci or genes related to salt tolerance, gene stacking and multiple genome editing, and wheat wild relatives and orphan crops domestication. The challenges and possible countermeasures in enhancing wheat salinity tolerance are also discussed.
Collapse
Affiliation(s)
- Zihan Li
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Fan Zhong
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Jianrong Guo
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Zhuo Chen
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Jie Song
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Yi Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| |
Collapse
|
24
|
Zheng Y, Zong J, Liu J, Wang R, Chen J, Guo H, Kong W, Liu J, Chen Y. Mining for salt-tolerant genes from halophyte Zoysia matrella using FOX system and functional analysis of ZmGnTL. FRONTIERS IN PLANT SCIENCE 2022; 13:1063436. [PMID: 36466287 PMCID: PMC9714509 DOI: 10.3389/fpls.2022.1063436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/03/2022] [Indexed: 06/17/2023]
Abstract
Zoysia matrella is a salt-tolerant turfgrass grown in areas with high soil salinity irrigated with effluent water. Previous studies focused on explaining the regulatory mechanism of Z. matrella salt-tolerance at phenotypic and physiological levels. However, the molecular mechanism associated with salt tolerance of Z. matrella remained unclear. In this study, a high-efficient method named FOX (full-length cDNA overexpression) hunting system was used to search for salt-tolerant genes in Z. matrella. Eleven candidate genes, including several known or novel salt-tolerant genes involved in different metabolism pathways, were identified. These genes exhibited inducible expression under salt stress condition. Furthermore, a novel salt-inducible candidate gene ZmGnTL was transformed into Arabidopsis for functional analysis. ZmGnTL improved salt-tolerance through regulating ion homeostasis, reactive oxygen species scavenging, and osmotic adjustment. In summary, we demonstrated that FOX is a reliable system for discovering novel genes relevant to salt tolerance and several candidate genes were identified from Z. matrella that can assist molecular breeding for plant salt-tolerance improvement.
Collapse
Affiliation(s)
- Yuying Zheng
- College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Junqin Zong
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Jun Liu
- College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Ruying Wang
- Department of Horticulture, Oregon State University, Corvallis, OR, United States
| | - Jingbo Chen
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Hailin Guo
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Weiyi Kong
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Jianxiu Liu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Yu Chen
- College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
25
|
Li Y, You X, Tang Z, Zhu T, Liu B, Chen MX, Xu Y, Liu TY. Isolation and identification of plant growth-promoting rhizobacteria from tall fescue rhizosphere and their functions under salt stress. PHYSIOLOGIA PLANTARUM 2022; 174:e13817. [PMID: 36344445 DOI: 10.1111/ppl.13817] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/29/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
Soil salinity has become one of the major factors that threaten tall fescue growth and turf quality. Plants recruit diverse microorganisms in the rhizosphere to cope with salinity stress. In this study, 15 plant growth-promoting rhizobacteria (PGPR) were isolated from the salt-treated rhizosphere of tall fescue and were annotated to 10 genera, including Agrobacterium, Fictibacillus, Rhizobium, Bhargavaea, Microbacterium, Paenarthrobacter, Pseudarthrobacter, Bacillus, Halomonas, and Paracoccus. All strains could produce indole-3-acetic acid (IAA). Additionally, eight strains exhibited the ability to solubilize phosphate and potassium. Most strains could grow on the medium containing 600 mM NaCl, such as Bacillus zanthoxyli and Bacillus altitudinis. Furthermore, Bacillus zanthoxyli and Bacillus altitudinis were inoculated with tall fescue seeds and seedlings to determine their growth-promoting effect. The results showed that Bacillus altitudinis and mixed culture significantly increased the germination rate of tall fescue seeds. Bacillus zanthoxyli can significantly increase the tillers number and leaf width of seedlings under salt conditions. Through the synergistic effect of FaSOS1, FaHKT1, and FaHAK1 genes, Bacillus zanthoxyli helps to expel the excess Na+ from aboveground parts and absorb more K+ in roots to maintain ion homeostasis in tall fescue. Unexpectedly, we found that Bacillus altitudinis displayed an inapparent growth-promoting effect on seedlings under salt stress. Interestingly, the mixed culture of the two strains was also able to alleviate, to some extent, the effects of salt stress on tall fescue. This study provides a preliminary understanding of tall fescue rhizobacteria and highlights the role of Bacillus zanthoxyli in tall fescue growth and salt tolerance.
Collapse
Affiliation(s)
- Youyue Li
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi Province, People's Republic of China
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, People's Republic of China
| | - Xiangkai You
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi Province, People's Republic of China
| | - Zhe Tang
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi Province, People's Republic of China
| | - Tianqi Zhu
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi Province, People's Republic of China
| | - Bowen Liu
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi Province, People's Republic of China
| | - Mo-Xian Chen
- Co-Innovation Center for Sustainable Forestry in Southern China and Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu Province, People's Republic of China
| | - Yuefei Xu
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi Province, People's Republic of China
| | - Tie-Yuan Liu
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi Province, People's Republic of China
| |
Collapse
|
26
|
Han QQ, Wang YP, Li J, Li J, Yin XC, Jiang XY, Yu M, Wang SM, Shabala S, Zhang JL. The mechanistic basis of sodium exclusion in Puccinellia tenuiflora under conditions of salinity and potassium deprivation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:322-338. [PMID: 35979653 DOI: 10.1111/tpj.15946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 07/29/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
Soil salinity is a significant threat to global agriculture. Understanding salt exclusion mechanisms in halophyte species may be instrumental in improving salt tolerance in crops. Puccinellia tenuiflora is a typical salt-excluding halophytic grass often found in potassium-deprived saline soils. Our previous work showed that P. tenuiflora possesses stronger selectivity for K+ than for Na+ ; however, the mechanistic basis of this phenomenon remained elusive. Here, P. tenuiflora PutHKT1;5 was cloned and the functions of PutHKT1;5 and PutSOS1 were characterized using heterologous expression systems. Yeast assays showed that PutHKT1;5 possessed Na+ transporting capacity and was highly selective for Na+ over K+ . PutSOS1 was located at the plasma membrane and operated as a Na+ /K+ exchanger, with much stronger Na+ extrusion capacity than its homolog from Arabidopsis. PutHKT2;1 mediated high-affinity K+ and Na+ uptake and its expression levels were upregulated by mild salinity and K+ deprivation. Salinity-induced changes of root PutHKT1;5 and PutHKT1;4 transcript levels matched the expression pattern of root PutSOS1, which was consistent with root Na+ efflux. The transcript levels of root PutHKT2;1 and PutAKT1 were downregulated by salinity. Taken together, these findings demonstrate that the functional activity of PutHKT1;5 and PutSOS1 in P. tenuiflora roots is fine-tuned under saline conditions as well as by operation of other ion transporters/channel (PutHKT1;4, PutHKT2;1, and PutAKT1). This leads to the coordination of radial Na+ and K+ transport processes, their loading to the xylem, or Na+ retrieval and extrusion under conditions of mild salinity and/or K+ deprivation.
Collapse
Affiliation(s)
- Qing-Qing Han
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, P. R. China
| | - Yong-Ping Wang
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, P. R. China
| | - Jian Li
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, P. R. China
| | - Jing Li
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, P. R. China
| | - Xiao-Chang Yin
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, P. R. China
| | - Xing-Yu Jiang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, P. R. China
| | - Min Yu
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, 528000, P. R. China
| | - Suo-Min Wang
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, P. R. China
| | - Sergey Shabala
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, P. R. China
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, 528000, P. R. China
- Tasmanian Institute of Agriculture, University of Tasmania, Private Bag 54, Hobart, TAS 7001, Australia
- School of Biological Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Jin-Lin Zhang
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, P. R. China
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, 528000, P. R. China
| |
Collapse
|
27
|
You C, Li C, Ma M, Tang W, Kou M, Yan H, Song W, Gao R, Wang X, Zhang Y, Li Q. A C2-Domain Abscisic Acid-Related Gene, IbCAR1, Positively Enhances Salt Tolerance in Sweet Potato (Ipomoea batatas (L.) Lam.). Int J Mol Sci 2022; 23:ijms23179680. [PMID: 36077077 PMCID: PMC9456122 DOI: 10.3390/ijms23179680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/18/2022] [Accepted: 08/23/2022] [Indexed: 11/18/2022] Open
Abstract
Plant C2-domain abscisic acid-related (CAR) protein family plays an important role in plant growth, abiotic stress responses, and defense regulation. In this study, we cloned the IbCAR1 by homologous cloning method from the transcriptomic data of Xuzishu8, which is a sweet potato cultivar with dark-purple flesh. This gene was expressed in all tissues of sweet potato, with the highest expression level in leaf tissue, and it could be induced by NaCl and ABA. Subcellular localization analyses indicated that IbCAR1 was localized in the nucleus and plasma membrane. The PI staining experiment revealed the distinctive root cell membrane integrity of overexpressed transgenic lines upon salt stress. Salt stress significantly increased the contents of proline, ABA, and the activity of superoxide dismutase (SOD), whereas the content of malondialdehyde (MDA) was decreased in overexpressed lines. On the contrary, RNA interference plants showed sensitivity to salt stress. Overexpression of IbCAR1 in sweet potatoes could improve the salt tolerance of plants, while the RNAi of IbCAR1 significantly increased sensitivity to salt stress in sweet potatoes. Meanwhile, the genes involved in ABA biosynthesis, stress response, and reactive oxygen species (ROS)-scavenging system were upregulated in overexpressed lines under salt stress. Taken together, these results demonstrated that IbCAR1 plays a positive role in salt tolerance by relying on the ABA signal transduction pathway, activating the ROS-scavenging system in sweet potatoes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Qiang Li
- Correspondence: ; Tel.: +86-0516-8218-9203
| |
Collapse
|
28
|
Zhu X, Su M, Wang B, Wei X. Transcriptome analysis reveals the main metabolic pathway of c-GMP induced by salt stress in tomato ( Solanum lycopersicum) seedlings. FUNCTIONAL PLANT BIOLOGY : FPB 2022; 49:784-798. [PMID: 35930479 DOI: 10.1071/fp21337] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 04/24/2022] [Indexed: 06/15/2023]
Abstract
Tomato (Solanum lycopersicum L.) is a model crop as well as an important food worldwide. In arid areas, increasing soil salinity has limited higher yields in tomato production. As a second messenger molecule, cyclic guanosine monophosphate (c-GMP) plays an indispensable role in plant response to salt stress by regulating cell processes to promote plant growth and development. However, this mechanism has not been fully explored in tomato seedlings. In this experiment, tomato seeds were cultured in four treatments: (1) distilled water (CK); (2) 20μM c-GMP (T1); (3) 50mM NaCl (T2); and (4) 20μM c-GMP+50mM NaCl (T3). The results show that 20μM c-GMP effectively alleviated the inhibitory effect of 50mM NaCl on growth and development, and induced the expression of 1580 differentially expressed genes (DEGs). Seedlings in the CK vs T1 shared 95 upregulated and 442 downregulated DEGs, whereas T2 vs T3 shared 271 upregulated and 772 downregulated DEGs. Based on KEGG (Kyoto Encyclopaedia of Genes and Genomes) analysis, the majority of DEGs were involved in metabolism; exogenous c-GMP induced significant enrichment of pathways associated with carbohydrates, phenylpropanoids and fatty acid metabolism. Most PMEs , acCoA , PAL , PODs , FADs , and AD were upregulated, and GAPDHs , PL , PG , BXL4 , and β-G were downregulated, which reduced susceptibility of tomato seedlings to salt and promoted their salt tolerance. The application of c-GMP increased soluble sugar, flavonoid and lignin contents, reduced accumulation of malondialdehyde (MDA), and enhanced the activity of peroxidase (POD). Thus, our results provide insights into the molecular mechanisms associated with salt tolerance of tomato seedlings.
Collapse
Affiliation(s)
- Xiaolin Zhu
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; and Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; and College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Meifei Su
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; and College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Baoqiang Wang
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; and College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiaohong Wei
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; and Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; and College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
29
|
Huang Z, Tang R, Yi X, Xu W, Zhu P, Jiang CZ. Overexpressing Phytochrome Interacting Factor 8 of Myrothamnus flabellifolia Enhanced Drought and Salt Tolerance in Arabidopsis. Int J Mol Sci 2022; 23:ijms23158155. [PMID: 35897731 PMCID: PMC9331687 DOI: 10.3390/ijms23158155] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/18/2022] [Accepted: 07/22/2022] [Indexed: 02/04/2023] Open
Abstract
Myrothamnus flabellifolia is the only woody resurrection plant found in the world and can survive from long-term desiccation. Therefore, M. flabellifolia could be considered as a valuable resource for study of plant adaptation to abiotic stress. However, few genes related to its drought tolerance have been functionally characterized and the molecular mechanisms underlying the stress tolerance of M. flabellifolia are largely unknown. The phytochrome interacting factor (PIF) family is a group of basic helix–loop–helix (bHLH) transcription factors and functions as the core regulator in plant growth and development. However, less is known of its participation in abiotic stress response. In this study, we isolated and characterized a dehydration-inducible PIF gene MfPIF8 from M. flabellifolia. Heterologous expression of MfPIF8 in Arabidopsis enhanced tolerance to drought and salinity stresses at seedling and adult stages. It significantly increased primary root length and stomatal aperture (ration of length/width) under stress treatments and decreased water loss rate. Compared with WT, the transgenic lines overexpressing MfPIF8 exhibited higher chlorophyll content and lower malondialdehyde accumulation. The abilities of osmotic adjustment and reactive oxygen species scavenging were also enhanced in MfPIF8 transgenic lines. These results suggest that MfPIF8 may participate in the positive regulation of abiotic stress responses. Additional investigation of its mechanism is needed in the future.
Collapse
Affiliation(s)
- Zhuo Huang
- College of Landscape Architecture, Sichuan Agricultural University, Wenjiang 611130, China; (R.T.); (X.Y.); (W.X.); (P.Z.)
- Correspondence: ; Tel.: +86-13438934187
| | - Rong Tang
- College of Landscape Architecture, Sichuan Agricultural University, Wenjiang 611130, China; (R.T.); (X.Y.); (W.X.); (P.Z.)
| | - Xin Yi
- College of Landscape Architecture, Sichuan Agricultural University, Wenjiang 611130, China; (R.T.); (X.Y.); (W.X.); (P.Z.)
| | - Wenxin Xu
- College of Landscape Architecture, Sichuan Agricultural University, Wenjiang 611130, China; (R.T.); (X.Y.); (W.X.); (P.Z.)
| | - Peilei Zhu
- College of Landscape Architecture, Sichuan Agricultural University, Wenjiang 611130, China; (R.T.); (X.Y.); (W.X.); (P.Z.)
| | - Cai-Zhong Jiang
- Department of Plant Sciences, University of California Davis, Davis, CA 95616, USA;
- Crops Pathology and Genetics Research Unit, United States Department of Agriculture, Agricultural Research Service, Davis, CA 95616, USA
| |
Collapse
|
30
|
Wang M, Gong S, Fu L, Hu G, Li G, Hu S, Yang J. The Involvement of Antioxidant Enzyme System, Nitrogen Metabolism and Osmoregulatory Substances in Alleviating Salt Stress in Inbred Maize Lines and Hormone Regulation Mechanisms. PLANTS 2022; 11:plants11121547. [PMID: 35736698 PMCID: PMC9227288 DOI: 10.3390/plants11121547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/06/2022] [Accepted: 06/08/2022] [Indexed: 11/16/2022]
Abstract
Salt stress inhibited the growth of maize. B46 and NC236 were chosen as materials and NaCl concentrations (0, 55, 110, 165, and 220 mmol L−1) were set. We found the activities of SOD, POD, CAT, APX, GR, MDHAR, and DHAR decreased under NaCl stress. Compared with NC236, the contents of AsA and GSH, AsA/DHA and GSH/GSSG of B46 decreased. The content of O2−, H2O2, MDA, and EL of B46 increased. The contents of NO3− and NO2− decreased, while the content of NH4+ increased under high NaCl concentration. The activities of NR and NiR decreased, while the activities of GS and GOGAT increased first and then decreased. For B46 and NC236, the maximum of NADH-GDH and NAD-GDH appeared at 165 and 110 mmol L−1 NaCl concentration, respectively. Compared with B46, and the GOT and GPT activities of NC236 increased first and then decreased. With the increase of NaCl concentration, the contents of proline, soluble protein, and soluble sugar were increased. The Na+ content of B46 and NC236 increased, and the K+ content and K+/Na+ decreased. Compared with NC236, B46 had higher IAA content in leaf, higher Z + ZR content in leaf and root, and lower ABA content in leaf and root.
Collapse
|
31
|
Zhang MX, Bai R, Nan M, Ren W, Wang CM, Shabala S, Zhang JL. Evaluation of salt tolerance of oat cultivars and the mechanism of adaptation to salinity. JOURNAL OF PLANT PHYSIOLOGY 2022; 273:153708. [PMID: 35504119 DOI: 10.1016/j.jplph.2022.153708] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/22/2022] [Accepted: 04/22/2022] [Indexed: 06/14/2023]
Abstract
Soil salinity is a threat to agricultural production worldwide. Oat (Avena sativa L.) is an irreplaceable crop in areas with fragile ecological conditions. However, there is a lack of research on salt tolerance evaluation of oat germplasm resources. Therefore, the purpose of this work was to evaluate the salt tolerance of oat cultivars and investigate the mechanism of salt-tolerant oat cultivars' adaptation to salinity. Salt tolerance of 100 oat cultivars was evaluated, and then two salt-tolerant cultivars and two salt-sensitive cultivars were used to compare their physiological responses and expression patterns of Na+- and K+-transport-related genes under salinity. Principal component analysis and membership function analysis had good predictability for salt tolerance evaluation of oat and other crops. The 100 oat cultivars were clustered into three categories, with three salt tolerance levels. Under saline condition, salt-tolerant cultivars maintained higher growth rate, leaf cell membrane integrity, and osmotic adjustment capability via enhancing the activities of antioxidant enzymes and accumulating more osmotic regulators. Furthermore, salt-tolerant cultivars had stronger capability to restrict root Na + uptake through reducing AsAKT1 and AsHKT2;1 expression, exclude more Na+ from root through increasing AsSOS1 expression, compartmentalize more Na + into root vacuoles through increasing AsNHX1 and AsVATP-P1 expression, and absorb more K+ through increasing AsKUP1 expression, compared with salt-sensitive cultivars. The evaluation procedure developed in this work can be applied for screening cereal crop cultivars with higher salt tolerance, and the elucidated mechanism of oat adaptation to salinity lays a foundation for identifying more functional genes related to salt tolerance.
Collapse
Affiliation(s)
- Ming-Xu Zhang
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering, Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Rong Bai
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering, Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Ming Nan
- Gansu Academy of Agricultural Sciences, Lanzhou, 730070, People's Republic of China
| | - Wei Ren
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering, Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Chun-Mei Wang
- Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, People's Republic of China
| | - Sergey Shabala
- Department of Horticulture, Foshan University, Foshan, 528000, PR China; School of Land and Food, University of Tasmania, Private Bag 54, Hobart, Tasmania, 7001, Australia.
| | - Jin-Lin Zhang
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering, Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, 730000, People's Republic of China.
| |
Collapse
|
32
|
Raza Gurmani A, Wang X, Rafique M, Jawad M, Raza Khan A, Ullah Khan Q, Ahmed R, Fiaz S. Exogenous Application of Gibberellic Acid and Silicon to Promote Salinity Tolerance in Pea (Pisum sativum L.) through Na+ Exclusion. Saudi J Biol Sci 2022; 29:103305. [PMID: 35602866 PMCID: PMC9119841 DOI: 10.1016/j.sjbs.2022.103305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/24/2022] [Accepted: 04/21/2022] [Indexed: 01/24/2023] Open
Abstract
Salinity is a worldwide problem limiting the plant growth and risking food security. This study was conducted to examine exogenous application of silicon (Si), gibberellic acid (GA3) upon the ion transport, growth, yield, and antioxidant enzymes activities of pea plant in saline conditions. Two pea varieties Meteor-FSD and Samrina Zard were pre-treated with GA3 (10-4 M) for 12 h. Plants were allowed to grow with or without silicon in washed silica sand. Ten days old seedlings were shifted in pots with 10 kg soil. Twenty-five days old plants were exposed to 0 and 5 dS m−1 sodium stress. Results showed that exogenous application of GA3 + Si was the best treatment for increasing plant biomass and yield in the presence and absence of NaCl. Furthermore, application of Si or GA3 enhanced chlorophyll content in the leaves, thereby increasing the net assimilation rate of pea varieties under NaCl stress by increasing the antioxidant enzyme activity. Treatment of Si alone or in combination with GA3 significantly reduced Na+ movement in both pea varieties. Results showed that Si has more prominent role than GA3 alone to build-up high plant biomass, yield, soluble protein content and reduction of Na+ transport. Samrina Zard variety showed higher yield, shoot and root dry weight as compared to Meteor-FSD variety in presence and absence of salt. It was concluded that Si can be used as a nutrient for pea under saline or non-saline conditions. Moreover, application of GA3 has a potential role for increasing salinity tolerance, mostly in sensitive pea varieties.
Collapse
|
33
|
Luo Y, Ma L, Du W, Yan S, Wang Z, Pang Y. Identification and Characterization of Salt- and Drought-Responsive AQP Family Genes in Medicagosativa L. Int J Mol Sci 2022; 23:ijms23063342. [PMID: 35328763 PMCID: PMC8950044 DOI: 10.3390/ijms23063342] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 02/05/2023] Open
Abstract
Aquaporins (AQP) are distributed ubiquitously in plants, and they play important roles in multiple aspects of plant growth and development, as well as in plant resistance to various environmental stresses. In this study, 43 MsAQP genes were identified in the forage crop Medicago sativa. All the MsAQP proteins were clustered into four subfamilies based on sequence similarity and phylogenetic relationship, including 17 TIPs, 14 NIPs, 9 PIPs and 3 SIPs. Analyses of gene structure and conserved domains indicated that the majority of the deduced MsAQP proteins contained the signature transmembrane domains and the NPA motifs. Analyses on cis-acting elements in the promoter region of MsAQP genes revealed the presence of multiple and diverse stress-responsive and hormone-responsive cis-acting elements. In addition, by analyzing the available and comprehensive gene expression data of M. truncatula, we screened ten representative MtAQP genes that were responsive to NaCl or drought stress. By analyzing the sequence similarity and phylogenetic relationship, we finally identified the corresponding ten salt- or drought-responsive AQP genes in M. sativa, including three MsTIPs, three MsPIPs and four MsNIPs. The qPCRs showed that the relative expression levels of these ten selected MsAQP genes responded differently to NaCl or drought treatment in M. sativa. Gene expression patterns showed that most MsAQP genes were preferentially expressed in roots or in leaves, which may reflect their tissue-specific functions associated with development. Our results lay an important foundation for the future characterization of the functions of MsAQP genes, and provide candidate genes for stress resistance improvement through genetic breeding in M. sativa.
Collapse
Affiliation(s)
- Yijing Luo
- College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China; (Y.L.); (S.Y.)
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (L.M.); (W.D.)
| | - Lin Ma
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (L.M.); (W.D.)
| | - Wenxuan Du
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (L.M.); (W.D.)
| | - Su Yan
- College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China; (Y.L.); (S.Y.)
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (L.M.); (W.D.)
| | - Zengyu Wang
- College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China; (Y.L.); (S.Y.)
- Correspondence: (Z.W.); (Y.P.)
| | - Yongzhen Pang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (L.M.); (W.D.)
- Correspondence: (Z.W.); (Y.P.)
| |
Collapse
|
34
|
Xie YH, Zhang FJ, Sun P, Li ZY, Zheng PF, Gu KD, Hao YJ, Zhang Z, You CX. Apple receptor-like kinase FERONIA regulates salt tolerance and ABA sensitivity in Malus domestica. JOURNAL OF PLANT PHYSIOLOGY 2022; 270:153616. [PMID: 35051690 DOI: 10.1016/j.jplph.2022.153616] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/07/2022] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
FERONIA (FER) is a membrane-localized receptor-like kinase that plays pivotal roles in male and female gametophyte recognition, hormone signaling crosstalk, and biotic and abiotic responses. Most reports focus on the functions of FER in model plant Arabidopsis thaliana. However, the functions of FER homologs have not been deeply investigated in apple (Malus domestica), an important economic fruit crop distributed worldwide, especially in China. In this study, we identified an apple homolog of Arabidopsis FER, named MdFER (MDP0000390677). The two proteins encoded by AtFER and MdFER share similar domains: an extracellular malectin-like domain, a transmembrane domain, and an intracellular kinase domain. MdFER was further proven to localize to the plasma membrane in the epidermal cells of Nicotiana benthamiana. MdFER was widely expressed in different apple tissues, but the highest expression was found in roots. In addition, expression of MdFER was significantly induced by treatment with abscisic acid (ABA) and salt (NaCl). Overexpressing MdFER dramatically improved the resistance to salt stress and reduced the sensitivity to ABA in apple callus, while suppressing MdFER expression showed contrary effects. Furthermore, ectopic expression of MdFER in Arabidopsis significantly increased the salt tolerance and reduced the sensitivity to ABA. In addition, under salt stress and ABA treatment, Arabidopsis with highly expressed MdFER accumulated less reactive oxygen species (ROS), and the enzymatic activity of two ROS scavengers, superoxide dismutase and catalase, was higher compared with that of wild type (WT). Our work proves that MdFER positively regulates salt tolerance and negatively regulates ABA sensitivity in apple, which enriched the functions of FER in different plant species.
Collapse
Affiliation(s)
- Yin-Huan Xie
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China.
| | - Fu-Jun Zhang
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China; Department of Horticulture, College of Agriculture, Shihezi University, Shihezi, Xinjiang, 832003, PR China.
| | - Ping Sun
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China.
| | - Zhao-Yang Li
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China.
| | - Peng-Fei Zheng
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China.
| | - Kai-Di Gu
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China.
| | - Yu-Jin Hao
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Zhenlu Zhang
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China.
| | - Chun-Xiang You
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China.
| |
Collapse
|
35
|
The effects of ectomycorrhizal inoculation on survival and growth of Pinus thunbergii seedlings planted in saline soil. Symbiosis 2022. [DOI: 10.1007/s13199-021-00825-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
36
|
Das AK, Anik TR, Rahman MM, Keya SS, Islam MR, Rahman MA, Sultana S, Ghosh PK, Khan S, Ahamed T, Ghosh TK, Tran LSP, Mostofa MG. Ethanol Treatment Enhances Physiological and Biochemical Responses to Mitigate Saline Toxicity in Soybean. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11030272. [PMID: 35161252 PMCID: PMC8838166 DOI: 10.3390/plants11030272] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 01/01/2022] [Accepted: 01/11/2022] [Indexed: 05/31/2023]
Abstract
Soil salinity, a major environmental concern, significantly reduces plant growth and production all around the world. Finding solutions to reduce the salinity impacts on plants is critical for global food security. In recent years, the priming of plants with organic chemicals has shown to be a viable approach for the alleviation of salinity effects in plants. The current study examined the effects of exogenous ethanol in triggering salinity acclimatization responses in soybean by investigating growth responses, and numerous physiological and biochemical features. Foliar ethanol application to saline water-treated soybean plants resulted in an enhancement of biomass, leaf area, photosynthetic pigment contents, net photosynthetic rate, shoot relative water content, water use efficiency, and K+ and Mg2+ contents, leading to improved growth performance under salinity. Salt stress significantly enhanced the contents of reactive oxygen species (ROS), malondialdehyde, and electrolyte leakage in the leaves, suggesting salt-induced oxidative stress and membrane damage in soybean plants. In contrast, ethanol treatment of salt-treated soybean plants boosted ROS-detoxification mechanisms by enhancing the activities of antioxidant enzymes, including peroxidase, ascorbate peroxidase, catalase, and glutathione S-transferase. Ethanol application also augmented the levels of proline and total free amino acids in salt-exposed plants, implying a role of ethanol in maintaining osmotic adjustment in response to salt stress. Notably, exogenous ethanol decreased Na+ uptake while increasing K+ and Mg2+ uptake and their partitioning to leaves and roots in salt-stressed plants. Overall, our findings reveal the protective roles of ethanol against salinity in soybean and suggest that the use of this cost-effective and easily accessible ethanol in salinity mitigation could be an effective approach to increase soybean production in salt-affected areas.
Collapse
Affiliation(s)
- Ashim Kumar Das
- Department of Agroforestry and Environment, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh; (A.K.D.); (M.A.R.); (T.A.)
| | - Touhidur Rahman Anik
- Plant Pathology Division, Bangladesh Rice Research Institute, Gazipur 1701, Bangladesh;
| | - Md. Mezanur Rahman
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, TX 79409, USA; (M.M.R.); (S.S.K.); (L.S.-P.T.)
| | - Sanjida Sultana Keya
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, TX 79409, USA; (M.M.R.); (S.S.K.); (L.S.-P.T.)
| | - Md. Robyul Islam
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh; (M.R.I.); (S.S.)
| | - Md. Abiar Rahman
- Department of Agroforestry and Environment, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh; (A.K.D.); (M.A.R.); (T.A.)
| | - Sharmin Sultana
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh; (M.R.I.); (S.S.)
| | - Protik Kumar Ghosh
- Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh;
| | - Sabia Khan
- Department of Plant Pathology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh;
| | - Tofayel Ahamed
- Department of Agroforestry and Environment, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh; (A.K.D.); (M.A.R.); (T.A.)
| | - Totan Kumar Ghosh
- Department of Crop Botany, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh;
| | - Lam Son-Phan Tran
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, TX 79409, USA; (M.M.R.); (S.S.K.); (L.S.-P.T.)
| | - Mohammad Golam Mostofa
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, TX 79409, USA; (M.M.R.); (S.S.K.); (L.S.-P.T.)
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
| |
Collapse
|
37
|
Munsif F, Kong X, Khan A, Shah T, Arif M, Jahangir M, Akhtar K, Tang D, Zheng J, Liao X, Faisal S, Ali I, Iqbal A, Ahmad P, Zhou R. Identification of differentially expressed genes and pathways in isonuclear kenaf genotypes under salt stress. PHYSIOLOGIA PLANTARUM 2021; 173:1295-1308. [PMID: 33135207 DOI: 10.1111/ppl.13253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 05/27/2020] [Accepted: 10/21/2020] [Indexed: 06/11/2023]
Abstract
Salinity is a potential abiotic stress and globally threatens crop productivity. However, the molecular mechanisms underlying salt stress tolerance with respect to cytoplasmic effect, gene expression, and metabolism pathway under salt stress have not yet been reported in isonuclear kenaf genotypes. To fill this knowledge gap, growth, physiological, biochemical, transcriptome, and cytoplasm changes in kenaf cytoplasmic male sterile (CMS) line (P3A) and its iso-nuclear maintainer line (P3B) under 200 mM sodium chloride (NaCl) stress and control conditions were analyzed. Salt stress significantly reduced leaf soluble protein, soluble sugars, proline, chlorophyll content, antioxidant enzymatic activity, and induced oxidative damage in terms of higher MDA contents in both genotypes. The reduction of these parameters resulted in a reduced plant growth compared with control. However, P3A was relatively more tolerant to salt stress than P3B. This tolerance of P3A was further confirmed by improved physio-biochemical traits under salt stress conditions. Transcriptome analysis showed that 4256 differentially expressed genes (DEGs) between the two genotypes under salt stress were identified. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicated that photosynthesis, photosynthesis antenna-protein, and plant hormone signal transduction pathways might be associated with the improved NaCl stress tolerance in P3A. Conclusively, P3A cytoplasmic male sterile could be a potential salt-tolerant material for future breeding program of kenaf and can be used for phytoremediation of salt-affected soils. These data provide a valuable resource on the cytoplasmic effect of salt-responsive genes in kenaf and salt stress tolerance in kenaf.
Collapse
Affiliation(s)
- Fazal Munsif
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, 530005, China
- Department of Agronomy, Faculty of Crop Production Sciences, The University of Agriculture, Peshawar, 25000, Pakistan
| | - Xiangjun Kong
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, 530005, China
| | - Aziz Khan
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, 530005, China
| | - Tariq Shah
- Department of Agronomy, Faculty of Crop Production Sciences, The University of Agriculture, Peshawar, 25000, Pakistan
| | - Muhammad Arif
- Department of Agronomy, Faculty of Crop Production Sciences, The University of Agriculture, Peshawar, 25000, Pakistan
| | - Muhammad Jahangir
- Department of Horticulture, The University of Agriculture Peshawar, Peshawar, 25000, Pakistan
| | - Kashif Akhtar
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| | - Danfeng Tang
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, 530005, China
| | - Jie Zheng
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, 530005, China
| | - Xiaofang Liao
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, 530005, China
| | - Shah Faisal
- College of Agronomy Northwest Agriculture and Forestry University, Yangling, 71200, China
| | - Izhar Ali
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, 530005, China
| | - Anas Iqbal
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, 530005, China
| | - Parvaiz Ahmad
- Botany and Microbiology Department, College of Science, King Saudi University, Riyadh, 11362, Saudi Arabia
- Department of Botany, S.P. College, Jammu and Kashmir, 190006, India
| | - Ruiyang Zhou
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, 530005, China
| |
Collapse
|
38
|
Naguib WB, Divte PR, Chandra A, Sathee L, Singh B, Mandal PK, Anand A. Raffinose accumulation and preferential allocation of carbon ( 14 C) to developing leaves impart salinity tolerance in sugar beet. PHYSIOLOGIA PLANTARUM 2021; 173:1421-1433. [PMID: 33837561 DOI: 10.1111/ppl.13420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/05/2021] [Accepted: 04/06/2021] [Indexed: 06/12/2023]
Abstract
Sugar beet is a salt-tolerant crop that can be explored for crop production in degraded saline soils. Seeds of multigerm genotypes LKC-2006 (susceptible) and LKC-HB (tolerant) were grown in 150 mM NaCl, from germination to 60 days after sowing, to decipher the mechanism of salinity tolerance at the vegetative stage. The biomass of the root and leaf were maintained in the tolerant genotype, LKC-HB, under saline conditions. Na+ /K+ ratios were similar in roots and leaves of LKC-HB, with lower values under salinity compared to LKC 2006. Infrared temperatures were 0.96°C lower in LKC-HB than in LKC-2006, which helped regulate the leaf water status under stressed conditions. Pulse-chase experiment showed that 14 C photosynthate was preferentially allocated towards the development of new leaves in the tolerant genotype. The sugar profile of leaves and roots showed accumulation of raffinose in leaves of LKC-HB, indicating a plausible role in imparting salinity tolerance by serving as an osmolyte or scavenger. The molecular analysis of the genes responsible for raffinose synthesis revealed an 18-fold increase in the expression of BvRS2 in the tolerant genotype, suggesting its involvement in raffinose synthesis. Our study accentuated that raffinose accumulation in leaves is vital for inducing salinity tolerance and maintenance of shoot dry weight in sugar beet.
Collapse
Affiliation(s)
- Wassem B Naguib
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
- Division of Plant Physiology and Biochemistry, ARC-Sugar Crops Research Institute, Giza, Egypt
| | - Pandurang R Divte
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Amaresh Chandra
- Division of Plant Physiology and Biochemistry, ICAR-Indian Institute of Sugarcane Research, Lucknow, India
| | - Lekshmy Sathee
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Bhupinder Singh
- Centre for Environment Science and Climate Resilient Agriculture, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Pranab Kumar Mandal
- ICAR-National Institute for Plant Biotechnology, LBS Centre, New Delhi, India
| | - Anjali Anand
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
39
|
Bouras H, Bouaziz A, Choukr-Allah R, Hirich A, Devkota KP, Bouazzama B. Phosphorus Fertilization Enhances Productivity of Forage Corn ( Zea mays L.) Irrigated with Saline Water. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122608. [PMID: 34961079 PMCID: PMC8708712 DOI: 10.3390/plants10122608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 06/01/2023]
Abstract
Salinity is a major problem affecting crop production in many regions in the world including Morocco. Agricultural practices such as fertilization could be useful to overcome this problem and improve crop productivity. The objective of our study was to evaluate the combined effect of phosphorus fertilization and irrigation water salinity on growth, yield, and stomatal conductance of forage corn (Zea mays L.) cv. "Sy sincerro". Field experiments were carried out for two years testing four levels of irrigation water salinity (ECw = 0.7; 2, 4, and 6 dS·m-1) and three rates of phosphorus (105, 126, and 150 kg P2O5·ha-1) fertilization conducted in a split-plot design with three replications. The obtained results show that irrigation water salinity had a negative effect on all monitored parameters. For instance, the dry matter yield reduced by an average of 19.3 and 25.1% compared to the control under saline irrigation with an EC value equal to 4 and 6 dS·m-1, respectively. The finding also showed that phosphorus applications tend to increase root weight, root length, stem length, leaf stomatal conductance, grain yield and dry matter yield under salinity conditions. For example, the addition of phosphorus with a rate of 126 and 150 kg P2O5·ha-1 respectively improved dry matter yield by an average of 4 and 9% under low salinity level (ECw = 2 dS·m-1), by 4 and 15% under medium salinity (4 dS·m-1), and by 6 and 8% under a high salinity level (6 dS·m-1). Our finding suggests that supplementary P application could be one of the best practices to reduce the adverse effects of high salinity on growth and development of forage corn.
Collapse
Affiliation(s)
- Hamza Bouras
- Department of Crop Production, Protection and Biotechnology, Hassan II Institute of Agronomy and Veterinary Medicine, Rabat 10101, Morocco; (H.B.); (A.B.); (R.C.-A.)
| | - Ahmed Bouaziz
- Department of Crop Production, Protection and Biotechnology, Hassan II Institute of Agronomy and Veterinary Medicine, Rabat 10101, Morocco; (H.B.); (A.B.); (R.C.-A.)
| | - Redouane Choukr-Allah
- Department of Crop Production, Protection and Biotechnology, Hassan II Institute of Agronomy and Veterinary Medicine, Rabat 10101, Morocco; (H.B.); (A.B.); (R.C.-A.)
| | - Abdelaziz Hirich
- African Sustainable Agriculture Research Institute (ASARI), Mohammed VI Polytechnic University (UM6P), Laayoune 70000, Morocco;
| | - Krishna Prasad Devkota
- African Sustainable Agriculture Research Institute (ASARI), Mohammed VI Polytechnic University (UM6P), Laayoune 70000, Morocco;
| | - Bassou Bouazzama
- National Institute for Agricultural Research (INRA), Beni Mellal 23020, Morocco;
| |
Collapse
|
40
|
Pabuayon ICM, Jiang J, Qian H, Chung JS, Shi H. Gain-of-function mutations of AtNHX1 suppress sos1 salt sensitivity and improve salt tolerance in Arabidopsis. STRESS BIOLOGY 2021; 1:14. [PMID: 37676545 PMCID: PMC10441915 DOI: 10.1007/s44154-021-00014-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 10/31/2021] [Indexed: 09/08/2023]
Abstract
Soil salinity severely hampers agricultural productivity. Under salt stress, excess Na+ accumulation causes cellular damage and plant growth retardation, and membrane Na+ transporters play central roles in Na+ uptake and exclusion to mitigate these adverse effects. In this study, we performed sos1 suppressor mutant (named sup) screening to uncover potential genetic interactors of SOS1 and additional salt tolerance mechanisms. Map-based cloning and sequencing identified a group of mutants harboring dominant gain-of-function mutations in the vacuolar Na+/H+ antiporter gene AtNHX1. The gain-of-function variants of AtNHX1 showed enhanced transporter activities in yeast cells and increased salt tolerance in Arabidopsis wild type plants. Ion content measurements indicated that at the cellular level, these gain-of-function mutations resulted in increased cellular Na+ accumulation likely due to enhanced vacuolar Na+ sequestration. However, the gain-of-function suppressor mutants showed reduced shoot Na+ but increased root Na+ accumulation under salt stress, indicating a role of AtNHX1 in limiting Na+ translocation from root to shoot. We also identified another group of sos1 suppressors with loss-of-function mutations in the Na+ transporter gene AtHKT1. Loss-of-function mutations in AtHKT1 and gain-of-function mutations in AtNHX1 additively suppressed sos1 salt sensitivity, which indicates that the three transporters, SOS1, AtNHX1 and AtHKT1 function independently but coordinately in controlling Na+ homeostasis and salt tolerance in Arabidopsis. Our findings provide valuable information about the target amino acids in NHX1 for gene editing to improve salt tolerance in crops.
Collapse
Affiliation(s)
| | - Jiafu Jiang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79424, USA
- Current address: State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hongjia Qian
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79424, USA
| | - Jung-Sung Chung
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79424, USA
- Current address: Department of Agronomy, Gyeongsang National University, Jinju, 52828, South Korea
| | - Huazhong Shi
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79424, USA.
| |
Collapse
|
41
|
Hussain T, Asrar H, Zhang W, Gul B, Liu X. Combined Transcriptome and Proteome Analysis to Elucidate Salt Tolerance Strategies of the Halophyte Panicum antidotale Retz. FRONTIERS IN PLANT SCIENCE 2021; 12:760589. [PMID: 34804096 PMCID: PMC8598733 DOI: 10.3389/fpls.2021.760589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/05/2021] [Indexed: 05/24/2023]
Abstract
Panicum antidotale, a C4 monocot, has the potential to reclaim saline and drylands and to be utilized as fodder and forage. Its adaptability to survive saline stress has been proven with eco-physiological and biochemical studies. However, little is known about its molecular mechanisms of salt tolerance. In this study, an integrated transcriptome and proteome analysis approach, based on RNA sequencing and liquid chromatography tandem mass spectrometry (LC-MS/MS), was used to identify the said mechanisms. Plants were treated with control (0 mM), low (100 mM), and high (300 mM) sodium chloride (NaCl) treatments to distinguish beneficial and toxic pathways influencing plant biomass. The results indicated differential expression of 3,179 (1,126 upregulated/2,053 downregulated) and 2,172 (898 upregulated/1,274 downregulated) genes (DEGs), and 514 (269 upregulated/245 downregulated) and 836 (494 upregulated/392 downregulated) proteins (DEPs) at 100 and 300 mM NaCl, respectively. Among these, most upregulated genes and proteins were involved in salt resistance strategies such as proline biosynthesis, the antioxidant defense system, ion homeostasis, and sugar accumulation at low salinity levels. On the other hand, the expression of several genes and proteins involved in the respiratory process were downregulated, indicating the inability of plants to meet their energy demands at high salinity levels. Moreover, the impairments in photosynthesis were also evident with the reduced expression of genes regulating the structure of photosystems and increased expression of abscisic acid (ABA) mediated pathways which limits stomatal gas exchange. Similarly, the disturbance in fatty acid metabolism and activation of essential ion transport blockers damaged the integrity of the cell membrane, which was also evident with enhanced malondialdehyde (MDA). Overall, the analysis of pathways revealed that the plant optimal performance at low salinity was related to enhanced metabolism, antioxidative defense, cell growth, and signaling pathways, whereas high salinity inhibited biomass accumulation by altered expression of numerous genes involved in carbon metabolism, signaling, transcription, and translation. The data provided the first global analysis of the mechanisms imparting salt stress tolerance of any halophyte at transcriptome and proteome levels.
Collapse
Affiliation(s)
- Tabassum Hussain
- Chinese Academy of Sciences Engineering Laboratory for Efficient Utilization of Saline Resources, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
- Dr. M. Ajmal Khan Institute of Sustainable Halophyte Utilization, University of Karachi, Karachi, Pakistan
| | - Hina Asrar
- Dr. M. Ajmal Khan Institute of Sustainable Halophyte Utilization, University of Karachi, Karachi, Pakistan
| | - Wensheng Zhang
- Chinese Academy of Sciences Engineering Laboratory for Efficient Utilization of Saline Resources, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
| | - Bilquees Gul
- Dr. M. Ajmal Khan Institute of Sustainable Halophyte Utilization, University of Karachi, Karachi, Pakistan
| | - Xiaojing Liu
- Chinese Academy of Sciences Engineering Laboratory for Efficient Utilization of Saline Resources, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
| |
Collapse
|
42
|
Gupta A, Shaw BP, Sahu BB. Post-translational regulation of the membrane transporters contributing to salt tolerance in plants. FUNCTIONAL PLANT BIOLOGY : FPB 2021; 48:1199-1212. [PMID: 34665998 DOI: 10.1071/fp21153] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 08/07/2021] [Indexed: 06/13/2023]
Abstract
This review article summarises the role of membrane transporters and their regulatory kinases in minimising the toxicity of Na+ in the plant under salt stress. The salt-tolerant plants keep their cytosolic level of Na+ up to 10-50mM. The first line of action in this context is the generation of proton motive force by the plasma membrane H+-ATPase. The generated proton motive force repolarises the membrane that gets depolarised due to passive uptake of Na+ under salt stress. The proton motive force generated also drives the plasma membrane Na+/H+ antiporter, SOS1 that effluxes the cytosolic Na+ back into the environment. At the intracellular level, Na+ is sequestered by the vacuole. Vacuolar Na+ uptake is mediated by Na+/H+ antiporter, NHX, driven by the electrochemical gradient for H+, generated by tonoplast H+ pumps, both H+ATPase and PPase. However, it is the expression of the regulatory kinases that make these transporters active through post-translational modification enabling them to effectively manage the cytosolic level of Na+, which is essential for tolerance to salinity in plants. Yet our knowledge of the expression and functioning of the regulatory kinases in plant species differing in tolerance to salinity is scant. Bioinformatics-based identification of the kinases like OsCIPK24 in crop plants, which are mostly salt-sensitive, may enable biotechnological intervention in making the crop cultivar more salt-tolerant, and effectively increasing its annual yield.
Collapse
Affiliation(s)
- Amber Gupta
- Abiotic Stress and Agro-Biotechnology Laboratory, Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha, 751023, India; and Regional Centre for Biotechnology, Faridabad, Haryana, 121001, India
| | - Birendra Prasad Shaw
- Abiotic Stress and Agro-Biotechnology Laboratory, Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha, 751023, India; and Regional Centre for Biotechnology, Faridabad, Haryana, 121001, India
| | - Binod Bihari Sahu
- Department of Life Science, NIT Rourkela, Rourkela, Odisha, 769008, India
| |
Collapse
|
43
|
Gao H, Huang H, Lu K, Wang C, Liu X, Song Z, Zhou H, Yang L, Li B, Yu C, Zhang H. OsCYP714D1 improves plant growth and salt tolerance through regulating gibberellin and ion homeostasis in transgenic poplar. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 168:447-456. [PMID: 34715569 DOI: 10.1016/j.plaphy.2021.10.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/15/2021] [Accepted: 10/19/2021] [Indexed: 05/20/2023]
Abstract
Cytochrome P450 monooxygenases (CYP450s) play crucial roles in the regulation of plant growth and response to abiotic stress. However, their functions in woody trees are still largely unknown. Previously, we reported that expression of the rice cytochrome P450 monooxygenase gene OsCYP714D1 increased gibberellic acid (GA) accumulation and shoot growth in transgenic poplar. In this work, we demonstrate that expression of OsCYP714D1 improved the salt tolerance of transgenic poplar plants. Compared to wild type, plant height and K+ content were significantly higher, whereas plant growth inhibition and Na+ content were significantly lower, in transgenic plants grown under high salt stress condition. Transcriptomic analyses revealed that OsCYP714D1 expression up-regulated the expressions of GA biosynthesis, signaling and stress responsive genes in transgenic plants under both normal and high salt stress conditions. Further gene ontology (GO) analyses indicated that genes involved in plant hormone and ion metabolic activities were significantly enriched in transgenic plants. Our findings imply that OsCYP714D1 participated in the regulation of both shoot growth and salt resistance through regulating gibberellin and ion homeostasis in transgenic poplar, and it can be used as a candidate gene for the engineering of new tree varieties with improved biomass production and salt stress resistance.
Collapse
Affiliation(s)
- Hongsheng Gao
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China
| | - Huiqing Huang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China
| | - Kaifeng Lu
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China
| | - Cuiting Wang
- Shanghai OE Biotech Co., Ltd, 1505 Zuchongzhi Road, Shanghai, 201210, China
| | - Xiaohua Liu
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China
| | - Zhizhong Song
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China
| | - Houjun Zhou
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China
| | - Lei Yang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China
| | - Bei Li
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China
| | - Chunyan Yu
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China.
| | - Hongxia Zhang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China.
| |
Collapse
|
44
|
Rahman MM, Mostofa MG, Keya SS, Siddiqui MN, Ansary MMU, Das AK, Rahman MA, Tran LSP. Adaptive Mechanisms of Halophytes and Their Potential in Improving Salinity Tolerance in Plants. Int J Mol Sci 2021; 22:ijms221910733. [PMID: 34639074 PMCID: PMC8509322 DOI: 10.3390/ijms221910733] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 12/18/2022] Open
Abstract
Soil salinization, which is aggravated by climate change and inappropriate anthropogenic activities, has emerged as a serious environmental problem, threatening sustainable agriculture and future food security. Although there has been considerable progress in developing crop varieties by introducing salt tolerance-associated traits, most crop cultivars grown in saline soils still exhibit a decline in yield, necessitating the search for alternatives. Halophytes, with their intrinsic salt tolerance characteristics, are known to have great potential in rehabilitating salt-contaminated soils to support plant growth in saline soils by employing various strategies, including phytoremediation. In addition, the recent identification and characterization of salt tolerance-related genes encoding signaling components from halophytes, which are naturally grown under high salinity, have paved the way for the development of transgenic crops with improved salt tolerance. In this review, we aim to provide a comprehensive update on salinity-induced negative effects on soils and plants, including alterations of physicochemical properties in soils, and changes in physiological and biochemical processes and ion disparities in plants. We also review the physiological and biochemical adaptation strategies that help halophytes grow and survive in salinity-affected areas. Furthermore, we illustrate the halophyte-mediated phytoremediation process in salinity-affected areas, as well as their potential impacts on soil properties. Importantly, based on the recent findings on salt tolerance mechanisms in halophytes, we also comprehensively discuss the potential of improving salt tolerance in crop plants by introducing candidate genes related to antiporters, ion transporters, antioxidants, and defense proteins from halophytes for conserving sustainable agriculture in salinity-prone areas.
Collapse
Affiliation(s)
- Md. Mezanur Rahman
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, TX 79409, USA; (M.M.R.); (S.S.K.)
| | - Mohammad Golam Mostofa
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, TX 79409, USA; (M.M.R.); (S.S.K.)
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh;
- Correspondence: (M.G.M.); (L.S.-P.T.); Tel.: +1-806-5007763 (M.G.M.); +1-806-8347829 (L.S.-P.T.)
| | - Sanjida Sultana Keya
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, TX 79409, USA; (M.M.R.); (S.S.K.)
| | - Md. Nurealam Siddiqui
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh;
| | - Md. Mesbah Uddin Ansary
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh;
| | - Ashim Kumar Das
- Department of Agroforestry and Environment, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh; (A.K.D.); (M.A.R.)
| | - Md. Abiar Rahman
- Department of Agroforestry and Environment, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh; (A.K.D.); (M.A.R.)
| | - Lam Son-Phan Tran
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, TX 79409, USA; (M.M.R.); (S.S.K.)
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
- Correspondence: (M.G.M.); (L.S.-P.T.); Tel.: +1-806-5007763 (M.G.M.); +1-806-8347829 (L.S.-P.T.)
| |
Collapse
|
45
|
Panjekobi M, Einali A. Trehalose treatment alters carbon partitioning and reduces the accumulation of individual metabolites but does not affect salt tolerance in the green microalga Dunaliella bardawil. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:2333-2344. [PMID: 34744369 PMCID: PMC8526648 DOI: 10.1007/s12298-021-01078-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 08/27/2021] [Accepted: 09/19/2021] [Indexed: 06/13/2023]
Abstract
The effects of trehalose (Tre), a non-reducing disaccharide, on metabolic changes, antioxidant status, and salt tolerance in Dunaliella bardawil cells were investigated. Algal suspensions containing 1, 2, and 3 M NaCl were treated with 5 mM Tre. While the content of pigments, reducing sugars, proteins, glycerol, and ascorbate pool accumulated with increasing salinity, the content of non-reducing sugars, starch, amino acids, proline, hydrogen peroxide, and lipid peroxidation level decreased significantly. Tre-treated cells showed a decrease in pigments content, reducing sugars, starch, proteins, amino acids, proline, glycerol, and the activity of non-specific peroxidase and polyphenol oxidase, but an increase in non-reducing sugars, oxidized ascorbate, and ascorbate peroxidase activity occurred unchanged in the ascorbate pool. However, the density and fresh weight of the cells remained statistically unchanged in all Tre-treated and untreated cultures. These results suggest that D. bardawil cells potentially tolerate different salt levels by accumulating metabolites, whereas Tre treatment changes carbon partitioning and significantly reduces beneficial metabolites without altering salt tolerance. Therefore, the regulation of carbon partitioning rather than the amount of assimilated carbon may play an important role in inducing salinity tolerance of D. bardawil. However, Tre is not able to enhance the salt tolerance of halotolerants and is even economically damaging due to the reduction of unique metabolites such as glycerol and β-carotene.
Collapse
Affiliation(s)
- Mahdieh Panjekobi
- Department of Biology, Faculty of Science, University of Sistan and Baluchestan, Zahedan, Iran
| | - Alireza Einali
- Department of Biology, Faculty of Science, University of Sistan and Baluchestan, Zahedan, Iran
| |
Collapse
|
46
|
Beet Molasses Enhance Salinity Tolerance in Thymus serpyllum-A Study under Greenhouse Condition. PLANTS 2021; 10:plants10091819. [PMID: 34579352 PMCID: PMC8465920 DOI: 10.3390/plants10091819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/26/2021] [Accepted: 08/28/2021] [Indexed: 01/24/2023]
Abstract
The growing demand for Thymus serpyllum biomass to produce drugs, cosmetics and spices necessitates the search for innovative methods mitigating the negative effects of environmental stressors in order to improve its yield under unfavorable conditions. Due to the exposure of plants to salinity stress (SS), we investigated the effect of sugar beet molasses (SBM) on the growth and biochemical parameters related to plants’ response to SS. Wild thyme plants were treated for 5 weeks to sodium chloride and 3% molasses solution using two modes of application (soil irrigation or foliar sprays). Plants irrigated by SBM showed slighter stem growth inhibition than control plants, high stress tolerance index and maintained a constant root water content under salt stress. Moreover plants treated with 100 mM NaCl and soil-applied SBM had lower lipid peroxidation level, showed lower POD activity, higher total soluble protein content and maintained a more even free amino acids level, compared to the control treatments. The concentration of potassium ions was higher in the case of plant roots irrigation with sugar beet molasses compared to control plants. In this experiment, most of the growth and biochemical parameters from foliar molasses-sprayed plants did not differ significantly from the control. We provided evidence that soil-applied SBM beneficially changed the plant’s biochemical response to salt stress. On the basis of the obtained results, we conclude that this soil amendment contributes to the strengthening of plant protection against this harmful environmental factor.
Collapse
|
47
|
Li T, Sun J, Fu Z. Halophytes Differ in Their Adaptation to Soil Environment in the Yellow River Delta: Effects of Water Source, Soil Depth, and Nutrient Stoichiometry. FRONTIERS IN PLANT SCIENCE 2021; 12:675921. [PMID: 34140965 PMCID: PMC8204056 DOI: 10.3389/fpls.2021.675921] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 04/20/2021] [Indexed: 06/12/2023]
Abstract
The Yellow River Delta is water, salt, and nutrient limited and hence the growth of plants depend on the surrounding factors. Understanding the water, salt, and stoichiometry of plants and soil systems from the perspective of different halophytes is useful for exploring their survival strategies. Thus, a comprehensive investigation of water, salt, and stoichiometry characteristics in different halophytes and soil systems was carried out in this area. Results showed that the oxygen isotopes (δ18O) of three halophytes were significantly different (P < 0.05). Phragmites communis primarily used rainwater and soil water, while Suaeda salsa and Limonium bicolor mainly used soil water. The contributions of rainwater to three halophytes (P. communis, S. salsa, and L. bicolor) were 50.9, 9.1, and 18.5%, respectively. The carbon isotope (δ13C) analysis showed that P. communis had the highest water use efficiency, followed by S. salsa and L. bicolor. Na+ content in the aboveground and underground parts of different halophytes was all followed an order of S. salsa > L. bicolor > P. communis. C content and N:P in leaves of P. communis and N content of leaves in L. bicolor were significantly positively correlated with Na+. Redundancy analysis (RDA) between plants and each soil layer showed that there were different correlation patterns in the three halophytes. P. communis primarily used rainwater and soil water with low salt content in 60-80 cm, while the significant correlation indexes of C:N:P stoichiometry between plant and soil were mainly in a 20-40 cm soil layer. In S. salsa, the soil layer with the highest contribution of soil water and the closest correlation with the C:N:P stoichiometry of leaves were both in 10-20 cm layers, while L. bicolor were mainly in 40-80 cm soil layers. So, the sources of soil water and nutrient of P. communis were located in different soil layers, while there were spatial consistencies of soils in water and nutrient utilization of S. salsa and L. bicolor. These results are beneficial to a comprehensive understanding of the adaptability of halophytes in the Yellow River Delta.
Collapse
Affiliation(s)
- Tian Li
- Shandong Key Laboratory of Eco-Environmental Science for Yellow River Delta, Binzhou University, Binzhou, China
| | - Jingkuan Sun
- Shandong Key Laboratory of Eco-Environmental Science for Yellow River Delta, Binzhou University, Binzhou, China
| | - Zhanyong Fu
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing, China
| |
Collapse
|
48
|
Zheng X, Li Y, Xi X, Ma C, Sun Z, Yang X, Li X, Tian Y, Wang C. Exogenous Strigolactones alleviate KCl stress by regulating photosynthesis, ROS migration and ion transport in Malus hupehensis Rehd. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 159:113-122. [PMID: 33359960 DOI: 10.1016/j.plaphy.2020.12.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 12/14/2020] [Indexed: 05/23/2023]
Abstract
AIMS In recent years, the application of large amounts of potash fertilizer in apple orchards leads to worsening KCl stress. Strigolactone (SL), as a novel phytohormone, reportedly participates in plant tolerance to NaCl and drought stresses. However, the underlying mechanism and the effects of exogenous SL on the KCl stress of apple seedlings remain unclear. METHODS We sprayed different concentrations of exogenous SL on Malus hupehensis Rehd. under KCl stress and measured the physiological indexes like, photosynthetic parameter, content of ROS, osmolytes and mineral element. In addition, the expressions of KCl-responding genes and SL-signaling genes were also detected and analyzed. RESULTS Application of exogenous SL protected the chlorophyll and maintained the photosynthetic rate of apple seedlings under KCl stress. Exogenous SL strengthened the enzyme activities of peroxidase and catalase, thereby eliminating reactive oxygen species production induced by KCl stress, promoting the accumulation of proline, and maintaining osmotic balance. Exogenous SL expelled K+ outside of the cytoplasm and compartmentalized K+ into the vacuole, increased the contents of Na+, Mg2+, Fe2+, and Mn2+ in the cytoplasm to maintain the ion homeostasis under KCl stress. CONCLUSIONS Exogenous SL can regulate photosynthesis, ROS migration and ion transport in apple seedlings to alleviate KCl stress.
Collapse
Affiliation(s)
- Xiaodong Zheng
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China; Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticulture Plants, Qingdao 266109, China
| | - Yuqi Li
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China; Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticulture Plants, Qingdao 266109, China
| | - Xiangli Xi
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China; Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticulture Plants, Qingdao 266109, China
| | - Changqing Ma
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China; Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticulture Plants, Qingdao 266109, China
| | - Zhijuan Sun
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticulture Plants, Qingdao 266109, China; College of Life Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Xueqing Yang
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Xiangyang Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Yike Tian
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China; Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticulture Plants, Qingdao 266109, China
| | - Caihong Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China; Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticulture Plants, Qingdao 266109, China.
| |
Collapse
|
49
|
Shi P, Gu M. Transcriptome analysis and differential gene expression profiling of two contrasting quinoa genotypes in response to salt stress. BMC PLANT BIOLOGY 2020; 20:568. [PMID: 33380327 PMCID: PMC7774241 DOI: 10.1186/s12870-020-02753-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 11/24/2020] [Indexed: 06/01/2023]
Abstract
BACKGROUND Soil salinity is one of the major abiotic stress factors that affect crop growth and yield, which seriously restricts the sustainable development of agriculture. Quinoa is considered as one of the most promising crops in the future for its high nutrition value and strong adaptability to extreme weather and soil conditions. However, the molecular mechanisms underlying the adaptive response to salinity stress of quinoa remain poorly understood. To identify candidate genes related to salt tolerance, we performed reference-guided assembly and compared the gene expression in roots treated with 300 mM NaCl for 0, 0.5, 2, and 24 h of two contrasting quinoa genotypes differing in salt tolerance. RESULTS The salt-tolerant (ST) genotype displayed higher seed germination rate and plant survival rate, and stronger seedling growth potential as well than the salt-sensitive (SS) genotype under salt stress. An average of 38,510,203 high-quality clean reads were generated. Significant Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were identified to deeper understand the differential response. Transcriptome analysis indicated that salt-responsive genes in quinoa were mainly related to biosynthesis of secondary metabolites, alpha-Linolenic acid metabolism, plant hormone signal transduction, and metabolic pathways. Moreover, several pathways were significantly enriched amongst the differentially expressed genes (DEGs) in ST genotypes, such as phenylpropanoid biosynthesis, plant-pathogen interaction, isoquinoline alkaloid biosynthesis, and tyrosine metabolism. One hundred seventeen DEGs were common to various stages of both genotypes, identified as core salt-responsive genes, including some transcription factor members, like MYB, WRKY and NAC, and some plant hormone signal transduction related genes, like PYL, PP2C and TIFY10A, which play an important role in the adaptation to salt conditions of this species. The expression patterns of 21 DEGs were detected by quantitative real-time PCR (qRT-PCR) and confirmed the reliability of the RNA-Seq results. CONCLUSIONS We identified candidate genes involved in salt tolerance in quinoa, as well as some DEGs exclusively expressed in ST genotype. The DEGs common to both genotypes under salt stress may be the key genes for quinoa to adapt to salinity environment. These candidate genes regulate salt tolerance primarily by participating in reactive oxygen species (ROS) scavenging system, protein kinases biosynthesis, plant hormone signal transduction and other important biological processes. These findings provide theoretical basis for further understanding the regulation mechanism underlying salt tolerance network of quinoa, as well establish foundation for improving its tolerance to salinity in future breeding programs.
Collapse
Affiliation(s)
- Pibiao Shi
- Xinyang Agricultural Experiment Station of Yancheng City, Yancheng, 224049, Jiangsu, China
| | - Minfeng Gu
- Xinyang Agricultural Experiment Station of Yancheng City, Yancheng, 224049, Jiangsu, China.
| |
Collapse
|
50
|
Cushman KR, Pabuayon ICM, Hinze LL, Sweeney ME, de los Reyes BG. Networks of Physiological Adjustments and Defenses, and Their Synergy With Sodium (Na +) Homeostasis Explain the Hidden Variation for Salinity Tolerance Across the Cultivated Gossypium hirsutum Germplasm. FRONTIERS IN PLANT SCIENCE 2020; 11:588854. [PMID: 33363555 PMCID: PMC7752944 DOI: 10.3389/fpls.2020.588854] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 11/16/2020] [Indexed: 06/12/2023]
Abstract
The abilities to mobilize and/or sequester excess ions within and outside the plant cell are important components of salt-tolerance mechanisms. Mobilization and sequestration of Na+ involves three transport systems facilitated by the plasma membrane H+/Na+ antiporter (SOS1), vacuolar H+/Na+ antiporter (NHX1), and Na+/K+ transporter in vascular tissues (HKT1). Many of these mechanisms are conserved across the plant kingdom. While Gossypium hirsutum (upland cotton) is significantly more salt-tolerant relative to other crops, the critical factors contributing to the phenotypic variation hidden across the germplasm have not been fully unraveled. In this study, the spatio-temporal patterns of Na+ accumulation along with other physiological and biochemical interactions were investigated at different severities of salinity across a meaningful genetic diversity panel across cultivated upland Gossypium. The aim was to define the importance of holistic or integrated effects relative to the direct effects of Na+ homeostasis mechanisms mediated by GhHKT1, GhSOS1, and GhNHX1. Multi-dimensional physio-morphometric attributes were investigated in a systems-level context using univariate and multivariate statistics, randomForest, and path analysis. Results showed that mobilized or sequestered Na+ contributes significantly to the baseline tolerance mechanisms. However, the observed variance in overall tolerance potential across a meaningful diversity panel were more significantly attributed to antioxidant capacity, maintenance of stomatal conductance, chlorophyll content, and divalent cation (Mg2+) contents other than Ca2+ through a complex interaction with Na+ homeostasis. The multi-tier macro-physiological, biochemical and molecular data generated in this study, and the networks of interactions uncovered strongly suggest that a complex physiological and biochemical synergy beyond the first-line-of defense (Na+ sequestration and mobilization) accounts for the total phenotypic variance across the primary germplasm of Gossypium hirsutum. These findings are consistent with the recently proposed Omnigenic Theory for quantitative traits and should contribute to a modern look at phenotypic selection for salt tolerance in cotton breeding.
Collapse
Affiliation(s)
- Kevin R. Cushman
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, United States
| | - Isaiah C. M. Pabuayon
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, United States
| | - Lori L. Hinze
- USDA-ARS, Crop Germplasm Research, College Station, TX, United States
| | | | | |
Collapse
|