1
|
Jiang H, Zhang S, Lin Y, Meng L, Li J, Wang W, Yang K, Jin M, Wang J, Tang M, Chen K. Roles of serum uric acid on the association between arsenic exposure and incident metabolic syndrome in an older Chinese population. J Environ Sci (China) 2025; 147:332-341. [PMID: 39003051 DOI: 10.1016/j.jes.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 07/15/2024]
Abstract
Growing evidences showed that heavy metals exposure may be associated with metabolic diseases. Nevertheless, the mechanism underlying arsenic (As) exposure and metabolic syndrome (MetS) risk has not been fully elucidated. So we aimed to prospectively investigate the role of serum uric acid (SUA) on the association between blood As exposure and incident MetS. A sample of 1045 older participants in a community in China was analyzed. We determined As at baseline and SUA concentration at follow-up in the Yiwu Elderly Cohort. MetS events were defined according to the criteria of the International Diabetes Federation (IDF). Generalized linear model with log-binominal regression model was applied to estimate the association of As with incident MetS. To investigate the role of SUA in the association between As and MetS, a mediation analysis was conducted. In the fully adjusted log-binominal model, per interquartile range increment of As, the risk of MetS increased 1.25-fold. Compared with the lowest quartile of As, the adjusted relative risk (RR) of MetS in the highest quartile was 1.42 (95% confidence interval, CI: 1.03, 2.00). Additionally, blood As was positively associated with SUA, while SUA had significant association with MetS risk. Further mediation analysis demonstrated that the association of As and MetS risk was mediated by SUA, with the proportion of 15.7%. Our study found higher As was remarkably associated with the elevated risk of MetS in the Chinese older adults population. Mediation analysis indicated that SUA might be a mediator in the association between As exposure and MetS.
Collapse
Affiliation(s)
- Haiyan Jiang
- Department of Public Health, Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Simei Zhang
- Department of Public Health, Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yaoyao Lin
- Department of Public Health, Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Lin Meng
- Department of Public Health, Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jiayi Li
- Department of Public Health, Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Wenqing Wang
- Department of Public Health, Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Kaixuan Yang
- Department of Public Health, Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Mingjuan Jin
- Department of Public Health, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jianbing Wang
- Department of Public Health, National Clinical Research Center for Child Health of Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Mengling Tang
- Department of Public Health, Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China.
| | - Kun Chen
- Department of Public Health, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China.
| |
Collapse
|
2
|
Shine BK, Choi JE, Park YJ, Hong KW. The Genetic Variants Influencing Hypertension Prevalence Based on the Risk of Insulin Resistance as Assessed Using the Metabolic Score for Insulin Resistance (METS-IR). Int J Mol Sci 2024; 25:12690. [PMID: 39684400 DOI: 10.3390/ijms252312690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/24/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Insulin resistance is a major indicator of cardiovascular diseases, including hypertension. The Metabolic Score for Insulin Resistance (METS-IR) offers a simplified and cost-effective way to evaluate insulin resistance. This study aimed to identify genetic variants associated with the prevalence of hypertension stratified by METS-IR score levels. Data from the Korean Genome and Epidemiology Study (KoGES) were analyzed. The METS-IR was calculated using the following formula: ln [(2 × fasting blood glucose (FBG) + triglycerides (TG)) × body mass index (BMI)]/ ln [high-density lipoprotein cholesterol (HDL-C)]. The participants were divided into tertiles 1 (T1) and 3 (T3) based on their METS-IR scores. Genome-wide association studies (GWAS) were performed for hypertensive cases and non-hypertensive controls within these tertile groups using logistic regression adjusted for age, sex, and lifestyle factors. Among the METS-IR tertile groups, 3517 of the 19,774 participants (17.8%) at T1 had hypertension, whereas 8653 of the 20,374 participants (42.5%) at T3 had hypertension. A total of 113 single-nucleotide polymorphisms (SNPs) reached the GWAS significance threshold (p < 5 × 10-8) in at least one tertile group, mapping to six distinct genetic loci. Notably, four loci, rs11899121 (chr2p24), rs7556898 (chr2q24.3), rs17249754 (ATP2B1), and rs1980854 (chr20p12.2), were significantly associated with hypertension in the high-METS-score group (T3). rs10857147 (FGF5) was significant in both the T1 and T3 groups, whereas rs671 (ALDH2) was significant only in the T1 group. The GWASs identified six genetic loci significantly associated with hypertension, with distinct patterns across METS-IR tertiles, highlighting the role of metabolic context in genetic susceptibility. These findings underscore critical genetic factors influencing hypertension prevalence and provide insights into the metabolic-genetic interplay underlying this condition.
Collapse
Affiliation(s)
- Bo-Kyung Shine
- Department of Family Medicine, Medical Center, Dong-A University, Busan 49201, Republic of Korea
| | - Ja-Eun Choi
- Institute of Advanced Technology, Theragen Health Co., Ltd., Seongnam 13493, Republic of Korea
| | - Young-Jin Park
- Department of Family Medicine, Medical Center, Dong-A University, Busan 49201, Republic of Korea
| | - Kyung-Won Hong
- Institute of Advanced Technology, Theragen Health Co., Ltd., Seongnam 13493, Republic of Korea
| |
Collapse
|
3
|
Saxena A, Tiwari P, Gupta S, Mandia R, Banshiwal RC, Lamoria RK, Anjana RM, Radha V, Mohan V, Mathur SK. Exploring lipodystrophy gene expression in adipocytes: unveiling insights into the pathogenesis of insulin resistance, type 2 diabetes, and clustering diseases (metabolic syndrome) in Asian Indians. Front Endocrinol (Lausanne) 2024; 15:1468824. [PMID: 39444451 PMCID: PMC11496143 DOI: 10.3389/fendo.2024.1468824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/16/2024] [Indexed: 10/25/2024] Open
Abstract
Background Studying the molecular mechanisms of lipodystrophy can provide valuable insights into the pathophysiology of insulin resistance (IR), type 2 diabetes (T2D), and other clustering diseases [metabolic syndrome (MetS)] and its underlying adipocentric disease (MetS disease). Methods A high-confidence lipodystrophy gene panel comprising 50 genes was created, and their expressions were measured in the visceral and subcutaneous (both peripheral and abdominal) adipose depots of MetS and non-MetS individuals at a tertiary care medical facility. Results Most lipodystrophy genes showed significant downregulation in MetS individuals compared to non-MetS individuals in both subcutaneous and visceral depots. In the abdominal compartment, all the genes showed relatively higher expression in visceral depot as compared to their subcutaneous counterpart, and this difference narrowed with increasing severity of MetS. Their expression level shows an inverse correlation with T2D, MetS, and HOMA-IR and with other T2D-related intermediate traits. Results also demonstrated that individualization of MetS patients could be done based on adipose tissue expression of just 12 genes. Conclusion Adipose tissue expression of lipodystrophy genes shows an association with MetS and its intermediate phenotypic traits. Mutations of these genes are known to cause congenital lipodystrophy syndromes, whereas their altered expression in adipose tissue contributes to the pathogenesis of IR, T2D, and MetS.
Collapse
Affiliation(s)
- Aditya Saxena
- Department of Computer Engineering & Applications, GLA University, Mathura, India
| | - Pradeep Tiwari
- Department of Biotechnology and Bioinformatics, Birla Institute of Scientific Research, Jaipur, India
| | - Shalu Gupta
- Department of General Surgery, Sawai Man Singh (SMS) Medical College and Attached Hospital, Jaipur, India
| | - Rajendra Mandia
- Department of General Surgery, Sawai Man Singh (SMS) Medical College and Attached Hospital, Jaipur, India
| | - Ramesh C. Banshiwal
- Department of Orthopedics, Sawai Man Singh (SMS) Medical College and Attached Hospital, Jaipur, India
| | - Ravinder Kumar Lamoria
- Department of Orthopedics, Sawai Man Singh (SMS) Medical College and Attached Hospital, Jaipur, India
| | - Ranjit Mohan Anjana
- Department of Diabetology, Madras Diabetes Research Foundation, Chennai, Tamil Nadu, India
| | - Venkatesan Radha
- Department of Diabetology, Madras Diabetes Research Foundation, Chennai, Tamil Nadu, India
| | - Viswanathan Mohan
- Department of Diabetology, Madras Diabetes Research Foundation, Chennai, Tamil Nadu, India
| | - Sandeep Kumar Mathur
- Department of Endocrinology, Sawai Man Singh (SMS) Medical College, Jaipur, India
| |
Collapse
|
4
|
Mozafari S, Ashoori M, Emami Meybodi SM, Solhi R, Mirjalili SR, Firoozabadi AD, Soltani S. Association between APOA5 polymorphisms and susceptibility to metabolic syndrome: a systematic review and meta-analysis. BMC Genomics 2024; 25:590. [PMID: 38867151 PMCID: PMC11167842 DOI: 10.1186/s12864-024-10493-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/04/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND The association between Apolipoprotein A5 (APOA5) genetic polymorphisms and susceptibility to metabolic syndrome (MetS) has been established by many studies, but there have been conflicting results from the literature. We performed a meta-analysis of observational studies to evaluate the association between APOA5 gene polymorphisms and the prevalence of MetS. METHODS PubMed, Web of Science, Embase, and Scopus were searched up to April 2024. The random effects model was used to estimate the odds ratios (ORs) and 95% confidence intervals (CI) of the association between APOA5 gene polymorphisms and the prevalence of MetS development. The potential sources of heterogeneity were evaluated by subgroup analyses and sensitivity analyses. RESULTS A total of 30 studies with 54,986 subjects (25,341 MetS cases and 29,645 healthy controls) were included. The presence of rs662799 and rs651821 polymorphisms is associated with an approximately 1.5-fold higher likelihood of MetS prevalence (OR = 1.42, 95% CI: 1.32, 1.53, p < 0.001; I2 = 67.1%; P-heterogeneity < 0.001; and OR = 1.50, 95% CI: 1.36-1.65, p < 0.001), respectively. MetS is also more prevalent in individuals with the genetic variants rs3135506 and rs2075291. There was no evidence of a connection with rs126317. CONCLUSION The present findings suggest that polymorphisms located in the promoter and coding regions of the APOA5 gene are associated with an increased prevalence of MetS in the adult population. Identifying individuals with these genetic variations could lead to early disease detection and the implementation of preventive strategies to reduce the risk of MetS and its related health issues. However, because the sample size was small and there was evidence of significant heterogeneity for some APOA5 gene polymorphisms, these results need to be confirmed by more large-scale and well-designed studies.
Collapse
Affiliation(s)
- Sima Mozafari
- Yazd Cardiovascular Research Center, Non-Communicable Diseases Research Institute, Shahid Sadoughi University of Medical Sciences, Afshar Hospital, Jomhouri Blvd., Yazd, 8917945556, Iran
| | - Marziyeh Ashoori
- Rasool Akram Medical Complex, Clinical Research Development Center, Tehran, Iran
| | - Seyed Mahdi Emami Meybodi
- Yazd Cardiovascular Research Center, Non-Communicable Diseases Research Institute, Shahid Sadoughi University of Medical Sciences, Afshar Hospital, Jomhouri Blvd., Yazd, 8917945556, Iran
| | - Roya Solhi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| | - Seyed Reza Mirjalili
- Yazd Cardiovascular Research Center, Non-Communicable Diseases Research Institute, Shahid Sadoughi University of Medical Sciences, Afshar Hospital, Jomhouri Blvd., Yazd, 8917945556, Iran
| | - Ali Dehghani Firoozabadi
- Yazd Cardiovascular Research Center, Non-Communicable Diseases Research Institute, Shahid Sadoughi University of Medical Sciences, Afshar Hospital, Jomhouri Blvd., Yazd, 8917945556, Iran
| | - Sepideh Soltani
- Yazd Cardiovascular Research Center, Non-Communicable Diseases Research Institute, Shahid Sadoughi University of Medical Sciences, Afshar Hospital, Jomhouri Blvd., Yazd, 8917945556, Iran.
| |
Collapse
|
5
|
Gharipour M, Dianatkhah M, Jahanfar S, Rodrigues APDS, Eftekhari A, Mohammadifard N, Sarrafzadegan N, de Oliveira C, Silveira EA. How Do Genetic and Environmental Factors Influence Cardiometabolic Risk Factors? Findings from the Isfahan Twins Study. J Res Health Sci 2024; 24:e00604. [PMID: 39072540 PMCID: PMC10999106 DOI: 10.34172/jrhs.2024.139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/15/2024] [Accepted: 02/17/2024] [Indexed: 07/30/2024] Open
Abstract
BACKGROUND Disease-discordant twins are excellent subjects for matched case-control studies as they allow for the control of confounding factors such as age, gender, genetic background, and intrauterine and early environment factors. Study design: A cross-sectional study. METHODS Past medical history documentation and physical examination were conducted for all participants. Fasting venous blood samples were taken to measure fasting blood glucose (FBG) and lipid levels. The ACE model, a structural equation model, was used to assess heritability. RESULTS This study included 710 twin pairs (210 monozygotic and 500 dizygotic) ranging in age from 2 to 52 years (mean age: 11.67±10.71 years). The study was conducted using participants from the Isfahan Twin Registry (ITR) in 2017. Results showed that in early childhood (2-6 years), height, weight, and body mass index (BMI) were influenced by shared environmental factors (76%, 75%, and 73%, respectively). In late childhood (7-12 years), hip circumference, waist circumference (WC), and low-density lipoprotein (LDL) cholesterol were found to be highly heritable (90%, 76%, and 64%, respectively). In adolescents, height (94%), neck circumference (85%), LDL-cholesterol (81%), WC (70%), triglycerides (69%), weight (68%), and BMI (65%) were all found to be highly or moderately heritable. In adult twins, arm circumference (97%), weight (86%), BMI (82%), and neck circumference (81%) were highly heritable. CONCLUSION This study demonstrates that both genetic and environmental factors play a role in influencing individuals at different stages of their lives. Notably, while certain traits such as obesity have a high heritability during childhood, their heritability tends to decrease as individuals transition into adulthood.
Collapse
Affiliation(s)
- Mojgan Gharipour
- Heart Failure Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
- School of Medicine, Faculty of Health at Deakin University, Melbourne, Australia
| | - Minoo Dianatkhah
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shayesteh Jahanfar
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, USA
| | | | - Ava Eftekhari
- Interventional Cardiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Noushin Mohammadifard
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nizal Sarrafzadegan
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
- Faculty of Medicine, School of Population and Public Health, The University of British Columbia, Vancouver, Canada
| | - Cesar de Oliveira
- Department of Epidemiology and Public Health, Institute of Epidemiology and Health Care, University College London, London, UK
| | - Erika Aparecida Silveira
- Graduate Program in Health Sciences, Faculty of Medicine, Federal University of Goiás, Goiânia, Brazil
- Department of Epidemiology and Public Health, Institute of Epidemiology and Health Care, University College London, London, UK
| |
Collapse
|
6
|
Alemany M. The Metabolic Syndrome, a Human Disease. Int J Mol Sci 2024; 25:2251. [PMID: 38396928 PMCID: PMC10888680 DOI: 10.3390/ijms25042251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
This review focuses on the question of metabolic syndrome (MS) being a complex, but essentially monophyletic, galaxy of associated diseases/disorders, or just a syndrome of related but rather independent pathologies. The human nature of MS (its exceptionality in Nature and its close interdependence with human action and evolution) is presented and discussed. The text also describes the close interdependence of its components, with special emphasis on the description of their interrelations (including their syndromic development and recruitment), as well as their consequences upon energy handling and partition. The main theories on MS's origin and development are presented in relation to hepatic steatosis, type 2 diabetes, and obesity, but encompass most of the MS components described so far. The differential effects of sex and its biological consequences are considered under the light of human social needs and evolution, which are also directly related to MS epidemiology, severity, and relations with senescence. The triggering and maintenance factors of MS are discussed, with especial emphasis on inflammation, a complex process affecting different levels of organization and which is a critical element for MS development. Inflammation is also related to the operation of connective tissue (including the adipose organ) and the widely studied and acknowledged influence of diet. The role of diet composition, including the transcendence of the anaplerotic maintenance of the Krebs cycle from dietary amino acid supply (and its timing), is developed in the context of testosterone and β-estradiol control of the insulin-glycaemia hepatic core system of carbohydrate-triacylglycerol energy handling. The high probability of MS acting as a unique complex biological control system (essentially monophyletic) is presented, together with additional perspectives/considerations on the treatment of this 'very' human disease.
Collapse
Affiliation(s)
- Marià Alemany
- Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Catalonia, Spain
| |
Collapse
|
7
|
Weckman MJ, Karikoski NP, Raekallio MR, Box JR, Kvist L. Genome-wide association study suggests genetic candidate loci of insulin dysregulation in Finnhorses. Vet J 2024; 303:106063. [PMID: 38232813 DOI: 10.1016/j.tvjl.2024.106063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 01/08/2024] [Accepted: 01/08/2024] [Indexed: 01/19/2024]
Abstract
Equine metabolic syndrome (EMS) is a common welfare problem in horses worldwide. It is characterized by insulin dysregulation (ID), predisposition to laminitis and often obesity. EMS is multifactorial by nature, with both the environment and genetics contributing to the phenotype. Environmental factors, such as feeding and exercise, can be controlled, thus forming the basis for treatment and prevention. Genetic factors, by contrast, are less well-known and not easily controllable. The aim of this study was to identify potential genetic loci influencing ID/EMS in Finnhorses. A single-breed (Finnhorse) case-control genome-wide association study (GWAS) of ID was conducted with controls that included age-appropriate non-ID horses. ID status was determined with an oral sugar test (OST) for fasted horses. Seventy-one Finnhorses participated (n = 34 ID, n = 37 control). DNA samples (hair roots) were genotyped for 65 157 single-nucleotide polymorphisms (SNPs) with the Illumina Equine SNP70 BeadChip, and these data were analysed for association and FST outliers with genomic tools. P-values that exceeded the suggestive threshold (P = 1.00 ×10-5) were found in SNP BIEC2_383954 (P = 3.45 ×10-6) in chromosome 17 and SNP BIEC2_312374 (P = 1.89 ×10-5) in chromosome 15. Hierarchical and Bayesian FST outlier tests also detected these SNPs. Potential candidate genes associated with the ID close to SNP BIEC2_383954, with functions in carbohydrate metabolism, were Arginine and Glutamate Rich 1 (ARGLU1) and Ephrin-B2 (EFNB2).
Collapse
Affiliation(s)
- M J Weckman
- Department of Equine and Small Animal Sciences, Faculty of Veterinary Medicine, University of Helsinki, P.O. Box 57, FI-00014 Helsinki, Finland.
| | - N P Karikoski
- Department of Equine and Small Animal Sciences, Faculty of Veterinary Medicine, University of Helsinki, P.O. Box 57, FI-00014 Helsinki, Finland
| | - M R Raekallio
- Department of Equine and Small Animal Sciences, Faculty of Veterinary Medicine, University of Helsinki, P.O. Box 57, FI-00014 Helsinki, Finland
| | - J R Box
- Department of Equine and Small Animal Sciences, Faculty of Veterinary Medicine, University of Helsinki, P.O. Box 57, FI-00014 Helsinki, Finland
| | - L Kvist
- Ecology and Genetics Research Unit, University of Oulu, P.O. Box 8000, FI-3000 Oulu, Finland
| |
Collapse
|
8
|
Prone-Olazabal D, Davies I, González-Galarza FF. Metabolic Syndrome: An Overview on Its Genetic Associations and Gene-Diet Interactions. Metab Syndr Relat Disord 2023; 21:545-560. [PMID: 37816229 DOI: 10.1089/met.2023.0125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2023] Open
Abstract
Metabolic syndrome (MetS) is a cluster of cardiometabolic risk factors that includes central obesity, hyperglycemia, hypertension, and dyslipidemias and whose inter-related occurrence may increase the odds of developing type 2 diabetes and cardiovascular diseases. MetS has become one of the most studied conditions, nevertheless, due to its complex etiology, this has not been fully elucidated. Recent evidence describes that both genetic and environmental factors play an important role on its development. With the advent of genomic-wide association studies, single nucleotide polymorphisms (SNPs) have gained special importance. In this review, we present an update of the genetics surrounding MetS as a single entity as well as its corresponding risk factors, considering SNPs and gene-diet interactions related to cardiometabolic markers. In this study, we focus on the conceptual aspects, diagnostic criteria, as well as the role of genetics, particularly on SNPs and polygenic risk scores (PRS) for interindividual analysis. In addition, this review highlights future perspectives of personalized nutrition with regard to the approach of MetS and how individualized multiomics approaches could improve the current outlook.
Collapse
Affiliation(s)
- Denisse Prone-Olazabal
- Postgraduate Department, Faculty of Medicine, Autonomous University of Coahuila, Torreon, Mexico
| | - Ian Davies
- Research Institute of Sport and Exercise Science, The Institute for Health Research, Liverpool John Moores University, Liverpool, United Kingdom
| | | |
Collapse
|
9
|
Silva-Ochoa AD, Velasteguí E, Falconí IB, García-Solorzano VI, Rendón-Riofrio A, Sanguña-Soliz GA, Vanden Berghe W, Orellana-Manzano A. Metabolic syndrome: Nutri-epigenetic cause or consequence? Heliyon 2023; 9:e21106. [PMID: 37954272 PMCID: PMC10637881 DOI: 10.1016/j.heliyon.2023.e21106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 09/08/2023] [Accepted: 10/16/2023] [Indexed: 11/14/2023] Open
Abstract
Metabolic syndrome is a cluster of conditions that results from the interplay of genetic and environmental factors, which increase the comorbidity risk of obesity, hyperglycemia, dyslipidemia, arterial hypertension, stroke, and cardiovascular disease. In this article, we review various high-impact studies which link epigenetics with metabolic syndrome by comparing each study population, methylation effects, and strengths and weaknesses of each research. We also discuss world statistical data on metabolic syndrome incidence in developing countries where the metabolic syndrome is common condition that has significant public health implications.
Collapse
Affiliation(s)
- Alfonso D. Silva-Ochoa
- Laboratorio para Investigaciones Biomédicas, Facultad de Ciencias de la Vida, Escuela Superior Politécnica del Litoral, ESPOL, Campus Gustavo Galindo Km. 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
- Licenciatura en Nutrición y Dietética, Facultad de Ciencias de la Vida, Escuela Superior Politécnica del Litoral, ESPOL, Campus Gustavo Galindo Km. 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
| | - Erick Velasteguí
- Laboratorio para Investigaciones Biomédicas, Facultad de Ciencias de la Vida, Escuela Superior Politécnica del Litoral, ESPOL, Campus Gustavo Galindo Km. 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
- Departamento de Ciencias de Alimentos y Biotecnología, Escuela Politécnica Nacional, Quito, Ecuador
| | - Isaac B. Falconí
- Laboratorio para Investigaciones Biomédicas, Facultad de Ciencias de la Vida, Escuela Superior Politécnica del Litoral, ESPOL, Campus Gustavo Galindo Km. 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
| | - Valeria I. García-Solorzano
- Laboratorio para Investigaciones Biomédicas, Facultad de Ciencias de la Vida, Escuela Superior Politécnica del Litoral, ESPOL, Campus Gustavo Galindo Km. 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
| | - Angie Rendón-Riofrio
- Laboratorio para Investigaciones Biomédicas, Facultad de Ciencias de la Vida, Escuela Superior Politécnica del Litoral, ESPOL, Campus Gustavo Galindo Km. 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
| | - Gabriela A. Sanguña-Soliz
- Laboratorio para Investigaciones Biomédicas, Facultad de Ciencias de la Vida, Escuela Superior Politécnica del Litoral, ESPOL, Campus Gustavo Galindo Km. 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
- Escuela Superior Politécnica del Litoral, ESPOL, Centro de Agua y Desarrollo Sustentable, CADS, Campus Gustavo Galindo Km. 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
| | - Wim Vanden Berghe
- Epigenetic signaling PPES lab, Department Biomedical Sciences, University Antwerp, Antwerp, Belgium
| | - Andrea Orellana-Manzano
- Laboratorio para Investigaciones Biomédicas, Facultad de Ciencias de la Vida, Escuela Superior Politécnica del Litoral, ESPOL, Campus Gustavo Galindo Km. 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
| |
Collapse
|
10
|
Ulloque-Badaracco JR, Hernandez-Bustamante EA, Alarcon-Braga EA, Al-kassab-Córdova A, Cabrera-Guzmán JC, Herrera-Añazco P, Benites-Zapata VA. Vitamin B12, folate, and homocysteine in metabolic syndrome: a systematic review and meta-analysis. Front Endocrinol (Lausanne) 2023; 14:1221259. [PMID: 37772082 PMCID: PMC10527372 DOI: 10.3389/fendo.2023.1221259] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/22/2023] [Indexed: 09/30/2023] Open
Abstract
Background & aims Metabolic syndrome (MetS) is associated with life-threatening conditions. Several studies have reported an association of vitamin B12, folic acid, or homocysteine (Hcy) levels with MetS. This systematic review and meta-analysis assessed the association of vitamin B12, folic acid, and Hcy levels with MetS. Methods PubMed, Scopus, Embase, Ovid/Medline, and Web of Science were searched up to February 13, 2023. Cross-sectional, case-control, or cohort studies were included. A random-effects model was performed using the DerSimonian and Laird method to estimate the between-study variance. Effect measures were expressed as odds ratios (OR) with their corresponding 95% confidence intervals (95% CI). Between-study heterogeneity was evaluated using Cochran's Q test and the I2 statistic. Results Sixty-six articles (n = 87,988 patients) were included. Higher vitamin B12 levels were inversely associated with MetS (OR = 0.87; 95% CI: 0.81-0.93; p < 0.01; I2 = 90%). Higher Hcy levels were associated with MetS (OR = 1.19; 95% CI: 1.14-1.24; p < 0.01; I2 = 90%). Folate levels were not associated with MetS (OR = 0.83; 95% CI: 0.66-1.03; p = 0.09; I2 = 90%). Conclusion Higher vitamin B12 levels were inversely associated with MetS, whereas higher Hcy levels were associated with MetS. Studies assessing the pathways underlying this association are required.
Collapse
Affiliation(s)
| | - Enrique A. Hernandez-Bustamante
- Sociedad Científica De Estudiantes De Medicina De La Universidad Nacional De Trujillo, Trujillo, Peru
- Grupo Peruano De Investigación Epidemiológica, Unidad Para La Generación y Síntesis De Evidencias En Salud, Universidad San Ignacio De Loyola, Lima, Peru
| | | | - Ali Al-kassab-Córdova
- Centro de Excelencia en Investigaciones Económicas y Sociales en Salud, Universidad San Ignacio de Loyola, Lima, Peru
| | | | - Percy Herrera-Añazco
- Universidad Privada Del Norte, Trujillo, Peru
- Red Peruana De Salud Colectiva, Lima, Peru
| | - Vicente A. Benites-Zapata
- Unidad De Investigación Para La Generación y Síntesis De Evidencias En Salud, Vicerrectorado De Investigación, Universidad San Ignacio De Loyola, Lima, Peru
| |
Collapse
|
11
|
Butnariu LI, Gorduza EV, Țarcă E, Pânzaru MC, Popa S, Stoleriu S, Lupu VV, Lupu A, Cojocaru E, Trandafir LM, Moisă ȘM, Florea A, Stătescu L, Bădescu MC. Current Data and New Insights into the Genetic Factors of Atherogenic Dyslipidemia Associated with Metabolic Syndrome. Diagnostics (Basel) 2023; 13:2348. [PMID: 37510094 PMCID: PMC10378477 DOI: 10.3390/diagnostics13142348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Atherogenic dyslipidemia plays a critical role in the development of metabolic syndrome (MetS), being one of its major components, along with central obesity, insulin resistance, and hypertension. In recent years, the development of molecular genetics techniques and extended analysis at the genome or exome level has led to important progress in the identification of genetic factors (heritability) involved in lipid metabolism disorders associated with MetS. In this review, we have proposed to present the current knowledge related to the genetic etiology of atherogenic dyslipidemia, but also possible challenges for future studies. Data from the literature provided by candidate gene-based association studies or extended studies, such as genome-wide association studies (GWAS) and whole exome sequencing (WES,) have revealed that atherogenic dyslipidemia presents a marked genetic heterogeneity (monogenic or complex, multifactorial). Despite sustained efforts, many of the genetic factors still remain unidentified (missing heritability). In the future, the identification of new genes and the molecular mechanisms by which they intervene in lipid disorders will allow the development of innovative therapies that act on specific targets. In addition, the use of polygenic risk scores (PRS) or specific biomarkers to identify individuals at increased risk of atherogenic dyslipidemia and/or other components of MetS will allow effective preventive measures and personalized therapy.
Collapse
Affiliation(s)
- Lăcramioara Ionela Butnariu
- Department of Medical Genetics, Faculty of Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Eusebiu Vlad Gorduza
- Department of Medical Genetics, Faculty of Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Elena Țarcă
- Department of Surgery II-Pediatric Surgery, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Monica-Cristina Pânzaru
- Department of Medical Genetics, Faculty of Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Setalia Popa
- Department of Medical Genetics, Faculty of Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Simona Stoleriu
- Odontology-Periodontology, Fixed Prosthesis Department, Faculty of Dental Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Vasile Valeriu Lupu
- Department of Pediatrics, Faculty of Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Ancuta Lupu
- Department of Pediatrics, Faculty of Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Elena Cojocaru
- Department of Morphofunctional Sciences I, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Laura Mihaela Trandafir
- Department of Pediatrics, Faculty of Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Ștefana Maria Moisă
- Department of Pediatrics, Faculty of Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Andreea Florea
- Department of Medical Genetics, Faculty of Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Laura Stătescu
- Medical III Department, Faculty of Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Minerva Codruța Bădescu
- III Internal Medicine Clinic, "St. Spiridon" County Emergency Clinical Hospital, 1 Independence Boulevard, 700111 Iasi, Romania
- Department of Internal Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| |
Collapse
|
12
|
Guo S, Hua L, Liu W, Liu H, Chen Q, Li Y, Li X, Zhao L, Li R, Zhang Z, Zhang C, Zhu L, Sun H, Zhao H. Multiple metal exposure and metabolic syndrome in elderly individuals: A case-control study in an active mining district, Northwest China. CHEMOSPHERE 2023; 326:138494. [PMID: 36966925 DOI: 10.1016/j.chemosphere.2023.138494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/19/2023] [Accepted: 03/21/2023] [Indexed: 06/18/2023]
Abstract
The prevalence of metabolic syndrome (MetS) is increasing at an alarming rate worldwide, particularly among elderly individuals. Exposure to various metals has been linked to the development of MetS. However, limited studies have focused attention on the elderly population living in active mining districts. Participants with MetS (N = 292) were matched for age (±2 years old) and sex with a healthy subject (N = 292). We measured the serum levels of 14 metals in older people aged 65-85 years. Conditional logistic regression, restricted cubic spline model, multiple linear regression, and Bayesian Kernel Machine Regression (BKMR) were applied to estimate potential associations between multiple metals and the risk of MetS. Serum levels of Sb and Fe were significantly higher than the controls (0.58 μg/L vs 0.46 μg/L, 2167 μg/L vs 2042 μg/L, p < 0.05), while Mg was significantly lower (20035 μg/L vs 20,394 μg/L, p < 0.05). An increased risk of MetS was associated with higher serum Sb levels (adjusted odds ratio (OR) = 1.61 for the highest tertile vs. the lowest tertile, 95% CI = 1.08-2.40, p-trend = 0.018) and serum Fe levels (adjusted OR = 1.55 for the highest tertile, 95% CI = 1.04-2.33, p-trend = 0.032). Higher Mg levels in serum may have potential protective effects on the development of MetS (adjusted OR = 0.61 for the highest tertile, 95% CI = 0.41-0.91, p-trend = 0.013). A joint exposure analysis by the BKMR model revealed that the mixture of 12 metals (except Tl and Cd) was associated with increased risk of MetS. Our results indicated that exposure to Sb and Fe might increase the risk of MetS in an elderly population living in mining-intensive areas. Further work is needed to confirm the protective effect of Mg on MetS.
Collapse
Affiliation(s)
- Sai Guo
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Liting Hua
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Wu Liu
- Jingyuan County Center for Disease Control and Prevention, Baiyin, Gansu, 730699, China
| | - Hongxiu Liu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, Hubei, China
| | - Qiusheng Chen
- Institute of Agro-product Safety and Nutrition, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China
| | - Yongcheng Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xiaoxiao Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Leicheng Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Ruoqi Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Zining Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Chong Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lin Zhu
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongzhi Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
13
|
Mendhe HG, Borkar SK, Shaikh MK, Choudhari SG. Assessment of Obesity and Associated Risk Factors of Diabesity in an Urban Population in Central India. Cureus 2023; 15:e39776. [PMID: 37398701 PMCID: PMC10312357 DOI: 10.7759/cureus.39776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 05/31/2023] [Indexed: 07/04/2023] Open
Abstract
Background Over the past 20 years, the prevalence of adult obesity has doubled. International awareness of the body mass index (BMI) as a benchmark for identifying and categorizing overweight and obesity has grown. This study was conducted to assess the socio-demographic factors of the study participants, assess the prevalence of obesity amongst the study subjects, find an association between risk factors and diabesity, and assess obesity using the percentage body fat and waist-hip ratio of study participants. Methods This study was undertaken among diabetes patients residing in the field practice area of the Urban Health and Training Centre (UHTC), Wadi, affiliated with the Datta Meghe Medical College, Nagpur, from July 2022 to September 2022. Two hundred and seventy-eight diabetic people were included as study participants. Systematic random sampling was used to identify study subjects visiting UHTC, Wadi. The World Health Organization's step-by-step approach to the surveillance of risk factors for chronic diseases served as the model for the questionnaire. Results Among the 278 diabetic study participants, the prevalence of generalized obesity was 76.61%. Obesity was more prevalent in subjects with a family history of diabetes. All hypertensive subjects were obese. Obesity was more prevalent among tobacco chewers. In obesity assessment using body fat percentage when compared with standard BMI, the sensitivity was found to be 84% and specificity was 48%. Conclusion Body fat percentage is a simple estimation that can identify obesity among diabetic individuals who are non-obese by BMI. We can change the behavior amongst non-obese diabetic individuals by giving health education, thereby reducing insulin resistance and improving compliance and adherence to the treatment.
Collapse
Affiliation(s)
- Harshal G Mendhe
- Community Medicine, Datta Meghe Medical College, Datta Meghe Institute of Medical Sciences, Nagpur, IND
| | - Sonali K Borkar
- Community Medicine, Datta Meghe Medical College, Datta Meghe Institute of Medical Sciences, Nagpur, IND
| | - Mohammed Kamran Shaikh
- Community Medicine, Datta Meghe Medical College, Datta Meghe Institute of Medical Sciences, Nagpur, IND
| | - Sonali G Choudhari
- School of Epidemiology & Public Health, Jawaharlal Nehru Medical College, Datta Meghe Institute of Medical Sciences, Wardha, IND
| |
Collapse
|
14
|
Kim EGR, Kaelber DC. Phenotypic prevalence of obesity and metabolic syndrome among an underdiagnosed and underscreened population of over 50 million children and adults. Front Genet 2022; 13:961116. [PMID: 36147487 PMCID: PMC9485995 DOI: 10.3389/fgene.2022.961116] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/22/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Metabolic syndrome is a phenotypic condition associated with a variety of genotypes. Studies of rare genotypes can be made more difficult by clinical underscreening of the population for the phenotypic traits that define metabolic syndrome to clinicians. Studies have demonstrated underdiagnosis of pediatric obesity, as well as reduced rates of pediatric screening for obesity related conditions, including conditions leading to a diagnosis of metabolic syndrome. If true, there may be a significant underdiagnosis of metabolic syndrome among the pediatric population compared to the adult population.Methods: Using Epic’s Cosmos Data Network aggregated, de-identified patient data collected from healthcare organizations using the Epic electronic health record (EHR), we examined obesity and metabolic syndrome rates among adult and pediatric patients. We also examined screening rates for obesity related conditions and metabolic syndrome among adult and pediatric patients across the United States. We also sought to compare rates between subgroups within the population including age, sex, and race.Results: In our population, 45% of adults and 27% of pediatric population were obese by age and gender specific BMI criteria. 38% of the obese adult population had an ICD-10 code associated with the diagnosis vs. 52% of the pediatric population. Of adults meeting obesity criteria, 36% had results for appropriate, guideline-based blood laboratory testing for insulin resistance, 40–42% for dyslipidemia, and 55% for hepatic steatosis. 36% of obese adult patients had none of the recommended blood laboratory testing. 31% of the adult population met diagnostic criteria for metabolic syndrome. Of pediatric patients meeting obesity criteria, 27% had results for appropriate blood laboratory testing for insulin resistance, 28% for dyslipidemia, and 33% for hepatic steatosis. 59% of obese pediatric patients had none of the recommended blood laboratory testing. 3% of the pediatric population met criteria for diagnosis of metabolic syndrome.Discussion: This study represents one of the largest multicenter national cohorts assembled for studying metabolic syndrome (over 50 million patients) and demonstrates the power of emerging aggregated EHR tools for research. Although obesity is better diagnosed in pediatric patients than in adult patients, significantly lower screening rates for obesity related conditions occurred in pediatric patients compared to adults. Statistically significant, but clinically negligible differences in screening rates were found by race and gender. These results support smaller prior studies that suggest that obesity is under-diagnosed and obesity related conditions underscreened in pediatric and adult populations, and additionally suggests underdiagnosis of metabolic syndrome among United States pediatric and adult patients.
Collapse
Affiliation(s)
- Eric GR Kim
- The Department of Family Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
- The Center for Clinical Informatics Research and Education, The MetroHealth System, Cleveland, OH, United States
- *Correspondence: Eric GR Kim,
| | - David C Kaelber
- The Center for Clinical Informatics Research and Education, The MetroHealth System, Cleveland, OH, United States
- The Departments of Internal Medicine, Pediatrics, and Population and Quantitative Health Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
15
|
Sekgala MD, Opperman M, Mpahleni B, Mchiza ZJR. Anthropometric indices and cut-off points for screening of metabolic syndrome among South African taxi drivers. Front Nutr 2022; 9:974749. [PMID: 36034933 PMCID: PMC9406286 DOI: 10.3389/fnut.2022.974749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 07/22/2022] [Indexed: 11/13/2022] Open
Abstract
Background Detecting the early onset of metabolic syndrome (MetS) allows for quick intervention which may slow progression to a variety of health consequences, hence, determining the best measurement to detect MetS is essential. Aim This research aimed at examining the MetS predictive power of anthropometric indices, such as body mass index (BMI), waist circumference (WC), waist-to-height ratio (WHtR), body shape index (ABSI), body roundness index (BRI), percentage body fat (%BF), conicity index (CI), and Clínica Universidad de Navarra-body adiposity estimator (CUN-BAE) to determine the cut-off points to identify male South African taxi drivers with MetS. Method A cross-sectional study was conducted among 185 male taxi drivers. Their weight, height, WC, blood lipid profile were measured. International Diabetes Federation (IDF) definition was used to define MetS. Receiver Operating Characteristic (ROC) curves were used to compare the predictive ability of Anthropometric indices to detect MetS. Results The mean age of the participants was 39.84 years. Overall, 41.6% (N = 77) of the participants presented with MetS. The mean values for BMI, WC, WHtR, %BF, BRI, CUN-BAE, ABSI and CI were 28.60 ± 6.20 kg/m2, 99.13 ± 17.59 cm, 0.58 ± 0.10, 27.28 ± 8.28%, 5.09 ± 2.33, 27.78 ± 8.34, 0.08 ± 0.01 and 1.70 ± 0.19, respectively. The mean values for these indices were significantly (p < 0.001) higher in participants with MetS. The highest area under the curve (AUC) outcomes for screening MetS were for the %BF and CUN-BAE, followed by the BMI and WHtR, and lastly the BRI. All these anthropometric indices had outstanding discriminatory powers for predicting MetS with AUCs and sensitivity values above 80%. The BMI, WHtR, %BF, BRI, and CUN-BAE, had cut-off points for detection of metS in South African men at 28.25 kg/m2, 0.55, 25.29%, 4.55, and 27.10, respectively. Based on the logistic regression models abnormal BMI, WHtR, %BF, BRI, CUN-BAE, TG, FBG, systolic BP, diastolic BP and WC showed increased risk of MetS. Conclusion While the %BF, CUN-BAE, BMI, WC, WHtR, BRI, CI and CUN-BAE could predict MetS among South African male taxi drivers, these indices were less effective in predicting the individual MetS risk factors such as TG, BP, and FBG.
Collapse
Affiliation(s)
- Machoene Derrick Sekgala
- School of Public Health, University of the Western Cape, Bellville, South Africa.,Human and Social Capabilities, Human Sciences Research Council, Cape Town, South Africa
| | - Maretha Opperman
- Functional Food Research Unit, Department of Biotechnology and Consumer Science, Cape Peninsula University of Technology, Cape Town, South Africa
| | - Buhle Mpahleni
- Functional Food Research Unit, Department of Biotechnology and Consumer Science, Cape Peninsula University of Technology, Cape Town, South Africa
| | - Zandile June-Rose Mchiza
- School of Public Health, University of the Western Cape, Bellville, South Africa.,Non-Communicable Diseases Research Unit, South African Medical Research Council, Cape Town, South Africa
| |
Collapse
|
16
|
Žák A, Jáchymová M, Burda M, Staňková B, Zeman M, Slabý A, Vecka M, Šeda O. FADS Polymorphisms Affect the Clinical and Biochemical Phenotypes of Metabolic Syndrome. Metabolites 2022; 12:metabo12060568. [PMID: 35736500 PMCID: PMC9228863 DOI: 10.3390/metabo12060568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 12/04/2022] Open
Abstract
Long-chain polyunsaturated fatty acids (LC-PUFAs) play important roles in human health, from controlling inflammation to lipid and glucose homeostasis. In our previous study, which employed a cluster analysis of a plasma fatty acid (FA) pattern, we identified two clusters of metabolic syndrome (MetS) independent of clinical and biochemical parameters within the whole study group (controls together with metabolic syndrome (MetS) patients). FA desaturase (FADS) genes are the key regulators of LC-PUFA metabolism. The aim of this study was to analyze associations between FADS polymorphisms and clusters of MetS. The study group consisted of 188 controls and 166 patients with MetS. The first cluster contained 71 controls (CON1) and 109 MetS patients (MetS1). The second cluster consisted of 117 controls (CON2) and 57 MetS patients (MetS2). In comparison with MetS2, cluster MetS1 displayed a more adverse risk profile. Cluster CON1 had, in comparison with CON2, higher body weight and increased triacylglycerol levels (p < 0.05). We found that the FADS rs174537 (p < 0.001), rs174570 (p < 0.01), and rs174602 (p < 0.05) polymorphisms along with two inferred haplotypes had statistically significant genotype associations with the splitting of MetS into MetS1 and MetS2. Conversely, we observed no significant differences in the distribution of FADS polymorphisms between MetS and CON subjects, or between CON1 and CON2. These associations between FADS polymorphisms and two clusters of MetS (differing in waist circumference, HOMA-IR, lipolysis, and oxidative stress) implicate the important influence of genetic factors on the phenotypic manifestation of MetS.
Collapse
Affiliation(s)
- Aleš Žák
- 4th Department of Medicine, 1st Medical Faculty, Charles University and the General University Hospital in Prague, 128 08 Prague, Czech Republic; (A.Ž.); (B.S.); (M.Z.); (A.S.)
| | - Marie Jáchymová
- Institute of Clinical Chemistry and Laboratory Diagnostics, 1st Medical Faculty, Charles University and the General University Hospital in Prague, 128 08 Prague, Czech Republic;
| | - Michal Burda
- Institute for Research and Applications of Fuzzy Modeling, University of Ostrava, 701 03 Ostrava, Czech Republic;
| | - Barbora Staňková
- 4th Department of Medicine, 1st Medical Faculty, Charles University and the General University Hospital in Prague, 128 08 Prague, Czech Republic; (A.Ž.); (B.S.); (M.Z.); (A.S.)
| | - Miroslav Zeman
- 4th Department of Medicine, 1st Medical Faculty, Charles University and the General University Hospital in Prague, 128 08 Prague, Czech Republic; (A.Ž.); (B.S.); (M.Z.); (A.S.)
| | - Adolf Slabý
- 4th Department of Medicine, 1st Medical Faculty, Charles University and the General University Hospital in Prague, 128 08 Prague, Czech Republic; (A.Ž.); (B.S.); (M.Z.); (A.S.)
| | - Marek Vecka
- 4th Department of Medicine, 1st Medical Faculty, Charles University and the General University Hospital in Prague, 128 08 Prague, Czech Republic; (A.Ž.); (B.S.); (M.Z.); (A.S.)
- Institute of Clinical Chemistry and Laboratory Diagnostics, 1st Medical Faculty, Charles University and the General University Hospital in Prague, 128 08 Prague, Czech Republic;
- Correspondence:
| | - Ondřej Šeda
- Institute of Biology and Medical Genetics, 1st Medical Faculty, Charles University and the General University Hospital in Prague, 128 00 Prague, Czech Republic;
| |
Collapse
|
17
|
Panov A, Mayorov VI, Dikalov S. Metabolic Syndrome and β-Oxidation of Long-Chain Fatty Acids in the Brain, Heart, and Kidney Mitochondria. Int J Mol Sci 2022; 23:4047. [PMID: 35409406 PMCID: PMC9000033 DOI: 10.3390/ijms23074047] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 02/04/2023] Open
Abstract
We present evidence that metabolic syndrome (MetS) represents the postreproductive stage of the human postembryonic ontogenesis. Accordingly, the genes governing this stage experience relatively weak evolutionary selection pressure, thus representing the metabolic phenotype of distant ancestors with β-oxidation of long-chain fatty acids (FAs) as the primary energy source. Mitochondria oxidize at high-rate FAs only when succinate, glutamate, or pyruvate are present. The heart and brain mitochondria work at a wide range of functional loads and possess an intrinsic inhibition of complex II to prevent oxidative stress at periods of low functional activity. Kidney mitochondria constantly work at a high rate and lack inhibition of complex II. We suggest that in people with MetS, oxidative stress is the central mechanism of the heart and brain pathologies. Oxidative stress is a secondary pathogenetic mechanism in the kidney, while the primary mechanisms are kidney hypoxia caused by persistent hyperglycemia and hypertension. Current evidence suggests that most of the nongenetic pathologies associated with MetS originate from the inconsistencies between the metabolic phenotype acquired after the transition to the postreproductive stage and excessive consumption of food rich in carbohydrates and a sedentary lifestyle.
Collapse
Affiliation(s)
- Alexander Panov
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA 31201, USA;
| | - Vladimir I. Mayorov
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA 31201, USA;
| | - Sergey Dikalov
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
| |
Collapse
|
18
|
Rana S, Ali S, Wani HA, Mushtaq QD, Sharma S, Rehman MU. Metabolic syndrome and underlying genetic determinants-A systematic review. J Diabetes Metab Disord 2022; 21:1095-1104. [PMID: 35673448 PMCID: PMC9167205 DOI: 10.1007/s40200-022-01009-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/13/2022] [Indexed: 12/18/2022]
Abstract
The metabolic syndrome is a cluster of heritable and related traits which has been associated with a range of pathophysiological factors including dyslipidaemia, abdominal obesity, increased fasting plasma glucose (FPG) and hypertension. The documented genetic basis of the metabolic syndrome include several chromosomal positions, numerous candidate gene-associated polymorphisms, different genetic variants, which are linked to the syndrome either as a trait or entities mainly linked to metabolic process. Additionally, the latest findings related to the contribution of epigenetic mechanisms, microRNAs, sporadic variants, non-coding RNAs, and assessing the role of genes in molecular systems has enhanced our understanding of the syndrome. Considerable work has been done to understand the underlying disease mechanisms by elucidating its genetic etiology. Nonetheless, a common shared genetic cause has not been established to clarify the coexistence of their components and further investigation is required. While mostly neglected and rarely known, hereditary predisposition needs to be studied, including with the current defective phenotypic condition descriptions. Metabolic syndrome is a multi-faceted characteristic with abundant properties and the condition can arise from interactions between environmental variables such as physical inactivity, caloric obesity and genetic susceptibility. Although there is support for genetic determinants from family and twin research, there is still no recognised genomic DNA marker for genetic association and linkages with quite a long way off potential for clinical application. In the present review efforts have been made to through light on the various genetic determinants with large effects that underlie with the association of these traits to this syndrome. The heterogeneity and multifactorial heritability of MetS, however, has been a challenge towards understanding the factors underlying the association of these traits.
Collapse
Affiliation(s)
- Sanjeev Rana
- grid.440710.60000 0004 1756 649XHuman Genomics Research Group, Shri Mata Vaishno Devi University (SMVDU), Katra, J and K India
| | - Shafat Ali
- grid.412997.00000 0001 2294 5433Cytogenetics and Molecular Biology Laboratory, Centre of Research for Development, University of Kashmir, Srinagar, J and K India
| | - Hilal Ahmad Wani
- grid.412997.00000 0001 2294 5433Department of Biochemistry, Government Degree College Sumbal, Bandipora, J and K India
| | | | - Swarkar Sharma
- grid.440710.60000 0004 1756 649XHuman Genomics Research Group, School of Biotechnology, Shri Mata Vaishno Devi University (SMVDU), Katra, J and K India
| | - Muneeb U Rehman
- grid.56302.320000 0004 1773 5396College of Clinical Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
19
|
Association of Occupational Noise Exposure and Incidence of Metabolic Syndrome in a Retrospective Cohort Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19042209. [PMID: 35206396 PMCID: PMC8872108 DOI: 10.3390/ijerph19042209] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/28/2022] [Accepted: 02/08/2022] [Indexed: 11/16/2022]
Abstract
Metabolic syndrome is one of the common causes of cardiovascular diseases and cancers. Although noise is an environmental factor to which people can be commonly exposed at work and in daily life, there are currently insufficient studies on the relationship between noise and metabolic syndrome. Therefore, the purpose of this study is to investigate the relationship between noise and metabolic syndrome. Using a multivariate time-dependent Cox proportional hazard model, the impacts of occupational noise exposure on metabolic syndrome and its components were analyzed in a retrospective cohort of 60,727 participants from 2014 to 2017. The noise exposure group showed a significantly higher incidence of metabolic syndrome and was associated with elevated triglycerides, blood sugar, and blood pressure, but decreased high-density lipoprotein, among subgroups. There was no statistically significant association with abdominal obesity. Occupational noise exposure significantly contributed to the incidence of metabolic syndrome and changes in its components. This study could be a basis for establishing policies and guidelines to reduce noise exposure that might improve workers’ health.
Collapse
|
20
|
Tirandi A, Carbone F, Montecucco F, Liberale L. The role of metabolic syndrome in sudden cardiac death risk: Recent evidence and future directions. Eur J Clin Invest 2022; 52:e13693. [PMID: 34714544 PMCID: PMC9286662 DOI: 10.1111/eci.13693] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/23/2021] [Accepted: 09/28/2021] [Indexed: 12/14/2022]
Abstract
Metabolic syndrome (MetS) is a frequent condition whose deleterious effects on the cardiovascular system are often underestimated. MetS is nowadays considered a real pandemic with an estimated prevalence of 25% in general population. Individuals with MetS are at high risk of sudden cardiac death (SCD) as this condition accounts for 50% of all cardiac deaths in such a population. Of interest, recent studies demonstrated that individuals with MetS show 70% increased risk of SCD even without previous history of coronary heart disease (CHD). However, little is known about the interplay between the two conditions. MetS is a complex disease determined by genetic predisposition, unhealthy lifestyle and ageing with deleterious effects on different organs. MetS components trigger a systemic chronic low-grade pro-inflammatory state, associated with excess of sympathetic activity, cardiac hypertrophy, arrhythmias and atherosclerosis. Thus, MetS has an important burden on the cardiovascular system as demonstrated by both preclinical and clinical evidence. The aim of this review is to summarize recent evidence concerning the association between MetS and SCD, showing possible common aetiological processes, and to indicate prospective for future studies and therapeutic targets.
Collapse
Affiliation(s)
- Amedeo Tirandi
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Federico Carbone
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico San Martino Genoa - Italian Cardiovascular Network, Genoa, Italy
| | - Fabrizio Montecucco
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico San Martino Genoa - Italian Cardiovascular Network, Genoa, Italy
| | - Luca Liberale
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy.,Center for Molecular Cardiology, University of Zürich, Schlieren, Switzerland
| |
Collapse
|
21
|
Bhatti AA, Rana S. Association of genetic variants and behavioral factors with the risk of metabolic syndrome in Pakistanis. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-021-00983-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
22
|
Xu T, Peng B, Liu M, Liu Q, Yang J, Qu M, Liu N, Lin L, Wu J. Favorable Genotypes of Type III Interferon Confer Risk of Dyslipidemia in the Population With Obesity. Front Endocrinol (Lausanne) 2022; 13:871352. [PMID: 35784542 PMCID: PMC9243353 DOI: 10.3389/fendo.2022.871352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/28/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Studies have indicated that the chronic state of inflammation caused by obesity leads to dyslipidemia. However, how the polymorphisms involved in these inflammatory pathways affect the lipid metabolism in people with obesity is poorly understood. We investigated the associations of inflammation-related gene polymorphisms with dyslipidemia in individuals with obesity living in China. METHODS This case-control study in a population with obesity involved 194 individuals with dyslipidemia and 103 individuals without dyslipidemia. Anthropometric indices of obesity, fasting plasma glucose, blood pressure, blood lipids, and C-reactive protein were evaluated. The genes we tested were IL6 (interleukin 6), IL6R (interleukin 6 receptor), FOXP3 (forkhead box P3), TLR2 (toll-like receptor 2), TLR4 (toll-like receptor 4), IFNL3 (interferon lambda 3, formerly known as IL28B), and IFNL4 (interferon lambda 4, formerly known as IL29). Polymorphisms were genotyped using matrix-assisted laser desorption/ionization-time of flight mass spectrometry. RESULTS There were significant differences in the allelic and genotype frequencies of IFNL3 (IL28B) rs12971396, rs8099917, rs11882871, rs12979860, rs4803217 between non-dyslipidemia and dyslipidemia groups in people with obesity. These single nucleotide polymorphisms (SNPs) of IFNL3 were highly linked (D' and r > 0.90), so the result of one SNP could represent the result of other SNPs. For IFNL3 rs12971396, people with the homozygous genotype (the major group) carried a higher risk of dyslipidemia than people with the heterozygous genotype (P < 0.001, OR = 4.46, 95%CI, 1.95-10.22). CONCLUSIONS The favorable genotypes of type III interferon, which have a beneficial role in anti-virus function, were associated with dyslipidemia in a Chinese population with obesity. Type III interferon could have a pathologic role and confer risk of dyslipidemia in people with obesity and chronic inflammation.
Collapse
Affiliation(s)
- Tiantian Xu
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Research Center for Obesity and its Metabolic Complications, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Bo Peng
- Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Mengmeng Liu
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Research Center for Obesity and its Metabolic Complications, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Qingjing Liu
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Research Center for Obesity and its Metabolic Complications, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Junya Yang
- School of Health and Related Research, University of Sheffield, Sheffield, United Kingdom
| | - Minli Qu
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Research Center for Obesity and its Metabolic Complications, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Na Liu
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Research Center for Obesity and its Metabolic Complications, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Lizhen Lin
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Research Center for Obesity and its Metabolic Complications, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jing Wu
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Research Center for Obesity and its Metabolic Complications, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Jing Wu,
| |
Collapse
|
23
|
Everson TM, Vives-Usano M, Seyve E, Cardenas A, Lacasaña M, Craig JM, Lesseur C, Baker ER, Fernandez-Jimenez N, Heude B, Perron P, Gónzalez-Alzaga B, Halliday J, Deyssenroth MA, Karagas MR, Íñiguez C, Bouchard L, Carmona-Sáez P, Loke YJ, Hao K, Belmonte T, Charles MA, Martorell-Marugán J, Muggli E, Chen J, Fernández MF, Tost J, Gómez-Martín A, London SJ, Sunyer J, Marsit CJ, Lepeule J, Hivert MF, Bustamante M. Placental DNA methylation signatures of maternal smoking during pregnancy and potential impacts on fetal growth. Nat Commun 2021; 12:5095. [PMID: 34429407 PMCID: PMC8384884 DOI: 10.1038/s41467-021-24558-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 06/22/2021] [Indexed: 02/07/2023] Open
Abstract
Maternal smoking during pregnancy (MSDP) contributes to poor birth outcomes, in part through disrupted placental functions, which may be reflected in the placental epigenome. Here we present a meta-analysis of the associations between MSDP and placental DNA methylation (DNAm) and between DNAm and birth outcomes within the Pregnancy And Childhood Epigenetics (PACE) consortium (N = 1700, 344 with MSDP). We identify 443 CpGs that are associated with MSDP, of which 142 associated with birth outcomes, 40 associated with gene expression, and 13 CpGs are associated with all three. Only two CpGs have consistent associations from a prior meta-analysis of cord blood DNAm, demonstrating substantial tissue-specific responses to MSDP. The placental MSDP-associated CpGs are enriched for environmental response genes, growth-factor signaling, and inflammation, which play important roles in placental function. We demonstrate links between placental DNAm, MSDP and poor birth outcomes, which may better inform the mechanisms through which MSDP impacts placental function and fetal growth.
Collapse
Affiliation(s)
- Todd M Everson
- Gangarosa Department of Environmental Health, Rollins School of Public Health at Emory University, Atlanta, GA, USA.
| | - Marta Vives-Usano
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Emie Seyve
- University Grenoble Alpes, Inserm, CNRS, IAB, Grenoble, France
| | - Andres Cardenas
- Department of Population Medicine, Harvard Medical School, Harvard Pilgrim Health Care Institute, Boston, MA, USA
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Marina Lacasaña
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Andalusian School of Public Health, Granada, Spain
- Instituto de Investigación Biosantaria (ibs.GRANADA), Granada, Spain
| | - Jeffrey M Craig
- Epigenetics Group, Murdoch Children's Research Institute, Parkville, VIC, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
- IMPACT - the Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC, Australia
| | - Corina Lesseur
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Emily R Baker
- Department of Obstetrics & Gynecology, Geisel School of Medicine at Dartmouth College, Lebanon, NH, USA
| | - Nora Fernandez-Jimenez
- University of the Basque Country (UPV/EHU), Leioa, Spain
- Biocruces-Bizkaia Health Research Institute, Barakaldo, Spain
- Public Health Division of Gipuzkoa, Basque Government, San Sebastian, Spain
| | - Barbara Heude
- Université de Paris, CRESS, INSERM, INRAE, Paris, France
| | - Patrice Perron
- Department of Medicine, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Beatriz Gónzalez-Alzaga
- Andalusian School of Public Health, Granada, Spain
- Instituto de Investigación Biosantaria (ibs.GRANADA), Granada, Spain
| | - Jane Halliday
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
- Reproductive Epidemiology, Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Maya A Deyssenroth
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Margaret R Karagas
- Department of Epidemiology, Geisel School of Medicine at Dartmouth College, Hanover, NH, USA
| | - Carmen Íñiguez
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Department of Statistics and Computational Research, Universitat de València, València, Spain
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, València, Spain
| | - Luigi Bouchard
- Department of Biochemistry and Functional Genomics, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Pedro Carmona-Sáez
- Bioinformatics Unit, GENYO. Centre for Genomics and Oncological Research, Pfizer, University of Granada, Andalusian Regional Government, Granada, Spain
- Department of Statistics, Faculty of Sciences, University of Granada, Granada, Spain
| | - Yuk J Loke
- Epigenetics Group, Murdoch Children's Research Institute, Parkville, VIC, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
| | - Ke Hao
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | | | - Jordi Martorell-Marugán
- Bioinformatics Unit, GENYO. Centre for Genomics and Oncological Research, Pfizer, University of Granada, Andalusian Regional Government, Granada, Spain
- Atrys Health S.A., Barcelona, Spain
| | - Evelyne Muggli
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
- Reproductive Epidemiology, Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Jia Chen
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mariana F Fernández
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Instituto de Investigación Biosantaria (ibs.GRANADA), Granada, Spain
- Biomedical Research Centre (CIBM) and School of Medicine, University of Granada, Granada, Spain
| | - Jorg Tost
- Laboratory for Epigenetics and Environment, Centre National de Recherche en Génomique Humaine, CEA - Institut de Biologie François Jacob, Evry, France
| | - Antonio Gómez-Martín
- Genomics Unit, GENYO. Centre for Genomics and Oncological Research, Pfizer, University of Granada, Andalusian Regional Government, Granada, Spain
| | - Stephanie J London
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Durham, NC, USA
| | - Jordi Sunyer
- Universitat Pompeu Fabra, Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Carmen J Marsit
- Gangarosa Department of Environmental Health, Rollins School of Public Health at Emory University, Atlanta, GA, USA
- Department of Epidemiology, Rollins School of Public health at Emory University, Atlanta, GA, USA
| | - Johanna Lepeule
- University Grenoble Alpes, Inserm, CNRS, IAB, Grenoble, France
| | - Marie-France Hivert
- Department of Population Medicine, Harvard Medical School, Harvard Pilgrim Health Care Institute, Boston, MA, USA
- Diabetes Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Mariona Bustamante
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain.
- Universitat Pompeu Fabra, Barcelona, Spain.
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain.
| |
Collapse
|
24
|
Paderina DZ, Boiko AS, Pozhidaev IV, Bocharova AV, Mednova IA, Fedorenko OY, Kornetova EG, Loonen AJ, Semke AV, Bokhan NA, Ivanova SA. Genetic Polymorphisms of 5-HT Receptors and Antipsychotic-Induced Metabolic Dysfunction in Patients with Schizophrenia. J Pers Med 2021; 11:jpm11030181. [PMID: 33807811 PMCID: PMC7999828 DOI: 10.3390/jpm11030181] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Antipsychotic-induced metabolic syndrome (MetS) is a multifactorial disease with a genetic predisposition. Serotonin and its receptors are involved in antipsychotic-drug-induced metabolic disorders. The present study investigated the association of nine polymorphisms in the four 5-hydroxytryptamine receptor (HTR) genes HTR1A, HTR2A, HTR3A, and HTR2C and the gene encoding for the serotonin transporter SLC6A4 with MetS in patients with schizophrenia. METHODS A set of nine single-nucleotide polymorphisms of genes of the serotonergic system was investigated in a population of 475 patients from several Siberian regions (Russia) with a clinical diagnosis of schizophrenia. Genotyping was performed and the results were analyzed using chi-square tests. RESULTS Polymorphic variant rs521018 (HTR2C) was associated with higher body mass index in patients receiving long-term antipsychotic therapy, but not with drug-induced metabolic syndrome. Rs1150226 (HTR3A) was also associated but did not meet Hardy-Weinberg equilibrium. CONCLUSIONS Our results indicate that allelic variants of HTR2C genes may have consequences on metabolic parameters. MetS may have too complex a mechanistic background to be studied without dissecting the syndrome into its individual (causal) components.
Collapse
Affiliation(s)
- Diana Z. Paderina
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634014 Tomsk, Russia; (D.Z.P.); (A.S.B.); (I.V.P.); (I.A.M.); (O.Y.F.); (E.G.K.); (A.V.S.); (N.A.B.); (S.A.I.)
| | - Anastasiia S. Boiko
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634014 Tomsk, Russia; (D.Z.P.); (A.S.B.); (I.V.P.); (I.A.M.); (O.Y.F.); (E.G.K.); (A.V.S.); (N.A.B.); (S.A.I.)
| | - Ivan V. Pozhidaev
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634014 Tomsk, Russia; (D.Z.P.); (A.S.B.); (I.V.P.); (I.A.M.); (O.Y.F.); (E.G.K.); (A.V.S.); (N.A.B.); (S.A.I.)
| | - Anna V. Bocharova
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634050 Tomsk, Russia;
| | - Irina A. Mednova
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634014 Tomsk, Russia; (D.Z.P.); (A.S.B.); (I.V.P.); (I.A.M.); (O.Y.F.); (E.G.K.); (A.V.S.); (N.A.B.); (S.A.I.)
| | - Olga Yu. Fedorenko
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634014 Tomsk, Russia; (D.Z.P.); (A.S.B.); (I.V.P.); (I.A.M.); (O.Y.F.); (E.G.K.); (A.V.S.); (N.A.B.); (S.A.I.)
| | - Elena G. Kornetova
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634014 Tomsk, Russia; (D.Z.P.); (A.S.B.); (I.V.P.); (I.A.M.); (O.Y.F.); (E.G.K.); (A.V.S.); (N.A.B.); (S.A.I.)
- Siberian State Medical University, 634050 Tomsk, Russia
| | - Anton J.M. Loonen
- Unit of PharmacoTherapy, -Epidemiology & -Economics, Groningen Research Institute of Pharmacy, University of Groningen, 9713AV Groningen, The Netherlands
- Correspondence:
| | - Arkadiy V. Semke
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634014 Tomsk, Russia; (D.Z.P.); (A.S.B.); (I.V.P.); (I.A.M.); (O.Y.F.); (E.G.K.); (A.V.S.); (N.A.B.); (S.A.I.)
| | - Nikolay A. Bokhan
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634014 Tomsk, Russia; (D.Z.P.); (A.S.B.); (I.V.P.); (I.A.M.); (O.Y.F.); (E.G.K.); (A.V.S.); (N.A.B.); (S.A.I.)
- Siberian State Medical University, 634050 Tomsk, Russia
| | - Svetlana A. Ivanova
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634014 Tomsk, Russia; (D.Z.P.); (A.S.B.); (I.V.P.); (I.A.M.); (O.Y.F.); (E.G.K.); (A.V.S.); (N.A.B.); (S.A.I.)
- Siberian State Medical University, 634050 Tomsk, Russia
| |
Collapse
|
25
|
Ghareeb D, Abdelazem AS, Hussein EM, Al-Karamany AS. Association of TNF-α-308 G>A (rs1800629) polymorphism with susceptibility of metabolic syndrome. J Diabetes Metab Disord 2021; 20:209-215. [PMID: 34178832 DOI: 10.1007/s40200-021-00732-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/04/2021] [Indexed: 01/17/2023]
Abstract
Background Metabolic Syndrome (MetS) mainly comprises hyperglycemia, hypertension and dyslipidemia, and has been proven to increase the risk for type 2 diabetes mellitus (T2DM) and cardiovascular disease. Studies have suggested that many factors may be involved in the pathogenesis of MetS, but tumor necrosis factor alpha (TNF- α) may play a strong role as its gene polymorphism was associated with insulin resistance and obesity. The aim of this study was to evaluate the possible association of TNF-α-308 G > A (rs1800629) polymorphism with susceptibility of metabolic syndrome. Methods a case-control study was conducted upon 128 participants recruited from Suez Canal University Hospital (Ismailia, Egypt), divided into the MetS group (n = 64) and the control group (n = 64). Genotyping of the TNF-α-308 G > A (rs1800629) polymorphism was performed by restriction fragment length polymorphism (PCR-RFLP). Results The A allele was significantly higher among MetS patients (40%) than controls (11%) (p < 0.0001). A significant association was observed between the healthy and MetS groups under the influence of co-dominant, dominant and over-dominant genetic models (p < 0.05). Also, there were positive correlations between TNF-α-308 (G/A) polymorphism and risk factors of metabolic syndrome like body mass index (BMI); fasting blood sugar; cholesterol and low density lipoprotein (LDL) (p < 0.05). Regression analysis was done for predictors of MetS and the A allele was found to be a strong predictor (OR 2.752; 95% CI = 1.106 to 6.847; p = 0.03), as well as, BMI; triglyceride (TG); high density lipoprotein (HDL); LDL and cholesterol (p < 0.05). Conclusions TNF-α-308 G > A (rs1800629) polymorphism may be play an important role in the development of metabolic syndrome and A allele is a strong predictor in Egyptians.
Collapse
Affiliation(s)
- Dalia Ghareeb
- Department of Clinical Pathology, Faculty of Medicine, Suez University, Suez, Egypt
| | - Abdallah S Abdelazem
- Department of Medical Biochemistry, Faculty of Medicine, Suez University, Suez, Egypt
| | - Ekhlas M Hussein
- Department of Cardiology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Amira S Al-Karamany
- Department of Medical Biochemistry, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
26
|
Hsu CS, Chang ST, Nfor ON, Lee KJ, Ho CC, Liu CC, Lee SS, Liaw YP. Association of Metabolic Syndrome with Aerobic Exercise and LPL rs3779788 Polymorphism in Taiwan Biobank Individuals. Diabetes Metab Syndr Obes 2021; 14:3997-4004. [PMID: 34548800 PMCID: PMC8449547 DOI: 10.2147/dmso.s328308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/28/2021] [Indexed: 12/15/2022] Open
Abstract
PURPOSE The Lipoprotein lipase (LPL) gene is a significant contributor to dyslipidemia. It has shown associations with several conditions including atherosclerosis, obesity, and metabolic syndrome (MetS). We assessed the interactive association between MetS and rs3779788 of the LPL gene based on aerobic exercise. MATERIALS AND METHODS Data were available for 7532 Taiwan Biobank (TWB) participants recruited between 2008 and 2016. We used multiple logistic regression to determine the odds ratios (OR) for MetS and their 95% confident intervals (C.I.). Potential variables included LPL rs3779788, aerobic exercise, sex, age, education, marital status, body mass index (BMI), smoking, alcohol consumption, midnight snacking, vegetarian diet, coffee, dietary fat, and tea drinking. RESULTS Aerobic exercise was protective against MetS (OR, 0.858; 95% C.I., 0.743-0.991). Compared to CC/CT genotype, the OR for developing MetS was 0.875, (95% C.I., 0.571-1.341) in TT individuals. The test for interaction was significant for the rs3779788 variant and aerobic exercise (p = 0.0484). In our group analyses, the OR for MetS was 0.841 (95% C.I., 0.727-0.974) in CC/CT and 4.076 (95% C.I., 1.158-14.346) in TT individuals who did aerobic exercise compared to those who did not. CONCLUSION Our study indicated that aerobic exercise improved metabolic syndrome in Taiwanese adults with rs3779788 CC/CT genotype relative to those with TT genotype.
Collapse
Affiliation(s)
- Chun-Sheng Hsu
- Department of Physical Medicine and Rehabilitation, Taichung Veterans General Hospital, Taichung City, 40201, Taiwan
- Department of Public Health and Institute of Public Health, Chung Shan Medical University, Taichung City, 40201, Taiwan
- School of Medicine, National Defense Medical Center, Taipei City, 11490, Taiwan
- College of Medicine, National Chung Hsing University, Taichung City, 402, Taiwan
| | - Shin-Tsu Chang
- Department of Physical Medicine and Rehabilitation, Taichung Veterans General Hospital, Taichung City, 40201, Taiwan
- Department of Physical Medicine and Rehabilitation, Tri-Service General Hospital, School of Medicine, National Defense Medical Centre, Taipei City, 11490, Taiwan
- Department of Physical Medicine and Rehabilitation, Kaohsiung Veterans General Hospital, Kaohsiung City, 813414, Taiwan
| | - Oswald Ndi Nfor
- Department of Public Health and Institute of Public Health, Chung Shan Medical University, Taichung City, 40201, Taiwan
| | - Kuan-Jung Lee
- Department of Public Health and Institute of Public Health, Chung Shan Medical University, Taichung City, 40201, Taiwan
| | - Chien-Chang Ho
- Department of Physical Education, Fu Jen Catholic University, New Taipei, 24205, Taiwan
- Research and Development Center for Physical Education, Health, and Information Technology, Fu Jen Catholic University, New Taipei, 24205, Taiwan
| | - Chuan-Ching Liu
- Department of Physical Medicine and Rehabilitation, Taichung Veterans General Hospital, Taichung City, 40201, Taiwan
| | - Shiuan-Shinn Lee
- Department of Public Health and Institute of Public Health, Chung Shan Medical University, Taichung City, 40201, Taiwan
| | - Yung-Po Liaw
- Department of Public Health and Institute of Public Health, Chung Shan Medical University, Taichung City, 40201, Taiwan
- Department of Medical Imaging, Chung Shan Medical University Hospital, Taichung City, 40201, Taiwan
- Correspondence: Yung-Po Liaw; Shiuan-Shinn Lee Department of Public Health and Institute of Public Health, Chung Shan Medical University, No. 110 Sec. 1 Jianguo N. Road, Taichung City, 40201, TaiwanTel +886 424730022 ext. 11838; +886 424730022 ext.12185Fax +886 423248179 Email ;
| |
Collapse
|
27
|
Nuotio ML, Pervjakova N, Joensuu A, Karhunen V, Hiekkalinna T, Milani L, Kettunen J, Järvelin MR, Jousilahti P, Metspalu A, Salomaa V, Kristiansson K, Perola M. An epigenome-wide association study of metabolic syndrome and its components. Sci Rep 2020; 10:20567. [PMID: 33239708 PMCID: PMC7688654 DOI: 10.1038/s41598-020-77506-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 11/09/2020] [Indexed: 12/14/2022] Open
Abstract
The role of metabolic syndrome (MetS) as a preceding metabolic state for type 2 diabetes and cardiovascular disease is widely recognised. To accumulate knowledge of the pathological mechanisms behind the condition at the methylation level, we conducted an epigenome-wide association study (EWAS) of MetS and its components, testing 1187 individuals of European ancestry for approximately 470 000 methylation sites throughout the genome. Methylation site cg19693031 in gene TXNIP —previously associated with type 2 diabetes, glucose and lipid metabolism, associated with fasting glucose level (P = 1.80 × 10−8). Cg06500161 in gene ABCG1 associated both with serum triglycerides (P = 5.36 × 10−9) and waist circumference (P = 5.21 × 10−9). The previously identified type 2 diabetes–associated locus cg08309687 in chromosome 21 associated with waist circumference for the first time (P = 2.24 × 10−7). Furthermore, a novel HDL association with cg17901584 in chromosome 1 was identified (P = 7.81 × 10−8). Our study supports previous genetic studies of MetS, finding that lipid metabolism plays a key role in pathology of the syndrome. We provide evidence regarding a close interplay with glucose metabolism. Finally, we suggest that in attempts to identify methylation loci linking separate MetS components, cg19693031 appears to represent a strong candidate.
Collapse
Affiliation(s)
- Marja-Liisa Nuotio
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland. .,Genomics and Biobank Unit, Department of Public Health Solutions, National Institute for Health and Welfare, Biomedicum 1, Haartmaninkatu 8, 00290, Helsinki, Finland. .,Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| | - Natalia Pervjakova
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Anni Joensuu
- Genomics and Biobank Unit, Department of Public Health Solutions, National Institute for Health and Welfare, Biomedicum 1, Haartmaninkatu 8, 00290, Helsinki, Finland.,Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Ville Karhunen
- Center for Life Course Health Research, University of Oulu, Oulu, Finland.,Oulu University Hospital, Oulu, Finland.,Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
| | - Tero Hiekkalinna
- Genomics and Biobank Unit, Department of Public Health Solutions, National Institute for Health and Welfare, Biomedicum 1, Haartmaninkatu 8, 00290, Helsinki, Finland
| | - Lili Milani
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Johannes Kettunen
- Center for Life Course Health Research, University of Oulu, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland.,Computational Medicine, Faculty of Medicine, University of Oulu, Oulu, Finland.,Population Health Science, Bristol Medical School, University of Bristol and Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Marjo-Riitta Järvelin
- Center for Life Course Health Research, University of Oulu, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland.,Unit of Primary Health Care, Oulu University Hospital, Oulu, Finland.,Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
| | | | - Andres Metspalu
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia.,Department of Biotechnology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Veikko Salomaa
- Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Kati Kristiansson
- Genomics and Biobank Unit, Department of Public Health Solutions, National Institute for Health and Welfare, Biomedicum 1, Haartmaninkatu 8, 00290, Helsinki, Finland.,Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Markus Perola
- Genomics and Biobank Unit, Department of Public Health Solutions, National Institute for Health and Welfare, Biomedicum 1, Haartmaninkatu 8, 00290, Helsinki, Finland.,Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
28
|
The Variant rs1784042 of the SIDT2 Gene is Associated with Metabolic Syndrome through Low HDL-c Levels in a Mexican Population. Genes (Basel) 2020; 11:genes11101192. [PMID: 33066450 PMCID: PMC7602182 DOI: 10.3390/genes11101192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/05/2020] [Accepted: 10/12/2020] [Indexed: 11/17/2022] Open
Abstract
The Mexican population has one of the highest prevalences of metabolic syndrome (MetS) worldwide. The aim of this study was to investigate the association of single-nucleotide polymorphisms (SNPs) with MetS and its components. First, we performed a pilot Genome-wide association study (GWAS) scan on a sub-sample derived from the Health Workers Cohort Study (HWCS) (n = 411). Based on GWAS results, we selected the rs1784042 and rs17120425 SNPs in the SIDT1 transmembrane family member 2 (SIDT2) gene for replication in the entire cohort (n = 1963), using predesigned TaqMan assays. We observed a prevalence of MetS in the HWCS of 52.6%. The minor allele frequency for the variant rs17120425 was 10% and 29% for the rs1784042. The SNP rs1784042 showed an overall association with MetS (OR = 0.82, p = 0.01) and with low levels of high-density lipoprotein (HDL-c) (odds ratio (OR) = 0.77, p = 0.001). The SNP rs17120425 had a significant association with type 2 diabetes (T2D) risk in the overall population (OR = 1.39, p = 0.033). Our results suggest an association of the rs1784042 and rs17120425 variants with MetS, through different mechanisms in the Mexican population. Further studies in larger samples and other populations are required to validate these findings and the relevance of these SNPs in MetS.
Collapse
|
29
|
Pourgholi L, Pourgholi F, Ziaee S, Goodarzynejad H, Hosseindokht M, Boroumand M, Mandegary A. The association between CYBA gene C242T variant and risk of metabolic syndrome. Eur J Clin Invest 2020; 50:e13275. [PMID: 32406080 DOI: 10.1111/eci.13275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 04/30/2020] [Accepted: 05/09/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND Both inflammation and oxidative stress may contribute to pathogenesis of metabolic syndrome (MetS). The C242T polymorphism (rs4673) in the CYBA gene, as the main components of NAD (P) H oxidase, causes inter-individual variability in the enzyme activity. We aimed to investigate the association between this polymorphism with MetS and its components. METHODS Two hundred nine patients with MetS and 232 controls were included in this study. MetS was defined based on NCEP ATP-III A criteria with some modifications. The C242T polymorphism within CYBA gene was determined by using PCR-based restriction fragment length polymorphism (PCR-RFLP) method. RESULTS After applying a multiple logistic regression model with adjusting for potential confounders of MetS including, age, sex, body mass index, hypertension, used medications, and diabetes mellitus, C242T polymorphism was found to be associated with the presence of MetS in men but not in the total population or in women. T allele as compared to C allele was associated with decreased odds of MetS in men (adjusted OR = 0.42, 95% CI = 0.24-0.74; P = .003), but not in women (adjusted OR = 1.03, 95% CI = 0.07-1.61; P = .890), or in the total population (adjusted OR = 0.72, 95% CI = 0.51-1.02; P = .063). CONCLUSION This study shows that T allele of C242T polymorphism in CYBA gene is protective against MetS in Iranian men but not in women. Further cohort studies with larger sample size in subgroups of men and women are required to confirm such association in other racial or ethnic group.
Collapse
Affiliation(s)
- Leyla Pourgholi
- Department of Pathology and Laboratory Medicine, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmacology & Toxicology, School of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Fatemeh Pourgholi
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shayan Ziaee
- Department of Pathology and Laboratory Medicine, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamidreza Goodarzynejad
- Department of Cardiac Research, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Hosseindokht
- Department of Pathology and Laboratory Medicine, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammadali Boroumand
- Department of Pathology and Laboratory Medicine, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Mandegary
- Department of Pharmacology & Toxicology, School of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran.,Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
30
|
Głuszek S, Ciesla E, Głuszek-Osuch M, Kozieł D, Kiebzak W, Wypchło Ł, Suliga E. Anthropometric indices and cut-off points in the diagnosis of metabolic disorders. PLoS One 2020; 15:e0235121. [PMID: 32569336 PMCID: PMC7307766 DOI: 10.1371/journal.pone.0235121] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 06/09/2020] [Indexed: 01/23/2023] Open
Abstract
OBJECTIVE Identifying metabolic disorders at the earliest phase of their development allows for an early intervention and the prevention of serious consequences of diseases. However, it is difficult to determine which of the anthropometric indices of obesity is the best tool for diagnosing metabolic disorders. The aims of this study were to evaluate the usefulness of selected anthropometric indices and to determine optimal cut-off points for the identification of single metabolic disorders that are components of metabolic syndrome (MetS). DESIGN Cross-sectional study. PARTICIPANTS We analyzed the data of 12,328 participants aged 55.7±5.4 years. All participants were of European descent. PRIMARY OUTCOME MEASURE Four MetS components were included: high glucose concentration, high blood triglyceride concentration, low high-density lipoprotein cholesterol concentration, and elevated blood pressure. The following obesity indices were considered: waist circumference (WC), body mass index (BMI), waist-to-height ratio (WHtR), body fat percentage (%BF), Clínica Universidad de Navarra-body adiposity estimator (CUN-BAE), body roundness index (BRI), and a body shape index (ABSI). RESULTS The following indices had the highest discriminatory power for the identification of at least one MetS component: CUN-BAE, BMI, and WC in men (AUC = 0.734, 0.728, and 0.728, respectively) and WHtR, CUN-BAE, and WC in women (AUC = 0.715, 0.714, and 0.712, respectively) (p<0.001 for all). The other indices were similarly useful, except for the ABSI. CONCLUSIONS For the BMI, the optimal cut-off point for the identification of metabolic abnormalities was 27.2 kg/m2 for both sexes. For the WC, the optimal cut-off point was of 94 cm for men and 87 cm for women. Prospective studies are needed to identify those indices in which changes in value predict the occurrence of metabolic disorders best.
Collapse
Affiliation(s)
- Stanisław Głuszek
- Institute of Medical Sciences, Medical College, Jan Kochanowski University, Kielce, Poland
| | - Elzbieta Ciesla
- Institute of Health Sciences, Medical College, Jan Kochanowski University, Kielce, Poland
| | - Martyna Głuszek-Osuch
- Institute of Health Sciences, Medical College, Jan Kochanowski University, Kielce, Poland
| | - Dorota Kozieł
- Institute of Health Sciences, Medical College, Jan Kochanowski University, Kielce, Poland
| | - Wojciech Kiebzak
- Institute of Health Sciences, Medical College, Jan Kochanowski University, Kielce, Poland
| | - Łukasz Wypchło
- Institute of Medical Sciences, Medical College, Jan Kochanowski University, Kielce, Poland
| | - Edyta Suliga
- Institute of Health Sciences, Medical College, Jan Kochanowski University, Kielce, Poland
- * E-mail:
| |
Collapse
|
31
|
Prasun P. Mitochondrial dysfunction in metabolic syndrome. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165838. [PMID: 32428560 DOI: 10.1016/j.bbadis.2020.165838] [Citation(s) in RCA: 169] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 04/30/2020] [Accepted: 05/05/2020] [Indexed: 12/29/2022]
Abstract
Metabolic syndrome is co-occurrence of obesity, insulin resistance, atherogenic dyslipidemia (high triglyceride, low high density lipoprotein cholesterol), and hypertension. It is a global health problem. An estimated 20%-30% of adults of the world have metabolic syndrome. Metabolic syndrome is associated with increased risk of type 2 diabetes mellitus, nonalcoholic fatty liver disease, myocardial infarction, and stroke. Thus, it is a major cause of morbidity and mortality worldwide. However, molecular pathogenesis of metabolic syndrome is not well known. Recently, there has been interest in the role of mitochondria in pathogenesis of metabolic problems such as obesity, metabolic syndrome, and type 2 diabetes mellitus. Mitochondrial dysfunction contributes to the oxidative stress and systemic inflammation seen in metabolic syndrome. Role of mitochondria in the pathogenesis of metabolic syndrome is intriguing but far from completely understood. However, a better understanding will be very rewarding as it may lead to novel approaches to control this major public health problem. This brief review explores pathogenesis of metabolic syndrome from a mitochondrial perspective.
Collapse
Affiliation(s)
- Pankaj Prasun
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, USA.
| |
Collapse
|
32
|
Algandaby MM. Crocin prevents metabolic syndrome in rats via enhancing PPAR-gamma and AMPK. Saudi J Biol Sci 2020; 27:1310-1316. [PMID: 32346340 PMCID: PMC7182989 DOI: 10.1016/j.sjbs.2020.01.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/19/2019] [Accepted: 01/06/2020] [Indexed: 12/29/2022] Open
Abstract
Metabolic syndrome (Mets) is a major health hazard. The syndrome is strongly linked to cardiovascular disease. The objective of the current study was to address whether or not crocin could protect against experimentally-induced MetS in rats as well as the possible underlying mechanisms. Animals were allocated into 4 groups. The first one served as control and was kept on regular food pellets and drinking water. The other three groups were subjected to experimental MetS. Induction of MetS was achieved by keeping rats on food pellets containing 3% NaCl; and drinking water enriched with 10% fructose. The first and second groups were daily gavaged with saline. The third and fourth groups were daily administered crocin 5 and 10 mg/kg, respectively. The treatment continued for 12 consecutive weeks. Crocin significantly reduced body weight gain and adiposity index as compared to MetS group. Also, crocin protected against the occurrence of hyperglycemia and insulin resistance as indicated by controlled values of HOMA-IR. Crocin protected against MetS-induced dyslipidemia as well as the rise blood pressure. These beneficial effects were accompanied by enhanced serum levels of PPARγ & AMPK and inhibited serum levels of IL-6 and TNF-α. In conclusion, crocin protects against experimentally-induced MetS. This can be attributed, at least partly, to activation of PPARγ and AMPK as well as inhibiting inflammation.
Collapse
Affiliation(s)
- Mardi M Algandaby
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.,Princess Dr. Najla Bint Saud Al-Saud, Center for Excellence Research in Biotechnology, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
33
|
Wu Y, Li S, Wang W, Zhang D. Associations of dietary vitamin B1, vitamin B2, niacin, vitamin B6, vitamin B12 and folate equivalent intakes with metabolic syndrome. Int J Food Sci Nutr 2020; 71:738-749. [DOI: 10.1080/09637486.2020.1719390] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Yanjun Wu
- Department of Epidemiology and Health Statistics, College of Public Health of Qingdao University, Qingdao, People’s Republic of China
| | - Suyun Li
- Department of Epidemiology and Health Statistics, College of Public Health of Qingdao University, Qingdao, People’s Republic of China
| | - Weijing Wang
- Department of Epidemiology and Health Statistics, College of Public Health of Qingdao University, Qingdao, People’s Republic of China
| | - Dongfeng Zhang
- Department of Epidemiology and Health Statistics, College of Public Health of Qingdao University, Qingdao, People’s Republic of China
| |
Collapse
|
34
|
Effects of Regular Kefir Consumption on Gut Microbiota in Patients with Metabolic Syndrome: A Parallel-Group, Randomized, Controlled Study. Nutrients 2019; 11:nu11092089. [PMID: 31487797 PMCID: PMC6769690 DOI: 10.3390/nu11092089] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 08/21/2019] [Accepted: 08/22/2019] [Indexed: 12/19/2022] Open
Abstract
Several health-promoting effects of kefir have been suggested, however, there is limited evidence for its potential effect on gut microbiota in metabolic syndrome This study aimed to investigate the effects of regular kefir consumption on gut microbiota composition, and their relation with the components of metabolic syndrome. In a parallel-group, randomized, controlled clinical trial setting, patients with metabolic syndrome were randomized to receive 180 mL/day kefir (n = 12) or unfermented milk (n = 10) for 12 weeks. Anthropometrical measurements, blood samples, blood pressure measurements, and fecal samples were taken at the beginning and end of the study. Fasting insulin, HOMA-IR, TNF-α, IFN-γ, and systolic and diastolic blood pressure showed a significant decrease by the intervention of kefir (p ≤ 0.05, for each). However, no significant difference was obtained between the kefir and unfermented milk groups (p > 0.05 for each). Gut microbiota analysis showed that regular kefir consumption resulted in a significant increase only in the relative abundance of Actinobacteria (p = 0.023). No significant change in the relative abundance of Bacteroidetes, Proteobacteria or Verrucomicrobia by kefir consumption was obtained. Furthermore, the changes in the relative abundance of sub-phylum bacterial populations did not differ significantly between the groups (p > 0.05, for each). Kefir supplementation had favorable effects on some of the metabolic syndrome parameters, however, further investigation is needed to understand its effect on gut microbiota composition.
Collapse
|
35
|
Rana S, Sultana A, Bhatti AA. Association of BDNF rs6265 and MC4R rs17782313 with metabolic syndrome in Pakistanis. J Biosci 2019. [DOI: 10.1007/s12038-019-9915-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
36
|
Myers J, Kokkinos P, Nyelin E. Physical Activity, Cardiorespiratory Fitness, and the Metabolic Syndrome. Nutrients 2019; 11:E1652. [PMID: 31331009 PMCID: PMC6683051 DOI: 10.3390/nu11071652] [Citation(s) in RCA: 304] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/08/2019] [Accepted: 07/17/2019] [Indexed: 12/18/2022] Open
Abstract
Both observational and interventional studies suggest an important role for physical activity and higher fitness in mitigating the metabolic syndrome. Each component of the metabolic syndrome is, to a certain extent, favorably influenced by interventions that include physical activity. Given that the prevalence of the metabolic syndrome and its individual components (particularly obesity and insulin resistance) has increased significantly in recent decades, guidelines from various professional organizations have called for greater efforts to reduce the incidence of this condition and its components. While physical activity interventions that lead to improved fitness cannot be expected to normalize insulin resistance, lipid disorders, or obesity, the combined effect of increasing activity on these risk markers, an improvement in fitness, or both, has been shown to have a major impact on health outcomes related to the metabolic syndrome. Exercise therapy is a cost-effective intervention to both prevent and mitigate the impact of the metabolic syndrome, but it remains underutilized. In the current article, an overview of the effects of physical activity and higher fitness on the metabolic syndrome is provided, along with a discussion of the mechanisms underlying the benefits of being more fit or more physically active in the prevention and treatment of the metabolic syndrome.
Collapse
Affiliation(s)
- Jonathan Myers
- Cardiology Division, Veterans Affairs Palo Alto Health Care System and Stanford University, Stanford, CA 94304, USA.
| | - Peter Kokkinos
- Cardiology Division, Washington DC Veterans Affairs Medical Center and Rutgers University, Washington, DC 20422, USA
| | - Eric Nyelin
- Endocrinology Division, Washington DC Veterans Affairs Medical Center, Washington, DC 20422, USA
| |
Collapse
|
37
|
Javanrouh N, Soltanian AR, Tapak L, Azizi F, Ott J, Daneshpour MS. A novel association of rs13334070 in the RPGRIP1L gene with adiposity factors discovered by joint linkage and linkage disequilibrium analysis in Iranian pedigrees: Tehran Cardiometabolic Genetic Study (TCGS). Genet Epidemiol 2018; 43:342-351. [PMID: 30597647 DOI: 10.1002/gepi.22179] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 10/15/2018] [Accepted: 11/26/2018] [Indexed: 02/01/2023]
Abstract
Understanding the genetic and metabolic bases of obesity is helpful in planning and developing health strategies. Therefore, the first family-based joint linkage and linkage disequilibrium study was conducted in Iranian pedigrees to assess the relationship between obesity and single-nucleotide polymorphisms (SNPs) located in the 16q12.2 region. In the present study, a total of 13,344 individuals were included, of whom 12,502 individuals were within 3,109 pedigrees and 842 were unrelated singletons. To investigate the relationship between obesity and genetic variants, a joint model of linkage and linkage disequilibrium was applied. Moreover, a sequence kernel association test (SKAT) was used to evaluate the association of the SNP set with body size and lipid profile measurements. The joint model showed that rs13334070, in the intron 4 of the RPGRIP1L gene, has a significant association with obesity. According to the 4-gamete rule, which is a procedure for constructing SNP sets by considering recombination occurrence between SNPs, this polymorphism has a high correlation with six nearby SNPs that make an SNP set. SKAT showed that this SNP set has a significant association with body size factors, but almost no association with most of the lipid profile measurements. In conclusion, from the result of this study, it might be reasonable to consider RPGRIP1L as an important gene whose variations could be associated with obesity risk factors.
Collapse
Affiliation(s)
- Niloufar Javanrouh
- Department of Biostatistics and Epidemiology, Modeling of Non-Communicable Diseases Research Center, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran.,Department of Cellular and Molecular, Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali R Soltanian
- Department of Biostatistics and Epidemiology, Modeling of Non-Communicable Diseases Research Center, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Leili Tapak
- Department of Biostatistics and Epidemiology, Modeling of Non-Communicable Diseases Research Center, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Fereidoun Azizi
- Department of Thyroid, Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jurg Ott
- Department of Statistical Genomics Methodology, Laboratory of Statistical Genetics, Rockefeller University, New York, New York
| | - Maryam S Daneshpour
- Department of Cellular and Molecular, Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
38
|
Norton EM, Schultz NE, Rendahl AK, Mcfarlane D, Geor RJ, Mickelson JR, McCue ME. Heritability of metabolic traits associated with equine metabolic syndrome in Welsh ponies and Morgan horses. Equine Vet J 2018; 51:475-480. [DOI: 10.1111/evj.13053] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 11/19/2018] [Indexed: 12/29/2022]
Affiliation(s)
- E. M. Norton
- Veterinary Population Medicine Department 225 Veterinary Medical Center University of Minnesota St. Paul Minnesota USA
| | - N. E. Schultz
- Veterinary Population Medicine Department 225 Veterinary Medical Center University of Minnesota St. Paul Minnesota USA
| | - A. K. Rendahl
- Veterinary and Biomedical Sciences Department University of Minnesota St. Paul Minnesota USA
| | - D. Mcfarlane
- Department of Physiological Sciences Oklahoma State University Stillwater Oklahoma USA
| | - R. J. Geor
- College of Sciences Massey University Palmerston North New Zealand
| | - J. R. Mickelson
- Veterinary and Biomedical Sciences Department University of Minnesota St. Paul Minnesota USA
| | - M. E. McCue
- Veterinary Population Medicine Department 225 Veterinary Medical Center University of Minnesota St. Paul Minnesota USA
| |
Collapse
|
39
|
Zeng F, Wang Y, Kloepfer LA, Wang S, Harris RC. ErbB4 deletion predisposes to development of metabolic syndrome in mice. Am J Physiol Endocrinol Metab 2018; 315:E583-E593. [PMID: 29944391 PMCID: PMC6230712 DOI: 10.1152/ajpendo.00166.2018] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/25/2018] [Accepted: 06/25/2018] [Indexed: 01/13/2023]
Abstract
ErbB4, a member of the EGF receptor family, plays a variety of roles in physiological and pathological states. Genetic studies have indicated a link between ErbB4 and type 2 diabetes and obesity, but its role in metabolic syndrome (MetS) has not been reported. In the current study we found that mice with ErbB4 deletion developed MetS after 24 wk on a medium-fat diet (MFD), as indicated by development of obesity, dyslipidemia, hepatic steatosis, hyperglycemia, hyperinsulinemia, and insulin resistance, compared with wild-type mice. ErbB4 deletion mice also exhibited increased amounts of subcutaneous and visceral fat, with increased serum leptin levels, compared with wild-type mice, whereas levels of adiponectin were not significantly different. Histologically, severe inflammation, indicated by F4/80 immunostaining and M1 macrophage polarization, was detected in inguinal and epididymal white adipose tissue in ErbB4 deletion mice. ErbB4 expression decreased during 3T3-L1 preadipocyte differentiation. Administration of neuroregulin 4, a specific ligand for ErbB4, to 3T3-L1 adipocytes had no effect on adipogenesis and lipolysis but significantly inhibited lipogenesis, promoted browning, induced GLUT4 redistribution to the cell membrane, and increased glucose uptake. Neuroregulin 4 also significantly increased glucose uptake in adipocytes isolated from wild-type mice, while these effects were significantly decreased in adipocytes isolated from ErbB4 deletion mice. In conclusion, our results indicate that ErbB4 may play an important role in glucose homeostasis and lipogenesis. ErbB4 deficiency-related obesity and adipose tissue inflammation may contribute to the development of MetS.
Collapse
Affiliation(s)
- Fenghua Zeng
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center , Nashville, Tennessee
| | - Yinqiu Wang
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center , Nashville, Tennessee
| | - Lance A Kloepfer
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center , Nashville, Tennessee
| | - Suwan Wang
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center , Nashville, Tennessee
| | - Raymond C Harris
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center , Nashville, Tennessee
- Department of Veterans Affairs , Nashville, Tennessee
| |
Collapse
|
40
|
Fathi Dizaji B. The investigations of genetic determinants of the metabolic syndrome. Diabetes Metab Syndr 2018; 12:783-789. [PMID: 29673926 DOI: 10.1016/j.dsx.2018.04.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 04/09/2018] [Indexed: 11/17/2022]
Abstract
Metabolic syndrome is the aggregation of cardiovascular risk factors that increases the risk of type 2 diabetes and cardiovascular diseases. Family and twin studies, heritability spectrum for its components and different prevalence among ethnicities, have provided genetic susceptibility to the metabolic syndrome. The investigations of genetic base for the disorder have recognized numerous chromosomes, various DNA polymorphisms in candidate genes and many gene variants, that are associated with metabolic syndrome as an entity or its traits, which mostly are related to lipid metabolism. In addition, recent finding of the role of rare variants, epigenetic mechanisms, non-coding RNAs and evaluating the function of genes in molecular networks have improved our knowledge. However, a common genetic basis explaining the co-occurrence of its components has not been identified and more researches are essential.
Collapse
Affiliation(s)
- Behdokht Fathi Dizaji
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
41
|
Zafar U, Khaliq S, Ahmad HU, Manzoor S, Lone KP. Metabolic syndrome: an update on diagnostic criteria, pathogenesis, and genetic links. Hormones (Athens) 2018; 17:299-313. [PMID: 30171523 DOI: 10.1007/s42000-018-0051-3] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 06/19/2018] [Indexed: 02/06/2023]
Abstract
Metabolic syndrome (MetS), today a major global public health problem, is a cluster of clinical, metabolic, and biochemical abnormalities, such as central adiposity, hypertension, insulin resistance, and dyslipidemias. These MetS-related traits significantly increase the risk of type 2 diabetes mellitus, adverse cardiac events, stroke, and hepatic steatosis. The pathogenesis of MetS is multifactorial, with the interplay of environmental, nutritional, and genetic factors. Chronic low-grade inflammation together with visceral adipose tissue, adipocyte dysfunction, and insulin resistance plays a major role in the progression of the syndrome by impairing lipid and glucose homeostasis in insulin-sensitive tissues, such as the liver, muscle, and adipocytes. Adipose-derived inflammatory cytokines and non-esterified fatty acids establish the link between central obesity IR, inflammation, and atherogenesis. Various studies have reported an association between MetS and related traits with single-nucleotide polymorphisms of different susceptibility genes. Modulation of cytokine levels, pro-oxidants, and disturbed energy homeostasis, in relation to the genetic variations, is described in this review of the recent literature, which also provides updated data regarding the epidemiology, diagnostic criteria, and pathogenesis of MetS.
Collapse
Affiliation(s)
- Uzma Zafar
- Department of Physiology & Cell Biology, University of Health Sciences, Lahore, Pakistan.
- Department of Physiology, Lahore Medical and Dental College, Lahore, Pakistan.
| | - Saba Khaliq
- Department of Physiology & Cell Biology, University of Health Sciences, Lahore, Pakistan
| | - Hafiz Usman Ahmad
- Department of Physiology & Cell Biology, University of Health Sciences, Lahore, Pakistan
| | - Sobia Manzoor
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, NUST, Islamabad, Pakistan
| | - Khalid P Lone
- Department of Physiology & Cell Biology, University of Health Sciences, Lahore, Pakistan.
| |
Collapse
|
42
|
Fenwick PH, Jeejeebhoy K, Dhaliwal R, Royall D, Brauer P, Tremblay A, Klein D, Mutch DM. Lifestyle genomics and the metabolic syndrome: A review of genetic variants that influence response to diet and exercise interventions. Crit Rev Food Sci Nutr 2018; 59:2028-2039. [PMID: 29400991 DOI: 10.1080/10408398.2018.1437022] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Metabolic syndrome (MetS) comprises a cluster of risk factors that includes central obesity, dyslipidemia, impaired glucose homeostasis and hypertension. Individuals with MetS have elevated risk of type 2 diabetes and cardiovascular disease; thus placing significant burdens on social and healthcare systems. Lifestyle interventions (comprised of diet, exercise or a combination of both) are routinely recommended as the first line of treatment for MetS. Only a proportion of people respond, and it has been assumed that psychological and social aspects primarily account for these differences. However, the etiology of MetS is multifactorial and stems, in part, on a person's genetic make-up. Numerous single nucleotide polymorphisms (SNPs) are associated with the various components of MetS, and several of these SNPs have been shown to modify a person's response to lifestyle interventions. Consequently, genetic variants can influence the extent to which a person responds to changes in diet and/or exercise. The goal of this review is to highlight SNPs reported to influence the magnitude of change in body weight, dyslipidemia, glucose homeostasis and blood pressure during lifestyle interventions aimed at improving MetS components. Knowledge regarding these genetic variants and their ability to modulate a person's response will provide additional context for improving the effectiveness of personalized lifestyle interventions that aim to reduce the risks associated with MetS.
Collapse
Affiliation(s)
- Peri H Fenwick
- a Department of Human Health and Nutritional Sciences , University of Guelph , Guelph , Ontario , Canada
| | - Khursheed Jeejeebhoy
- b Emeritus Professor of Medicine and Physician , St. Michael's Hospital , Toronto , Ontario , Canada
| | | | - Dawna Royall
- d Department of Family Relations and Applied Nutrition , University of Guelph , Guelph , Ontario , Canada
| | - Paula Brauer
- d Department of Family Relations and Applied Nutrition , University of Guelph , Guelph , Ontario , Canada
| | - Angelo Tremblay
- e Department of Kinesiology , Faculty of Medicine, Université Laval , Québec City , Québec , Canada
| | - Doug Klein
- f Department of Family Medicine , University of Alberta , Edmonton , Alberta , Canada
| | - David M Mutch
- a Department of Human Health and Nutritional Sciences , University of Guelph , Guelph , Ontario , Canada
| |
Collapse
|
43
|
Rask Larsen J, Dima L, Correll CU, Manu P. The pharmacological management of metabolic syndrome. Expert Rev Clin Pharmacol 2018; 11:397-410. [PMID: 29345505 DOI: 10.1080/17512433.2018.1429910] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION The metabolic syndrome includes a constellation of several well-established risk factors, which need to be aggressively treated in order to prevent overt type 2 diabetes and cardiovascular disease. While recent guidelines for the treatment of individual components of the metabolic syndrome focus on cardiovascular benefits as resulted from clinical trials, specific recent recommendations on the pharmacological management of metabolic syndrome are lacking. The objective of present paper was to review the therapeutic options for metabolic syndrome and its components, the available evidence related to their cardiovascular benefits, and to evaluate the extent to which they should influence the guidelines for clinical practice. Areas covered: A Medline literature search was performed to identify clinical trials and meta-analyses related to the therapy of dyslipidemia, arterial hypertension, glucose metabolism and obesity published in the past decade. Expert commentary: Our recommendation for first-line pharmacological are statins for dyslipidemia, renin-angiotensin-aldosteron system inhibitors for arterial hypertension, metformin or sodium/glucose cotransporter 2 inhibitors or glucagon-like peptide 1 receptor agonists (GLP-1RAs) for glucose intolerance, and the GLP-1RA liraglutide for achieving body weight and waist circumference reduction.
Collapse
Affiliation(s)
- Julie Rask Larsen
- a Psychiatric Centre Copenhagen, Rigshospitalet , University of Copenhagen , Copenhagen , Denmark
| | - Lorena Dima
- b Faculty of Medicine , Transilvania University , Brasov , Romania
| | - Christoph U Correll
- c Division of Psychiatry Research , The Zucker Hillside Hospital, Northwell Health , New York , NY , USA.,d Department of Psychiatry , Hofstra Northwell School of Medicine , Hempstead , NY , USA.,e Center for Psychiatric Neuroscience , The Feinstein Institute for Medical Research , Manhasset , NY , USA.,f Department of Child and Adolescent Psychiatry , Charité Universitätsmedizin , Berlin , Germany
| | - Peter Manu
- d Department of Psychiatry , Hofstra Northwell School of Medicine , Hempstead , NY , USA.,g Department of Medicine , Hofstra Northwell School of Medicine , Hempstead , NY , USA
| |
Collapse
|
44
|
Retamoso VR, Maurer P, Feijóo LB, Tavares GMS, Manfredini V, Piccoli JCE. ADIPOQ + 45T≥G Polymorphism, Food Ingestion, and Metabolic Syndrome in Elderly Persons. J Am Coll Nutr 2018; 37:209-214. [PMID: 29313754 DOI: 10.1080/07315724.2017.1386139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
INTRODUCTION The current nutritional transition process contributes further to accelerate the onset of metabolic disorders, as do a number of environmental factors that lead to the diagnosis of chronic diseases, as a diet of low nutritional value, is possibly related to the incidence of metabolic syndrome. In addition to these factors, metabolic syndrome may also be related to genetic factors, the ADIPOQ + 45T> G polymorphism has been associated with serum adiponectin levels, insulin sensitivity, and obesity, which affects adiponectin levels act as protective factor for cardiovascular disease. In this way, the present study aimed to analyze the possible association between the ADIPOQ + 45T> G gene polymorphism, usual diet and metabolic syndrome in the elderly. METHODS We evaluated inflammatory and biochemical markers compared with older age groups (age 60 years) with and without metabolic syndrome. In addition to the anthropometric measurements of weight, height and waist circumference, the ADIPOQ + 45T> G gene polymorphism was determined by PCR- RFLP, and food consumption was investigated using a food frequency questionnaire. RESULTS The study included 111 elderly individuals. Our main results show that there was a significant relationship between the habitual consumption of milk for the group that had metabolic syndrome (p < 0.05). HDL-c levels, glucose, triglycerides, diastolic blood pressure and weight, height and waist circumference had to be altered in patients with metabolic syndrome. There was an association between habitual dietary intake of white meat with haplotypes TG and GG. CONCLUSION We conclude that the relationship between the habitual consumption of certain food groups and ADIPOQ indicates the need for further studies to develop a better understanding of this relationship; however, there was no association between the ADIPOQ + 45T> G gene polymorphism and metabolic syndrome in the group of elderly studied.
Collapse
Affiliation(s)
- Vanessa R Retamoso
- a Programa de Pós Graduação em Ciências Farmacêuticas, Universidade Federal do Pampa-Campus Uruguaiana , Uruguaiana , RS , Brasil
| | - Patrícia Maurer
- b Programa de Pós Graduação em Bioquímica, Universidade Federal do Pampa-Campus Uruguaiana , Uruguaiana , RS , Brasil
| | - Lyana B Feijóo
- c Curso de Farmácia, Universidade Federal do Pampa-Campus Uruguaiana , Uruguaiana , RS , Brasil
| | - Graziela M S Tavares
- d Curso de Fisioterapia, Universidade Federal do Pampa-Campus Uruguaiana , Uruguaiana , RS , Brasil
| | - Vanusa Manfredini
- b Programa de Pós Graduação em Bioquímica, Universidade Federal do Pampa-Campus Uruguaiana , Uruguaiana , RS , Brasil
| | - Jacqueline C E Piccoli
- a Programa de Pós Graduação em Ciências Farmacêuticas, Universidade Federal do Pampa-Campus Uruguaiana , Uruguaiana , RS , Brasil.,b Programa de Pós Graduação em Bioquímica, Universidade Federal do Pampa-Campus Uruguaiana , Uruguaiana , RS , Brasil
| |
Collapse
|
45
|
Dizaji BF, Rivandi M, Javandoost A, Saberi Karimian M, Raei A, Sahebkar A, Ferns G, Mobarhan MG, Pasdar A. Association of genetic polymorphisms of PON1 and CETP with the presence of metabolic syndrome; the effects of genotypes on their serum activity and concentrations. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2018. [DOI: 10.1016/j.ejmhg.2017.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
46
|
Moon H, Choi I, Kim S, Ko H, Shin J, Lee K, Sung J, Song YM. Cross-sectional association between testosterone, sex hormone-binding globulin and metabolic syndrome: The Healthy Twin Study. Clin Endocrinol (Oxf) 2017; 87:523-531. [PMID: 28581026 DOI: 10.1111/cen.13390] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 05/29/2017] [Accepted: 05/31/2017] [Indexed: 01/09/2023]
Abstract
OBJECTIVES This study evaluated an association between testosterone, sex hormone-binding globulin (SHBG) and metabolic syndrome (MetS).We also evaluated the genetic and environmental influences on the association. DESIGN Cross-sectional. SETTING Community-based study. PARTICIPANTS A total of 1098 Korean adult men including 139 monozygotic twin pairs. MAIN OUTCOME MEASURE MetS was defined using the National Cholesterol Education Program-Third Adult Treatment Panel (NCEP ATP III) and International Diabetes Federation (IDF) criteria. The associations between MetS and sex hormones were evaluated using linear mixed model and generalized estimating equation model. RESULTS After considering covariates such as smoking, alcohol consumption and physical exercises as well as SHBG or testosterone, the risk of MetS defined by NCEP ATP III criteria decreased by 31%, 29%, and 48%, respectively, with 1-standard deviation increase in total testosterone (TT), free testosterone (cFT) and SHBG. Similar findings were revealed with IDF criteria. Metabolic component specific analysis showed that sex hormones were inversely associated with several components of MetS: TT with abdominal obesity, low high-density lipoprotein cholesterol (HDL-C) and high blood pressure; cFT with abdominal obesity and high blood pressure; SHBG with all components except high blood pressure. Cotwin control analysis found an inverse correlation between within-pair differences in testosterone and SHBG levels and within-pair differences in waist circumference only. CONCLUSION Both testosterone and SHBG were inversely associated with MetS although the inverse associations with the sex hormones were not consistently found across individual metabolic components. Findings from cotwin analysis suggest a significant contribution of unshared unique environmental effect to the association between testosterone and SHBG and abdominal obesity.
Collapse
Affiliation(s)
- Heesun Moon
- Department of Family Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Inyoung Choi
- Department of Family Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Somi Kim
- Department of Family Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hyeonyoung Ko
- Department of Family Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jinyoung Shin
- Department of Family Medicine, Gangnam Severance Hospital, Yonsei University of College Department of Family Medicine, Seoul, Korea
| | - Kayoung Lee
- Department of Family Medicine, Busan Pack Hospital, Inje University, Busan, Korea
| | - Joohon Sung
- Department of Epidemiology, School of Public Health and Institute of Health Environment, Seoul National University, Seoul, Korea
| | - Yun-Mi Song
- Department of Family Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
47
|
Abstract
Insulin resistance and the metabolic syndrome are complex metabolic traits and key risk factors for the development of cardiovascular disease. They result from the interplay of environmental and genetic factors but the full extent of the genetic background to these conditions remains incomplete. Large-scale genome-wide association studies have helped advance the identification of common genetic variation associated with insulin resistance and the metabolic syndrome, and more recently, exome sequencing has allowed the identification of rare variants associated with the pathogenesis of these conditions. Many variants associated with insulin resistance are directly involved in glucose metabolism; however, functional studies are required to assess the contribution of other variants to the development of insulin resistance. Many genetic variants involved in the pathogenesis of the metabolic syndrome are associated with lipid metabolism.
Collapse
Affiliation(s)
- Audrey E Brown
- Institute of Cellular Medicine, William Leech Building, Medical School, Newcastle University, Newcastle, NE2 4HH, UK
| | - Mark Walker
- Institute of Cellular Medicine, William Leech Building, Medical School, Newcastle University, Newcastle, NE2 4HH, UK.
| |
Collapse
|
48
|
A Systematic Review of Single Nucleotide Polymorphisms Associated With Metabolic Syndrome in Children and Adolescents. JOURNAL OF PEDIATRICS REVIEW 2017. [DOI: 10.5812/jpr.10536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
49
|
Epigenetic effects of the pregnancy Mediterranean diet adherence on the offspring metabolic syndrome markers. J Physiol Biochem 2017; 73:495-510. [PMID: 28921259 DOI: 10.1007/s13105-017-0592-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 09/07/2017] [Indexed: 02/06/2023]
Abstract
Metabolic syndrome (MS) has a multifactorial and not yet fully clarified origin. Insulin resistance is a key element that connects all the accepted components of MS (obesity, dyslipemia, high blood pressure, and hyperglycemia). There is strong evidence that epigenetic changes during fetal development are key factors in the development of MS. These changes are induced by maternal nutrition, among different factors, affecting the intrauterine environment. The Mediterranean diet has been shown to be a healthy eating pattern that protects against the development of MS in adults. Similarly, the Mediterranean diet could have a similar action during pregnancy, protecting the fetus against the development of MS throughout life. This review assembles studies carried out, both in animals and humans, on the epigenetic modifications associated with the consumption, during pregnancy, of Mediterranean diet main components. The relationship between these modifications and the occurrence of factors involved in development of MS is also explained. In addition, the results of our group relating adherence to the Mediterranean diet with MS markers are discussed. The paper ends suggesting future actuation lines in order to increase knowledge on Mediterranean diet adherence as a prevention tool of MS development.
Collapse
|
50
|
Ma MCJ, Pettus JM, Jakoubek JA, Traxler MG, Clark KC, Mennie AK, Kwitek AE. Contribution of independent and pleiotropic genetic effects in the metabolic syndrome in a hypertensive rat. PLoS One 2017; 12:e0182650. [PMID: 28792545 PMCID: PMC5549746 DOI: 10.1371/journal.pone.0182650] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 07/22/2017] [Indexed: 11/26/2022] Open
Abstract
Hypertension is a major risk factor for cardiovascular disease, Type 2 diabetes, and end organ failure, and is often found concomitant with disorders characteristic of the Metabolic Syndrome (MetS), including obesity, dyslipidemia, and insulin resistance. While the associated features often occur together, the pathway(s) or mechanism(s) linking hypertension in MetS are not well understood. Previous work determined that genetic variation on rat chromosome 17 (RNO17) contributes to several MetS-defining traits (including hypertension, obesity, and dyslipidemia) in the Lyon Hypertensive (LH) rat, a genetically determined MetS model. We hypothesized that at least some of the traits on RNO17 are controlled by a single gene with pleiotropic effects. To address this hypothesis, consomic and congenic strains were developed, whereby a defined fragment of RNO17 from the LH rat was substituted with the control Lyon Normotensive (LN) rat, and MetS phenotypes were measured in the resultant progeny. Compared to LH rats, LH-17LN consomic rats have significantly reduced body weight, blood pressure, and lipid profiles. A congenic strain (LH-17LNc), with a substituted fragment at the distal end of RNO17 (17q12.3; 74–97 Mb; rn4 assembly), showed differences from the LH rat in blood pressure and serum total cholesterol and triglycerides. Interestingly, there was no difference in body weight between the LH-17LNc and the parental LH rat. These data indicate that blood pressure and serum lipids are regulated by a gene(s) in the distal congenic interval, and could be due to pleiotropy. The data also indicate that body weight is not determined by the same gene(s) at this locus. Interestingly, only two small haplotypes spanning a total of approximately 0.5 Mb differ between the LH and LN genomes in the congenic interval. Genes in these haplotypes are strong candidate genes for causing dyslipidemia in the LH rat. Overall, MetS, even in a simplified genetic model such as the LH-17LN rat, is likely due to both independent and pleiotropic gene effects.
Collapse
Affiliation(s)
- Man Chun John Ma
- Department of Pharmacology, University of Iowa, Iowa City, Iowa, United States of America
| | - Janette M. Pettus
- Department of Pharmacology, University of Iowa, Iowa City, Iowa, United States of America
| | - Jessica A. Jakoubek
- Department of Pharmacology, University of Iowa, Iowa City, Iowa, United States of America
| | - Matthew G. Traxler
- Department of Pharmacology, University of Iowa, Iowa City, Iowa, United States of America
| | - Karen C. Clark
- Department of Pharmacology, University of Iowa, Iowa City, Iowa, United States of America
| | - Amanda K. Mennie
- Department of Pharmacology, University of Iowa, Iowa City, Iowa, United States of America
| | - Anne E. Kwitek
- Department of Pharmacology, University of Iowa, Iowa City, Iowa, United States of America
- Iowa Institute of Human Genetics, University of Iowa, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|