1
|
Höpfinger A, Schmid A, Schweitzer L, Patz M, Weber A, Schäffler A, Karrasch T. Regulation of Cathelicidin Antimicrobial Peptide (CAMP) Gene Expression by TNFα and cfDNA in Adipocytes. Int J Mol Sci 2023; 24:15820. [PMID: 37958808 PMCID: PMC10649744 DOI: 10.3390/ijms242115820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 10/16/2023] [Accepted: 10/21/2023] [Indexed: 11/15/2023] Open
Abstract
Understanding the complex interactions between metabolism and the immune system ("metaflammation") is crucial for the identification of key immunomodulatory factors as potential therapeutic targets in obesity and in cardiovascular diseases. Cathelicidin antimicrobial peptide (CAMP) is an important factor of innate immunity and is expressed in adipocytes. CAMP, therefore, might play a role as an adipokine in metaflammation and adipose inflammation. TNFα, cell-free nucleic acids (cfDNA), and toll-like receptor (TLR) 9 are components of the innate immune system and are functionally active in adipose tissue. The aim of the present study was to investigate the impact of TNFα and cfDNA on CAMP expression in adipocytes. Since cfDNA acts as a physiological TLR9 agonist, we additionally investigated TLR9-mediated CAMP regulation in adipocytes and adipose tissue. CAMP gene expression in murine 3T3-L1 and human SGBS adipocytes and in murine and human adipose tissues was quantified by real-time PCR. Adipocyte inflammation was induced in vitro by TNFα and cfDNA stimulation. Serum CAMP concentrations in TLR9 knockout (KO) and in wildtype mice were quantified by ELISA. In primary adipocytes of wildtype and TLR9 KO mice, CAMP gene expression was quantified by real-time PCR. CAMP gene expression was considerably increased in 3T3-L1 and SGBS adipocytes during differentiation. TNFα significantly induced CAMP gene expression in mature adipocytes, which was effectively antagonized by inhibition of PI3K signaling. Cell-free nucleic acids (cfDNA) significantly impaired CAMP gene expression, whereas synthetic agonistic and antagonistic TLR9 ligands had no effect. CAMP and TLR9 gene expression were correlated positively in murine and human subcutaneous but not in intra-abdominal/visceral adipose tissues. Male TLR9 knockout mice exhibited lower systemic CAMP concentrations than wildtype mice. CAMP gene expression levels in primary adipocytes did not significantly differ between wildtype and TLR9 KO mice. These findings suggest a regulatory role of inflammatory mediators, such as TNFα and cfDNA, in adipocytic CAMP expression as a novel putative molecular mechanism in adipose tissue innate immunity.
Collapse
Affiliation(s)
- Alexandra Höpfinger
- Department of Internal Medicine III, University of Giessen, 35392 Giessen, Germany (A.S.); (T.K.)
| | | | | | | | | | | | | |
Collapse
|
2
|
Alipour S, Mahdavi A, Abdoli A. The effects of CpG-ODNs and Chitosan adjuvants on the elicitation of immune responses induced by the HIV-1-Tat-based candidate vaccines in mice. Pathog Dis 2017; 75:2975569. [PMID: 28175274 DOI: 10.1093/femspd/ftx013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 02/06/2017] [Indexed: 12/22/2022] Open
Abstract
HIV1-Tat-based vaccines could elicit broad, durable and neutralizing immune responses and are considered as potential AIDS vaccines. The present study aims to formulate CpG-ODNs adjuvant and Chitosan with Tat protein to enhance the immunogenicity of HIV-1-Tat-based candidate vaccines and to investigate their efficacies in mice. To this end, we added CpG-ODNs, Chitosan and Alum as adjuvants to the Tat-based candidate vaccine formulations. Then, we compared frequency and magnitude of both humoral and cellular immune responses from mice immunized with the adjuvant-formulated Tat candidate vaccines against those obtained from mice immunized with recombinant Tat protein alone. Mice were subcutaneously immunized three times at 2-week intervals with the candidate vaccines. Measurements of anti-Tat immune responses showed that all vaccinated groups had a good immunity compared to the control groups and developed high levels of both humoral and cellular responses. However, immunized mice with CpG-ODNs, and Chitosan-adjuvanted Tat vaccines elicited stronger T-cell responses (both humoral and cellular immunity) compared to the others. These data suggest that co-administration of recombinant Tat protein with CpG-ODNs and Chitosan may serve as a potential formulation for enhancing of the Tat vaccine-induced immunity and might have effects on shaping Th polarization induced by HIV1-Tat protein vaccines.
Collapse
Affiliation(s)
- Samira Alipour
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45195-1159, Iran
| | - Atiyeh Mahdavi
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45195-1159, Iran
| | - Asghar Abdoli
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran 1316943551, Iran
| |
Collapse
|
3
|
Micera A, Balzamino BO, Zazzo AD, Biamonte F, Sica G, Bonini S. Toll-Like Receptors and Tissue Remodeling: The Pro/Cons Recent Findings. J Cell Physiol 2015; 231:531-44. [DOI: 10.1002/jcp.25124] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 08/04/2015] [Indexed: 12/21/2022]
Affiliation(s)
| | | | - Antonio Di Zazzo
- Department of Ophthalmology; University Campus Bio-Medico; Rome Italy
| | - Filippo Biamonte
- Institute of Histology and Embryology; Faculty of Medicine; Catholic University of the Sacred Heart; Rome Italy
| | - Gigliola Sica
- Institute of Histology and Embryology; Faculty of Medicine; Catholic University of the Sacred Heart; Rome Italy
| | - Stefano Bonini
- Department of Ophthalmology; University Campus Bio-Medico; Rome Italy
| |
Collapse
|
4
|
Alvarado-Vásquez N. Circulating cell-free mitochondrial DNA as the probable inducer of early endothelial dysfunction in the prediabetic patient. Exp Gerontol 2015; 69:70-8. [PMID: 26026597 DOI: 10.1016/j.exger.2015.05.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 05/09/2015] [Accepted: 05/25/2015] [Indexed: 12/16/2022]
Abstract
Recent evidence has shown that 346million people in the world have diabetes mellitus (DM); this number will increase to 439million by 2030. In addition, current data indicate an increase in DM cases in the population between 40 and 59years of age. Diabetes is associated with the development of micro- and macro-vascular complications, derived from chronic hyperglycemia on the endothelium. Some reports demonstrate that people in a prediabetic state have a major risk of developing early endothelial dysfunction (ED). Today, it is accepted that individuals considered as prediabetic patients are in a pro-inflammatory state associated with endothelial and mitochondrial dysfunction. It is important to mention that impaired mitochondrial functionality has been linked to endothelial apoptosis and release of mitochondrial DNA (mtDNA) in patients with sepsis, cardiac disease, or atherosclerosis. This free mtDNA could promote ED, as well as other side effects on the vascular system through the activation of the toll-like receptor 9 (TLR9). TLR9 is expressed in different cell types (e.g., T or B lymphocytes, mastocytes, and epithelial and endothelial cells). It is localized intracellularly and recognizes non-methylated dinucleotides of viral, bacterial, and mitochondrial DNA. Recently, it has been reported that TLR9 is associated with the pathogenesis of lupus erythematosus, rheumatoid arthritis, and autoimmune diabetes. In this work, it is hypothesized that the increase in the levels of circulating mtDNA is the trigger of early ED in the prediabetic patient, and later on in the older patient with diabetes, through activation of the TLR9 present in the endothelium.
Collapse
Affiliation(s)
- Noé Alvarado-Vásquez
- Department of Biochemistry, National Institute of Respiratory Diseases "Ismael Cosío Villegas", Calz. de Tlalpan 4502, Col. Sección XVI, 14080 Mexico, D.F., Mexico, Mexico.
| |
Collapse
|
5
|
Toll-Like Receptors: Novel Molecular Targets for Antiviral Immunotherapy. Antiviral Res 2014. [DOI: 10.1128/9781555815493.ch19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
6
|
Cen P, Ye L, Su QJ, Wang X, Li JL, Lin XQ, Liang H, Ho WZ. Methamphetamine inhibits Toll-like receptor 9-mediated anti-HIV activity in macrophages. AIDS Res Hum Retroviruses 2013; 29:1129-37. [PMID: 23751096 DOI: 10.1089/aid.2012.0264] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Toll-like receptor 9 (TLR9) is one of the key sensors that recognize viral infection/replication in the host cells. Studies have demonstrated that methamphetamine (METH) dysregulated host cell innate immunity and facilitated HIV infection of macrophages. In this study, we present new evidence that METH suppressed TLR9-mediated anti-HIV activity in macrophages. Activation of TLR9 by its agonist CpG-ODN 2216 inhibits HIV replication, which was demonstrated by increased expression of TLR9, interferon (IFN)-α, IFN regulatory factor-7 (IRF-7), myeloid differentiation factor 88 (MyD88), and myxovirus resistance gene A (MxA) in macrophages. However, METH treatment of macrophages greatly compromised the TLR9 signaling-mediated anti-HIV effect and inhibited the expression of TLR9 downstream signaling factors. Dopamine D1 receptor (D1R) antagonists (SCH23390) could block METH-mediated inhibition of anti-HIV activity of TLR9 signaling. Investigation of the underlying mechanisms of the METH action showed that METH treatment selectively down-regulated the expression of TLR9 on macrophages, whereas it had little effect on the expression of other TLRs. Collectively, our results provide further evidence that METH suppresses host cell innate immunity against HIV infection by down-regulating TLR9 expression and its signaling-mediated antiviral effect in macrophages.
Collapse
Affiliation(s)
- Ping Cen
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania
- Nanning Center for Disease Control and Prevention, Nanning, Guangxi, People's Republic of China
| | - Li Ye
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, People's Republic of China
| | - Qi-Jian Su
- Center for AIDS Research, the Affiliated Ruikang Hospital of Guangxi University of Chinese Medicine, Nanning, People's Republic of China
| | - Xu Wang
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Jie-Liang Li
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Xin-Qin Lin
- Nanning Center for Disease Control and Prevention, Nanning, Guangxi, People's Republic of China
| | - Hao Liang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, People's Republic of China
| | - Wen-Zhe Ho
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
7
|
Mott TM, Johnston RK, Vijayakumar S, Estes DM, Motamedi M, Sbrana E, Endsley JJ, Torres AG. Monitoring Therapeutic Treatments against Burkholderia Infections Using Imaging Techniques. Pathogens 2013; 2. [PMID: 24349761 PMCID: PMC3859531 DOI: 10.3390/pathogens2020383] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Burkholderia mallei, the etiologic agent of glanders, are Category B select agents with biothreat potential, and yet effective therapeutic treatments are lacking. In this study, we showed that CpG administration increased survival, demonstrating protection in the murine glanders model. Bacterial recovery from infected lungs, liver and spleen was significantly reduced in CpG-treated animals as compared with non-treated mice. Reciprocally, lungs of CpG-treated infected animals were infiltrated with higher levels of neutrophils and inflammatory monocytes, as compared to control animals. Employing the B. mallei bioluminescent strain CSM001 and the Neutrophil-Specific Fluorescent Imaging Agent, bacterial dissemination and neutrophil trafficking were monitored in real-time using multimodal in vivo whole body imaging techniques. CpG-treatment increased recruitment of neutrophils to the lungs and reduced bioluminescent bacteria, correlating with decreased bacterial burden and increased protection against acute murine glanders. Our results indicate that protection of CpG-treated animals was associated with recruitment of neutrophils prior to infection and demonstrated, for the first time, simultaneous real time in vivo imaging of neutrophils and bacteria. This study provides experimental evidence supporting the importance of incorporating optimized in vivo imaging methods to monitor disease progression and to evaluate the efficacy of therapeutic treatment during bacterial infections.
Collapse
Affiliation(s)
- Tiffany M Mott
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; (T.M.M.); (R.K.J.); (S.V.); (E.S.); (J.J.E.)
| | - R Katie Johnston
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; (T.M.M.); (R.K.J.); (S.V.); (E.S.); (J.J.E.)
| | - Sudhamathi Vijayakumar
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; (T.M.M.); (R.K.J.); (S.V.); (E.S.); (J.J.E.)
| | - D Mark Estes
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA;
| | - Massoud Motamedi
- Center for Biomedical Engineering, University of Texas Medical Branch, Galveston, TX 77555, USA;
| | - Elena Sbrana
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; (T.M.M.); (R.K.J.); (S.V.); (E.S.); (J.J.E.) ; Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Janice J Endsley
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; (T.M.M.); (R.K.J.); (S.V.); (E.S.); (J.J.E.)
| | - Alfredo G Torres
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; (T.M.M.); (R.K.J.); (S.V.); (E.S.); (J.J.E.) ; Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
8
|
Learning from the messengers: innate sensing of viruses and cytokine regulation of immunity - clues for treatments and vaccines. Viruses 2013; 5:470-527. [PMID: 23435233 PMCID: PMC3640511 DOI: 10.3390/v5020470] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 01/22/2013] [Accepted: 01/23/2013] [Indexed: 12/14/2022] Open
Abstract
Virus infections are a major global public health concern, and only via substantial knowledge of virus pathogenesis and antiviral immune responses can we develop and improve medical treatments, and preventive and therapeutic vaccines. Innate immunity and the shaping of efficient early immune responses are essential for control of viral infections. In order to trigger an efficient antiviral defense, the host senses the invading microbe via pattern recognition receptors (PRRs), recognizing distinct conserved pathogen-associated molecular patterns (PAMPs). The innate sensing of the invading virus results in intracellular signal transduction and subsequent production of interferons (IFNs) and proinflammatory cytokines. Cytokines, including IFNs and chemokines, are vital molecules of antiviral defense regulating cell activation, differentiation of cells, and, not least, exerting direct antiviral effects. Cytokines shape and modulate the immune response and IFNs are principle antiviral mediators initiating antiviral response through induction of antiviral proteins. In the present review, I describe and discuss the current knowledge on early virus–host interactions, focusing on early recognition of virus infection and the resulting expression of type I and type III IFNs, proinflammatory cytokines, and intracellular antiviral mediators. In addition, the review elucidates how targeted stimulation of innate sensors, such as toll-like receptors (TLRs) and intracellular RNA and DNA sensors, may be used therapeutically. Moreover, I present and discuss data showing how current antimicrobial therapies, including antibiotics and antiviral medication, may interfere with, or improve, immune response.
Collapse
|
9
|
Volpi C, Fallarino F, Bianchi R, Orabona C, De Luca A, Vacca C, Romani L, Gran B, Grohmann U, Puccetti P, Belladonna ML. A GpC-rich oligonucleotide acts on plasmacytoid dendritic cells to promote immune suppression. THE JOURNAL OF IMMUNOLOGY 2012; 189:2283-9. [PMID: 22844124 DOI: 10.4049/jimmunol.1200497] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Short synthetic oligodeoxynucleotides (ODNs) rich in CpG or GpG motifs have been considered as potential modulators of immunity in clinical settings. In this study, we show that a synthetic GpC-ODN conferred highly suppressive activity on mouse splenic plasmacytoid dendritic cells, demonstrable in vivo in a skin test assay. The underlying mechanism involved signaling by noncanonical NF-κB family members and TGF-β-dependent expression of the immunoregulatory enzyme IDO. Unlike CpG-ODNs, the effects of GpC-ODN required TLR7/TRIF-mediated but not TLR9/MyD88-mediated events, as do sensing of viral ssRNA and the drug imiquimod. Induction of IDO by a GpC-containing ODN could also be demonstrated in human dendritic cells, allowing those cells to assist FOXP3+ T cell generation in vitro. Among potentially therapeutic ODNs, this study identifies GpC-rich sequences as novel activators of TLR7-mediated, IDO-dependent regulatory responses.
Collapse
Affiliation(s)
- Claudia Volpi
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia 06126, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
Toll-like receptors (TLRs) are part of the innate immune system, and they belong to the pattern recognition receptors (PRR) family. The PRR family is designed to recognize and bind conserved pathogen-associated molecular patterns, which are not generated by the host and are restricted and essential to micro-organisms. TLR9, which recognizes unmethylated CpG (cytosine guanosine dinucleotide), is a very promising target for therapeutic activation. Stimulation of TLR9 activates human plasmacytoid dendritic cells and B cells, and results in potent T helper-1 (T(h)1)-type immune responses and antitumor responses in mouse tumor models and in patients. Several pharmaceutical companies, such as Pfizer, Idera, and Dynavax, are developing CpG oligodeoxynucleotides (ODNs) for the treatment of cancer, along with other conditions, such as infections and allergy. CpG ODNs have shown promising results as vaccine adjuvants and in combination with cancer immunotherapy. Several TLR9 agonists are being developed and have entered clinical trials to evaluate their safety and efficacy for the treatment of several hematopoietic and solid tumors. In this review, we discuss the use of CpG ODNs in several phase I and II clinical trials for the treatment of NHL, renal cell carcinoma, melanoma, and non-small cell lung cancer, either alone or in combination with other agents.
Collapse
Affiliation(s)
- Yanal M Murad
- Duke University Medical Center, Department of Surgery, Program in Molecular Therapeutics, Comprehensive Cancer Center, 401 MSRB, Research Drive, Durham, NC 27710, USA
| | | |
Collapse
|
11
|
Becker Y. The molecular mechanism of human resistance to HIV-1 infection in persistently infected individuals--a review, hypothesis and implications. Virus Genes 2009; 31:113-9. [PMID: 15965616 DOI: 10.1007/s11262-005-2503-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2005] [Revised: 03/03/2005] [Accepted: 03/03/2005] [Indexed: 11/29/2022]
Abstract
Resistance to HIV-1 infection in Europeans is associated with a mutation in the gene that codes for the CCR5 protein that is present in Th2 cells and serves as a coreceptor for HIV-1 R5 strain. A deletion of 32 amino acids from the cytokine receptor prevents infection. This mutation prevails in Europeans and is absent in Africans. However, duplication of a gene that codes for a chemokine that binds to the CCR5 was discovered in Africans (mean gene copy 6 while in non-Africans the mean gene copy is 3). Higher expression of these genes protects T cells against HIV-1 infection in vitro. It should be noted that resistance to HIV-1 R5 variant does not protect against HIV-1 R4 variant. It was reported that a minority of highly HIV-1 exposed African professional sex workers (APSW) were resistant to the virus infection during a 10 years period. Recently, the analysis of the cytokines in the serum of the persistently infected seronegative women revealed that the latter hypo-expresses the cytokine IL-4. Since the molecular events during HIV-1 infection are associated with a marked increase in the levels of IL-4 and IgE in the sera of the infected individuals, it suggests that AIDS is an allergy. Thus, a very low level of IL-4 production may abrogate the virus infection. Studies on the human IL-4 gene revealed that together with the IL-4 mRNA a spliced variant with a deletion of exon 2 is synthesized. The latter is a natural antagonist of IL-4 and when expressed in an individual at a level higher than IL-4, the person will resist a microbial infection (e.g. Mycobacterium tuberculosis) or asthma. The present hypothesis suggests that the HIV-1 resistant APSWs produce more IL-4 delta 2 molecules than IL-4 molecules. The binding of IL-4 delta 2 to IL-4 receptors on T and B cells prevents their functions and the infection by HIV-1. The implications of these studies are that treatment of HIV-1 infected people with drugs that will block the IL-4 receptors will stop HIV-1 infections and the determination of the levels of IL-4 and IL-4 delta 2 in the sera of HIV-1+ patients will enable to identify the individuals that have a natural resistance to HIV-l/AIDS and those who need treatments.
Collapse
Affiliation(s)
- Yechiel Becker
- Department of Molecular Virology, Faculty of Medicine, The Hebrew University of Jerusalem, Israel.
| |
Collapse
|
12
|
Thaxton JE, Romero R, Sharma S. TLR9 activation coupled to IL-10 deficiency induces adverse pregnancy outcomes. THE JOURNAL OF IMMUNOLOGY 2009; 183:1144-54. [PMID: 19561095 DOI: 10.4049/jimmunol.0900788] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Pregnancy outcome is severely compromised by intrauterine infections and inflammation. Although the pregnant uterine microenvironment is replete with innate immune cells and TLR expression, the mechanisms that facilitate adverse effects of their activation are largely unknown. In this study, we mimic the activation of TLR9 with its pathogenic ligand hypomethylated CpG and demonstrate that IL-10 proficiency protects against CpG-induced pregnancy complications. We show that fetal resorption and preterm birth are rapidly induced in IL-10(-/-) mice by low doses of CpG (approximately 25 microg/mouse) when injected i.p. on gestational day 6 or gestational day 14, respectively. In contrast, wild-type mice failed to experience such effects at comparable doses, but pups born at term displayed craniofacial/limb defects in response to higher doses (approximately 400 microg/mouse). Pregnancy complications in IL-10(-/-) mice were associated with unexpected and robust TLR9-triggered activation and amplification of uterine neutrophil and macrophage subpopulations followed by their migration to the placental zone. Furthermore, a dramatic increase in serum levels of mouse KC and TNF-alpha production by uterine F4/80(+) cells, but not uterine NK or Gr-1(+)CD11b(+) cells, was observed. Depletion of F4/80(+) macrophages or neutralization of TNF-alpha rescued pregnancy to term. Our results have important implications for IL-10-mediated "uterine tolerance" against CpG-driven innate immune activation.
Collapse
Affiliation(s)
- Jessica E Thaxton
- Department of Pediatrics, Women and Infants Hospital of Rhode Island, Warren Alpert Medical School of Brown University, Providence, RI 02905 USA
| | | | | |
Collapse
|
13
|
Partidos CD, Hoebeke J, Wieckowski S, Chaloin O, Bianco A, Moreau E, Briand JP, Desgranges C, Muller S. Immunomodulatory consequences of ODN CpG-polycation complexes. Methods 2009; 49:328-33. [PMID: 19303048 DOI: 10.1016/j.ymeth.2009.03.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Revised: 03/05/2009] [Accepted: 03/09/2009] [Indexed: 11/28/2022] Open
Abstract
Immunostimulatory ODN CpGs have extensively been tested as adjuvants and immunotherapeutics and hold a lot of promise for human use. In our studies we took advantage of their negative charge to study their biological activities after being complexed with carbon nanotubes, a novel vector for vaccine delivery and Tat protein of HIV, a target protein for therapeutic or prophylactic intervention. In the case of carbon nanotubes, ODN CpGs were able to form stable complexes based on charge interaction and exert increased immunostimulatory activity in vitro. With regard to the Tat protein, ODN CpGs were shown to bind effectively through the basic domain of the protein representing residues 44-61. Moreover, using surface Plasmon Resonance Technology and an in vitro cellular system, ODN CpGs were shown to inhibit the interaction of Tat protein with the transactivation responsive element, a bulged RNA hairpin structure. However, when ODN CpGs were complexed with Tat they readily increased the apoptotic properties of this protein as studied in CD3-stimulated Jurkat cells. Overall, our findings together with published data support the view that for harnessing the beneficial effects of ODN CpGs a careful consideration has to be given depending on the target intervention.
Collapse
|
14
|
Oligonucleotide-mediated retroviral RNase H activation leads to reduced HIV-1 titer in patient-derived plasma. AIDS 2009; 23:213-21. [PMID: 19098491 DOI: 10.1097/qad.0b013e32831c5480] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND The retroviral RNase H is essential for viral replication. This component has not yet been extensively studied for antiviral therapy. It can be activated by an oligodeoxynucleotide (ODN) resulting in self-destruction of the virions. OBJECTIVE To examine antiviral potential of ODN in clinical samples using plasma of HIV-1-infected patients. DESIGN Plasma of 19 HIV-1-infected patients from Zurich and 10 HIV-1 isolates from Africa and drug-resistant strains were processed for ex-vivo treatment. METHODS Cell-free virions were treated with ODN in the plasma and HIV RNA was measured by quantitative reverse transcription polymerase chain reaction (qRT-PCR). Furthermore, infectivity of the treated virions was tested on primary human peripheral blood mononuclear cells. RESULTS Cell-free virions in plasma contained significantly less intact HIV RNA upon treatment with ODN (P = 0.0004), and their infectivity was decreased 52-fold (P = 0.0004). In 39% of the Zurich samples, infectivity was reduced more than 10-fold, in 33% more than 100-fold, and in 28% more than 1000-fold. Also, the isolates from Africa exhibited a 63-fold reduction in infectivity (P = 0.0069) with 80% of the isolates responding more than 10-fold, 40% more than 100-fold, and 10% more than 1000-fold. CONCLUSION Significant reduction of plasma HIV RNA levels and infectivity of treated virions was achieved on the basis of induced self-destruction of HIV observed with clinical samples. Reduction of viral load ex vivo was designed as model for potential effects in vivo. Premature activation rather than inhibition of a viral enzyme could be a model strategy for future antiretroviral control.
Collapse
|
15
|
Becker Y. Evolution of viruses and their impact on human life: HIV-1 subgroup M. APMIS 2008:7-13. [PMID: 18771092 DOI: 10.1111/j.1600-0463.2008.000m1.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The history of mankind over many millennia has been marred by many epidemics caused by viruses which infect the human respiratory system and alimentary tract. The current HIV-1/AIDS pandemic, however, is caused by one virus mutant, HIV-1M, which has evolved to infect humans through the genitals. The virus is able to use the innate system cells of the infected individual to inactivate the adaptive immune system, causing AIDS. The mechanisms used by HIV-1M to inhibit the immune system are presented. Understanding the viral mechanisms is leading to novel antiviral treatments and an approach to an HIV-1 vaccine.
Collapse
Affiliation(s)
- Yechiel Becker
- Department of Molecular Virology, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
16
|
Liu Y, Wu C, Chen JH, Chen GM, Xue SG, Yan XM. Immunostimulatory effects of CpG-ODN 2216 on the activation of peripheral blood B lymphocytes and Th1-type cytokines from patients with hepatitis B virus infection. Shijie Huaren Xiaohua Zazhi 2008; 16:1573-1576. [DOI: 10.11569/wcjd.v16.i14.1573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To determine the effects of immunos-timulatory action of CpG-ODN 2216 on the activation of B lymphocytes and Th1-type cytokines derived from peripheral blood mononuclear cells (PBMCs) of patients infected with hepatitis B virus (HBV).
METHODS: PBMCs from donors infected with HBV were cultured in the presence of CpG-ODN 2216 for 48 h; B lymphocytes were analyzed for CD19/CD86, CD19/CD80, major histocompatibility complex (MHC) class II and class I using flow cytometry. The supernatant levels of interleukin-12 (IL-12) and interferon-γ (IFN-γ) were detected by enzyme-linked immunosorbent assay (ELISA).
RESULTS: CpG-ODN 2216 promoted a strong up-regulation of CD86, CD80, MHC-I and MHC-II on B lymphocytes in HBV-infected patients (CD80: 48.84% ± 21.29% vs 28.57% ± 18.70%; CD86: 50.12% ± 19.70% vs 13.15% ± 8.81%; MHC-I: 2108.88 ± 289.04 vs 1679.22 ± 388.22; MHC-II: 1602.77 ± 362.61 vs 941.88 ± 237.35; all P < 0.05). IL-12 and IFN-γ levels in the stimulated supernatant were increased significantly (IFN-γ: 61.38 ± 38.81 ng/L vs 47.35 ± 38.76 ng/L; IL-12: 7.80 ± 4.34 ng/L vs 5.56 ± 3.56 ng/L; both P < 0.05).
CONCLUSION: CpG-ODN 2216 up-regulates the expression of B lymphocyte antigen presenting and costimulatory molecules on the surface of B lymphocytes derived from HBV-infected patients, and promotes the capability of PBMCs in secreting Th1-type cytokines.
Collapse
|
17
|
Murad YM, Clay TM, Lyerly HK, Morse MA. CPG-7909 (PF-3512676, ProMune): toll-like receptor-9 agonist in cancer therapy. Expert Opin Biol Ther 2007; 7:1257-66. [PMID: 17696823 DOI: 10.1517/14712598.7.8.1257] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Stimulation of toll-like receptor (TLR)9 activates human plasmacytoid dendritic cells and B cells, and induces potent innate immune responses in preclinical tumor models and in patients. CpG oligodeoxynucleotides (ODNs) are TLR9 agonists that show promising results as vaccine adjuvants and in the treatment of cancers, infections, asthma and allergy. PF-3512676 (ProMune) was developed as a TLR9 agonist for the treatment of cancer as monotherapy and as an adjuvant in combination with chemo- and immunotherapy. Phase I and II trials have tested this drug in several hematopoietic and solid tumors. Pfizer has initiated Phase III trials to test PF-3512676 in combination with standard chemotherapy for non-small-cell lung cancer.
Collapse
Affiliation(s)
- Yanal M Murad
- Duke University Medical Center, Department of Surgery, Program in Molecular Therapeutics, Comprehensive Cancer Center, Durham, NC 27710, USA.
| | | | | | | |
Collapse
|
18
|
Reeves RK, Fultz PN. Disparate effects of acute and chronic infection with SIVmac239 or SHIV-89.6P on macaque plasmacytoid dendritic cells. Virology 2007; 365:356-68. [PMID: 17490699 PMCID: PMC2043480 DOI: 10.1016/j.virol.2007.03.055] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2007] [Revised: 03/02/2007] [Accepted: 03/30/2007] [Indexed: 12/13/2022]
Abstract
Blood plasmacytoid dendritic cells (pDCs) contribute to both innate and adaptive immune responses by secreting high levels of IFN-alpha following acute bacterial and viral infections and indirectly by augmenting cell-mediated immunity. Cross-sectional studies have shown that the number of circulating pDCs in HIV patients, compared to that in uninfected individuals, is reduced. However, since the time of infection is usually unknown in HIV-infected patients, pDC-virus interactions that occur immediately after virus exposure are poorly understood. The current study investigated pDC dynamics during acute and chronic infections of macaques with either SIVmac239 or the pathogenic SIV-HIV chimera, SHIV-89.6P, as models for HIV infection. In three rhesus and three pig-tailed macaques infected intravenously with SIVmac239, the percentages of pDCs in blood declined 2- to 6-fold during the first 6 weeks after infection and remained depressed throughout the disease course. Surprisingly, no consistent, comparable decline in peripheral blood pDCs was observed in six macaques infected with SHIV-89.6P. In this latter group, percentages of pDCs did not correlate with CD4(+) T cells, but there was an inverse relationship with viral load. In addition, when compared to naïve controls, the percentages of pDCs were reduced in spleens and peripheral lymph nodes of SIVmac239- but not SHIV-89.6P-infected animals that had progressed to AIDS. Proviral DNA was detected during the acute phase in pDCs isolated from macaques infected with either virus. These results imply that, even though macaque pDCs can be infected by both SIVmac239 and SHIV-89.6P, the subsequent effects on in vivo pathogenesis differ. The underlying mechanism(s) for these differences is unclear, but the selection of SIV or SHIV as a challenge virus might influence the outcome of some studies, such as those evaluating vaccines or the therapeutic efficacy of drugs.
Collapse
Affiliation(s)
| | - Patricia N. Fultz
- Department of Microbiology, University of Alabama at Birmingham, BBRB 509E, 845 19th St. South, Birmingham, AL 35294, USA
| |
Collapse
|
19
|
de Jong S, Chikh G, Sekirov L, Raney S, Semple S, Klimuk S, Yuan N, Hope M, Cullis P, Tam Y. Encapsulation in liposomal nanoparticles enhances the immunostimulatory, adjuvant and anti-tumor activity of subcutaneously administered CpG ODN. Cancer Immunol Immunother 2007; 56:1251-64. [PMID: 17242927 PMCID: PMC11030982 DOI: 10.1007/s00262-006-0276-x] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2006] [Accepted: 12/15/2006] [Indexed: 12/19/2022]
Abstract
Immunostimulatory oligodeoxynucleotides (ODN) containing cytosine-guanine (CpG) motifs are powerful stimulators of innate as well as adaptive immune responses, exerting their activity through triggering of the Toll-like receptor 9. We have previously shown that encapsulation in liposomal nanoparticles (LN) enhances the immunostimulatory activity of CpG ODN (LN-CpG ODN) (Mui et al. in J Pharmacol Exp Ther 298:1185, 2001). In this work we investigate the effect of encapsulation on the immunopotency of subcutaneously (s.c.) administered CpG ODN with regard to activation of innate immune cells as well as its ability to act as a vaccine adjuvant with tumor-associated antigens (TAAs) to induce antigen (Ag)-specific, adaptive responses and anti-tumor activity in murine models. It is shown that encapsulation specifically targets CpG ODN for uptake by immune cells. This may provide the basis, at least in part, for the significantly enhanced immunostimulatory activity of LN-CpG ODN, inducing potent innate (as judged by immune cell activation and plasma cytokine/chemokine levels) and adaptive, Ag-specific (as judged by MHC tetramer positive T lymphocytes, IFN-gamma secretion and cytotoxicity) immune responses. Finally, in efficacy studies, it is shown that liposomal encapsulation enhances the ability of CpG ODN to adjuvanate adaptive immune responses against co-administered TAAs after s.c. immunization, inducing effective anti-tumor activity against both model and syngeneic tumor Ags in murine tumor models of thymoma and melanoma.
Collapse
MESH Headings
- Adjuvants, Immunologic/administration & dosage
- Adjuvants, Immunologic/pharmacokinetics
- Adjuvants, Immunologic/pharmacology
- Animals
- Antineoplastic Agents/administration & dosage
- Antineoplastic Agents/pharmacokinetics
- Antineoplastic Agents/pharmacology
- CD8-Positive T-Lymphocytes/drug effects
- CD8-Positive T-Lymphocytes/immunology
- Cancer Vaccines/therapeutic use
- Chemokine CCL2/blood
- Drug Compounding
- Drug Screening Assays, Antitumor
- Female
- Fluorescent Dyes/analysis
- Injections, Subcutaneous
- Interferon-gamma/blood
- Interleukin-10/blood
- Interleukin-6/blood
- Intramolecular Oxidoreductases/immunology
- Liposomes/administration & dosage
- Liposomes/pharmacokinetics
- Lung Neoplasms/secondary
- Lung Neoplasms/therapy
- Lymphocyte Activation/drug effects
- Melanoma, Experimental/immunology
- Melanoma, Experimental/secondary
- Melanoma, Experimental/therapy
- Mice
- Mice, Inbred C57BL
- Mice, Inbred ICR
- Nanoparticles/administration & dosage
- Oligodeoxyribonucleotides/administration & dosage
- Oligodeoxyribonucleotides/pharmacokinetics
- Oligodeoxyribonucleotides/pharmacology
- Ovalbumin/immunology
- Thymoma/immunology
- Thymoma/secondary
- Thymoma/therapy
Collapse
Affiliation(s)
- Susan de Jong
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC Canada
| | - Ghania Chikh
- Inex Pharmaceuticals Corporation, Burnaby, BC Canada
| | - Laura Sekirov
- Inex Pharmaceuticals Corporation, Burnaby, BC Canada
| | - Sam Raney
- Inex Pharmaceuticals Corporation, Burnaby, BC Canada
| | - Sean Semple
- Inex Pharmaceuticals Corporation, Burnaby, BC Canada
| | - Sandra Klimuk
- Inex Pharmaceuticals Corporation, Burnaby, BC Canada
| | - Ning Yuan
- Inex Pharmaceuticals Corporation, Burnaby, BC Canada
| | - Micheal Hope
- Inex Pharmaceuticals Corporation, Burnaby, BC Canada
| | - Pieter Cullis
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC Canada
| | - Ying Tam
- Inex Pharmaceuticals Corporation, Burnaby, BC Canada
| |
Collapse
|
20
|
Becker Y. HIV-1 gp41 heptad repeat 2 (HR2) possesses an amino acid domain that resembles the allergen domain in Aspergillus fumigatus Asp f1 protein: review, hypothesis and implications. Virus Genes 2007; 34:233-40. [PMID: 17333401 DOI: 10.1007/s11262-007-0082-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2007] [Accepted: 01/17/2007] [Indexed: 10/23/2022]
Abstract
Enfuvirtide (ENF, T-20, Fuzeon) is the first synthetic peptide to be modeled according to the amino acid sequence of HIV-1 heptad repeat 2, which was used to treat cohorts of HIV-1-infected individuals who had failed to respond to treatment with the anti-HIV-1 cocktail HAART. It was reported that when injected subcutaneously, Enfuvirtide reduced viral RNA in patients' blood by 1.96 log(10), leading to a subsequent increase in the number of CD4(+) T cells in the blood. The drug treatment caused adverse effects at the injection site in a small number of treated individuals, and a gradual increase in IgE in the blood during prolonged treatment. Enfuvirtide was approved for treatment of HIV-1 patients who developed resistance to HAART. The present review attempts to explain the adverse effects of Enfuvirtide at the skin site of injection, and the gradual increase in IgE in patients' blood during treatment. These phenomena were reported to resemble the effect of allergens that cause asthma in humans. It is hypothesized that since the amino acid domain of the Asp f1 allergen from Aspergillus fumigatus was identified in the N-terminus of an 18 kDa protein, it may be useful to compare Asp f1 peptide aa 7-22 from the beta-hairpin sequence to the beta-hairpin sequence of the heptad repeat 2 of HIV-1 gp41. The comparison revealed that the amino acid sequence resembles part of the Asp f1 aa 7-22 allergenic domain. The heptad repeat 1 of gp41 also resembles the fungal allergen. It is suggested that the Enfuvirtide peptide be tested experimentally to determine if ENF peptide is capable of binding to IgE antibodies from Enfuvirtide-treated, HIV-1-infected patients, and whether the HR2-derived peptide is capable of inducing basophils that were isolated from healthy individuals and from ENF-treated and untreated HIV-1 patients to release histamine and IL-4.
Collapse
Affiliation(s)
- Yechiel Becker
- Department of Molecular Virology, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
21
|
Zhou L, Thakur CS, Molinaro RJ, Paranjape JM, Hoppes R, Jeang KT, Silverman RH, Torrence PF. Delivery of 2-5A cargo into living cells using the Tat cell penetrating peptide: 2-5A-tat. Bioorg Med Chem 2007; 14:7862-74. [PMID: 16908165 DOI: 10.1016/j.bmc.2006.07.058] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2006] [Accepted: 07/27/2006] [Indexed: 11/22/2022]
Abstract
2',5'-Oligoadenylate tetramer (2-5A) has been chemically conjugated to short HIV-1 Tat peptides to provide 2-5A-tat chimeras. Two different convergent synthetic approaches have been employed to provide such 2-5A-tat bioconjugates. One involved generation of a bioconjugate through reaction of a cysteine terminated Tat peptide with a alpha-chloroacetyl derivative of 2-5A. The second synthetic strategy was based upon a cycloaddition reaction of an azide derivative of 2-5A with a Tat peptide bearing an alkyne function. Either bioconjugate of 2-5A-tat was able to activate human RNase L. The union of 2-5A and Tat peptide provided an RNase L-active chimeric nucleopeptide with the ability to be taken up by cells by virtue of the Tat peptide and to activate RNase L in intact cells. This strategy provides a valuable vehicle for the entry of the charged 2-5A molecule into cells and may provide a means for targeted destruction of HIV RNA in vivo.
Collapse
Affiliation(s)
- Longhu Zhou
- Department of Chemistry and Biochemistry, Northern Arizona University, Flagstaff, AZ 86011-5698, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Becker Y. The spreading of HIV-1 infection in the human organism is caused by fractalkine trafficking of the infected lymphocytes—a review, hypothesis and implications for treatment. Virus Genes 2006; 34:93-109. [PMID: 17151939 DOI: 10.1007/s11262-006-0056-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The reviews on HIV-1/AIDS [1-8] highlighted the mechanism by which HIV-1 virions utilize dendritic cells (DCs) for transport from the genitals, the portal of virus infection, to the draining lymph nodes where DCs carry HIV-1 virions and present viral antigens by HLA class I and II to CD4(+) T cells. Interaction of the T cells with viral antigens presented by HLA class II molecules polarizes them to become Th2 cells, the targets of HIV-1 infection and producers of HIV-1 progeny virions. The T cells which interact with viral antigen presented by HLA class I polarize to become Th1 cells, which stimulate the CD8(+) T cell precursors to develop into antiviral cytotoxic T cells. In addition, HIV-1 virions shed gp120 glycoprotein molecules which bind to IgE immunoglobulin molecules bound to FCepsilonRI+ innate system cells (basophils, mast cells and monocytes) and induce them to release large amounts of Th2 cytokines (IL-4, IL-5, IL-10, IL-13), thereby creating an allergy-like condition. The present review attempts to define the role of chemokine receptors like CCR5 and CXCR4, and especially fractalkine receptor CX3CR1 in the trafficking of lymphocytes in healthy individuals and HIV-1/AIDS patients. The role of chemokine receptors as co-receptors for HIV-1 virion gp120 glycoprotein has been defined, but the role of fractalkine and fractalkine receptor has been clarified only recently [9-19]. In healthy individuals fractalkine is expressed by blood vessel endothelial cells and the CX3CR1 receptors are expressed on leukocytes that migrate in the peripheral blood in the direction of increased fractalkine concentration. In HIV-1/AIDS patients the virus-infected CD4(+) Th2 cells migrate to organs that harbor the adaptive immune system cells in the thymus, genitals, gastrointestinal tract, and to the brain. A most significant finding which revealed the importance of the human CX3CR1 gene expression to the progression of the infection to the stage of AIDS was recently reported by Faure and collaborators [20, 21] who showed that the delayed or rapid progression to AIDS was affected in HIV-1-infected individuals who had inherited a fractalkine receptor gene with the polymorphisms V249I or T280M, respectively, located in the sixth and seventh transmembrane domains of CX3CR1 protein. The T280M mutation in the CX3CR1 gene caused a rapid progression to AIDS, while in patients with the V249I mutation progression to AIDS was much slower. These studies led to the idea that it might be possible to slow or prevent HIV-1/AIDS progression in HIV-1 patients by treating them with fractalkine antagonists that will bind to and inhibit the activity of the fractalkine receptor. It is hypothesized that treatment of HIV-1/AIDS patients with a combination of fractalkine antagonists, IL-4 antagonist IL-4delta2 and the adjuvant CpG ODN induced release of type I IFN from PDF, and may inhibit HIV-1 infection, especially in HAART-treated patients infected with drug-resistant HIV-1 mutants due to prevention of the availability of immune cells needed for the viral evasion of the immune response. The hypothesis implies that the advantage of the suggested mode of treatment of HIV-1-infected people is prevention of cellular processes that are used by the viral protein to cause immunodeficiency, and prevention of HIV-1 replication without induction of resistant mutants.
Collapse
Affiliation(s)
- Yechiel Becker
- Department of Molecular Virology, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
23
|
Noursadeghi M, Katz DR, Miller RF. HIV-1 infection of mononuclear phagocytic cells: the case for bacterial innate immune deficiency in AIDS. THE LANCET. INFECTIOUS DISEASES 2006; 6:794-804. [PMID: 17123899 DOI: 10.1016/s1473-3099(06)70656-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
HIV-1 infection of mononuclear phagocytic cells, comprising monocytes, macrophages, and dendritic cells, has been the subject of extensive research over the past 20 years. The roles of mononuclear phagocytic cells in transmission of HIV-1 infection and as reservoirs of actively replicating virus have received particular attention. Experimental data have also accumulated about the effects of HIV-1 on the physiological function of mononuclear phagocytic cells, particularly their role in innate immunity to bacteria. The effects of HIV-1 on bacterial innate immune responses by mononuclear phagocytic cells are discussed here together with reports of direct interactions between HIV-encoded products and bacterial innate immune signalling pathways. These reports demonstrate mechanisms for HIV-mediated disruption of innate immune responses by mononuclear phagocytic cells that could provide novel therapeutic targets in HIV-infected patients. The clinical urgency is highlighted by greatly increased risk of invasive bacterial disease in this population, even in the era of highly active antiretroviral therapy. HIV-mediated injury to bacterial innate immunity provides an experimental paradigm that could broaden our overall understanding of innate immunity and be used to study responses to pathogens other than bacteria.
Collapse
Affiliation(s)
- Mahdad Noursadeghi
- Department of Immunology and Molecular Pathology, University College London, UK.
| | | | | |
Collapse
|
24
|
Abstract
LP-BM5, a retroviral isolate, induces a disease featuring retrovirus-induced immunodeficiency, designated murine AIDS (MAIDS). Many of the features of the LP-BM5-induced syndrome are shared with human immunodeficiency virus-induced disease. For example, CD4 T cells are critical to the development of MAIDS. In vivo depletion of CD4 T cells before LP-BM5 infection rendered genetically susceptible B6 mice MAIDS resistant. Similarly, MAIDS did not develop in B6.nude mice. However, if reconstituted with CD4 T cells, B6.nude mice develop full-blown MAIDS. Our laboratory has shown that the interaction of B and CD4 T cells that is central to MAIDS pathogenesis requires ligation of CD154 on CD4 T cells with CD40 on B cells. However, it is not clear which additional characteristics of the phenotypically and functionally heterogeneous CD4 T-cell compartment are required. Here, in vivo adoptive transfer experiments using B6.nude recipients are employed to compare the pathogenic abilities of CD4 T-cell subsets defined on the basis of cell surface phenotypic or functional differences. Th1 and Th2 CD4 T cells equally supported MAIDS induction. The rare Thy1.2(-) CD4 subset that expands upon LP-BM5 infection was not necessary for MAIDS. Interestingly, CD45RB(low) CD4 T cells supported significantly less disease than CD45RB(high) CD4 T cells. Because the decreased MAIDS pathogenesis could not be attributed to inhibition by CD45RB(low) CD25(+) natural T-regulatory cells, an intrinsic property of the CD45RB(low) cells appeared responsible. Similarly, there was no evidence that natural T-regulatory cells played a role in LP-BM5-induced pathogenesis in the context of the intact CD4 T-cell population.
Collapse
Affiliation(s)
- Wen Li
- Department of Microbiology and Immunology, Dartmouth Medical School, Lebanon, NH 03756, USA
| | | |
Collapse
|
25
|
Tam YK. Liposomal encapsulation enhances the activity of immunostimulatory oligonucleotides. ACTA ACUST UNITED AC 2006. [DOI: 10.2217/17460875.1.1.35] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|