1
|
Friedman E, Lee BR, Rahn D, Lugo Martinez B, Mena A. Assessing environmental injustice in Kansas City by linking paediatric asthma to local sources of pollution: a cross-sectional study. BMJ Open 2024; 14:e080915. [PMID: 39019634 PMCID: PMC11256072 DOI: 10.1136/bmjopen-2023-080915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 05/30/2024] [Indexed: 07/19/2024] Open
Abstract
OBJECTIVE A grassroots environmental-justice organisation in Kansas City has been examining the disproportionate exposure to air pollution experienced by residents living fenceline to the largest classification railyard in the USA. Prior analyses showed limited increased risk for asthma exacerbation for patients with asthma living closer to toxic release inventory (TRI) facilities and railyards. In this study, we assessed geographical asthma and environmental disparities, to further explore community-level disparities. DESIGN This is a cross-sectional study of population-level asthma rates, which included rates for all asthma encounters and acute asthma encounters (urgent care, emergency department, inpatient admission). Distances from census-tract centroids to nearest TRI facilities, railyards and highways were calculated. The association between asthma rates and distances was examined using Kendall's τ correlation and multivariable Poisson regression models. SETTING We used electronic medical record data from the regional paediatric hospital, census and Environmental Protection Agency (EPA) air monitoring data. PARTICIPANTS Patients with 2+ asthma encounters during the EPA study timeframe were identified. RESULTS Residential distance from railyards exhibited a significant negative correlation with overall (-0.36 (CI -0.41 to -0.32)) and acute (-0.27 (CI -0.32 to -0.22)) asthma rates. Asthma rates were elevated among tracts north of the closest railyard (incident rate ratio: 1.38; CI 1.35 to 1.41) when compared with southern directionality. An increased distance from the nearest railyard of 3 km was associated with a decrease in overall asthma rates of 26%. CONCLUSION Significant negative associations between proximity to all pollution source types and asthma rates were observed. This community-level research has served as a tool for community engagement and will be used to support proposed local policy. Environmental justice work addresses local concerns involving small, limited datasets, if the data exist at all. The academic epidemiological platform may reconsider acceptable approaches to small population research in order to better serve communities with the most need.
Collapse
Affiliation(s)
- Elizabeth Friedman
- University of Missouri-Kansas City School of Medicine, Kansas City, Missouri, USA
- Children's Mercy Hospitals and Clinics, Kansas City, Missouri, USA
| | - Brian R Lee
- Children's Mercy Hospitals and Clinics, Kansas City, Missouri, USA
| | - David Rahn
- University of Kansas College of Liberal Arts and Sciences, Lawrence, Kansas, USA
| | | | | |
Collapse
|
2
|
Lenssen ES, Janssen NAH, Oldenwening M, Meliefste K, de Jonge D, Kamstra RJM, van Dinther D, van der Zee S, Keuken RH, Hoek G. Beyond the Runway: Respiratory health effects of ultrafine particles from aviation in children. ENVIRONMENT INTERNATIONAL 2024; 188:108759. [PMID: 38788415 DOI: 10.1016/j.envint.2024.108759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/15/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024]
Abstract
Aviation has been shown to cause high particle number concentrations (PNC) in areas surrounding major airports. Particle size distribution and composition differ from motorized traffic. The objective was to study short-term effects of aviation-related UFP on respiratory health in children. In 2017-2018 a study was conducted in a school panel of 7-11 year old children (n = 161) living North and South of Schiphol Airport. Weekly supervised spirometry and exhaled nitric oxide (eNO) measurements were executed. The school panel, and an additional group of asthmatic children (n = 19), performed daily spirometry tests at home and recorded respiratory symptoms. Hourly concentrations of various size fractions of PNC and black carbon (BC) were measured at three school yards. Concentrations of aviation-related particles were estimated at the residential addresses using a dispersion model. Linear and logistic mixed models were used to investigate associations between daily air pollutant concentrations and respiratory health. PNC20, a proxy for aviation-related UFP, was virtually uncorrelated with BC and PNC50-100 (reflecting primarily motorized traffic), supporting the feasibility of separating PNC from aviation and other combustion sources. No consistent associations were found between various pollutants and supervised spirometry and eNO. Major air pollutants were significantly associated with an increase in various respiratory symptoms. Odds Ratios for previous day PNC20 per 3,598pt/cm3 were 1.13 (95%CI 1.02; 1.24) for bronchodilator use and 1.14 (95%CI 1.03; 1.26) for wheeze. Modelled aviation-related UFP at the residential addresses was also positively associated with these symptoms, corroborating the PNC20 findings. PNC20 was not associated with daily lung function, but PNC50-100 and BC were negatively associated with FEV1. PNC of different sizes indicative of aviation and other combustion sources were independently associated with an increase of respiratory symptoms and bronchodilator use in children living near a major airport. No consistent associations between aviation-related UFP with lung function was observed.
Collapse
Affiliation(s)
- Esther S Lenssen
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands.
| | - Nicole A H Janssen
- National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands.
| | - Marieke Oldenwening
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands.
| | - Kees Meliefste
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands.
| | - Dave de Jonge
- Municipal Health Service (GGD) Haaglanden, Den Haag, the Netherlands.
| | - Regina J M Kamstra
- Netherlands Organization for Applied Scientific Research (TNO), Leiden, the Netherlands.
| | - Daniëlle van Dinther
- Netherlands Organization for Applied Scientific Research (TNO), Leiden, the Netherlands.
| | | | - Rinske H Keuken
- Municipal Health Service (GGD) Haaglanden, Den Haag, the Netherlands.
| | - Gerard Hoek
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
3
|
Jung CR, Chen WT, Young LH, Hsiao TC. A hybrid model for estimating the number concentration of ultrafine particles based on machine learning algorithms in central Taiwan. ENVIRONMENT INTERNATIONAL 2023; 175:107937. [PMID: 37088007 DOI: 10.1016/j.envint.2023.107937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 05/03/2023]
Abstract
Modeling is a cost-effective measure to estimate ultrafine particle (UFP) levels. Previous UFP estimates generally relied on land-use regression with insufficient temporal resolution. We carried out in-situ measurements for UFP in central Taiwan and developed a model incorporating satellite-based measurements, meteorological variables, and land-use data to estimate daily UFP levels at a 1-km resolution. Two sampling campaigns were conducted for measuring hourly UFP concentrations at six sites between 2008-2010 and 2017-2021, respectively, using scanning mobility particle sizers. Three machine learning algorithms, namely random forest, eXtreme gradient boosting (XGBoost), and deep neural network, were used to develop UFP estimation models. The performances were evaluated with a 10-fold cross-validation, temporal, and spatial validation. A total of 1,022 effective sampling days were conducted. The XGBoost model had the best performance with a training coefficient of determination (R2) of 0.99 [normalized root mean square error (nRMSE): 6.52%] and a cross-validation R2 of 0.78 (nRMSE: 31.0%). The ten most important variables were surface pressure, distance to the nearest road, temperature, calendar year, day of the year, NO2, meridional wind, the total length of roads, PM2.5, and zonal wind. The UFP levels were elevated along the main roads across different seasons, suggesting that traffic emission is an important contributor to UFP. This hybrid model outperformed prior land use regression models and thus can provide more accurate estimates of UFP for epidemiological studies.
Collapse
Affiliation(s)
- Chau-Ren Jung
- Department of Public Health, College of Public Health, China Medical University, Taichung, Taiwan; Japan Environment and Children's Study Programme Office, Health and Environmental Risk Division, National Institute for Environmental Studies, Tsukuba, Japan.
| | - Wei-Ting Chen
- Department of Atmospheric Sciences, National Taiwan University, Taipei, Taiwan
| | - Li-Hao Young
- Department of Occupational Safety and Health, China Medical University, Taichung, Taiwan
| | - Ta-Chih Hsiao
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
4
|
Costa MAM, da Silva BM, de Almeida SGC, Felizardo MP, Costa AFM, Cardoso AA, Dussán KJ. Evaluation of the efficiency of a Venturi scrubber in particulate matter collection smaller than 2.5 µm emitted by biomass burning. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:8835-8852. [PMID: 36053424 PMCID: PMC9438357 DOI: 10.1007/s11356-022-22786-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Energy demand has increased worldwide, and biomass burning is one of the solutions most used by industries, especially in countries that have a great potential in agriculture, such as Brazil. However, these energy sources generate pollutants, consisting of particulate matter (PM) with a complex chemical composition, such as sugarcane bagasse (SB) burning. Controlling these emissions is necessary; therefore, the aim was to evaluate PM collection using a rectangular Venturi scrubber (RVS), and its effects on the composition of the PM emitted. Considering the appropriate use of biomass as an industrial fuel and the emerging need for a technique capable of efficiently removing pollutants from biomass burning, this study shows the control of emissions as an innovation in a situation such as the industrial one with the use of a Venturi scrubber in fine particle collection, in addition to using portable and representative isokinetic sampling equipment of these particles. The pilot-scale simulation of the biomass burning process, the representative sampling of fine particles and obtaining parameters to control pollutant emissions for a Venturi scrubber, meets the current situation of concern about air quality. The average collection efficiency values were 96.6% for PM> 2.5, 85.5% for PM1.0-2.5, and 66.9% for PM< 1.0. The ionic analysis for PM< 1.0 filters showed potassium, chloride, nitrate, and nitrite at concentrations ranging from 20.12 to 36.5 μg/m3. As the ethanol and sugar plants will continue to generate electricity with sugarcane bagasse burning, emission control technologies and cost-effective and efficient portable samplers are needed to monitor particulate materials and improve current gas cleaning equipment projects.
Collapse
Affiliation(s)
- Maria Angélica Martins Costa
- Department of Engineering, Physics and Mathematics, Institute of Chemistry, São Paulo State University-UNESP, Av. Prof. Francisco Degni, 55 - Jardim Quitandinha, Araraquara, São Paulo, 14800-900, Brazil
| | - Bruno Menezes da Silva
- Department of Engineering, Physics and Mathematics, Institute of Chemistry, São Paulo State University-UNESP, Av. Prof. Francisco Degni, 55 - Jardim Quitandinha, Araraquara, São Paulo, 14800-900, Brazil
| | - Sâmilla Gabriella Coelho de Almeida
- Department of Engineering, Physics and Mathematics, Institute of Chemistry, São Paulo State University-UNESP, Av. Prof. Francisco Degni, 55 - Jardim Quitandinha, Araraquara, São Paulo, 14800-900, Brazil
| | - Marcos Paulo Felizardo
- Departament of Mechanics, Minas Gerais Federal Institute of Education, Science and Technology, IFMG, Congonhas, Brazil
| | - Ana Flávia Martins Costa
- Faculty of Engineering Technology, Department of Biomechanical Engineering, Engineering Organ Support Technologies Group, University of Twente, P.O. Box 217, Enschede, Overijssel, 7500 AE, The Netherlands
| | - Arnaldo Alves Cardoso
- Department of Analytical Chemistry, Physical-Chemical and Inorganic Chemistry, Institute of Chemistry, São Paulo State University-UNESP, Av. Prof. Francisco Degni, 55 - Jardim Quitandinha, Araraquara, São Paulo, 14800-900, Brazil
| | - Kelly Johana Dussán
- Department of Engineering, Physics and Mathematics, Institute of Chemistry, São Paulo State University-UNESP, Av. Prof. Francisco Degni, 55 - Jardim Quitandinha, Araraquara, São Paulo, 14800-900, Brazil.
| |
Collapse
|
5
|
Exposure to ultrafine particles and the incidence of asthma in children: A population-based cohort study in Montreal, Canada. Environ Epidemiol 2022; 7:e236. [PMID: 36777524 PMCID: PMC9916019 DOI: 10.1097/ee9.0000000000000236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 11/17/2022] [Indexed: 02/14/2023] Open
Abstract
Asthma is the most prevalent chronic respiratory disease in children. The role of ultrafine particles (UFPs) in the development of the disease remains unclear. We used a population-based birth cohort to evaluate the association between prenatal and childhood exposure to low levels of ambient UFPs and childhood-onset asthma. Methods The cohort included all children born and residing in Montreal, Canada, between 2000 and 2015. Children were followed for asthma onset from birth until <13 years of age. Spatially resolved annual mean concentrations of ambient UFPs were estimated from a land use regression model. We assigned prenatal exposure according to the residential postal code at birth. We also considered current exposure during childhood accounting for time-varying residence location. We estimated hazard ratios (HRs) using Cox proportional hazards models adjusted for age, sex, neighborhood material and social deprivation, calendar year, and coexposure to ambient nitrogen dioxide (NO2) and fine particles (PM2.5). Results The cohort included 352,966 children, with 30,825 children developing asthma during follow-up. Mean prenatal and childhood UFP exposure were 24,706 particles/cm3 (interquartile range [IQR] = 3,785 particles/cm3) and 24,525 particles/cm3 (IQR = 3,427 particles/cm3), respectively. Both prenatal and childhood UFP exposure were not associated with childhood asthma onset in single pollutant models (HR per IQR increase of 0.99 [95% CI = 0.98, 1.00]). Estimates of association remained similar when adjusting for coexposure to ambient NO2 and PM2.5. Conclusion In this population-based birth cohort, childhood asthma onset was not associated with prenatal or childhood exposure to low concentrations of UFPs.
Collapse
|
6
|
Nie D, Qiu Z, Wang X, Liu Z. Characterizing the source apportionment of black carbon and ultrafine particles near urban roads in Xi'an, China. ENVIRONMENTAL RESEARCH 2022; 215:114209. [PMID: 36058280 DOI: 10.1016/j.envres.2022.114209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 08/12/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Better knowledge of the sources of black carbon (BC) and ultrafine particles (UFPs) in urban roadway region will provide helpful information for improving road air pollution caused by vehicle emissions. For this purpose, we conducted daily observation of BC and UFPs at two trafficked sites (intersection and roadside), and a background site in Xi'an, China. The concentration data of BC and UFPs measured were combined with Aethalometer model and UFPs source apportion model, to determine and analyze the sources of BC in an urban road region. Further, the source and variation characteristics of primary and secondary UFPs at the roadside sites were clarified. The results showed that average BC concentrations at the intersection, roadside, and background were respectively 3577 ± 2771, 3078 ± 2343, and 1914 ± 1229 ng/m3. The BC source apportionment results revealed contribution rates of on-board fossil fuel combustion (BCff) at the intersection and near the road of ca. 78.7% and 73.6%, respectively. Moreover, the proportion of particles number concentrations directly emitted from vehicles and nucleated upon emission (47%) was lower than that of particles formed during the dilution and cooling of vehicle emissions and by in-situ new particle formation (53%) at the roadside site. At 49%, the proportion of primary particles number was slightly higher at the intersection. The impacts of new particle-formation events on the diurnal variation of secondary particles were explored. Generally, the majority of BC originated from traffic exhausts, while the secondary particles from non-traffic sources are dominant at the road intersections. By providing a better understanding of near-road pollution issues, this study's findings can be useful for taking effective regulatory efforts to improve air quality and reduce people's exposure to traffic-pollutants in an urban environment.
Collapse
Affiliation(s)
- Di Nie
- School of Automobile, Chang'an University, Chang'an Road, Xi'an 710064 Shaanxi, PR China.
| | - Zhaowen Qiu
- School of Automobile, Chang'an University, Chang'an Road, Xi'an 710064 Shaanxi, PR China.
| | - Xin Wang
- School of Automobile, Chang'an University, Chang'an Road, Xi'an 710064 Shaanxi, PR China.
| | - Zhen Liu
- School of Automobile, Chang'an University, Chang'an Road, Xi'an 710064 Shaanxi, PR China.
| |
Collapse
|
7
|
Pytel K, Marcinkowska R, Rutkowska M, Zabiegała B. Recent advances on SOA formation in indoor air, fate and strategies for SOA characterization in indoor air - A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 843:156948. [PMID: 35753459 DOI: 10.1016/j.scitotenv.2022.156948] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/18/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Recent studies proves that indoor air chemistry differs in many aspects from atmospheric one. People send up to 90 % of their life indoors being exposed to pollutants present in gas, particle and solid phase. Particle phase indoor is composed of particles emitted from various sources, among which there is an indoor source - secondary chemical reactions leading to formation of secondary organic aerosol (SOA). Lately, researchers' attentions turned towards the ultrafine particles, for there are still a lot of gaps in knowledge concerning this field of study, while there is evidence of negative influence of ultrafine particles on human health. Presented review sums up current knowledge about secondary particle formation in indoor environment and development of analytical techniques applied to study those processes. The biggest concern today is studying ROS, for their lifetime in indoor air is very short due to reactions at the very beginning of terpene oxidation process. Another interesting aspect that is recently discovered is monoterpene autooxidation process that leads to HOMs formation that in turn can influence SOA formation yield. A complex studies covering gas phase and particle phase characterization, but also toxicological studies are crucial to fully understand indoor air chemistry leading to ultrafine particle formation.
Collapse
Affiliation(s)
- Klaudia Pytel
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza Str., 80-233 Gdańnsk, Poland
| | - Renata Marcinkowska
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza Str., 80-233 Gdańnsk, Poland
| | - Małgorzata Rutkowska
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza Str., 80-233 Gdańnsk, Poland
| | - Bożena Zabiegała
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza Str., 80-233 Gdańnsk, Poland.
| |
Collapse
|
8
|
Carmona N, Edmund S, Gould TR, Rasyid E, Shirai JH, Cummings BJ, Hayward L, Larson TV, Austin E. Indoor Air Quality Intervention in Schools: Effectiveness of a Portable HEPA Filter Deployment in Five Schools Impacted by Roadway and Aircraft Pollution Sources. ATMOSPHERE 2022; 13:1623. [PMID: 39210963 PMCID: PMC11361409 DOI: 10.3390/atmos13101623] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The Healthy Air, Healthy Schools Study was established to better understand the impact of ultrafine particles (UFPs) on indoor air quality in communities surrounding Seattle-Tacoma (Sea-Tac) International Airport. The study team took multipollutant measurements of indoor and outdoor air pollution at five participating school locations to estimate infiltration indoors. The schools participating in this project were located within a 7-mile radius of Sea-Tac International Airport and within 0.5 mile of an active flight path. Based on experimental measures in an unoccupied classroom, infiltration rates of (a) UFPs of aircraft origin, (b) UFPs of traffic origin, and (c) wildfire smoke or other outdoor pollutants were characterized before and after the introduction of a portable high-efficiency particulate air (HEPA) filter intervention. The portable HEPA cleaners were an effective short-term intervention to improve the air quality in classroom environments, reducing the UFP count concentration from one-half to approximately one-tenth of that measured outside. This study is unique in focusing on UFPs in schools and demonstrating that UFPs measured in classroom spaces are primarily of outdoor origin. Although existing research suggests that reducing particulate matter in homes can significantly improve asthma outcomes, further investigation is necessary to establish the benefits to student health and academic performance of reducing UFP exposures in schools.
Collapse
Affiliation(s)
- Nancy Carmona
- Department of Environmental & Occupational Health Sciences, University of washington, Seattle, WA 98195, USA
| | - Seto Edmund
- Department of Environmental & Occupational Health Sciences, University of washington, Seattle, WA 98195, USA
| | - Timothy R. Gould
- Department of Civil & Environmental Engineering, University of Washington, Seattle, WA 98195, USA
| | - Everetta Rasyid
- Department of Environmental & Occupational Health Sciences, University of washington, Seattle, WA 98195, USA
| | - Jeffry H. Shirai
- Department of Environmental & Occupational Health Sciences, University of washington, Seattle, WA 98195, USA
| | - BJ Cummings
- Department of Environmental & Occupational Health Sciences, University of washington, Seattle, WA 98195, USA
| | - Lisa Hayward
- Department of Environmental & Occupational Health Sciences, University of washington, Seattle, WA 98195, USA
| | - Timothy V. Larson
- Department of Environmental & Occupational Health Sciences, University of washington, Seattle, WA 98195, USA
- Department of Civil & Environmental Engineering, University of Washington, Seattle, WA 98195, USA
| | - Elena Austin
- Department of Environmental & Occupational Health Sciences, University of washington, Seattle, WA 98195, USA
| |
Collapse
|
9
|
Ge Y, Fu Q, Yi M, Chao Y, Lei X, Xu X, Yang Z, Hu J, Kan H, Cai J. High spatial resolution land-use regression model for urban ultrafine particle exposure assessment in Shanghai, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 816:151633. [PMID: 34785221 DOI: 10.1016/j.scitotenv.2021.151633] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/04/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Little is currently known about long-term health effects of ambient ultrafine particles (UFPs) due to the lack of exposure assessment metrics suitable for use in large population-based studies. Land use regression (LUR) models have been used increasingly for modeling small-scale spatial variation in UFPs concentrations in European and American, but have never been applied in developing countries with heavy air pollution. OBJECTIVE This study developed a land-use regression (LUR) model for UFP exposure assessment in Shanghai, a typic mega city of China, where dense population resides. METHOD A 30-minute measurement of particle number concentrations of UFPs was collected at each visit at 144 fixed sites, and each was visited three times in each season of winter, spring, and summer. The annual adjusted average was calculated and regressed against pre-selected geographic information system-derived predictor variables using a stepwise variable selection method. RESULT The final LUR model explained 69% of the spatial variability in UFP with a root mean square error of 6008 particles cm-3. The 10-fold cross validation R2 reached 0.68, revealing the robustness of the model. The final predictors included traffic-related NOx emissions, number of restaurants, building footprint area, and distance to the nearest national road. These predictors were within a relatively small buffer size, ranging from 50 m to 100 m, indicating great spatial variations of UFP particle number concentration and the need of high-resolution models for UFP exposure assessment in urban areas. CONCLUSION We concluded that based on a purpose-designed short-term monitoring network, LUR model can be applied to predict UFPs spatial surface in a mega city of China. Majority of the spatial variability in the annual mean of ambient UFP was explained in the model comprised primarily of traffic-, building-, and restaurant-related predictors.
Collapse
Affiliation(s)
- Yihui Ge
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Qingyan Fu
- Shanghai Environmental Monitoring Center, Shanghai 200233, China
| | - Min Yi
- Shanghai Environmental Monitoring Center, Shanghai 200233, China
| | - Yuan Chao
- Shanghai Environmental Monitoring Center, Shanghai 200233, China
| | - Xiaoning Lei
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Xueyi Xu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Zhenchun Yang
- MRC Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, St Mary's Campus, London, United Kingdom
| | - Jianlin Hu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China.
| | - Jing Cai
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China.
| |
Collapse
|
10
|
Massimino L, Bulbarelli A, Corsetto PA, Milani C, Botto L, Farina F, Lamparelli LA, Lonati E, Ungaro F, Maddipati KR, Palestini P, Rizzo AM. LSEA Evaluation of Lipid Mediators of Inflammation in Lung and Cortex of Mice Exposed to Diesel Air Pollution. Biomedicines 2022; 10:712. [PMID: 35327517 PMCID: PMC8945792 DOI: 10.3390/biomedicines10030712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/15/2022] [Accepted: 03/15/2022] [Indexed: 12/10/2022] Open
Abstract
Airborne ultrafine particle (UFP) exposure is a great concern as they have been correlated to increased cardiovascular mortality, neurodegenerative diseases and morbidity in occupational and environmental settings. The ultrafine components of diesel exhaust particles (DEPs) represent about 25% of the emission mass; these particles have a great surface area and consequently high capacity to adsorb toxic molecules, then transported throughout the body. Previous in-vivo studies indicated that DEP exposure increases pro- and antioxidant protein levels and activates inflammatory response both in respiratory and cardiovascular systems. In cells, DEPs can cause additional reactive oxygen species (ROS) production, which attacks surrounding molecules, such as lipids. The cell membrane provides lipid mediators (LMs) that modulate cell-cell communication, inflammation, and resolution processes, suggesting the importance of understanding lipid modifications induced by DEPs. In this study, with a lipidomic approach, we evaluated in the mouse lung and cortex how DEP acute and subacute treatments impact polyunsaturated fatty acid-derived LMs. To analyze the data, we designed an ad hoc bioinformatic pipeline to evaluate the functional enrichment of lipid sets belonging to the specific biological processes (Lipid Set Enrichment Analysis-LSEA). Moreover, the data obtained correlate tissue LMs and proteins associated with inflammatory process (COX-2, MPO), oxidative stress (HO-1, iNOS, and Hsp70), involved in the activation of many xenobiotics as well as PAH metabolism (Cyp1B1), suggesting a crucial role of lipids in the process of DEP-induced tissue damage.
Collapse
Affiliation(s)
- Luca Massimino
- Department of Gastroenterology and Digestive Endoscopy, IRCCS Ospedale San Raffaele, 20132 Milan, Italy; (L.M.); (F.U.)
- Molecular Medicine-Neuroscience, Università Vita-Salute San Raffaele, 20132 Milan, Italy
| | - Alessandra Bulbarelli
- School of Medicine and Surgery, University of Milano-Bicocca, 20126 Monza, Italy; (A.B.); (C.M.); (L.B.); (F.F.); (E.L.)
- Polaris Research Centre, University of Milano-Bicocca, 20126 Monza, Italy
| | - Paola Antonia Corsetto
- Department of Pharmacological and Biomolecular Sciences, University of Milano, 20133 Milano, Italy;
| | - Chiara Milani
- School of Medicine and Surgery, University of Milano-Bicocca, 20126 Monza, Italy; (A.B.); (C.M.); (L.B.); (F.F.); (E.L.)
| | - Laura Botto
- School of Medicine and Surgery, University of Milano-Bicocca, 20126 Monza, Italy; (A.B.); (C.M.); (L.B.); (F.F.); (E.L.)
| | - Francesca Farina
- School of Medicine and Surgery, University of Milano-Bicocca, 20126 Monza, Italy; (A.B.); (C.M.); (L.B.); (F.F.); (E.L.)
| | | | - Elena Lonati
- School of Medicine and Surgery, University of Milano-Bicocca, 20126 Monza, Italy; (A.B.); (C.M.); (L.B.); (F.F.); (E.L.)
| | - Federica Ungaro
- Department of Gastroenterology and Digestive Endoscopy, IRCCS Ospedale San Raffaele, 20132 Milan, Italy; (L.M.); (F.U.)
- Molecular Medicine-Neuroscience, Università Vita-Salute San Raffaele, 20132 Milan, Italy
| | - Krishna Rao Maddipati
- Department of Pathology, Lipidomics Core Facility, Wayne State University, Detroit, MI 48202, USA;
| | - Paola Palestini
- School of Medicine and Surgery, University of Milano-Bicocca, 20126 Monza, Italy; (A.B.); (C.M.); (L.B.); (F.F.); (E.L.)
- Polaris Research Centre, University of Milano-Bicocca, 20126 Monza, Italy
| | - Angela Maria Rizzo
- Department of Pharmacological and Biomolecular Sciences, University of Milano, 20133 Milano, Italy;
| |
Collapse
|
11
|
Jiang J, Ding X, Isaacson KP, Tasoglou A, Huber H, Shah AD, Jung N, Boor BE. Ethanol-based disinfectant sprays drive rapid changes in the chemical composition of indoor air in residential buildings. JOURNAL OF HAZARDOUS MATERIALS LETTERS 2021; 2:100042. [PMID: 34977843 PMCID: PMC8423670 DOI: 10.1016/j.hazl.2021.100042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The COVID-19 pandemic has resulted in increased usage of ethanol-based disinfectants for surface inactivation of SARS-CoV-2 in buildings. Emissions of volatile organic compounds (VOCs) and particles from ethanol-based disinfectant sprays were characterized in real-time (1 Hz) via a proton transfer reaction time-of-flight mass spectrometer (PTR-TOF-MS) and a high-resolution electrical low-pressure impactor (HR-ELPI+), respectively. Ethanol-based disinfectants drove sudden changes in the chemical composition of indoor air. VOC and particle concentrations increased immediately after application of the disinfectants, remained elevated during surface contact time, and gradually decreased after wiping. The disinfectants produced a broad spectrum of VOCs with mixing ratios spanning the sub-ppb to ppm range. Ethanol was the dominant VOC emitted by mass, with concentrations exceeding 103 μg m-3 and emission factors ranging from 101 to 102 mg g-1. Listed and unlisted diols, monoterpenes, and monoterpenoids were also abundant. The pressurized sprays released significant quantities (104-105 cm-3) of nano-sized particles smaller than 100 nm, resulting in large deposited doses in the tracheobronchial and pulmonary regions of the respiratory system. Inhalation exposure to VOCs varied with time during the building disinfection events. Much of the VOC inhalation intake (>60 %) occurred after the disinfectant was sprayed and wiped off the surface. Routine building disinfection with ethanol-based sprays during the COVID-19 pandemic may present a human health risk given the elevated production of volatile chemicals and nano-sized particles.
Collapse
Affiliation(s)
- Jinglin Jiang
- Lyles School of Civil Engineering, Purdue University, West Lafayette, IN, United States
- Ray W. Herrick Laboratories, Center for High Performance Buildings, Purdue University, West Lafayette, IN, United States
| | - Xiaosu Ding
- Lyles School of Civil Engineering, Purdue University, West Lafayette, IN, United States
| | - Kristofer P Isaacson
- Division of Environmental and Ecological Engineering, Purdue University, West Lafayette, IN, United States
| | | | - Heinz Huber
- Edelweiss Technology Solutions, LLC, Novelty, OH, United States
| | - Amisha D Shah
- Lyles School of Civil Engineering, Purdue University, West Lafayette, IN, United States
- Division of Environmental and Ecological Engineering, Purdue University, West Lafayette, IN, United States
| | - Nusrat Jung
- Lyles School of Civil Engineering, Purdue University, West Lafayette, IN, United States
| | - Brandon E Boor
- Lyles School of Civil Engineering, Purdue University, West Lafayette, IN, United States
- Ray W. Herrick Laboratories, Center for High Performance Buildings, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
12
|
Rosado-Pérez MN, Ríos-Soto K. On the spread of ultrafine particulate matter: A mathematical model for motor vehicle emissions and their effects as an asthma trigger. INT J BIOMATH 2021. [DOI: 10.1142/s179352452150087x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Asthma is a respiratory disease that affects the lungs, with a prevalence of 339.4 million people worldwide [G. Marks, N. Pearce, D. Strachan, I. Asher and P. Ellwood, The Global Asthma Report 2018, globalasthmareport.org (2018)]. Many factors contribute to the high prevalence of asthma, but with the rise of the industrial age, air pollutants have become one of the main Ultrafine particles (UFPs), which are a type of air pollutant that can affect asthmatics the most. These UFPs originate primarily from the combustion of motor vehicles [P. Solomon, Ultrafine particles in ambient air. EM: Air and Waste Management Association’s Magazine for Environmental Managers (2012)] and although in certain places some regulations to control their emission have been implemented they might not be enough. In this work, a mathematical model of reaction–diffusion type is constructed to study how UFPs grow and disperse in the environment and in turn how they affect an asthmatic population. Part of our focus is on the existence of traveling wave solutions and their minimum asymptotic speed of pollutant propagation [Formula: see text]. Through the analysis of the model it was possible to identify the necessary threshold conditions to control the pollutant emissions and consequently reduce the asthma episodes in the population. Analytical and numerical results from this work prove how harmful the UFEs are for the asthmatic population and how they can exacerbate their asthma episodes.
Collapse
Affiliation(s)
| | - Karen Ríos-Soto
- Department of Mathematical Sciences, University of Puerto Rico Mayagüez, Mayagüez, Puerto Rico 00682, USA
| |
Collapse
|
13
|
Rafiepourgatabi M, Woodward A, Salmond JA, Dirks KN. The Effect of Route Choice in Children's Exposure to Ultrafine Particles Whilst Walking to School. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18157808. [PMID: 34360102 PMCID: PMC8345797 DOI: 10.3390/ijerph18157808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/15/2021] [Accepted: 07/19/2021] [Indexed: 11/16/2022]
Abstract
Children walking to school are at a high risk of exposure to air pollution compared with other modes because of the time they spend in close proximity to traffic during their commute. The aim of this study is to investigate the effect of a walker's route choice on their exposure to ultrafine particles (UFP) on the walk to school. During morning commutes over a period of three weeks, exposure to UFP was measured along three routes: two routes were alongside both sides of a busy arterial road with significantly higher levels of traffic on one side compared to the other, and the third route passed through quiet streets (the background route). The results indicate that the mean exposure for the pedestrian walking along the background route was half the exposure experienced on the other two routes. Walkers on the trafficked side were exposed to elevated concentrations (>100,000 pt/cc) 2.5 times longer than the low-trafficked side. However, the duration of the elevated exposure for the background route was close to zero. Public health officials and urban planners may use the results of this study to promote healthier walking routes to schools, especially those planned as part of organized commutes.
Collapse
Affiliation(s)
- Mehrdad Rafiepourgatabi
- School of Population Health, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1023, New Zealand;
- Correspondence:
| | - Alistair Woodward
- School of Population Health, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1023, New Zealand;
| | - Jennifer A. Salmond
- School of Environment, Faculty of Science, The University of Auckland, Auckland 1142, New Zealand;
| | - Kim Natasha Dirks
- Department of Civil and Environmental Engineering, Faculty of Engineering, The University of Auckland, Auckland 1142, New Zealand;
| |
Collapse
|
14
|
Fang J, Song X, Xu H, Wu R, Song J, Xie Y, Xu X, Zeng Y, Wang T, Zhu Y, Yuan N, Jia J, Xu B, Huang W. Associations of ultrafine and fine particles with childhood emergency room visits for respiratory diseases in a megacity. Thorax 2021; 77:391-397. [PMID: 34301742 DOI: 10.1136/thoraxjnl-2021-217017] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 06/26/2021] [Indexed: 11/04/2022]
Abstract
BACKGROUND Ambient fine particulate matter with aerodynamic diameter less than 2.5 µm (PM2.5) has been associated with deteriorated respiratory health, but evidence on particles in smaller sizes and childhood respiratory health has been limited. METHODS We collected time-series data on daily respiratory emergency room visits (ERVs) among children under 14 years old in Beijing, China, during 2015-2017. Concurrently, size-fractioned number concentrations of particles in size ranges of 5-560 nm (PNC5-560) and mass concentrations of PM2.5, black carbon (BC) and nitrogen dioxide (NO2) were measured from a fixed-location monitoring station in the urban area of Beijing. Confounder-adjusted Poisson regression models were used to estimate excessive risks (ERs) of particle size fractions on childhood respiratory ERVs, and positive matrix factorisation models were applied to apportion the sources of PNC5-560. RESULTS Among the 136 925 cases of all-respiratory ERVs, increased risks were associated with IQR increases in PNC25-100 (ER=5.4%, 95% CI 2.4% to 8.6%), PNC100-560 (4.9%, 95% CI 2.5% to 7.3%) and PM2.5 (1.3%, 95% CI 0.1% to 2.5%) at current and 1 prior days (lag0-1). Major sources of PNC5-560 were identified, including nucleation (36.5%), gasoline vehicle emissions (27.9%), diesel vehicle emissions (18.9%) and secondary aerosols (10.6%). Emissions from gasoline and diesel vehicles were found of significant associations with all-respiratory ERVs, with increased ERs of 6.0% (95% CI 2.5% to 9.7%) and 4.4% (95% CI 1.7% to 7.1%) at lag0-1 days, respectively. Exposures to other traffic-related pollutants (BC and NO2) were also associated with increased respiratory ERVs. CONCLUSION Our findings suggest that exposures to higher levels of PNC5-560 from traffic emissions could be attributed to increased childhood respiratory morbidity, which supports traffic emission control priority in urban areas.
Collapse
Affiliation(s)
- Jiakun Fang
- Department of Occupational and Environmental Health, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China
| | - Xiaoming Song
- Department of Occupational and Environmental Health, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China
| | - Hongbing Xu
- Department of Occupational and Environmental Health, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China
| | - Rongshan Wu
- Department of Occupational and Environmental Health, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China.,State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Jing Song
- Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Yunfei Xie
- Department of Occupational and Environmental Health, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China
| | - Xin Xu
- Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Yueping Zeng
- Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Tong Wang
- Department of Occupational and Environmental Health, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China
| | - Yutong Zhu
- Department of Occupational and Environmental Health, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China
| | - Ningman Yuan
- Department of Occupational and Environmental Health, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China
| | - Jinzhu Jia
- Department of Epidemiology and Biostatistics, Peking University School of Public Health, Beijing, China
| | - Baoping Xu
- Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Wei Huang
- Department of Occupational and Environmental Health, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China .,Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Peking University, Beijing, China
| |
Collapse
|
15
|
Li H, Li X, Zheng H, Liu L, Wu Y, Zhou Y, Meng X, Hong J, Cao L, Lu Y, Dong X, Xia M, Ding B, Qian L, Wang L, Zhou W, Gui Y, Kan H, Chen R, Zhang X. Ultrafine particulate air pollution and pediatric emergency-department visits for main respiratory diseases in Shanghai, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 775:145777. [PMID: 33631593 DOI: 10.1016/j.scitotenv.2021.145777] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/31/2021] [Accepted: 02/06/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Few studies have explored the short-term effects of ultrafine particles (UFPs, particles < 0.1 μm) air pollution on the exacerbations of pediatric respiratory diseases. OBJECTIVES We aimed to evaluate short-term association between UFP and emergency-department visits (EDVs) for main pediatric respiratory diseases. METHODS We collected daily data on UFP and pediatric EDVs for main respiratory diseases [asthma, pneumonia, bronchitis and upper respiratory tract infections (URTI)] from 66 hospitals in Shanghai, China from 2016 to 2018. Generalized additive models combined with polynomial distributed lag models were applied to explore the associations between UFP level and pediatric EDVs for respiratory diseases. We fitted two-pollutant models with criteria air pollutants and performed stratified analyses by gender and age. RESULTS UFP was associated with increased EDVs for all respiratory diseases in cumulative lags up to 2 d and 3 d. The greatest risk was found at cumulative lags (0-2 d) for all respiratory diseases. At cumulative lags (0-2 d), an interquartile range increase in concentrations of UFP (1800 particles/cm3) was associated with relative risks of EDVs due to asthma [1.35, 95% confidence interval (CI): 1.14-1.59], pneumonia (1.20, 95% CI: 1.04-1.38), bronchitis (1.17, 95% CI: 1.03-1.33) and URTI (1.14, 95% CI: 1.02-1.28). These associations were almost unchanged when controlling for criteria air pollutants, and there was no threshold below which the associations were not present. There were stronger associations in children aged 0-13 years. CONCLUSIONS Short-term exposure to UFP may independently increase the risks of EDVs for asthma, pneumonia, bronchitis and URTI exacerbations among children.
Collapse
Affiliation(s)
- Hongjin Li
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Xiaoling Li
- Department of Respiratory Medicine, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Hongmei Zheng
- Department of Respiratory Medicine, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Lijuan Liu
- Department of Respiratory Medicine, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Yihan Wu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Yufeng Zhou
- Institute of Pediatrics, Children's Hospital of Fudan University, Shanghai 201102, China; Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Xia Meng
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Jianguo Hong
- Department of Pediatrics, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai 200080, China
| | - Lanfang Cao
- Department of Pediatrics, Renji Hospital, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yanming Lu
- Department of Pediatrics, South Campus, Renji Hospital, Shanghai Jiao Tong University, Shanghai 201112, China
| | - Xiaoyan Dong
- Department of Respiratory Medicine, Children's Hospital of Shanghai Jiaotong University, Shanghai 200040, China
| | - Min Xia
- Department of Pediatrics, Renji Hospital, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Bo Ding
- Department of Pediatrics, South Campus, Renji Hospital, Shanghai Jiao Tong University, Shanghai 201112, China
| | - Liling Qian
- Department of Respiratory Medicine, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Libo Wang
- Department of Respiratory Medicine, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Wenhao Zhou
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Yonghao Gui
- Cardiovascular Center, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai 200032, China.
| | - Xiaobo Zhang
- Department of Respiratory Medicine, Children's Hospital of Fudan University, Shanghai 201102, China.
| |
Collapse
|
16
|
MacCuspie RI, Hill WC, Hall DR, Korchevskiy A, Strode CD, Kennedy AJ, Ballentine ML, Rycroft T, Hull MS. Prevention through design: insights from computational fluid dynamics modeling to predict exposure to ultrafine particles from 3D printing. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2021; 84:458-474. [PMID: 33641630 PMCID: PMC8044021 DOI: 10.1080/15287394.2021.1886210] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Fused filament fabrication (FFF) 3D printers are increasingly used in industrial, academic, military, and residential sectors, yet their emissions and associated user exposure scenarios are not fully described. Characterization of potential user exposure and environmental releases requires robust investigation. During operation, common FFF 3D printers emit varying amounts of ultrafine particles (UFPs) depending upon feedstock material and operation procedures. Volatile organic compounds associated with these emissions exhibit distinct odors; however, the UFP portion is largely imperceptible by humans. This investigation presents straightforward computational modeling as well as experimental validation to provide actionable insights for the proactive design of lower exposure spaces where 3D printers may be used. Specifically, data suggest that forced clean airflows may create lower exposure spaces, and that computational modeling might be employed to predict these spaces with reasonable accuracy to assist with room design. The configuration and positioning of room air ventilation diffusers may be a key factor in identifying lower exposure spaces. A workflow of measuring emissions during a printing process in an ANSI/CAN/UL 2904 environmental chamber was used to provide data for computational fluid dynamics (CFD) modeling of a 6 m2 room. Measurements of the particle concentrations in a Class 1000 clean room of identical geometry were found to pass the Hanna test for agreement between model and experimental data, validating the findings.
Collapse
Affiliation(s)
| | | | - Daniel R. Hall
- Chemistry & Industrial Hygiene, Inc., Wheat Ridge, CO, USA
| | | | | | - Alan J. Kennedy
- Environmental Laboratory, U.S. Army Engineer Research and Development Center, Vicksburg, MS, USA
| | - Mark L. Ballentine
- Environmental Laboratory, U.S. Army Engineer Research and Development Center, Vicksburg, MS, USA
| | - Taylor Rycroft
- Environmental Laboratory, U.S. Army Engineer Research and Development Center, Vicksburg, MS, USA
| | - Matthew S. Hull
- NanoSafe, Inc., Blacksburg, VA, USA
- Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
17
|
Relationship between Indoor High Frequency Size Distribution of Ultrafine Particles and Their Metrics in a University Site. SUSTAINABILITY 2021. [DOI: 10.3390/su13105504] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Exposure to ultrafine particles (UFPs size < 100 nm) in life and work environments can contribute to adverse health effects also in terms of health burden of related diseases over time. The choice of parameters which better characterize UFPs is challenging, due to their physical-chemical properties and their variable size. It is also strictly related to the availability of different instrumental techniques. In the present study we focus on real time high frequency (1 Hz) UFPs particle size distribution (PSD) and their relationship with total particle number concentration (TPNC) and mean particle diameter (Davg) as a contribution characterizing by size the human exposure to UFPs in an indoor site of the University of Rome “Sapienza” (Italy). Further considerations about UFPs contribution to nucleation mode (NM) and accumulation mode (AM) have been highlighted, also in order to investigate the contribution of polycyclic aromatic hydrocarbons (PAHs) surface-adsorbed on indoor air particles (pPAHs). High indoor TPNC values were registered during the rush hours (early morning and mid/late afternoon) according to the outdoor influences originated from anthropogenic activities. AM mainly contribute to the indoor TPNC during working days showing high correlation with pPAHs. These findings may provide useful indications in terms of occupational exposure to UFPs since there are many evidences that indoor exposures to such pollutants may be associated with adverse health effects also in working environments.
Collapse
|
18
|
Zontek TL, Scotto N, Hollenbeck S. Controls for University Fabrication Laboratories—Best Practices for Health and Safety. ACS CHEMICAL HEALTH & SAFETY 2021. [DOI: 10.1021/acs.chas.0c00093] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tracy L. Zontek
- University of Tampa, 401 West Kennedy Boulevard, Tampa, Florida 33606, United States
| | - Nicole Scotto
- University of Tampa, 401 West Kennedy Boulevard, Tampa, Florida 33606, United States
| | - Scott Hollenbeck
- Oak Ridge National Laboratory, Center for Nanophase Materials Sciences, PO Box 2008 MS-6487, Oak Ridge, Tennessee 37831-6487, United States
| |
Collapse
|
19
|
Li H, Xu D, Li H, Wu Y, Cheng Y, Chen Z, Yin G, Wang W, Ge Y, Niu Y, Liu C, Cai J, Kan H, Yu D, Chen R. Exposure to ultrafine particles and oral flora, respiratory function, and biomarkers of inflammation: A panel study in children. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 273:116489. [PMID: 33485003 DOI: 10.1016/j.envpol.2021.116489] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/27/2020] [Accepted: 01/08/2021] [Indexed: 06/12/2023]
Abstract
Particulate matter (PM) is the most important air pollution problem that leads to substantial health effects. However, very few studies focused on the effects of ultrafine particles (UFPs, particles< 0.1 μm) on children respiratory health. We performed a panel study with 3 rounds of follow-up among 65 pupils at the Elementary School Affiliated to Shanghai Normal University in China from November 2018 to June 2019. Real-time concentrations of UFPs were measured in the campus. In each visit, we detected biomarkers in saliva and microflora in buccal mucosa, fractional exhaled nitric oxide (FeNO) and lung function. We applied a linear mixed-effect (LME) model to examine the associations of UFPs and each health outcome. We found increased levels of FeNO and tumor necrosis factor-α (TNF-α) and reduced lung function in association with higher UFP exposure. For each interquartile range increase of UFPs, the largest changes were found in lag 0-72 h for forced vital capacity [-69.02 ml (95% CI: -114.20, -23.84)], TNF-α [13.41 pg/ml (95% CI: 7.08, 19.73)], and FeNO [26.85% (95% CI: 11.84%, 43.88%)]. UFP exposure was associated with reduced diversity in buccal microflora with largest reduction in lag 0-72 h [12.24 (95% CI: 7.76, 16.71) for Ace index; 8.78 (95% CI: 2.96, 14.60) for Chao1 index]. UFP exposure was also associated with increased Streptococcus, Gemella, and decreased Actinomyces. Short-term UFP exposures may impair the respiratory system by inducing inflammation, decreasing lung function and attenuating buccal microbe diversity in children.
Collapse
Affiliation(s)
- Hongjin Li
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Dong Xu
- Xuhui District Center for Disease Prevention and Control, Shanghai, 200237, China
| | - Huichu Li
- Department of Environmental Health, Harvard T.H.Chan School of Public Health, Boston, MA, 02115, USA
| | - Yihan Wu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Yu Cheng
- Xuhui District Center for Disease Prevention and Control, Shanghai, 200237, China
| | - Zhe Chen
- Xuhui District Center for Disease Prevention and Control, Shanghai, 200237, China
| | - Guanjin Yin
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Weidong Wang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Yihui Ge
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Yue Niu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Cong Liu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Jing Cai
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Dedong Yu
- Department of 2nd Dental Center, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China; Shanghai Typhoon Institute/CMA, Shanghai Key Laboratory of Meteorology and Health, Shanghai, 200030, China.
| |
Collapse
|
20
|
Kończak B, Cempa M, Pierzchała Ł, Deska M. Assessment of the ability of roadside vegetation to remove particulate matter from the urban air. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115465. [PMID: 33152599 DOI: 10.1016/j.envpol.2020.115465] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/07/2020] [Accepted: 08/17/2020] [Indexed: 05/06/2023]
Abstract
The development of urbanised areas together with the growing transport infrastructure and traffic volume are the main cause of air quality deterioration due to the increasing concentrations of particulate matter. Dust pollution is a threat to human health. It can cause the development of lung, larynx or circulatory system cancer. Due to the ability to accumulate dust particles on the leaf surface, the contribution of trees in the process of phytoremediation of air pollution has started to be appreciated. An analysis of the elemental composition of particulate matter (PM) stored on the leaves surface was also carried out, which showed high average concentration of: C > O > Si > Fe (above 8wt.%). It was also observed single particles with a high concentration of heavy metals: Ti, Mn, Ba, Zn, Cr, Pb, Sn, Ni and REE (rare earth elements). The major origin of PM are vehicular emissions, soil and re-suspended road dust. This paper presents also a comparison of selected tree, shrub and vine species differing in their ability to accumulate particulate matter. It was experimentally determined the average leaf surface of individual plant species and established the amount of particulate matter with aerodynamic diameter between 10 and 100 μm, 2.5 and 10 μm, and 0.2 and 2.5 μm deposited on the leaf surface and in waxes. Some species of vines (Parthenocissus quinquefolia), shrubs (Forsythia x intermediata) and coniferous trees, such as Betula pendula 'Youngii', Quercus rubra, Cratageus monogyna, Acer pseduoplatanus, Tilia cordata Mill. or Platanus orientalis turned out to be the most efficient in the process of phylloremediation.
Collapse
Affiliation(s)
- B Kończak
- Department of Water Protection, Central Mining Institute, Pl. Gwarków 1, 40-166, Katowice, Poland.
| | - M Cempa
- Department of Environmental Monitoring, Central Mining Institute, Pl. Gwarków 1, 40-166, Katowice, Poland
| | - Ł Pierzchała
- Department of Water Protection, Central Mining Institute, Pl. Gwarków 1, 40-166, Katowice, Poland
| | - M Deska
- Department of Water Protection, Central Mining Institute, Pl. Gwarków 1, 40-166, Katowice, Poland
| |
Collapse
|
21
|
Su X, Sutarlie L, Loh XJ. Sensors and Analytical Technologies for Air Quality: Particulate Matters and Bioaerosols. Chem Asian J 2020; 15:4241-4255. [DOI: 10.1002/asia.202001051] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/31/2020] [Indexed: 01/22/2023]
Affiliation(s)
- Xiaodi Su
- Institute of Materials Research and Engineering Agency for Science, Technology and Research 2 Fusionopolis Way, #08-03 Innovis Singapore 138634 Singapore
- Department of Chemistry National University of Singapore, Block S8, Level 3, 3 Singapore Science Drive 3 Singapore
| | - Laura Sutarlie
- Institute of Materials Research and Engineering Agency for Science, Technology and Research 2 Fusionopolis Way, #08-03 Innovis Singapore 138634 Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering Agency for Science, Technology and Research 2 Fusionopolis Way, #08-03 Innovis Singapore 138634 Singapore
| |
Collapse
|
22
|
Rosser F, Han YY, Forno E, Acosta-Pérez E, Canino G, Celedón JC. Indoor endotoxin, proximity to a major roadway, and severe asthma exacerbations among children in Puerto Rico. Ann Allergy Asthma Immunol 2020; 125:658-664.e2. [PMID: 32911057 DOI: 10.1016/j.anai.2020.09.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/31/2020] [Accepted: 09/02/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Few studies have examined concurrent exposure to household endotoxin and traffic-related air pollution in relation to childhood asthma, yet both factors are associated with asthma outcomes. OBJECTIVE To examine whether proximity to a major roadway (a traffic-related air pollution proxy) modifies the estimated effects of indoor endotoxin on asthma outcomes in children. METHODS Cross-sectional study of 200 children with asthma (ages, 6-14 years) living in Puerto Rico. Residential distance to a major roadway was calculated as the distance from the participant's residential US census block centroid to the nearest major road. The outcomes of interest were severe asthma exacerbations, missed school days for asthma, atopy, lung function, and bronchodilator response (BDR). Logistic, linear, or negative binomial regression was used for the multivariable analysis. RESULTS In the multivariable analysis, there was an interaction between indoor endotoxin and residential distance to a roadway on severe asthma exacerbations (P = .02) and BDR (P = .07). In an analysis stratified by distance to a roadway, each log10-unit increase in endotoxin was associated with 4.21 times increased odds of severe asthma exacerbations among children living within 499 m (the lower 3 quartiles of residential distance) to a road (95% confidence interval, 1.5-12.0). Among subjects living further than 499 m away from a roadway, each log10-unit increase in endotoxin was associated with reduced odds of severe asthma exacerbations (odds ratio, 0.03; 95% confidence interval, 0.001-0.67). Similar but less substantial findings were observed for BDR. CONCLUSION Our findings suggest that residential proximity to a major road modifies the estimated effect of endotoxin on severe asthma exacerbations in children.
Collapse
Affiliation(s)
- Franziska Rosser
- Division of Pediatric Pulmonary Medicine, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Yueh-Ying Han
- Division of Pediatric Pulmonary Medicine, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Erick Forno
- Division of Pediatric Pulmonary Medicine, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Edna Acosta-Pérez
- Department of Pediatrics, Behavioral Sciences Research Institute, University of Puerto Rico, San Juan, Puerto Rico
| | - Glorisa Canino
- Department of Pediatrics, Behavioral Sciences Research Institute, University of Puerto Rico, San Juan, Puerto Rico
| | - Juan C Celedón
- Division of Pediatric Pulmonary Medicine, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania.
| |
Collapse
|
23
|
Madureira J, Slezakova K, Costa C, Pereira MC, Teixeira JP. Assessment of indoor air exposure among newborns and their mothers: Levels and sources of PM 10, PM 2.5 and ultrafine particles at 65 home environments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 264:114746. [PMID: 32417580 DOI: 10.1016/j.envpol.2020.114746] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/11/2020] [Accepted: 05/05/2020] [Indexed: 06/11/2023]
Abstract
Significant efforts have been directed towards addressing the adverse health effects of atmospheric particles, emphasizing the relevance of indoor exposure. Homes represent an indoor environment where human spend the majority of their time. Thus, the objective of this work was to concurrently assess different matrix of indoor particles considering both mass (PM10, PM2.5) and number (N20-1000) concentrations in indoor and outdoor air of homes (n = 65). Real-time measurements (PM10, PM2.5, UFP) were conducted simultaneously during 48 h in dwellings situated in Oporto, Portugal. In 75% of homes, indoor PM2.5 (mean = 53 μg m-3) exceeded limit of 25 μg m-3, for PM10 (mean = 57 μg m-3) 41% of homes demonstrated average levels higher than 50 μg m-3, thus indicating potential risks. Indoor PM10 was mostly (82-99%) composed of PM2.5, both PM were highly correlated (|rs|>0.9655), thus suggesting the similar origin. Indoor PM originated from infiltrations of outdoor emissions; ∼70% of homes exhibited indoor to outdoor (I/O) ratio < 1. On the contrary, UFP indoors (mean = 13.3 × 103 # cm-3) were higher than outdoors (mean = 10.0 × 103 # cm-3). Indoor UFP spatially varied as follows: kitchens > living rooms > bedrooms. UFP indoors were poorly correlated (|rs| = 0.456) with outdoor concentrations, I/O ratios showed that indoor UFP predominantly originated from indoor emission sources (combustions). Therefore, in order to reduce exposure to UFP and protect public health, the primary concerns should be focused on controlling emissions from indoor sources.
Collapse
Affiliation(s)
- Joana Madureira
- Environmental Health Department, National Institute of Health, Rua Alexandre Herculano 321, 4000-055, Porto, Portugal; EPIUnit-Instituto de Saúde Pública, Universidade Do Porto, Rua Das Taipas 135, 4050-600, Porto, Portugal
| | - Klara Slezakova
- LEPABE, Departamento de Engenharia Química, Faculdade de Engenharia, Universidade Do Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal.
| | - Carla Costa
- Environmental Health Department, National Institute of Health, Rua Alexandre Herculano 321, 4000-055, Porto, Portugal; EPIUnit-Instituto de Saúde Pública, Universidade Do Porto, Rua Das Taipas 135, 4050-600, Porto, Portugal
| | - Maria Carmo Pereira
- LEPABE, Departamento de Engenharia Química, Faculdade de Engenharia, Universidade Do Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - João Paulo Teixeira
- Environmental Health Department, National Institute of Health, Rua Alexandre Herculano 321, 4000-055, Porto, Portugal; EPIUnit-Instituto de Saúde Pública, Universidade Do Porto, Rua Das Taipas 135, 4050-600, Porto, Portugal
| |
Collapse
|
24
|
Saha PK, Sengupta S, Adams P, Robinson AL, Presto AA. Spatial Correlation of Ultrafine Particle Number and Fine Particle Mass at Urban Scales: Implications for Health Assessment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:9295-9304. [PMID: 32603094 DOI: 10.1021/acs.est.0c02763] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The epidemiological evidence for ultrafine particles (UFP; particles with diameter <100 nm) causing chronic health effects independent of fine particulate matter (PM2.5) mass is inconclusive. A prevailing view is that urban UFP and PM2.5 mass have different spatial patterns, which should allow epidemiological studies to distinguish their independent, chronic health effects. We investigate intraurban spatial correlation of PM2.5 and UFP exposures in Pittsburgh, Pennsylvania. Measurements and predictions of a land-use regression model indicate moderate spatial correlation between particle number concentrations (PNC; a proxy for UFP) and PM2.5 (R2 of 0.38 and 0.41, respectively). High-resolution (1-km) chemical transport model simulations predict stronger spatial correlation (R2 ≈ 0.8). The finding of moderate to strong spatial correlation was initially surprising because secondary aerosol contributes the vast majority of PM2.5 mass. However, intraurban spatial patterns of both PNC and PM2.5 are driven by local emissions and both pollutants largely behave as passive tracers at time scales of 1 day or less required for transport across most urban environments. Although previous research has shown little temporal correlation between PNC and PM2.5, our finding of moderate to strong spatial correlation may complicate epidemiological analyses to separate the chronic health effects of PNC from PM2.5 mass.
Collapse
Affiliation(s)
- Provat K Saha
- Center for Atmospheric Particle Studies, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
- Department of Mechanical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Shayak Sengupta
- Center for Atmospheric Particle Studies, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
- Department of Engineering and Public Policy, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Peter Adams
- Center for Atmospheric Particle Studies, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
- Department of Civil and Environmental Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
- Department of Engineering and Public Policy, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Allen L Robinson
- Center for Atmospheric Particle Studies, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
- Department of Mechanical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
- Department of Engineering and Public Policy, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Albert A Presto
- Center for Atmospheric Particle Studies, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
- Department of Mechanical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
25
|
Watterson A, Dinan W. Lagging and Flagging: Air Pollution, Shale Gas Exploration and the Interaction of Policy, Science, Ethics and Environmental Justice in England. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E4320. [PMID: 32560334 PMCID: PMC7344855 DOI: 10.3390/ijerph17124320] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/05/2020] [Accepted: 06/11/2020] [Indexed: 01/07/2023]
Abstract
The science on the effects of global climate change and air pollution on morbidity and mortality is clear and debate now centres around the scale and precise contributions of particular pollutants. Sufficient data existed in recent decades to support the adoption of precautionary public health policies relating to fossil fuels including shale exploration. Yet air quality and related public health impacts linked to ethical and environmental justice elements are often marginalized or missing in planning and associated decision making. Industry and government policies and practices, laws and planning regulations lagged well behind the science in the United Kingdom. This paper explores the reasons for this and what shaped some of those policies. Why did shale gas policies in England fail to fully address public health priorities and neglect ethical and environmental justice concerns. To answer this question, an interdisciplinary analysis is needed informed by a theoretical framework of how air pollution and climate change are largely discounted in the complex realpolitik of policy and regulation for shale gas development in England. Sources, including official government, regulatory and planning documents, as well as industry and scientific publications are examined and benchmarked against the science and ethical and environmental justice criteria. Further, our typology illustrates how the process works drawing on an analysis of official policy documents and statements on planning and regulatory oversight of shale exploration in England, and material from industry and their consultants relating to proposed shale oil and gas development. Currently the oil, gas and chemical industries in England continue to dominate and influence energy and feedstock-related policy making to the detriment of ethical and environmental justice decision making with significant consequences for public health.
Collapse
Affiliation(s)
- Andrew Watterson
- Occupational and Environmental Health Research Group, Faculty of Health Sciences, University of Stirling, Stirling FK9 4LA, Scotland, UK
| | - William Dinan
- Communications, Media & Culture, Faculty of Arts & Humanities, University of Stirling, Stirling FK9 4LA, Scotland, UK;
| |
Collapse
|
26
|
Li Q, Yi Q, Tang L, Luo S, Tang Y, Zhang G, Luo Z. Influence of Ultrafine Particles Exposure on Asthma Exacerbation in Children: A Meta-Analysis. Curr Drug Targets 2020; 20:412-420. [PMID: 30156156 DOI: 10.2174/1389450119666180829114252] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 07/27/2018] [Accepted: 08/27/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND Air pollution is a major cause of asthma exacerbation. Most studies have shown that exposure to coarse and fine particulate matter is associated with asthma exacerbation. Ultrafine particles (UFPs, aerodynamic diameter ≤ 0.1 µm) are the smallest airborne particles, which are capable of penetrating deep into the lungs. Toxicological studies have suggested that exposure to UFPs may have serious effects on respiratory health. However, epidemiological evidence on the effects of UFPs exposure on asthma exacerbation in children remains unclear. OBJECTIVE We conducted a meta-analysis to quantitatively assess the effects of exposure to UFPs on childhood asthma exacerbation. METHODS We searched four databases for epidemiological studies published until March 20, 2018. Pooled Odds Ratios (OR) and 95% confidence intervals (95% CIs) per 10000 particles/cm3 were estimated using fixed-effect models. Subgroup analyses, sensitivity analyses, and Begg's and Egger's regression were also performed. RESULTS Eight moderate-high quality studies with 51542 events in total satisfied the inclusion criteria. Exposure to UFPs showed a positive association with childhood asthma exacerbation [OR (95% CI): 1.070 (1.037, 1.104)], increased asthma-associated emergency department visits [OR (95% CI): 1.111 (1.055, 1.170)], and asthma-associated hospital admissions [OR (95% CI): 1.045 (1.004, 1.088)] and had a stronger association with childhood asthma exacerbation at long lags [OR (95% CI):1.060 (1.039, 1.082)]. A low heterogeneity and no publication bias were detected. CONCLUSION Exposure to UFPs may increase the risk of asthma exacerbation and may be strongly associated with childhood asthma exacerbation at long lags.
Collapse
Affiliation(s)
- Qinyuan Li
- Key Laboratory of Pediatrics in Chongqing, Chongqing 401122, China.,Department of Children's Hospital of Chongqing Medical University of Education Key Laboratory of Child Development and Disorders, Chongqing 401122, China
| | - Qian Yi
- Key Laboratory of Pediatrics in Chongqing, Chongqing 401122, China.,Department of Children's Hospital of Chongqing Medical University of Education Key Laboratory of Child Development and Disorders, Chongqing 401122, China
| | - Lin Tang
- Key Laboratory of Pediatrics in Chongqing, Chongqing 401122, China.,Department of Children's Hospital of Chongqing Medical University of Education Key Laboratory of Child Development and Disorders, Chongqing 401122, China
| | - Siying Luo
- Key Laboratory of Pediatrics in Chongqing, Chongqing 401122, China.,Department of Children's Hospital of Chongqing Medical University of Education Key Laboratory of Child Development and Disorders, Chongqing 401122, China
| | - Yuan Tang
- Key Laboratory of Pediatrics in Chongqing, Chongqing 401122, China.,Department of Children's Hospital of Chongqing Medical University of Education Key Laboratory of Child Development and Disorders, Chongqing 401122, China
| | - Guangli Zhang
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing 401122, China
| | - Zhengxiu Luo
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing 401122, China
| |
Collapse
|
27
|
Nanoparticle Emission and Characterization from Pre-Dried Lignite and Bituminous Coal Co-Combustion. ENERGIES 2020. [DOI: 10.3390/en13092373] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Nowadays, the high share of electricity production from renewables drives coal-fired power plants to adopt a more flexible operation scheme and, at the same time, maintain flue gas emissions within respective standards. A 500 kWth pulverized coal furnace was used to study pre-dried lignite combustion or co-combustion as an available option for these plants. Bituminous coal from Czech Republic and pre-dried lignite from Greece were blended for the experiments. Particle emissions measurements with a heated Electrical Low Pressure Impactor (ELPI+) and Scanning Electron Microscopy with Energy Dispersive Spectroscopy (SEM/EDS) analyses were performed. The effect of the pre-dried lignite proportions in the fuel feed and the combustion conditions regarding the combustion air staging were the two parameters selected for this study. Skeletal density values were measured from the cyclone prior to the impactor. Results are depicted with respect to the aerodynamic and Stokes diameter for impactor stages. The presence of pre-dried lignite in the fuel blend lowers the particle matter (PM) PM2.5, PM1 and PM0.1 emissions, thus having a positive impact on ESP’s fractional and overall efficiency. The staged combustion air feed reduces the particle emissions in all cases. Sulfur content follows a pattern of higher concentration values for finer particles.
Collapse
|
28
|
Slezakova K, Pereira MC, Morais S. Ultrafine particles: Levels in ambient air during outdoor sport activities. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 258:113648. [PMID: 31806467 DOI: 10.1016/j.envpol.2019.113648] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 10/28/2019] [Accepted: 11/18/2019] [Indexed: 05/06/2023]
Abstract
Conducting aerobic activity on regular basis is recognised as one of the steps to maintain healthier lifestyle. The positive outcomes though can be outweighed if conducted in polluted atmosphere. Furthermore, the specific inhalation during exercising, which results in bypass of nasal filtration systems and deeper penetration into the respiratory system, might result in higher risks especially to pollutants such as ultrafine particles (UFP), which aerodynamic particle diameter are <100 nm. Thus, this work aims to evaluate UFP levels at sites used for conducting physical sport activities outdoors and to estimate the respective inhalation doses considering various scenarios and different physical activities. Monitoring of UFP was conducted during three weeks (May-June 2015) at four different sites (S1-S4) regularly used to conduct physical exercising. The results showed that UFP highly varied (medians 5.1-20.0 × 103 # cm-3) across the four sites, with the highest UFP obtained when exercising next to trafficked streets whereas S3 and S4 (a garden and city park) exhibited 2-4 times lower UFP. In view of the obtained UFP concentrations, the estimated inhalation doses ranged 1.73 × 108-3.81 × 108 # kg-1 when conducting moderately intense sport activities and 1.93 × 108-5.95 × 108 # kg-1 for highly intense ones. Highly intense activities (i.e. running) led to twice higher UFP exposure; children and youths (5-17 yrs old) experienced 203-267% higher doses. Considering the age- and gender- differences, estimated UFP doses of males were 1.1-2.8 times higher than of females. Finally, UFP inhalation doses estimated for walking (commuting to work and/or schools) were 1.6-7.5 times lower than when conducting sport activities. Thus to protect public health and to promote healthy and physically active lifestyle, strategies to minimize the negative impacts of air pollution should be developed and implemented.
Collapse
Affiliation(s)
- Klara Slezakova
- LEPABE, Departamento de Engenharia Química, Faculdade de Engenharia, Universidade do Porto, R. Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Maria Carmo Pereira
- LEPABE, Departamento de Engenharia Química, Faculdade de Engenharia, Universidade do Porto, R. Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Simone Morais
- REQUIMTE-LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, R. Dr. António Bernardino de Almeida 431, 4200-072 Porto, Portugal.
| |
Collapse
|
29
|
Lavigne E, Donelle J, Hatzopoulou M, Van Ryswyk K, van Donkelaar A, Martin RV, Chen H, Stieb DM, Gasparrini A, Crighton E, Yasseen AS, Burnett RT, Walker M, Weichenthal S. Spatiotemporal Variations in Ambient Ultrafine Particles and the Incidence of Childhood Asthma. Am J Respir Crit Care Med 2020; 199:1487-1495. [PMID: 30785782 DOI: 10.1164/rccm.201810-1976oc] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Rationale: Little is known regarding the impact of ambient ultrafine particles (UFPs; <0.1 μm) on childhood asthma development. Objectives: To examine the association between prenatal and early postnatal life exposure to UFPs and development of childhood asthma. Methods: A total of 160,641 singleton live births occurring in the City of Toronto, Canada between April 1, 2006, and March 31, 2012, were identified from a birth registry. Associations between exposure to ambient air pollutants and childhood asthma incidence (up to age 6) were estimated using random effects Cox proportional hazards models, adjusting for personal- and neighborhood-level covariates. We investigated both single-pollutant and multipollutant models accounting for coexposures to particulate matter ≤2.5 μm in aerodynamic diameter (PM2.5) and NO2. Measurements and Main Results: We identified 27,062 children with incident asthma diagnosis during the follow-up. In adjusted models, second-trimester exposure to UFPs (hazard ratio per interquartile range increase, 1.09; 95% confidence interval, 1.06-1.12) was associated with asthma incidence. In models additionally adjusted for PM2.5 and nitrogen dioxide, UFPs exposure during the second trimester of pregnancy remained positively associated with childhood asthma incidence (hazard ratio per interquartile range increase, 1.05; 95% confidence interval, 1.01-1.09). Conclusions: This is the first study to evaluate the association between perinatal exposure to UFPs and the incidence of childhood asthma. Exposure to UFPs during a critical period of lung development was linked to the onset of asthma in children, independent of PM2.5 and NO2.
Collapse
Affiliation(s)
- Eric Lavigne
- 1 Air Health Science Division and.,2 School of Epidemiology and Public Health
| | - Jessy Donelle
- 3 Institute for Clinical Evaluative Sciences, Ottawa, Ontario, Canada.,4 Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | | | | | - Aaron van Donkelaar
- 6 Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Randall V Martin
- 6 Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia, Canada.,7 Harvard-Smithsonian Centre for Astrophysics, Cambridge, Massachusetts
| | - Hong Chen
- 8 Population Studies Division, Health Canada, Ottawa, Ontario, Canada.,10 Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada.,9 Public Health Ontario, Toronto, Ontario, Canada.,11 Institute for Clinical Evaluative Sciences, Toronto, Ontario, Canada
| | - David M Stieb
- 2 School of Epidemiology and Public Health.,12 Population Studies Division, Health Canada, Vancouver, British Columbia, Canada
| | - Antonio Gasparrini
- 13 Department of Public Health, Environments and Society and.,14 Centre for Statistical Methodology, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Eric Crighton
- 15 Department of Geography, Environment and Geomatics, and.,3 Institute for Clinical Evaluative Sciences, Ottawa, Ontario, Canada
| | - Abdool S Yasseen
- 16 Better Outcomes Registry and Network Ontario, Ottawa, Ontario, Canada
| | - Richard T Burnett
- 8 Population Studies Division, Health Canada, Ottawa, Ontario, Canada
| | - Mark Walker
- 18 Department of Obstetrics and Gynecology, University of Ottawa, Ottawa, Ontario, Canada.,16 Better Outcomes Registry and Network Ontario, Ottawa, Ontario, Canada.,17 Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada; and
| | - Scott Weichenthal
- 1 Air Health Science Division and.,19 Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
30
|
Piedimonte G, Harford TJ. Effects of maternal-fetal transmission of viruses and other environmental agents on lung development. Pediatr Res 2020; 87:420-426. [PMID: 31698410 PMCID: PMC6962526 DOI: 10.1038/s41390-019-0657-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/26/2019] [Accepted: 10/16/2019] [Indexed: 12/12/2022]
Abstract
New information is emerging concerning the influence of environmental factors (e.g., viruses, pollutants, nutrients) on fetal lung development and the prenatal modulation of cellular and molecular effectors essential to the control of airway function, which may shed new light into the pathogenesis of chronic obstructive pulmonary disease in childhood. In particular, recent studies have shown that nanosize biological and inorganic particles (e.g., respiratory viruses and pollutants) are able to spread hematogenously across the placenta from mother to offspring and interfere with lung development during critical "windows of opportunity". Furthermore, the nutritional balance of maternal diet during pregnancy can affect postnatal lung structure and function. Adverse prenatal environmental conditions can predispose to increased airway reactivity by inducing aberrant cholinergic innervation of the respiratory tract, enhanced contractility of the airway smooth muscle, and impaired innate immunity. Such changes can persist long after birth and might provide a plausible explanation to the development of chronic airway dysfunction in children, even in the absence of atopic predisposition. Insight into maternal-fetal interactions will contribute to a better understanding of the pathogenesis of highly prevalent diseases like bronchiolitis and asthma, and may lead to more precise preventative and therapeutic strategies, or new indications for existing ones.
Collapse
Affiliation(s)
| | - Terri J. Harford
- Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| |
Collapse
|
31
|
Nyarku M, Buonanno G, Ofosu F, Jayaratne R, Mazaheri M, Morawska L. Schoolchildren's personal exposure to ultrafine particles in and near Accra, Ghana. ENVIRONMENT INTERNATIONAL 2019; 133:105223. [PMID: 31654915 DOI: 10.1016/j.envint.2019.105223] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 09/04/2019] [Accepted: 09/24/2019] [Indexed: 06/10/2023]
Abstract
Exposure to air pollution is a significant health risk, and children who are exposed to it are likely to have lifelong consequences. Ultrafine particles (UFPs) are emitted by all combustion sources, and can be used as a proxy for the presence of combustion products. The present study, the first of its kind to be conducted in Africa, assessed schoolchildren's exposure to UFPs, and apportioned their daily exposure to seven different microenvironments that they inhabited on a typical school day. The personal exposure of 61 pupils attending three junior high schools was measured for 24 h each using wearable monitors over a period of 10 weeks. Two of the schools were located in suburbs of Accra and the third in Berekuso, a nearby rural community. The results of our study revealed the complex nature of children's UFP exposure and its overall high to very high levels, significantly influenced by the locality (suburb) of residence and the type of activities in which the children were engaged. The mean (±standard error) daily exposure to UFPs (cm-3) was6.9×104(±6.8×103),4.9(±1.0)×104 and 1.6×104±1.9×103for pupils attending the Ashia Mills, Faith Baptist and Berekuso Basic Schools, respectively. Pupils attending the schools in urban Accra received higher exposure than those attending the school in the rural environment of Berekuso. The highest mean microenvironmental exposure was registered in the Home other microenvironment in an urban school and in Bedroom in another urban school and the rural school. The high exposure in Home other was due to pupils conducting trash burning and encountering environmental tobacco smoke, and the high exposure in Bedroom microenvironment was due to the burning of mosquito coils at night to prevent malaria. The principal sources that heightened exposure to UFPs were emissions from cooking (using firewood and charcoal), vehicular traffic and combustion of biomass and trash. All pupils recorded the highest exposure intensity in the Kitchen microenvironment.
Collapse
Affiliation(s)
- Mawutorli Nyarku
- International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Giorgio Buonanno
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Cassino, Italy
| | - Francis Ofosu
- National Nuclear Research Institute, Ghana Atomic Energy Commission, Accra, Ghana
| | - Rohan Jayaratne
- International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Mandana Mazaheri
- International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Lidia Morawska
- International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, QLD 4001, Australia.
| |
Collapse
|
32
|
Ko JW, Kwon HJ, Seo CS, Choi SJ, Shin NR, Kim SH, Kim YH, Kim JC, Kim MS, Shin IS. 4-Hydroxycinnamic acid suppresses airway inflammation and mucus hypersecretion in allergic asthma induced by ovalbumin challenge. Phytother Res 2019; 34:624-633. [PMID: 31724257 DOI: 10.1002/ptr.6553] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 09/17/2019] [Accepted: 11/01/2019] [Indexed: 02/06/2023]
Abstract
In this study, we investigated whether 4-hydroxycinnamic acid (HA) has a palliative effect on asthmatic inflammatory responses using a mouse model of ovalbumin (OVA)-induced allergic asthma. The mice were divided into five groups, each consisting of seven females (normal control phosphate-buffered saline); OVA (OVA sensitization/challenge); dexamethasone (DEX, OVA sensitization/challenge + dexamethasone 3 mg/kg); HA-10 and HA-20 OVA sensitization/challenge + HA 10 and 20 mg/kg, respectively). Mice treated with HA showed a reduction in airway hyperresponsiveness and in the number of inflammatory cells in bronchoalveolar lavage fluid (BALF) compared with asthmatic control. HA treatment also reduced the levels of interleukin (IL)-5 and IL-13 in BALF and of OVA-specific immunoglobulin E in the serum compared with asthmatic control. HA treatment relieved airway inflammation and mucus overproduction caused by OVA exposure. Additionally, HA inhibited the increases in levels of nuclear factor kappa B, inducible nitric oxide synthase, and cyclooxygenase-2 that normally occur after OVA exposure. HA treatment also reduced the activity and protein level of matrix metalloproteinase-9. Taken together, HA effectively suppressed asthmatic airway inflammation and mucus production caused by OVA exposure. These findings indicate that HA has the potential to be used as a therapeutic agent for asthma.
Collapse
Affiliation(s)
- Je-Won Ko
- College of Veterinary Medicine (BK21 Plus Project Team), Chonnam National University, Gwangju, Korea
| | - Hyung-Jun Kwon
- Natural Product Research Center, Korea Institute of Bioscience and Biotechnology, Jeongeup, -si, Korea
| | - Chang-Seob Seo
- K-herb Research Center, Korea Institute of Oriental Medicine, Daejeon, Korea
| | - Seong-Jin Choi
- Jeonbuk Department of Inhalation Research, Korea Institute of Toxicology, Jeongeup, Korea.,Department of Chemical Material Assessment, Korea Environment Corporation, Incheon, Korea
| | - Na-Rae Shin
- College of Veterinary Medicine (BK21 Plus Project Team), Chonnam National University, Gwangju, Korea
| | - Sung-Hwan Kim
- Jeonbuk Department of Inhalation Research, Korea Institute of Toxicology, Jeongeup, Korea.,Human and Environmental Toxicology, University of Science and Technology, Daejeon, Korea
| | - Yong-Hyun Kim
- Jeonbuk Department of Inhalation Research, Korea Institute of Toxicology, Jeongeup, Korea.,Human and Environmental Toxicology, University of Science and Technology, Daejeon, Korea
| | - Jong-Choon Kim
- College of Veterinary Medicine (BK21 Plus Project Team), Chonnam National University, Gwangju, Korea
| | - Min-Seok Kim
- Jeonbuk Department of Inhalation Research, Korea Institute of Toxicology, Jeongeup, Korea
| | - In-Sik Shin
- College of Veterinary Medicine (BK21 Plus Project Team), Chonnam National University, Gwangju, Korea
| |
Collapse
|
33
|
Mazaheri M, Lin W, Clifford S, Yue D, Zhai Y, Xu M, Rizza V, Morawska L. Characteristics of school children's personal exposure to ultrafine particles in Heshan, Pearl River Delta, China - A pilot study. ENVIRONMENT INTERNATIONAL 2019; 132:105134. [PMID: 31479956 DOI: 10.1016/j.envint.2019.105134] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 08/22/2019] [Accepted: 08/26/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND There is a significant lack of scientific knowledge on population exposure to ultrafine particles (UFP) in China to date. This paper quantifies and characterises school children's personal UFP exposure and exposure intensity against their indoor and outdoor activities during a school day (home, school and commuting) in the city of Heshan within the Pearl River Delta (PRD) region, southern China. METHODS Time-series of UFP number concentrations and average size were measured over 24 h for 24 children (9-13 years old), using personal monitors over two weeks in April 2016. Time-activity diaries and a questionnaire on the general home environment and potential sources of particles at home were also collected for each participating child. The analysis included concurrently measured size distributions of ambient UFP at a nearby fixed reference site (Heshan Supersite). RESULTS Hourly average UFP concentrations exhibited three peaks in the morning, midday and evening. Time spent indoors at home was found to have the highest average exposure (1.26 × 104 cm-3 during sleeping) and exposure intensity (2.41). While there is always infiltration of outdoor particles indoors (from nearby traffic and general urban background sources), indoor exposure at home was significantly higher than outdoor exposure. Based on the collected questionnaire data, this was considered to be driven predominantly by adults smoking and the use of mosquito repellent incense during the night. Outdoor activities at school were associated with the lowest average exposure (6.87 × 102 cm-3) and exposure intensity (0.52). CONCLUSION Despite the small sample size, this study characterised, for the first time, children's personal UFP exposure in a city downwind of major pollution sources of the PRD region in China. Particularly, the results highlighted the impact of smoking at home on children's exposure. While the study could not apportion the specific contributions of second hand-smoking and mosquito coil burning, considering the prevalence of smokers among the parents who smoke at home, smoking is a very significant factor. Exposure to second-hand smoke is avoidable, and these findings point out to the crucial role of government authorities and public health educators in engaging with the community on the role of air quality on health, and the severity of the impact of second-hand smoke on children's health.
Collapse
Affiliation(s)
- Mandana Mazaheri
- International Laboratory for Air Quality and Health, Institute for Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia; NHMRC Centre for Air Pollution, Energy and Health Research (CAR), Sydney, Australia; South Western Sydney Clinical School, University of New South Wales, Sydney, Australia
| | - Weiwei Lin
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, Guangzhou, China.
| | - Samuel Clifford
- Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, UK; Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Dingli Yue
- Guangdong Environmental Monitoring Center, State Environmental Protection Key Laboratory of Regional Air Quality Monitoring, Guangzhou 510308, China
| | - Yuhong Zhai
- Guangdong Environmental Monitoring Center, State Environmental Protection Key Laboratory of Regional Air Quality Monitoring, Guangzhou 510308, China
| | - Muwu Xu
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Valeria Rizza
- University of Cassino and Southern Lazio, Cassino, Italy
| | - Lidia Morawska
- International Laboratory for Air Quality and Health, Institute for Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia; NHMRC Centre for Air Pollution, Energy and Health Research (CAR), Sydney, Australia.
| |
Collapse
|
34
|
Paunescu AC, Casas M, Ferrero A, Pañella P, Bougas N, Beydon N, Just J, Lezmi G, Sunyer J, Ballester F, Momas I. Associations of black carbon with lung function and airway inflammation in schoolchildren. ENVIRONMENT INTERNATIONAL 2019; 131:104984. [PMID: 31301585 DOI: 10.1016/j.envint.2019.104984] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 06/20/2019] [Accepted: 06/29/2019] [Indexed: 05/06/2023]
Abstract
BACKGROUND Few studies have investigated the 24-hour respiratory health effects of personal black carbon (BC) and ultrafine particles (UFP) exposure in schoolchildren. The objective of this study was to investigate these associations with the lung function in children 10-years old with and without persistent respiratory symptoms. METHODS We conducted a cross-sectional study in 305 children (147 and 158 with and without persistent respiratory symptoms, respectively) from three European birth-cohorts: PARIS (France) and INMA Sabadell and Valencia (Spain). Personal 24-hour measurements of exposure concentrations to BC and UFP were performed by portable devices, before lung function testing. Forced expiratory volume in 1 s (FEV1), forced vital capacity (FVC) and the fraction of exhaled nitric oxide (FeNO) were determined. RESULTS There was no association of UFP with lung function parameters or FeNO whereas the increase in 24-hour BC exposure concentrations was related to a statistically significant decrease in lung function parameters only among children with persistent respiratory symptoms [-96.8 mL (95% Confidence Interval CI: -184.4 to -9.1 mL) in FVC, and -107.2 mL (95% CI: -177.5 to -36.9 mL) in FEV1 for an inter-quartile range of 1160 ng/m3 exposure increase]. A significant positive association between BC and FeNO was observed only in children with persistent respiratory symptoms with current wheezing and/or medication to improve breathing [FeNO increases with +6.9 ppb (95% CI: 0.7 to 13.1 ppb) with an inter-quartile range BC exposure increase]. CONCLUSION Children suffering from persistent respiratory symptoms appear to be more vulnerable to BC exposure.
Collapse
Affiliation(s)
| | - Maribel Casas
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain; CIBER Epidemiologia y Salud Publica (CIBERESP), Spain
| | - Amparo Ferrero
- CIBER Epidemiologia y Salud Publica (CIBERESP), Spain; Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, Spain
| | - Pau Pañella
- ISGlobal, Barcelona, Spain; CIBER Epidemiologia y Salud Publica (CIBERESP), Spain
| | - Nicolas Bougas
- Inserm U1153-CRESS HERA Team, Faculté de Pharmacie de Paris, Université Paris Descartes, France
| | - Nicole Beydon
- Unité Fonctionnelle de Physiologie - Explorations Fonctionnelles Respiratoires, AP-HP, Hôpital d'Enfants Armand-Trousseau, Paris, France
| | - Jocelyne Just
- Service d'Allergologie Pédiatrique, AP-HP, Hôpital d'Enfants Armand-Trousseau, Paris, France
| | - Guillaume Lezmi
- Service de Pneumologie et d'Allergologie Pédiatriques, AP-HP, Hôpital Necker-Enfants Malades, Université Paris Descartes, Paris, France
| | - Jordi Sunyer
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain; CIBER Epidemiologia y Salud Publica (CIBERESP), Spain
| | - Ferran Ballester
- CIBER Epidemiologia y Salud Publica (CIBERESP), Spain; Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, Spain; School of Nursing, University of Valencia, Spain
| | - Isabelle Momas
- Inserm U1153-CRESS HERA Team, Faculté de Pharmacie de Paris, Université Paris Descartes, France; Ville de Paris, Direction de l'Action Sociale, de l'Enfance et de la Santé, Cellule Cohorte PARIS, Paris, France.
| |
Collapse
|
35
|
Paunescu AC, Gabet S, Bougas N, Beydon N, Amat F, Lezmi G, Momas I. Short-term exposure to ultrafine particles is associated with bronchial inflammation in schoolchildren. Pediatr Allergy Immunol 2019; 30:657-661. [PMID: 30985975 DOI: 10.1111/pai.13064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Stephan Gabet
- Faculté de Pharmacie de Paris, Inserm U1153-CRESS HERA Team, Université Paris Descartes, Paris, France
| | - Nicolas Bougas
- Faculté de Pharmacie de Paris, Inserm U1153-CRESS HERA Team, Université Paris Descartes, Paris, France
| | - Nicole Beydon
- Unité Fonctionnelle de Physiologie - Explorations Fonctionnelles Respiratoires, AP-HP, Hôpital d'Enfants Armand-Trousseau, Paris, France
| | - Flore Amat
- Service d'Allergologie Pédiatrique, AP-HP, Hôpital d'Enfants Armand-Trousseau, Paris, France
| | - Guillaume Lezmi
- Service de Pneumologie et d'Allergologie Pédiatriques, AP-HP, Hôpital Necker-Enfants Malades, Université Paris Descartes, Paris, France
| | - Isabelle Momas
- Faculté de Pharmacie de Paris, Inserm U1153-CRESS HERA Team, Université Paris Descartes, Paris, France.,Ville de Paris, Direction de l'Action Sociale, de l'Enfance et de la Santé, Cellule Cohorte PARIS, Paris, France
| |
Collapse
|
36
|
Smith CJ. Pediatric Thermoregulation: Considerations in the Face of Global Climate Change. Nutrients 2019; 11:E2010. [PMID: 31454933 PMCID: PMC6770410 DOI: 10.3390/nu11092010] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/10/2019] [Accepted: 08/16/2019] [Indexed: 12/16/2022] Open
Abstract
Predicted global climate change, including rising average temperatures, increasing airborne pollution, and ultraviolet radiation exposure, presents multiple environmental stressors contributing to increased morbidity and mortality. Extreme temperatures and more frequent and severe heat events will increase the risk of heat-related illness and associated complications in vulnerable populations, including infants and children. Historically, children have been viewed to possess inferior thermoregulatory capabilities, owing to lower sweat rates and higher core temperature responses compared to adults. Accumulating evidence counters this notion, with limited child-adult differences in thermoregulation evident during mild and moderate heat exposure, with increased risk of heat illness only at environmental extremes. In the context of predicted global climate change, extreme environmental temperatures will be encountered more frequently, placing children at increased risk. Thermoregulatory and overall physiological strain in high temperatures may be further exacerbated by exposure to/presence of physiological and environmental stressors including pollution, ultraviolet radiation, obesity, diabetes, associated comorbidities, and polypharmacy that are more commonly occurring at younger ages. The aim of this review is to revisit fundamental differences in child-adult thermoregulation in the face of these multifaceted climate challenges, address emerging concerns, and emphasize risk reduction strategies for the health and performance of children in the heat.
Collapse
Affiliation(s)
- Caroline J Smith
- Department of Health and Exercise Science, Appalachian State University, Boone, NC 28608, USA.
| |
Collapse
|
37
|
Saha PK, Li HZ, Apte JS, Robinson AL, Presto AA. Urban Ultrafine Particle Exposure Assessment with Land-Use Regression: Influence of Sampling Strategy. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:7326-7336. [PMID: 31150214 DOI: 10.1021/acs.est.9b02086] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Sampling strategies in the collection of ultrafine particle (UFP) data to develop land-use regression (LUR) models can strongly influence the resulting exposure estimates. Here, we systematically examine how much sampling is needed to develop robust and stable UFP LUR models. To address this question, we collected 3-6 weeks of continuous measurements of UFP concentrations at 32 sites in Pittsburgh, Pennsylvania covering a wide range of urban land-use attributes. Through systematic subsampling of this data set, we evaluate the performance of hundreds of LUR models with varying numbers of sampling days and daily sampling durations. Our base LUR model derived from wintertime average concentrations explained about 80% of the spatial variability in the data (adjusted R2 ∼ 0.8). The performance of the LUR models degrades with decreasing number of sampling days and sampling duration per day. For our data set, 1-3 h of sampling per day for 10-15 days provided UFP concentration estimates comparable to models derived from the entire data set. Small numbers of repeated sampling per site (1-3 days) at short duration (∼15-60 min per day) result in poor performance ( R2 < 0.5), similar to previous UFP LUR models. This study provides guidelines for the design of future measurement campaigns and monitoring networks to generate robust UFP LUR models for exposure assessments. Further study in other locations with more sites is needed to evaluate these guidelines over a broader range of conditions.
Collapse
Affiliation(s)
- Provat K Saha
- Center for Atmospheric Particle Studies , Carnegie Mellon University , 5000 Forbes Avenue , Pittsburgh , Pennsylvania 15213 , United States
- Department of Mechanical Engineering , Carnegie Mellon University , 5000 Forbes Avenue , Pittsburgh , Pennsylvania 15213 , United States
| | - Hugh Z Li
- Center for Atmospheric Particle Studies , Carnegie Mellon University , 5000 Forbes Avenue , Pittsburgh , Pennsylvania 15213 , United States
| | - Joshua S Apte
- Department of Civil, Architectural and Environmental Engineering , University of Texas at Austin , Austin , Texas 78712 , United States
| | - Allen L Robinson
- Center for Atmospheric Particle Studies , Carnegie Mellon University , 5000 Forbes Avenue , Pittsburgh , Pennsylvania 15213 , United States
- Department of Mechanical Engineering , Carnegie Mellon University , 5000 Forbes Avenue , Pittsburgh , Pennsylvania 15213 , United States
| | - Albert A Presto
- Center for Atmospheric Particle Studies , Carnegie Mellon University , 5000 Forbes Avenue , Pittsburgh , Pennsylvania 15213 , United States
- Department of Mechanical Engineering , Carnegie Mellon University , 5000 Forbes Avenue , Pittsburgh , Pennsylvania 15213 , United States
| |
Collapse
|
38
|
In Vivo Comparative Study on Acute and Sub-acute Biological Effects Induced by Ultrafine Particles of Different Anthropogenic Sources in BALB/c Mice. Int J Mol Sci 2019; 20:ijms20112805. [PMID: 31181746 PMCID: PMC6600162 DOI: 10.3390/ijms20112805] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 05/31/2019] [Accepted: 06/04/2019] [Indexed: 02/02/2023] Open
Abstract
Exposure to ultrafine particles (UFPs) leads to adverse effects on health caused by an unbalanced ratio between UFPs deposition and clearance efficacy. Since air pollution toxicity is first direct to cardiorespiratory system, we compared the acute and sub-acute effects of diesel exhaust particles (DEP) and biomass burning-derived particles (BB) on bronchoalveolar Lavage Fluid (BALf), lung and heart parenchyma. Markers of cytotoxicity, oxidative stress and inflammation were analysed in male BALB/c mice submitted to single and repeated intra-tracheal instillations of 50 μg UFPs. This in-vivo study showed the activation of inflammatory response (COX-2 and MPO) after exposure to UFPs, both in respiratory and cardiovascular systems. Exposure to DEP results also in pro- and anti-oxidant (HO-1, iNOS, Cyp1b1, Hsp70) protein levels increase, although, stress persist only in cardiac tissue under repeated instillations. Statistical correlations suggest that stress marker variation was probably due to soluble components and/or mediators translocation of from first deposition site. This mechanism, appears more important after repeated instillations, since inflammation and oxidative stress endure only in heart. In summary, chemical composition of UFPs influenced the activation of different responses mediated by their components or pro-inflammatory and pro-oxidative molecules, indicating DEP as the most damaging pollutant in the comparison.
Collapse
|
39
|
Abstract
Traffic is a major source of ultrafine aerosol particles in urban environments. Recent studies show that a significant fraction of traffic-related particles are only few nanometers in diameter. Here, we study the dispersion of this nanocluster aerosol (NCA) in the size range 1.3–4 nm. We measured particle concentrations near a major highway in the Helsinki region of Finland, varying the distance from the highway. Additionally, modelling studies were performed to gain further information on how different transformation processes affect NCA dispersion. The roadside measurements showed that NCA concentrations fell more rapidly than the total particle concentrations, especially during the morning. However, a significant amount of NCA particles remained as the aerosol population evolved. Modelling studies showed that, while dilution is the main process acting on the total particle concentration, deposition also had a significant impact. Condensation and possibly enhanced deposition of NCA were the main plausible processes explaining why dispersion is faster for NCA than for total particle concentration, while the effect of coagulation on all size ranges was small. Based on our results, we conclude that NCA may play a significant role in urban environments, since, rather than being scavenged by larger particles, NCA particles remain in the particle population and grow by condensation.
Collapse
|
40
|
Kwon HB, Yoo SJ, Hong US, Kim K, Han J, Kim MK, Kang DH, Hwang J, Kim YJ. MEMS-based condensation particle growth chip for optically measuring the airborne nanoparticle concentration. LAB ON A CHIP 2019; 19:1471-1483. [PMID: 30896011 DOI: 10.1039/c9lc00035f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
To monitor airborne nanoparticles at a particular point of interest sensitively and accurately, we developed a compact and inexpensive but highly-precise nanoparticle detection system. The proposed system, based on nucleation light-scattering, consists of two components: a microelectromechanical system (MEMS)-based particle growth chip that grows nanoparticles to micro-sized droplets through condensation and a miniaturized optical particle counter (mini-OPC) that detects individual grown droplets using a light-scattering method. To minimize the dimensions and cost of this system, all elements of the particle growth chip were integrated onto a glass slide through simple photolithography and 3D printing. Moreover, a passive cooling technique was adopted, which eliminated the need for an active cooling system. Thus, our system was much more compact, inexpensive, and power-efficient than conventional nanoparticle detection instruments. Through quantitative experiments using Ag nanoparticles in the size range of 5 to 70 nm, it was found that our system could count extremely small nanoparticles (12.4 nm) by growing them to micrometer-sized droplets. Furthermore, our system could provide an accurate number concentration of nanoparticles (the maximum difference was within 15% compared to the reference instrument), regardless of high (3500 N cm-3) and low (0.05 N cm-3) concentration environments. These results indicate that our system can be applied successfully to the monitoring of nanoparticles in various kinds of fields including not only indoor and outdoor environments but also high-tech industries utilizing cleanrooms, air filtration systems, etc.
Collapse
Affiliation(s)
- Hong-Beom Kwon
- School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Saleh Y, Antherieu S, Dusautoir R, Y Alleman L, Sotty J, De Sousa C, Platel A, Perdrix E, Riffault V, Fronval I, Nesslany F, Canivet L, Garçon G, Lo-Guidice JM. Exposure to Atmospheric Ultrafine Particles Induces Severe Lung Inflammatory Response and Tissue Remodeling in Mice. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16071210. [PMID: 30987320 PMCID: PMC6479904 DOI: 10.3390/ijerph16071210] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/28/2019] [Accepted: 04/01/2019] [Indexed: 12/13/2022]
Abstract
Exposure to particulate matter (PM) is leading to various respiratory health outcomes. Compared to coarse and fine particles, less is known about the effects of chronic exposure to ultrafine particles, despite their higher number and reactivity. In the present study, we performed a time-course experiment in mice to better analyze the lung impact of atmospheric ultrafine particles, with regard to the effects induced by fine particles collected on the same site. Trace element and PAH analysis demonstrated the almost similar chemical composition of both particle fractions. Mice were exposed intranasally to FF or UFP according to acute (10, 50 or 100 µg of PM) and repeated (10 µg of PM 3 times a week during 1 or 3 months) exposure protocols. More particle-laden macrophages and even greater chronic inflammation were observed in the UFP-exposed mice lungs. Histological analyses revealed that about 50% of lung tissues were damaged in mice exposed to UFP for three months versus only 35% in FF-exposed mice. These injuries were characterized by alveolar wall thickening, macrophage infiltrations, and cystic lesions. Taken together, these results strongly motivate the update of current regulations regarding ambient PM concentrations to include UFP and limit their emission.
Collapse
Affiliation(s)
- Yara Saleh
- EA4483-IMPECS, Institut Pasteur de Lille, Université de Lille, CHU Lille, 59045 Lille CEDEX, France.
| | - Sébastien Antherieu
- EA4483-IMPECS, Institut Pasteur de Lille, Université de Lille, CHU Lille, 59045 Lille CEDEX, France.
| | - Romain Dusautoir
- EA4483-IMPECS, Institut Pasteur de Lille, Université de Lille, CHU Lille, 59045 Lille CEDEX, France.
| | - Laurent Y Alleman
- Département Sciences de l'Atmosphère et Génie de l'Environnement (SAGE), IMT Lille Douai, Université de Lille, 59000 Lille, France.
| | - Jules Sotty
- EA4483-IMPECS, Institut Pasteur de Lille, Université de Lille, CHU Lille, 59045 Lille CEDEX, France.
| | - Corentin De Sousa
- EA4483-IMPECS, Institut Pasteur de Lille, Université de Lille, CHU Lille, 59045 Lille CEDEX, France.
| | - Anne Platel
- EA4483-IMPECS, Institut Pasteur de Lille, Université de Lille, CHU Lille, 59045 Lille CEDEX, France.
| | - Esperanza Perdrix
- Département Sciences de l'Atmosphère et Génie de l'Environnement (SAGE), IMT Lille Douai, Université de Lille, 59000 Lille, France.
| | - Véronique Riffault
- Département Sciences de l'Atmosphère et Génie de l'Environnement (SAGE), IMT Lille Douai, Université de Lille, 59000 Lille, France.
| | - Isabelle Fronval
- Département Sciences de l'Atmosphère et Génie de l'Environnement (SAGE), IMT Lille Douai, Université de Lille, 59000 Lille, France.
| | - Fabrice Nesslany
- EA4483-IMPECS, Institut Pasteur de Lille, Université de Lille, CHU Lille, 59045 Lille CEDEX, France.
| | - Ludivine Canivet
- EA4483-IMPECS, Institut Pasteur de Lille, Université de Lille, CHU Lille, 59045 Lille CEDEX, France.
| | - Guillaume Garçon
- EA4483-IMPECS, Institut Pasteur de Lille, Université de Lille, CHU Lille, 59045 Lille CEDEX, France.
| | - Jean-Marc Lo-Guidice
- EA4483-IMPECS, Institut Pasteur de Lille, Université de Lille, CHU Lille, 59045 Lille CEDEX, France.
| |
Collapse
|
42
|
Saha PK, Zimmerman N, Malings C, Hauryliuk A, Li Z, Snell L, Subramanian R, Lipsky E, Apte JS, Robinson AL, Presto AA. Quantifying high-resolution spatial variations and local source impacts of urban ultrafine particle concentrations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 655:473-481. [PMID: 30476828 DOI: 10.1016/j.scitotenv.2018.11.197] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 11/13/2018] [Accepted: 11/13/2018] [Indexed: 06/09/2023]
Abstract
To quantify the fine-scale spatial variations and local source impacts of urban ultrafine particle (UFP) concentrations, we conducted 3-6 weeks of continuous measurements of particle number (a proxy for UFP) and other air pollutant (CO, NO2, and PM2.5) concentrations at 32 sites in Pittsburgh, Pennsylvania during the winters of 2017 and 2018. Sites were selected to span a range of urban land use attributes, including urban background, near local and arterial roads, traffic intersections, urban street canyon, near-highway, near large industrial source, and restaurant density. The spatial variations in urban particle number concentrations varied by about a factor of three. Particle number concentrations are 2-3 times more spatially heterogeneous than PM2.5 mass. The observed order of spatial heterogeneity is UFP > NO2 > CO > PM2.5. On average, particle number concentrations near local roads with a cluster of restaurants and near arterial roads are roughly two times higher than the urban background. Particle number concentrations in the urban street canyon, downwind of a major highway, and near large industrial sources are 2-4 times higher than background concentrations. While traffic is known as an important contributor to particle number concentrations, restaurants and industrial emissions also contribute significantly to spatial variations in Pittsburgh. Particle size distribution measurements using a mobile laboratory show that the local spatial variations in particle number concentrations are dictated by concentrations of particles smaller than 50 nm. A large fraction of urban residents (e.g., ~50%) in Pittsburgh live near local sources and are therefore exposed to 50%-300% higher particle number concentrations than urban background location. These locally emitted particles may have greater health effects than background particles.
Collapse
Affiliation(s)
- Provat K Saha
- Center for Atmospheric Particle Studies, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, United States
| | - Naomi Zimmerman
- Center for Atmospheric Particle Studies, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, United States
| | - Carl Malings
- Center for Atmospheric Particle Studies, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, United States
| | - Aliaksei Hauryliuk
- Center for Atmospheric Particle Studies, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, United States
| | - Zhongju Li
- Center for Atmospheric Particle Studies, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, United States
| | - Luke Snell
- Department of Civil, Architectural and Environmental Engineering, University of Texas at Austin, Austin, TX 78712, United States
| | - R Subramanian
- Center for Atmospheric Particle Studies, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, United States
| | - Eric Lipsky
- Center for Atmospheric Particle Studies, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, United States; Department of Mechanical Engineering, Penn State Greater Allegheny, McKeesport, PA 15132, United States
| | - Joshua S Apte
- Department of Civil, Architectural and Environmental Engineering, University of Texas at Austin, Austin, TX 78712, United States
| | - Allen L Robinson
- Center for Atmospheric Particle Studies, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, United States
| | - Albert A Presto
- Center for Atmospheric Particle Studies, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, United States.
| |
Collapse
|
43
|
Slezakova K, de Oliveira Fernandes E, Pereira MDC. Assessment of ultrafine particles in primary schools: Emphasis on different indoor microenvironments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 246:885-895. [PMID: 31159138 DOI: 10.1016/j.envpol.2018.12.073] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/21/2018] [Accepted: 12/22/2018] [Indexed: 05/07/2023]
Abstract
Due to the negative health impacts, significant efforts have been directed towards investigating ultrafine particle (UFP) exposure in various indoor environments. As children spend approximately one third of their time in schools, educatory environments deserve particular attention; however, majority of past research has focused on UFP assessment in classrooms. Thus, this work aims to expand the characterization of UFP in primary schools by considering different indoor and outdoor school microenvironments and estimating inhalation doses for the respective students (6-11yrs old). Real-time UFP measurements were daily conducted (9:00-17:30) in 20 primary schools in Oporto (January-April 2014; October-February 2015) in classrooms, canteens, gyms, libraries, and concurrently outdoors. Overall, UFP concentrations showed large temporal and spatial variations. For classrooms (n = 73), median UFP (1.56 × 103-16.8 × 103 # cm-3) were lower than the corresponding levels in ambient air of schools (1.79 × 103-24.1 × 103 # cm-3). Outdoor emissions contributed to indoor UFP (indoor-to-outdoor ratios I/O of 0.0.30-0.85), but ventilation, room characteristics and its occupancy were identified as important parameters contributing to overall indoor UFP levels. Considering specific indoor school microenvironments, canteens were the microenvironment with the highest UFP levels (5.47 × 103-36.4 × 103 # cm-3), cooking conducted directly on school grounds resulted in significantly elevated UFP in the respective classrooms (p < 0.05); the lowest UFP were found in libraries (4.45 × 103-8.50 × 103 # cm-3) mostly due to the limited occupancies. Although students spend majority of their school time in classrooms (66-71%), classroom exposure was not consistently the predominant contributor to school total UFP inhalation dose (29-75%). Outdoor exposure contributed 23-70% of school dose (depending on UFP levels in ambient levels and/or conducted activities) whereas short periods of lunch break accounted for 8-40%. Therefore, when evaluating UFP exposure in educatory settings other microenvironments beyond classrooms should be an integral part of the study.
Collapse
Affiliation(s)
- Klara Slezakova
- LEPABE, Departamento de Engenharia Química, Faculdade de Engenharia, Universidade do Porto, R. Dr. Roberto Frias, 4200-465, Porto, Portugal
| | | | - Maria do Carmo Pereira
- LEPABE, Departamento de Engenharia Química, Faculdade de Engenharia, Universidade do Porto, R. Dr. Roberto Frias, 4200-465, Porto, Portugal.
| |
Collapse
|
44
|
Leaffer D, Wolfe C, Doroff S, Gute D, Wang G, Ryan P. Wearable Ultrafine Particle and Noise Monitoring Sensors Jointly Measure Personal Co-Exposures in a Pediatric Population. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16030308. [PMID: 30678120 PMCID: PMC6388247 DOI: 10.3390/ijerph16030308] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 12/30/2018] [Accepted: 01/20/2019] [Indexed: 12/26/2022]
Abstract
Epidemiological studies have linked both traffic-related air pollution (TRAP) and noise to adverse health outcomes, including increased blood pressure, myocardial infarction, and respiratory health. The high correlation between these environmental exposures and their measurement challenges have constrained research on how simultaneous exposure to TRAP and traffic noise interact and possibly enhance each other’s effect. The objective of this study was to deploy two novel personal sensors for measuring ultrafine particles (UFP, <100 nm diameter) and noise to concurrently monitor real-time exposures. Personal UFP monitors (PUFP, Enmont, LLC) were paired with NEATVIBEwear™ (Noise Exposure, Activity-Time and Vibration wearable), a personal noise monitoring device developed by the authors (Douglas Leaffer, Steve Doroff). A field-test of PUFP monitors co-deployed with NEATVIBEwear logged UFP, noise and ambient temperature exposure levels at 1-s resolution in an adolescent population in Cincinnati, OH to measure real-time exposures in microenvironments (transit, home, school). Preliminary results show that the concurrent measurement of noise exposures with UFP is feasible in a sample of physically active adolescent participants. Personal measurements of UFP and noise, measured prospectively in future studies, will enable researchers to investigate the independent and/or joint-effects of these health-relevant environmental exposures.
Collapse
Affiliation(s)
- Douglas Leaffer
- Civil & Environmental Engineering, Tufts University, Medford, MA 02155, USA.
| | - Christopher Wolfe
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45267, USA.
| | | | - David Gute
- Civil & Environmental Engineering, Tufts University, Medford, MA 02155, USA.
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA 02111, USA.
| | - Grace Wang
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA 02111, USA.
| | - Patrick Ryan
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45267, USA.
| |
Collapse
|
45
|
Slezakova K, Peixoto C, Carmo Pereira MD, Morais S. (Ultra) Fine particle concentrations and exposure in different indoor and outdoor microenvironments during physical exercising. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2019; 82:591-602. [PMID: 31288676 DOI: 10.1080/15287394.2019.1636494] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Although regular exercise improves overall well-being, increased physical activity results in enhanced breathing which consequently leads to elevated exposure to a variety of air pollutants producing adverse effects. It is well-known that one of these ambient air contaminants is ultrafine particles (UFP). Thus, this study aimed to (1) examine exposure to particle number concentrations (PNC) in size ranging from N20-1000 nm in different sport environments and (2) estimate the respective inhalation doses across varying activity scenarios based upon the World Health Organization recommendations for physical activity. PNC were continuously monitored (TSI P-Trak™ condensation particle counter) outdoors (Out1-Out2) and indoors (Ind1-Ind2; fitness clubs) over 4 weeks. Outdoor PNC (total median 12 563 # cm-3; means of 20 367 # cm-3 at Out1 and 7 122 # cm-3 at Out2) were approximately 1.6-fold higher than indoors (total median 7 653 # cm-3; means of 11 861 # cm-3 at Ind1 and 14 200 # cm-3 at Ind2). The lowest doses were inhaled during holistic group classes (7.91 × 107-1.87 × 108 # per kg body weight) whereas exercising with mixed cardio and strength training led to approximately 1.8-fold higher levels. In order to optimize the health benefit of exercises, environmental characteristics of the locations at which physical activities are conducted need to be considered.
Collapse
Affiliation(s)
- Klara Slezakova
- a LEPABE, Faculdade de Engenharia, Universidade do Porto , Porto , Portugal
- b REQUIMTE-LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto , Porto , Portugal
| | - Cátia Peixoto
- b REQUIMTE-LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto , Porto , Portugal
| | | | - Simone Morais
- b REQUIMTE-LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto , Porto , Portugal
| |
Collapse
|
46
|
Habre R, Zhou H, Eckel SP, Enebish T, Fruin S, Bastain T, Rappaport E, Gilliland F. Short-term effects of airport-associated ultrafine particle exposure on lung function and inflammation in adults with asthma. ENVIRONMENT INTERNATIONAL 2018; 118:48-59. [PMID: 29800768 PMCID: PMC6368339 DOI: 10.1016/j.envint.2018.05.031] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 04/30/2018] [Accepted: 05/15/2018] [Indexed: 05/20/2023]
Abstract
BACKGROUND Exposure to ultrafine particles (UFP, particles with aerodynamic diameter < 100 nm) is associated with reduced lung function and airway inflammation in individuals with asthma. Recently, elevated UFP number concentrations (PN) from aircraft landing and takeoff activity were identified downwind of the Los Angeles International Airport (LAX) but little is known about the health impacts of airport-related UFP exposure. METHODS We conducted a randomized crossover study of 22 non-smoking adults with mild to moderate asthma in Nov-Dec 2014 and May-Jul 2015 to investigate short-term effects of exposure to LAX airport-related UFPs. Participants conducted scripted, mild walking activity on two occasions in public parks inside (exposure) and outside (control) of the high UFP zone. Spirometry, multiple flow exhaled nitric oxide, and circulating inflammatory cytokines were measured before and after exposure. Personal UFP PN and lung deposited surface area (LDSA) and stationary UFP PN, black carbon (BC), particle-bound PAHs (PB-PAH), ozone (O3), carbon dioxide (CO2) and particulate matter (PM2.5) mass were measured. Source apportionment analysis was conducted to distinguish aircraft from roadway traffic related UFP sources. Health models investigated within-subject changes in outcomes as a function of pollutants and source factors. RESULTS A high two-hour walking period average contrast of ~34,000 particles·cm-3 was achieved with mean (std) PN concentrations of 53,342 (25,529) and 19,557 (11,131) particles·cm-3 and mean (std) particle size of 28.7 (9.5) and 33.2 (11.5) at the exposure and control site, respectively. Principal components analysis differentiated airport UFPs (PN), roadway traffic (BC, PB-PAH), PM mass (PM2.5, PM10), and secondary photochemistry (O3) sources. A standard deviation increase in the 'Airport UFPs' factor was significantly associated with IL-6, a circulating marker of inflammation (single-pollutant model: 0.21, 95% CI = 0.08-0.34; multi-pollutant model: 0.18, 0.04-0.32). The 'Traffic' factor was significantly associated with lower Forced Expiratory Volume in 1 s (FEV1) (single-pollutant model: -1.52, -2.28 to -0.77) and elevated sTNFrII (single-pollutant model: 36.47; 6.03-66.91; multi-pollutant model: 64.38; 6.30-122.46). No consistent associations were observed with exhaled nitric oxide. CONCLUSIONS To our knowledge, our study is the first to demonstrate increased acute systemic inflammation following exposure to airport-related UFPs. Health effects associated with roadway traffic exposure were distinct. This study emphasizes the importance of multi-pollutant measurements and modeling techniques to disentangle sources of UFPs contributing to the complex urban air pollution mixture and to evaluate population health risks.
Collapse
Affiliation(s)
- Rima Habre
- Division of Environmental Health, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| | - Hui Zhou
- Division of Environmental Health, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Sandrah P Eckel
- Division of Biostatistics, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Temuulen Enebish
- Division of Environmental Health, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Scott Fruin
- Division of Environmental Health, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Theresa Bastain
- Division of Environmental Health, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Edward Rappaport
- Division of Environmental Health, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Frank Gilliland
- Division of Environmental Health, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
47
|
Mikuška P, Čapka L, Večeřa Z. Aerosol sampler for analysis of fine and ultrafine aerosols. Anal Chim Acta 2018; 1020:123-133. [PMID: 29655423 DOI: 10.1016/j.aca.2018.02.070] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 02/20/2018] [Accepted: 02/23/2018] [Indexed: 11/17/2022]
Abstract
A new aerosol sampler based on the original version of Aerosol Counterflow Two-Jets Unit (ACTJU) is described. The ACTJU collector, connected with a water-based Condensation Growth Unit (CGU) placed upstream of the ACTJU, accomplished the quantitative collection of fine and ultrafine aerosol particles down to a few nanometers in diameter. Condensation of water vapor in the CGU enlarges nanometer sized particles to larger sizes in the supermicrometer range and the formed droplets are then collected into water in the ACTJU collector. The continuous collection of aerosols with the CGU-ACTJU sampler allows for the time-resolved measurement of changes in the concentration of particulate constituents. Coupling of the CGU-ACTJU sampler with on-line detection devices allows in-situ automated analysis of water-soluble aerosol components with high time resolution of 1 s (e.g., FIA detection for nitrite or nitrate) or 1 h (e.g., IC detection with preconcentration step for inorganic anions). Under the optimum conditions (the air flow rate of 10 L min-1 and water flow rate of 1.5 mL min-1), the limit of detection (IC including the preconcentration) for particulate fluoride, chloride, nitrite, nitrate, sulphate and phosphate is 2.53, 6.64, 24.2, 16.8, 0.12 and 5.03 ng m-3, respectively. The apparatus is sufficiently robust for its application at routine monitoring of aerosol composition in real-time.
Collapse
Affiliation(s)
- Pavel Mikuška
- Institute of Analytical Chemistry of the Czech Academy of Sciences, v.v.i., Veveří 97, 602 00 Brno, Czech Republic.
| | - Lukáš Čapka
- Institute of Analytical Chemistry of the Czech Academy of Sciences, v.v.i., Veveří 97, 602 00 Brno, Czech Republic
| | - Zbyněk Večeřa
- Institute of Analytical Chemistry of the Czech Academy of Sciences, v.v.i., Veveří 97, 602 00 Brno, Czech Republic
| |
Collapse
|
48
|
Ghoshdastidar AJ, Hu Z, Nazarenko Y, Ariya PA. Exposure to nanoscale and microscale particulate air pollution prior to mining development near a northern indigenous community in Québec, Canada. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:8976-8988. [PMID: 29332278 DOI: 10.1007/s11356-018-1201-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Accepted: 01/02/2018] [Indexed: 06/07/2023]
Abstract
This study serves as a baseline characterization of indoor and outdoor air quality in a remote northern indigenous community prior to the start of a major nearby mining operation, including measurements of nanoparticles, which has never been performed in this context before. We performed aerosol sample collection and real-time aerosol measurements at six different locations at the Cree First Nation of Waswanipi and the Montviel campsite, located 45 km west of the Cree First Nation of Waswanipi, in the south of the Nord-du-Québec region. High concentrations of airborne nanoparticles (up to 3.98 × 104 ± 8.9 × 103 cm-3 at 64.9-nm midpoint particle diameter) and fine particles (up to 1.99 × 103 ± 1.6 × 102 cm-3 at 0.3-μm midpoint particle diameter) were measured inside a residential home, where we did not find any ventilation or air filtration systems. The most abundant particle sizes by mass were between 0.19 and 0.55 μm. The maximum concentration of analyzed heavy metals was detected at the d50 cut-off particle size of 0.31 μm; and the most abundant heavy metals in the aerosol samples were Al, Ba, Zn, Cu, Hg, and Pb. We concluded that the sources of the relatively high indoor particle concentrations were likely laundry machines and cooking emissions in the absence of a sufficient ventilation system. However, the chemical composition of particles resulting from mining activities is expected to be different from that of the aerosol particles from indoor sources. Installation and proper maintenance of sufficient ventilation and air filtration systems may reduce the total burden of disease from outdoor and indoor air pollution and remediate infiltrated indoor particulate pollution from the mining sources as well.
Collapse
Affiliation(s)
- Avik J Ghoshdastidar
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC, H3A 2K6, Canada
| | - Zhenzhong Hu
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC, H3A 2K6, Canada
| | - Yevgen Nazarenko
- Department of Atmospheric and Oceanic Sciences, McGill University, 805 Sherbrooke Street West, Montreal, QC, H3A 0B9, Canada
| | - Parisa A Ariya
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC, H3A 2K6, Canada.
- Department of Atmospheric and Oceanic Sciences, McGill University, 805 Sherbrooke Street West, Montreal, QC, H3A 0B9, Canada.
| |
Collapse
|
49
|
Ahrberg CD, Lee JM, Chung BG. Poisson statistics-mediated particle/cell counting in microwell arrays. Sci Rep 2018; 8:2438. [PMID: 29403088 PMCID: PMC5799205 DOI: 10.1038/s41598-018-20913-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 01/26/2018] [Indexed: 11/09/2022] Open
Abstract
Precise determination of particle or cell numbers is of importance for a wide array of applications in environmental studies, medical and biological applications, or manufacturing and monitoring applications in industrial production processes. A number of techniques ranging from manual counting to sophisticated equipment (e.g., flow cytometry) are available for this task. However, these methods are either labour intensive, prone to error, or require expensive equipment. Here, we present a fast, simple method for determining the number density of cells or microparticles using a microwell array. We analyze the light transmission of the microwells and categorize the microwells into two groups. As particles/cells contained in a microwell locally reduce the light transmission, these wells displayed a lower average transmission compared to unoccupied microwells. The number density of particles/cells can be calculated by Poisson statistics from the ratio of occupied to unoccupied microwells. Following this approach, the number densities of two different types of microparticles, as well as HeLa and E. Coli cells, ranging over four orders of magnitude were determined. Through the microwell array defined by microfabrication, a simple image recognition algorithm can be used with the formation of aggregates or irregular shaped samples providing no additional difficulty to the microwell recognition. Additionally, this method can be carried out using only simple equipment and data analysis automated by a computer program.
Collapse
Affiliation(s)
- Christian D Ahrberg
- Department of Mechanical Engineering, Sogang University, Seoul, Republic of Korea
| | - Jong Min Lee
- Department of Mechanical Engineering, Sogang University, Seoul, Republic of Korea
| | - Bong Geun Chung
- Department of Mechanical Engineering, Sogang University, Seoul, Republic of Korea.
| |
Collapse
|
50
|
Vecchi R, Bernardoni V, Valentini S, Piazzalunga A, Fermo P, Valli G. Assessment of light extinction at a European polluted urban area during wintertime: Impact of PM 1 composition and sources. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 233:679-689. [PMID: 29121603 DOI: 10.1016/j.envpol.2017.10.059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 10/14/2017] [Accepted: 10/15/2017] [Indexed: 06/07/2023]
Abstract
In this paper, results from receptor modelling performed on a well-characterised PM1 dataset were combined to chemical light extinction data (bext) with the aim of assessing the impact of different PM1 components and sources on light extinction and visibility at a European polluted urban area. It is noteworthy that, at the state of the art, there are still very few papers estimating the impact of different emission sources on light extinction as we present here, although being among the major environmental challenges at many polluted areas. Following the concept of the well-known IMPROVE algorithm, here a tailored site-specific approach (recently developed by our group) was applied to assess chemical light extinction due to PM1 components and major sources. PM1 samples collected separately during daytime and nighttime at the urban area of Milan (Italy) were chemically characterised for elements, major ions, elemental and organic carbon, and levoglucosan. Chemical light extinction was estimated and results showed that at the investigated urban site it is heavily impacted by ammonium nitrate and organic matter. Receptor modelling (i.e. Positive Matrix Factorization, EPA-PMF 5.0) was effective to obtain source apportionment; the most reliable solution was found with 7 factors which were tentatively assigned to nitrates, sulphates, wood burning, traffic, industry, fine dust, and a Pb-rich source. The apportionment of aerosol light extinction (bext,aer) according to resolved sources showed that considering all samples together nitrate contributed at most (on average 41.6%), followed by sulphate, traffic, and wood burning accounting for 18.3%, 17.8% and 12.4%, respectively.
Collapse
Affiliation(s)
- R Vecchi
- Department of Physics, Università degli Studi di Milano and INFN Milan, Italy.
| | - V Bernardoni
- Department of Physics, Università degli Studi di Milano and INFN Milan, Italy
| | - S Valentini
- Department of Physics, Università degli Studi di Milano and INFN Milan, Italy
| | - A Piazzalunga
- Department of Chemistry, Università degli Studi di Milano, Milano, Italy
| | - P Fermo
- Department of Chemistry, Università degli Studi di Milano, Milano, Italy
| | - G Valli
- Department of Physics, Università degli Studi di Milano and INFN Milan, Italy
| |
Collapse
|