1
|
Mis B, Karaca K, Eltem R. In Vitro Antagonistic Activity of Plant Growth Promoting Rhizobacteria Against Aggressive Biotypes of the Green Mold. J Basic Microbiol 2024:e2400422. [PMID: 39363529 DOI: 10.1002/jobm.202400422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/13/2024] [Accepted: 09/17/2024] [Indexed: 10/05/2024]
Abstract
During the cultivation of button mushrooms, the green mold epidemic, which causes a decrease in productivity, is a very important problem. The environmental harm of chemicals used in the control of such epidemics and the demand of consumers for organic products without chemicals have brought environmentally friendly biological control to the fore. Biological control can be achieved by the use of antagonistic microorganisms and their metabolites. In this study, the effectiveness of Bacillus spp. and Pseudomonas spp. for the biological control of the aggressive biotypes of the green mold disease agent Trichoderma aggressivum strains was examined in vitro. For this purpose, the antifungal effects of Bacillus spp. and Pseudomonas spp. against T. aggressivum strains were examined by in vitro dual culture test. Afterward, the antifungal activity of Bacillus spp. metabolites was assessed further using the agar well diffusion method. Then, it was determined whether the bacterial strains showing antifungal activity showed antagonistic activity against A. bisporus. Although none of the Pseudomonas spp. showed antifungal activity against T. aggressivum strains, most of the Bacillus spp. were found to have high activity. It has been concluded that Bacillus sp. Ö-4-82 may be potential biological control agent for button mushroom cultivation.
Collapse
Affiliation(s)
- Baran Mis
- Department of Bioengineering, Graduate School of Natural and Applied Sciences, Ege University, Izmir, Turkey
- Department of Bioengineering, Faculty of Engineering, Ege University, Izmir, Turkey
| | - Kemal Karaca
- Department of Bioengineering, Graduate School of Natural and Applied Sciences, Ege University, Izmir, Turkey
| | - Rengin Eltem
- Department of Bioengineering, Faculty of Engineering, Ege University, Izmir, Turkey
| |
Collapse
|
2
|
Li X, Liu Q, Gao Y, Zang P, Zheng T. Effects of a co-bacterial agent on the growth, disease control, and quality of ginseng based on rhizosphere microbial diversity. BMC PLANT BIOLOGY 2024; 24:647. [PMID: 38977968 PMCID: PMC11229274 DOI: 10.1186/s12870-024-05347-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/26/2024] [Indexed: 07/10/2024]
Abstract
BACKGROUND The ginseng endophyte Paenibacillus polymyxa Pp-7250 (Pp-7250) has multifaceted roles such as preventing ginseng diseases, promoting growth, increasing ginsenoside accumulation, and degrading pesticide residues, however, these effects still have room for improvements. Composite fungicides are an effective means to improve the biocontrol effect of fungicides, but the effect of Pp-7250 in combination with its symbiotic bacteria on ginseng needs to be further investigated, and its mechanism of action has not been elucidated. In this study, a series of experiments was conducted to elucidate the effect of Paenibacillus polymyxa and Bacillus cereus co-bacterial agent on the yield and quality of understory ginseng, and to investigate their mechanism of action. RESULTS The results indicated that P. polymyxa and B. cereus co-bacterial agent (PB) treatment improved ginseng yield, ginsenoside accumulation, disease prevention, and pesticide degradation. The mechanism is that PB treatment increased the abundance of beneficial microorganisms, including Rhodanobacter, Pseudolabrys, Gemmatimonas, Bacillus, Paenibacillus, Cortinarius, Russula, Paecilomyces, and Trechispora, and decreased the abundance of pathogenic microorganisms, including Ellin6067, Acidibacter, Fusarium, Tetracladium, Alternaria, and Ilyonectria in ginseng rhizosphere soil. PB co-bacterial agents enhanced the function of microbial metabolic pathways, biosynthesis of secondary metabolites, biosynthesis of antibiotics, biosynthesis of amino acids, carbon fixation pathways in prokaryotes, DNA replication, and terpenoid backbone biosynthesis, and decreased the function of microbial plant pathogens and animal pathogens. CONCLUSION The combination of P. polymyxa and B. cereus may be a potential biocontrol agent to promote the resistance of ginseng to disease and improve the yield, quality, and pesticide degradation.
Collapse
Affiliation(s)
- Xinyue Li
- College of Chinese Medicinal Materials and Laboratory of Medicinal Plant Cultivation and Breeding of National Administration of Traditional Chinese Medicine, Jilin Agricultural University, Changchun, 130118, China
| | - Qun Liu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing, 2100147, China
| | - Yugang Gao
- College of Chinese Medicinal Materials and Laboratory of Medicinal Plant Cultivation and Breeding of National Administration of Traditional Chinese Medicine, Jilin Agricultural University, Changchun, 130118, China.
| | - Pu Zang
- College of Chinese Medicinal Materials and Laboratory of Medicinal Plant Cultivation and Breeding of National Administration of Traditional Chinese Medicine, Jilin Agricultural University, Changchun, 130118, China
| | - Tong Zheng
- College of Chinese Medicinal Materials and Laboratory of Medicinal Plant Cultivation and Breeding of National Administration of Traditional Chinese Medicine, Jilin Agricultural University, Changchun, 130118, China
| |
Collapse
|
3
|
Alarjani KM, Elshikh MS. Plant growth-promoting and biocontrol traits of endophytic Bacillus licheniformis against soft rot causing Pythium myriotylum in ginger plant. J Basic Microbiol 2024; 64:e2300643. [PMID: 38578065 DOI: 10.1002/jobm.202300643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 02/22/2024] [Accepted: 03/11/2024] [Indexed: 04/06/2024]
Abstract
Bacterial endophytes from plants harbor diverse metabolites that play major roles in biocontrol and improve plant growth. In this study, a total of 12 endophytic bacteria were isolated from the ginger rhizome. The strain K3 was highly effective in preventing mycelia growth of Pythium myriotylum (78.5 ± 1.5% inhibition) in dual culture. The cell-free extract (2.5%) of endophyte K3 inhibited 76.3 ± 4.8% mycelia growth, and 92.4 ± 4.2% inhibition was observed at a 5% sample concentration. The secondary metabolites produced by Bacillus licheniformis K3 showed maximum activity against Pseudomonas syringae (24 ± 1 mm zone of inhibition) and Xanthomonas campestris (28 ± 3 mm zone of inhibition). The strain K3 produced 28.3 ± 1.7 IU mL-1 protease, 28.3 ± 1.7 IU mL-1 cellulase, and 2.04 ± 0.13 IU mL-1 chitinase, respectively. The ginger rhizome treated with K3 in the greenhouse registered 53.8 ± 1.4% soft rot incidence, and the streptomycin-treated pot registered 78.3 ± 1.7% disease incidence. The selected endophyte K3 improved ascorbate peroxidase (1.37 ± 0.009 µmole ASC min-1 mg-1 protein), catalase (8.7 ± 0.28 µmole min-1 mg-1 protein), and phenylalanine ammonia-lyase (26.2 ± 0.99 Umg-1) in the greenhouse. In addition, K3 treatment in the field trial improved rhizome yield (730 ± 18.4 g) after 180 days (p < 0.01). The shoot length was 46 ± 8.3 cm in K3-treated plants, and it was about 31% higher than the control treatment (p < 0.01). The lytic enzyme-producing and growth-promoting endophyte is useful in sustainable crop production through the management of biotic stress.
Collapse
Affiliation(s)
- Khaloud Mohammed Alarjani
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed S Elshikh
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
4
|
Mian S, Machado ACZ, Hoshino RT, Mosela M, Higashi AY, Shimizu GD, Teixeira GM, Nogueira AF, Giacomin RM, Ribeiro LAB, Koltun A, de Assis R, Gonçalves LSA. Complete genome sequence of Bacillus velezensis strain Ag109, a biocontrol agent against plant-parasitic nematodes and Sclerotinia sclerotiorum. BMC Microbiol 2024; 24:194. [PMID: 38849775 PMCID: PMC11157790 DOI: 10.1186/s12866-024-03282-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 03/28/2024] [Indexed: 06/09/2024] Open
Abstract
Soybean is the main oilseed cultivated worldwide. Even though Brazil is the world's largest producer and exporter of soybean, its production is severely limited by biotic factors. Soil borne diseases are the most damaging biotic stressors since they significantly reduce yield and are challenging to manage. In this context, the present study aimed to evaluate the potential of a bacterial strain (Ag109) as a biocontrol agent for different soil pathogens (nematodes and fungi) of soybean. In addition, the genome of Ag109 was wholly sequenced and genes related to secondary metabolite production and plant growth promotion were mined. Ag109 showed nematode control in soybean and controlled 69 and 45% of the populations of Meloidogyne javanica and Pratylenchus brachyurus, respectively. Regarding antifungal activity, these strains showed activity against Macrophomia phaseolina, Rhizoctonia solani, and Sclerotinia sclerotiorum. For S. sclerotiorum, this strain increased the number of healthy plants and root dry mass compared to the control (with inoculation). Based on the average nucleotide identity and digital DNA-DNA hybridization, this strain was identified as Bacillus velezensis. Diverse clusters of specific genes related to secondary metabolite biosynthesis and root growth promotion were identified, highlighting the potential of this strain to be used as a multifunctional microbial inoculant that acts as a biological control agent while promoting plant growth in soybean.
Collapse
Affiliation(s)
- Silas Mian
- Agronomy Department, Universidade Estadual de Londrina, Londrina, Paraná, 86097-570, Brazil
| | | | - Rodrigo Thibes Hoshino
- Agronomy Department, Universidade Estadual de Londrina, Londrina, Paraná, 86097-570, Brazil
| | - Mirela Mosela
- Microbiology Department, Universidade Estadual de Londrina, Londrina, Paraná, 86097-570, Brazil
| | - Allan Yukio Higashi
- Agronomy Department, Universidade Estadual de Londrina, Londrina, Paraná, 86097-570, Brazil
| | - Gabriel Danilo Shimizu
- Agronomy Department, Universidade Estadual de Londrina, Londrina, Paraná, 86097-570, Brazil
| | - Gustavo Manoel Teixeira
- Microbiology Department, Universidade Estadual de Londrina, Londrina, Paraná, 86097-570, Brazil
| | | | - Renata Mussoi Giacomin
- Biology Department, Universidade Estadual Do Centro Oeste, Guarapuava, Paraná, 85015-430, Brazil
| | | | - Alessandra Koltun
- Center for Molecular Biology and Genetic Engineering, UNICAMP, Campinas, São Paulo, 13083-875, Brazil
| | - Rafael de Assis
- Agronomy Department, Universidade Estadual de Londrina, Londrina, Paraná, 86097-570, Brazil
| | | |
Collapse
|
5
|
Ahmed A, He P, He Y, Singh BK, Wu Y, Munir S, He P. Biocontrol of plant pathogens in omics era-with special focus on endophytic bacilli. Crit Rev Biotechnol 2024; 44:562-580. [PMID: 37055183 DOI: 10.1080/07388551.2023.2183379] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 02/06/2023] [Indexed: 04/15/2023]
Abstract
Nearly all plants and their organs are inhabited by endophytic microbes which play a crucial role in plant fitness and stress resilience. Harnessing endophytic services can provide effective solutions for a sustainable increase in agriculture productivity and can be used as a complement or alternative to agrochemicals. Shifting agriculture practices toward the use of nature-based solutions can contribute directly to the global challenges of food security and environmental sustainability. However, microbial inoculants have been used in agriculture for several decades with inconsistent efficacy. Key reasons of this inconsistent efficacy are linked to competition with indigenous soil microflora and inability to colonize plants. Endophytic microbes provide solutions to both of these issues which potentially make them better candidates for microbial inoculants. This article outlines the current advancements in endophytic research with special focus on endophytic bacilli. A better understanding of diverse mechanisms of disease control by bacilli is essential to achieve maximum biocontrol efficacy against multiple phytopathogens. Furthermore, we argue that integration of emerging technologies with strong theoretical frameworks have the potential to revolutionize biocontrol approaches based on endophytic microbes.
Collapse
Affiliation(s)
- Ayesha Ahmed
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Pengfei He
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Yueqiu He
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Brajesh K Singh
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith South, New South Wales, Australia
- Global Centre for Land Based Innovation, Western Sydney University, Penrith South, New South Wales, Australia
| | - Yixin Wu
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Shahzad Munir
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Pengbo He
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, China
| |
Collapse
|
6
|
Wu Y, Tan Y, Peng Q, Xiao Y, Xie J, Li Z, Ding H, Pan H, Wei L. Biocontrol potential of endophytic bacterium Bacillus altitudinis GS-16 against tea anthracnose caused by Colletotrichum gloeosporioides. PeerJ 2024; 12:e16761. [PMID: 38223761 PMCID: PMC10785793 DOI: 10.7717/peerj.16761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/13/2023] [Indexed: 01/16/2024] Open
Abstract
Background As one of the main pathogens causing tea anthracnose disease, Colletotrichum gloeosporioides has brought immeasurable impact on the sustainable development of agriculture. Given the adverse effects of chemical pesticides to the environment and human health, biological control has been a focus of the research on this pathogen. Bacillus altitudinis GS-16, which was isolated from healthy tea leaves, had exhibited strong antagonistic activity against tea anthracnose disease. Methods The antifungal mechanism of the endophytic bacterium GS-16 against C. gloeosporioides 1-F was determined by dual-culture assays, pot experiments, cell membrane permeability, cellular contents, cell metabolism, and the activities of the key defense enzymes. Results We investigated the possible mechanism of strain GS-16 inhibiting 1-F. In vitro, the dual-culture assays revealed that strain GS-16 had significant antagonistic activity (92.03%) against 1-F and broad-spectrum antifungal activity in all tested plant pathogens. In pot experiments, the disease index decreased to 6.12 after treatment with GS-16, indicating that strain GS-16 had a good biocontrol effect against tea anthracnose disease (89.06%). When the PE extract of GS-16 treated mycelial of 1-F, the mycelial appeared deformities, distortions, and swelling by SEM observations. Besides that, compared with the negative control, the contents of nucleic acids, protein, and total soluble sugar of GS-16 group were increased significantly, indicating that the PE extract of GS-16 could cause damage to integrity of 1-F. We also found that GS-16 obviously destroyed cellular metabolism and the normal synthesis of cellular contents. Additionally, treatment with GS-16 induced plant resistance by increasing the activities of the key defense enzymes PPO, SOD, CAT, PAL, and POD. Conclusions We concluded that GS-16 could damage cell permeability and integrity, destroy the normal synthesis of cellular contents, and induce plant resistance, which contributed to its antagonistic activity. These findings indicated that strain GS-16 could be used as an efficient microorganism for tea anthracnose disease caused by C. gloeosporioides.
Collapse
Affiliation(s)
- Youzhen Wu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, Guizhou Province, China
- Guizhou Key Laboratory of Agricultural Biotechnology, Guizhou Academy of Agricultural Sciences, Institute of Biotechnology, Guiyang, Guizhou Province, China
| | - Yumei Tan
- Guizhou Key Laboratory of Agricultural Biotechnology, Guizhou Academy of Agricultural Sciences, Institute of Biotechnology, Guiyang, Guizhou Province, China
| | - Qiuju Peng
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, Guizhou Province, China
| | - Yang Xiao
- Institution of Supervision and Inspection Product Quality of Guizhou Province, Guiyang, Guizhou Province, China
| | - Jiaofu Xie
- Guiyang No. 1 High School, Guiyang, Guizhou Province, China
| | - Zhu Li
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, Guizhou Province, China
- Guizhou Key Laboratory of Agricultural Biotechnology, Guizhou Academy of Agricultural Sciences, Institute of Biotechnology, Guiyang, Guizhou Province, China
| | - Haixia Ding
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, Guizhou Province, China
| | - Hang Pan
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, Guizhou Province, China
| | - Longfeng Wei
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, Guizhou Province, China
| |
Collapse
|
7
|
Gómez-Álvarez EM, Salardi-Jost M, Ahumada GD, Perata P, Dell'Acqua M, Pucciariello C. Seed bacterial microbiota in post-submergence tolerant and sensitive barley genotypes. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP23166. [PMID: 38266278 DOI: 10.1071/fp23166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 01/03/2024] [Indexed: 01/26/2024]
Abstract
Flooding is a predominant abiotic stress for cultivated plants, including barley. This cereal crop shows a large adaptability to different environmental conditions, suggesting the presence of key traits to tolerate adverse conditions. During germination, genetic variations account for dissimilarities in flooding tolerance. However, differences in the seed microbiota may also contribute to tolerance/sensitivity during seedling establishment. This work investigated differences in microbiome among the grains of barley accessions. Two barley phenotypes were compared, each either tolerant or sensitive to a short submergence period followed by a recovery. The study used a metataxonomic analysis based on 16S ribosomal RNA gene sequencing and subsequent functional prediction. Our results support the hypothesis that bacterial microbiota inhabiting the barley seeds are different between sensitive and tolerant barley accessions, which harbour specific bacterial phyla and families. Finally, bacteria detected in tolerant barley accessions show a peculiar functional enrichment that suggests a possible connection with successful germination and seedling establishment.
Collapse
Affiliation(s)
| | | | | | | | - Matteo Dell'Acqua
- Genetics Lab, Center of Plant Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | | |
Collapse
|
8
|
Song J, Wang D, Han D, Zhang DD, Li R, Kong ZQ, Dai XF, Subbarao KV, Chen JY. Characterization of the Endophytic Bacillus subtilis KRS015 Strain for Its Biocontrol Efficacy Against Verticillium dahliae. PHYTOPATHOLOGY 2024; 114:61-72. [PMID: 37530500 DOI: 10.1094/phyto-04-23-0142-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Endophytes play important roles in promoting plant growth and controlling plant diseases. Verticillium wilt is a vascular wilt disease caused by Verticillium dahliae, a widely distributed soilborne pathogen that causes significant economic losses on cotton each year. In this study, an endophyte KRS015, isolated from the seed of the Verticillium wilt-resistant Gossypium hirsutum 'Zhongzhimian No. 2', was identified as Bacillus subtilis by morphological, phylogenetic, physiological, and biochemical analyses. The volatile organic compounds (VOCs) produced by KRS015 or its cell-free fermentation extract had significant antagonistic effects on various pathogenic fungi, including V. dahliae. KRS015 reduced Verticillium wilt index and colonization of V. dahliae in treated cotton seedlings significantly; the disease reduction rate was ∼62%. KRS015 also promoted plant growth, potentially mediated by the growth-related cotton genes GhACL5 and GhCPD-3. The cell-free fermentation extract of KRS015 triggered a hypersensitivity response, including reactive oxygen species (ROS) and expression of resistance-related plant genes. VOCs from KRS015 also inhibited germination of conidia and the mycelial growth of V. dahliae, and were mediated by growth and development-related genes such as VdHapX, VdMcm1, Vdpf, and Vel1. These results suggest that KRS015 is a potential agent for controlling Verticillium wilt and promoting growth of cotton.
Collapse
Affiliation(s)
- Jian Song
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Dan Wang
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Dongfei Han
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Dan-Dan Zhang
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - Ran Li
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - Zhi-Qiang Kong
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - Xiao-Feng Dai
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - Krishna V Subbarao
- Department of Plant Pathology, University of California, Davis, c/o U.S. Agricultural Research Station, Salinas, CA 93905
| | - Jie-Yin Chen
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China
| |
Collapse
|
9
|
Tian Q, Gong Y, Liu S, Ji M, Tang R, Kong D, Xue Z, Wang L, Hu F, Huang L, Qin S. Endophytic bacterial communities in wild rice ( Oryza officinalis) and their plant growth-promoting effects on perennial rice. FRONTIERS IN PLANT SCIENCE 2023; 14:1184489. [PMID: 37645460 PMCID: PMC10461003 DOI: 10.3389/fpls.2023.1184489] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 07/24/2023] [Indexed: 08/31/2023]
Abstract
Endophytic bacterial microbiomes of plants contribute to the physiological health of the host and its adaptive evolution and stress tolerance. Wild rice possesses enriched endophytic bacteria diversity, which is a potential resource for sustainable agriculture. Oryza officinalis is a unique perennial wild rice species in China with rich genetic resources. However, endophytic bacterial communities of this species and their plant growth-promoting (PGP) traits remain largely unknown. In this study, endophytic bacteria in the root, stem, and leaf tissues of O. officinalis were characterized using 16S rRNA gene Illumina sequencing. Culturable bacterial endophytes were also isolated from O. officinalis tissues and characterized for their PGP traits. The microbiome analysis showed a more complex structure and powerful function of the endophytic bacterial community in roots compared with those in other tissue compartments. Each compartment had its specific endophytic bacterial biomarkers, including Desulfomonile and Ruminiclostridium for roots; Lactobacillus, Acinetobacter, Cutibacterium and Dechloromonas for stems; and Stenotrophomonas, Chryseobacterium, Achromobacter and Methylobacterium for leaves. A total of 96 endophytic bacterial strains with PGP traits of phosphate solubilization, potassium release, nitrogen fixation, 1-aminocyclopropane-1-carboxylate (ACC) deaminase secretion, and siderophore or indole-3-acetic acid (IAA) production were isolated from O. officinalis. Among them, 11 strains identified as Enterobacter mori, E. ludwigii, E. cloacae, Bacillus amyloliquefaciens, B. siamensis, Pseudomonas rhodesiae and Kosakonia oryzae were selected for inoculation of perennial rice based on their IAA production traits. These strains showed promising PGP effects on perennial rice seedlings. They promoted plants to form a strong root system, stimulate biomass accumulation, and increase chlorophyll content and nitrogen uptake, which could fulfil the ecologically sustainable cultivation model of perennial rice. These results provide insights into the bacterial endosphere of O. officinalis and its application potential in perennial rice. There is the prospect of mining beneficial endophytic bacteria from wild rice species, which could rewild the microbiome of cultivated rice varieties and promote their growth.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Fengyi Hu
- Key Laboratory of Biology and Germplasm Innovation of Perennial Rice From Ministry of Agriculture and Rural Affairs, School of Agriculture, Yunnan University, Kunming, Yunnan, China
| | - Liyu Huang
- Key Laboratory of Biology and Germplasm Innovation of Perennial Rice From Ministry of Agriculture and Rural Affairs, School of Agriculture, Yunnan University, Kunming, Yunnan, China
| | - Shiwen Qin
- Key Laboratory of Biology and Germplasm Innovation of Perennial Rice From Ministry of Agriculture and Rural Affairs, School of Agriculture, Yunnan University, Kunming, Yunnan, China
| |
Collapse
|
10
|
Wang B, Guo Y, Chen X, Ma J, Lei X, Wang W, Long Y. Assessment of the Biocontrol Potential of Bacillus velezensis WL-23 against Kiwifruit Canker Caused by Pseudomonas syringae pv. actinidiae. Int J Mol Sci 2023; 24:11541. [PMID: 37511299 PMCID: PMC10380555 DOI: 10.3390/ijms241411541] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Kiwifruit canker disease, caused by Pseudomonas syringae pv. actinidiae (Psa), is the main threat to kiwifruit production worldwide. Currently, there is no safe and effective disease prevention method; therefore, biological control technologies are being explored for Psa. In this study, Bacillus velezensis WL-23 was isolated from the leaf microbial community of kiwifruit and used to control kiwifruit cankers. Indoor confrontation experiments showed that both WL-23 and its aseptic filtrate had excellent inhibitory activity against the main fungal and bacterial pathogens of kiwifruit. Changes in OD600, relative conductivity, alkaline proteinase, and nucleic acid content were recorded during Psa growth after treatment with the aseptic filtrate, showing that Psa proliferation was inhibited and the integrity of the cell membrane was destroyed; this was further verified using scanning electron microscopy and transmission electron microscopy. In vivo, WL-23 promoted plant growth, increased plant antioxidant enzyme activity, and reduced canker incidence. Therefore, WL-23 is expected to become a biological control agent due to its great potential to contribute to sustainable agriculture.
Collapse
Affiliation(s)
- Bingce Wang
- Research Center for Engineering Technology of Kiwifruit, College of Agriculture, Guizhou University, Guiyang 550025, China
- Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Yushan Guo
- Research Center for Engineering Technology of Kiwifruit, College of Agriculture, Guizhou University, Guiyang 550025, China
- Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Xuetang Chen
- Research Center for Engineering Technology of Kiwifruit, College of Agriculture, Guizhou University, Guiyang 550025, China
- Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Jiling Ma
- Research Center for Engineering Technology of Kiwifruit, College of Agriculture, Guizhou University, Guiyang 550025, China
- Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Xia Lei
- Research Center for Engineering Technology of Kiwifruit, College of Agriculture, Guizhou University, Guiyang 550025, China
- Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Weizhen Wang
- Research Center for Engineering Technology of Kiwifruit, College of Agriculture, Guizhou University, Guiyang 550025, China
- Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Youhua Long
- Research Center for Engineering Technology of Kiwifruit, College of Agriculture, Guizhou University, Guiyang 550025, China
- Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang 550025, China
| |
Collapse
|
11
|
Kulkova I, Dobrzyński J, Kowalczyk P, Bełżecki G, Kramkowski K. Plant Growth Promotion Using Bacillus cereus. Int J Mol Sci 2023; 24:ijms24119759. [PMID: 37298706 DOI: 10.3390/ijms24119759] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 05/25/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023] Open
Abstract
Plant growth-promoting bacteria (PGPB) appear to be a sensible competitor to conventional fertilization, including mineral fertilizers and chemical plant protection products. Undoubtedly, one of the most interesting bacteria exhibiting plant-stimulating traits is, more widely known as a pathogen, Bacillus cereus. To date, several environmentally safe strains of B. cereus have been isolated and described, including B. cereus WSE01, MEN8, YL6, SA1, ALT1, ERBP, GGBSTD1, AK1, AR156, C1L, and T4S. These strains have been studied under growth chamber, greenhouse, and field conditions and have shown many significant traits, including indole-3-acetic acid (IAA) and aminocyclopropane-1-carboxylic acid (ACC) deaminase production or phosphate solubilization, which allows direct plant growth promotion. It includes an increase in biometrics traits, chemical element content (e.g., N, P, and K), and biologically active substances content or activity, e.g., antioxidant enzymes and total soluble sugar. Hence, B. cereus has supported the growth of plant species such as soybean, maize, rice, and wheat. Importantly, some B. cereus strains can also promote plant growth under abiotic stresses, including drought, salinity, and heavy metal pollution. In addition, B. cereus strains produced extracellular enzymes and antibiotic lipopeptides or triggered induced systemic resistance, which allows indirect stimulation of plant growth. As far as biocontrol is concerned, these PGPB can suppress the development of agriculturally important phytopathogens, including bacterial phytopathogens (e.g., Pseudomonas syringae, Pectobacterium carotovorum, and Ralstonia solanacearum), fungal phytopathogens (e.g., Fusarium oxysporum, Botrytis cinerea, and Rhizoctonia solani), and other phytopathogenic organisms (e.g., Meloidogyne incognita (Nematoda) and Plasmodiophora brassicae (Protozoa)). In conclusion, it should be noted that there are still few studies on the effectiveness of B. cereus under field conditions, particularly, there is a lack of comprehensive analyses comparing the PGP effects of B. cereus and mineral fertilizers, which should be reduced in favor of decreasing the use of mineral fertilizers. It is also worth mentioning that there are still very few studies on the impact of B. cereus on the indigenous microbiota and its persistence after application to soil. Further studies would help to understand the interactions between B. cereus and indigenous microbiota, subsequently contributing to increasing its effectiveness in promoting plant growth.
Collapse
Affiliation(s)
- Iryna Kulkova
- Institute of Technology and Life Sciences-National Research Institute, Falenty, 3 Hrabska Avenue, 05-090 Raszyn, Poland
| | - Jakub Dobrzyński
- Institute of Technology and Life Sciences-National Research Institute, Falenty, 3 Hrabska Avenue, 05-090 Raszyn, Poland
| | - Paweł Kowalczyk
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3 Str., 05-110 Jabłonna, Poland
| | - Grzegorz Bełżecki
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3 Str., 05-110 Jabłonna, Poland
| | - Karol Kramkowski
- Department of Physical Chemistry, Medical University of Białystok, Kilińskiego 1 Str., 15-089 Białystok, Poland
| |
Collapse
|
12
|
Watts D, Palombo EA, Jaimes Castillo A, Zaferanloo B. Endophytes in Agriculture: Potential to Improve Yields and Tolerances of Agricultural Crops. Microorganisms 2023; 11:1276. [PMID: 37317250 DOI: 10.3390/microorganisms11051276] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 06/16/2023] Open
Abstract
Endophytic fungi and bacteria live asymptomatically within plant tissues. In recent decades, research on endophytes has revealed that their significant role in promoting plants as endophytes has been shown to enhance nutrient uptake, stress tolerance, and disease resistance in the host plants, resulting in improved crop yields. Evidence shows that endophytes can provide improved tolerances to salinity, moisture, and drought conditions, highlighting the capacity to farm them in marginal land with the use of endophyte-based strategies. Furthermore, endophytes offer a sustainable alternative to traditional agricultural practices, reducing the need for synthetic fertilizers and pesticides, and in turn reducing the risks associated with chemical treatments. In this review, we summarise the current knowledge on endophytes in agriculture, highlighting their potential as a sustainable solution for improving crop productivity and general plant health. This review outlines key nutrient, environmental, and biotic stressors, providing examples of endophytes mitigating the effects of stress. We also discuss the challenges associated with the use of endophytes in agriculture and the need for further research to fully realise their potential.
Collapse
Affiliation(s)
- Declan Watts
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Enzo A Palombo
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Alex Jaimes Castillo
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Bita Zaferanloo
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| |
Collapse
|
13
|
Yang Y, Zhang Y, Zhang L, Zhou Z, Zhang J, Yang J, Gao X, Chen R, Huang Z, Xu Z, Li L. Isolation of Bacillus siamensis B-612, a Strain That Is Resistant to Rice Blast Disease and an Investigation of the Mechanisms Responsible for Suppressing Rice Blast Fungus. Int J Mol Sci 2023; 24:ijms24108513. [PMID: 37239859 DOI: 10.3390/ijms24108513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/28/2023] [Accepted: 05/07/2023] [Indexed: 05/28/2023] Open
Abstract
Rice yield can be significantly impacted by rice blast disease. In this investigation, an endophytic strain of Bacillus siamensis that exhibited a potent inhibitory effect on the growth of rice blast was isolated from healthy cauliflower leaves. 16S rDNA gene sequence analysis showed that it belongs to the genus Bacillus siamensis. Using the rice OsActin gene as an internal control, we analyzed the expression levels of genes related to the defense response of rice. Analysis showed that the expression levels of genes related to the defense response in rice were significantly upregulated 48 h after treatment. In addition, peroxidase (POD) activity gradually increased after treatment with B-612 fermentation solution and peaked 48 h after inoculation. These findings clearly demonstrated that the 1-butanol crude extract of B-612 retarded and inhibited conidial germination as well as the development of appressorium. The results of field experiments showed that treatment with B-612 fermentation solution and B-612 bacterial solution significantly reduced the severity of the disease before the seedling stage of Lijiangxintuan (LTH) was infected with rice blast. Future studies will focus on exploring whether Bacillus siamensis B-612 produces new lipopeptides and will apply proteomic and transcriptomic approaches to investigate the signaling pathways involved in its antimicrobial effects.
Collapse
Affiliation(s)
- Yanmei Yang
- Crop Ecophysiolgy and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yifan Zhang
- Crop Ecophysiolgy and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Luyi Zhang
- Crop Ecophysiolgy and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhanmei Zhou
- Crop Ecophysiolgy and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Jia Zhang
- Crop Ecophysiolgy and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Jinchang Yang
- Maize Research Institute of Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaoling Gao
- Crop Ecophysiolgy and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Rongjun Chen
- Crop Ecophysiolgy and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhengjian Huang
- Crop Ecophysiolgy and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhengjun Xu
- Crop Ecophysiolgy and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Lihua Li
- Crop Ecophysiolgy and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
14
|
Wang B, Yang B, Peng H, Lu J, Fu P. Genome sequence and comparative analysis of fungal antagonistic strain Bacillus velezensis LJBV19. Folia Microbiol (Praha) 2023; 68:73-86. [PMID: 35913660 DOI: 10.1007/s12223-022-00996-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 07/06/2022] [Indexed: 11/29/2022]
Abstract
Bacillus species as fungal antagonistic agents have been widely used in the agriculture and considered as safe products for the management of plant pathogens. In this study, we reported the whole genome sequence of strain LJBV19 isolated from grapevine rhizosphere soil. Strain LJBV19 was identified as Bacillus velezensis through morphological, physicochemical, molecular analysis and genome comparison. Bacillus velezensis LJBV19 had a significant inhibitory effect on the growth of Magnaporthe oryzae with an inhibition ratio up to 75.55% and showed broad spectrum of activity against fungal phytopathogens. The 3,973,013-bp circular chromosome with an average GC content of 46.5% consisted of 3993 open reading frames (ORFs), and 3308 ORFs were classified into 19 cluster of orthologous groups of proteins (COG) categories. Genes related to cell wall degrading enzymes were predicted by Carbohydrate-Active enZYmes (CAZy) database and validated at the metabolic level, producing 0.53 ± 0.00 U/mL cellulose, 0.14 ± 0.01 U/mL chitinase, and 0.11 ± 0.01 U/mL chitosanase. Genome comparison confirmed the taxonomic position of LJBV19, conserved genomic structure, and genetic homogeneity. Moreover, 13 gene clusters for biosynthesis of secondary metabolites in LJBV19 genome were identified and two unique clusters (clusters 2 and 12) shown to direct an unknown compound were only present in strain LJBV19. In general, our results will provide insights into the antifungal mechanisms of Bacillus velezensis LJBV19 and further application of the strain.
Collapse
Affiliation(s)
- Bo Wang
- Center for Viticulture and Enology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Bohan Yang
- Center for Viticulture and Enology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Hang Peng
- Center for Viticulture and Enology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jiang Lu
- Center for Viticulture and Enology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Peining Fu
- Center for Viticulture and Enology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
15
|
Khan T, Alzahrani OM, Sohail M, Hasan KA, Gulzar S, Rehman AU, Mahmoud SF, Alswat AS, Abdel-Gawad SA. Enzyme Profiling and Identification of Endophytic and Rhizospheric Bacteria Isolated from Arthrocnemum macrostachyum. Microorganisms 2022; 10:microorganisms10112112. [PMID: 36363704 PMCID: PMC9698051 DOI: 10.3390/microorganisms10112112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/18/2022] [Accepted: 10/21/2022] [Indexed: 11/29/2022] Open
Abstract
Endophytic and rhizospheric bacteria isolated from halophytic plants support their host to survive in hyper-saline soil. These bacteria are also known to produce various enzymes with potential industrial applications. In this study, the endophytic and rhizospheric bacteria were isolated from Arthrocnemum macrostachyum collected from Karachi, Pakistan, and their ability to produce various extracellular enzymes was assessed using commercial and natural substrates. In total, 11 bacterial strains were isolated (four endophytic; seven rhizospheric). Bacillus was found to be the most abundant genus (73%), followed by Glutamicibacter (27%). The isolates including Glutamicibacter endophyticus and Bacillus licheniformis are reported for the first time from A. macrostachyum. All of the isolates were capable of producing at least two of the five industrially important hydrolytic enzymes tested, i.e., xylanase, cellulase, amylase, pectinase, and lipase. Lipase production was found to be highest among the isolates, i.e., up to 18 IU mL−1. Although most of the isolates could grow at a wide range of temperatures (4–55 °C), pH (1–11), and salt concentrations (2–12%), under extreme conditions, very little growth was observed and the optimal growth was recorded between 2% and 6% NaCl, 25 and 45 °C, and 7 and 9 pH. Our results suggest that these isolates could be potential producers of enzymes with several biotechnological applications.
Collapse
Affiliation(s)
- Tooba Khan
- Department of Microbiology, University of Karachi, Karachi 75270, Pakistan
| | - Othman M. Alzahrani
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Muhammad Sohail
- Department of Microbiology, University of Karachi, Karachi 75270, Pakistan
- Correspondence:
| | - Khwaja Ali Hasan
- Molecular and Structural Biology Research Unit, Department of Biochemistry, University of Karachi, Karachi 75270, Pakistan
| | - Salman Gulzar
- Muhammad Ajmal Khan Institute of Sustainable Halophyte Utilization, University of Karachi, Karachi 75270, Pakistan
| | - Ammad Ur Rehman
- Department of Microbiology, University of Karachi, Karachi 75270, Pakistan
| | - Samy F. Mahmoud
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Amal S. Alswat
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Shebl Abdallah Abdel-Gawad
- Agriculture Microbiology Department Soil, Water and Environment Institute Agriculture Research Center, Giza 12112, Egypt
| |
Collapse
|
16
|
Zhou J, Xie Y, Liao Y, Li X, Li Y, Li S, Ma X, Lei S, Lin F, Jiang W, He YQ. Characterization of a Bacillus velezensis strain isolated from Bolbostemmatis Rhizoma displaying strong antagonistic activities against a variety of rice pathogens. Front Microbiol 2022; 13:983781. [PMID: 36246295 PMCID: PMC9555170 DOI: 10.3389/fmicb.2022.983781] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/30/2022] [Indexed: 11/25/2022] Open
Abstract
Biological control is an effective measure in the green control of rice diseases. To search for biocontrol agents with broad-spectrum and high efficiency against rice diseases, in this study, a strain of antagonistic bacterium BR-01 with strong inhibitory effect against various rice diseases was isolated from Bolbostemmatis Rhizoma by plate confrontation method. The strain was identified as Bacillus velezensis by morphological observation, physiological and biochemical identification, and molecular characterization by 16S rDNA and gyrB gene sequencing analysis. The confrontation test (dual culture) and Oxford cup assays demonstrated that B. velezensis BR-01 had strong antagonistic effects on Magnaporthe oryzae, Ustilaginoidea virens, Fusarium fujikuroi, Xanthomonas oryzae pv. Oryzicola, and Xanthomonas oryzae pv. oryzae, the major rice pathogens. The genes encoding antimicrobial peptides (ituA, ituD, bmyB, bmyC, srfAA, fenB, fenD, bacA, and bacD) were found in B. velezensis BR-01 by PCR amplification with specific primers. B. velezensis BR-01 could produce protease, cellulase, β-1,3-glucanase, chitinase, indoleacetic acid, siderophore, and 1-aminocyclopropane-1-carboxylate (ACC) deaminase, and might produce three lipopeptide antibiotics, surfactin, iturin, and fengycin based on Liquid chromatography-mass spectrometry (LC-MS) results. Furthermore, the plant assays showed that B. velezensis BR-01 had significant control effects on rice bacterial blight and bacterial leaf streak by pot experiments in greenhouse. In conclusion, B. velezensis BR-01 is a broad-spectrum antagonistic bacterium and has the potential as the ideal biocontrol agent in controlling multiple rice diseases with high efficiency.
Collapse
Affiliation(s)
- Jianping Zhou
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresource and College of Life Science and Technology, Nanning, China
| | - Yunqiao Xie
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi, China
| | - Yuhong Liao
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi, China
| | - Xinyang Li
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi, China
| | - Yiming Li
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresource and College of Life Science and Technology, Nanning, China
| | - Shuping Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresource and College of Life Science and Technology, Nanning, China
| | - Xiuguo Ma
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi, China
| | - Shimin Lei
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi, China
| | - Fei Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Wei Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresource and College of Life Science and Technology, Nanning, China
| | - Yong-Qiang He
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresource and College of Life Science and Technology, Nanning, China
| |
Collapse
|
17
|
Chen Y, Liang J, Zia A, Gao X, Wang Y, Zhang L, Xiang Q, Zhao K, Yu X, Chen Q, Penttinen P, Nyima T, Gu Y. Culture dependent and independent characterization of endophytic bacteria in the seeds of highland barley. Front Microbiol 2022; 13:981158. [PMID: 36246264 PMCID: PMC9555213 DOI: 10.3389/fmicb.2022.981158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/08/2022] [Indexed: 12/02/2022] Open
Abstract
Endophytes in the seeds of plants have shown plant growth promoting (PGP) properties. Highland barley is an economically important crop and a major part of the local diet in the Tibetan Plateau, China, with potential health benefits. We applied culture-dependent and culture-independent methods to study endophytic bacteria in the seeds of eight Highland barley varieties. Based on the seed properties, the variety Ali was clearly separated from the other varieties except the variety CM. Most of the 86 isolates were assigned into genus Bacillus. Approximately half of the isolates showed PGP properties in vitro. Compared to the not-inoculated plants, inoculation with the isolate Bacillus tequilensis LZ-9 resulted in greater length and number of roots, and in bigger aboveground and root weights. Based on the 16S rRNA gene sequencing, the seed microbiome was majorly affiliated with the phylum Proteobacteria and the family Enterobacteriaceae. Overall, the bacterial community compositions in the different varieties were different from each other, yet the between variety differences in community composition seemed relatively small. The differences in community compositions were associated with differences in the total and reducing sugar contents and viscosity of the seeds, thus possibly connected to differences in the osmotic pressure tolerance of the endophytes. The results suggested that the seed endophytes are likely to promote the growth of Highland barley since germination.
Collapse
Affiliation(s)
- Yulan Chen
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
- Liangshan Tobacco Corporation of Sichuan Province, Xichang, China
| | - Jinpeng Liang
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Alina Zia
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Xue Gao
- Institute of Agricultural Resources and Environmental Science, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet, China
| | - Yong Wang
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
- Liangshan Tobacco Corporation of Sichuan Province, Xichang, China
| | - Lingzi Zhang
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Quanju Xiang
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Ke Zhao
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Xiumei Yu
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Qiang Chen
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Petri Penttinen
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
- *Correspondence: Petri Penttinen,
| | - Tashi Nyima
- Institute of Agricultural Resources and Environmental Science, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet, China
- Tashi Nyima,
| | - Yunfu Gu
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
- Yunfu Gu,
| |
Collapse
|
18
|
Effects of Phenotypic Variation on Biological Properties of Endophytic Bacteria Bacillus mojavensis PS17. BIOLOGY 2022; 11:biology11091305. [PMID: 36138785 PMCID: PMC9495571 DOI: 10.3390/biology11091305] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/26/2022] [Accepted: 08/31/2022] [Indexed: 11/25/2022]
Abstract
Simple Summary Microorganisms play an important role in agriculture by protecting and stimulating the growth of plants. The phenotypic activities of microbial biological agents (MBA) can change under different environmental conditions. However, to adapt to these harsh conditions, genetic mutations take place in bacteria that are seen phenotypically, which might not be beneficial or less beneficial to the plants. Some adaptative mechanisms used by microorganisms, especially bacteria, to face these environmental factors lead to the appearance of subpopulations with different morphotypes that may be more adapted to survive in stressful conditions. Moreover, in favorable conditions, these subpopulations may become dominant among the overall bacterial population. In this study, Bacillus mojavensis undergoes phase variation when grown in a minimal medium, in which two colonies, opaque (morphotype I) and translucent (morphotype II), were generated. The characteristics of the generated morphotypes were determined and compared with those of their original strain. Overall, the results obtained showed that the phenotypic characteristics of morphotype I statistically differed from morphotype II. This phenomenon may be one of the factors behind the dissimilarities in the results between the laboratory and field data on the application of MBA. Abstract The use of microorganism-based products in agricultural practices is gaining more interest as an alternative to chemical methods due to their non-toxic bactericidal and fungicidal properties. Various factors influence the efficacy of the microorganisms used as biological control agents in infield conditions as compared to laboratory conditions due to ecological and physiological aspects. Abiotic factors have been shown to trigger phase variations in bacterial microorganisms as a mechanism for adapting to hostile environments. In this study, we investigated the stability of the morphotype and the effects of phenotypic variation on the biological properties of Bacillus mojavensis strain PS17. B. mojavensis PS17 generated two variants (opaque and translucent) that were given the names morphotype I and II, respectively. The partial sequence of the 16S rRNA gene revealed that both morphotypes belonged to B. mojavensis. BOX and ERIC fingerprinting PCR also showed the same DNA profiles in both morphotypes. The characteristics of morphotype I did not differ from the original strain, while morphotype II showed a lower hydrolytic enzyme activity, phytohormone production, and antagonistic ability against phytopathogenic fungi. Both morphotypes demonstrated endophytic ability in tomato plants. A low growth rate of the strain PS17(II) in a minimal medium was observed in comparison to the PS17(I) strain. Furthermore, the capacity for biocontrol of B. mojavensis PS17(II) was not effective in the suppression of root rot disease in the tomato plants caused by Fusarium oxysporum f. sp. radices-lycopersici stain ZUM2407, compared to B. mojavensis PS17(I), whose inhibition was almost 47.9 ± 1.03% effective.
Collapse
|
19
|
Characterization of an Endophytic Antagonistic Bacterial Strain Bacillus halotolerans LBG-1-13 with Multiple Plant Growth-Promoting Traits, Stress Tolerance, and Its Effects on Lily Growth. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5960004. [PMID: 36060140 PMCID: PMC9436562 DOI: 10.1155/2022/5960004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 07/20/2022] [Accepted: 08/09/2022] [Indexed: 11/24/2022]
Abstract
Microbial inoculants are an important tool for increasing arable land productivity and decreasing mineral fertilizer application. This study was aimed at isolating and identifying endophytic antagonistic bacteria from lily (Lilium davidii var. unicolor) roots grown in Northwestern China and at evaluating their antifungal activity and plant growth-promoting characteristics. For this purpose, endophytic bacteria were isolated from plant roots, and plant growth-promoting strains were identified. One bacterial strain, isolated from the root part, was identified as Bacillus halotolerans based on 16S rRNA gene sequence analysis and was designated as LBG-1-13. The strain showed antagonistic activities against important plant pathogens of lily including Botrytis cinerea, Botryosphaeria dothidea, and Fusarium oxysporum. The highest percentage of growth inhibition, i.e., 71.65 ± 2.39%, was observed for LBG-1-13 against Botryosphaeria dothidea followed by 68.33 ± 4.70% and 48.22 ± 4.11% against Botrytis cinerea and Fusarium oxysporum, respectively. Meanwhile, the isolated strain also showed plant growth-promoting traits such as the production of indole-3-acetic acid (IAA), siderophore, ACC deaminase, and phosphate solubilization activity. The strain showed ACC deaminase activity and was able to cleave 58.41 ± 2.62 nmol α-ketobutyrate (mg protein)−1 min−1. The strain exhibited tolerance to salt and drought stress in an in vitro experiment. The strain LBG-1-13 was able to grow in the presence of 10% NaCl and 20% polyethylene glycol (PEG) in the growth medium. Inoculation of Lilium varieties, Tresor and Bright Diamond, with LBG-1-13 enhanced plant growth under greenhouse and field conditions, respectively. All these results demonstrated that Bacillus halotolerans LBG-1-13 could be utilized as a good candidate in the biocontrol of lily disease and plant growth promotion in sustainable agriculture.
Collapse
|
20
|
Nøhr-Meldgaard K, Struve C, Ingmer H, Agersø Y. Intrinsic tet(L) sub-class in Bacillus velezensis and Bacillus amyloliquefaciens is associated with a reduced susceptibility toward tetracycline. Front Microbiol 2022; 13:966016. [PMID: 35992677 PMCID: PMC9387203 DOI: 10.3389/fmicb.2022.966016] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Annotations of non-pathogenic bacterial genomes commonly reveal putative antibiotic resistance genes and the potential risks associated with such genes is challenging to assess. We have examined a putative tetracycline tet(L) gene (conferring low level tetracycline resistance), present in the majority of all publicly available genomes of the industrially important operational group Bacillus amyloliquefaciens including the species B. amyloliquefaciens, Bacillus siamensis and Bacillus velezensis. The aim was to examine the risk of transfer of the putative tet(L) in operational group B. amyloliquefaciens through phylogenetic and genomic position analysis. These analyses furthermore included tet(L) genes encoded by transferable plasmids and other Gram-positive and -negative bacteria, including Bacillus subtilis. Through phylogenetic analysis, we could group chromosomally and plasmid-encoded tet(L) genes into four phylogenetic clades. The chromosomally encoded putative tet(L) from operational group B. amyloliquefaciens formed a separate phylogenetic clade; was positioned in the same genomic region in the three species; was not flanked by mobile genetic elements and was not found in any other bacterial species suggesting that the gene has been present in a common ancestor before species differentiation and is intrinsic. Therefore the gene is not considered a safety concern, and the risk of transfer to and expression of resistance in other non-related species is considered negligible. We suggest a subgrouping of the tet(L) class into four groups (tet(L)1.1, tet(L)1.2 and tet(L)2.1, tet(L)2.2), corresponding with the phylogenetic grouping and tet(L) from operational group B. amyloliquefaciens referred to as tet(L)2.2. Phylogenetic analysis is a useful tool to correctly differentiate between intrinsic and acquired antibiotic resistance genes.
Collapse
Affiliation(s)
- Katrine Nøhr-Meldgaard
- Chr. Hansen A/S, Hørsholm, Denmark
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Hanne Ingmer
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Yvonne Agersø
- Chr. Hansen A/S, Hørsholm, Denmark
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
- *Correspondence: Yvonne Agersø,
| |
Collapse
|
21
|
Kontomina E, Garefalaki V, Fylaktakidou KC, Evmorfidou D, Eleftheraki A, Avramidou M, Udoh K, Panopoulou M, Felföldi T, Márialigeti K, Fakis G, Boukouvala S. A taxonomically representative strain collection to explore xenobiotic and secondary metabolism in bacteria. PLoS One 2022; 17:e0271125. [PMID: 35834592 PMCID: PMC9282458 DOI: 10.1371/journal.pone.0271125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 06/23/2022] [Indexed: 11/20/2022] Open
Abstract
Bacteria employ secondary metabolism to combat competitors, and xenobiotic metabolism to survive their chemical environment. This project has aimed to introduce a bacterial collection enabling comprehensive comparative investigations of those functions. The collection comprises 120 strains (Proteobacteria, Actinobacteria and Firmicutes), and was compiled on the basis of the broad taxonomic range of isolates and their postulated biosynthetic and/or xenobiotic detoxification capabilities. The utility of the collection was demonstrated in two ways: first, by performing 5144 co-cultures, recording inhibition between isolates and employing bioinformatics to predict biosynthetic gene clusters in sequenced genomes of species; second, by screening for xenobiotic sensitivity of isolates against 2-benzoxazolinone and 2-aminophenol. The co-culture medium of Bacillus siamensis D9 and Lysinibacillus sphaericus DSM 28T was further analysed for possible antimicrobial compounds, using liquid chromatography-mass spectrometry (LC-MS), and guided by computational predictions and the literature. Finally, LC-MS analysis demonstrated N-acetylation of 3,4-dichloroaniline (a toxic pesticide residue of concern) by the actinobacterium Tsukamurella paurometabola DSM 20162T which is highly tolerant of the xenobiotic. Microbial collections enable "pipeline" comparative screening of strains: on the one hand, bacterial co-culture is a promising approach for antibiotic discovery; on the other hand, bioremediation is effective in combating pollution, but requires knowledge of microbial xenobiotic metabolism. The presented outcomes are anticipated to pave the way for studies that may identify bacterial strains and/or metabolites of merit in biotechnological applications.
Collapse
Affiliation(s)
- Evanthia Kontomina
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Vasiliki Garefalaki
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | | | - Dorothea Evmorfidou
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
- Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Athina Eleftheraki
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Marina Avramidou
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Karen Udoh
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Maria Panopoulou
- Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Tamás Felföldi
- Department of Microbiology, ELTE Eötvös Loránd University, Budapest, Hungary
- Institute of Aquatic Ecology, Centre for Ecological Research, Budapest, Hungary
| | - Károly Márialigeti
- Department of Microbiology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Giannoulis Fakis
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Sotiria Boukouvala
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
- * E-mail:
| |
Collapse
|
22
|
Khan MS, Gao J, Zhang M, Xue J, Zhang X. Pseudomonas aeruginosa Ld-08 isolated from Lilium davidii exhibits antifungal and growth-promoting properties. PLoS One 2022; 17:e0269640. [PMID: 35714148 PMCID: PMC9205524 DOI: 10.1371/journal.pone.0269640] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 05/24/2022] [Indexed: 12/24/2022] Open
Abstract
A plant growth-promoting and antifungal endophytic bacteria designated as Ld-08 isolated from the bulbs of Lilium davidii was identified as Pseudomonas aeruginosa based on phenotypic, microscopic, and 16S rRNA gene sequence analysis. Ld-08 exhibited antifungal effects against Fusarium oxysporum, Botrytis cinerea, Botryosphaeria dothidea, and Fusarium fujikuroi. Ld-08 showed the highest growth inhibition, i.e., 83.82±4.76% against B. dothidea followed by 74.12±3.87%, 67.56±3.35%, and 63.67±3.39% against F. fujikuroi, B. cinerea, and F. oxysporum, respectively. The ethyl acetate fraction of Ld-08 revealed the presence of several bioactive secondary metabolites. Prominent compounds were quinolones; 3,9-dimethoxypterocarpan; cascaroside B; dehydroabietylamine; epiandrosterone; nocodazole; oxolinic acid; pyochelin; rhodotulic acid; 9,12-octadecadienoic acid; di-peptides; tri-peptides; ursodiol, and venlafaxine. The strain Ld-08 showed organic acids, ACC deaminase, phosphate solubilization, IAA, and siderophore. The sterilized bulbs of a Lilium variety, inoculated with Ld-08, were further studied for plant growth-promoting traits. The inoculated plants showed improved growth than the control plants. Importantly, some growth parameters such as plant height, leaf length, bulb weight, and root length were significantly (P ≤0.05) increased in the inoculated plants than in the control un-inoculated plants. Further investigations are required to explore the potential of this strain to be used as a plant growth-promoting and biocontrol agent in sustainable agriculture.
Collapse
Affiliation(s)
- Mohammad Sayyar Khan
- Microbiology Division, Institute of Biotechnology and Genetic Engineering (IBGE), The University of Agriculture, Peshawar, Khyber Pakhtunkhwa, Pakistan
- Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Junlian Gao
- Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Mingfang Zhang
- Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jing Xue
- Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Xiuhai Zhang
- Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
23
|
Jardim ACM, de Oliveira JE, Alves LDM, Gutuzzo GO, de Oliveira ALM, Rodrigues EP. Diversity and antimicrobial potential of the culturable rhizobacteria from medicinal plant Baccharis trimera Less D.C. Braz J Microbiol 2022; 53:1409-1424. [PMID: 35499750 PMCID: PMC9433639 DOI: 10.1007/s42770-022-00759-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 04/11/2022] [Indexed: 11/30/2022] Open
Abstract
Plant microbiota is usually enriched with bacteria producers of secondary metabolites and represents a valuable source of novel species and compounds. Here, we analyzed the diversity of culturable root-associated bacteria of the medicinal native plant Baccharis trimera (Carqueja) and screened promising isolates for their antimicrobial properties. The rhizobacteria were isolated from the endosphere and rhizosphere of B. trimera from Ponta Grossa and Ortigueira localities and identified by sequencing and restriction analysis of the 16S rDNA. The most promising isolates were screened for antifungal activities and the production of siderophores and biosurfactants. B. trimera presented a diverse community of rhizobacteria, constituted of 26 families and 41 genera, with a predominance of Streptomyces and Bacillus genera, followed by Paenibacillus, Staphylococcus, Methylobacterium, Rhizobium, Tardiphaga, Paraburkholderia, Burkholderia, and Pseudomonas. The more abundant genera were represented by different species, showing a high diversity of the microbiota associated to B. trimera. Some of these isolates potentially represent novel species and deserve further examination. The communities were influenced by both the edaphic properties of the sampling locations and the plant niches. Approximately one-third of the rhizobacteria exhibited antifungal activity against Sclerotinia sclerotiorum and Colletotrichum gloeosporioides, and a high proportion of isolates produced siderophores (25%) and biosurfactants (42%). The most promising isolates were members of the Streptomyces genus. The survey of B. trimera returned a diverse community of culturable rhizobacteria and identified potential candidates for the development of plant growth-promoting and protection products, reinforcing the need for more comprehensive investigations of the microbiota of Brazilian native plants and habitats.
Collapse
Affiliation(s)
- Ana Camila Munis Jardim
- Laboratório de Genética de Microrganismos, Departamento de Biologia Geral, Universidade Estadual de Londrina, PR-445, Km 380, Campus Universitário, PO Box 6001, Londrina, Paraná, CP 86.051-970, Brazil
| | - Jéssica Ellen de Oliveira
- Laboratório de Genética de Microrganismos, Departamento de Biologia Geral, Universidade Estadual de Londrina, PR-445, Km 380, Campus Universitário, PO Box 6001, Londrina, Paraná, CP 86.051-970, Brazil
| | - Luana de Moura Alves
- Laboratório de Genética de Microrganismos, Departamento de Biologia Geral, Universidade Estadual de Londrina, PR-445, Km 380, Campus Universitário, PO Box 6001, Londrina, Paraná, CP 86.051-970, Brazil
| | - Giovana Oliveira Gutuzzo
- Laboratório de Genética de Microrganismos, Departamento de Biologia Geral, Universidade Estadual de Londrina, PR-445, Km 380, Campus Universitário, PO Box 6001, Londrina, Paraná, CP 86.051-970, Brazil
| | - André Luiz Martinez de Oliveira
- Laboratório de Bioquímica de Microrganismos, Departamento de Bioquímica e Biotecnologia, Universidade Estadual de Londrina, PR-445, Km 380, Campus Universitário, PO Box 6001, Londrina, Paraná, CP 86.051-970, Brazil
| | - Elisete Pains Rodrigues
- Laboratório de Genética de Microrganismos, Departamento de Biologia Geral, Universidade Estadual de Londrina, PR-445, Km 380, Campus Universitário, PO Box 6001, Londrina, Paraná, CP 86.051-970, Brazil.
| |
Collapse
|
24
|
Bacillus as a source of phytohormones for use in agriculture. Appl Microbiol Biotechnol 2021; 105:8629-8645. [PMID: 34698898 DOI: 10.1007/s00253-021-11492-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 12/17/2022]
Abstract
Microbial plant biostimulants (MPBs) are capable of improving the productivity and quality of crops by activating plant physiological and molecular processes, representing an efficient tool in sustainable agriculture. Through phytohormone production, MPBs are capable of regulating plant physiological processes, increasing the productivity and quality of crops, in addition to being an efficient alternative in the industrial production of phytohormones. Bacillus is a bacterial genus with various species on the market being used as biopesticides, due to their ability to produce antimicrobial, nematicidal and insecticidal compounds. The capability of Bacillus species to protect plants against pests and/or pathogens also entails the triggering or increase of plant defense responses. Furthermore, a relevant number of species from the genus Bacillus provoke plant growth promotion by different mechanisms such as increasing the tolerance of their host plants under abiotic stress conditions or improving plant nutrition. In several cases, the plant response is mediated by the bacterial production of phytohormones. In the present work, all studies from recent decades where the production of phytohormones by Bacillus species are reported, highlighting their role in host plants and the mechanisms by which they are capable of increasing plant growth, promoting their development, and improving their response to different stresses. KEY POINTS: • Different Bacillus-species are known as agricultural biopesticides. • Bacillus role as biostimulants is being increasingly addressed. • Bacillus represents a good source of phytohormones of agricultural interest.
Collapse
|
25
|
Lu P, Jiang K, Hao YQ, Chu WY, Xu YD, Yang JY, Chen JL, Zeng GH, Gu ZH, Zhao HX. Profiles of Bacillus spp. Isolated from the Rhizosphere of Suaeda glauca and Their Potential to Promote Plant Growth and Suppress Fungal Phytopathogens. J Microbiol Biotechnol 2021; 31:1231-1240. [PMID: 34261851 PMCID: PMC9706026 DOI: 10.4014/jmb.2105.05010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/11/2021] [Accepted: 07/12/2021] [Indexed: 12/15/2022]
Abstract
Members of the genus Bacillus are known to play an important role in promoting plant growth and protecting plants against phytopathogenic microorganisms. In this study, 21 isolates of Bacillus spp. were obtained from the root micro-ecosystem of Suaeda glauca. Analysis of the 16S rRNA genes indicated that the isolates belong to the species Bacillus amyloliquefaciens, Bacillus velezensis, Bacillus subtilis, Bacillus pumilus, Bacillus aryabhattai and Brevibacterium frigoritolerans. One of the interesting findings of this study is that the four strains B1, B5, B16 and B21 are dominant in rhizosphere soil. Based on gyrA, gyrB, and rpoB gene analyses, B1, B5, and B21 were identified as B. amyloliquefaciens and B16 was identified as B. velezensis. Estimation of antifungal activity showed that the isolate B1 had a significant inhibitory effect on Fusarium verticillioides, B5 and B16 on Colletotrichum capsici (syd.) Butl, and B21 on Rhizoctonia cerealis van der Hoeven. The four strains grew well in medium with 1-10% NaCl, a pH value of 5-8, and promoted the growth of Arabidopsis thaliana. Our results indicate that these strains may be promising agents for the biocontrol and promotion of plant growth and further study of the relevant bacteria will provide a useful reference for the development of microbial resources.
Collapse
Affiliation(s)
- Ping Lu
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, P.R. China
| | - Ke Jiang
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, P.R. China
| | - Ya-Qiao Hao
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, P.R. China,Experimental Teaching Center, College of Life Science, Shenyang Normal University, Shenyang 110034, P.R. China
| | - Wan-Ying Chu
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, P.R. China
| | - Yu-Dong Xu
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, P.R. China
| | - Jia-Yao Yang
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, P.R. China
| | - Jia-Le Chen
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, P.R. China
| | - Guo-Hong Zeng
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, P.R. China
| | - Zhou-Hang Gu
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, P.R. China,
Z.H. Gu E-mail:
| | - Hong-Xin Zhao
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, P.R. China,Corresponding authors H.X. Zhao E-mail:
| |
Collapse
|
26
|
Andriūnaitė E, Tamošiūnė I, Aleksandravičiūtė M, Gelvonauskienė D, Vinskienė J, Rugienius R, Baniulis D. Stimulation of Nicotiana tabacum L. In Vitro Shoot Growth by Endophytic Bacillus cereus Group Bacteria. Microorganisms 2021; 9:1893. [PMID: 34576789 PMCID: PMC8470653 DOI: 10.3390/microorganisms9091893] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 11/16/2022] Open
Abstract
In vitro plant tissue cultures face various unfavorable conditions, such as mechanical damage, osmotic shock, and phytohormone imbalance, which can be detrimental to culture viability, growth efficiency, and genetic stability. Recent studies have revealed a presence of diverse endophytic bacteria, suggesting that engineering of the endophytic microbiome of in vitro plant tissues has the potential to improve their acclimatization and growth. Therefore, the aim of this study was to identify cultivated tobacco (Nicotiana tabacum L.) endophytic bacteria isolates that are capable of promoting the biomass accumulation of in vitro tobacco shoots. Forty-five endophytic bacteria isolates were obtained from greenhouse-grown tobacco plant leaves and were assigned to seven Bacillus spp. and one Pseudomonas sp. based on 16S rRNA or genome sequence data. To evaluate the bacterial effect on in vitro plant growth, tobacco shoots were inoculated with 22 isolates selected from distinct taxonomic groups. Four isolates of Bacillus cereus group species B. toyonensis, B. wiedmannii and B. mycoides promoted shoot growth by 11-21%. Furthermore, a contrasting effect on shoot growth was found among several isolates of the same species, suggesting the presence of strain-specific interaction with the plant host. Comparative analysis of genome assemblies was performed on the two closely related B. toyonensis isolates with contrasting plant growth-modulating properties. This revealed distinct structures of the genomic regions, including a putative enzyme cluster involved in the biosynthesis of linear azol(in)e-containing peptides and polysaccharides. However, the function of these clusters and their significance in plant-promoting activity remains elusive, and the observed contrasting effects on shoot growth are more likely to result from genomic sequence variations leading to differences in metabolic or gene expression activity. The Bacillus spp. isolates with shoot-growth-promoting properties have a potential application in improving the growth of plant tissue cultures in vitro.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Danas Baniulis
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, Kaunas str. 30, Babtai, 54333 Kaunas reg., Lithuania; (E.A.); (I.T.); (M.A.); (D.G.); (J.V.); (R.R.)
| |
Collapse
|
27
|
Martins J, Ares A, Casais V, Costa J, Canhoto J. Identification and Characterization of Arbutus unedo L. Endophytic Bacteria Isolated from Wild and Cultivated Trees for the Biological Control of Phytophthora cinnamomi. PLANTS 2021; 10:plants10081569. [PMID: 34451613 PMCID: PMC8401287 DOI: 10.3390/plants10081569] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 11/16/2022]
Abstract
Arbutus unedo L. is a resilient tree with a circum-Mediterranean distribution. Besides its ecological relevance, it is vital for local economies as a fruit tree. Several microorganisms are responsible for strawberry tree diseases, leading to production constrictions. Thus, the development of alternative plant protection strategies is necessary, such as bacterial endophytes, which may increase their host’s overall fitness and productivity. As agricultural practices are a driving factor of microbiota, this paper aimed to isolate, identify and characterize endophytic bacteria from strawberry tree leaves from plants growing spontaneously in a natural environment as well as from plants growing in orchards. A total of 62 endophytes were isolated from leaves and identified as Bacillus, Paenibacillus, Pseudomonas, Sphingomonas and Staphylococcus. Although a slightly higher number of species was found in wild plants, no differences in terms of diversity indexes were found. Sixteen isolates were tested in vitro for their antagonistic effect against A. unedo mycopathogens. B. cereus was the most effective antagonist causing a growth reduction of 20% in Glomerella cingulata and 40% in Phytophthora cinnamomi and Mycosphaerella aurantia. Several endophytic isolates also exhibited plant growth-promoting potential. This study provides insights into the diversity of endophytic bacteria in A. unedo leaves and their potential role as growth promoters and pathogen antagonists.
Collapse
Affiliation(s)
- João Martins
- Department of Life Sciences, Centre for Functional Ecology, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; (J.M.); (A.A.); (V.C.); (J.C.)
| | - Aitana Ares
- Department of Life Sciences, Centre for Functional Ecology, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; (J.M.); (A.A.); (V.C.); (J.C.)
- Laboratory for Phytopathology, Instituto Pedro Nunes, 3030-199 Coimbra, Portugal
| | - Vinicius Casais
- Department of Life Sciences, Centre for Functional Ecology, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; (J.M.); (A.A.); (V.C.); (J.C.)
| | - Joana Costa
- Department of Life Sciences, Centre for Functional Ecology, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; (J.M.); (A.A.); (V.C.); (J.C.)
- Laboratory for Phytopathology, Instituto Pedro Nunes, 3030-199 Coimbra, Portugal
| | - Jorge Canhoto
- Department of Life Sciences, Centre for Functional Ecology, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; (J.M.); (A.A.); (V.C.); (J.C.)
- Correspondence:
| |
Collapse
|
28
|
Sarvarova ER, Khairullin RM, Maksimov IV. Effect of Ferulic Acid on the Colony Growth and Cell Reproduction of the Endophytic Bacterial Strain Bacillus subtilis 26D. APPL BIOCHEM MICRO+ 2021. [DOI: 10.1134/s0003683821040141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Houida S, Yakkou L, Bilen S, Raouane M, El Harti A, Amghar S. Taxonomic and functional characteristics of aerobic bacteria isolated from the chloragogenous tissue of the earthworm Aporrectodea molleri. Arch Microbiol 2021; 203:4805-4812. [PMID: 34196750 DOI: 10.1007/s00203-021-02396-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 11/30/2022]
Abstract
Earthworms are considered as a rich microhabitat for the growth and proliferation of diverse soil microorganisms. Hence, earthworms' associated bacteria attracted interest due to their high metabolic profiles and benefits to soil fertility and plant growth. In this study, we aimed to isolate for the first-time aerobic bacteria present in the chloragogenous tissue of the earthworm Apporectodea molleri and test their Plant Growth-Promoting abilities and their resistance to heavy metals (Mn, Zn, Cu, Cd, and Ni). The 16S rRNA gene sequencing revealed the affiliation of the fifteen isolates to six main bacterial genera: Enterobacter, Citrobacter, Aeromonas, Pseudomonas, Bacillus, Terribacillus. These strains displayed different plant growth promoting traits (e.g., indole-3-acetic acid IAA, siderophores, nitrogen fixation, phosphate, and potassium solubilization), in addition, they were able to resist differently to heavy metals. Bacillus strains were most effective as three strains, namely B. subtilis strain TC34; B. circulans strain TC7 and Bacillus sp. strain TC10, were positive to all PGP traits and resisted to all heavy metals. This study illustrates the potential of bacteria from the chloragogenous tissue to exhibit multiple properties, which can be related to the functional feature of this tissue to stock metabolites and neutralize toxic elements.
Collapse
Affiliation(s)
- Sofia Houida
- Research Team «Lumbricidae, Improving Soil Productivity and Environment (LAPSE)», Centre Eau, Ressources Naturelles, Environnement et Développement Durable (CERNE2D), Ecole Normale Supérieure (ENS), Mohammed V University in Rabat, 5118, Rabat, Morocco.,Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Atatürk University, Erzurum, 25240, Turkey
| | - Lamia Yakkou
- Research Team «Lumbricidae, Improving Soil Productivity and Environment (LAPSE)», Centre Eau, Ressources Naturelles, Environnement et Développement Durable (CERNE2D), Ecole Normale Supérieure (ENS), Mohammed V University in Rabat, 5118, Rabat, Morocco.,Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Atatürk University, Erzurum, 25240, Turkey
| | - Serdar Bilen
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Atatürk University, Erzurum, 25240, Turkey.
| | - Mohammed Raouane
- Research Team «Lumbricidae, Improving Soil Productivity and Environment (LAPSE)», Centre Eau, Ressources Naturelles, Environnement et Développement Durable (CERNE2D), Ecole Normale Supérieure (ENS), Mohammed V University in Rabat, 5118, Rabat, Morocco
| | - Abdellatif El Harti
- Research Team «Lumbricidae, Improving Soil Productivity and Environment (LAPSE)», Centre Eau, Ressources Naturelles, Environnement et Développement Durable (CERNE2D), Ecole Normale Supérieure (ENS), Mohammed V University in Rabat, 5118, Rabat, Morocco
| | - Souad Amghar
- Research Team «Lumbricidae, Improving Soil Productivity and Environment (LAPSE)», Centre Eau, Ressources Naturelles, Environnement et Développement Durable (CERNE2D), Ecole Normale Supérieure (ENS), Mohammed V University in Rabat, 5118, Rabat, Morocco
| |
Collapse
|
30
|
Tian D, Song X, Li C, Zhou W, Qin L, Wei L, Di W, Huang S, Li B, Huang Q, Long S, He Z, Wei S. Antifungal mechanism of Bacillus amyloliquefaciens strain GKT04 against Fusarium wilt revealed using genomic and transcriptomic analyses. Microbiologyopen 2021; 10:e1192. [PMID: 34180606 PMCID: PMC8142399 DOI: 10.1002/mbo3.1192] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 12/14/2022] Open
Abstract
The application of endophytic bacteria, particularly members of the genus Bacillus, offers a promising strategy for the biocontrol of plant fungal diseases, owing to their sustainability and ecological safety. Although multiple secondary metabolites that demonstrate antifungal capacity have been identified in diverse endophytic bacteria, the regulatory mechanisms of their biosynthesis remain largely unknown. To elucidate this, we sequenced the entire genome of Bacillus amyloliquefaciens GKT04, a strain isolated from banana root, which showed high inhibitory activity against Fusarium oxysporum f. sp. cubense race 4 (FOC4). The GKT04 genome consists of a circular chromosome and a circular plasmid, which harbors 4,087 protein‐coding genes and 113 RNA genes. Eight gene clusters that could potentially encode antifungal components were identified. We further applied RNA‐Seq analysis to survey genome‐wide changes in the gene expression of strain GKT04 during its inhibition of FOC4. In total, 575 upregulated and 242 downregulated genes enriched in several amino acid and carbohydrate metabolism pathways were identified. Specifically, gene clusters associated with difficidin, bacillibactin, and bacilysin were significantly upregulated, and their gene regulatory networks were constructed. Our work thereby provides insights into the genomic features and gene expression patterns of this B. amyloliquefaciens strain, which presents an excellent potential for the biocontrol of Fusarium wilt.
Collapse
Affiliation(s)
- Dandan Tian
- Biotechnology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Xiupeng Song
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Chaosheng Li
- Biotechnology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Wei Zhou
- Biotechnology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Liuyan Qin
- Biotechnology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Liping Wei
- Biotechnology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Wei Di
- Biotechnology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Sumei Huang
- Biotechnology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Baoshen Li
- Biotechnology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Quyan Huang
- Biotechnology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Shengfeng Long
- Biotechnology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Zhangfei He
- Biotechnology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Shaolong Wei
- Biotechnology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| |
Collapse
|
31
|
Ribeiro IDA, Bach E, da Silva Moreira F, Müller AR, Rangel CP, Wilhelm CM, Barth AL, Passaglia LMP. Antifungal potential against Sclerotinia sclerotiorum (Lib.) de Bary and plant growth promoting abilities of Bacillus isolates from canola (Brassica napus L.) roots. Microbiol Res 2021; 248:126754. [PMID: 33848783 DOI: 10.1016/j.micres.2021.126754] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/28/2021] [Accepted: 03/27/2021] [Indexed: 10/21/2022]
Abstract
Endophytic bacteria show important abilities in promoting plant growth and suppressing phytopathogens, being largely explored in agriculture as biofertilizers or biocontrol agents. Bacteria from canola roots were isolated and screened for different plant growth promotion (PGP) traits and biocontrol of Sclerotinia sclerotiorum. Thirty isolates belonging to Bacillus, Paenibacillus, Lysinibacillus, and Microbacterium genera were obtained. Several isolates produced auxin, siderophores, hydrolytic enzymes, fixed nitrogen and solubilized phosphate. Five isolates presented antifungal activity against S. sclerotiorum by the dual culture assay and four of them also inhibited fungal growth by volatile organic compounds production. All antagonistic isolates belonged to the Bacillus genus, and had their genomes sequenced for the search of biosynthetic gene clusters (BGC) related to antimicrobial metabolites. These isolates were identified as Bacillus safensis (3), Bacillus pumilus (1), and Bacillus megaterium (1), using the genomic metrics ANI and dDDH. Most strains showed several common BGCs, including bacteriocin, polyketide synthase (PKS), and non-ribosomal peptide synthetase (NRPS), related to pumilacidin, bacillibactin, bacilysin, and other antimicrobial compounds. Pumilacidin-related mass peaks were detected in acid precipitation extracts through MALDI-TOF analysis. The genomic features demonstrated the potential of these isolates in the suppression of plant pathogens; however, some aspects of plant-bacterial interactions remain to be elucidated.
Collapse
Affiliation(s)
- Igor Daniel Alves Ribeiro
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9500, Caixa Postal 15.053, 91501-970, Porto Alegre, RS, Brazil
| | - Evelise Bach
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9500, Caixa Postal 15.053, 91501-970, Porto Alegre, RS, Brazil
| | - Fernanda da Silva Moreira
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9500, Caixa Postal 15.053, 91501-970, Porto Alegre, RS, Brazil
| | - Aline Reis Müller
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9500, Caixa Postal 15.053, 91501-970, Porto Alegre, RS, Brazil
| | - Caroline Pinto Rangel
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9500, Caixa Postal 15.053, 91501-970, Porto Alegre, RS, Brazil
| | - Camila Mörschbächer Wilhelm
- LABRESIS - Laboratório de Pesquisa em Resistência Bacteriana, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre (HCPA), Rua Ramiro Barcelos 2350, Porto Alegre, RS, 90.035-903, Brazil
| | - Afonso Luis Barth
- LABRESIS - Laboratório de Pesquisa em Resistência Bacteriana, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre (HCPA), Rua Ramiro Barcelos 2350, Porto Alegre, RS, 90.035-903, Brazil
| | - Luciane Maria Pereira Passaglia
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9500, Caixa Postal 15.053, 91501-970, Porto Alegre, RS, Brazil.
| |
Collapse
|
32
|
Leal C, Fontaine F, Aziz A, Egas C, Clément C, Trotel-Aziz P. Genome sequence analysis of the beneficial Bacillus subtilis PTA-271 isolated from a Vitis vinifera (cv. Chardonnay) rhizospheric soil: assets for sustainable biocontrol. ENVIRONMENTAL MICROBIOME 2021; 16:3. [PMID: 33902737 PMCID: PMC8067347 DOI: 10.1186/s40793-021-00372-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 01/07/2021] [Indexed: 05/23/2023]
Abstract
BACKGROUND Bacillus subtilis strains have been widely studied for their numerous benefits in agriculture, including viticulture. Providing several assets, B. subtilis spp. are described as promising plant-protectors against many pathogens and as influencers to adaptations in a changing environment. This study reports the draft genome sequence of the beneficial Bacillus subtilis PTA-271, isolated from the rhizospheric soil of healthy Vitis vinifera cv. Chardonnay at Champagne Region in France, attempting to draw outlines of its full biocontrol capacity. RESULTS The PTA-271 genome has a size of 4,001,755 bp, with 43.78% of G + C content and 3945 protein coding genes. The draft genome of PTA-271 putatively highlights a functional swarming motility system hypothesizing a colonizing capacity and a strong interacting capacity, strong survival capacities and a set of genes encoding for bioactive substances. Predicted bioactive compounds are known to: stimulate plant growth or defenses such as hormones and elicitors, influence beneficial microbiota, and counteract pathogen aggressiveness such as effectors and many kinds of detoxifying enzymes. CONCLUSIONS Plurality of the putatively encoded biomolecules by Bacillus subtilis PTA-271 genome suggests environmentally robust biocontrol potential of PTA-271, protecting plants against a broad spectrum of pathogens.
Collapse
Affiliation(s)
- Catarina Leal
- SFR Condorcet - FR CNRS 3417, University of Reims Champagne-Ardenne, Induced Resistance and Plant Bioprotection (RIBP) - EA 4707, BP1039, Cedex 2, F-51687, Reims, France
| | - Florence Fontaine
- SFR Condorcet - FR CNRS 3417, University of Reims Champagne-Ardenne, Induced Resistance and Plant Bioprotection (RIBP) - EA 4707, BP1039, Cedex 2, F-51687, Reims, France
| | - Aziz Aziz
- SFR Condorcet - FR CNRS 3417, University of Reims Champagne-Ardenne, Induced Resistance and Plant Bioprotection (RIBP) - EA 4707, BP1039, Cedex 2, F-51687, Reims, France
| | - Conceiçao Egas
- UC-Biotech_CNC, Biocant Park, Biotechnology Innovation Center, P-3060-197, Cantanhede, Portugal
| | - Christophe Clément
- SFR Condorcet - FR CNRS 3417, University of Reims Champagne-Ardenne, Induced Resistance and Plant Bioprotection (RIBP) - EA 4707, BP1039, Cedex 2, F-51687, Reims, France
| | - Patricia Trotel-Aziz
- SFR Condorcet - FR CNRS 3417, University of Reims Champagne-Ardenne, Induced Resistance and Plant Bioprotection (RIBP) - EA 4707, BP1039, Cedex 2, F-51687, Reims, France.
| |
Collapse
|
33
|
Munakata Y, Gavira C, Genestier J, Bourgaud F, Hehn A, Slezack-Deschaumes S. Composition and functional comparison of vetiver root endophytic microbiota originating from different geographic locations that show antagonistic activity towards Fusarium graminearum. Microbiol Res 2020; 243:126650. [PMID: 33302220 DOI: 10.1016/j.micres.2020.126650] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/30/2020] [Accepted: 11/13/2020] [Indexed: 11/30/2022]
Abstract
Given the current trend towards reducing the use of chemical controls in agriculture, microbial resources such as plant endophytes are being intensively investigated for traits that are conducive to plant protection. Among the various important target pathogens, Fusarium graminearum is a fungal pathogen of cereal crops that is responsible for severe yield losses and mycotoxin contamination in grains. In the present study, we investigated the bacterial endophytic communities from vetiver (Chrysopogon zizanioides (L.) Roberty) roots originating from 5 different geographic locations across Europe and Africa. This study relies on a global 16S metabarcoding approach and the isolation/functional characterization of bacterial isolates. The results we obtained showed that geographical location is a factor that influences the composition and relative abundance of root endophyte communities in vetiver. Three hundred eighty-one bacterial endophytes were isolated and assessed for their in vitro antagonistic activities towards F. graminearum mycelium growth. In total, 46 % of the isolates showed at least 50 % inhibitory activity against F. graminearum. The taxonomic identification of the bioactive isolates revealed that the composition of these functional culturable endophytic communities was influenced by the geographic origins of the roots. The selected communities consisted of 15 genera. Some endophytes in Bacillus, Janthinobacterium, Kosakonia, Microbacterium, Pseudomonas, and Serratia showed strong growth inhibition activity (≥70 %) against F. graminearum and could be candidates for further development as biocontrol agents.
Collapse
Affiliation(s)
- Yuka Munakata
- Université de Lorraine - INRAE, LAE, F-54000, Nancy, France
| | - Carole Gavira
- Plant Advanced Technologies, F54500, Vandoeuvre-lès-Nancy, France
| | | | | | - Alain Hehn
- Université de Lorraine - INRAE, LAE, F-54000, Nancy, France
| | | |
Collapse
|
34
|
Li Y, Zhao M, Chen W, Du H, Xie X, Wang D, Dai Y, Xia Q, Wang G. Comparative transcriptomic analysis reveals that multiple hormone signal transduction and carbohydrate metabolic pathways are affected by Bacillus cereus in Nicotiana tabacum. Genomics 2020; 112:4254-4267. [PMID: 32679071 DOI: 10.1016/j.ygeno.2020.07.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 07/04/2020] [Accepted: 07/09/2020] [Indexed: 01/07/2023]
Abstract
Bacillus cereus is thought to be a beneficial bacterium for plants in several aspects, such as promoting plant growth and inducing plant disease resistance. However, there is no detailed report on the effect of Bacillus cereus acting on Nicotiana tabacum. In the present study, RNA-based sequencing (RNA-seq) was used to identify the molecular mechanisms of the interaction between B. cereus CGMCC 5977 and N. tabacum. A total of 7345 and 5604 differentially expressed genes (DEGs) were identified from leaves inoculated with Bacillus cereus at 6 and 24 hpi, respectively. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses revealed that the most DEGs could be significantly enriched in hormone signal transduction, the MAPK signaling pathway, photosynthesis, oxidative stress, and amino sugar, and nucleotide sugar metabolism. Furthermore, glycolysis/gluconeogenesis was severely affected by inoculation with Bacillus cereus. In the hormone signal pathway, multiple DEGs were involved in plant defense-related major hormones, including activation of jasmonic acid (JA), salicylic acid (SA), and ethylene (Eth). Further analyses showed that other hormone-related genes involved in abscisic acid (ABA), gibberellin (GA), auxin (AUX), and cytokinin (CK) also showed changes. Notably, a large number of genes associated with glycolysis/gluconeogenesis, catabolism of starch and oxidative stress were induced. In addition, the majority of DEGs related to nucleic acid sugar metabolism were also significantly upregulated. Biochemical assays showed that the starch content of B. cereus-treated leaves was reduced to 2.51 mg/g and 2.38 mg/g at 6 and 24 hpi, respectively, while that of the control sample was 5.42 mg/g. Overall, our results demonstrated that multiple hormone signal transduction and carbohydrate metabolic pathways are involved in the interaction of tobacco and B. cereus.
Collapse
Affiliation(s)
- Yueyue Li
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400716, China
| | - Min Zhao
- Chongqing Institute of Tobacco Science, Chongqing 400716, China
| | - Wenwen Chen
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400716, China
| | - Hongyi Du
- Technology Center of China, Tobacco Chongqing Industrial Co.,Ltd, Chongqing 400000, China
| | - Xiaodong Xie
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China
| | - Daibin Wang
- Chongqing Institute of Tobacco Science, Chongqing 400716, China
| | - Ya Dai
- Technology Center of China, Tobacco Chongqing Industrial Co.,Ltd, Chongqing 400000, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400716, China
| | - Genhong Wang
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400716, China.
| |
Collapse
|
35
|
Jing R, Li N, Wang W, Liu Y. An endophytic strain JK of genus bacillus isolated from the seeds of super hybrid rice (Oryza sativa L., Shenliangyou 5814) has antagonistic activity against rice blast pathogen. Microb Pathog 2020; 147:104422. [DOI: 10.1016/j.micpath.2020.104422] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/23/2020] [Accepted: 07/23/2020] [Indexed: 11/28/2022]
|
36
|
Faria PSA, Marques VDO, Selari PJRG, Martins PF, Silva FG, Sales JDF. Multifunctional potential of endophytic bacteria from Anacardium othonianum Rizzini in promoting in vitro and ex vitro plant growth. Microbiol Res 2020; 242:126600. [PMID: 33011553 DOI: 10.1016/j.micres.2020.126600] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 08/05/2020] [Accepted: 09/04/2020] [Indexed: 01/15/2023]
Abstract
Anacardium othonianum Rizzini, a cashew tree native to the Brazilian Cerrado, is economically important due to its applications in the food, chemical and pharmaceutical industries. However, A. othonianum yields a crop with low productivity due to a number of factors, such as nutritionally poor soils, drought and losses due to pests and diseases. Brazil is one of the nine largest cashew nut producers worldwide, and sustainable technologies are needed to increase the productivity of this crop. In this context, the use of endophytic microorganisms could promote plant growth and provide protection against phytopathogens. In this study, the isolation of the root endophytic community of A. othonianum led to the characterization of 22 distinct bacterial strains with multifunctional traits for plant growth promotion. The results of in vitro assays to assess auxin synthesis, phosphate solubilization, phosphatase and siderophore production and biocontrol against Fusarium oxysporum led to the selection of Acinetobacter lwoffii Bac109 and Pantoea agglomerans Bac131 as the most promising strains. The reinoculation of the Bac109 and Bac131 strains onto A. othonianum seeds showed that the treatment containing a mixture of these strains was the most effective in promoting increases in the biometric parameters of early plant growth. Thus, this study highlights the biotechnological potential of a consortium of A. lwoffii Bac109 and P. agglomerans Bac131 for future applications in sustainable cashew cultivation.
Collapse
Affiliation(s)
- Paula Sperotto Alberto Faria
- Federal Institute of Education, Science and Technology Goiano, (Instituto Federal de Instituto Federal de Educação, Ciência e Tecnologia Goiano - IF Goiano), Rio Verde, Goiás, Brazil
| | - Vinicius de Oliveira Marques
- Federal Institute of Education, Science and Technology Goiano, (Instituto Federal de Instituto Federal de Educação, Ciência e Tecnologia Goiano - IF Goiano), Rio Verde, Goiás, Brazil
| | - Priscila Jane Romano Gonçalves Selari
- Federal Institute of Education, Science and Technology Goiano, (Instituto Federal de Educação, Ciência e Tecnologia Goiano - IF Goiano), Ceres, Goiás, Brazil.
| | - Paula Fabiane Martins
- Federal Institute of Education, Science and Technology Goiano, (Instituto Federal de Instituto Federal de Educação, Ciência e Tecnologia Goiano - IF Goiano), Rio Verde, Goiás, Brazil
| | - Fabiano Guimarães Silva
- Federal Institute of Education, Science and Technology Goiano, (Instituto Federal de Instituto Federal de Educação, Ciência e Tecnologia Goiano - IF Goiano), Rio Verde, Goiás, Brazil
| | - Juliana de Fátima Sales
- Federal Institute of Education, Science and Technology Goiano, (Instituto Federal de Instituto Federal de Educação, Ciência e Tecnologia Goiano - IF Goiano), Rio Verde, Goiás, Brazil
| |
Collapse
|
37
|
Kowalska J, Tyburski J, Matysiak K, Tylkowski B, Malusá E. Field Exploitation of Multiple Functions of Beneficial Microorganisms for Plant Nutrition and Protection: Real Possibility or Just a Hope? Front Microbiol 2020; 11:1904. [PMID: 32849475 PMCID: PMC7419637 DOI: 10.3389/fmicb.2020.01904] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 07/20/2020] [Indexed: 02/01/2023] Open
Abstract
Bioproducts, i.e., microbial based pesticides or fertilizers (biopesticides and biofertilizers), should be expected to play an ever-increasing role and application in agricultural practices world-wide in the effort to implement policies concerned with sustainable agriculture. However, several microbial strains have proven the capacity to augment plant productivity by enhancing crop nutrition and functioning as biopesticides, or vice-versa. This multifunctionality is an issue that is still not included as a concept and possibility in any legal provision regarding the placing on the market of bioproducts, and indicates difficulties in clearly classifying the purpose of their suitability. In this review, we overview the current understanding of the mechanisms in plant-microbe interactions underlining the dual function of microbial strains toward plant nutrition and protection. The prospects of market development for multifunctional bioproducts are then considered in view of the current regulatory approach in the European Union, in an effort that wants to stimulate a wider adoption of the new knowledge on the role played by microorganisms in crop production.
Collapse
Affiliation(s)
| | - Józef Tyburski
- Department of Agroecosystems, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | | | | | - Eligio Malusá
- Research Institute of Horticulture, Skierniewice, Poland
| |
Collapse
|
38
|
Khan MS, Gao J, Zhang M, Chen X, Moe TS, Du Y, Yang F, Xue J, Zhang X. Isolation and characterization of plant growth-promoting endophytic bacteria Bacillus stratosphericus LW-03 from Lilium wardii. 3 Biotech 2020; 10:305. [PMID: 32612899 PMCID: PMC7313711 DOI: 10.1007/s13205-020-02294-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 06/07/2020] [Indexed: 02/01/2023] Open
Abstract
In the present study, a new strain of Bacillus stratosphericus LW-03 was isolated from the bulbs of Lilium wardii. The isolated endophytic strain LW-03 exhibited excellent antifungal activity against common plant pathogens, such as Fusarium oxysporum, Botryosphaeria dothidea, Botrytis cinerea, and Fusarium fujikuroi. The growth inhibition percentage of Botryosphaeria dothidea was 74.56 ± 2.35%, which was the highest, followed by Botrytis cinerea, Fusarium fujikuroi, and Fusarium oxysporum were 71.91 ± 2.87%, 69.54 ± 2.73%, and 65.13 ± 1.91%, respectively. The ethyl acetate fraction revealed a number of bioactive compounds and several of which were putatively identified as antimicrobial agents, such as 4-hydroxy-2-nonenylquinoline N-oxide, sphingosine ceramides like cer(d18:0/16:0(2OH)), cer(d18:0/16:0), and cer(d18:1/0:0), di-peptides, tri-peptide, cyclopeptides [cyclo(D-Trp-L-Pro)], [cyclo (Pro-Phe)], dehydroabietylamine, oxazepam, 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine like compound (PC(0:0/20:4), phosphatidylethanolamine (PE(18:1/0:0)), 3-Hydroxyoctadecanoic acid, 7.alpha.,27-Dihydroxycholesterol, N-Acetyl-d-mannosamine, p-Hydroxyphenyllactic acid, Phytomonic acid, and 2-undecenyl-quinoloin-4 (1H). The LW-03 strain exhibits multiple plant growth-promoting traits, including the production of organic acids, ACC deaminase, indole-3-acetic acid (IAA), siderophores, and nitrogen fixation activity. The beneficial effects of the endophytic strain LW-03 on the growth of two lily varieties were further evaluated under greenhouse conditions. Our results revealed plant growth-promoting activity in inoculated plants relative to non-inoculated control plants. The broad-spectrum antifungal activity and multiple plant growth-promoting properties of Bacillus stratosphericus LW-03 make it an important player in the development of biological fertilizers and sustainable agricultural biological control strategies.
Collapse
Affiliation(s)
- Mohammad Sayyar Khan
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097 China
- Genomics and Bioinformatics Division, Institute of Biotechnology and Genetic Engineering (IBGE), The University of Agriculture, Khyber Pakhtunkhwa, Peshawar, 25000 Pakistan
| | - Junlian Gao
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097 China
| | - Mingfang Zhang
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097 China
| | - Xuqing Chen
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097 China
| | - The Su Moe
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097 China
- Pharmaceutical Research Laboratory, Biotechnology Research Department, Ministry of Education, Mandalay Division, Kyaukse, 05151 Myanmar
| | - Yunpeng Du
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097 China
| | - Fengping Yang
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097 China
| | - Jing Xue
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097 China
| | - Xiuhai Zhang
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097 China
| |
Collapse
|
39
|
Khan MS, Gao J, Chen X, Zhang M, Yang F, Du Y, Moe TS, Munir I, Xue J, Zhang X. The Endophytic Bacteria Bacillus velezensis Lle-9, Isolated from Lilium leucanthum, Harbors Antifungal Activity and Plant Growth-Promoting Effects. J Microbiol Biotechnol 2020; 30:668-680. [PMID: 32482932 PMCID: PMC9728359 DOI: 10.4014/jmb.1910.10021] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 01/28/2020] [Indexed: 12/15/2022]
Abstract
Bacillus velezensis is an important plant growth-promoting rhizobacterium with immense potential in agriculture development. In the present study, Bacillus velezensis Lle-9 was isolated from the bulbs of Lilium leucanthum. The isolated strain showed antifungal activities against plant pathogens like Botryosphaeria dothidea, Fusarium oxysporum, Botrytis cinerea and Fusarium fujikuroi. The highest percentage of growth inhibition i.e., 68.56±2.35% was observed against Fusarium oxysporum followed by 63.12 ± 2.83%, 61.67 ± 3.39% and 55.82 ± 2.76% against Botrytis cinerea, Botryosphaeria dothidea, and Fusarium fujikuroi, respectively. The ethyl acetate fraction revealed a number of bioactive compounds and several were identified as antimicrobial agents such as diketopiperazines, cyclo-peptides, linear peptides, latrunculin A, 5α-hydroxy-6-ketocholesterol, (R)-S-lactoylglutathione, triamterene, rubiadin, moxifloxacin, 9-hydroxy-5Z,7E,11Z,14Zeicosatetraenoic acid, D-erythro-C18-Sphingosine, citrinin, and 2- arachidonoyllysophosphatidylcholine. The presence of these antimicrobial compounds in the bacterial culture might have contributed to the antifungal activities of the isolated B. velezensis Lle- 9. The strain showed plant growth-promoting traits such as production of organic acids, ACC deaminase, indole-3-acetic acid (IAA), siderophores, and nitrogen fixation and phosphate solubilization. IAA production was accelerated with application of exogenous tryptophan concentrations in the medium. Further, the lily plants upon inoculation with Lle-9 exhibited improved vegetative growth, more flowering shoots and longer roots than control plants under greenhouse condition. The isolated B. velezensis strain Lle-9 possessed broad-spectrum antifungal activities and multiple plant growth-promoting traits and thus may play an important role in promoting sustainable agriculture. This strain could be developed and applied in field experiments in order to promote plant growth and control disease pathogens.
Collapse
Affiliation(s)
- Mohammad Sayyar Khan
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 00097, P.R. China
- Genomics and Bioinformatics Division, Institute of Biotechnology and Genetic Engineering (IBGE), The University of Agriculture, Peshawar 5000 Khyber Pakhtunkhwa, Pakistan
| | - Junlian Gao
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 00097, P.R. China
| | - Xuqing Chen
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 00097, P.R. China
| | - Mingfang Zhang
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 00097, P.R. China
| | - Fengping Yang
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 00097, P.R. China
| | - Yunpeng Du
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 00097, P.R. China
| | - The Su Moe
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 00097, P.R. China
- Pharmaceutical Research Laboratory, Biotechnology Research Department, Ministry of Education, Mandalay Division, Kyaukse 05151, Myanmar
| | - Iqbal Munir
- Genomics and Bioinformatics Division, Institute of Biotechnology and Genetic Engineering (IBGE), The University of Agriculture, Peshawar 5000 Khyber Pakhtunkhwa, Pakistan
| | - Jing Xue
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 00097, P.R. China
| | - Xiuhai Zhang
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 00097, P.R. China
| |
Collapse
|
40
|
Zadeh Hosseingholi E, Neghabi N, Molavi G, Gheibi Hayat SM, Shahriarpour H. In silico identification and characterization of antineoplastic asparaginase enzyme from endophytic bacteria. IUBMB Life 2020; 72:991-1000. [DOI: 10.1002/iub.2237] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 01/10/2020] [Indexed: 12/24/2022]
Affiliation(s)
| | - Neda Neghabi
- Department of Biology, Faculty of Basic SciencesAzarbaijan Shahid Madani University Tabriz Iran
| | - Ghader Molavi
- Drug Applied Research CenterTabriz University of Medical Sciences Tabriz Iran
- Department of Molecular Medicine, Faculty of Advanced Medical SciencesTabriz University of Medical Sciences Tabriz Iran
| | | | - Hamed Shahriarpour
- Department of Biology, Faculty of Basic SciencesAzarbaijan Shahid Madani University Tabriz Iran
| |
Collapse
|
41
|
Xie S, Vallet M, Sun C, Kunert M, David A, Zhang X, Chen B, Lu X, Boland W, Shao Y. Biocontrol Potential of a Novel Endophytic Bacterium From Mulberry ( Morus) Tree. Front Bioeng Biotechnol 2020; 7:488. [PMID: 32039187 PMCID: PMC6990687 DOI: 10.3389/fbioe.2019.00488] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 12/30/2019] [Indexed: 01/18/2023] Open
Abstract
Mulberry (Morus) is an economically important woody tree that is suitable for use in sericulture as forage and in medicine. However, this broad-leaved tree is facing multiple threats ranging from phytopathogens to insect pests. Here, a Gram-positive, endospore-forming bacterium (ZJU1) was frequently isolated from healthy mulberry plants by screening for foliar endophytes showing antagonism against pathogens and pests. Whole-genome sequencing and annotation resulted in a genome size of 4.06 Mb and classified the bacterium as a novel strain of Bacillus amyloliquefaciens that has rarely been identified from tree leaves. An integrative approach combining traditional natural product chemistry, activity bioassays, and high-resolution mass spectrometry confirmed that strain ZJU1 uses a blend of antimicrobials including peptides and volatile organic compounds to oppose Botrytis cinerea, a major phytopathogenic fungus causing mulberry gray mold disease. We showed that the inoculation of endophyte-free plants with ZJU1 significantly decreased both leaf necrosis and mortality under field conditions. In addition to the direct interactions of endophytes with foliar pathogens, in planta studies suggested that the inoculation of endophytes also induced plant systemic defense, including high expression levels of mulberry disease resistance genes. Moreover, when applied to the generalist herbivore Spodoptera litura, ZJU1 was sufficient to reduce the pest survival rate below 50%. A previously undiscovered crystal toxin (Cry10Aa) could contribute to this insecticidal effect against notorious lepidopteran pests. These unique traits clearly demonstrate that B. amyloliquefaciens ZJU1 is promising for the development of successful strategies for biocontrol applications. The search for new plant-beneficial microbes and engineering microbiomes is therefore of great significance for sustainably improving plant performance.
Collapse
Affiliation(s)
- Sen Xie
- Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Marine Vallet
- Max Planck Fellow Group on Plankton Community Interaction, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Chao Sun
- Analysis Center of Agrobiology and Environmental Sciences, Zhejiang University, Hangzhou, China
| | - Maritta Kunert
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Anja David
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Xiancui Zhang
- Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Bosheng Chen
- Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Xingmeng Lu
- Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Wilhelm Boland
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Yongqi Shao
- Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory for Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
| |
Collapse
|
42
|
Kushwaha P, Kashyap PL, Srivastava AK, Tiwari RK. Plant growth promoting and antifungal activity in endophytic Bacillus strains from pearl millet (Pennisetum glaucum). Braz J Microbiol 2019; 51:229-241. [PMID: 31642002 DOI: 10.1007/s42770-019-00172-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 10/03/2019] [Indexed: 12/13/2022] Open
Abstract
Bacterial endophytes are well known inhabitants of living plant system and perform important assignments in maintaining plant growth and health. Currently, limited reports are available on the endophytes of pearl millet (Pennisetum glaucum) reflecting antagonistic and plant growth promoting (PGP) attributes. Therefore, the major objectives of current investigation were to identify antagonistic strains of endophytic Bacillus from pearl millet and further illustrate their PGP capabilities. In this study, 19 endophytic Bacillus strains (EPP5, EPP21, EPP30, EPP32, EPP35, EPP42, EPP49, EPP55, EPP62, EPP65, EPP70, EPP71, EPP74, EPP78, EPP83, EPP86, EPP93, EPP100, and EPP102) displaying antagonistic activity towards Rhizoctonia solani (RS), Sclerotium rolfsii (SR), and Fusarium solani (FS) were isolated from different sections (root, leaf, stem, and root) of pearl millet. Phenotypic (shape, colony, gram staining reaction, endospore formation, and motility) and biochemical features (catalase, oxidase, citrate, gelatinase, urease, Voges Proskauer's, methyl red, indole, and nitrate reduction), along with the similarly comparison of 16S rRNA gene sequence with type strains identified eight antagonistic endophyhtes as B. amyloliquefaciens (EPP35, EPP 42, EPP62, and EPP 102), Bacillus subtilis subsp. subtilis (EPP65), and Bacillus cereus (EPP5, EPP71, and EPP74). The production of indole acetic acid and siderophores was varied among the isolated endophytes. Besides displaying enzymatic activities, these isolates varied in solubilizing capabilities of phosphate, potassium, and zinc. The presence of three antimicrobial peptide genes (ituD, bmyC, and srfA) also confirmed their antifungal nature. Further, single treatment of three promising strains (EPP5, EPP62, and EPP65) offered protection ranging from 35.68 to 45.74% under greenhouse conditions. However, microbial consortium (EPP5+ EPP62 + EPP65) provided the highest protection (71.96%) against root rot and wilt infection with significant increase in plant biomass. Overall, the current study indicated that pearl millet plant harbors various species of endophytic Bacillus that possess excellent biocontrol and growth promotion activities.
Collapse
Affiliation(s)
- Prity Kushwaha
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Mau, 275103, India
- AMITY Institute of Biotechnology, AMITY University Lucknow Campus, Lucknow, Uttar Pradesh, 226028, India
| | - Prem Lal Kashyap
- ICAR- Indian Institute of Wheat and Barley Research (IIWBR), Karnal, 132001, India.
| | - Alok Kumar Srivastava
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Mau, 275103, India
| | - Rajesh Kumar Tiwari
- AMITY Institute of Biotechnology, AMITY University Lucknow Campus, Lucknow, Uttar Pradesh, 226028, India
| |
Collapse
|
43
|
Li X, Hu HJ, Li JY, Wang C, Chen SL, Yan SZ. Effects of the Endophytic Bacteria Bacillus cereus BCM2 on Tomato Root Exudates and Meloidogyne incognita Infection. PLANT DISEASE 2019; 103:1551-1558. [PMID: 31059388 DOI: 10.1094/pdis-11-18-2016-re] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Root-knot nematodes (Meloidogyne spp.) cause serious crop losses worldwide. The colonization of tomato roots by endophytic bacteria Bacillus cereus BCM2 can greatly reduce Meloidogyne incognita damage, and tomato roots carrying BCM2 were repellent to M. incognita second-stage juveniles (J2). Here, the effects of BCM2 colonization on the composition of tomato root exudates was evaluated and potential mechanisms for BCM2-mediated M. incognita control explored using a linked twin-pot assay and GC-MS. On water agar plates, J2 preferentially avoided filter paper treated with tomato root exudates (organic phase only) from plants inoculated with BCM2, visiting these 67.1% less than controls. In a linked twin-pot assay, BCM2 treatment resulted in a 42.0% reduction in the number of nematodes in the soil, a 43.3% reduction in the number of galls and a 47.7% decrease in the density of M. incognita in root tissues. Analysis of root exudate composition revealed that BCM2 inoculation increased the number of components in exudates. Among these, 2,4-di-tert-butylphenol, 3,3-dimethyloctane, and n-tridecane secretions markedly increased. In repellency trials on water agar plates, J2 avoided 2,4-di-tert-butylphenol, n-tridecane, and 3,3-dimethyloctane at concentrations of 4 mmol/liter. In a linked twin-pot assay, inoculation with 2,4-di-tert-butylphenol or 3,3-dimethyloctane reduced the number of nematodes in the soil (by 54.9 and 70.6%, respectively), the number of galls (by 53.7 and 52.4%), and the number of M. incognita in root tissues (by 67.5 and 36.3%). BCM2 colonization in tomato roots affected the composition of root exudates, increasing the secretion of substances that appear to be repellent, thus decreasing M. incognita J2 infection of roots.
Collapse
Affiliation(s)
- Xia Li
- 1 Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu Province 210023, China
| | - Hai-Jing Hu
- 1 Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu Province 210023, China
- 2 School of Life Science, Nanjing University, Nanjing, China
| | - Jing-Yu Li
- 1 Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu Province 210023, China
| | - Cong Wang
- 1 Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu Province 210023, China
| | - Shuang-Lin Chen
- 1 Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu Province 210023, China
| | - Shu-Zhen Yan
- 1 Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu Province 210023, China
| |
Collapse
|
44
|
Targeted transcriptional and proteomic studies explicate specific roles of Bacillus subtilis iturin A, fengycin, and surfactin on elicitation of defensive systems in mandarin fruit during stress. PLoS One 2019; 14:e0217202. [PMID: 31120923 PMCID: PMC6532888 DOI: 10.1371/journal.pone.0217202] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 05/07/2019] [Indexed: 02/07/2023] Open
Abstract
Application of Bacillus cyclic lipopeptides (CLPs); fengycin, iturin A and surfactin has shown a great potential in controlling the spread of green mold pathogen invasion (Penicillium digitatum) in wounded mandarin fruit during postharvest period. The limited defensive protein profiles followed specific expression of pivotal genes relating to plant hormone mediating signaling pathways of the CLPs’ action on stimulating host plant resistance have been exhibited. The present study aimed to elucidate the specific effect of individual CLP obtained from Bacillus subtilis ABS-S14 as elicitor role on activation of plant defensive system at transcriptional and proteomic levels with and without P. digitatum co-application in mandarin fruit. Fengycin and iturin A elevated the gene expression of PAL, ACS1, ACO, CHI, and GLU while significantly stimulating plant POD transcription was only detected in the treatments of surfactin both with and without following P. digitatum. An increase of LOX and PR1 gene transcripts was determined in the treatments of individual CLP with fungal pathogen co-application. Fengycin activated production of unique defensive proteins such as protein involved in ubiquinone biosynthetic process in treated flavedo without P. digitatum infection. Proteins involved in the auxin modulating pathway were present in the iturin A and surfactin treatments. CLP-protein binding assay following proteome analysis reveals that iturin A attached to 12-oxophytodienoate reductase 2 involved in the oxylipin biosynthetic process required for jasmonic acid production which is implicated in induced systemic resistance (ISR). This study suggests specific elicitor action of individual CLP, particularly iturin A showed the most powerful in stimulating the ISR system in response to stresses in postharvest mandarins.
Collapse
|
45
|
Agersø Y, Bjerre K, Brockmann E, Johansen E, Nielsen B, Siezen R, Stuer-Lauridsen B, Wels M, Zeidan AA. Putative antibiotic resistance genes present in extant Bacillus licheniformis and Bacillus paralicheniformis strains are probably intrinsic and part of the ancient resistome. PLoS One 2019; 14:e0210363. [PMID: 30645638 PMCID: PMC6333372 DOI: 10.1371/journal.pone.0210363] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 12/20/2018] [Indexed: 12/13/2022] Open
Abstract
Whole-genome sequencing and phenotypic testing of 104 strains of Bacillus licheniformis and Bacillus paralicheniformis from a variety of sources and time periods was used to characterize the genetic background and evolution of (putative) antimicrobial resistance mechanisms. Core proteins were identified in draft genomes and a phylogenetic analysis based on single amino acid polymorphisms allowed the species to be separated into two phylogenetically distinct clades with one outlier. Putative antimicrobial resistance genes were identified and mapped. A chromosomal ermD gene was found at the same location in all B. paralichenformis and in 27% of B. licheniformis genomes. Erythromycin resistance correlated very well with the presence of ermD. The putative streptomycin resistance genes, aph and aadK, were found in the chromosome of all strains as adjacent loci. Variations in amino acid sequence did not correlate with streptomycin susceptibility although the species were less susceptible than other Bacillus species. A putative chloramphenicol resistance gene (cat), encoding a novel chloramphenicol acetyltransferase protein was also found in the chromosome of all strains. Strains encoding a truncated CAT protein were sensitive to chloramphenicol. For all four resistance genes, the diversity and genetic context followed the overall phylogenetic relationship. No potentially mobile genetic elements were detected in their vicinity. Moreover, the genes were only distantly related to previously-described cat, aph, aad and erm genes present on mobile genetic elements or in other species. Thus, these genes are suggested to be intrinsic to B. licheniformis and B. paralicheniformis and part of their ancient resistomes. Since there is no evidence supporting horizontal transmission, these genes are not expected to add to the pool of antibiotic resistance elements considered to pose a risk to human or animal health. Whole-genome based phylogenetic and sequence analysis, combined with phenotypic testing, is proposed to be suitable for determining intrinsic resistance and evolutionary relationships.
Collapse
|