1
|
Bellaj M, Naboulsi A, Aziz K, Regti A, El Himri M, El Haddad M, El Achaby M, Abourriche A, Gebrati L, Kurniawan TA, Aziz F. Bio-based composite from chitosan waste and clay for effective removal of Congo red dye from contaminated water: Experimental studies and theoretical insights. ENVIRONMENTAL RESEARCH 2024; 255:119089. [PMID: 38788787 DOI: 10.1016/j.envres.2024.119089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/02/2024] [Accepted: 05/05/2024] [Indexed: 05/26/2024]
Abstract
Water pollution due to dyes in the textile industry is a serious environmental problem. During the finishing stage, Congo red (CR) dye, water-soluble, is released into wastewater, polluting the water body. This study explores the effectiveness of utilizing a composite composed of Safi raw clay and chitosan to remove an anionic dye from synthetic wastewater. The chitosan was extracted from crab shells. Its removal performance was compared to that of natural clay. Both the composite and raw clay were used to remove target pollutant. The effects of the chitosan load in the composite, size particles, initial dye concentration, contact time, pH, and temperature on the dye's elimination were tested in batch modes. The composite with 30% (w/w) of chitosan exhibited the highest dye removal. At pH 2, an adsorption capacity of 84.74 mg/g was achieved, indicating that the grafting of the polymer onto clay surface enhances its efficacity and stability in acidic environments. This finding was supported by characterization data obtained from X-ray diffraction (XRD), scanning electron microscopy (SEM), dispersive X-ray spectroscopy (EDX), and Fourier transform infrared (FT-IR) analyses. Under optimized conditions of 20 mg dose, pH 2, 30 min of reaction time, and 20 mg/L of dye concentration, about 92% of dye removal was achieved. The Langmuir isotherm model represents dye adsorption by the composite, while dye removal was controlled by pseudo-second-order model. Thermodynamic data of the adsorption (ΔH = +8.82 kJ/mol; ΔG <0) suggested that the dye adsorption was spontaneous and endothermic. The findings provide insights into the dye elimination by the adsorbent, indicating that the removal occurred via attractive colombic forces, as confirmed by density functional theory (DFT) analysis. Overall, the composite of natural clays and chitosan waste is a promising and innovative adsorbent for treating wastewater containing recalcitrant dyes.
Collapse
Affiliation(s)
- Mouhsine Bellaj
- Laboratory of Materials, Process, Environment, and Quality (LMPEQ), ENSA Safi, Morocco
| | - Aicha Naboulsi
- Laboratory of Analytical and Molecular Chemistry, Faculty Poly-disciplinary of Safi, BP 4162, Safi, 46 000, Morocco
| | - Khalid Aziz
- Materials Science, Energy and Nano-Engineering (MSN) Department, Mohammed VI Polytechnic University (UM6P), Lot 660 - Hay Moulay Rachid, 43150, Benguerir, Morocco
| | - Abdelmajid Regti
- Laboratory of Analytical and Molecular Chemistry, Faculty Poly-disciplinary of Safi, BP 4162, Safi, 46 000, Morocco
| | - Mamoune El Himri
- Laboratory of Analytical and Molecular Chemistry, Faculty Poly-disciplinary of Safi, BP 4162, Safi, 46 000, Morocco
| | - Mohammadine El Haddad
- Laboratory of Analytical and Molecular Chemistry, Faculty Poly-disciplinary of Safi, BP 4162, Safi, 46 000, Morocco
| | - Mounir El Achaby
- Materials Science, Energy and Nano-Engineering (MSN) Department, Mohammed VI Polytechnic University (UM6P), Lot 660 - Hay Moulay Rachid, 43150, Benguerir, Morocco
| | - Abdelkrim Abourriche
- Laboratory of Materials, Process, Environment, and Quality (LMPEQ), ENSA Safi, Morocco
| | - Lhoucine Gebrati
- Laboratory of Materials, Process, Environment, and Quality (LMPEQ), ENSA Safi, Morocco; Biochemistry Laboratory, Faculty of Medicine and Pharmacy of Marrakech, Cadi Ayyad University, B.P. 7010, 40000, Marrakech, Morocco
| | | | - Faissal Aziz
- Laboratory of Water, Biodiversity Climate Changes, Semlalia Faculty of Sciences, B.P. 2390, 40000, Marrakech, Morocco; National Centre for Research and Study on Water and Energy (CNEREE), University Cadi Ayyad, Marrakech, Morocco.
| |
Collapse
|
2
|
Kurniawan TA, Mohyuddin A, Othman MHD, Goh HH, Zhang D, Anouzla A, Aziz F, Casila JC, Ali I, Pasaribu B. Beyond surface: Unveiling ecological and economic ramifications of microplastic pollution in the oceans. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e11070. [PMID: 39005104 DOI: 10.1002/wer.11070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/28/2024] [Accepted: 06/11/2024] [Indexed: 07/16/2024]
Abstract
Every year, the global production of plastic waste reaches a staggering 400 million metric tons (Mt), precipitating adverse consequences for the environment, food safety, and biodiversity as it degrades into microplastics (MPs). The multifaceted nature of MP pollution, coupled with its intricate physiological impacts, underscores the pressing need for comprehensive policies and legislative frameworks. Such measures, alongside advancements in technology, hold promise in averting ecological catastrophe in the oceans. Mandated legislation represents a pivotal step towards restoring oceanic health and securing the well-being of the planet. This work offers an overview of the policy hurdles, legislative initiatives, and prospective strategies for addressing global pollution due to MP. Additionally, this work explores innovative approaches that yield fresh insights into combating plastic pollution across various sectors. Emphasizing the importance of a global plastics treaty, the article underscores its potential to galvanize collaborative efforts in mitigating MP pollution's deleterious effects on marine ecosystems. Successful implementation of such a treaty could revolutionize the plastics economy, steering it towards a circular, less polluting model operating within planetary boundaries. Failure to act decisively risks exacerbating the scourge of MP pollution and its attendant repercussions on both humanity and the environment. Central to this endeavor are the formulation, content, and execution of the treaty itself, which demand careful consideration. While recognizing that a global plastics treaty is not a panacea, it serves as a mechanism for enhancing plastics governance and elevating global ambitions towards achieving zero plastic pollution by 2040. Adopting a life cycle approach to plastic management allows for a nuanced understanding of possible trade-offs between environmental impact and economic growth, guiding the selection of optimal solutions with socio-economic implications in mind. By embracing a comprehensive strategy that integrates legislative measures and technological innovations, we can substantially reduce the influx of marine plastic litter at its sources, safeguarding the oceans for future generations.
Collapse
Affiliation(s)
| | - Ayesha Mohyuddin
- Department of Chemistry, School of Science, University of Management and Technology, Lahore, Pakistan
| | - Mohd Hafiz Dzarfan Othman
- Advanced Membrane Technology Research Centre (AMTEC), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), Skudai, Johor Bahru, Malaysia
| | - Hui Hwang Goh
- School of Electrical Engineering, Guangxi University, Nanning, Guangxi, China
| | - Dongdong Zhang
- School of Electrical Engineering, Guangxi University, Nanning, Guangxi, China
| | - Abdelkader Anouzla
- Department of Process Engineering and Environment, Faculty of Science and Technology, University Hassan II of Casablanca, Mohammedia, Morocco
| | - Faissal Aziz
- Laboratory of Water, Biodiversity and Climate Changes, Semlalia Faculty of Sciences, B.P. 2390, Cadi Ayyad University, Marrakech, Morocco
| | - Joan C Casila
- Land and Water Resources Engineering Division, Institute of Agricultural and Biosystems Engineering, College of Engineering and Agro-industrial Technology, University of the Philippines-Los Baños, Los Baños, Philippines
| | - Imran Ali
- Department of Chemistry, Jamia Millia Islamia, New Delhi, India
| | - Buntora Pasaribu
- Department of Marine Science, Faculty of Fisheries and Marine Science, Padjadjaran University, Jatinangor, Indonesia
| |
Collapse
|
3
|
Kurniawan TA, Liang X, Goh HH, Dzarfan Othman MH, Anouzla A, Al-Hazmi HE, Chew KW, Aziz F, Ali I. Leveraging food waste for electricity: A low-carbon approach in energy sector for mitigating climate change and achieving net zero emission in Hong Kong (China). JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119879. [PMID: 38157574 DOI: 10.1016/j.jenvman.2023.119879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/16/2023] [Accepted: 12/16/2023] [Indexed: 01/03/2024]
Abstract
In recent years, food waste has been a global concern that contributes to climate change. To deal with the rising impacts of climate change, in Hong Kong, food waste is converted into electricity in the framework of low-carbon approach. This work provides an overview of the conversion of food waste into electricity to achieve carbon neutrality. The production of methane and electricity from waste-to-energy (WTE) conversion are determined. Potential income from its sale and environmental benefits are also assessed quantitatively and qualitatively. It was found that the electricity generation from the food waste could reach 4.33 × 109 kWh annually, avoiding equivalent electricity charge worth USD 3.46 × 109 annually (based on US' 8/kWh). An equivalent CO2 mitigation of 9.9 × 108 kg annually was attained. The revenue from its electricity sale in market was USD 1.44×109 in the 1st year and USD 4.24 ×109 in the 15th year, respectively, according to the projected CH4 and electricity generation. The modelling study indicated that the electricity production is 0.8 kWh/kg of landfilled waste. The food waste could produce electricity as low as US' 8 per kW ∙ h. In spite of its promising results, there are techno-economic bottlenecks in commercial scale production and its application at comparable costs to conventional fossil fuels. Issues such as high GHG emissions and high production costs have been determined to be resolved later. Overall, this work not only leads to GHG avoidance, but also diversifies energy supply in providing power for homes in the future.
Collapse
Affiliation(s)
| | - Xue Liang
- School of Electrical Engineering, Guangxi University, Nanning, 530004, Guangxi, PR China
| | - Hui Hwang Goh
- School of Electrical Engineering, Guangxi University, Nanning, 530004, Guangxi, PR China.
| | - Mohd Hafiz Dzarfan Othman
- Advanced Membrane Technology Research Centre, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Abdelkader Anouzla
- Laboratory of Process Engineering and Environment, Faculty of Science and Technology, Hassan II University, Mohammedia, 28806, Morocco
| | - Hussein E Al-Hazmi
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Gdańsk, Poland
| | - Kit Wayne Chew
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637459, Singapore
| | - Faissal Aziz
- Laboratory of Water, Biodiversity & Climate Changes, Faculty of Science Semlalia, Cadi Ayyad University, BP 2390, 40000, Marrakech, Morocco
| | - Imran Ali
- Department of Chemistry, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| |
Collapse
|
4
|
Kurniawan TA, Othman MHD, Liang X, Goh HH, Gikas P, Chong KK, Chew KW. Challenges and opportunities for biochar to promote circular economy and carbon neutrality. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 332:117429. [PMID: 36773474 DOI: 10.1016/j.jenvman.2023.117429] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/22/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Biochar, derived from unused biomass, is widely considered for its potential to deal with climate change problems. Global interest in biochar is attributed to its ability to sequester carbon in soil and to remediate aquatic environment from water pollution. As soil conditioner and/or adsorbent, biochar offers opportunity through a circular economy (CE) paradigm. While energy transition continues, progress toward low-emissions materials accelerates their advance towards net-zero emissions. However, none of existing works addresses CE-based biochar management to achieve carbon neutrality. To reflect its novelty, this work provides a critical overview of challenges and opportunities for biochar to promote CE and carbon neutrality. This article also offers seminal perspectives about strengthening biomass management through CE and resource recovery paradigms, while exploring how the unused biomass can promote net zero emissions in its applications. By consolidating scattered knowledge in the body of literature into one place, this work uncovers new research directions to close the loops by implementing the circularity of biomass resources in various fields. It is conclusive from a literature survey of 113 articles (2003-2023) that biomass conversion into biochar can promote net zero emissions and CE in the framework of the UN Sustainable Development Goals (SDGs). Depending on their physico-chemical properties, biochar can become a suitable feedstock for CE. Biochar application as soil enrichment offsets 12% of CO2 emissions by land use annually. Adding biochar to soil can improve its health and agricultural productivity, while minimizing about 1/8 of CO2 emissions. Biochar can also sequester CO2 in the long-term and prevent the release of carbon back into the atmosphere after its decomposition. This practice could sequester 2.5 gigatons (Gt) of CO2 annually. With the global biochar market reaching USD 368.85 million by 2028, this work facilitates biochar with its versatile characteristics to promote carbon neutrality and CE applications.
Collapse
Affiliation(s)
| | - Mohd Hafiz Dzarfan Othman
- Advanced Membrane Technology Research Centre, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), Skudai, 81310, Johor Bahru, Malaysia
| | - Xue Liang
- School of Electrical Engineering, Guangxi University, Nanning, 530004, China
| | - Hui Hwang Goh
- School of Electrical Engineering, Guangxi University, Nanning, 530004, China
| | - Petros Gikas
- School of Chemical and Environmental Engineering, Technical University of Crete, Chania, 73100, Greece
| | - Kok-Keong Chong
- Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, 43000, Kajang, Selangor, Malaysia
| | - Kit Wayne Chew
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 637459, Singapore
| |
Collapse
|
5
|
Remediation technologies for contaminated groundwater due to arsenic (As), mercury (Hg), and/or fluoride (F): A critical review and way forward to contribute to carbon neutrality. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
6
|
Sniatala B, Kurniawan TA, Sobotka D, Makinia J, Othman MHD. Macro-nutrients recovery from liquid waste as a sustainable resource for production of recovered mineral fertilizer: Uncovering alternative options to sustain global food security cost-effectively. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159283. [PMID: 36208738 DOI: 10.1016/j.scitotenv.2022.159283] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/27/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
Global food security, which has emerged as one of the sustainability challenges, impacts every country. As food cannot be generated without involving nutrients, research has intensified recently to recover unused nutrients from waste streams. As a finite resource, phosphorus (P) is largely wasted. This work critically reviews the technical applicability of various water technologies to recover macro-nutrients such as P, N, and K from wastewater. Struvite precipitation, adsorption, ion exchange, and membrane filtration are applied for nutrient recovery. Technological strengths and drawbacks in their applications are evaluated and compared. Their operational conditions such as pH, dose required, initial nutrient concentration, and treatment performance are presented. Cost-effectiveness of the technologies for P or N recovery is also elaborated. It is evident from a literature survey of 310 published studies (1985-2022) that no single technique can effectively and universally recover target macro-nutrients from liquid waste. Struvite precipitation is commonly used to recover over 95 % of P from sludge digestate with its concentration ranging from 200 to 4000 mg/L. The recovered precipitate can be reused as a fertilizer due to its high content of P and N. Phosphate removal of higher than 80 % can be achieved by struvite precipitation when the molar ratio of Mg2+/PO43- ranges between 1.1 and 1.3. The applications of artificial intelligence (AI) to collect data on critical parameters control optimization, improve treatment effectiveness, and facilitate water utilities to upscale water treatment plants. Such infrastructure in the plants could enable the recovered materials to be reused to sustain food security. As nutrient recovery is crucial in wastewater treatment, water treatment plant operators need to consider (1) the costs of nutrient recovery techniques; (2) their applicability; (3) their benefits and implications. It is essential to note that the treatment cost of P and/or N-laden wastewater depends on the process applied and local conditions.
Collapse
Affiliation(s)
- Bogna Sniatala
- Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Gdańsk, Poland
| | - Tonni Agustiono Kurniawan
- Advanced Membrane Technology Research Centre (AMTEC), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia.
| | - Dominika Sobotka
- Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Gdańsk, Poland
| | - Jacek Makinia
- Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Gdańsk, Poland.
| | - Mohd Hafiz Dzarfan Othman
- Advanced Membrane Technology Research Centre (AMTEC), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| |
Collapse
|
7
|
Mu Y, Williams PT. Recent advances in the abatement of volatile organic compounds (VOCs) and chlorinated-VOCs by non-thermal plasma technology: A review. CHEMOSPHERE 2022; 308:136481. [PMID: 36165927 DOI: 10.1016/j.chemosphere.2022.136481] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/05/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
Most of the volatile organic compounds (VOCs) and especially the chlorinated volatile organic compounds (Cl-VOCs), are regarded as major pollutants due to their properties of volatility, diffusivity and toxicity which pose a significant threat to human health and the eco-environment. Catalytic degradation of VOCs and Cl-VOCs to harmless products is a promising approach to mitigate the issues caused by VOCs and Cl-VOCs. Non-thermal plasma (NTP) assisted catalysis is a promising technology for the efficient degradation of VOCs and Cl-VOCs with higher selectivity under relatively mild conditions compared with conventional thermal catalysis. This review summarises state-of-the-art research of the in plasma catalysis (IPC) of VOCs degradation from three major aspects including: (i) the design of catalysts, (ii) the strategies of deep catalytic degradation and by-products inhibition, and (iii) the fundamental research into mechanisms of NTP activated catalytic VOCs degradation. Particular attention is also given to Cl-VOCs due to their characteristic properties of higher stability and toxicity. The catalysts used for the degradation Cl-VOCs, chlorinated by-products formation and the degradation mechanism of Cl-VOCs are systematically reviewed in each chapter. Finally, a perspective on future challenges and opportunities in the development of NTP assisted VOCs catalytic degradation were discussed.
Collapse
Affiliation(s)
- Yibing Mu
- School of Chemical and Process Engineering, University of Leeds, Leeds, LS2 9JT, UK
| | - Paul T Williams
- School of Chemical and Process Engineering, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
8
|
Fu C, Pan C, Chen T, Peng D, Liu Y, Wu F, Xu J, You Z, Li J, Luo L. Adsorption-enforced Fenton-like process using activated carbon-supported iron oxychloride catalyst for wet scrubbing of airborne dichloroethane. CHEMOSPHERE 2022; 307:136193. [PMID: 36037963 DOI: 10.1016/j.chemosphere.2022.136193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Wet scrubbing is a low-cost process for disposing of air pollutants. Nevertheless, this method is rarely used for the treatment of volatile organic compounds (VOCs) because of their poor water solubility. In this study, we used a unique wet scrubbing system containing H2O2 and activated carbon (AC)-supported iron oxychloride (FeOCl) nanoparticles to remove airborne dichloroethane (DCE). The operating conditions of the wet scrubber were optimized, and the mechanism was explored. The results showed that the adsorption of dissolved DCE onto AC promoted its transfer from air to water, while the accumulation of DCE on AC facilitated its oxidation by •OH generated on FeOCl catalyst. The wet scrubber performed well at pH 3 and low H2O2 concentrations. By pulsed or continuous dosing H2O2, the cooperative adsorption-catalytic oxidation allowed long-term DCE removal from air. Benefiting from satisfactory cost-effectiveness, avoidance of toxic byproduct formation, and less corrosion and catalyst poisoning, wet scrubbers coupled with cooperative adsorption and heterogeneous advanced oxidation processes could have broad application potentials in VOC control.
Collapse
Affiliation(s)
- Chenchong Fu
- School of Resource and Environmental Sciences, Hubei Key Lab of Bioresource and Environmental Biotechnology, Wuhan University, Wuhan 430079, China
| | - Cong Pan
- School of Resource and Environmental Sciences, Hubei Key Lab of Bioresource and Environmental Biotechnology, Wuhan University, Wuhan 430079, China
| | - Tao Chen
- School of Resource and Environmental Sciences, Hubei Key Lab of Bioresource and Environmental Biotechnology, Wuhan University, Wuhan 430079, China
| | - Deqin Peng
- School of Resource and Environmental Sciences, Hubei Key Lab of Bioresource and Environmental Biotechnology, Wuhan University, Wuhan 430079, China
| | - Yaqian Liu
- School of Resource and Environmental Sciences, Hubei Key Lab of Bioresource and Environmental Biotechnology, Wuhan University, Wuhan 430079, China
| | - Feng Wu
- School of Resource and Environmental Sciences, Hubei Key Lab of Bioresource and Environmental Biotechnology, Wuhan University, Wuhan 430079, China
| | - Jing Xu
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China
| | - Zhixiong You
- School of Resource and Environmental Sciences, Hubei Key Lab of Bioresource and Environmental Biotechnology, Wuhan University, Wuhan 430079, China
| | - Jinjun Li
- School of Resource and Environmental Sciences, Hubei Key Lab of Bioresource and Environmental Biotechnology, Wuhan University, Wuhan 430079, China.
| | - Liting Luo
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China.
| |
Collapse
|
9
|
Kurniawan TA, Lo W, Othman MHD, Goh HH, Chong KK. Biosorption of heavy metals from aqueous solutions using activated sludge, Aeromasss hydrophyla, and Branhamella spp based on modeling with GEOCHEM. ENVIRONMENTAL RESEARCH 2022; 214:114070. [PMID: 35988827 DOI: 10.1016/j.envres.2022.114070] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/24/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
This work tests the technical applicability of sewage sludge and isolated dead cells of Aeromasss hydrophyla and Branhamella spp for the elimination of inorganic pollutants such as Zn(II), Pb(II), Cd(II), and/or Cu(II) using synthetic wastewater with their initial concentrations of 100 mg/L, respectively. The sludge samples were collected from local sewage treatment plants. The effects of dose and pH on heavy metals removal were evaluated in batch studies and their removal performances were compared to those of previous studies. Both the Freundlich and the Langmuir models were plotted to study their biosorption using activated sludge and the bacteria. Isotherm data, resulting from the batch studies, were compared to the modeling results of Geochem. It was evident that the activated sludge could achieve 99% of Zn(II), Cd(II), Cu(II) and Pb(II) removal with 100 mg/L of concentration at pH 6.0 and 3 g/L of dose. Under the same conditions, 97% of Cd(II), Cu(II) and/or Pb(II) was removed by Aeromasss hydrophyla and Branhamella spp, as indicated by their adsorption capacities (activated sludge: 99.07 mg Pb2+/g; dewatered sludge: 57.15 mg Pb2+/g; digested sludge: 83.58 mg Pb2+/g; 24.47 mg Cd2+/g; Aeromasss hydrophylla: 71.91 mg Pb2+/g; Branhamella spp: 37.52 mg Cu2+/g). Of the four heavy metals studied, Pb(II) had the highest metal adsorption capacity for all adsorbents studied (Pb2+>Cu2+> Cd2+>Zn2+). The modeling results of the Geochem fitted well with the isotherm data of the batch studies at varying concentrations from 20 to 100 mg/L. The thermodynamic constant at pH 4 were comparable to those obtained from previous works. This indicates a reliable prediction over varying metal concentrations and pHs of the batch studies. In spite of the promising results, the treated effluents still could not meet the required effluent limits set by local legislation. Therefore, it is necessary to subsequently treat the samples using biological processes such as activated sludge.
Collapse
Affiliation(s)
| | - Waihung Lo
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, PR China
| | - Mohd Hafiz Dzarfan Othman
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), 81310, Skudai, Johor Baru, Malaysia
| | - Hui Hwang Goh
- School of Electrical Engineering, Guangxi University, Nanning, 530004, Guangxi, PR China
| | - Kok-Keong Chong
- Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, 43000, Kajang, Selangor, Malaysia
| |
Collapse
|
10
|
Jeong WG, Kim JG, Lee SM, Baek K. CaO 2-based electro-Fenton-oxidation of 1,2-dichloroethane in groundwater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 843:157065. [PMID: 35780882 DOI: 10.1016/j.scitotenv.2022.157065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/06/2022] [Accepted: 06/26/2022] [Indexed: 06/15/2023]
Abstract
It has been well recognized that the Fenton reaction requires a rigorous pH control and suffers from the fast self-degradation of H2O2. In an effort to resolve the technical demerits of the conventional Fenton reaction, particular concern on the use of CaO2-based Fenton reaction was paid in this study. To realize the practical use of CaO2 in the Fenton reaction for groundwater remediation, it could be of great importance to control its reaction rate in the subsurface. As such, this study laid great emphasis on the combined process of electrochemical oxidation and CaO2-based Fenton oxidation, using 1,2-dichloroethane (1,2-DCA) as a model compound. It was hypothesized that the reaction rate is also highly contingent on the formation of Fe(II) (stemmed from iron anode oxidation). Eighty percent of 1,2-DCA were degraded by the CaO2-based Fenton reaction. The final pH was neutral, inferring that the reaction could be a viable option for the subsurface environment. Moreover, the supply of electric current in an iron anode expedited 1,2-DCA degradation efficiency from 35 % to 62 % via electrically generated Fe(II), which donated electrons to H2O2, producing more hydroxyl radicals. An anode-cathode configuration from the single-well system enhanced the degradation of 1,2-DCA, with less amount of energy consumption than the double-well system. Based on results, CaO2-based electro-Fenton oxidation can remove well 1,2-DCA in groundwater and can be a strategic measure for groundwater remediation.
Collapse
Affiliation(s)
- Won-Gune Jeong
- Department of Environment & Energy, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo 54896, Republic of Korea; Soil Environment Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo 54896, Republic of Korea
| | - Jong-Gook Kim
- Department of Environment & Energy, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo 54896, Republic of Korea; Soil Environment Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo 54896, Republic of Korea
| | - Su-Min Lee
- Department of Environment & Energy, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo 54896, Republic of Korea; Soil Environment Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo 54896, Republic of Korea
| | - Kitae Baek
- Department of Environment & Energy, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo 54896, Republic of Korea; Soil Environment Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo 54896, Republic of Korea; School of Civil, Environmental, and Resources-Energy Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo 54896, Republic of Korea.
| |
Collapse
|
11
|
Le ST, Israpanich A, Phenrat T. Using sequential H 2O 2 addition to sustain 1,2-dichloroethane detoxification by a nanoscale zerovalent iron-induced Fenton's system at a natural pH. CHEMOSPHERE 2022; 305:135376. [PMID: 35716714 DOI: 10.1016/j.chemosphere.2022.135376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/25/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
1,2-dichloroethane (1,2-DCA) is a chlorinated hydrocarbon used for polyvinyl chloride plastic production. As such, 1,2-DCA is a common persistent contaminant in saturated zones. While nanoscale zerovalent iron (NZVI) is considered an effective reductant for removing a wide range of chlorinated hydrocarbons, 1,2-DCA is resistant to reduction by NZVI as well as by modified forms of NZVI (e.g., sulfidated-NZVI). Hydroxyl radicals produced in Fenton's reaction can effectively degrade 1,2-DCA, but Fenton's reaction requires the acidification of saturated zones to achieve a groundwater pH of 3 to facilitate the catalytic reaction. To overcome this problem, this study has developed a sequential treatment process using an NZVI-induced Fenton-like reaction that can effectively degrade 1,2-DCA at an initially neutral pH range. The experiments were conducted using a high 1,2-DCA concentration (2000 mg/L) to evaluate the feasibility of using the treatment process at source zones. The process degraded 99% of 1,2-DCA with a pseudo-first-order rate constant of 0.49 h-1. Unlike the single-stage treatment process, the sequential treatment can control the used H2O2 concentration in the system, thus sustaining the reaction and resulting in more efficient 1,2-DCA degradation. To mimic subsurface conditions, batch experiments were conducted to remove 1,2-DCA sorbed in contaminated soil. The results show that 99% removal of 1,2-DCA was obtained within 16 h. Additionally, this study suggests that the NZVI can be used for at least three consecutive 1,2-DCA degradation cycles while maintaining high removal efficiency.
Collapse
Affiliation(s)
- Song-Thao Le
- Research Unit for Integrated Natural Resources Remediation and Reclamation (IN3R), Department of Civil Engineering, Faculty of Engineering, Naresuan University, Phitsanulok, Thailand; Center of Excellence for Sustainability of Health, Environment and Industry (SHEI), Faculty of Engineering, Naresuan University, Phitsanulok, Thailand
| | - Atsada Israpanich
- Research Unit for Integrated Natural Resources Remediation and Reclamation (IN3R), Department of Civil Engineering, Faculty of Engineering, Naresuan University, Phitsanulok, Thailand; Center of Excellence for Sustainability of Health, Environment and Industry (SHEI), Faculty of Engineering, Naresuan University, Phitsanulok, Thailand
| | - Tanapon Phenrat
- Research Unit for Integrated Natural Resources Remediation and Reclamation (IN3R), Department of Civil Engineering, Faculty of Engineering, Naresuan University, Phitsanulok, Thailand; Center of Excellence for Sustainability of Health, Environment and Industry (SHEI), Faculty of Engineering, Naresuan University, Phitsanulok, Thailand.
| |
Collapse
|
12
|
Fu D, Kurniawan TA, Gui H, Li H, Feng S, Li Q, Wang Y. Role of Cu xO-Anchored Pyrolyzed Hydrochars on H 2O 2-Activated Degradation of Tetracycline: Effects of Pyrolysis Temperature and pH. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01100] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Dun Fu
- Key Laboratory for Chemical Biology of Fujian Province, Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
- Key Laboratory of Mine Water Resource Utilization of Anhui Higher Education Institutes, Suzhou University, Suzhou 234000, P. R. China
| | - Tonni Agustiono Kurniawan
- Key Laboratory for Chemical Biology of Fujian Province, Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Herong Gui
- Key Laboratory of Mine Water Resource Utilization of Anhui Higher Education Institutes, Suzhou University, Suzhou 234000, P. R. China
| | - Heng Li
- Key Laboratory for Chemical Biology of Fujian Province, Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Songbao Feng
- Key Laboratory of Mine Water Resource Utilization of Anhui Higher Education Institutes, Suzhou University, Suzhou 234000, P. R. China
| | - Qingbiao Li
- Key Laboratory for Chemical Biology of Fujian Province, Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
- College of Food and Biology Engineering, Jimei University, Xiamen 361021, P. R. China
| | - Yuanpeng Wang
- Key Laboratory for Chemical Biology of Fujian Province, Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| |
Collapse
|
13
|
Treatment of whitewater from pulp and paper industry using membrane filtrations. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02226-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
14
|
Transformation of Solid Waste Management in China: Moving towards Sustainability through Digitalization-Based Circular Economy. SUSTAINABILITY 2022. [DOI: 10.3390/su14042374] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
In China, environmental pollution due to municipal solid waste (MSW) over-generation is one of the country’s priority concerns. The increasing volume and complexity of the waste poses serious risks to the environment and public health. Currently, the annual growth of MSW generation is estimated to be approximately 8–10% and will increase to 323 million metric tons (Mt) by 2030. Based on the secondary data collected from a literature survey, this article critically evaluates the recent progress of MSW management (MSWM) in China and offers new insights into the waste sector in the era of Industry 4.0. This helps decision makers in China to plan a smooth transition nationwide to a circular economy (CE) in the waste sector. It is evident that digitalization is a driving force for China to move towards low-carbon development strategies within the framework of CE. Through digitalization, the waste sector has promoted prevention, reduction, reuse, and recycling (3Rs) of waste before waste disposal in landfills. A proper implementation of digitalization-based waste recycling has contributed to an efficient cooperation between the government and private sector, increased job opportunities, and promoted the conservation of resources. It is anticipated that this work not only contributes to the establishment of an integrated MSWM system in China, but also improves local MSWM through digitalization in the framework of a CE.
Collapse
|
15
|
Kurniawan TA, Singh D, Avtar R, Othman MHD, Hwang GH, Albadarin AB, Rezakazemi M, Setiadi T, Shirazian S. Resource recovery from landfill leachate: An experimental investigation and perspectives. CHEMOSPHERE 2021; 274:129986. [PMID: 33979934 DOI: 10.1016/j.chemosphere.2021.129986] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 01/12/2021] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
This work investigates the performances of coconut shell waste-based activated carbon (CSWAC) adsorption in batch studies for removal of ammoniacal nitrogen (NH3-N) and refractory pollutants (as indicated by decreasing COD concentration) from landfill leachate. To valorize unused resources, coconut shell, recovered and recycled from agricultural waste, was converted into activated carbon, which can be used for leachate treatment. The ozonation of the CSWAC was conducted to enhance its removal performance for target pollutants. The adsorption mechanisms of refractory pollutants by the adsorbent are proposed. Perspectives on nutrient recovery technologies from landfill leachate from the view-points of downstream processing are presented. Their removal efficiencies for both recalcitrant compounds and ammoniacal nitrogen were compared to those of other techniques reported in previous work. It is found that the ozonated CSWAC substantially removed COD (i.e. 76%) as well as NH3-N (i.e. 75%), as compared to the CSWAC without pretreatment (i.e. COD: 44%; NH3-N: 51%) with NH3-N and COD concentrations of 2750 and 8500 mg/L, respectively. This reveals the need of ozonation for the adsorbent to improve its performance for the removal of COD and NH3-N at optimized reactions: 30 g/L of CSWAC, pH 8, 200 rpm of shaking speed and 20 min of reaction time. Nevertheless, treatment of the leachate samples using the ozonated CSWAC alone was still unable to result in treated effluents that could meet the COD and NH3-N discharge standards below 200 and 5 mg/L, respectively, set by legislative requirements. This reveals that another treatment is necessary to be undertaken to comply with the requirement of their effluent limit.
Collapse
Affiliation(s)
| | - Deepak Singh
- Department of Geography and Resource Management, Chinese University of Hong Kong, Hong Kong
| | - Ram Avtar
- Faculty of Environmental Earth Sciences, Hokkaido University, Sapporo, 060-0810, Japan
| | - Mohd Hafiz Dzarfan Othman
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, University Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Goh Hui Hwang
- School of Electrical Engineering, Guangxi University, Nanning, Guangxi, PR China
| | - Ahmad B Albadarin
- Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick, Ireland
| | - Mashallah Rezakazemi
- Faculty of Chemical and Materials Engineering, Shahrood University of Technology, Shahrood, Iran
| | - Tjandra Setiadi
- Center for Environmental Studies, Bandung Institute of Technology, Bandung, 40135, Indonesia
| | - Saeed Shirazian
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Viet Nam; Faculty of Environmental and Chemical Engineering, Duy Tan University, Da Nang, 550000, Viet Nam; Laboratory of Computational Modeling of Drugs, South Ural State University, 454080, Chelyabinsk, Russia
| |
Collapse
|
16
|
Mengting Z, Kurniawan TA, Avtar R, Othman MHD, Ouyang T, Yujia H, Xueting Z, Setiadi T, Iswanto I. Applicability of TiO 2(B) nanosheets@hydrochar composites for adsorption of tetracycline (TC) from contaminated water. JOURNAL OF HAZARDOUS MATERIALS 2021; 405:123999. [PMID: 33288338 DOI: 10.1016/j.jhazmat.2020.123999] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 09/12/2020] [Accepted: 09/14/2020] [Indexed: 06/12/2023]
Abstract
We test the feasibility of TiO2(B)@carbon composites as adsorbents, derived from wheat straws, for tetracycline (TC) adsorption from aqueous solutions. Hydrochar (HC), biochar (BC), and hydrochar-derived pyrolysis char (HDPC) are synthesized hydrothermally from the waste and then functionalized with TiO2(B), named as 'Composite-1', 'Composite-2', and 'Composite-3', respectively. A higher loading of TiO2(B) into the HC was also synthesized for comparison, named as 'Composite-4'. To compare their physico-chemical changes before and after surface modification, the composites are characterized using FESEM-EDS, XRD, BET, FRTEM, and FTIR. The effects of H2O2 addition on TC removal are investigated. Adsorption kinetics and isotherms of TC removal are studied, while TC adsorption mechanisms are elaborated. We found that the Composite-4 has the highest TC removal (93%) at pH 7, 1 g/L of dose, and 4 h of reaction time at 50 mg/L of TC after adding H2O2 (10 mM). The TC adsorption capacities of the Composite-1 and Composite-4 are 40.65 and 49.26 mg/g, respectively. The TC removal by the Composite-1 follows the pseudo-second order. Overall, this suggests that converting the wheat straw into HC and then functionalizing its surface with TiO2(B) as a composite has added values to the waste as an adsorbent for wastewater treatment.
Collapse
Affiliation(s)
- Zhu Mengting
- Key Laboratory of the Coastal and Wetland Ecosystems (Xiamen University), Ministry of Education, College of the Environment and Ecology, Xiamen University, Fujian 361102, China
| | - Tonni Agustiono Kurniawan
- Key Laboratory of the Coastal and Wetland Ecosystems (Xiamen University), Ministry of Education, College of the Environment and Ecology, Xiamen University, Fujian 361102, China; Department of Energy, Environment, and Climate Change, School of Environment Resources and Development (SERD), Asian Institute of Technology (AIT), Pathumthani 12120, Thailand.
| | - Ram Avtar
- Faculty of Environmental Earth Sciences, Hokkaido University, Sapporo 060-0810, Japan.
| | - Mohd Hafiz Dzarfan Othman
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, University Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Tong Ouyang
- Key Laboratory of the Coastal and Wetland Ecosystems (Xiamen University), Ministry of Education, College of the Environment and Ecology, Xiamen University, Fujian 361102, China
| | - Huang Yujia
- Key Laboratory of the Coastal and Wetland Ecosystems (Xiamen University), Ministry of Education, College of the Environment and Ecology, Xiamen University, Fujian 361102, China
| | - Zhang Xueting
- Key Laboratory of the Coastal and Wetland Ecosystems (Xiamen University), Ministry of Education, College of the Environment and Ecology, Xiamen University, Fujian 361102, China
| | - Tjandra Setiadi
- Center for Environment Studies, Bandung Institute of Technology (ITB), Bandung 40135, Indonesia
| | | |
Collapse
|
17
|
Abstract
Oil pollutants, due to their toxicity, mutagenicity, and carcinogenicity, are considered a serious threat to human health and the environment. Petroleum hydrocarbons compounds, for instance, benzene, toluene, ethylbenzene, xylene, are among the natural compounds of crude oil and petrol and are often found in surface and underground water as a result of industrial activities, especially the handling of petrochemicals, reservoir leakage or inappropriate waste disposal processes. Methods based on the conventional wastewater treatment processes are not able to effectively eliminate oil compounds, and the high concentrations of these pollutants, as well as active sludge, may affect the activities and normal efficiency of the refinery. The methods of removal should not involve the production of harmful secondary pollutants in addition to wastewater at the level allowed for discharge into the environment. The output of sewage filtration by coagulation and dissolved air flotation (DAF) flocculation can be transferred to a biological reactor for further purification. Advanced coagulation methods such as electrocoagulation and flocculation are more advanced than conventional physical and chemical methods, but the major disadvantages are the production of large quantities of dangerous sludge that is unrecoverable and often repelled. Physical separation methods can be used to isolate large quantities of petroleum compounds, and, in some cases, these compounds can be recycled with a number of processes. The great disadvantage of these methods is the high demand for energy and the high number of blockages and clogging of a number of tools and equipment used in this process. Third-party refinement can further meet the objective of water reuse using methods such as nano-filtration, reverse osmosis, and advanced oxidation. Adsorption is an emergency technology that can be applied using minerals and excellent materials using low-cost materials and adsorbents. By combining the adsorption process with one of the advanced methods, in addition to lower sludge production, the process cost can also be reduced.
Collapse
|
18
|
Mengting Z, Kurniawan TA, Yanping Y, Avtar R, Othman MHD. 2D Graphene oxide (GO) doped p-n type BiOI/Bi2WO6 as a novel composite for photodegradation of bisphenol A (BPA) in aqueous solutions under UV-vis irradiation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 108:110420. [DOI: 10.1016/j.msec.2019.110420] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/08/2019] [Accepted: 11/10/2019] [Indexed: 12/26/2022]
|
19
|
Zhao H, Han W, Dong F, Tang Z. Enhanced catalytic performance of Nb doping Ce supported on ordered mesoporous TiO2-SiO2 catalysts for catalytic elimination of 1,2-dichlorobenzene. MOLECULAR CATALYSIS 2019. [DOI: 10.1016/j.mcat.2019.110638] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
20
|
Razmi R, Ramavandi B, Ardjmand M, Heydarinasab A. Efficient phenol removal from petrochemical wastewater using biochar-La/ultrasonic/persulphate system: characteristics, reusability, and kinetic study. ENVIRONMENTAL TECHNOLOGY 2019; 40:822-834. [PMID: 29161990 DOI: 10.1080/09593330.2017.1408694] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 11/18/2017] [Indexed: 06/07/2023]
Abstract
This research has analysed the physiochemical properties of a catalyst that has been developed - biochar-La, including BJH, BET, EDX, SEM, FTIR, pHpzc, and iodine number. The catalyst consisted of effective functional groups, including C=S, C-O, C=C, -COOH and O-H, with a specific surface area of 31.2 m2/g. The catalyst was used in the biochar-La/ultrasonic/persulphate system to remove phenol from wastewater. The kinetics, mechanism, and reusability of the catalyst for the phenol removal from synthetic wastewater were determined. The results suggested that phenol removal kinetics follows pseudo-first-order model (k = 0.0386 1/min), and the catalyst can be reused three times. The potential of operation of the biochar-La/ultrasonic/persulphate system - with the effective removal of phenol and other organic compounds from real petrochemical wastewater - was tested. The results indicated that the removal of phenol from the petrochemical wastewater with a relatively high total dissolved solid is >99%. The gas chromatography-mass spectrometry (GC-mass) test revealed that the complete decomposition of some contaminants in the petrochemical wastewater had occurred, as H2O and CO2 were detected. The contribution of a heterogeneous mechanism for phenol oxidation by biochar-La/ultrasonic/persulphate was calculated to be 60%. Overall, the results showed that the biochar-La/ultrasonic/persulphate system is very effective and promising for the removal of phenol from the petrochemical wastewater.
Collapse
Affiliation(s)
- Rasool Razmi
- a Department of Chemical Engineering, Science and Research Branch , Islamic Azad University , Tehran , Iran
| | - Bahman Ramavandi
- b Department of Environmental Health Engineering , Bushehr University of Medical Sciences , Bushehr , Iran
| | - Mehdi Ardjmand
- c Department of Chemical Engineering , South Tehran Branch, Islamic Azad University , Tehran , Iran
| | - Amir Heydarinasab
- a Department of Chemical Engineering, Science and Research Branch , Islamic Azad University , Tehran , Iran
| |
Collapse
|
21
|
Yanyan L, Kurniawan TA, Zhu M, Ouyang T, Avtar R, Dzarfan Othman MH, Mohammad BT, Albadarin AB. Removal of acetaminophen from synthetic wastewater in a fixed-bed column adsorption using low-cost coconut shell waste pretreated with NaOH, HNO 3, ozone, and/or chitosan. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 226:365-376. [PMID: 30138836 DOI: 10.1016/j.jenvman.2018.08.032] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 08/03/2018] [Accepted: 08/06/2018] [Indexed: 05/06/2023]
Abstract
Acetaminophen (Ace) is a trace pollutant widely found in sewage treatment plant (STP) wastewater. We test the feasibility of coconut shell waste, a low cost adsorbent from coconut industry, for removing Ace from synthetic solution in a fixed-bed column adsorption. To enhance its performance, the surface of granular activated carbon (GAC) was pre-treated with NaOH, HNO3, ozone, and/or chitosan respectively. The results show that the chemical modification of the GAC's surface with various chemicals has enhanced its Ace removal during the column operations. Among the modified adsorbents, the ozone-treated GAC stands out for the highest Ace adsorption capacity (38.2 mg/g) under the following conditions: 40 mg/L of Ace concentration, 2 mL/min of flow rate, 45 cm of bed depth. Both the Thomas and the Yoon-Nelson models are applicable to simulate the experimental results of the column operations with their adsorption capacities: ozone-treated GAC (20.88 mg/g) > chitosan-coated GAC (16.67 mg/g) > HNO3-treated GAC (11.09 mg/g) > NaOH-treated GAC (7.57 mg/g) > as-received GAC (2.84 mg/g). This suggests that the ozone-treated GAC is promising and suitable for Ace removal in a fixed-bed reactor.
Collapse
Affiliation(s)
- Lin Yanyan
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University (XMU), Xiamen, 361102, Fujian Province, China
| | - Tonni Agustiono Kurniawan
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University (XMU), Xiamen, 361102, Fujian Province, China.
| | - Mengting Zhu
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University (XMU), Xiamen, 361102, Fujian Province, China
| | - Tong Ouyang
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University (XMU), Xiamen, 361102, Fujian Province, China
| | - Ram Avtar
- Faculty of Environment and Earth Science, Hokkaido University, Sapporo, Japan
| | - Mohd Hafiz Dzarfan Othman
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor, Malaysia
| | - Balsam T Mohammad
- Pharmaceutical and Chemical Engineering Department, School of Applied Medical Sciences, German Jordanian University, Amman, 11180, Jordan
| | - Ahmad B Albadarin
- Department of Chemical Sciences, Bernal Institute, University of Limerick, Ireland
| |
Collapse
|
22
|
Minella M, De Bellis N, Gallo A, Giagnorio M, Minero C, Bertinetti S, Sethi R, Tiraferri A, Vione D. Coupling of Nanofiltration and Thermal Fenton Reaction for the Abatement of Carbamazepine in Wastewater. ACS OMEGA 2018; 3:9407-9418. [PMID: 31459074 PMCID: PMC6644666 DOI: 10.1021/acsomega.8b01055] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 08/02/2018] [Indexed: 05/04/2023]
Abstract
The complete removal of biorecalcitrant xenobiotics, including most notably the pharmaceutical pollutants, by advanced oxidation processes is often difficult to be reached in urban or industrial wastewater because of the high concentration of organic and inorganic scavengers that compete with the xenobiotics for the oxidizing species. This work investigates a coupled treatment train in which wastewater effluents are pretreated with a negatively charged loose nanofiltration (NF) membrane (HydraCoRe70, made up of sulfonated polyethersulfone) to enhance the removal of xenobiotics with the thermal Fenton process. Carbamazepine (CBZ), a drug prescribed mainly for epilepsy treatment, is used here as a model xenobiotic. After optimizing the conditions for separation and degradation, the NF-Fenton approach was applied to both synthetic wastewater and real samples to assess the overall efficiency of CBZ removal. The Fenton degradation of CBZ was drastically enhanced in nanofiltered samples, thanks to the removal by the membrane of nearly all organic matter that would otherwise consume the reactive oxidizing species (e.g., the hydroxyl radical). On the basis of a preliminary treatment cost analysis, it can be concluded that the combined process is potentially applicable to the treatment of several kinds of wastewaters (e.g., industrial ones) to favor the removal of biorecalcitrant contaminants. Key cost savings of NF-Fenton concern the lower amounts of Fenton reagents needed to degrade CBZ and (even more importantly) the decreased levels of acids and bases for pH adjustment before and after the oxidative process because of the lower buffer capacity of the NF permeate compared to feed wastewater, after the removal by the NF of many inorganic ions and most organic carbon.
Collapse
Affiliation(s)
- Marco Minella
- Department
of Chemistry, University of Torino, Via P. Giuria 5, Torino 10125, Italy
| | - Nicola De Bellis
- Department
of Chemistry, University of Torino, Via P. Giuria 5, Torino 10125, Italy
| | - Andrea Gallo
- Department
of Environment Land and Infrastructure Engineering (DIATI), Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino I-10129, Italy
| | - Mattia Giagnorio
- Department
of Environment Land and Infrastructure Engineering (DIATI), Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino I-10129, Italy
| | - Claudio Minero
- Department
of Chemistry, University of Torino, Via P. Giuria 5, Torino 10125, Italy
| | - Stefano Bertinetti
- Department
of Chemistry, University of Torino, Via P. Giuria 5, Torino 10125, Italy
| | - Rajandrea Sethi
- Department
of Environment Land and Infrastructure Engineering (DIATI), Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino I-10129, Italy
| | - Alberto Tiraferri
- Department
of Environment Land and Infrastructure Engineering (DIATI), Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino I-10129, Italy
- E-mail: . Fax: +39-011-0907628. (A.T.)
| | - Davide Vione
- Department
of Chemistry, University of Torino, Via P. Giuria 5, Torino 10125, Italy
- University
of Torino, NatRisk Inter-Department Centre, Largo P. Braccini 2, Grugliasco, 10095 Torino, Italy
- E-mail: . Fax: +39-011-6705242. Web: http://www.environmentalchemistry.unito.it (D.V.)
| |
Collapse
|
23
|
Dai C, Zhou Y, Peng H, Huang S, Qin P, Zhang J, Yang Y, Luo L, Zhang X. Current progress in remediation of chlorinated volatile organic compounds: A review. J IND ENG CHEM 2018. [DOI: 10.1016/j.jiec.2017.12.049] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
24
|
Yanyan L, Kurniawan TA, Albadarin AB, Walker G. Enhanced removal of acetaminophen from synthetic wastewater using multi-walled carbon nanotubes (MWCNTs) chemically modified with NaOH, HNO3/H2SO4, ozone, and/or chitosan. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2017.12.051] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
25
|
Zhang X, Wu Y. Application of coupled zero-valent iron/biochar system for degradation of chlorobenzene-contaminated groundwater. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2017; 75:571-580. [PMID: 28192351 DOI: 10.2166/wst.2016.503] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A novel iron-carbon micro-electrolysis system, bamboo-derived biochar coupled with zero-valent iron (ZVI), was investigated for chlorobenzene (CB)-contaminated groundwater removal. Influences of initial pH value, mass ratio of the ZVI/Biochar, initial CB concentration and ionic strength of the ZVI/Biochar micro-electrolysis were studied. The results indicated that the increase of initial pH led to the decrease of the CB removal efficiency. While the optimum mass ratio of ZVI to biochar was 2:1, the improved initial concentration and reaction time were 33.68 mg/L and 4 h, respectively. When pH of 2, mass ratio of 2:1 and reaction time of 4 h were applied, the CB removal efficiency was 99.92%. Enhanced degradation of CB was observed with increased Cl- concentration. When the Cl- concentration of 1,000 mg/L and reaction time of 1 h were applied, the CB removal efficiency arrived at 98.2%. Additionally, considering that biochar is cost-effective and readily produced, the coupled ZVI/Biochar micro-electrolysis could represent an effective approach for the treatment of groundwater containing chlorinated organic compounds in the future.
Collapse
Affiliation(s)
- Xu Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China E-mail:
| | - Yanqing Wu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China E-mail:
| |
Collapse
|
26
|
Minella M, Sappa E, Hanna K, Barsotti F, Maurino V, Minero C, Vione D. Considerable Fenton and photo-Fenton reactivity of passivated zero-valent iron. RSC Adv 2016. [DOI: 10.1039/c6ra17515e] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Passivated zero-valent iron has no longer reductive reactivity, but it can still be used as an effective Fenton catalyst.
Collapse
Affiliation(s)
- Marco Minella
- Dipartimento di Chimica
- Università di Torino
- 10125 Torino
- Italy
| | | | - Khalil Hanna
- Ecole Nationale Supérieure de Chimie de Rennes
- CNRS
- UMR 6226
- 35708 Rennes Cedex 7
- France
| | | | - Valter Maurino
- Dipartimento di Chimica
- Università di Torino
- 10125 Torino
- Italy
| | - Claudio Minero
- Dipartimento di Chimica
- Università di Torino
- 10125 Torino
- Italy
| | - Davide Vione
- Dipartimento di Chimica
- Università di Torino
- 10125 Torino
- Italy
| |
Collapse
|
27
|
Huang B, Lei C, Wei C, Zeng G. Chlorinated volatile organic compounds (Cl-VOCs) in environment - sources, potential human health impacts, and current remediation technologies. ENVIRONMENT INTERNATIONAL 2014; 71:118-38. [PMID: 25016450 DOI: 10.1016/j.envint.2014.06.013] [Citation(s) in RCA: 338] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 06/20/2014] [Accepted: 06/24/2014] [Indexed: 05/03/2023]
Abstract
Chlorinated volatile organic compounds (Cl-VOCs), including polychloromethanes, polychloroethanes and polychloroethylenes, are widely used as solvents, degreasing agents and a variety of commercial products. These compounds belong to a group of ubiquitous contaminants that can be found in contaminated soil, air and any kind of fluvial mediums such as groundwater, rivers and lakes. This review presents a summary of the research concerning the production levels and sources of Cl-VOCs, their potential impacts on human health as well as state-of-the-art remediation technologies. Important sources of Cl-VOCs principally include the emissions from industrial processes, the consumption of Cl-VOC-containing products, the disinfection process, as well as improper storage and disposal methods. Human exposure to Cl-VOCs can occur through different routes, including ingestion, inhalation and dermal contact. The toxicological impacts of these compounds have been carefully assessed, and the results demonstrate the potential associations of cancer incidence with exposure to Cl-VOCs. Most Cl-VOCs thus have been listed as priority pollutants by the Ministry of Environmental Protection (MEP) of China, Environmental Protection Agency of the U.S. (U.S. EPA) and European Commission (EC), and are under close monitor and strict control. Yet, more efforts will be put into the epidemiological studies for the risk of human exposure to Cl-VOCs and the exposure level measurements in contaminated sites in the future. State-of-the-art remediation technologies for Cl-VOCs employ non-destructive methods and destructive methods (e.g. thermal incineration, phytoremediation, biodegradation, advanced oxidation processes (AOPs) and reductive dechlorination), whose advantages, drawbacks and future developments are thoroughly discussed in the later sections.
Collapse
Affiliation(s)
- Binbin Huang
- College of Environment Science and Engineering, Hunan University, Changsha 410082, P.R. China
| | - Chao Lei
- School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha 410114, P.R. China
| | - Chaohai Wei
- Key Laboratory of Environmental Protection and Eco-Remediation of Guangdong Regular Higher Education Institutions, South China University of Technology, Guangzhou 510006, P.R. China
| | - Guangming Zeng
- College of Environment Science and Engineering, Hunan University, Changsha 410082, P.R. China
| |
Collapse
|
28
|
Ma H, Zhang H, Wang L, Wang J, Chen J. Comprehensive screening and priority ranking of volatile organic compounds in Daliao River, China. ENVIRONMENTAL MONITORING AND ASSESSMENT 2014; 186:2813-2821. [PMID: 24389912 DOI: 10.1007/s10661-013-3582-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 12/12/2013] [Indexed: 06/03/2023]
Abstract
An analytical strategy for comprehensive screening of target and non-target volatile organic compounds (VOCs) in surface water was developed, and it was applied to the analysis of VOCs in water samples from Daliao River. The target VOCs were quantified using purge and trap-gas chromatography-mass spectrometry (P&T-GC/MS). Among 20 water samples, 34 VOCs were detected at least once. For the screening of non-target VOCs, the double distillation apparatus was used for the pre-concentration of VOCs prior to P&T-GC/MS analysis. Subsequently, deconvolution software and NIST mass spectral library were applied for the identification of the non-target compounds. A total of 17 non-target VOCs were identified. The most frequently detected VOCs (detection frequencies >80 %) included toluene, benzene, naphthalene, 1,2-dichloroethane, 1,1,2-trichloroethane, and methyl tert-butyl ether. The distribution of VOCs obviously varied according to the sampling sites. The total concentrations of VOCs in water samples collected from the heavily industrialized cities (Anshan and Liaoyang) and the busy port city (Yingkou) were relatively high. The top ten priority VOCs, including naphthalene, 1,2-dichloroethane, o-xylene, 1,3-dichlorobenzene, tetrachloroethene, 1,2-dichlorobenzene, 1,2,4-trichlorobenzene, ethylbenzene, m-xylene, and p-xylene, were obtained by the ranking of the detected VOCs according to their occurrence and ecological effects. These compounds should be given more attention in monitoring and drainage control strategies.
Collapse
Affiliation(s)
- Huilian Ma
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | | | | | | | | |
Collapse
|
29
|
Karthikeyan S, Ezhil Priya M, Boopathy R, Velan M, Mandal AB, Sekaran G. Heterocatalytic Fenton oxidation process for the treatment of tannery effluent: kinetic and thermodynamic studies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2012; 19:1828-1840. [PMID: 22207236 DOI: 10.1007/s11356-011-0691-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 12/01/2011] [Indexed: 05/31/2023]
Abstract
UNLABELLED BACKGROUND, AIM, SCOPE: Treatment of wastewater has become significant with the declining water resources. The presence of recalcitrant organics is the major issue in meeting the pollution control board norms in India. The theme of the present investigation was on partial or complete removal of pollutants or their transformation into less toxic and more biodegradable products by heterogeneous Fenton oxidation process using mesoporous activated carbon (MAC) as the catalyst. MATERIALS AND METHODS Ferrous sulfate (FeSO(4)·7H(2)O), sulfuric acid (36 N, specific gravity 1.81, 98% purity), hydrogen peroxide (50% v/v) and all other chemicals used in this study were of analytical grade (Merck). Two reactors, each of height 50 cm and diameter 6 cm, were fabricated with PVC while one reactor was packed with MAC of mass 150 g and other without MAC served as control. RESULTS AND DISCUSSION The oxidation process was presented with kinetic and thermodynamic constants for the removal of COD, BOD, and TOC from the wastewater. The activation energy (Ea) for homogeneous and heterogeneous Fenton oxidation processes were 44.79 and 25.89 kJ/mol, respectively. The thermodynamic parameters ΔG, ΔH, and ΔS were calculated for the oxidation processes using Van't Hoff equation. Furthermore, the degradation of organics was confirmed through FTIR and UV-visible spectroscopy, and cyclic voltammetry. CONCLUSIONS The heterocatalytic Fenton oxidation process efficiently increased the biodegradability index (BOD/COD) of the tannery effluent. The optimized conditions for the heterocatalytic Fenton oxidation of organics in tannery effluent were pH 3.5, reaction time-4 h, and H(2)O(2)/FeSO(4)·7H(2)O in the molar ratio of 2:1.
Collapse
Affiliation(s)
- S Karthikeyan
- Environmental Technology Division, Council of Scientific & Industrial Research, Central Leather Research Institute, Adyar, Chennai, India.
| | | | | | | | | | | |
Collapse
|
30
|
Zhu X, Tian J, Liu R, Chen L. Optimization of Fenton and electro-Fenton oxidation of biologically treated coking wastewater using response surface methodology. Sep Purif Technol 2011. [DOI: 10.1016/j.seppur.2011.08.023] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
31
|
Randazzo S, Scialdone O, Brillas E, Sirés I. Comparative electrochemical treatments of two chlorinated aliphatic hydrocarbons. Time course of the main reaction by-products. JOURNAL OF HAZARDOUS MATERIALS 2011; 192:1555-1564. [PMID: 21783322 DOI: 10.1016/j.jhazmat.2011.06.075] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Revised: 06/10/2011] [Accepted: 06/27/2011] [Indexed: 05/31/2023]
Abstract
Acidic aqueous solutions of the chlorinated aliphatic hydrocarbons 1,2-dichloroethane (DCA) and 1,1,2,2-tetrachloroethane (TCA) have been treated by the electro-Fenton (EF) process. Bulk electrolyses were performed at constant current using a BDD anode and an air diffusion cathode able to generate H(2)O(2) in situ, which reacts with added Fe(2+) to yield OH from Fenton's reaction. At 300 mA, almost total mineralization was achieved at 420 min for solutions containing 4mM of either DCA or TCA. Comparative treatments without Fe(2+) (anodic oxidation) or with a Pt anode led to a poorer mineralization. The better performance of the EF process with BDD is explained by the synergistic action of the oxidizing radicals, BDD(OH) at the anode surface and OH in the bulk, and the minimization of diffusional limitations. The decay of the initial pollutant accomplished with pseudo first-order kinetics. Chloroacetic and dichloroacetic acids were the major by-products during the degradation of DCA and TCA, respectively. Acetic, oxalic and formic acids were also identified. The proposed reaction pathways include oxidative and reductive (cathodic) dechlorination steps. Chlorine was released as Cl(-), being further oxidized to ClO(3)(-) and, mostly, to ClO(4)(-), due to the action of the largely generated BDD(OH) and OH.
Collapse
Affiliation(s)
- Serena Randazzo
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | | | | | | |
Collapse
|
32
|
Vilhunen S, Puton J, Virkutyte J, Sillanpää M. Efficiency of hydroxyl radical formation and phenol decomposition using UV light emitting diodes and H2O2. ENVIRONMENTAL TECHNOLOGY 2011; 32:865-872. [PMID: 21879561 DOI: 10.1080/09593330.2010.516770] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A novel process combining hydrogen peroxide (H2O2) and radiation emitted by ultraviolet light emitting diodes (UV LEDs) has been investigated. The UV LEDs were used as UV-C light sources emitting radiation in the range 257-277 nm for decomposition of the model substance phenol in water. In addition, the effect of H2O2 to phenol molar ratio and initial phenol concentration was examined. Two parameters, the decomposition efficiency of phenol and characterization of hydroxyl radical (HO*) production from H2O2 when illuminated with UV radiation, were selected to provide detailed information regarding the performance of the UV LEDs in the treatment process. A new concept was introduced to characterize and describe the production of HO* radicals produced when photons were absorbed by H2O2 molecules. The phenol decomposition efficiency at the initial concentration of 100 mg/L was the most pronounced at the lowest emitted wavelength. A significant correlation was found between the phenol decomposition efficiency and the photons absorbed by H2O2 (i.e. formation of radicals).
Collapse
Affiliation(s)
- Sari Vilhunen
- Laboratory of Applied Environmental Chemistry, Faculty of Science and Forestry, University of Eastern Finland, Patteristonkatu 1, FI-50190 Mikkeli, Finland.
| | | | | | | |
Collapse
|