1
|
Yamashita S, Negishi JN, Nakagawa T, Aruga N, Toyoda K, Nakamura F. Effects of polluted groundwater on chum salmon (Oncorhynchus keta) survival and body size. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024:125101. [PMID: 39393759 DOI: 10.1016/j.envpol.2024.125101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 10/01/2024] [Accepted: 10/08/2024] [Indexed: 10/13/2024]
Abstract
This study reports the effect of spatial variation in hyporheic water, partially influenced by urban-polluted groundwater, on the early life stage of chum salmon (Oncorhynchus keta) in the Toyohira River, Northern Japan. We hypothesized that increased groundwater influence would reduce the survival rate and body size of O. keta due to the combined effects (i.e., growth retardation effects) of chemical toxicants, low dissolved oxygen (DO), and high winter temperatures. Experimental tests were conducted in field and laboratory conditions to address the difficulties associated with field observations of fry emergence during snowmelt floods in spring and to examine the independent effects of water pollution in groundwater in relation to temperature and DO. Artificially fertilized eyed eggs, alevins, and fry of O. keta were monitored for several months with varying exposure to groundwater from winter to early spring. We noted that groundwater affected the fish by reducing their size and weight by >10% and by increasing their mortality in both tests. Moreover, independent effects of water pollution were identified in the swim-up fry stage in laboratory experiments, along with growth-retarding effects from warmer groundwater temperatures. Not all factorial combinations of potentially confounding factors were tested rigorously, and the specific toxicants are unidentified, leaving questions about how groundwater pollution affects Salmonidae fish. Immediate concerns regarding the current water quality (including DO) of hyporheic water associated with groundwater influence are low because no detrimental effects on survival were detected in the field. Nevertheless, spawning grounds formed in areas with high exposures to polluted groundwater require continuous management attention due to potential risks associated with low DO levels. Additionally, pollution-induced growth patterns could pose a risk of size- or weight-dependent mortality at the swim-up fry stage and in early juveniles.
Collapse
Affiliation(s)
- Shohei Yamashita
- Graduate School of Environmental Science, Hokkaido University, N10 W5, Sapporo, Hokkaido, 060-0810, Japan
| | - Junjiro N Negishi
- Faculty of Environmental Earth Science, Hokkaido University, N10 W5, Sapporo, Hokkaido, 060-0810, Japan.
| | - Tomohiro Nakagawa
- Graduate School of Environmental Science, Hokkaido University, N10 W5, Sapporo, Hokkaido, 060-0810, Japan
| | - Nozomi Aruga
- Sapporo Salmon Museum, Makomanai-kouen, Sapporo, Hokkaido, 005-0017, Japan
| | - Kazuhiro Toyoda
- Faculty of Environmental Earth Science, Hokkaido University, N10 W5, Sapporo, Hokkaido, 060-0810, Japan
| | - Futoshi Nakamura
- Research Faculty of Agriculture, Hokkaido University, N9 W9, Sapporo, Hokkaido, 060-8589, Japan
| |
Collapse
|
2
|
Pannetier P, Morin B, Cabon J, Danion M, Morin T, Clérandeau C, Le Floch S, Cachot J. Water-accommodated fractions of heavy and light oils impact DNA integrity, embryonic development, and immune system of Japanese medaka at early life stages. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:50916-50928. [PMID: 39106018 DOI: 10.1007/s11356-024-34604-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/30/2024] [Indexed: 08/07/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous contaminants generally found in complex mixtures. PAHs are known to cause pleiotropic effects on living organisms, including developmental defects, mutagenicity, carcinogenicity and immunotoxicity, and endocrine disruptions. The main goal of this study is to evaluate the toxicity of water-accommodated fractions (WAFs) of oils in two life stages of the Japanese medaka, larvae and juveniles. The deleterious effects of an acute exposure of 48 h to two WAFs from Arabian light crude oil (LO) and refined oil from Erika (HO) were analyzed in both stages. Relevant endpoints, including ethoxy resorufin-O-deethylase (EROD) activity, DNA damage (Comet assay), photomotor response, and sensitivity to nervous necrosis virus (NNV) infection, were investigated. Larvae exposed to both oil WAFs displayed a significant induction of EROD activity, DNA damage, and developmental anomalies, but no behavioral changes. Deleterious effects were significantly increased following exposure to 1 and 10 μg/L of LO WAFs and 10 μg/L of HO WAFs. Larval infection to NNV induced fish mortality and sharply reduced reaction to light stimulation. Co-exposure to WAFs and NNV increased the mortality rate, suggesting an impact of WAFs on fish defense capacities. WAF toxicity on juveniles was only observed following the NNV challenge, with a higher sensitivity to HO WAFs than to LO WAFs. This study highlighted that environmentally realistic exposure to oil WAFs containing different compositions and concentrations of oil generated high adverse effects, especially in the larval stage. This kind of multi-marker approach is particularly relevant to characterize the toxicity fingerprint of environmental mixtures of hydrocarbons and PAHs.
Collapse
Affiliation(s)
- Pauline Pannetier
- UMR CNRS 5805 EPOC, University of Bordeaux, 33400, Talence, France.
- Unit Virology, Immunology and Ecotoxicology of Fish, ANSES, Ploufragan-Plouzané-Niort Laboratory, Technopôle Brest-Iroise, 29280, Plouzané, France.
| | - Bénédicte Morin
- UMR CNRS 5805 EPOC, University of Bordeaux, 33400, Talence, France
| | - Joëlle Cabon
- Unit Virology, Immunology and Ecotoxicology of Fish, ANSES, Ploufragan-Plouzané-Niort Laboratory, Technopôle Brest-Iroise, 29280, Plouzané, France
| | - Morgane Danion
- Unit Virology, Immunology and Ecotoxicology of Fish, ANSES, Ploufragan-Plouzané-Niort Laboratory, Technopôle Brest-Iroise, 29280, Plouzané, France
| | - Thierry Morin
- Unit Virology, Immunology and Ecotoxicology of Fish, ANSES, Ploufragan-Plouzané-Niort Laboratory, Technopôle Brest-Iroise, 29280, Plouzané, France
| | | | - Stéphane Le Floch
- Centre de Documentation, de Recherche Et d'Expérimentations Sur Les Pollutions Accidentelles Des Eaux, CEDRE, 29200, Brest, France
| | - Jérôme Cachot
- UMR CNRS 5805 EPOC, University of Bordeaux, 33400, Talence, France
| |
Collapse
|
3
|
Pannetier P, Clérandeau C, Le Floch S, Cachot J, Morin B. Toxicity evaluation of water-accommodated fraction of heavy and light oils on the rainbow trout fish cell line RTL-W1. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:49715-49726. [PMID: 39080162 DOI: 10.1007/s11356-024-34458-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/19/2024] [Indexed: 08/15/2024]
Abstract
Fish are currently used models for the toxicity assessment of chemicals, including polycyclic aromatic hydrocarbons (PAHs). Alternative methods including fish cell lines are currently used to provide fast and reliable results on the toxic properties of chemicals while respecting ethical concerns about animal testing. The Rainbow trout liver cell line RTLW1 was used to analyze the effects of two water-accommodated fractions from two crude oils: Arabian Light crude oil (LO) and refined oil from Erika (HO). Several toxicity endpoints were assessed in this study, including cytotoxicity, EROD activity, DNA damage (comet and micronucleus assays), and ROS production. RTL-W1 cells were exposed for 24 h at two or three dilutions of WAF at 1000 µg/L (0.1% (1 μg/L), 1% (10 μg/L), and 10% (100 μg/L)) for cytotoxicity and EROD activity and 1% and 10% for ROS production and genotoxicity). Exposure of RTL-W1 cells to LO WAF induced a significant increase of EROD activity and ROS production and altered DNA integrity as revealed by both the comet assay and the micronucleus test for 10 µg/L of LO. On the other hand, HO WAF exhibited limited toxic effects except for an EROD induction for 1% WAF dilution. These results confirmed the usefulness of RTL-W1 cells for in vitro toxicological assessment of chemical mixtures.
Collapse
Affiliation(s)
- Pauline Pannetier
- CNRS, Bordeaux INP, EPOC, Univ. Bordeaux, UMR 5805, 33600, Pessac, France.
- ANSES, Ploufragan-Plouzané-Niort Laboratory, Unit Virology, Immunology and Ecotoxicology of Fish, Technopôle Brest-Iroise, 29280, Plouzané, France.
| | | | - Stéphane Le Floch
- Centre de Documentation, de Recherche Et d'Expérimentations Sur Les Pollutions Accidentelles Des Eaux, CEDRE, 29200, Brest, France
| | - Jérôme Cachot
- CNRS, Bordeaux INP, EPOC, Univ. Bordeaux, UMR 5805, 33600, Pessac, France
| | - Bénédicte Morin
- CNRS, Bordeaux INP, EPOC, Univ. Bordeaux, UMR 5805, 33600, Pessac, France
| |
Collapse
|
4
|
Bellier B, Bancel S, Rochard É, Cachot J, Geffard O, Villeneuve B. Assessment of the impact of chemical pollution on endangered migratory fish in two major rivers of France, including spawning grounds. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172748. [PMID: 38677422 DOI: 10.1016/j.scitotenv.2024.172748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/10/2024] [Accepted: 04/23/2024] [Indexed: 04/29/2024]
Abstract
Water pollution is a one of the most contributors to aquatic biodiversity decline. Consequently, ecological risk assessment methods have been developed to investigate the effects of existing stresses on the environment, including the toxic effects of chemicals. One of the existing approaches to quantify toxic risks is called "Potentially Affected Fraction of species" (PAF), which estimates the potential loss of species within a group of species studied. In this study, the PAF method was applied to the Garonne catchment (southwest France) due to the limited information available on the involvement of water pollution in the decline of diadromous fish populations. This approach was used to quantify the potential toxic risk associated with chemical contamination of water for fish species. The objectives were to quantify this risk (1) in the Garonne and Dordogne rivers and (2) in the spawning grounds of two endangered anadromous fish species: the allis shad and the European sturgeon during the development period of their early life stages. Environmental pollution data was provided for 21 sites within the Garonne catchment between 2007 and 2022, and toxicity data was obtained specifically from freshwater toxicity tests on fish species. Then, for each site and each year, the potential toxic risk for a single substance (ssPAF) and for a mixture of substances (msPAF) was calculated and classified as high (>5 %), moderate (>1 % and < 5 %) or low (<1 %). Potential toxic risks were mostly moderate and mainly associated with: metals > other industrial pollutants and hygiene and care products > agrochemicals. In summary, this study highlights the probable involvement of water contamination on the decline, fate and restoration of diadromous fish populations in the Garonne catchment, focusing notably on the toxic effects on early life stages, a previously understudied topic.
Collapse
Affiliation(s)
- Benjamin Bellier
- INRAE Nouvelle-Aquitaine Bordeaux Centre, UR EABX, 50 Avenue de Verdun, 33612, Cestas Cedex, Nouvelle-Aquitaine, France
| | - Sarah Bancel
- INRAE Nouvelle-Aquitaine Bordeaux Centre, UR EABX, 50 Avenue de Verdun, 33612, Cestas Cedex, Nouvelle-Aquitaine, France
| | - Éric Rochard
- INRAE Nouvelle-Aquitaine Bordeaux Centre, UR EABX, 50 Avenue de Verdun, 33612, Cestas Cedex, Nouvelle-Aquitaine, France
| | - Jérôme Cachot
- Université de Bordeaux, UMR CNRS 5805 EPOC, Allée Geoffroy Saint-Hilaire, 33615 Pessac Cedex, Nouvelle-Aquitaine, France
| | - Olivier Geffard
- INRAE Centre Lyon-Grenoble Auvergne-Rhône-Alpes, UR RiverLy, 5 Rue de la Doua, 69100, Villeurbanne Cedex, Auvergne-Rhône-Alpes, France
| | - Bertrand Villeneuve
- INRAE Nouvelle-Aquitaine Bordeaux Centre, UR EABX, 50 Avenue de Verdun, 33612, Cestas Cedex, Nouvelle-Aquitaine, France.
| |
Collapse
|
5
|
Yan M, Chen X, Xue J, Liu H, Jiang T, Yang J. Copper Stress Causes Shell Morphology Changes in Early Juvenile Anodonta woodiana Based on Geometric-Morphometric Analysis. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2024; 112:28. [PMID: 38281213 DOI: 10.1007/s00128-024-03855-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 01/04/2024] [Indexed: 01/30/2024]
Abstract
In this study, the morphological characteristics of early juvenile shells of Anodonta woodiana, which were exposed to different concentrations of aqueous copper, were analyzed using 10 landmarks to determine morphological changes in the shells. Morphological changes mainly occurred at the top of the shell and front and back ends of the central axis. Stepwise discriminant analysis proved shape differences among experimental and control groups. The results of this study demonstrate for the first time that environmentally relevant copper concentrations cause stress-related morphological changes in A. woodiana in the vulnerable early juvenile stage.
Collapse
Affiliation(s)
- Mingjun Yan
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
| | - Xiubao Chen
- Laboratory of Fishery Microchemistry, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Junren Xue
- Laboratory of Fishery Microchemistry, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Hongbo Liu
- Laboratory of Fishery Microchemistry, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Tao Jiang
- Laboratory of Fishery Microchemistry, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Jian Yang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China.
- Laboratory of Fishery Microchemistry, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| |
Collapse
|
6
|
Mussalo L, Avesani S, Shahbaz MA, Závodná T, Saveleva L, Järvinen A, Lampinen R, Belaya I, Krejčík Z, Ivanova M, Hakkarainen H, Kalapudas J, Penttilä E, Löppönen H, Koivisto AM, Malm T, Topinka J, Giugno R, Aakko-Saksa P, Chew S, Rönkkö T, Jalava P, Kanninen KM. Emissions from modern engines induce distinct effects in human olfactory mucosa cells, depending on fuel and aftertreatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167038. [PMID: 37709087 DOI: 10.1016/j.scitotenv.2023.167038] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/30/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
Ultrafine particles (UFP) with a diameter of ≤0.1 μm, are contributors to ambient air pollution and derived mainly from traffic emissions, yet their health effects remain poorly characterized. The olfactory mucosa (OM) is located at the rooftop of the nasal cavity and directly exposed to both the environment and the brain. Mounting evidence suggests that pollutant particles affect the brain through the olfactory tract, however, the exact cellular mechanisms of how the OM responds to air pollutants remain poorly known. Here we show that the responses of primary human OM cells are altered upon exposure to UFPs and that different fuels and engines elicit different adverse effects. We used UFPs collected from exhausts of a heavy-duty-engine run with renewable diesel (A0) and fossil diesel (A20), and from a modern diesel vehicle run with renewable diesel (Euro6) and compared their health effects on the OM cells by assessing cellular processes on the functional and transcriptomic levels. Quantification revealed all samples as UFPs with the majority of particles being ≤0.1 μm by an aerodynamic diameter. Exposure to A0 and A20 induced substantial alterations in processes associated with inflammatory response, xenobiotic metabolism, olfactory signaling, and epithelial integrity. Euro6 caused only negligible changes, demonstrating the efficacy of aftertreatment devices. Furthermore, when compared to A20, A0 elicited less pronounced effects on OM cells, suggesting renewable diesel induces less adverse effects in OM cells. Prior studies and these results suggest that PAHs may disturb the inflammatory process and xenobiotic metabolism in the OM and that UFPs might mediate harmful effects on the brain through the olfactory route. This study provides important information on the adverse effects of UFPs in a human-based in vitro model, therefore providing new insight to form the basis for mitigation and preventive actions against the possible toxicological impairments caused by UFP exposure.
Collapse
Affiliation(s)
- Laura Mussalo
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| | - Simone Avesani
- Department of Computer Science, University of Verona, 37134 Verona, Italy
| | - Muhammad Ali Shahbaz
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| | - Táňa Závodná
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| | - Liudmila Saveleva
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| | - Anssi Järvinen
- VTT Technical Research Centre of Finland, VTT, 02044 Espoo, Finland
| | - Riikka Lampinen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| | - Irina Belaya
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| | - Zdeněk Krejčík
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| | - Mariia Ivanova
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| | - Henri Hakkarainen
- Inhalation Toxicology Laboratory, Department of Environmental and Biological Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Juho Kalapudas
- Department of Neurology, Neuro Centre, Kuopio University Hospital, 70210 Kuopio, Finland
| | - Elina Penttilä
- Department of Otorhinolaryngology, University of Eastern Finland and Kuopio University Hospital, 70210 Kuopio, Finland
| | - Heikki Löppönen
- Department of Otorhinolaryngology, University of Eastern Finland and Kuopio University Hospital, 70210 Kuopio, Finland
| | - Anne M Koivisto
- Department of Neurology, Neuro Centre, Kuopio University Hospital, 70210 Kuopio, Finland; Brain Research Unit, Department of Neurology, School of Medicine, University of Eastern Finland, 70210 Kuopio, Finland; Department of Neurology and Geriatrics, Helsinki University Hospital and Neurosciences, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Tarja Malm
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| | - Jan Topinka
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| | - Rosalba Giugno
- Department of Computer Science, University of Verona, 37134 Verona, Italy
| | | | - Sweelin Chew
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| | - Topi Rönkkö
- Aerosol Physics Laboratory, Physics Unit, Tampere University, 33014 Tampere, Finland
| | - Pasi Jalava
- Inhalation Toxicology Laboratory, Department of Environmental and Biological Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Katja M Kanninen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland.
| |
Collapse
|
7
|
Maloney E, Villeneuve D, Jensen K, Blackwell B, Kahl M, Poole S, Vitense K, Feifarek D, Patlewicz G, Dean K, Tilton C, Randolph E, Cavallin J, LaLone C, Blatz D, Schaupp C, Ankley G. Evaluation of Complex Mixture Toxicity in the Milwaukee Estuary (WI, USA) Using Whole-Mixture and Component-Based Evaluation Methods. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:1229-1256. [PMID: 36715369 PMCID: PMC10775314 DOI: 10.1002/etc.5571] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/13/2022] [Accepted: 01/22/2023] [Indexed: 05/27/2023]
Abstract
Anthropogenic activities introduce complex mixtures into aquatic environments, necessitating mixture toxicity evaluation during risk assessment. There are many alternative approaches that can be used to complement traditional techniques for mixture assessment. Our study aimed to demonstrate how these approaches could be employed for mixture evaluation in a target watershed. Evaluations were carried out over 2 years (2017-2018) across 8-11 study sites in the Milwaukee Estuary (WI, USA). Whole mixtures were evaluated on a site-specific basis by deploying caged fathead minnows (Pimephales promelas) alongside composite samplers for 96 h and characterizing chemical composition, in vitro bioactivity of collected water samples, and in vivo effects in whole organisms. Chemicals were grouped based on structure/mode of action, bioactivity, and pharmacological activity. Priority chemicals and mixtures were identified based on their relative contributions to estimated mixture pressure (based on cumulative toxic units) and via predictive assessments (random forest regression). Whole mixture assessments identified target sites for further evaluation including two sites targeted for industrial/urban chemical mixture effects assessment; three target sites for pharmaceutical mixture effects assessment; three target sites for further mixture characterization; and three low-priority sites. Analyses identified 14 mixtures and 16 chemicals that significantly contributed to cumulative effects, representing high or medium priority targets for further ecotoxicological evaluation, monitoring, or regulatory assessment. Overall, our study represents an important complement to single-chemical prioritizations, providing a comprehensive evaluation of the cumulative effects of mixtures detected in a target watershed. Furthermore, it demonstrates how different tools and techniques can be used to identify diverse facets of mixture risk and highlights strategies that can be considered in future complex mixture assessments. Environ Toxicol Chem 2023;42:1229-1256. © 2023 SETAC.
Collapse
Affiliation(s)
| | - D.L. Villeneuve
- Great Lakes Toxicology and Ecology Division, US EPA,
Duluth, MN, USA
| | - K.M. Jensen
- Great Lakes Toxicology and Ecology Division, US EPA,
Duluth, MN, USA
| | - B.R. Blackwell
- Great Lakes Toxicology and Ecology Division, US EPA,
Duluth, MN, USA
| | - M.D. Kahl
- Great Lakes Toxicology and Ecology Division, US EPA,
Duluth, MN, USA
| | - S.T. Poole
- Great Lakes Toxicology and Ecology Division, US EPA,
Duluth, MN, USA
| | - K. Vitense
- Scientific Computing and Data Curation Division, US EPA,
Duluth, MN, USA
| | - D.J. Feifarek
- Great Lakes Toxicology and Ecology Division, US EPA,
Duluth, MN, USA
| | - G. Patlewicz
- Centre for Computational Toxicology and Exposure, US EPA,
Research Triangle Park, NC, USA
| | - K. Dean
- Great Lakes Toxicology and Ecology Division, US EPA,
Duluth, MN, USA
| | - C. Tilton
- Great Lakes Toxicology and Ecology Division, US EPA,
Duluth, MN, USA
| | - E.C. Randolph
- Great Lakes Toxicology and Ecology Division, US EPA,
Duluth, MN, USA
| | - J.E. Cavallin
- Great Lakes Toxicology and Ecology Division, US EPA,
Duluth, MN, USA
| | - C.A. LaLone
- Great Lakes Toxicology and Ecology Division, US EPA,
Duluth, MN, USA
| | - D. Blatz
- Great Lakes Toxicology and Ecology Division, US EPA,
Duluth, MN, USA
| | - C. Schaupp
- Great Lakes Toxicology and Ecology Division, US EPA,
Duluth, MN, USA
| | - G.T. Ankley
- Great Lakes Toxicology and Ecology Division, US EPA,
Duluth, MN, USA
| |
Collapse
|
8
|
Folkerts EJ, Snihur KN, Zhang Y, Martin JW, Alessi DS, Goss GG. Embryonic cardio-respiratory impairments in rainbow trout (Oncorhynchus mykiss) following exposure to hydraulic fracturing flowback and produced water. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 310:119886. [PMID: 35934150 DOI: 10.1016/j.envpol.2022.119886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 07/29/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
During hydraulic fracturing, wastewaters - termed flowback and produced water (FPW) - are created as a by-product during hydrocarbon extraction. Given the large volumes of FPW that a single well can produce, and the history of FPW release to surface water bodies, it is imperative to understand the hazards that hydraulic fracturing and FPW pose to aquatic biota. Using rainbow trout embryos as model organisms, we investigated impacts to cardio-respiratory system development and function following acute (48 h) and sub-chronic (28-day) FPW exposure by examining occurrences of developmental deformities, rates of embryonic respiration (MO2), and changes in expression of critical cardiac-specific genes. FPW-exposed embryos had significantly increased rates of pericardial edema, yolk-sac edema, and tail/trunk curvatures at hatch. Furthermore, when exposed at three days post-fertilization (dpf), acute 5% FPW exposures significantly increased embryonic MO2 through development until 15 dpf, where a switch to significantly reduced MO2 rates was subsequently recorded. A similar trend was observed during sub-chronic 1% FPW exposures. Interestingly, at certain specific developmental timepoints, previous salinity exposure seemed to affect embryonic MO2; a result not previously observed. Following acute FPW exposures, embryonic genes for cardiac development and function were significantly altered, although at termination of sub-chronic exposures, significant changes to these same genes were not found. Together, our evidence of induced developmental deformities, modified embryonic MO2, and altered cardiac transcript expression suggest that cardio-respiratory tissues are toxicologically targeted following FPW exposure in developing rainbow trout. These results may be helpful to regulatory bodies when developing hazard identification and risk management protocols concerning hydraulic fracturing activities.
Collapse
Affiliation(s)
- Erik J Folkerts
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada.
| | - Katherine N Snihur
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, AB, T6G 2E3, Canada
| | - Yifeng Zhang
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, T6G 2G3, Alberta, Canada
| | - Jonathan W Martin
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, T6G 2G3, Alberta, Canada; Department of Environmental Science, Stockholm University, Stockholm, Sweden
| | - Daniel S Alessi
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, AB, T6G 2E3, Canada
| | - Greg G Goss
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada; NRC- University of Alberta Nanotechnology Initiative, Edmonton, AB, T6G 2M9, Canada
| |
Collapse
|
9
|
Fang J, Dong S, Boogaard PJ, Rietjens IMCM, Kamelia L. Developmental toxicity testing of unsubstituted and methylated 4- and 5-ring polycyclic aromatic hydrocarbons using the zebrafish embryotoxicity test. Toxicol In Vitro 2022; 80:105312. [PMID: 35033653 DOI: 10.1016/j.tiv.2022.105312] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/20/2021] [Accepted: 01/10/2022] [Indexed: 01/29/2023]
Abstract
The present study evaluates the in vitro developmental toxicity of 4- and 5-ring PAHs including benz[a]anthracene and benzo[a]pyrene and six of their monomethylated congeners, and dibenz[a,h]anthracene using the zebrafish embryotoxicity test (ZET). In general, the tested PAHs induced various developmental effects in the zebrafish embryos including unhatched embryos, no movement and circulation, yolk sac and pericardial edemas, deformed body shape, and cumulative mortality at 96 h post fertilization (hpf). The alkyl substituent on different positions of the aromatic ring of the PAHs appeared to change their in vitro developmental toxicity. Comparison to a previously reported molecular docking study showed that the methyl substituents may affect the interaction of the PAHs with the aryl hydrocarbon receptor (AhR) which is known to play a role in the developmental toxicity of some PAHs. Taken together, our results show that methylation can either increase or decrease the developmental toxicity of PAHs and suggest this may relate to effects on the molecular dimensions and resulting consequences for interactions with the AhR.
Collapse
Affiliation(s)
- Jing Fang
- Division of Toxicology, Wageningen University and Research, 6708, WE, Wageningen, the Netherlands.
| | - Shutong Dong
- Division of Toxicology, Wageningen University and Research, 6708, WE, Wageningen, the Netherlands
| | - Peter J Boogaard
- Division of Toxicology, Wageningen University and Research, 6708, WE, Wageningen, the Netherlands
| | - Ivonne M C M Rietjens
- Division of Toxicology, Wageningen University and Research, 6708, WE, Wageningen, the Netherlands
| | - Lenny Kamelia
- Shell Health, Shell International B.V., 2596, HR, The Hague, the Netherlands
| |
Collapse
|
10
|
Eça GF, Albergaria-Barbosa ACR, de Souza MM, Costa PG, Leite AS, Fillmann G, Hatje V. Polycyclic aromatic hydrocarbons in sediments and shellfish from Todos os Santos bay, Brazil. MARINE POLLUTION BULLETIN 2021; 173:112944. [PMID: 34536703 DOI: 10.1016/j.marpolbul.2021.112944] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 09/03/2021] [Accepted: 09/04/2021] [Indexed: 06/13/2023]
Abstract
The present study evaluated the occurrence of 24 Polycyclic Aromatic Hydrocarbons (PAHs) in sediments and shellfish (Anomalocardia flexuosa, Crassostrea rhizophorae, and Mytella guyanensis) of Todos os Santos bay (BTS, Brazil). Total PAHs levels ranged from 89 to 921 ng g-1 dry weight (d.w.) in sediments, and from 66 to 505 ng g-1 d.w. in shellfish, signalizing that BTS was moderately contaminated by PAHs, mostly from pyrogenic activities. The bioaccumulation factor (BAF) of total PAHs ranged from 0.20 to 2.9 and did not show a clear trend among the studied species. BAFs of high molecular weight compounds were higher for A. flexuosa (specie found buried in fine sediment), while those of low molecular weight compounds were higher for C. rhizophorae (specie found in the roots of mangrove trees). High concentrations of PAHs, especially benzo[a]pyrene and dibenzo[a,h]anthracene, suggest that contamination compromises shellfish quality and raise concern about seafood consumption safety.
Collapse
Affiliation(s)
- Gilmara F Eça
- Departamento de Ciências Exatas e Tecnológicas, Universidade Federal do Recôncavo da Bahia, Cruz das Almas 44380-000, BA, Brazil.
| | - Ana C R Albergaria-Barbosa
- Laboratório de Geoquímica Marinha, Instituto de Geociências, Universidade Federal da Bahia UFBA, Campus de Ondina, Salvador 40170-115, BA, Brazil.
| | - Manuel M de Souza
- Laboratório de Biotecnologia de Halófitas, Instituto de Oceanografia, Universidade Federal do Rio Grande, Rio Grande 96203-900, RS, Brazil
| | - Patrícia G Costa
- Laboratório de Microcontaminantes Orgânicos e Ecotoxicologia Aquática, Instituto de Oceanografia, Universidade Federal do Rio Grande, Rio Grande 96203-900, RS, Brazil
| | - Adriele S Leite
- Núcleo de Estudos Ambientais-NEA, Instituto de Geociências, Universidade Federal da Bahia, Salvador, Bahia, BA 40170-115, Brazil
| | - Gilberto Fillmann
- Laboratório de Microcontaminantes Orgânicos e Ecotoxicologia Aquática, Instituto de Oceanografia, Universidade Federal do Rio Grande, Rio Grande 96203-900, RS, Brazil.
| | - Vanessa Hatje
- Instituto de Química & Centro Interdisciplinar de Energia e Ambiente, Universidade Federal da Bahia-UFBA, Campus de Ondina, Salvador 40170-115, BA, Brazil.
| |
Collapse
|
11
|
Lille-Langøy R, Jørgensen KB, Goksøyr A, Pampanin DM, Sydnes MO, Karlsen OA. Substituted Two- to Five-Ring Polycyclic Aromatic Compounds Are Potent Agonists of Atlantic Cod ( Gadus morhua) Aryl Hydrocarbon Receptors Ahr1a and Ahr2a. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:15123-15135. [PMID: 34739213 PMCID: PMC8600679 DOI: 10.1021/acs.est.1c02946] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are among the most toxic and bioavailable components found in petroleum and represent a high risk to aquatic organisms. The aryl hydrocarbon receptor (Ahr) is a ligand-activated transcription factor that mediates the toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and other planar aromatic hydrocarbons, including certain PAHs. Ahr acts as a xenosensor and modulates the transcription of biotransformation genes in vertebrates, such as cytochrome P450 1A (cyp1a). Atlantic cod (Gadus morhua) possesses two Ahr proteins, Ahr1a and Ahr2a, which diverge in their primary structure, tissue-specific expression, ligand affinities, and transactivation profiles. Here, a luciferase reporter gene assay was used to assess the sensitivity of the Atlantic cod Ahrs to 31 polycyclic aromatic compounds (PACs), including two- to five-ring native PAHs, a sulfur-containing heterocyclic PAC, as well as several methylated, methoxylated, and hydroxylated congeners. Notably, most parent compounds, including naphthalene, phenanthrene, and partly, chrysene, did not act as agonists for the Ahrs, while hydroxylated and/or alkylated versions of these PAHs were potent agonists. Importantly, the greater potencies of substituted PAH derivatives and their ubiquitous occurrence in nature emphasize that more knowledge on the toxicity of these environmentally and toxicologically relevant compounds is imperative.
Collapse
Affiliation(s)
- Roger Lille-Langøy
- Department
of Biological Sciences, University of Bergen, N-5020 Bergen, Norway
| | - Kåre Bredeli Jørgensen
- Department
of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, N-4036 Stavanger, Norway
| | - Anders Goksøyr
- Department
of Biological Sciences, University of Bergen, N-5020 Bergen, Norway
| | - Daniela M. Pampanin
- Department
of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, N-4036 Stavanger, Norway
| | - Magne O. Sydnes
- Department
of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, N-4036 Stavanger, Norway
| | - Odd André Karlsen
- Department
of Biological Sciences, University of Bergen, N-5020 Bergen, Norway
| |
Collapse
|
12
|
Weeks Santos S, Gonzalez P, Cormier B, Mazzella N, Moreira A, Clérandeau C, Morin B, Cachot J. Subchronic Exposure to Environmental Concentrations of Chlorpyrifos Affects Swimming Activity of Rainbow Trout Larvae. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:3092-3102. [PMID: 34329515 DOI: 10.1002/etc.5183] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/24/2021] [Accepted: 07/29/2021] [Indexed: 06/13/2023]
Abstract
Chlorpyrifos (CPF), an organophosphorous pesticide, can be found in aquatic ecosystems at concentrations of up to several hundred nanograms per liter because of water runoff from treated crops. While some studies have shown that low concentrations of CPF may have adverse effects on aquatic species, comparatively little is known about its effect on fish embryos and larvae. To investigate the developmental effects of CPF, rainbow trout (Oncorhynchus mykiss) eyed-stage embryos were exposed in semistatic conditions to 0.3 and 3 µg/L of CPF up to the end of the sac-fry stage, 3 weeks, at 12 °C. Several endpoints were analyzed including survival, hatching delay, hatching success, biometry, swimming activity, DNA damage, lipid peroxidation, protein carbonyl content, acetylcholinesterase (AChE) activity, and gene expression. At the end of the 3-week exposure, larvae exposed to the highest concentration of CPF were less mobile compared to the control and the lowest CPF conditions. No significant differences in AChE activity were observed in either set of CPF conditions compared to control, but it was significantly reduced for larvae exposed to 3 µg/L compared to those exposed to 0.3 µg/L of CPF. Expression of genes that encoded estrogen receptor beta was downregulated for larvae exposed to both CPF concentrations. Expression of cytochrome P450 family 19 subfamily A member 1 was also significantly repressed but only on larvae exposed to the highest concentration of CPF. Our results indicated that subchronic exposure to environmental concentrations of CPF could lead to sublethal effects on early-life stages of rainbow trout, especially effects on swimming activity that could affect foraging activity and escaping from predators. Environ Toxicol Chem 2021;40:3092-3102. © 2021 SETAC.
Collapse
Affiliation(s)
- Shannon Weeks Santos
- University of Bordeaux, UMR5805 CNRS University of Bordeaux EPHE, Pessac, France
| | - Patrice Gonzalez
- University of Bordeaux, UMR5805 CNRS University of Bordeaux EPHE, Pessac, France
| | - Bettie Cormier
- University of Bordeaux, UMR5805 CNRS University of Bordeaux EPHE, Pessac, France
| | - Nicolas Mazzella
- French National Research Institute for Agriculture, Food and Environment (INRAE), Site de Cestas, Cestas-Gazinet, France
| | - Aurélie Moreira
- French National Research Institute for Agriculture, Food and Environment (INRAE), Site de Cestas, Cestas-Gazinet, France
| | | | - Bénédicte Morin
- University of Bordeaux, UMR5805 CNRS University of Bordeaux EPHE, Pessac, France
| | - Jérôme Cachot
- University of Bordeaux, UMR5805 CNRS University of Bordeaux EPHE, Pessac, France
| |
Collapse
|
13
|
Schiano Di Lombo M, Weeks-Santos S, Clérandeau C, Triffault-Bouchet G, Langlois Valérie S, Couture P, Cachot J. Comparative developmental toxicity of conventional oils and diluted bitumen on early life stages of the rainbow trout (Oncorhynchus mykiss). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 239:105937. [PMID: 34450521 DOI: 10.1016/j.aquatox.2021.105937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 07/13/2021] [Accepted: 08/06/2021] [Indexed: 06/13/2023]
Abstract
Petroleum hydrocarbons are widely used and transported, increasing the risks of spills to the environment. Although conventional oils are the most commonly produced, the production of unconventional oils (i.e. diluted bitumen or dilbit) is increasing. In this study, we compared the effects of conventional oils (Arabian Light and Lloydminster) and dilbits (Bluesky and Clearwater) on early life stages of a salmonid. To this end, aqueous fractions (WAF: water accommodated fraction) of these oils were extracted using mountain spring water. Rainbow trout (Oncorhynchus mykiss) larvae were exposed to 10 and 50% dilutions of these WAFs from hatching (340 DD; degree days) until yolk sac resorption (541 DD). Exposure to WAFs increased skeletal malformations (both dilbits) and hemorrhage (both conventional oils and Bluesky) and decreased head growth (Arabian Light). In addition, increases in EROD activity and DNA damage were measured for all oils and an increase in cyp1a gene expression was measured for Arabian Light, Bluesky and Clearwater. The PAH and C10C50 concentrations were positively correlated to total larval EROD activity, whereas concentrations of total hydrocarbons, VOCs, PAHs, and C10C50 were positively correlated to cyp1a expression. Total hydrocarbon, VOC, and C10C50 concentrations were also negatively correlated to larval growth. This study supports that petroleum hydrocarbons are toxic to early developmental stages of rainbow trout and show that their degree and spectrum of toxicity depends on their chemical composition.
Collapse
Affiliation(s)
- Magali Schiano Di Lombo
- Université de Bordeaux, CNRS, EPHE EPOC UMR 5805, F-33600 Pessac, France; Institut national de la recherche scientifique (INRS), Centre Eau Terre Environnement, Québec, QC, Canada
| | | | | | - Gaëlle Triffault-Bouchet
- Centre d'expertise en analyse environnementale du Québec, Ministère de l'Environnement et de la Lutte contre les changements climatiques, Québec, QC, Canada
| | - S Langlois Valérie
- Institut national de la recherche scientifique (INRS), Centre Eau Terre Environnement, Québec, QC, Canada
| | - Patrice Couture
- Institut national de la recherche scientifique (INRS), Centre Eau Terre Environnement, Québec, QC, Canada.
| | - Jérôme Cachot
- Université de Bordeaux, CNRS, EPHE EPOC UMR 5805, F-33600 Pessac, France.
| |
Collapse
|
14
|
Environmentally Relevant Mixture of Pesticides Affect Mobility and DNA Integrity of Early Life Stages of Rainbow Trout ( Oncorhynchus mykiss). TOXICS 2021; 9:toxics9080174. [PMID: 34437492 PMCID: PMC8402510 DOI: 10.3390/toxics9080174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/15/2021] [Accepted: 07/20/2021] [Indexed: 11/16/2022]
Abstract
The aim of this study was to analyze the impact of three concentrations of a pesticide mixture on the first development stages of rainbow trout (Oncorhynchus mykiss). The mixture was made up of three commonly used pesticides in viticulture: glyphosate (GLY), chlorpyrifos (CPF) and copper sulfate (Cu). Eyed stage embryos were exposed for 3 weeks to three concentrations of the pesticide mixture. Lethal and sub-lethal effects were assessed through a number of phenotypic and molecular endpoints including survival, hatching delay, hatching success, biometry, swimming activity, DNA damage (Comet assay), lipid peroxidation (TBARS), protein carbonyl content and gene expression. Ten target genes involved in antioxidant defenses, DNA repair, mitochondrial metabolism and apoptosis were analyzed using real-time RT-qPCR. No significant increase of mortality, half-hatch, growth defects, TBARS and protein carbonyl contents were observed whatever the pesticide mixture concentration. In contrast, DNA damage and swimming activity were significantly more elevated at the highest pesticide mixture concentration. Gene transcription was up-regulated for genes involved in detoxification (gst and mt1), DNA repair (ogg1), mitochondrial metabolism (cox1 and 12S), and cholinergic system (ache). This study highlighted the induction of adaptive molecular and behavioral responses of rainbow trout larvae when exposed to environmentally realistic concentrations of a mixture of pesticides.
Collapse
|
15
|
Lucas J, Logeux V, Rodrigues AMS, Stien D, Lebaron P. Exposure to four chemical UV filters through contaminated sediment: impact on survival, hatching success, cardiac frequency, and aerobic metabolic scope in embryo-larval stage of zebrafish. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:29412-29420. [PMID: 33555472 DOI: 10.1007/s11356-021-12582-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
UV filters are widely used in many pharmaceutical and personal care products such as sunscreen and cosmetics to protect from UV irradiation. Due to their hydrophobic properties and relative stability, they have a high capacity to accumulate in sediment. Little information is available on their ecotoxicity on fish. In aquatic ecosystems, fish eggs could be directly affected by UV filters through contact with contaminated sediment. The aim of this study was to investigate the individual toxicity of four UV filters: benzophenone-3 (BP3), butyl methoxydibenzoylmethane (BM), bis-ethylhexyloxyphenol methoxyphenyl triazine (BEMT), and methylene bis-benzotriazolyl tetramethylbutylphenol (MBBT), in embryo-larval stages of zebrafish Danio rerio. Fish eggs were exposed to single UV filters by contact with spiked sediment during 96 h at a concentration of 10 μg g-1. Among the four UV filters tested, BP3 was the more toxic, reducing cardiac frequency and increasing standard metabolic rate of larvae.
Collapse
Affiliation(s)
- Julie Lucas
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologie Microbiennes, LBBM, Observatoire Océanologique, 66650, Banyuls-sur-Mer, France.
| | - Valentin Logeux
- Sorbonne Université, CNRS, Fédération de Recherche, Observatoire Océanologique, 66650, Banyuls-sur-Mer, France
| | - Alice M S Rodrigues
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologie Microbiennes, LBBM, Observatoire Océanologique, 66650, Banyuls-sur-Mer, France
| | - Didier Stien
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologie Microbiennes, LBBM, Observatoire Océanologique, 66650, Banyuls-sur-Mer, France
| | - Philippe Lebaron
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologie Microbiennes, LBBM, Observatoire Océanologique, 66650, Banyuls-sur-Mer, France
| |
Collapse
|
16
|
Barreto IS, de Albergaria-Barbosa ACR, Patire VF, de Jesus Silva M, Baldassin P, Taniguchi S, Montone RC, Gallo H, Maranho A, Bícego MC. Bioavailability of polycyclic aromatic hydrocarbons to penguins on the coast of southeastern Brazil. MARINE POLLUTION BULLETIN 2020; 157:111306. [PMID: 32658674 DOI: 10.1016/j.marpolbul.2020.111306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/12/2020] [Accepted: 05/20/2020] [Indexed: 06/11/2023]
Abstract
Bioavailability of polycyclic aromatic hydrocarbons on São Paulo state coast (southeastern Brazil) was evaluated through the analysis of biliary metabolites in Spheniscus magellanicus (n = 79). The animals analyzed in present study were either found dead during beach monitoring procedures or died at rehabilitation centers. Analyses of naphthalene (NAP), phenanthrene (PHE) and benzo[a]pyrene (BaP) metabolites were performed using a high-performance liquid chromatograph equipped with fluorescence detectors. Total metabolite (TM) concentrations ranged from below the method quantification limit to 270 μg g-1 of bile. TM concentrations were mainly composed of NAP metabolites, followed by PHE metabolites. BaP metabolites were detected in only two samples. This is the first study using PAHs metabolites in S. magellanicus to assess the bioavailability of these compounds in coastal regions.
Collapse
Affiliation(s)
- Isana Souza Barreto
- Laboratory of Oil Studies, Geoscience Institute, Federal University of Bahia, Rua Barão de Jeremoabo, s/n, 40170-020 Salvador, BA, Brazil.
| | - Ana Cecilia Rizzatti de Albergaria-Barbosa
- Laboratory of Oil Studies, Geoscience Institute, Federal University of Bahia, Rua Barão de Jeremoabo, s/n, 40170-020 Salvador, BA, Brazil; Laboratory of Marine Geochemistry, Geoscience Institute, Federal University of Bahia, Rua Barão de Jeremoabo, s/n, 40170-020 Salvador, BA, Brazil; Laboratory of Marine Organic Chemistry, Oceanographic Institute, University of São Paulo, Praça do Oceanográfico, 191, 05508-900 São Paulo, SP, Brazil.
| | - Vinicius Farias Patire
- Laboratory of Marine Organic Chemistry, Oceanographic Institute, University of São Paulo, Praça do Oceanográfico, 191, 05508-900 São Paulo, SP, Brazil; Interdisciplinary Center of Energy and Environment, Federal University of Bahia, Rua Barão de Jeremoabo, s/n, 40170-020 Salvador, BA, Brazil
| | - Márcio de Jesus Silva
- Laboratory of Oil Studies, Geoscience Institute, Federal University of Bahia, Rua Barão de Jeremoabo, s/n, 40170-020 Salvador, BA, Brazil
| | - Paula Baldassin
- Laboratory of Marine Organic Chemistry, Oceanographic Institute, University of São Paulo, Praça do Oceanográfico, 191, 05508-900 São Paulo, SP, Brazil; BW Consultoria Veterinária, Rua Professora Suely Brasil Flores, 88, 28970-000 Araruama, RJ, Brazil
| | - Satie Taniguchi
- Laboratory of Marine Organic Chemistry, Oceanographic Institute, University of São Paulo, Praça do Oceanográfico, 191, 05508-900 São Paulo, SP, Brazil
| | - Rosalinda Carmela Montone
- Laboratory of Marine Organic Chemistry, Oceanographic Institute, University of São Paulo, Praça do Oceanográfico, 191, 05508-900 São Paulo, SP, Brazil.
| | - Hugo Gallo
- Instituto Argonauta para a Conservação Costeira e Marinha, Rua Guarani, 835, 11680-000 Ubatuba, SP, Brazil; Aquário de Ubatuba, Rua Guarani, 859, 1680-000 Ubatuba, SP, Brazil.
| | - Andrea Maranho
- Instituto Gremar Pesquisa, Educação e Gestão de Fauna, Rua João Ruiz, 799, 11420-350 Guarujá, SP, Brazil
| | - Márcia Caruso Bícego
- Laboratory of Marine Organic Chemistry, Oceanographic Institute, University of São Paulo, Praça do Oceanográfico, 191, 05508-900 São Paulo, SP, Brazil
| |
Collapse
|
17
|
Muliari M, Zulfahmi I, Akmal Y, Karja NWK, Nisa C, Sumon KA, Rahman MM. Toxicity of palm oil mill effluent on the early life stages of Nile tilapia (Oreochromis niloticus, Linnaeus 1758). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:30592-30599. [PMID: 32468372 DOI: 10.1007/s11356-020-09410-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 05/21/2020] [Indexed: 06/11/2023]
Abstract
Harmful effects of several pollutants have been reported on early life stages of fish. However, the effects of palm oil mill effluent (POME) on fish early life stages are still unexplored. Therefore, the objective of this present study was to elucidate the impact of POME on the early life stages of Nile tilapia (Oreochromis niloticus). Fertilized eggs of Nile tilapia were exposed to four concentrations of POME (0, 1.565, 2.347, and 3.130 mg/L) in 20 plastic funnels. Each of the control and treatment groups was maintained in five replicates. The cumulative hatching rate, malformation rate, body length, and deformities of larvae were analyzed. Results showed that hatching rate and survival rate of Nile tilapia larvae significantly decreased with increasing concentrations of POME. In contrast to, malformation rate and heart rate were significantly increased. Furthermore, results showed several malformations of Nile tilapia larvae including lordosis, kyphosis, and curved tail when exposed to 1.565 mg/L, 2.347 mg/L, and 3.130 mg/L of POME concentrations. Further research is required to understand the physiological mechanisms of different endpoints in the early stages of Nile tilapia induced by the toxicity of POME.
Collapse
Affiliation(s)
- Muliari Muliari
- Department of Aquaculture, Faculty of Agriculture, Almuslim University, Kabupaten Bireuen, Indonesia
| | - Ilham Zulfahmi
- Department of Biology, Faculty of Science and Technology, Ar-Raniry State Islamic University, Banda Aceh, 23111, Indonesia.
| | - Yusrizal Akmal
- Department of Aquaculture, Faculty of Agriculture, Almuslim University, Kabupaten Bireuen, Indonesia
| | - Ni Wayan Kurniani Karja
- Department of Veterinary Clinic, Reproduction and Pathology, Faculty of Veterinary Medicine, IPB University, Bogor, Indonesia
| | - Chairun Nisa
- Department of Anatomy Physiology and Pharmacology, Faculty of Veterinary Medicine, IPB University, Bogor, Indonesia
| | - Kizar Ahmed Sumon
- Department of Fisheries Management, Bangladesh Agricultural University, -2202, Mymensingh, Bangladesh
| | - Mohammad Mahmudur Rahman
- Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, Callaghan, NSW, 2308, Australia
| |
Collapse
|
18
|
Guimarães LM, De França EJ, de Arruda GN, Albergaria-Barbosa ACRD. Historical inputs of polycyclic aromatic hydrocarbons in the preserved tropical estuary of the Itapicuru River, Bahia, Brazil. MARINE POLLUTION BULLETIN 2020; 156:111218. [PMID: 32510369 DOI: 10.1016/j.marpolbul.2020.111218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/22/2020] [Accepted: 04/23/2020] [Indexed: 06/11/2023]
Abstract
The aim of present study was to evaluate temporal changes in the distribution of polycyclic aromatic hydrocarbons (PAHs) in the estuary of the Itapicuru (Brazil). A sediment core was sampled in the study area. Concentrations of the 16 priority PAHs were analyzed using gas chromatography coupled to a mass spectrometry. A gas flow proportional counter was used to estimate the sedimentation rate through the determination of 210Pb. Granulometric fractions and total organic carbon (TOC) concentrations were also evaluated. Concentrations of TOC and PAHs ranged from 0.65 to 2.51% and 1.98 to 43.1 ng g-1 (dry weight), respectively. Significant correlations (p < .05) were found between the mud content in the sediment core samples and concentrations of both TOC and PAHs. Higher PAH concentrations occurred after the 1950s. The main sources of PAHs over time were local human activities on the northern coast of the state of Bahia.
Collapse
Affiliation(s)
- Lucas Medeiros Guimarães
- Laboratório de Geoquímica Marinha, Instituto de Geociências - Universidade Federal da Bahia, Rua Barão de Jeremoabo, sn, Salvador, BA 40170-115, Brazil
| | - Elvis Joacir De França
- Centro Regional de Ciências Nucleares do Nordeste, Av. Professor Luís Freire, 200, Recife, PE 50740-545, Brazil
| | | | - Ana Cecília Rizzatti de Albergaria-Barbosa
- Laboratório de Geoquímica Marinha, Instituto de Geociências - Universidade Federal da Bahia, Rua Barão de Jeremoabo, sn, Salvador, BA 40170-115, Brazil; Laboratório de Estudos do Petróleo, Instituto de Geociências - Universidade Federal da Bahia, Rua Barão de Jeremoabo, sn, Salvador, BA 40170-115, Brazil.
| |
Collapse
|
19
|
Dreij K, Lundin L, Le Bihanic F, Lundstedt S. Polycyclic aromatic compounds in urban soils of Stockholm City: Occurrence, sources and human health risk assessment. ENVIRONMENTAL RESEARCH 2020; 182:108989. [PMID: 31835119 DOI: 10.1016/j.envres.2019.108989] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/18/2019] [Accepted: 11/30/2019] [Indexed: 06/10/2023]
Abstract
Polycyclic aromatic compounds (PACs) are ubiquitous pollutants that are found everywhere in our environment, including air, soil and water. The aim of this study was to determine concentrations, distribution, sources and potential health risk of 43 PACs in soils collected from 25 urban parks in Stockholm City, Sweden. These PACs included 21 PAHs, 11 oxygenated PAHs, 7 methylated PAHs, and 4 azaarenes whose concentrations ranged between 190 and 54 500, 30.5-5 300, 14.9-680, and 4.17-590 ng/g soil, respectively. Fluoranthene was found at the highest levels ranging between 17.7 and 9800 ng/g, benzo[a]pyrene between 9.64 and 4600 ng/g, and the highly potent carcinogen dibenzo[a,l]pyrene up to 740 ng/g. The most abundant oxy-PAH was 6H-benzo[cd]pyren-6-one (2.09-2300 ng/g). Primary sources of PAHs were identified by use of diagnostic ratios and Positive Matrix Factorization modelling and found to be pyrogenic including vehicle emissions and combustion of biomass. Estimating the incremental lifetime cancer risks (ILCRS) associated with exposure to PAHs in these soils indicated that the PAH levels in some parks constitute a considerable increased risk level for adults and children (total ILCR > 1 × 10-4). Compared to worldwide urban parks contamination, we conclude that the PAC soil levels in parks of Stockholm City in general are low, but that some parks are more heavily contaminated and should be considered for clean-up actions to limit human health risks.
Collapse
Affiliation(s)
- Kristian Dreij
- Institute of Environmental Medicine, Karolinska Institutet, 17177, Stockholm, Sweden.
| | - Lisa Lundin
- Department of Chemistry, Umeå University, 90187, Umeå, Sweden
| | - Florane Le Bihanic
- Laboratoire EPOC, UMR CNRS 5805, Université de Bordeaux, 33405, Talence Cedex, France
| | - Staffan Lundstedt
- Department of Medical Biosciences, Clinical Chemistry, Umeå Univeristy, 90187, Umeå, Sweden
| |
Collapse
|
20
|
Barreto LS, Souza ATDC, Martins CC, Araujo SBL, Oliveira Ribeiro CAD. Urban effluents affect the early development stages of Brazilian fish species with implications for their population dynamics. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 188:109907. [PMID: 31732269 DOI: 10.1016/j.ecoenv.2019.109907] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/28/2019] [Accepted: 10/31/2019] [Indexed: 06/10/2023]
Abstract
The pollution from urban effluents discharged into natural waters is a major cause of aquatic biodiversity loss. Ecotoxicological testing contributes significantly to understand the risk of exposure to the biota and to establish conservation policies. The objective of the current study was to assess the toxicity of a river highly influenced by urban effluents (Atuba River, Curitiba city, Southern Brazil) to the early stages of development in four South American native fish species, investigating the consequences at the population level through mathematical modelling. The species chosen were Salminus brasiliensis, Prochilodus lineatus, Rhamdia quelen, and Pseudoplatystoma corruscans, ecologically important species encompassing different conservation statuses and vulnerability. The embryos were exposed from 8 to 96 h post fertilization to the Atuba River water, collected downstream of the largest wastewater treatment plant in the Metropolitan Region of Curitiba, and their survival rates and deformities were registered. The species S. brasiliensis and P. lineatus presented the highest mortality rates, showing high sensitivity to the pollutants present in the water. According to the individual-based mathematical model, these species showed high vulnerability and risk of extinction under the tested experimental conditions, even when different sensitivity scenarios of juveniles and adults were considered. The other two species, R. quelen and P. corruscans, showed a more resistant condition to mortality, but also presented high frequency and severity of deformities. These results emphasize the importance of testing the sensitivity of different Brazilian native species for the conservation of biodiversity and the application of models to predict the effects of pollutants at the population level.
Collapse
Affiliation(s)
- Luiza Santos Barreto
- Laboratório de Toxicologia Celular, Departamento de Biologia Celular, Universidade Federal do Paraná, CEP, 81531-970, Curitiba, PR, Brazil; Programa de Pós-Graduação em Ecologia e Conservação, Setor de Ciências Biológicas, Universidade Federal do Paraná, CEP, 81531-980, Curitiba, Paraná, Brazil.
| | - Angie Thaisa da Costa Souza
- Programa de Pós-Graduação em Ecologia e Conservação, Setor de Ciências Biológicas, Universidade Federal do Paraná, CEP, 81531-980, Curitiba, Paraná, Brazil
| | - César C Martins
- Centro de Estudos do Mar, Universidade Federal do Paraná, CEP, 83255-976, Pontal do Paraná, PR, Brazil
| | | | - Ciro Alberto de Oliveira Ribeiro
- Laboratório de Toxicologia Celular, Departamento de Biologia Celular, Universidade Federal do Paraná, CEP, 81531-970, Curitiba, PR, Brazil.
| |
Collapse
|
21
|
Weeks Santos S, Gonzalez P, Cormier B, Mazzella N, Bonnaud B, Morin S, Clérandeau C, Morin B, Cachot J. A glyphosate-based herbicide induces sub-lethal effects in early life stages and liver cell line of rainbow trout, Oncorhynchus mykiss. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 216:105291. [PMID: 31525644 DOI: 10.1016/j.aquatox.2019.105291] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 08/28/2019] [Accepted: 09/01/2019] [Indexed: 06/10/2023]
Abstract
Most pesticides used in agriculture end up in the aquatic environment through runoff and leaching of treated crops. One of the most commonly used herbicides is glyphosate. This compound or its metabolites are frequently detected in surface water in Europe. In the present study, in vivo and in vitro studies were carried out using the early life stages of rainbow trout (Oncorhynchus mykiss) and the cell line RTL-W1 (a liver cell line from rainbow trout) to characterize the toxic effects of glyphosate at environmentally-realistic concentrations. Both studies were performed using the commercial formulation Roundup® GT Max, and technical-grade glyphosate for the in vitro study. Eyed-stage embryos were exposed for 3 weeks to sub-lethal concentrations (0.1 and 1 mg/L) of glyphosate using Roundup. Numerous toxicity endpoints were recorded such as survival, hatching success, larval biometry, developmental abnormalities, swimming activity, genotoxicity (formamidopyrimidine DNA-glycosylase Fpg-modified comet assay), lipid peroxidation (TBARS), protein carbonyls and target gene transcription. Concentrations neither affected embryonic or larval survival nor increased developmental abnormalities. However, a significant decrease was observed in the head size of larvae exposed to 1 mg/L of glyphosate. In addition, a significant increase in mobility was observed for larvae exposed to glyphosate at 0.1 mg/L. TBARS levels were significantly decreased on larvae exposed to 1 mg/L (a.i.), and cat and cox1 genes were differently transcribed from controls. DNA damage was detected by the Fpg-modified comet assay in RTL-W1 cell line exposed to the technical-grade glyphosate and Roundup formulation. The results suggest that chronic exposure to glyphosate, at environmental concentrations, could represent a potential risk for early life stages of fish.
Collapse
Affiliation(s)
- Shannon Weeks Santos
- UMR CNRS 5805 EPOC, University of Bordeaux, Allée Geoffoy Saint-Hilaire, CS 50023, 33615, Pessac Cedex, France
| | - Patrice Gonzalez
- UMR CNRS 5805 EPOC, University of Bordeaux, Allée Geoffoy Saint-Hilaire, CS 50023, 33615, Pessac Cedex, France
| | - Bettie Cormier
- UMR CNRS 5805 EPOC, University of Bordeaux, Allée Geoffoy Saint-Hilaire, CS 50023, 33615, Pessac Cedex, France
| | - Nicolas Mazzella
- IRSTEA, UR EABX, 50 avenue de Verdun, 33612, Cestas cedex, France
| | - Bertille Bonnaud
- IRSTEA, UR EABX, 50 avenue de Verdun, 33612, Cestas cedex, France
| | - Soizic Morin
- IRSTEA, UR EABX, 50 avenue de Verdun, 33612, Cestas cedex, France
| | - Christelle Clérandeau
- UMR CNRS 5805 EPOC, University of Bordeaux, Allée Geoffoy Saint-Hilaire, CS 50023, 33615, Pessac Cedex, France
| | - Bénédicte Morin
- UMR CNRS 5805 EPOC, University of Bordeaux, Allée Geoffoy Saint-Hilaire, CS 50023, 33615, Pessac Cedex, France
| | - Jérôme Cachot
- UMR CNRS 5805 EPOC, University of Bordeaux, Allée Geoffoy Saint-Hilaire, CS 50023, 33615, Pessac Cedex, France.
| |
Collapse
|
22
|
Meador JP, Nahrgang J. Characterizing Crude Oil Toxicity to Early-Life Stage Fish Based On a Complex Mixture: Are We Making Unsupported Assumptions? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:11080-11092. [PMID: 31503459 DOI: 10.1021/acs.est.9b02889] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Numerous studies of the water-soluble fraction (WSF) from crude oil have concluded that polycyclic aromatic hydrocarbons (PAHs) are the primary causative agents for early life stage (ELS) fish toxicity. Noteworthy is the lack of studies demonstrating that the sum of PAHs are capable of causing toxic effects in ELS fish at the low levels claimed (0.1-5 μg/L) without being part of a complex crude oil mixture. Crude oil and the WSF are composed of thousands of other compounds that co-occur and likely contribute to crude oil toxicity. Based on the available data, it appears that the syndrome of effects (lower heart rate, edemas, and morphological abnormalities) for ELS fish exposed to the aqueous fraction of a crude oil mixture is commonly observed in studies exposing fish embryos to high concentrations of a variety of compounds and may be a nonspecific response. We conclude that the available data support the hypothesis that this syndrome of effects is likely the result of baseline toxicity (not receptor based) due to membrane disruption and resulting alteration in ion (e.g., calcium and potassium) homeostasis. We acknowledge the possibility of some compounds in the WSF capable of causing a specific receptor based toxicity response to ELS fish; however, such compounds have not been identified nor their receptor characterized. Concluding that PAHs are the main toxic compounds for crude oil exposure is misleading and does not result in guideline values that can be useful for environmental protection. Water quality guidelines for any single chemical or suite of chemicals must be based on a complete understanding of exposure concentrations, mechanism of action, potency, and resulting response. This review focuses on the toxic effects reported for fish embryos and the purported toxic concentrations observed in the aqueous phase of an oil/water mixture, the known levels of toxicity for individual PAHs, a toxic unit approach for characterizing mixtures, and the potential molecular initiating event for ELS toxicity in fish. This review also has implications for a large number of studies exposing ELS fish to a variety of compounds at high concentrations that result in a common baseline toxic response.
Collapse
Affiliation(s)
- James P Meador
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service , National Oceanic and Atmospheric Administration , 2725 Montlake Boulevard East , Seattle , Washington 98112 , United States
| | - Jasmine Nahrgang
- Faculty of Biosciences, Fisheries and Economics, Department of Arctic and Marine Biology , UiT The Arctic University of Norway , N-9037 Tromsø , Norway
| |
Collapse
|
23
|
Franco ME, Lavado R. Applicability of in vitro methods in evaluating the biotransformation of polycyclic aromatic hydrocarbons (PAHs) in fish: Advances and challenges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 671:685-695. [PMID: 30939321 DOI: 10.1016/j.scitotenv.2019.03.394] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/24/2019] [Accepted: 03/25/2019] [Indexed: 05/24/2023]
Abstract
The biotransformation of polycyclic aromatic hydrocarbons (PAHs) and the biochemical mechanisms involved in such process continue to be intensively studied in the fields of environmental science and toxicology. The investigation of PAH biotransformation in fish is fundamental to understand how piscine species cope with PAH exposure, as these compounds are ubiquitous in aquatic ecosystems and impact different levels of biological organization. New approaches are continuously developed in the field of ecotoxicology, allowing live animal testing to be combined with and, in some cases, replaced with novel in vitro systems. Many in vitro techniques have been developed and effectively applied in the investigation of the biochemical pathways driving the biotransformation of PAH in fish. In vitro experimentation has been fundamental in the advancement of not only understanding PAH-mediated toxicity, but also in highlighting suitable cell-based models for such investigations. Therefore, the present review highlights the value and applicability of in vitro systems for PAH biotransformation studies, and provides up-to-date information on the use of in vitro fish models in the evaluation of PAH biotransformation, common biomarkers, and challenges encountered when developing and applying such systems.
Collapse
Affiliation(s)
- Marco E Franco
- Department of Environmental Science, Baylor University, Waco, TX 76706, USA.
| | - Ramon Lavado
- Department of Environmental Science, Baylor University, Waco, TX 76706, USA
| |
Collapse
|
24
|
Pannetier P, Morin B, Clérandeau C, Laurent J, Chapelle C, Cachot J. Toxicity assessment of pollutants sorbed on environmental microplastics collected on beaches: Part II-adverse effects on Japanese medaka early life stages. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 248:1098-1107. [PMID: 31091641 DOI: 10.1016/j.envpol.2018.10.129] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 10/09/2018] [Accepted: 10/30/2018] [Indexed: 06/09/2023]
Abstract
While microplastics are present in great abundance across all seas and oceans, little is known about their effects on marine life. In the aquatic environment, they can accumulate a variety of chemicals and can be ingested by many marine organisms including fish, with chronic physical and chemical effects. The purpose of this paper is to evaluate the toxic effects of pollutants sorbed at the surface of environmental microplastics (MPs), collected on various beaches from three islands of the Pacific Ocean. Developmental toxicity of virgin MPs or artificially coated with B[a]P and environmental MPs from Easter Island, Guam and Hawaii was evaluated on embryos and prolarvae of Japanese medaka. Mortality, hatching success, biometry, malformations, EROD activity and DNA damage were analyzed after exposure to DMSO extracts. No toxicity was observed for extracts of virgin MPs whatever the endpoint considered. Extracts of virgin MPs coated with 250 µg.g-1 of B(a)P induced lethal effects with high embryo mortality (+81%) and low hatching rate (-28%) and sublethal effects including biometry and swimming behavior changes, increase of EROD activity (+94%) and DNA damage (+60%). Environmental MPs collected on the three selected islands exhibited different polymer, pollutant and toxicity patterns. The highest toxicity was detected for MPs extract from Hawaï with head/body length and swimming speed decreases and induction of EROD activity and DNA stand breaks. This study reports the possible sublethal toxicity of organic pollutants sorbed on MPs to fish early life stages.
Collapse
Affiliation(s)
| | | | | | | | | | - Jérôme Cachot
- Univ. Bordeaux, EPOC, UMR 5805, F-33400, Talence, France
| |
Collapse
|
25
|
Santos SW, Cachot J, Gourves PY, Clérandeau C, Morin B, Gonzalez P. Sub-lethal effects of waterborne copper in early developmental stages of rainbow trout (Oncorhynchus mykiss). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 170:778-788. [PMID: 30593991 DOI: 10.1016/j.ecoenv.2018.12.045] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 12/12/2018] [Accepted: 12/16/2018] [Indexed: 06/09/2023]
Abstract
The aim of this work was to study the impact of copper during a sub-chronic exposure to environmental concentrations in the early life stages of rainbow trout (Oncorhynchus mykiss). Eyed-stage embryos of rainbow trout, at 265 °D, were exposed in semi-static conditions to sub-lethal concentrations of CuSO4 up to the larval stage (528 °D) under laboratory-controlled conditions. During 3 weeks, they were exposed to the environmentally-realistic concentration of 2 µg/L Cu and to a 10-fold higher concentration, 20 µg/L Cu. Several biological (survival, hatching success, malformation, growth) and behavioral (swimming activity) and molecular endpoints (genotoxicity and gene transcription) were studied. Exposure to 20 µg/L Cu had an inhibitory effect on hatching and increased half-hatched embryos (25%). At the end of the exposure, no significant differences were observed in growth of the larvae exposed to the highest Cu concentration. However, larvae exposed to 2 µg/L Cu exhibited increased growth in comparison with non-exposed larvae. The percentage of malformed larvae was significantly higher for both copper conditions, with skeletal malformations being the most observed. Expression of several genes was evaluated in whole larvae using quantitative real-time PCR. Genes involved in detoxification (gst, mt1 and mt2) and in cell cycle arrest (p53) were significantly repressed in both copper conditions when compared to control. In addition, potential genotoxic effects on larvae were investigated by the comet assay on blood cells, but this test did not demonstrate any significant DNA damage on larvae exposed to copper. This study confirms the adverse effects of copper on early life stages of rainbow trout even at the lowest environmentally relevant tested concentration.
Collapse
Affiliation(s)
- Shannon Weeks Santos
- UMR CNRS 5805 EPOC, University of Bordeaux, Avenue des Facultés, 33405 Talence Cedex, France
| | - Jérôme Cachot
- UMR CNRS 5805 EPOC, University of Bordeaux, Avenue des Facultés, 33405 Talence Cedex, France
| | - Pierre-Yves Gourves
- UMR CNRS 5805 EPOC, University of Bordeaux, Place du Dr B. Peyneau, 33120 Arcachon, France
| | - Christelle Clérandeau
- UMR CNRS 5805 EPOC, University of Bordeaux, Avenue des Facultés, 33405 Talence Cedex, France
| | - Bénédicte Morin
- UMR CNRS 5805 EPOC, University of Bordeaux, Avenue des Facultés, 33405 Talence Cedex, France
| | - Patrice Gonzalez
- UMR CNRS 5805 EPOC, University of Bordeaux, Place du Dr B. Peyneau, 33120 Arcachon, France.
| |
Collapse
|
26
|
de Almeida M, do Nascimento DV, de Oliveira Mafalda P, Patire VF, de Albergaria-Barbosa ACR. Distribution and sources of polycyclic aromatic hydrocarbons (PAHs) in surface sediments of a Tropical Bay influenced by anthropogenic activities (Todos os Santos Bay, BA, Brazil). MARINE POLLUTION BULLETIN 2018; 137:399-407. [PMID: 30503449 DOI: 10.1016/j.marpolbul.2018.10.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 10/11/2018] [Accepted: 10/17/2018] [Indexed: 05/12/2023]
Abstract
The present study aimed to evaluate the distribution and origin of 16 Priority PAHs in surficial sediment samples of Todos os Santos Bay (TSB, Brazil). Total PAHs concentrations ranged from below the method detection limit (<DL) to 533 ng g-1 (dry weight). The toxic equivalent concentrations (TEQcarc) of PAHs in the studied area ranged from 0 to 104 ng g-1 and were lower when compared to other contaminated bays in the world. Diagnostic ratios indicated that pyrogenic processes, such as pyrolysis of fossil fuel, biomass, and coal, were the main PAHs sources for sediments. Proximity of the sources, the hydrodynamics and geochemistry of the sediments were the factor influencing the distribution of PAHs along the studied area.
Collapse
Affiliation(s)
- Marcos de Almeida
- Laboratory of Petroleum Studies, Geoscience Institute, Federal University of Bahia, Rua Barão de Jeremoabo, s/n, 40170-020 Salvador, BA, Brazil; Laboratory of Marine Geochemistry, Geoscience Institute, Federal University of Bahia, Rua Barão de Jeremoabo, s/n, 40170-020 Salvador, BA, Brazil.
| | - Danielle Vasconcelos do Nascimento
- Laboratory of Petroleum Studies, Geoscience Institute, Federal University of Bahia, Rua Barão de Jeremoabo, s/n, 40170-020 Salvador, BA, Brazil
| | - Paulo de Oliveira Mafalda
- Laboratory of Plankton, Institute of Biology, Federal University of Bahia, Rua Barão de Jeremoabo, s/n, 40170-020 Salvador, BA, Brazil.
| | - Vinicius Faria Patire
- Ekman, Environmental and Oceanographic Services, Avenida das Américas, Bloco 2, 700, 21931-004 Rio de Janeiro, RJ, Brazil
| | - Ana Cecília Rizzatti de Albergaria-Barbosa
- Laboratory of Petroleum Studies, Geoscience Institute, Federal University of Bahia, Rua Barão de Jeremoabo, s/n, 40170-020 Salvador, BA, Brazil; Laboratory of Marine Geochemistry, Geoscience Institute, Federal University of Bahia, Rua Barão de Jeremoabo, s/n, 40170-020 Salvador, BA, Brazil.
| |
Collapse
|
27
|
Duan M, Xiong D, Yang M, Xiong Y, Ding G. Parental exposure to heavy fuel oil induces developmental toxicity in offspring of the sea urchin Strongylocentrotus intermedius. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 159:109-119. [PMID: 29730404 DOI: 10.1016/j.ecoenv.2018.04.067] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 04/26/2018] [Accepted: 04/27/2018] [Indexed: 06/08/2023]
Abstract
The present study investigated the toxic effects of parental (maternal/paternal) exposure to heavy fuel oil (HFO) on the adult reproductive state, gamete quality and development of the offspring of the sea urchin Strongylocentrotus intermedius. Adult sea urchins were exposed to effluents from HFO-oiled gravel columns for 7 days to simulate an oil-contaminated gravel shore, and then gametes of adult sea urchins were used to produce embryos to determine developmental toxicity. For adult sea urchins, no significant difference in the somatic size and weight was found between the various oil loadings tested, while the gonad weight and gonad index were significantly decreased at higher oil loadings. The spawning ability of adults and fecundity of females significantly decreased. For gametes, no effect was observed on the egg size and fertilization success in any of the groups. However, a significant increase in the percentage of anomalies in the offspring was observed and then quantified by an integrative toxicity index (ITI) at 24 and 48 h post fertilization. The offspring from exposed parents showed higher ITI values with more malformed embryos. The results confirmed that parental exposure to HFO can cause adverse effects on the offspring and consequently affect the recruitment and population maintenance of sea urchins.
Collapse
Affiliation(s)
- Meina Duan
- School of Environmental Science and Engineering, Dalian Maritime University, Linghai Road 1, Dalian 116026, Liaoning, China
| | - Deqi Xiong
- School of Environmental Science and Engineering, Dalian Maritime University, Linghai Road 1, Dalian 116026, Liaoning, China.
| | - Mengye Yang
- School of Life Science, Wuhan University, Wuhan 430072, Hubei, China
| | - Yijun Xiong
- School of Biology and Chemistry, Grinnell College, 1115 8th Ave, Grinnell, IA 50112, USA
| | - Guanghui Ding
- School of Environmental Science and Engineering, Dalian Maritime University, Linghai Road 1, Dalian 116026, Liaoning, China
| |
Collapse
|
28
|
Pannetier P, Fuster L, Clérandeau C, Lacroix C, Gourves PY, Cachot J, Morin B. Usefulness of RTL-W1 and OLCAB-e3 fish cell lines and multiple endpoint measurements for toxicity evaluation of unknown or complex mixture of chemicals. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 150:40-48. [PMID: 29268113 DOI: 10.1016/j.ecoenv.2017.12.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 12/08/2017] [Accepted: 12/12/2017] [Indexed: 06/07/2023]
Abstract
Fish are currently used for the assessment of chemical toxicity. The REACh regulation and the European directive on the protection of animals used for scientific purposes both recommend the use of methods other than animal testing. In view of this, fish cell lines are increasingly used to provide fast and reliable toxic and ecotoxic data on new chemicals. The sensitivity of the Rainbow trout liver cell line RTL-W1 and Japanese medaka embryos cell line OLCAB-e3 were used with different toxicity endpoints, namely cytotoxicity, EROD activity, ROS production and DNA damage for various classes of pollutants displaying different modes of action but also with complex environmental mixtures. Toxicity tests were coupled with chemical analysis to quantify the chemical concentrations in cell cultures. Differences in sensitivity were found between fish cell lines. MTT reduction assay revealed that OLCAB-e3 cells were more sensitive than RTL-W1 cells. On the contrary, RTL-W1 gave higher response levels for the Fpg-modified comet assay and ROS assay. The OLCAB-e3 cell line did not express EROD activity unlike RTL-W1. This study highlights the capacity of the two different fish cell lines to measure the toxicity of individual toxicants but also environmental mixtures. Then, results obtained here illustrate the interest of using different cell lines and toxicity endpoints to assess the toxicity of complex or unknown mixture of chemicals.
Collapse
Affiliation(s)
| | - Laura Fuster
- Univ, Bordeaux, EPOC, UMR 5805, F-33400 Talence, France
| | | | - Camille Lacroix
- Cedre, Centre de Documentation, de Recherche et d'Expérimentations sur les Pollutions Accidentelles des Eaux, Brest Cedex 2, France
| | | | - Jérôme Cachot
- Univ, Bordeaux, EPOC, UMR 5805, F-33400 Talence, France
| | | |
Collapse
|
29
|
Morales-Caselles C, Yunker MB, Ross PS. Identification of Spilled Oil from the MV Marathassa (Vancouver, Canada 2015) Using Alkyl PAH Isomer Ratios. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2017; 73:118-130. [PMID: 28695251 DOI: 10.1007/s00244-017-0390-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 02/25/2017] [Indexed: 06/07/2023]
Abstract
On the morning of April 9, 2015, citizens in Vancouver (British Columbia, Canada) awoke to the sight and smell of oil on the shores of popular downtown beaches. Because the oil also had spread over the shallow seawater intakes for the Vancouver Aquarium, a preliminary screening of samples was performed as a prompt, first response to assess the risks to the Aquarium collection and guide the emergency operational response. A subsequent, more detailed examination for the presence of spilled oil in sediment, biota and water samples from the Vancouver Harbour region was then conducted based on the analysis of a large suite of alkanes, petroleum biomarkers, parent polycyclic aromatic hydrocarbons (PAHs) and alkyl PAH isomers. Most of the commonly applied biomarker ratios exhibit similar values for the spilled oil, Alberta oil (the main petroleum source for British Columbia), and pre-spill and un-oiled sediment samples. In contrast, alkyl PAH isomer ratios showed a clear distinction between the spilled oil and pre-spill samples, with the largest differences shown by isomers of the methyl fluoranthene/pyrene alkyl PAH series. This novel use of alkyl PAH isomers for fingerprinting petroleum helped to confirm the grain carrier MV Marathassa as the source of the oil that affected beach and mussel samples to document definitively the spread of the oil and to establish which samples contained a mix of the oil and hydrocarbons linked to historical activities. Finally, an initial evaluation of the biological risks of the MV Marathassa oil spill in Vancouver Harbour showed that oiled beach sediments had priority parent PAH concentrations that are likely to harm marine life.
Collapse
Affiliation(s)
- Carmen Morales-Caselles
- Ocean Pollution Research Program, Coastal Ocean Research Institute, Vancouver Aquarium Marine Science Centre, 845 Avison Way, Vancouver, BC, V6G 3E2, Canada
| | - Mark B Yunker
- , 7137 Wallace Drive, Brentwood Bay, BC, V8M 1G9, Canada
| | - Peter S Ross
- Ocean Pollution Research Program, Coastal Ocean Research Institute, Vancouver Aquarium Marine Science Centre, 845 Avison Way, Vancouver, BC, V6G 3E2, Canada.
| |
Collapse
|
30
|
Hodson PV. The Toxicity to Fish Embryos of PAH in Crude and Refined Oils. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2017; 73:12-18. [PMID: 28695262 DOI: 10.1007/s00244-016-0357-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 12/19/2016] [Indexed: 05/25/2023]
Abstract
Oil spills are a potential threat to the recruitment and production of fish. Polycyclic aromatic hydrocarbons (PAH), particularly 3-5-ringed alkyl PAH, are components of oil that cause chronic embryotoxicity. Toxicity is related to molecular size and octanol-water partition coefficients (Kow), indicating that water-lipid partitioning controls exposure and tissue dose. Nevertheless, more than 25% of the variation in toxicity among congeners is unexplained. Congeners with the same number of rings, alkyl carbon atoms, and Kow, but different molecular shapes, have markedly different toxicities, likely due to differences in interactions with cellular receptors. The potentiation and antagonism of metabolism and toxicity in PAH mixtures suggest that measured effect concentrations for individual PAH are conservative. Because mixture interactions are not well understood, total PAH concentrations >0.1 µg/L following oil spills should be considered hazardous.
Collapse
|
31
|
Duffy TA, Childress W, Portier R, Chesney EJ. Responses of bay anchovy (Anchoa mitchilli) larvae under lethal and sublethal scenarios of crude oil exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 134P1:264-272. [PMID: 27639700 DOI: 10.1016/j.ecoenv.2016.08.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 07/12/2016] [Accepted: 08/19/2016] [Indexed: 06/06/2023]
Abstract
Bay anchovy (Anchoa mitchilli) is an ecologically important zooplanktivorous fish inhabiting estuaries of the Gulf of Mexico and eastern North America from Maine to Florida. Because they have a protracted spawning season (spring through fall) and are abundant at all life stages in coastal estuaries, their eggs and larvae likely encountered oil that reached the coast during the Deepwater Horizon oil spill. We compared responses to oil exposure at different life stages and at lethal and sublethal conditions using acute, 24h exposures. In a series of experiments, bay anchovy larvae were exposed to high energy water accommodated fractions (HEWAF) and chemically-enhanced WAF (CEWAF) at two stages of larval development (5 and 21 days post hatch, dph). HEWAF oil exposures induced significantly greater life stage dependent sensitivity at 5 dph than at 21 dph but chemically dispersed (CEWAF) exposure mortality was more variable and LC50s were not significantly different between 5 and 21dph larvae. Acute exposure to two low-level concentrations of CEWAF did not result in significant mortality over 24h, but resulted in a 25-77% reduction in larval survival and a 12-34% reduction in weight specific growth after six days of post-exposure growth following the initial 24h exposure. These results show that younger (5 dph) bay anchovy larvae are more vulnerable to acute oil exposure than older (21 dph) larvae, and that acute responses do not accurately reflect potential population level mortality and impacts to growth and development.
Collapse
Affiliation(s)
- Tara A Duffy
- Louisiana Universities Marine Consortium, 8124 Hwy 56, Chauvin, LA 70344, USA.
| | - William Childress
- Louisiana Universities Marine Consortium, 8124 Hwy 56, Chauvin, LA 70344, USA; Aquatic Germplasm and Genetic Resources Center, Department of Renewable Natural Resources, Louisiana State University Agricultural Center, 2288 Gourrier Ave, Baton Rouge, LA 70802, USA
| | - Ralph Portier
- Louisiana State University, Department of Environmental Sciences, Baton Rouge, LA, USA
| | - Edward J Chesney
- Louisiana Universities Marine Consortium, 8124 Hwy 56, Chauvin, LA 70344, USA
| |
Collapse
|
32
|
Nahrgang J, Dubourg P, Frantzen M, Storch D, Dahlke F, Meador JP. Early life stages of an arctic keystone species (Boreogadus saida) show high sensitivity to a water-soluble fraction of crude oil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 218:605-614. [PMID: 27506648 DOI: 10.1016/j.envpol.2016.07.044] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 06/30/2016] [Accepted: 07/19/2016] [Indexed: 06/06/2023]
Abstract
Increasing anthropogenic activities in the Arctic represent an enhanced threat for oil pollution in a marine environment that is already at risk from climate warming. In particular, this applies to species with free-living pelagic larvae that aggregate in surface waters and under the sea ice where hydrocarbons are likely to remain for extended periods of time due to low temperatures. We exposed the positively buoyant eggs of polar cod (Boreogadus saida), an arctic keystone species, to realistic concentrations of a crude oil water-soluble fraction (WSF), mimicking exposure of eggs aggregating under the ice to oil WSF leaking from brine channels following encapsulation in ice. Total hydrocarbon and polycyclic aromatic hydrocarbon levels were in the ng/L range, with most exposure concentrations below the limits of detection throughout the experiment for all treatments. The proportion of viable, free-swimming larvae decreased significantly with dose and showed increases in the incidence and severity of spine curvature, yolk sac alterations and a reduction in spine length. These effects are expected to compromise the motility, feeding capacity, and predator avoidance during critical early life stages for this important species. Our results imply that the viability and fitness of polar cod early life stages is significantly reduced when exposed to extremely low and environmentally realistic levels of aqueous hydrocarbons, which may have important implications for arctic food web dynamics and ecosystem functioning.
Collapse
Affiliation(s)
- Jasmine Nahrgang
- UiT The Arctic University of Norway, Department of Arctic and Marine Biology, 9037 Tromsø, Norway.
| | - Paul Dubourg
- UiT The Arctic University of Norway, Department of Arctic and Marine Biology, 9037 Tromsø, Norway
| | | | - Daniela Storch
- Alfred Wegener Institute for Polar and Marine Research, 27570 Bremerhaven, Germany
| | - Flemming Dahlke
- Alfred Wegener Institute for Polar and Marine Research, 27570 Bremerhaven, Germany
| | - James P Meador
- Northwest Fisheries Science Center, National Oceanic and Atmospheric Administration, Seattle, WA 98112, USA
| |
Collapse
|
33
|
Barhoumi B, Clérandeau C, Landi L, Pichon A, Le Bihanic F, Poirier D, Anschutz P, Budzinski H, Driss MR, Cachot J. Assessing the toxicity of sediments using the medaka embryo-larval assay and 2 other bioassays. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2016; 35:2270-2280. [PMID: 26823140 DOI: 10.1002/etc.3388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 10/16/2015] [Accepted: 01/27/2016] [Indexed: 06/05/2023]
Abstract
Sediments are sinks for aquatic pollutants, and analyzing toxicity in such complex matrices is still challenging. To evaluate the toxicity of bioavailable pollutants accumulated in sediments from the Bizerte lagoon (Tunisia), a novel assay, the medaka embryo-larval assay by sediment contact, was applied. Japanese medaka (Oryzias latipes) embryos were incubated in direct contact with sediment samples up to hatching. Lethal and sublethal adverse effects were recorded in embryos and larvae up to 20 d postfertilization. Results from medaka embryo-larval assay were compared with cytotoxicity (Microtox®), genotoxicity (SOS chromotest), and pollutant content of sediments. The results highlight differences in the contamination profile and toxicity pattern between the different studied sediments. A significant correlation was shown between medaka embryo-larval assay by sediment contact and SOS chromotest responses and concentrations of most organic pollutants studied. No correlation was shown between pollutant levels and Microtox. According to the number of sediment samples detected as toxic, medaka embryo-larval assay by sediment contact was more sensitive than Microtox, which in turn was more sensitive than the SOS chromotest; and medaka embryo-larval assay by sediment contact allowed sediment toxicity assessment of moderately polluted sediments without pollutant extraction and using an ecologically realistic exposure scenario. Although medaka embryo-larval assay by sediment contact should be tested on a larger sample set, the results show that it is sensitive and convenient enough to monitor the toxicity of natural sediments. Environ Toxicol Chem 2016;35:2270-2280. © 2016 SETAC.
Collapse
Affiliation(s)
- Badreddine Barhoumi
- Laboratory of Heteroatom Organic Chemistry, Department of Chemistry, Faculty of Sciences of Bizerte, University of Carthage, Jarzouna, Tunisia
- Laboratory EPOC, UMR CNRS 5805, University of Bordeaux, Talence Cedex, France
| | | | - Laure Landi
- Laboratory EPOC, UMR CNRS 5805, University of Bordeaux, Talence Cedex, France
| | - Anaïk Pichon
- Laboratory EPOC, UMR CNRS 5805, University of Bordeaux, Talence Cedex, France
| | - Florane Le Bihanic
- Laboratory EPOC, UMR CNRS 5805, University of Bordeaux, Talence Cedex, France
| | - Dominique Poirier
- Laboratory EPOC, UMR CNRS 5805, University of Bordeaux, Talence Cedex, France
| | - Pierre Anschutz
- Laboratory EPOC, UMR CNRS 5805, University of Bordeaux, Talence Cedex, France
| | - Hélène Budzinski
- Laboratory EPOC, UMR CNRS 5805, University of Bordeaux, Talence Cedex, France
| | - Mohamed Ridha Driss
- Laboratory of Heteroatom Organic Chemistry, Department of Chemistry, Faculty of Sciences of Bizerte, University of Carthage, Jarzouna, Tunisia
| | - Jérôme Cachot
- Laboratory EPOC, UMR CNRS 5805, University of Bordeaux, Talence Cedex, France
| |
Collapse
|
34
|
Zhang Y, Dong S, Wang H, Tao S, Kiyama R. Biological impact of environmental polycyclic aromatic hydrocarbons (ePAHs) as endocrine disruptors. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 213:809-824. [PMID: 27038213 DOI: 10.1016/j.envpol.2016.03.050] [Citation(s) in RCA: 201] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 03/03/2016] [Accepted: 03/20/2016] [Indexed: 05/20/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are often detected in the environment and are regarded as endocrine disruptors. We here designated mixtures of PAHs in the environment as environmental PAHs (ePAHs) to discuss their effects collectively, which could be different from the sum of the constituent PAHs. We first summarized the biological impact of environmental PAHs (ePAHs) found in the atmosphere, sediments, soils, and water as a result of human activities, accidents, or natural phenomena. ePAHs are characterized by their sources and forms, followed by their biological effects and social impact, and bioassays that are used to investigate their biological effects. The findings of the bioassays have demonstrated that ePAHs have the ability to affect the endocrine systems of humans and animals. The pathways that mediate cell signaling for the endocrine disruptions induced by ePAHs and PAHs have also been summarized in order to obtain a clearer understanding of the mechanisms responsible for these effects without animal tests; they include specific signaling pathways (MAPK and other signaling pathways), regulatory mechanisms (chromatin/epigenetic regulation, cell cycle/DNA damage control, and cytoskeletal/adhesion regulation), and cell functions (apoptosis, autophagy, immune responses/inflammation, neurological responses, and development/differentiation) induced by specific PAHs, such as benz[a]anthracene, benzo[a]pyrene, benz[l]aceanthrylene, cyclopenta[c,d]pyrene, 7,12-dimethylbenz[a]anthracene, fluoranthene, fluorene, 3-methylcholanthrene, perylene, phenanthrene, and pyrene as well as their derivatives. Estrogen signaling is one of the most studied pathways associated with the endocrine-disrupting activities of PAHs, and involves estrogen receptors and aryl hydrocarbon receptors. However, some of the actions of PAHs are contradictory, complex, and unexplainable. Although several possibilities have been suggested, such as direct interactions between PAHs and receptors and the suppression of their activities through other pathways, the mechanisms underlying the activities of PAHs remain unclear. Thus, standardized assay protocols for pathway-based assessments are considered to be important to overcome these issues.
Collapse
Affiliation(s)
- Yanyan Zhang
- College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China
| | - Sijun Dong
- Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | - Hongou Wang
- Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | - Shu Tao
- College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China
| | - Ryoiti Kiyama
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8566, Japan.
| |
Collapse
|
35
|
Morthorst JE, Korsgaard B, Bjerregaard P. Severe malformations of eelpout (Zoarces viviparus) fry are induced by maternal estrogenic exposure during early embryogenesis. MARINE ENVIRONMENTAL RESEARCH 2016; 113:80-87. [PMID: 26613261 DOI: 10.1016/j.marenvres.2015.11.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 11/05/2015] [Accepted: 11/09/2015] [Indexed: 06/05/2023]
Abstract
Pregnant eelpout were exposed via the water to known endocrine disrupting compounds (EDCs) to clarify if EDCs could be causing the increased eelpout fry malformation frequencies observed in coastal areas receiving high anthropogenic input. The presence of a teratogenic window for estrogen-induced malformations was also investigated by starting the exposure at different times during eelpout pregnancy. Both 17α-ethinylestradiol (EE2) (17.8 ng/L) and pyrene (0.5 μg/L) significantly increased fry malformation frequency whereas 4-t-octylphenol (4-t-OP) up to 14.3 μg/L did not. Vitellogenin was significantly induced by EE2 (5.7 and 17.8 ng/L) but not by 4-t-OP and pyrene. A critical period for estrogen-induced fry malformations was identified and closed between 14 and 22 days post fertilization (dpf). Exposure to 17β-estradiol (E2) between 0 and 14 dpf caused severe malformations and severity increased the closer exposure start was to fertilization, whereas malformations were absent by exposure starting later than 14 dpf. Data on ovarian fluid volume and larval length supported the suggested teratogenic window. Larval mortality also increased when exposure started right after fertilization.
Collapse
Affiliation(s)
- Jane E Morthorst
- Department of Biology, University of Southern Denmark, Campusvej 55, DK-5230, Denmark.
| | - Bodil Korsgaard
- Department of Biology, University of Southern Denmark, Campusvej 55, DK-5230, Denmark.
| | - Poul Bjerregaard
- Department of Biology, University of Southern Denmark, Campusvej 55, DK-5230, Denmark.
| |
Collapse
|
36
|
Vignet C, Joassard L, Lyphout L, Guionnet T, Goubeau M, Le Menach K, Brion F, Kah O, Chung BC, Budzinski H, Bégout ML, Cousin X. Exposures of zebrafish through diet to three environmentally relevant mixtures of PAHs produce behavioral disruptions in unexposed F1 and F2 descendant. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:16371-16383. [PMID: 25639250 DOI: 10.1007/s11356-015-4157-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Accepted: 01/20/2015] [Indexed: 06/04/2023]
Abstract
The release of polycyclic aromatic hydrocarbons (PAHs) into the environment has increased very substantially over the last decades. PAHs are hydrophobic molecules which can accumulate in high concentrations in sediments acting then as major secondary sources. Fish contamination can occur through contact or residence nearby sediments or though dietary exposure. In this study, we analyzed certain physiological traits in unexposed fish (F1) issued from parents (F0) exposed through diet to three PAH mixtures at similar and environmentally relevant concentrations but differing in their compositions. For each mixture, no morphological differences were observed between concentrations. An increase in locomotor activity was observed in larvae issued from fish exposed to the highest concentration of a pyrolytic (PY) mixture. On the contrary, a decrease in locomotor activity was observed in larvae issued from heavy oil mixture (HO). In the case of the third mixture, light oil (LO), a reduction of the diurnal activity was observed during the setup of larval activity. Behavioral disruptions persisted in F1-PY juveniles and in their offspring (F2). Endocrine disruption was analyzed using cyp19a1b:GFP transgenic line and revealed disruptions in PY and LO offspring. Since no PAH metabolites were dosed in larvae, these findings suggest possible underlying mechanisms such as altered parental signaling molecule and/or hormone transferred in the gametes, eventually leading to early imprinting. Taken together, these results indicate that physiological disruptions are observed in offspring of fish exposed to PAH mixtures through diet.
Collapse
Affiliation(s)
- Caroline Vignet
- Ecotoxicology Laboratory, Ifremer, Place Gaby Coll, BP7, 17137, L'Houmeau, France
| | - Lucette Joassard
- Fisheries laboratory, Ifremer, Place Gaby Coll, BP7, 17137, L'Houmeau, France
| | - Laura Lyphout
- Fisheries laboratory, Ifremer, Place Gaby Coll, BP7, 17137, L'Houmeau, France
| | - Tiphaine Guionnet
- Fisheries laboratory, Ifremer, Place Gaby Coll, BP7, 17137, L'Houmeau, France
| | - Manon Goubeau
- Ecotoxicology Laboratory, Ifremer, Place Gaby Coll, BP7, 17137, L'Houmeau, France
| | - Karyn Le Menach
- University of Bordeaux 1, EPOC, UMR CNRS 5805, 33405, Talence, France
| | - François Brion
- Unité d'Ecotoxicologie in vitro et in vivo, Direction des Risques Chroniques, INERIS, 60550, Verneuil-en-Halatte, France
| | - Olivier Kah
- INSERM U1085, Research Institute in Health, Environment and Occupation, Team NEED, Case 1302Université de Rennes 1 Campus de Beaulieu, 35 042, Rennes cedex, France
| | - Bon-Chu Chung
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Hélène Budzinski
- University of Bordeaux 1, EPOC, UMR CNRS 5805, 33405, Talence, France
| | - Marie-Laure Bégout
- Fisheries laboratory, Ifremer, Place Gaby Coll, BP7, 17137, L'Houmeau, France
| | - Xavier Cousin
- Ecotoxicology Laboratory, Ifremer, Place Gaby Coll, BP7, 17137, L'Houmeau, France.
- INRA LPGP, Campus de Beaulieu, 35042, Rennes, France.
| |
Collapse
|
37
|
Vignet C, Devier MH, Le Menach K, Lyphout L, Potier J, Cachot J, Budzinski H, Bégout ML, Cousin X. Long-term disruption of growth, reproduction, and behavior after embryonic exposure of zebrafish to PAH-spiked sediment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:13877-87. [PMID: 24659400 DOI: 10.1007/s11356-014-2585-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 01/21/2014] [Indexed: 05/25/2023]
Abstract
A natural sediment spiked with three individual polycyclic aromatic hydrocarbons (PAHs; pyrene, phenanthrene and benzo[a]pyrene) was used to expose zebrafish embryos and larvae during 4 days. The total PAH concentration was 4.4 μg g(-1) which is in the range found in sediment from contaminated areas. Quantification of metabolites in the larvae after exposure confirmed the actual contamination of the larvae and indicated an active metabolism especially for pyrene and benzo[a]pyrene. After a transfer in a clean medium, the larvae were reared to adulthood and evaluated for survival, growth, reproduction, and behavior. Measured endpoints revealed a late disruption of growth (appearing at 5 months) and a trend toward a lower reproductive ability. Adults of embryos exposed to sediment spiked with PAHs displayed lethargic and/or anxiety-like behaviors. This latter behavior was also identified in offspring at larval stage. All together, these effects could have detrimental consequences on fish performances and contribution to recruitment.
Collapse
Affiliation(s)
- Caroline Vignet
- Laboratoire d'Ecotoxicologie, Ifremer, Place Gaby Coll, BP7, 17137, L'Houmeau, France
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Vignet C, Le Menach K, Mazurais D, Lucas J, Perrichon P, Le Bihanic F, Devier MH, Lyphout L, Frère L, Bégout ML, Zambonino-Infante JL, Budzinski H, Cousin X. Chronic dietary exposure to pyrolytic and petrogenic mixtures of PAHs causes physiological disruption in zebrafish--part I: Survival and growth. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:13804-13817. [PMID: 24652572 DOI: 10.1007/s11356-014-2629-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 02/06/2014] [Indexed: 06/03/2023]
Abstract
The release of polycyclic aromatic hydrocarbons (PAHs) into the environment has increased very substantially over the last decades leading to high concentrations in sediments of contaminated areas. To evaluate the consequences of long-term chronic exposure to PAHs, zebrafish were exposed, from their first meal at 5 days post fertilisation until they became reproducing adults, to diets spiked with three PAH fractions at three environmentally relevant concentrations with the medium concentration being in the range of 4.6-6.7 μg g(-1) for total quantified PAHs including the 16 US-EPA indicator PAHs and alkylated derivatives. The fractions used were representative of PAHs of pyrolytic (PY) origin or of two different oils of differing compositions, a heavy fuel (HO) and a light crude oil (LO). Fish growth was inhibited by all PAH fractions and the effects were sex specific: as determined with 9-month-old adults, exposure to the highest PY inhibited growth of females; exposure to the highest HO and LO inhibited growth of males; also, the highest HO dramatically reduced survival. Morphological analysis indicated a disruption of jaw growth in larvae and malformations in adults. Intestinal and pancreatic enzyme activities were abnormal in 2-month-old exposed fish. These effects may contribute to poor growth. Finally, our results indicate that PAH mixtures of different compositions, representative of situations encountered in the wild, can promote lethal and sublethal effects which are likely to be detrimental for fish recruitment.
Collapse
Affiliation(s)
- Caroline Vignet
- Laboratoire d'Ecotoxicologie, Ifremer, Place Gaby Coll, BP7, 17137, L'Houmeau, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Cousin X, Cachot J. PAHs and fish--exposure monitoring and adverse effects--from molecular to individual level. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:13685-13688. [PMID: 24981031 DOI: 10.1007/s11356-014-3161-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 06/04/2014] [Indexed: 06/03/2023]
Affiliation(s)
- Xavier Cousin
- IFREMER, Laboratoire d'écotoxicologie, Place Gaby Coll, BP7, 17137, L'Houmeau, France,
| | | |
Collapse
|
40
|
Larcher T, Perrichon P, Vignet C, Ledevin M, Le Menach K, Lyphout L, Landi L, Clerandeau C, Lebihanic F, Ménard D, Burgeot T, Budzinski H, Akcha F, Cachot J, Cousin X. Chronic dietary exposure of zebrafish to PAH mixtures results in carcinogenic but not genotoxic effects. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:13833-13849. [PMID: 24777325 DOI: 10.1007/s11356-014-2923-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 04/15/2014] [Indexed: 06/03/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous contaminants that can be present at high levels as mixtures in polluted aquatic environments. Many PAHs are potent mutagens and several are well-known carcinogens. Despite numerous studies on individual compounds, little is known about the toxicity of PAHs mixtures that are encountered in environmental situations. In the present work, zebrafish were continuously fed from 5 days post-fertilisation to 14 months post-fertilisation (mpf) with a diet spiked with fractions of either pyrolytic (PY), petrogenic light oil (LO), or petrogenic heavy oil (HO) origin at three concentrations. A decrease in survival was identified after 3 mpf in fish fed with the highest concentration of HO or LO, but not for PY. All PAH fractions caused preneoplastic and neoplastic disorders in long-term-exposed animals. Target tissues were almost exclusively of epithelial origin, with the bile duct epithelium being the most susceptible to chronic exposure to all PAH fractions, and with germ cells being the second most responsive cells. Significantly higher incidences of neoplasms were observed with increasing PAH concentration and exposure duration. The most severe carcinogenic effects were induced by dietary exposure to HO compared to exposure to LO or PY (45, 30 and 7 %, respectively, after 9 to 10 months of exposure to an intermediate concentration of PAHs). In contrast, earliest carcinogenic effects were detected as soon as 3 mpf after exposure to LO, including the lowest concentration, or to PY. PAH bioactivation and genotoxicity in blood was assessed by ethoxyresorufin-O-deethylase activity quantification and comet and micronuclei assays, respectively, but none of these were positive. Chronic dietary exposure of zebrafish to PAH mixtures results in carcinogenotoxic events that impair survival and physiology of exposed fish.
Collapse
Affiliation(s)
- T Larcher
- INRA, UMR 703 APEX, 44307, Nantes, France,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|