1
|
Ojha A, Shekhar S, Gupta P, Jaiswal S, Mishra SK. Comparative study of oxidative stress in cancer patients occupationally exposed to the mixture of pesticides. Discov Oncol 2024; 15:526. [PMID: 39367924 PMCID: PMC11456095 DOI: 10.1007/s12672-024-01235-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 08/13/2024] [Indexed: 10/07/2024] Open
Abstract
Cancer is a leading cause of death worldwide, accounting for nearly 10 million deaths in 2020. Reviews indicated a positive relationship between exposure to pesticides and the development of cancers. In the present study, we have estimated the level of oxidative stress markers in serum samples of pesticide exposure and unexposed cancer patients as compared to normal control. We have found a significant decrease in peroxygenase (PON) and arylesterase (ARE) activity and substantial increases in homocysteine levels in both cancer groups. The level of heme biosynthesis rate-limiting enzymes delta-aminolevulinic acid dehydratase (δ-ALA-D) also significantly decreased compared to control. The statistical comparison between the cancer groups does not show significant changes. We concluded the involvement of oxidative stress in carcinogenesis in both cancer group patients. However, more study is needed to put homocysteine as a novel marker for a variety of diseases on a single platform.
Collapse
Affiliation(s)
- Anupama Ojha
- Department of Medical Biochemistry, Mahayogi Gorakhnath University Gorakhpur, Gorakhpur, Uttar Pradesh, India.
| | - Shashank Shekhar
- Department of Radiotherapy, AIIMS, Gorakhpur, Uttar Pradesh, India
| | - Poonam Gupta
- Department of Radiotherapy, Hanumaan Prasad Poddar Cancer Hospital and Research Centre, Gorakhpur, Uttar Pradesh, India
| | - Sonali Jaiswal
- Department of Biotechnology, DDU Gorakhpur University, Gorakhpur, India
| | | |
Collapse
|
2
|
Ndikuryayo F, Gong XY, Yang WC. Advances in Understanding the Toxicity of 4-Hydroxyphenylpyruvate Dioxygenase-Inhibiting Herbicides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17762-17770. [PMID: 39093601 DOI: 10.1021/acs.jafc.4c04624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
4-Hydroxyphenylpyruvate dioxygenase inhibiting herbicides (HIHs) represent a recent class (HRAC group 27) of herbicides that offer many advantages, such as broad-spectrum activity, crop selectivity, and low resistance rates. However, emerging studies have highlighted the potential toxicity of HIHs in the environment. This review aims to provide a comprehensive summary of the toxicity of HIHs toward nontarget organisms, including plants, microorganisms, animals, and humans. Furthermore, the present work discusses the ecological roles of these organisms in the environment and their significance in agriculture. By shedding light on the toxicity of HIHs, this study seeks to raise awareness among end users, including environmentalists, researchers, and farmers, regarding the potential ecological implications of these herbicides. Hopefully, this knowledge can contribute to informed decision-making and sustainable practices in green agriculture and environmental management.
Collapse
Affiliation(s)
- Ferdinand Ndikuryayo
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, P. R. China
- Centre Universitaire de Recherche et de Pédagogie Appliquées aux Sciences, Laboratoire de Nutrition-Phytochimie, d'Ecologie et Environnement Appliqués, Institut de Pédagogie Appliquée, Université du Burundi, BP 2700 Bujumbura, Burundi
| | - Xue-Yan Gong
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, P. R. China
| | - Wen-Chao Yang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, P. R. China
| |
Collapse
|
3
|
Tao X, Mao Y, Alam S, Wang A, Qi X, Zheng S, Jiang C, Chen SY, Lu H. Sensitive fluorescence detection of glyphosate and glufosinate ammonium pesticides by purine-hydrazone-Cu 2+ complex. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 314:124226. [PMID: 38560950 DOI: 10.1016/j.saa.2024.124226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/25/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024]
Abstract
Organophosphorus pesticides play an important role as broad-spectrum inactivating herbicides in agriculture. Developing a method for rapid and efficient organophosphorus pesticides detection is still urgent due to the increasing concern on food safety. An organo-probe (ZDA), synthesized by purine hydrazone derivative and 2,2'-dipyridylamine derivative, was applied in sensitive recognition of Cu2+ with detection limit of 300 nM. Mechanism study via density functional theory (DFT) and job's plot experiment revealed that ZDA and Cu2+ ions form a 1:2 complex quenching the fluorescence emission. Moreover, this fluorescent complex ZDA-Cu2+ was applicable for detecting glyphosate and glufosinate ammonium following fluorescence enhancement mechanism, with detection limits of 11.26 nM and 11.5 nM, respectively. Meanwhile, ZDA-Cu2+ was effective and sensitive when it is used for pesticide detection, reaching the maximum value and stabilizing in 1 min. Finally, the ZDA-Cu2+ probe could also be tolerated in cell assay environment, implying potential bio-application.
Collapse
Affiliation(s)
- Xuanzuo Tao
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212000, China
| | - Yanxia Mao
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212000, China
| | - Said Alam
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212000, China
| | - Anguan Wang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212000, China
| | - Xinyu Qi
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shaojun Zheng
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212000, China
| | - Chunhui Jiang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212000, China.
| | - Shu-Yang Chen
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China.
| | - Hongfei Lu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212000, China.
| |
Collapse
|
4
|
Godínez-Pérez BM, Schilmann A, Lagunas-Martínez A, Escamilla-Núñez C, Burguete-García AI, Aguilar-Garduño C, Blanco-Muñoz J, Lacasaña M. Pesticide use patterns and their association with cytokine levels in Mexican flower workers. Int Arch Occup Environ Health 2024; 97:291-302. [PMID: 38270603 DOI: 10.1007/s00420-023-02043-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 12/16/2023] [Indexed: 01/26/2024]
Abstract
OBJECTIVE Occupational exposure to pesticides is a known risk for disrupting cellular immune response in flower workers due to their use of multiple chemical products, poor work conditions, and inadequate protection. Recently, the analysis of pesticide use patterns has emerged as an alternative to studying exposure to mixtures of these products. This study aimed to evaluate the association between exposure to different patterns of pesticide use and the cytokine profile of flower workers in the State of Mexico and Morelos, Mexico. METHODS A cross-sectional study was carried out on a population of 108 flower workers. Serum levels of IL-4, IL-5, IL-6, IL-8, IL-10 cytokines were analyzed by means of multiplex analysis, and TNF-α and IFN-γ using an ELISA test. Pesticide use patterns were generated by principal components analysis. RESULTS The analysis revealed that certain patterns of pesticide use, combining insecticides and fungicides, were associated with higher levels of pro-inflammatory cytokines, particularly IL-6 and IFN-γ. CONCLUSION These findings indicate that pesticides may possess immunotoxic properties, contributing to increased inflammatory response. However, further comprehensive epidemiological studies are needed to establish a causal relationship.
Collapse
Affiliation(s)
| | - Astrid Schilmann
- National Institute of Public Health of Mexico, Av. Universidad 655, 62130, Cuernavaca, Morelos, Mexico
| | - Alfredo Lagunas-Martínez
- National Institute of Public Health of Mexico, Av. Universidad 655, 62130, Cuernavaca, Morelos, Mexico
| | - Consuelo Escamilla-Núñez
- National Institute of Public Health of Mexico, Av. Universidad 655, 62130, Cuernavaca, Morelos, Mexico
| | | | | | - Julia Blanco-Muñoz
- National Institute of Public Health of Mexico, Av. Universidad 655, 62130, Cuernavaca, Morelos, Mexico.
| | - Marina Lacasaña
- Andalusian School of Public Health, Cuesta del Observatorio 4, 18011, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (Ibs.GRANADA), Granada, Spain
- CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Andalusian Health and Environment Observatory (OSMAN), Granada, Spain
| |
Collapse
|
5
|
Feng J, Gong Y, Yang S, Qiu G, Tian H, Sun B. Determination of carboxylesterase by fluorescence probe to guide detection of carbamate pesticide. LUMINESCENCE 2024; 39:e4625. [PMID: 37947027 DOI: 10.1002/bio.4625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/10/2023] [Accepted: 10/21/2023] [Indexed: 11/12/2023]
Abstract
A carboxylesterase fluorescent probe (Probe 1) was developed for determination of carboxylesterase to guide detection of carbamate pesticide. The probe uses benzothiazole as fluorescence group and phenyldimethyl carbamate as recognition group. The solution of the fluorescent probe gradually changes from light blue to dark blue as the concentration of carbamate pesticides increases. The concentration of carbamate pesticides can be quickly calculated according to the colour of the probe solution through Get Color software on a smartphone. It showed that Probe 1 can be used as a rapid detection tool to achieve rapid detection of carbamate pesticides in juice samples without professional personnel and equipment. Furthermore, the probe has been successfully used to detect carbamate pesticides in fruit juice and vegetable juice.
Collapse
Affiliation(s)
- Jingyi Feng
- Beijing Key laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing, China
| | - Yue Gong
- Beijing Key laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing, China
| | - Shaoxiang Yang
- Beijing Key laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing, China
| | - Guo Qiu
- Beijing Key laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing, China
| | - Hongyu Tian
- Beijing Key laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing, China
| | - Baoguo Sun
- Beijing Key laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
6
|
Li YC, Liu SY, Li HR, Meng FB, Qiu J, Qian YZ, Xu YY. Use of Transcriptomics to Reveal the Joint Immunotoxicity Mechanism Initiated by Difenoconazole and Chlorothalonil in the Human Jurkat T-Cell Line. Foods 2023; 13:34. [PMID: 38201063 PMCID: PMC10778019 DOI: 10.3390/foods13010034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/16/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
It is very important to evaluate the immunotoxicity and molecular mechanisms of pesticides. In this study, difenoconazole and chlorothalonil were evaluated for immunotoxicity by using the human Jurkat T-cell line, and the EC50 were 24.66 and 1.17 mg/L, respectively. The joint exposure of difenoconazole and chlorothalonil showed a synergistic effect at low concentrations (lower than 10.58 mg/L) but an antagonistic effect at high concentrations (higher than 10.58 mg/L). With joint exposure at a concentration of EC10, the proportion of late apoptotic cells was 2.26- and 2.91-fold higher than that with exposure to difenoconazole or chlorothalonil alone, respectively. A transcriptomics analysis indicated that the DEGs for single exposure are associated with immunodeficiency disease. Single exposure to chlorothalonil was mainly involved in cation transportation, extracellular matrix organization, and leukocyte cell adhesion. Single exposure to difenoconazole was mainly involved in nervous system development, muscle contraction, and immune system processes. However, when the joint exposure dose was EC10, the DEGs were mainly involved in the formation of cell structures, but the DEGs were mainly involved in cellular processes and metabolism when the joint exposure dose was EC25. The results indicated that the immunotoxicological mechanisms underlying joint exposure to difenoconazole and chlorothalonil are different under low and high doses.
Collapse
Affiliation(s)
- Yun-Cheng Li
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.-C.L.); (J.Q.); (Y.-Y.X.)
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (S.-Y.L.); (H.-R.L.); (F.-B.M.)
| | - Shu-Yan Liu
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (S.-Y.L.); (H.-R.L.); (F.-B.M.)
| | - Hou-Ru Li
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (S.-Y.L.); (H.-R.L.); (F.-B.M.)
| | - Fan-Bing Meng
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (S.-Y.L.); (H.-R.L.); (F.-B.M.)
| | - Jing Qiu
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.-C.L.); (J.Q.); (Y.-Y.X.)
| | - Yong-Zhong Qian
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.-C.L.); (J.Q.); (Y.-Y.X.)
| | - Yan-Yang Xu
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.-C.L.); (J.Q.); (Y.-Y.X.)
| |
Collapse
|
7
|
Wang X, Ai S, Xiong A, Zhou W, He L, Teng J, Geng X, Wu R. SERS combined with QuEChERS using NBC and Fe 3O 4 MNPs as cleanup agents to rapidly and reliably detect chlorpyrifos pesticide in citrus. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:6266-6274. [PMID: 37955430 DOI: 10.1039/d3ay01604h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
The surface-enhanced Raman spectroscopy (SERS) technique is being increasingly used for the detection of pesticide residues in agricultural products. However, there are large amounts of fluorescence-producing substances in agricultural products, which seriously affect the Raman signal of the analyte. In this paper, the QuEChERS method was used to remove interfering fluorescent substances in the analyte, and the purification effects of different doses of nano bamboo charcoal (NBC) and Fe3O4 magnetic nanoparticle (Fe3O4 MNP) adsorbents were studied. Meanwhile, the Raman spectral acquisition conditions (AuNPs, test solution, and NaCl) were optimized based on the orthogonal test method. The results showed that 300 µL AuNPs, 40 µL test solution, and 100 µL 1.5% NaCl gave the best SERS response effect. 12.5 mg NBC combined with 10 mg Fe3O4 MNPs could effectively remove the interfering substances from citrus. The Raman spectra of chlorpyrifos molecules were theoretically modeled using density-functional theory (DFT). By comparing the DFT results with the actual tests, five feature peaks, at 338, 522, 558, 672, and 1600 cm-1, were obtained for the detection of chlorpyrifos pesticide residues in citrus. Based on the Raman feature peak intensity at 672 cm-1, the concentration of chlorpyrifos in citrus showed a good linear relationship (R2 = 0.9979) in the concentration range of 3-20 mg kg-1. The recovery rate was 92.12% to 98.38%, and the relative standard deviation (RSD) was 1.77% to 5.29%. The lowest detection concentration was about 3 mg kg-1, and the detection time of a single sample could be completed within 15 min. This study showed that the combination of SERS and QuEChERS preprocessing methods could achieve rapid detection of chlorpyrifos pesticide residues in citrus.
Collapse
Affiliation(s)
- Xu Wang
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, People's Republic of China
| | - Shirong Ai
- College of Software, Jiangxi Agricultural University, Nanchang 330045, People's Republic of China
| | - Aihua Xiong
- College of Engineering, Jiangxi Agricultural University, Nanchang 330045, People's Republic of China.
| | - Weiqi Zhou
- College of Software, Jiangxi Agricultural University, Nanchang 330045, People's Republic of China
| | - Liang He
- College of Engineering, Jiangxi Agricultural University, Nanchang 330045, People's Republic of China.
| | - Jie Teng
- College of Agriculture, Jiangxi Agricultural University, Nanchang 330045, People's Republic of China
| | - Xiang Geng
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, People's Republic of China
| | - Ruimei Wu
- College of Engineering, Jiangxi Agricultural University, Nanchang 330045, People's Republic of China.
| |
Collapse
|
8
|
dos Santos SBG, da Silva JC, Jaques HDS, Dalla Vecchia MF, Ferreira MO, Rech D, Sierota da Silva MRN, dos Santos RBG, Panis C, Benvegnú DM. Occupational exposure to pesticides dysregulates systemic Th1/Th2/Th17 cytokines and correlates with poor clinical outcomes in breast cancer patients. Front Immunol 2023; 14:1281056. [PMID: 37942322 PMCID: PMC10628301 DOI: 10.3389/fimmu.2023.1281056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/06/2023] [Indexed: 11/10/2023] Open
Abstract
Pesticides are compounds known to cause immunetoxicity in exposed individuals, which have a potential to substantially modify the prognosis of pathologies dependent on an efficient immune response, such as breast cancer. In this context, we examined the circulating cytokine profile of Th1/Th2/Th17 patterns in women occupationally exposed to pesticides and their correlation with worse prognostic outcomes. Peripheral blood samples were collected from 187 rural working women with breast cancer, occupationally exposed or not to pesticides, to quantify the levels of cytokines IL-1β, IL-12, IL-4, IL-17-A, and TNF -α. Data on the disease profile and clinical outcomes were collected through medical follow-up. IL-12 was reduced in exposed women with tumors larger than 2 cm and in those with lymph node metastases. Significantly reduced levels of IL-17A were observed in exposed patients with Luminal B subtype tumors, with high ki67 proliferation rates, high histological grade, and positive for the progesterone receptor. Reduced IL-4 was also seen in exposed women with lymph node invasion. Our data show that occupational exposure to pesticides induces significant changes in the levels of cytokines necessary for tumor control and correlates with poor prognosis clinical outcomes in breast cancer.
Collapse
Affiliation(s)
- Stephany Bonin Godinho dos Santos
- Programa de Pós-Graduação em Ciências Aplicadas à Saúde, Universidade Estadual do Oeste do Paraná, Francisco Beltrão, Paraná, Brazil
| | - Janaína Carla da Silva
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Hellen dos Santos Jaques
- Laboratório de Biologia de Tumores, Universidade Estadual do Oeste do Paraná, Francisco Beltrão, Paraná, Brazil
| | | | - Mariane Okamoto Ferreira
- Programa de Pós-Graduação em Ciências Aplicadas à Saúde, Universidade Estadual do Oeste do Paraná, Francisco Beltrão, Paraná, Brazil
- Laboratório de Biologia de Tumores, Universidade Estadual do Oeste do Paraná, Francisco Beltrão, Paraná, Brazil
| | - Daniel Rech
- Programa de Pós-Graduação em Ciências Aplicadas à Saúde, Universidade Estadual do Oeste do Paraná, Francisco Beltrão, Paraná, Brazil
- Laboratório de Biologia de Tumores, Universidade Estadual do Oeste do Paraná, Francisco Beltrão, Paraná, Brazil
- Department of Surgery, Hospital de Câncer de Francisco Beltrão, Francisco Beltrão, Paraná, Brazil
| | | | | | - Carolina Panis
- Programa de Pós-Graduação em Ciências Aplicadas à Saúde, Universidade Estadual do Oeste do Paraná, Francisco Beltrão, Paraná, Brazil
- Laboratório de Biologia de Tumores, Universidade Estadual do Oeste do Paraná, Francisco Beltrão, Paraná, Brazil
| | - Dalila Moter Benvegnú
- Programa de Pós-Graduação em Ciências Aplicadas à Saúde, Universidade Estadual do Oeste do Paraná, Francisco Beltrão, Paraná, Brazil
- Programa de Pós-graduação em Saúde, Bem-estar e Produção Animal Sustentável na Fronteira Sul, Universidade Federal da Fronteira Sul, Paraná, Brazil
| |
Collapse
|
9
|
Leng XY, Zhao LX, Gao S, Ye F, Fu Y. Review on the Discovery of Novel Natural Herbicide Safeners. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37466454 DOI: 10.1021/acs.jafc.3c03585] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
The phytotoxicity of herbicides on crops is a major dilemma in agricultural production. Fortunately, the emergence of herbicide safeners is an excellent solution to this challenge, selectively enhancing the performance of herbicides in controlling weeds while reducing the phytotoxicity to crops. But owing to their potential toxicity, only a tiny proportion of safeners are commercially available. Natural products as safeners have been extensively explored, which are generally safe to mammals and cause little pollution to the environment. They are typically endogenous signal molecules or phytohormones, which are generally difficult to extract and synthesize, and exhibit relatively lower activity than commercial products. Therefore, it is necessary to adopt rational design approaches to modify the structure of natural safeners. This paper reviews the application, safener effects, structural characteristics, and modifications of natural safeners and provides insights on the discovery of natural products as potential safeners in the future.
Collapse
Affiliation(s)
- Xin-Yu Leng
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Li-Xia Zhao
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Shuang Gao
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Fei Ye
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Ying Fu
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
10
|
Martín-Carrasco I, Carbonero-Aguilar P, Dahiri B, Moreno IM, Hinojosa M. Comparison between pollutants found in breast milk and infant formula in the last decade: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162461. [PMID: 36868281 DOI: 10.1016/j.scitotenv.2023.162461] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/03/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Since ancient times, breastfeeding has been the fundamental way of nurturing the newborn. The benefits of breast milk are widely known, as it is a source of essential nutrients and provides immunological protection, as well as developmental benefits, among others. However, when breastfeeding is not possible, infant formula is the most appropriate alternative. Its composition meets the nutritional requirements of the infant, and its quality is subject to strict control by the authorities. Nonetheless, the presence of different pollutants has been detected in both matrices. Thus, the aim of the present review is to make a comparison between the findings in both breast milk and infant formula in terms of contaminants in the last decade, in order to choose the most convenient option depending on the environmental conditions. For that, the emerging pollutants including metals, chemical compounds derived from heat treatment, pharmaceutical drugs, mycotoxins, pesticides, packaging materials, and other contaminants were described. While in breast milk the most concerning contaminants found were metals and pesticides, in infant formula pollutants such as metals, mycotoxins, and packaging materials were the most outstanding. In conclusion, the convenience of using a feeding diet based on breast milk or either infant formula depends on the maternal environmental circumstances. However, it is important to take into account the immunological benefits of the breast milk compared to the infant formula, and the possibility of using breast milk in combination with infant formula when the nutritional requirements are not fulfilled only with the intake of breast milk. Therefore, more attention should be paid in terms of analyzing these conditions in each case to be able to make a proper decision, as it will vary depending on the maternal and newborn environment.
Collapse
Affiliation(s)
- I Martín-Carrasco
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, C/ Profesor García González 2, 41012 Seville, Spain
| | - P Carbonero-Aguilar
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, C/ Profesor García González 2, 41012 Seville, Spain
| | - B Dahiri
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, C/ Profesor García González 2, 41012 Seville, Spain
| | - I M Moreno
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, C/ Profesor García González 2, 41012 Seville, Spain.
| | - M Hinojosa
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, C/ Profesor García González 2, 41012 Seville, Spain; Department of Biochemistry and Biophysics, Stockholm University, Institutionen för biokemi och biofysik, 106 91 Stockholm, Sweden
| |
Collapse
|
11
|
Zaller JG, Oswald A, Wildenberg M, Burtscher-Schaden H, Nadeem I, Formayer H, Paredes D. Potential to reduce pesticides in intensive apple production through management practices could be challenged by climatic extremes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162237. [PMID: 36796687 DOI: 10.1016/j.scitotenv.2023.162237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/03/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Apples are the third most produced fruit in the world, but their production is often pesticide-intensive. Our objective was to identify options for pesticide reduction using farmer records from 2549 commercial apple fields in Austria during five years between 2010 and 2016. Using generalized additive mixed modeling, we examined how pesticide use was related to farm management, apple varieties, and meteorological parameters, and how it affected yields and toxicity to honeybees. Apple fields received 29.5 ± 8.6 (mean ± SD) pesticide applications per season at a rate of 56.7 ± 22.7 kg ha-1, which included a total of 228 pesticide products with 80 active ingredients. Over the years, fungicides accounted for 71 % of the pesticide amounts applied, insecticides for 15 %, and herbicides for 8 %. The most frequently used fungicides were sulfur (52 %), followed by captan (16 %) and dithianon (11 %). Of insecticides, paraffin oil (75 %) and chlorpyrifos/chlorpyrifos-methyl (6 % combined) were most frequently used. Among herbicides, glyphosate (54 %), CPA (20 %) and pendimethalin (12 %) were most often used. Pesticide use increased with increasing frequency of tillage and fertilization, increasing field size, increasing spring temperatures, and drier summer conditions. Pesticide use decreased with increasing number of summer days with maximum temperatures >30 °C and number of warm, humid days. Apple yields were significantly positively related to the number of heat days, warm humid nights, and pesticide treatment frequency, but were not affected by frequency of fertilization and tillage. Honeybee toxicity was not related to insecticide use. Pesticide use and yield were significantly related to apple varieties. Our analysis shows that pesticide use in the apple farms studied can be reduced by less fertilization and tillage, partly because yields were >50 % higher than the European average. However, weather extremes related to climate change, such as drier summers, could challenge plans to reduce pesticide use.
Collapse
Affiliation(s)
- Johann G Zaller
- University of Natural Resources and Life Sciences Vienna (BOKU), Department of Integrative Biology and Biodiversity Research, Institute of Zoology, Gregor Mendel Straße 33, 1180 Vienna, Austria.
| | - Andreas Oswald
- University of Natural Resources and Life Sciences Vienna (BOKU), Department of Integrative Biology and Biodiversity Research, Institute of Zoology, Gregor Mendel Straße 33, 1180 Vienna, Austria
| | - Martin Wildenberg
- Environmental Research Institute & Environmental Organization Global2000/Friends of the Earth Austria, Neustiftgasse 36, 1070 Vienna, Austria
| | - Helmut Burtscher-Schaden
- Environmental Research Institute & Environmental Organization Global2000/Friends of the Earth Austria, Neustiftgasse 36, 1070 Vienna, Austria
| | - Imran Nadeem
- University of Natural Resources and Life Sciences Vienna (BOKU), Department of Water, Atmosphere and Environment, Institute of Meteorology and Climatology, Peter-Jordan Straße 82, 1180 Vienna, Austria
| | - Herbert Formayer
- University of Natural Resources and Life Sciences Vienna (BOKU), Department of Water, Atmosphere and Environment, Institute of Meteorology and Climatology, Peter-Jordan Straße 82, 1180 Vienna, Austria
| | - Daniel Paredes
- Universidad de Extremadura, Environmental Resources Analysis Research Group, Department of Plant Biology, Ecology and Earth Sciences, Badajoz, Spain
| |
Collapse
|
12
|
Zhao Y, Ye F, Fu Y. Research Progress on the Action Mechanism of Herbicide Safeners: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:3639-3650. [PMID: 36794646 DOI: 10.1021/acs.jafc.2c08815] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Herbicide safeners are agricultural chemicals that protect crops from herbicide injury and improve the safety of herbicides and the effectiveness of weed control. Safeners induce and enhance the tolerance of crops to herbicides through the synergism of multiple mechanisms. The principal mechanism is that the metabolic rate of the herbicide in the crop is accelerated by safeners, resulting in the damaging concentration at the site of action being reduced. We focused on discussing and summarizing the multiple mechanisms of safeners to protect crops in this review. It is also emphasized how safeners alleviate herbicide phytotoxicity to crops by regulating the detoxification process and conducting perspectives on future research on the action mechanism of safeners at the molecular level.
Collapse
Affiliation(s)
- Yaning Zhao
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Fei Ye
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Ying Fu
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
13
|
Comparative Transcriptome Analysis to Investigate the Immunotoxicity Mechanism Triggered by Dimethomorph on Human Jurkat T Cell Lines. Foods 2022; 11:foods11233848. [PMID: 36496656 PMCID: PMC9738110 DOI: 10.3390/foods11233848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/20/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022] Open
Abstract
Dimethomorph (DMM) is a broad-spectrum fungicide used globally in agricultural production, but little is known regarding the immunotoxicity of DMM in humans. In this study, the immunotoxicity of DMM on human Jurkat T cells was evaluated in vitro. The results indicated that the half-effective concentration (EC50) of DMM for Jurkat cells was 126.01 mg/L (0.32 mM). To further elucidate the underlying mechanism, transcriptomics based on RNA sequencing for exposure doses of EC25 (M21) and EC10 (L4) was performed. The results indicated that compared to untreated samples (Ctr), 121 genes (81 upregulated, 40 downregulated) and 30 genes (17 upregulated, 13 downregulated) were significantly differentially regulated in the L4 and M21 samples, respectively. A gene ontology analysis indicated that the significantly differentially expressed genes (DEGs) were mostly enriched in the negative regulation of cell activities, and a KEGG pathway analysis indicated that the DEGs were mainly enriched in the immune regulation and signal transduction pathways. A quantitative real-time PCR for the selected genes showed that compared to the high-dose exposure (M21), the effect of the low-dose DMM exposure (L4) on gene expression was more significant. The results indicated that DMM has potential immunotoxicity for humans, and this toxicity cannot be ignored even at low concentrations.
Collapse
|
14
|
Shi Z, Tian Y, Liu J, Wu W, Gao S, Zhang H. Zeolitic imidazolate framework-8 modified magnetic halloysite nanotube-based solid phase extraction for the analysis of carbamate pesticides by ultra-high performance liquid chromatography tandem mass spectrometry. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:4659-4668. [PMID: 36342027 DOI: 10.1039/d2ay01228f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Zeolitic imidazolate framework-8 modified magnetic halloysite nanotube (MHNTs@ZIF-8) composites were synthesized and evaluated for the first time as an efficient sorbent for the magnetic solid-phase extraction (mSPE) of carbamate pesticides (CPs) from water samples. MHNTs were prepared by coprecipitation, and MHNTs@ZIF-8 composites were assembled in situ at room temperature. After characterization, MHNTs@ZIF-8 was used to extract pirimicarb, propoxur, carbaryl, isoprocarb and fenobucarb via π-π stacking interaction and hydrophobic interaction between the imidazole skeleton of ZIF-8 and benzene rings or benzene-like rings in CPs, as well as the hydrogen bond formed between O in CPs and H in ZIF-8. The effects of the amount of sorbent, ionic strength, type and volume of desorption solvent and adsorption/desorption time were investigated. Under optimum conditions, good linearity was obtained for the analysis of CPs by ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) with R2 ≥ 0.9992. The limits of quantification range from 3 to 40 ng L-1 in water. Relative standard deviations (RSDs) were <7%, n = 5, within a batch and <9% among batches. The spiked recoveries were between 81 and 104%. The proposed method has been successfully applied to the determination of CPs in various water samples.
Collapse
Affiliation(s)
- Zhihong Shi
- College of Chemistry and Environmental Science, Hebei University, Key Laboratory of Analytical Science and Technology of Hebei Province, Baoding 071002, China.
| | - Yuehong Tian
- College of Chemistry and Environmental Science, Hebei University, Key Laboratory of Analytical Science and Technology of Hebei Province, Baoding 071002, China.
| | - Junjie Liu
- College of Chemistry and Environmental Science, Hebei University, Key Laboratory of Analytical Science and Technology of Hebei Province, Baoding 071002, China.
| | - Wenwen Wu
- College of Chemistry and Environmental Science, Hebei University, Key Laboratory of Analytical Science and Technology of Hebei Province, Baoding 071002, China.
| | - Sifan Gao
- College of Chemistry and Environmental Science, Hebei University, Key Laboratory of Analytical Science and Technology of Hebei Province, Baoding 071002, China.
| | - Hongyi Zhang
- College of Chemistry and Environmental Science, Hebei University, Key Laboratory of Analytical Science and Technology of Hebei Province, Baoding 071002, China.
| |
Collapse
|
15
|
Hou C, Wang Z, Li X, Bai Y, Chai J, Li X, Gao J, Xu H. Study of modeling and optimization for predicting the acute toxicity of carbamate pesticides using the binding information with carrier protein. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 273:121038. [PMID: 35189491 DOI: 10.1016/j.saa.2022.121038] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/08/2022] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
To predict drug acute toxicity using the binding information with human serum albumin, our research group established a new method (Carrier protein binding information-toxicity relationship, CPBITR). Unfortunately, the previous model had too few data sets which may affect the accuracy and credibility of the model. In this paper, therefore, we measured the binding modes of three carbamate pesticides, Bendiocarb, Butocarboxim and Dioxacarb with human serum albumin (HSA) to supplement the previously modeled training set. Multispectral methods and molecular docking were used to study their binding modes. We built and optimized the previous models with the combined information of three different toxicity pesticides and HSA in order to find better prediction method. The results showed that Back-propagation Artificial Neural Network model has the best fitting effect among these models. In conclusion, the proposed model effectively improves the accuracy and credibility of the existing model. It results in significant predict drug acute toxicity using the binding information with carrier protein and contribute to drug development and research.
Collapse
Affiliation(s)
- Chenxin Hou
- Engineering Research Center of Pesticide of Heilongjiang Province, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, 150080 Harbin, China
| | - Zishi Wang
- Engineering Research Center of Pesticide of Heilongjiang Province, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, 150080 Harbin, China
| | - Xiangshuai Li
- Engineering Research Center of Pesticide of Heilongjiang Province, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, 150080 Harbin, China
| | - Yuqian Bai
- Engineering Research Center of Pesticide of Heilongjiang Province, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, 150080 Harbin, China
| | - Jiashuang Chai
- Engineering Research Center of Pesticide of Heilongjiang Province, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, 150080 Harbin, China
| | - Xiangfen Li
- Engineering Research Center of Pesticide of Heilongjiang Province, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, 150080 Harbin, China
| | - Jinsheng Gao
- Engineering Research Center of Pesticide of Heilongjiang Province, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, 150080 Harbin, China.
| | - Hongliang Xu
- Engineering Research Center of Pesticide of Heilongjiang Province, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, 150080 Harbin, China.
| |
Collapse
|
16
|
Jia L, Jin XY, Zhao LX, Fu Y, Ye F. Research Progress in the Design and Synthesis of Herbicide Safeners: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:5499-5515. [PMID: 35473317 DOI: 10.1021/acs.jafc.2c01565] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Detoxification plays an important role in herbicide action. Herbicide safeners selectively protect crops from herbicide injury without reducing the herbicidal efficiency against the target weeds. With the large-scale use of herbicides, herbicide safeners have been widely used in sorghum, wheat, rice, corn, and other crops. In recent years, an increasing number of unexpected new herbicide safeners have been designed. The varieties, structural characteristics, uses, and synthetic routes of commercial herbicide safeners are reviewed in this paper. The design ideas and structural characteristics of novel herbicide safeners are summarized, which provide a basis for the design of bioactive molecules as new herbicide safeners in the future.
Collapse
Affiliation(s)
- Ling Jia
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Xin-Yu Jin
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Li-Xia Zhao
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Ying Fu
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Fei Ye
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| |
Collapse
|
17
|
Chittrakul J, Sapbamrer R, Sirikul W. Pesticide Exposure and Risk of Rheumatoid Arthritis: A Systematic Review and Meta-Analysis. TOXICS 2022; 10:toxics10050207. [PMID: 35622621 PMCID: PMC9143500 DOI: 10.3390/toxics10050207] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/13/2022] [Accepted: 04/20/2022] [Indexed: 01/24/2023]
Abstract
Rheumatoid arthritis (RA) is a disease that affects people all over the world and can be caused by a variety of factors. Exposure to pesticides is one of the risk factors for the development of RA. However, the evidence of exposure to pesticides linked with the development of RA is still controversial. This study aimed to investigate the association between exposure to pesticides and RA by a systematic review of relevant literature and a meta-analysis. Full-text articles published in PubMed, Web of Science, Scopus, and Google Scholar between 1956 and 2021 were reviewed and evaluated. A total of eight studies were eligible for inclusion (two cohort studies, four case-control studies, and two cross-sectional studies). The adjusted odds ratio for pesticide exposure on RA was 1.20 for insecticides (95% CI = 1.12–1.28), 0.98 for herbicides (95% CI = 0.89–1.08), 1.04 for fungicides (95% CI = 0.86–1.27), and 1.15 in for non-specific pesticides (95% CI = 1.09–1.21). There is some evidence to suggest that exposure to insecticides (especially fonofos, carbaryl, and guanidines) contributes to an increased risk of RA. However, the evidence is limited because of a small number of studies. Therefore, further epidemiological studies are needed to substantiate this conclusion.
Collapse
|
18
|
Parny M, Coste A, Aubouy A, Rahabi M, Prat M, Pipy B, Treilhou M. Differential immunomodulatory effects of six pesticides of different chemical classes on human monocyte-derived macrophage functions. Food Chem Toxicol 2022; 163:112992. [PMID: 35395341 DOI: 10.1016/j.fct.2022.112992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/04/2022] [Accepted: 04/03/2022] [Indexed: 01/19/2023]
Abstract
Exposure to pesticides through eyes, skin, ingestion and inhalation may affects human health by interfering with immune cells, such as macrophages. We evaluated, in vitro, the effect of six pesticides widely used in apple arboriculture on the functions of human monocyte-derived macrophages (hMDMs). hMDMs were cultured for 4 or 24 h with or without pesticides (0.01, 0.1, 1, 10 μmol.L-1). We showed that chlorpyrifos, thiacloprid, thiophanate, boscalid, and captan had little toxic effect at the tested concentrations, while dithianon had low-cytotoxicity at 10 μmol.L-1. While boscalid showed no effect on hMDMs function, thiophanate (0.01 μmol.L-1) stimulated with TPA and thiacloprid (1, 10 μmol.L-1) stimulated with zymosan activated ROS production. Chlorpyrifos, dithianon, and captan inhibited ROS production and TNF-α, IL-1β pro-inflammatory cytokines. We established that dithianon (0.01-1 μmol.L-1) and captan (0.1, 1 μmol.L-1) induced mRNA expression of NQO1 and HMOX1 antioxidant enzymes. Dithianon also induced the mRNA expression of catalase, superoxide dismutase-2 at 10 μmol.L-1. Together, these results show that exposure to chlorpyrifos, dithianon, and captan induce immunomodulatory effects that may influence the disease fighting properties of monocytes/macrophages while pesticides such as thiacloprid, thiophanate and boscalid have little influence.
Collapse
Affiliation(s)
- Melissa Parny
- EA7417, BTSB, Université Fédérale Toulouse Midi-Pyrénées, INU Champollion, Albi, France; PHARMADEV UMR 152, Institut de Recherche pour le Développement (IRD), Université Paul Sabatier Toulouse 3, Toulouse, France.
| | - Agnès Coste
- PHARMADEV UMR 152, Institut de Recherche pour le Développement (IRD), Université Paul Sabatier Toulouse 3, Toulouse, France.
| | - Agnès Aubouy
- PHARMADEV UMR 152, Institut de Recherche pour le Développement (IRD), Université Paul Sabatier Toulouse 3, Toulouse, France.
| | - Mouna Rahabi
- PHARMADEV UMR 152, Institut de Recherche pour le Développement (IRD), Université Paul Sabatier Toulouse 3, Toulouse, France.
| | - Melissa Prat
- PHARMADEV UMR 152, Institut de Recherche pour le Développement (IRD), Université Paul Sabatier Toulouse 3, Toulouse, France.
| | - Bernard Pipy
- PHARMADEV UMR 152, Institut de Recherche pour le Développement (IRD), Université Paul Sabatier Toulouse 3, Toulouse, France.
| | - Michel Treilhou
- EA7417, BTSB, Université Fédérale Toulouse Midi-Pyrénées, INU Champollion, Albi, France.
| |
Collapse
|
19
|
A Comprehensive Survey of the Recent Studies with UAV for Precision Agriculture in Open Fields and Greenhouses. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12031047] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The increasing world population makes it necessary to fight challenges such as climate change and to realize production efficiently and quickly. However, the minimum cost, maximum income, environmental pollution protection and the ability to save water and energy are all factors that should be taken into account in this process. The use of information and communication technologies (ICTs) in agriculture to meet all of these criteria serves the purpose of precision agriculture. As unmanned aerial vehicles (UAVs) can easily obtain real-time data, they have a great potential to address and optimize solutions to the problems faced by agriculture. Despite some limitations, such as the battery, load, weather conditions, etc., UAVs will be used frequently in agriculture in the future because of the valuable data that they obtain and their efficient applications. According to the known literature, UAVs have been carrying out tasks such as spraying, monitoring, yield estimation, weed detection, etc. In recent years, articles related to agricultural UAVs have been presented in journals with high impact factors. Most precision agriculture applications with UAVs occur in outdoor environments where GPS access is available, which provides more reliable control of the UAV in both manual and autonomous flights. On the other hand, there are almost no UAV-based applications in greenhouses where all-season crop production is available. This paper emphasizes this deficiency and provides a comprehensive review of the use of UAVs for agricultural tasks and highlights the importance of simultaneous localization and mapping (SLAM) for a UAV solution in the greenhouse.
Collapse
|
20
|
Ahmad WA, Latif NA, Zaidel DNA, Ghazi RM, Terada A, Aguilar CN, Zakaria ZA. Microbial Biotransformation and Biomineralization of Organic-Rich Waste. CURRENT POLLUTION REPORTS 2021; 7:435-447. [DOI: 10.1007/s40726-021-00205-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/14/2021] [Indexed: 09/02/2023]
|
21
|
Kuzukiran O, Simsek I, Yorulmaz T, Yurdakok-Dikmen B, Ozkan O, Filazi A. Multiresidues of environmental contaminants in bats from Turkey. CHEMOSPHERE 2021; 282:131022. [PMID: 34090000 DOI: 10.1016/j.chemosphere.2021.131022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/07/2021] [Accepted: 05/24/2021] [Indexed: 06/12/2023]
Abstract
Bat populations have been steadily declining, most likely because of anthropogenic factors. Identification and classification of these risks have crucial importance in ensuring the survival of this species. Bats often coexist with humans in urban, industrial, and agricultural areas and are potentially exposed to a range of environmental pollutants. Two bat species widely distributed in Turkey were selected, and the residues of pesticides and organic contaminants in their carcasses were analyzed using: gas chromatography-mass spectrometry, gas chromatography-tandem mass spectrometry, and liquid chromatography-tandem mass spectrometry. Species and sex specific differences were evaluated along with their potential to be used as bioindicators. During the rigor mortis period, 23 adult Pipistrellus pipistrellus (11 female and 12 male) and 19 adult Myotis myotis (9 female and 10 male) were collected and 322 contaminants (pesticides and organic contaminants) were analyzed in whole carcasses of bats by using a validated method. Multiple pesticides and organic contaminants were detected in all collected 42 bats. The most frequent contamination was detected as 4,4-DDE, followed by ethoprophos, quinalphos, methidation, paraoxon-methyl, phosalone and tetramethrin. The least common compounds were as follows: 2,4-DDD, endrin, HCH-alpha, fenamiphos sulfoxide, parathion ethyl, bitertanol, oxycarboxin, procymidone, fluazifop-butyl, trifluralin, bifenazate, DMF, fenpyroximate, PBDE-47, benzo(a)anthracene, benzo(b)fluoranthene, and benzo(g,h,i) perylene; of these only one was found in each bat. In terms of frequency and concentration, there was no significant difference between species and sex. An average of 26.1 pollutants was found in each bat. Thus, it was concluded that bats can be used as potential bioindicators in determining environmental pollution.
Collapse
Affiliation(s)
- Ozgur Kuzukiran
- Eldivan Vocational School of Health Services, Cankiri Karatekin University, Eldivan, Cankiri, Turkey.
| | - Ilker Simsek
- Eldivan Vocational School of Health Services, Cankiri Karatekin University, Eldivan, Cankiri, Turkey.
| | - Tarkan Yorulmaz
- Hunting and Wildlife Program, Department of Forestry, Yaprakli Vocational School, Cankiri Karatekin University, Cankiri, Turkey.
| | - Begum Yurdakok-Dikmen
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Ankara University, Turkey.
| | - Ozcan Ozkan
- Department of Biology, Faculty of Science, Cankiri Karatekin University, Cankiri, Turkey.
| | - Ayhan Filazi
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Ankara University, Turkey.
| |
Collapse
|
22
|
Liu S, Huang Y, Liu J, Chen C, Ouyang G. In Vivo Contaminant Monitoring and Metabolomic Profiling in Plants Exposed to Carbamates via a Novel Microextraction Fiber. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:12449-12458. [PMID: 34494434 DOI: 10.1021/acs.est.1c04368] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this study, a biocompatible solid-phase microextraction (SPME) fiber with high-coverage capture capacity based on a nitrogen-rich porous polyaminal was developed. The fiber was used to track the bioaccumulation and elimination of carbamates (isoprocarb, carbofuran, and carbaryl) and their metabolites (o-cumenol, carbofuran phenol, and 1-naphthalenol) in living Chinese cabbage plants (Brassica campestris L. ssp. chinensis Makino (var. communis Tsen et Lee)). A case-and-control model was applied in the hydroponically cultured plants, with the exposed plant groups contaminated under three carbamates at 5 μg mL-1. Both bio-enrichment and elimination of carbamates and their metabolites in living plants appeared to be very fast with half-lives at ∼0.39-0.79 and ∼0.56-0.69 days, respectively. Statistical differences in the endogenous plant metabolome occurred on day 3 of carbamate exposure. In the exposed group, the plant metabolic alterations were not reversed after 5 days of contaminant-free growth, although most contaminates had been eliminated. Compared with prior nutriological and toxicological studies, >50 compounds were first identified as endogenous metabolites in cabbage plants. The contents of the glucosinolate-related metabolites demonstrated significant time-dependent dysregulations that the fold changes of these key metabolites decreased from 0.78-1.07 to 0.28-0.82 during carbamate exposure. To summarize, in vivo SPME provided new and important information regarding exogenous carbamate contamination and related metabolic dysregulation in plants.
Collapse
Affiliation(s)
- Shuqin Liu
- Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center Guangzhou), 100 Xianlie Middle Road, Guangzhou 510070, China
| | - Yiquan Huang
- Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center Guangzhou), 100 Xianlie Middle Road, Guangzhou 510070, China
| | - Jian Liu
- Institute of Advanced Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Chao Chen
- Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center Guangzhou), 100 Xianlie Middle Road, Guangzhou 510070, China
| | - Gangfeng Ouyang
- Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center Guangzhou), 100 Xianlie Middle Road, Guangzhou 510070, China
- KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
23
|
Raffa CM, Chiampo F. Bioremediation of Agricultural Soils Polluted with Pesticides: A Review. Bioengineering (Basel) 2021; 8:bioengineering8070092. [PMID: 34356199 PMCID: PMC8301097 DOI: 10.3390/bioengineering8070092] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/12/2021] [Accepted: 06/23/2021] [Indexed: 01/06/2023] Open
Abstract
Pesticides are chemical compounds used to eliminate pests; among them, herbicides are compounds particularly toxic to weeds, and this property is exploited to protect the crops from unwanted plants. Pesticides are used to protect and maximize the yield and quality of crops. The excessive use of these chemicals and their persistence in the environment have generated serious problems, namely pollution of soil, water, and, to a lower extent, air, causing harmful effects to the ecosystem and along the food chain. About soil pollution, the residual concentration of pesticides is often over the limits allowed by the regulations. Where this occurs, the challenge is to reduce the amount of these chemicals and obtain agricultural soils suitable for growing ecofriendly crops. The microbial metabolism of indigenous microorganisms can be exploited for degradation since bioremediation is an ecofriendly, cost-effective, rather efficient method compared to the physical and chemical ones. Several biodegradation techniques are available, based on bacterial, fungal, or enzymatic degradation. The removal efficiencies of these processes depend on the type of pollutant and the chemical and physical conditions of the soil. The regulation on the use of pesticides is strictly connected to their environmental impacts. Nowadays, every country can adopt regulations to restrict the consumption of pesticides, prohibit the most harmful ones, and define the admissible concentrations in the soil. However, this variability implies that each country has a different perception of the toxicology of these compounds, inducing different market values of the grown crops. This review aims to give a picture of the bioremediation of soils polluted with commercial pesticides, considering the features that characterize the main and most used ones, namely their classification and their toxicity, together with some elements of legislation into force around the world.
Collapse
|
24
|
Naasri S, Helali I, Aouni M, Mastouri M, Harizi H. N-acetylcysteine reduced the immunotoxicity effects induced in vitro by azoxystrobin and iprodione fungicides in mice. ENVIRONMENTAL TOXICOLOGY 2021; 36:562-571. [PMID: 33226166 DOI: 10.1002/tox.23061] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 09/16/2020] [Accepted: 11/08/2020] [Indexed: 06/11/2023]
Abstract
Azoxystrobin (AZO) and Iprodione (IPR) fungicides are extensively used worldwide, and therefore, contaminate all environmental compartments. The toxicity and the mechanisms by which they affected immune cells are complex and remain unknown. This study investigated the impact of AZO and IPR on the in vitro function of mice peritoneal macrophages including lysosomal enzyme activity and tumor necrosis factor (TNF)α and nitric oxide (NO) production in response to lipopolysaccharide (LPS) stimulation, the proliferation of mice splenocytes stimulated by concanavalin (Con)A and LPS, and the production of the Th1cytokine interferon-gamma (IFNγ) and the Th2 cytokine interleukin (IL)-4 and IL-10 by ConA-activated splenocytes. This is the first report indicating that AZO and IPR fungicides dose-dependently inhibited mice macrophage lysosomal enzyme activity and LPS-stimulated production of TNFα and NO. Mitogen-induced proliferation of mice splenocytes was also suppressed by AZO and IPR in a dose-dependent manner. More pronounced impact was observed on ConA-induced response. The production of IFNγ by ConA-stimulated splenocytes was dose-dependently inhibited; however, the production of IL-4 and IL-10 increased in the same conditions. These results suggested that AZO and IPR polarized Th1/Th2 cytokine balance towards Th2 response. Overall, marked immunosuppressive effects were observed for AZO. The immunomodulatory effects caused by AZO and IPR were partially reversed by the pharmacological antioxidant N-acetylcysteine (NAC), suggesting that both fungicides exerted their actions through, at least in part, oxidative stress-dependent mechanism. Collectively, our data showed that AZO and IPR fungicides exerted potent immunomodulatory effects in vitro with eventually strong consequences on immune response and immunologically based diseases.
Collapse
Affiliation(s)
- Sahar Naasri
- Faculty of Pharmacy of Monastir, Laboratory of Transmissible Diseases and Biologically Active Substances, University of Monastir, Monastir, Tunisia
| | - Imen Helali
- Faculty of Pharmacy of Monastir, Laboratory of Transmissible Diseases and Biologically Active Substances, University of Monastir, Monastir, Tunisia
| | - Majoub Aouni
- Faculty of Pharmacy of Monastir, Laboratory of Transmissible Diseases and Biologically Active Substances, University of Monastir, Monastir, Tunisia
| | - Maha Mastouri
- Faculty of Pharmacy of Monastir, Laboratory of Transmissible Diseases and Biologically Active Substances, University of Monastir, Monastir, Tunisia
| | - Hedi Harizi
- Faculty of Pharmacy of Monastir, Laboratory of Transmissible Diseases and Biologically Active Substances, University of Monastir, Monastir, Tunisia
- Faculty of Dental Medicine, University of Monastir, Monastir, Tunisia
| |
Collapse
|
25
|
Rajak P, Ganguly A, Sarkar S, Mandi M, Dutta M, Podder S, Khatun S, Roy S. Immunotoxic role of organophosphates: An unseen risk escalating SARS-CoV-2 pathogenicity. Food Chem Toxicol 2021; 149:112007. [PMID: 33493637 PMCID: PMC7825955 DOI: 10.1016/j.fct.2021.112007] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/07/2021] [Accepted: 01/15/2021] [Indexed: 02/06/2023]
Abstract
Consistent gathering of immunotoxic substances on earth is a serious global issue affecting people under pathogenic stress. Organophosphates are among such hazardous compounds that are ubiquitous in nature. They fuel oxidative stress to impair antiviral immune response in living entities. Aside, organophosphates promote cytokine burst and pyroptosis in broncho-alveolar chambers leading to severe respiratory ailments. At present, we witness COVID-19 outbreak caused by SARS-CoV-2. Infection triggers cytokine storm coupled with inflammatory manifestations and pulmonary disorders in patients. Since organophosphate-exposure promotes necroinflammation and respiratory troubles hence during current pandemic situation, additional exposure to such chemicals can exacerbate inflammatory outcome and pulmonary maladies in patients, or pre-exposure to organophosphates might turn-out to be a risk factor for compromised immunity. Fortunately, antioxidants alleviate organophosphate-induced immunosuppression and hence under co-exposure circumstances, dietary intake of antioxidants would be beneficial to boost immunity against SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Prem Rajak
- Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India.
| | - Abhratanu Ganguly
- Post Graduate Department of Zoology, A.B.N. Seal College, Cooch Behar, West Bengal, India.
| | - Saurabh Sarkar
- Department of Zoology, Gushkara Mahavidyalaya, Gushkara, Purba Bardhaman, West Bengal, India.
| | - Moutushi Mandi
- Toxicology Research Unit, Department of Zoology, The University of Burdwan, Purba Bardhaman, West Bengal, India.
| | - Moumita Dutta
- Departments of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA.
| | - Sayanti Podder
- Post Graduate Department of Zoology, Modern College of Arts, Science and Commerce, Ganeshkhind, Pune, Maharashtra, India.
| | - Salma Khatun
- Department of Zoology, Krishna Chandra College, Hetampur, West Bengal, India.
| | - Sumedha Roy
- Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Belgium.
| |
Collapse
|
26
|
Ren Z, Zhou X, Gao X, Tan Y, Chen H, Tan S, Liu W, Tong Y, Chen C. Rapid detection of carbamate pesticide residues using microchip electrophoresis combining amperometric detection. Anal Bioanal Chem 2021; 413:3017-3026. [PMID: 33635387 DOI: 10.1007/s00216-021-03237-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 02/09/2021] [Accepted: 02/15/2021] [Indexed: 11/29/2022]
Abstract
The long-term consumption of food with pesticide residues has harmful effects on human health and the demand for pesticide detection technology tends to be miniaturized and instant. To this end, we demonstrated the first application of indirectly detecting two carbamate pesticides, metolcarb and carbaryl, by gold nanoparticle-modified indium tin oxide electrode in dual-channel microchip electrophoresis and amperometric detection (ME-AD) system. m-Cresol and α-naphthol were obtained after pesticide hydrolysis in alkaline solution, and then separated and detected by ME-AD. Parameters including the detection potential and running buffer concentration and pH were optimized to improve the detection sensitivity and separation efficiency. Under the optimal conditions, the two analytes were completely separated within 80 s. m-Cresol and α-naphthol presented a wide linear range from 1 to 100 μM, with limits of detection of 0.16 μM and 0.34 μM, respectively (S/N = 3). Moreover, the reliability of this system was demonstrated by analyzing metolcarb and carbaryl in spiked vegetable samples.
Collapse
Affiliation(s)
- Zixuan Ren
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Xingchen Zhou
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Xingxing Gao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Yan Tan
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Huaying Chen
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, 518055, Guangdong, China
| | - Songwen Tan
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Wenfang Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Yaonan Tong
- College of Information Science and Engineering, Hunan Institute of Science and Technology, Yueyang, 414006, Hunan, China
| | - Chuanpin Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China.
| |
Collapse
|
27
|
Torquetti CG, Guimarães ATB, Soto-Blanco B. Exposure to pesticides in bats. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 755:142509. [PMID: 33032135 DOI: 10.1016/j.scitotenv.2020.142509] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 06/11/2023]
Abstract
Bats provide a variety of ecological services that are essential to the integrity of ecosystems. Indiscriminate use of pesticides has been a threat to biodiversity, and the exposure of bats to these xenobiotics is a threat to their populations. This study presents a review of articles regarding the exposure of bats to pesticides published in the period from January 1951 to July 2020, addressing the temporal and geographical distribution of research, the studied species, and the most studied classes of pesticides. The research was concentrated in the 1970s and 1980s, mostly in the Northern Hemisphere, mainly in the USA. Of the total species in the world, only 5% of them have been studied, evaluating predominantly insectivorous species of the Family Vespertilionidae. Insecticides, mainly organochlorines, were the most studied pesticides. Most research was observational, with little information available on the effects of pesticides on natural bat populations. Despite the advances in analytical techniques for detecting contaminants, the number of studies is still insufficient compared to the number of active ingredients used. The effects of pesticides on other guilds and tropical species remain poorly studied. Future research should investigate the effects of pesticides, especially in sublethal doses causing chronic exposure. It is crucial to assess the impact of these substances on other food guilds and investigate how natural populations respond to the exposure to mixtures of pesticides found in the environment.
Collapse
Affiliation(s)
- Camila Guimarães Torquetti
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais (UFMG), Avenida Antônio Carlos 6627, Belo Horizonte, MG 30123-970, Brazil
| | - Ana Tereza Bittencourt Guimarães
- Laboratório de Investigações Biológicas, Centro de Ciências Biológicas e da Saúde, Universidade Estadual do Oeste do Paraná, Rua Universitária 2069, Cascavel, PR 85819-110, Brazil
| | - Benito Soto-Blanco
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais (UFMG), Avenida Antônio Carlos 6627, Belo Horizonte, MG 30123-970, Brazil.
| |
Collapse
|
28
|
Alsen M, Sinclair C, Cooke P, Ziadkhanpour K, Genden E, van Gerwen M. Endocrine Disrupting Chemicals and Thyroid Cancer: An Overview. TOXICS 2021; 9:toxics9010014. [PMID: 33477829 PMCID: PMC7832870 DOI: 10.3390/toxics9010014] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/08/2021] [Accepted: 01/13/2021] [Indexed: 12/12/2022]
Abstract
Endocrine disruptive chemicals (EDC) are known to alter thyroid function and have been associated with increased risk of certain cancers. The present study aims to provide a comprehensive overview of available studies on the association between EDC exposure and thyroid cancer. Relevant studies were identified via a literature search in the National Library of Medicine and National Institutes of Health PubMed as well as a review of reference lists of all retrieved articles and of previously published relevant reviews. Overall, the current literature suggests that exposure to certain congeners of flame retardants, polychlorinated biphenyls (PCBs), and phthalates as well as certain pesticides may potentially be associated with an increased risk of thyroid cancer. However, future research is urgently needed to evaluate the different EDCs and their potential carcinogenic effect on the thyroid gland in humans as most EDCs have been studied sporadically and results are not consistent.
Collapse
Affiliation(s)
- Mathilda Alsen
- Department of Otolaryngology-Head and Neck Surgery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (M.A.); (C.S.); (E.G.)
| | - Catherine Sinclair
- Department of Otolaryngology-Head and Neck Surgery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (M.A.); (C.S.); (E.G.)
| | - Peter Cooke
- Department of Medical Education, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (P.C.); (K.Z.)
| | - Kimia Ziadkhanpour
- Department of Medical Education, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (P.C.); (K.Z.)
| | - Eric Genden
- Department of Otolaryngology-Head and Neck Surgery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (M.A.); (C.S.); (E.G.)
| | - Maaike van Gerwen
- Department of Otolaryngology-Head and Neck Surgery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (M.A.); (C.S.); (E.G.)
- Institute for Translational Epidemiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Correspondence:
| |
Collapse
|
29
|
Ahn S, Lee JY, Kim B. Accurate Determination of Carbaryl, Carbofuran and Carbendazim in Vegetables by Isotope Dilution Liquid Chromatography/Tandem Mass Spectrometry. Chromatographia 2020. [DOI: 10.1007/s10337-020-03976-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
30
|
Jacobsen-Pereira CH, Cardoso CC, Gehlen TC, Regina Dos Santos C, Santos-Silva MC. Immune response of Brazilian farmers exposed to multiple pesticides. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 202:110912. [PMID: 32800247 DOI: 10.1016/j.ecoenv.2020.110912] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/13/2020] [Accepted: 06/16/2020] [Indexed: 06/11/2023]
Abstract
Occupational exposure to pesticides has been identified as a factor that predisposes to disorders of the immune system. Immunosuppression, autoimmunity, cancer of various organs and other diseases in people who apply these products have been reported by the studies. This study aimed to investigate the relationship between occupational exposure to pesticides and the immunological profile in 43 farmers exposed to mixtures of pesticides for at least 15 years. A control group composed of 30 individuals without a history of occupational exposure to pesticides was also evaluated. Peripheral blood samples were processed by flow cytometry and cells were labelled with an 8-color monoclonal antibody panel. Plasma cytokines were also measured. Significant increase in classical monocytes (p < 0.001) and dendritic cells (p < 0.001) in the exposed group was observed as well in total T cells (p = 0.04), central memory CD8 T cells (p = 0.02) and effector memory CD8 T cells (p = 0.01). On the other hand, the activation markers of T cells as the expression of CD57, HLA-DR, CD25 and CD28 were evaluated and no difference was found between groups. When the B cells were analyzed, a significant decrease in total B cells (p = 0.01), regulatory B cells (p < 0.001) and plasmablasts (p < 0.001) in the exposed group, compared to healthy controls, was observed. Pro-inflammatory IL-6 was significantly elevated (p = 0.04) in the plasma of farmers compared to that of controls. The constant antigenic stimulus that occurs during exposure to pesticides can favor the recruitment of dendritic cells and macrophages (APCs) presents in the skin and respiratory tract. In the secondary lymphoid organs, the CD4 T and B cells that process such antigens are possibly undergoing proliferative exhaustion, with the consequent depletion of all mature B subpopulations. The resulting drop in humoral immunity may be offset by an increase in the number of circulating CD8 T lymphocytes due to their cytotoxic action.
Collapse
Affiliation(s)
| | - Chandra Chiappin Cardoso
- Postgraduate Program in Pharmacy of the Federal University of Santa Catarina (UFSC), Florianopolis, SC, 88040-900, Brazil; Division of Clinical Analysis, Flow Cytometry Service, University Hospital of the Federal University of Santa Catarina (UFSC), Florianopolis, SC, 88040-900, Brazil
| | - Tais Cristina Gehlen
- Laboratory of Toxicology, University Hospital of the Federal University of Santa Catarina (UFSC), Florianopolis, SC, 88040-900, Brazil
| | - Claudia Regina Dos Santos
- Laboratory of Toxicology, University Hospital of the Federal University of Santa Catarina (UFSC), Florianopolis, SC, 88040-900, Brazil; Clinical Analysis Department, Health Sciences Center, Federal University of Santa Catarina (UFSC), Florianopolis, SC, 88040-900, Brazil
| | - Maria Claudia Santos-Silva
- Division of Clinical Analysis, Flow Cytometry Service, University Hospital of the Federal University of Santa Catarina (UFSC), Florianopolis, SC, 88040-900, Brazil; Clinical Analysis Department, Health Sciences Center, Federal University of Santa Catarina (UFSC), Florianopolis, SC, 88040-900, Brazil.
| |
Collapse
|
31
|
Lee GH, Choi KC. Adverse effects of pesticides on the functions of immune system. Comp Biochem Physiol C Toxicol Pharmacol 2020; 235:108789. [PMID: 32376494 DOI: 10.1016/j.cbpc.2020.108789] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 04/20/2020] [Accepted: 04/30/2020] [Indexed: 02/06/2023]
Abstract
Pesticides are chemical substances used to kill unwanted fungi, weeds and insects. In many countries, there is currently concern regarding the adverse effects of pesticides on health. It has been reported that pesticides may cause cancer, respiratory diseases, organ diseases, system failures, nervous system disorders and asthma, which are closely connected with immune disorders. Therefore, this study reviewed the immunotoxicity of pesticides that are currently used or prohibited from being used, especially their effects on leukocytes such as T cells, B cells, NK cells and macrophages. These immune cells play crucial roles in innate and adaptive immune systems to protect hosts. Pesticides are known to have possible toxicological modes of action to induce oxidative stress, mitochondrial dysfunction, and endoplasmic reticulum (ER) stress in living organisms. According to previous studies, pesticides such as atrazine (ATR), organophophorus (OP) compounds, carbamates, and pyrethroids were shown to inhibit the survival and growth of leukocytes by inducing apoptosis or cell cycle arrest and interfering with the specific immunological functions of each type of immune cells. These results suggest the immunotoxicity of pesticides toward specific immune cells. To substantiate the overall immunocompromised effects of pesticides, there is a need to collect and thoroughly analyze additional information regarding other immunological toxicities.
Collapse
Affiliation(s)
- Gun-Hwi Lee
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Kyung-Chul Choi
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea.
| |
Collapse
|
32
|
Guéniche N, Bruyere A, Ringeval M, Jouan E, Huguet A, Le Hégarat L, Fardel O. Differential interactions of carbamate pesticides with drug transporters. Xenobiotica 2020; 50:1380-1392. [PMID: 32421406 DOI: 10.1080/00498254.2020.1771473] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Pesticides are now recognised to interact with drug transporters, but only few data are available on this issue for carbamate pesticides, a widely used class of agrochemicals, to which humans are highly exposed. The present study was therefore designed to determine whether four representative carbamate pesticides, i.e. the insecticides aminocarb and carbofuran, the herbicide chlorpropham and the fungicide propamocarb, may impair activities of main drug transporters implicated in pharmacokinetics. The interactions of carbamates with solute carrier and ATP-binding cassette transporters were investigated using cultured transporter-overexpressing cells, reference substrates and spectrofluorimetry-, liquid chomatography/tandem mass spectrometry- or radioactivity-based methods. Aminocarb and carbofuran exerted no or minimal effects on transporter activities, whereas chlorpropham inhibited BCRP and OAT3 activities and propamocarb decreased those of OCT1 and OCT2, but cis-stimulated that of MATE2-K. Such alterations of transporters however required chlorpropham/propamocarb concentrations in the 5-50 µM range, likely not relevant to environmental exposure. Trans-stimulation assays and propamocarb accumulation experiments additionally suggested that propamocarb is not a substrate for OCT1, OCT2 and MATE2-K. These data indicate that some carbamate pesticides can interact in vitro with some drug transporters, but only when used at concentrations higher than those expected to occur in environmentally exposed humans.
Collapse
Affiliation(s)
- Nelly Guéniche
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France.,ANSES (French Agency for Food, Environmental and Occupational Health and Safety), Fougères Laboratory, Toxicology of Contaminant Unit, Fougères, France
| | - Arnaud Bruyere
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| | - Mélanie Ringeval
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| | - Elodie Jouan
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| | - Antoine Huguet
- ANSES (French Agency for Food, Environmental and Occupational Health and Safety), Fougères Laboratory, Toxicology of Contaminant Unit, Fougères, France
| | - Ludovic Le Hégarat
- ANSES (French Agency for Food, Environmental and Occupational Health and Safety), Fougères Laboratory, Toxicology of Contaminant Unit, Fougères, France
| | - Olivier Fardel
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S1085, Rennes, France
| |
Collapse
|
33
|
Song XQ, Liu RP, Wang SQ, Li Z, Ma ZY, Zhang R, Xie CZ, Qiao X, Xu JY. Anticancer Melatplatin Prodrugs: High Effect and Low Toxicity, MT1-ER-Target and Immune Response In Vivo. J Med Chem 2020; 63:6096-6106. [PMID: 32401032 DOI: 10.1021/acs.jmedchem.0c00343] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Multitargeted therapy could rectify various oncogenic pathways to block tumorigenesis and progression. The combination of endocrine-, immune-, and chemotherapy might exert a highly synergistic effect against certain tumors. Herein, a series of smart Pt(IV) prodrugs 3-6, named Melatplatin, were rationally designed not only to multitarget DNA, MT1, and estrogen receptor (ER) but also to activate immune response. Melatplatin, conjugating first-line chemotherapeutic Pt drugs with human endogenous melatonin (MT), significantly enhanced drug efficacy especially in ER high-expression (ER+) cells, among which 3 presented the most potent cytotoxicity toward ER+ MCF-7 with nanomolar IC50 values 100-fold lower than cisplatin. Melatplatin could bind well to melatonin receptor (MT1) according to molecular docking. Besides, 3 evidently increased intracellular accumulation and DNA damage, upregulated γH2AX and P53, and silenced NF-κB to induce massive apoptosis. Most strikingly, 3 effectively inhibited tumor growth and attenuated systemic toxicity compared to cisplatin in vivo, promoting lymphocyte proliferation in spleen to achieve immune modulation.
Collapse
Affiliation(s)
- Xue-Qing Song
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Rui-Ping Liu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Shu-Qing Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Zhe Li
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Zhong-Ying Ma
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Ran Zhang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Cheng-Zhi Xie
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Xin Qiao
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Jing-Yuan Xu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
34
|
Ma Q, Liu X, Zhang Y, Chen L, Dang X, Ai Y, Chen H. Fe
3
O
4
nanoparticles coated with polyhedral oligomeric silsesquioxanes and β‐cyclodextrin for magnetic solid‐phase extraction of carbaryl and carbofuran. J Sep Sci 2020; 43:1514-1522. [DOI: 10.1002/jssc.201900896] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 01/09/2020] [Accepted: 01/09/2020] [Indexed: 01/17/2023]
Affiliation(s)
- Qiong Ma
- Hubei Collaborative Innovation Center for Advanced Organic Chemical MaterialsMinistry‐of‐Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical EngineeringHubei University Wuhan P. R. China
| | - Xiaolan Liu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical MaterialsMinistry‐of‐Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical EngineeringHubei University Wuhan P. R. China
| | - Yingying Zhang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical MaterialsMinistry‐of‐Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical EngineeringHubei University Wuhan P. R. China
| | - Ling Chen
- Hubei Collaborative Innovation Center for Advanced Organic Chemical MaterialsMinistry‐of‐Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical EngineeringHubei University Wuhan P. R. China
| | - Xueping Dang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical MaterialsMinistry‐of‐Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical EngineeringHubei University Wuhan P. R. China
| | - Youhong Ai
- Hubei Collaborative Innovation Center for Advanced Organic Chemical MaterialsMinistry‐of‐Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical EngineeringHubei University Wuhan P. R. China
| | - Huaixia Chen
- Hubei Collaborative Innovation Center for Advanced Organic Chemical MaterialsMinistry‐of‐Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical EngineeringHubei University Wuhan P. R. China
| |
Collapse
|
35
|
Khalid S, Shahid M, Murtaza B, Bibi I, Asif Naeem M, Niazi NK. A critical review of different factors governing the fate of pesticides in soil under biochar application. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 711:134645. [PMID: 31822404 DOI: 10.1016/j.scitotenv.2019.134645] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 09/23/2019] [Accepted: 09/23/2019] [Indexed: 05/13/2023]
Abstract
Pesticides are extensively used in the modern agricultural system. The inefficient and extensive use of pesticides during the last 5 to 6 decades inadvertently led to serious deterioration of environmental quality with health risk to living organisms, including humans. It is important to use some environmentally-friendly and sustainable approaches to remediate, restore and maintain soil quality. Biochar has gained considerable attention globally as a promising soil amendment because it has the ability to adsorb and as such minimize the bioavailability of pesticides in soils. This review emphasizes the recent trends and implications of biochar in pesticide-contaminated soils, as well as highlights need of the pesticides use and associated environmental issues in context of the biochar application. The overarching aim of this review is to signify the role of biochar on primary processes such as effect of biochar on the persistence, mineralization, leaching and efficacy of pesticides in soil. Notably, the effects of biochar on pesticide adsorption-desorption, degradation and bioavailability under various operating/production conditions are critically discussed. This review delineates the indirect impact of biochar on pesticides persistence in soils and proposes key recommendations for future research which are essential for the remediation and restoration of pesticides-impacted soils.
Collapse
Affiliation(s)
- Sana Khalid
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari 61100, Pakistan
| | - Muhammad Shahid
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari 61100, Pakistan.
| | - Behzad Murtaza
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari 61100, Pakistan
| | - Irshad Bibi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | - Muhammad Asif Naeem
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari 61100, Pakistan
| | - Nabeel Khan Niazi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan; School of Civil Engineering and Surveying, University of Southern Queensland, Toowoomba 4350, Queensland, Australia.
| |
Collapse
|
36
|
Identification and characterization of a novel bacterial carbohydrate esterase from the bacterium Pantoea ananatis Sd-1 with potential for degradation of lignocellulose and pesticides. Biotechnol Lett 2020; 42:1479-1488. [PMID: 32144558 DOI: 10.1007/s10529-020-02855-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 02/27/2020] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Identification and characterization of a novel bacterial carbohydrate esterase (PaCes7) with application potential for lignocellulose and pesticide degradation. RESULTS PaCes7 was identified from the lignocellulolytic bacterium, Pantoea ananatis Sd-1 as a new carbohydrate esterase. Recombinant PaCes7 heterologously expressed in Escherichia coli showed a clear preference for esters with short-chain fatty acids and exhibited maximum activity towards α-naphthol acetate at 37 °C and pH 7.5. Purified PaCes7 exhibited its catalytic activity under mesophilic conditions and retained more than 40% activity below 30 °C. It displayed a relatively wide pH stability from pH 6-11. Furthermore, the enzyme was strongly resistant to Mg2+, Pb2+, and Co2+ and activated by K+ and Ca2+. Both P. ananatis Sd-1 and PaCes7 could degrade the pesticide carbaryl. Additionally, PaCes7 was shown to work in combination with cellulase and/or xylanase in rice straw degradation. CONCLUSIONS The data suggest that PaCes7 possesses promising biotechnological potential.
Collapse
|
37
|
Onac C. Investigation of Electrical Conductivity Properties and Electro Transport of a Novel Multi Walled Carbon Nanotube Electro Membrane under Constant Current. ELECTROANAL 2020. [DOI: 10.1002/elan.201900755] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Canan Onac
- Pamukkale UniversityDepartment of ChemistryKınıklı Campus Denizli 20070 Denizli Turkey
| |
Collapse
|
38
|
Heavy metal and pesticide exposure: A mixture of potential toxicity and carcinogenicity. CURRENT OPINION IN TOXICOLOGY 2020. [DOI: 10.1016/j.cotox.2020.01.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
39
|
Cumulative risk assessment of pesticide residues in different Iranian pistachio cultivars: Applying the source specific HQS and adversity specific HIA approaches in Real Life Risk Simulations (RLRS). Toxicol Lett 2019; 313:91-100. [DOI: 10.1016/j.toxlet.2019.05.019] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 05/20/2019] [Accepted: 05/21/2019] [Indexed: 01/02/2023]
|
40
|
Kahl VFS, Simon D, de Souza MR, da Rosa VH, Nicolau C, Da Silva FR, Kvitko K, Peres A, Dorneles GP, de Souza CT, Dias JF, Da Silva J. Base excision repair (OGG1 and XRCC1) and metabolism (PON1) gene polymorphisms act on modulation of DNA damage and immune parameters in tobacco farmers. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2018; 836:9-18. [PMID: 30442351 DOI: 10.1016/j.mrgentox.2018.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 04/03/2018] [Accepted: 04/03/2018] [Indexed: 12/12/2022]
Abstract
Pesticides are one of the most frequently investigated chemical, due to their multiple uses in agricultural and public health areas. This study evaluates lymphocytes CBMN (cytokinesis-block micronucleus cytome assay), inflammatory markers, inorganic elements in blood samples, and the relationship of these parameters with XRCC1Arg194Trp, OGG1Ser326Cys and PON1Gln192Arg polymorphisms in a population of tobacco farmers. The study population comprised 129 agricultural workers exposed to pesticides and 91 nonexposed. Farmers had significantly increased NPB (nuclear plasmatic bridge), MN (micronucleus) and NBUD (nuclear bud) frequencies, as well as IL-6 (interleukin 6) and TNF-α (tumor necrosis factor alpha) serum levels, and decreased cytokines CD4+/CD8+ ratio. In the exposed group, XRCC1 Trp/- was correlated with decreased NDI (nuclear division index), and OGG1 Cys/- was associated with higher levels of NPB and decreased levels of IL-6. The combined effects of PON1 Arg/- and XRCC1 Arg/Arg were associated with increased NPB frequencies. In addition, the combination of PON1 Arg/- with XRCC1 Trp/- or OGG1 Cys/- influenced in increased levels of necrosis in farmers. Furthermore, tobacco farmers showed a positive correlation between TNF-α levels and NPB, CD4+/CD8+ ratio and NBUD; and IL-6 levels with both MN and NDI. The duration of years of work at tobacco fields was correlated positively with NBUD frequency. Sulfur, chlorine and potassium were found at increased levels in the exposed group when compared to the nonexposed one. These findings provide evidence that tobacco farmers' exposure have increased DNA damage and alter the immune system's response, and that XRCC1 and OGG1 polymorphisms could influence both biomarkers results.
Collapse
Affiliation(s)
- Vivian Francilia Silva Kahl
- Laboratory of Toxicological Genetics, Postgraduate Program in Cellular and Molecular Biology Applied to Health (PPGBioSaúde), Lutheran University of Brazil (ULBRA), Av. Farroupilha, 8001, building 22, 4th floor, Canoas, Brazil.
| | - Daniel Simon
- Laboratory of Human Molecular Genetics, Postgraduate Program in Cellular and Molecular Biology Applied to Health (PPGBioSaúde), Lutheran University of Brazil (ULBRA), Av. Farroupilha, 8001, building 22, 5th floor, Canoas, Brazil
| | - Melissa Rosa de Souza
- Laboratory of Toxicological Genetics, Postgraduate Program in Cellular and Molecular Biology Applied to Health (PPGBioSaúde), Lutheran University of Brazil (ULBRA), Av. Farroupilha, 8001, building 22, 4th floor, Canoas, Brazil
| | - Vieira Henrico da Rosa
- Laboratory of Toxicological Genetics, Postgraduate Program in Cellular and Molecular Biology Applied to Health (PPGBioSaúde), Lutheran University of Brazil (ULBRA), Av. Farroupilha, 8001, building 22, 4th floor, Canoas, Brazil
| | - Caroline Nicolau
- Laboratory of Toxicological Genetics, Postgraduate Program in Cellular and Molecular Biology Applied to Health (PPGBioSaúde), Lutheran University of Brazil (ULBRA), Av. Farroupilha, 8001, building 22, 4th floor, Canoas, Brazil
| | - Fernanda R Da Silva
- Postgraduate Program in Environmental Impact Assessment, UniLaSalle, Av. Victor Barreto, 2288, Canoas, Brazil
| | - Katia Kvitko
- Postgraduate Program in Genetics and Molecular Biology (PPGGBM), Federal University of Rio Grande do Sul, Av. Bento Gonçalves, 9500, building 43323, Porto Alegre, Brazil
| | - Alessandra Peres
- Cellular and Molecular Immunology Laboratory, Federal University of Health Sciences of Porto Alegre, Rua Sarmento Leite, 245, Porto Alegre, Brazil; Research Center, Methodist University Center IPA, R. Dona Leonor, 340, Porto Alegre, Brazil
| | - Gilson Pires Dorneles
- Cellular and Molecular Immunology Laboratory, Federal University of Health Sciences of Porto Alegre, Rua Sarmento Leite, 245, Porto Alegre, Brazil
| | - Cláudia Telles de Souza
- Ion Implantation Laboratory, Institute of Physics, Federal University of Rio Grande do Sul, Av. Bento Gonçalves, 9500, Porto Alegre, Brazil; Laboratory of Environmental Chemistry and Oleochemistry, Postgraduate Program in Chemistry, Federal University of Rio Grande do Sul, Av. Bento Gonçalves, 9500, Porto Alegre, Brazil
| | - Johnny Ferraz Dias
- Ion Implantation Laboratory, Institute of Physics, Federal University of Rio Grande do Sul, Av. Bento Gonçalves, 9500, Porto Alegre, Brazil
| | - Juliana Da Silva
- Laboratory of Toxicological Genetics, Postgraduate Program in Cellular and Molecular Biology Applied to Health (PPGBioSaúde), Lutheran University of Brazil (ULBRA), Av. Farroupilha, 8001, building 22, 4th floor, Canoas, Brazil.
| |
Collapse
|
41
|
Polished silver solid amalgam electrode and cationic surfactant as tool in electroanalytical determination of methomyl pesticide. Talanta 2018; 189:389-396. [DOI: 10.1016/j.talanta.2018.07.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/09/2018] [Accepted: 07/11/2018] [Indexed: 11/18/2022]
|
42
|
Salehzadeh A, Abbasalipourkabir R, Shisheian B, Rafaat A, Nikkhah A, Rezaii T. The alleviating effects of sesame oil on diazinon-induced toxicity in male wistar rats. Drug Chem Toxicol 2018; 42:280-285. [DOI: 10.1080/01480545.2018.1449852] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Aref Salehzadeh
- Department of Medical Entomology and Vector Control, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Roghaye Abbasalipourkabir
- Department of Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Behrooz Shisheian
- Department of Immunology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ali Rafaat
- Department of Anatomy and Embryology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ali Nikkhah
- School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Tahereh Rezaii
- School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
43
|
Ndikuryayo F, Moosavi B, Yang WC, Yang GF. 4-Hydroxyphenylpyruvate Dioxygenase Inhibitors: From Chemical Biology to Agrochemicals. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:8523-8537. [PMID: 28903556 DOI: 10.1021/acs.jafc.7b03851] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The development of new herbicides is receiving considerable attention to control weed biotypes resistant to current herbicides. Consequently, new enzymes are always desired as targets for herbicide discovery. 4-Hydroxyphenylpyruvate dioxygenase (HPPD, EC 1.13.11.27) is an enzyme engaged in photosynthetic activity and catalyzes the transformation of 4-hydroxyphenylpyruvic acid (HPPA) into homogentisic acid (HGA). HPPD inhibitors constitute a promising area of discovery and development of innovative herbicides with some advantages, including excellent crop selectivity, low application rates, and broad-spectrum weed control. HPPD inhibitors have been investigated for agrochemical interests, and some of them have already been commercialized as herbicides. In this review, we mainly focus on the chemical biology of HPPD, discovery of new potential inhibitors, and strategies for engineering transgenic crops resistant to current HPPD-inhibiting herbicides. The conclusion raises some relevant gaps for future research directions.
Collapse
Affiliation(s)
- Ferdinand Ndikuryayo
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University , Wuhan 430079, P. R. China
| | - Behrooz Moosavi
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University , Wuhan 430079, P. R. China
| | - Wen-Chao Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University , Wuhan 430079, P. R. China
| | - Guang-Fu Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University , Wuhan 430079, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering , Tianjin 30071, P. R. China
| |
Collapse
|
44
|
Shahsavari S, Gooding J, Wigstrom T, Fang S. Formation of Hindered Arylcarbamates using Alkyl Aryl Carbonates under Highly Reactive Conditions. ChemistrySelect 2017; 2:3959-3963. [PMID: 29098174 PMCID: PMC5662102 DOI: 10.1002/slct.201700364] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 05/03/2017] [Indexed: 12/30/2022]
Abstract
Hindered O-tert-alkyl N-arylcarbamates were conveniently prepared by treating arylamines with aryl tert-alkyl carbonates in the presence of a strong base. The new method avoids the use of sensitive and difficult-to-access dialkyl dicarbonates and isocyanates, which are most commonly used in known methods. Instead, the stable and readily accessible alkyl aryl carbonates are used. Therefore, the new method is particularly suitable for the synthesis of N-arylcarbamates that contain a complex O-alkyl moiety. Using the method, electron-rich and electron-poor, and primary and secondary arylamines can all be conveniently converted to their carbamates with acceptable yields. The method was also found equally effective for the synthesis of the less hindered O-secondary and O-primary alkyl N-arylcarbamates.
Collapse
Affiliation(s)
- Shahien Shahsavari
- Department of Chemistry Michigan Technological University 1400 Townsend Drive, Houghton, MI 49931
| | - James Gooding
- Department of Chemistry Michigan Technological University 1400 Townsend Drive, Houghton, MI 49931
| | - Travis Wigstrom
- Department of Chemistry Michigan Technological University 1400 Townsend Drive, Houghton, MI 49931
| | - Shiyue Fang
- Department of Chemistry Michigan Technological University 1400 Townsend Drive, Houghton, MI 49931
| |
Collapse
|
45
|
Gangemi S, Miozzi E, Teodoro M, Briguglio G, De Luca A, Alibrando C, Polito I, Libra M. Occupational exposure to pesticides as a possible risk factor for the development of chronic diseases in humans (Review). Mol Med Rep 2016; 14:4475-4488. [PMID: 27748877 PMCID: PMC5101964 DOI: 10.3892/mmr.2016.5817] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 09/30/2016] [Indexed: 12/13/2022] Open
Abstract
It is well known that pesticides are widely used compounds. In fact, their use in agriculture, forestry, fishery and the food industry has granted a huge improvement in terms of productive efficiency. However, a great number of epidemiological surveys have demonstrated that these toxic compounds can interact and exert negative effects not only with their targets (pests, herbs and fungi), but also with the rest of the environment, including humans. This is particularly relevant in the case of workers involved in the production, transportation, preparation and application of these toxicants. Accordingly, a growing body of evidence has demonstrated the correlation between occupational exposure to pesticides and the development of a wide spectrum of pathologies, ranging from eczema to neurological diseases and cancer. Pesticide exposure is often quite difficult to establish, as many currently used modules do not take into account all of the many variables that can occur in a diverse environment, such as the agricultural sector, and the assessment of the real risk for every single worker is problematic. Indeed, the use of personal protection equipment is necessary while handling these toxic compounds, but education of workers can be even more important: personal contamination with pesticides may occur even in apparently harmless situations. This review summarises the most recent findings describing the association between pesticide occupational exposure and the development of chronic diseases.
Collapse
Affiliation(s)
- Silvia Gangemi
- Department of Biomedical, Odontoiatric, Morphological and Functional Images, Occupational Medicine Section, 'Policlinico G. Martino' Hospital, University of Messina, I‑98125 Messina, Italy
| | - Edoardo Miozzi
- Department of Biomedical, Odontoiatric, Morphological and Functional Images, Occupational Medicine Section, 'Policlinico G. Martino' Hospital, University of Messina, I‑98125 Messina, Italy
| | - Michele Teodoro
- Department of Biomedical, Odontoiatric, Morphological and Functional Images, Occupational Medicine Section, 'Policlinico G. Martino' Hospital, University of Messina, I‑98125 Messina, Italy
| | - Giusi Briguglio
- Department of Biomedical, Odontoiatric, Morphological and Functional Images, Occupational Medicine Section, 'Policlinico G. Martino' Hospital, University of Messina, I‑98125 Messina, Italy
| | - Annamaria De Luca
- Department of Biomedical, Odontoiatric, Morphological and Functional Images, Occupational Medicine Section, 'Policlinico G. Martino' Hospital, University of Messina, I‑98125 Messina, Italy
| | - Carmela Alibrando
- Department of Biomedical, Odontoiatric, Morphological and Functional Images, Occupational Medicine Section, 'Policlinico G. Martino' Hospital, University of Messina, I‑98125 Messina, Italy
| | - Irene Polito
- Department of Biomedical, Odontoiatric, Morphological and Functional Images, Occupational Medicine Section, 'Policlinico G. Martino' Hospital, University of Messina, I‑98125 Messina, Italy
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, Laboratory of Translational Oncology and Functional Genomics, Section of General and Clinical Pathology and Oncology, University of Catania, I‑95124 Catania, Italy
| |
Collapse
|
46
|
Gangemi S, Gofita E, Costa C, Teodoro M, Briguglio G, Nikitovic D, Tzanakakis G, Tsatsakis AM, Wilks MF, Spandidos DA, Fenga C. Occupational and environmental exposure to pesticides and cytokine pathways in chronic diseases (Review). Int J Mol Med 2016; 38:1012-20. [PMID: 27600395 PMCID: PMC5029960 DOI: 10.3892/ijmm.2016.2728] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 08/23/2016] [Indexed: 01/04/2023] Open
Abstract
Pesticides can exert numerous effects on human health as a consequence of both environmental and occupational exposures. The available knowledge base suggests that exposure to pesticides may result in detrimental reproductive changes, neurological dysfunction and several chronic disorders, which are defined by slow evolution and long-term duration. Moreover, an ever increasing amount of data have identified an association between exposure to pesticides and the harmful effects on the immune system. The real impact of alterations in humoral cytokine levels on human health, in particular in the case of chronic diseases, is still unclear. To date, studies have suggested that although exposure to pesticides can affect the immune system functionally, the development of immune disorders depends on the dose and duration of exposure to pesticides. However, many of the respective studies exhibit limitations, such as a lack of information on exposure levels, differences in the pesticide administration procedures, difficulty in characterizing a prognostic significance to the weak modifications often observed and the interpretation of obtained results. The main challenge is not just to understand the role of individual pesticides and their combinations, but also to determine the manner and the duration of exposure, as the toxic effects on the immune system cannot be separated from these considerations. There is a clear need for more well-designed and standardized epidemiological and experimental studies to recognize the exact association between exposure levels and toxic effects and to identify useful biomarkers of exposure. This review focuses on and critically discusses the immunotoxicity of pesticides and the impact of cytokine levels on health, focusing on the development of several chronic diseases.
Collapse
Affiliation(s)
- Silvia Gangemi
- Department of Biomedical, Odontoiatric, Morphological and Functional Images, Occupational Medicine Section, 'Policlinico G. Martino' Hospital, University of Messina, I‑98125 Messina, Italy
| | - Eliza Gofita
- Department of Toxicology, Faculty of Pharmacy, University of Medicine and Pharmacy, 200349 Craiova, Romania
| | - Chiara Costa
- Department of Clinical and Experimental Medicine, University of Messina, I‑98125 Messina, Italy
| | - Michele Teodoro
- Department of Biomedical, Odontoiatric, Morphological and Functional Images, Occupational Medicine Section, 'Policlinico G. Martino' Hospital, University of Messina, I‑98125 Messina, Italy
| | - Giusi Briguglio
- Department of Biomedical, Odontoiatric, Morphological and Functional Images, Occupational Medicine Section, 'Policlinico G. Martino' Hospital, University of Messina, I‑98125 Messina, Italy
| | - Dragana Nikitovic
- Laboratory of Anatomy‑Histology‑Embryology, Medical School, University of Crete, Heraklion 71003, Greece
| | - George Tzanakakis
- Laboratory of Anatomy‑Histology‑Embryology, Medical School, University of Crete, Heraklion 71003, Greece
| | - Aristides M Tsatsakis
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, Heraklion 71003, Greece
| | - Martin F Wilks
- Swiss Centre for Applied Human Toxicology, University of Basel, CH‑4055 Basel, Switzerland
| | - Demetrios A Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, Heraklion 71003, Greece
| | - Concettina Fenga
- Department of Biomedical, Odontoiatric, Morphological and Functional Images, Occupational Medicine Section, 'Policlinico G. Martino' Hospital, University of Messina, I‑98125 Messina, Italy
| |
Collapse
|