1
|
Sanei-Dehkordi A, Tagizadeh AM, Bahadori MB, Nikkhah E, Pirmohammadi M, Rahimi S, Nazemiyeh H. Larvicidal potential of Trachyspermum ammi essential oil and Delphinium speciosum extract against malaria, dengue, and filariasis mosquito vectors. Sci Rep 2024; 14:20677. [PMID: 39237741 PMCID: PMC11377549 DOI: 10.1038/s41598-024-71829-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 08/30/2024] [Indexed: 09/07/2024] Open
Abstract
Mosquito-borne diseases, such as malaria, dengue, and Zika, pose major public health challenges globally, affecting millions of people. The growing resistance of mosquito populations to synthetic insecticides underscores the critical need for effective and environmentally friendly larvicides. Although chemical pesticides can initially be effective, they often lead to negative environmental consequences and health hazards for non-target species, including humans. This study aimed to evaluate the larvicidal effects of Trachyspermum ammi essential oil and Delphinium speciosum extract on the larvae of three major mosquito species: Aedes aegypti, Anopheles stephensi, and Culex quinquefasciatus. Mosquito larvae of Ae. aegypti, An. stephensi, and Cx. quinquefasciatus were reared under controlled laboratory conditions. The larvicidal activity of T. ammi essential oil and D. speciosum extract was evaluated through standard bioassays, using various concentrations of essential oils (10, 20, 40, 80, and 160 ppm) and extracts (160, 320, 640, 1280, and 2560 ppm) to determine the lethal concentration (LC50) values after 24 h of exposure. Fresh plant materials were collected, with the essential oil extracted via hydro-distillation, and the extract prepared using methanol solvent extraction. The chemical composition of T. ammi essential oil was examined using gas chromatography-mass spectrometry (GC-MS). Additionally, the preliminary analysis of the chemical compounds in D. speciosum extract was carried out using thin layer chromatography (TLC) and nuclear magnetic resonance spectroscopy (NMR) techniques. The results indicated that the essential oil of T. ammi exhibited more effective larvicidal activity compared to the D. speciosum extract. Specifically, the essential oil demonstrated LC50 values of 18 ppm for Cx. quinquefasciatus and 19 ppm for Ae. aegypti. In contrast, the D. speciosum extract showed the strongest larvicidal effect against An. stephensi, with an LC50 of 517 ppm. Concentrations of 40 ppm of the essential oil and 1280 ppm of the extract resulted in 100% mortality across all three species. Both the essential oil of T. ammi and the D. speciosum extract exhibited concentration-dependent larvicidal activity, and these results were statistically significant (p < 0.001) compared to the no-treatment group. GC-MS analysis revealed thymol (88.95%), o-cymen-5-ol (4.11%), and γ-terpinene (2.10%) as the major constituents of the T. ammi essential oil. Additionally, TLC verified the presence of alkaloids in both chloroform and methanolic extracts. Proton NMR identified a diterpene structure for these alkaloids. These findings suggest that T. ammi essential oil is a promising candidate for natural mosquito control strategies. Given its efficacy, further research is warranted to explore its potential in integrated vector management programs.
Collapse
Affiliation(s)
- Alireza Sanei-Dehkordi
- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Amir Masoud Tagizadeh
- Student Research Committee, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mir Babak Bahadori
- Medicinal Plants Research Center, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Elhameh Nikkhah
- Medicinal Plants Research Center, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Masoumeh Pirmohammadi
- Department of Vector Biology and Control of Diseases, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Sara Rahimi
- Medicinal Plants Research Center, Maragheh University of Medical Sciences, Maragheh, Iran.
| | - Hossein Nazemiyeh
- Department of Pharmacognosy, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
2
|
Kusuma HS, Christa Jaya DE, Illiyanasafa N, Ikawati KL, Kurniasari E, Darmokoesoemo H, Amenaghawon AN. A critical review and bibliometric analysis of methylene blue adsorption using leaves. CHEMOSPHERE 2024; 356:141867. [PMID: 38583535 DOI: 10.1016/j.chemosphere.2024.141867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 03/22/2024] [Accepted: 03/29/2024] [Indexed: 04/09/2024]
Abstract
The rapid development of the industrial world causes wastewater containing dyes to continue to increase. Even in recent years, the food, textile, cosmetic, plastic, and printing industries have developed the use of dyes. Methylene blue (MB) is one of the cationic dyes widely used in dyeing silk, wood, and cotton because of its absorbency and good fastness to materials. The adsorption process is the best technique and preferred in removing dyes from wastewater due to excellent selectivity, high efficiency from high-quality treated effluent, flexibility in design, and simplicity. Therefore, there is a growing interest to identify low-cost alternative adsorbents that have reasonable adsorption efficiency, especially natural materials such as leaves. In this study, research on MB adsorption using leaves was analyzed using bibliometric analysis. Information of bibliometric is extracted from the Scopus database with the keyword "Methylene Blue", "Adsorption or Desorption", and "Leaves or leaf". The results showed that India, Desalination and Water Treatment, and SASTRA Deemed University were the country, journal, and institution that contributed the most publications on this topic. Therefore, it is expected that with the use of bibliometrics, the use of leaf-based MB adsorption processes in their potential for MB dye removal can be investigated especially for large-scale development.
Collapse
Affiliation(s)
- Heri Septya Kusuma
- Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Pembangunan Nasional "Veteran" Yogyakarta, Indonesia.
| | - Debora Engelien Christa Jaya
- Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Pembangunan Nasional "Veteran" Yogyakarta, Indonesia
| | - Nafisa Illiyanasafa
- Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Pembangunan Nasional "Veteran" Yogyakarta, Indonesia
| | - Kania Ludia Ikawati
- Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Pembangunan Nasional "Veteran" Yogyakarta, Indonesia
| | - Endah Kurniasari
- Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Pembangunan Nasional "Veteran" Yogyakarta, Indonesia
| | - Handoko Darmokoesoemo
- Department of Chemistry, Faculty of Science and Technology, Airlangga University, Mulyorejo, Surabaya, 60115, Indonesia.
| | - Andrew Nosakhare Amenaghawon
- Bioresources Valorization Laboratory, Department of Chemical Engineering, Faculty of Engineering, University of Benin, Benin City, Edo State, Nigeria
| |
Collapse
|
3
|
Manimaran K, Yuli Yanto DH, Kamaraj C, Selvaraj K, Pandiaraj S, M Elgorban A, Vignesh S, Kim H. Eco-friendly approaches of mycosynthesized copper oxide nanoparticles (CuONPs) using Pleurotus citrinopileatus mushroom extracts and their biological applications. ENVIRONMENTAL RESEARCH 2023:116319. [PMID: 37271436 DOI: 10.1016/j.envres.2023.116319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/26/2023] [Accepted: 06/01/2023] [Indexed: 06/06/2023]
Abstract
This current study aims to develop a unique biomaterial that can fight against oxidative stress and microbial infections without causing any harm. As a result, an easy-to-make, environment-friendly, long-lasting, and non-toxic copper oxide nanoparticle (CuONP) was synthesized using an edible mushroom Pleurotus citrinopileatus extract. The UV-visa spectroscopy analyses reflected a sharp absorbance peak at 250 nm. The FTIR, XRD, SEM, HR-TEM, and EDX instrumental tools were used to characterize the myco-produced CuONPs. The face-centred cubic (FCC) CuONPs were found to have diffraction peaks at the planes of (110), (002), (111), (112), (020), (202), (113), (310), (220), and (004). The HR-TEM result showed the particles having a spherical structure and an average nanoparticles size of 20 nm. The antimicrobial activity results expressed the broad spectrum of antibacterial effect and the better growth inhibition zone was recorded in P. aeruginosa (8.3 ± 0.1), E. coli (7.4 ± 0.3), K. pneumoniae (7.2 ± 0.1), S. aureus (7.1 ± 0.3), S. pneumoniae (6.3 ± 0.2), and B. cereus (6.2 ± 0.3). The cytotoxicity efficacy of myco-synthesized CuONPs tested against a cancer cell line (HT-29) observed the best result in low doses of mushroom extract (45.62 μg/mL). Based on the outcome of the study suggests that the mycosynthesized CuONPs using Pleurotus mushroom extract might serve as an alternative agent for biomedical applications in the near future.
Collapse
Affiliation(s)
- Kumar Manimaran
- Research Center for Applied Microbiology, National Research and Innovation Agency (BRIN), JI. Raya Bogor KM. 46, Cibinong, 16911, Indonesia; Department of Product Development, Institute of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamil Nadu, 602105, India.
| | - Dede Heri Yuli Yanto
- Research Center for Applied Microbiology, National Research and Innovation Agency (BRIN), JI. Raya Bogor KM. 46, Cibinong, 16911, Indonesia.
| | - Chinnaperumal Kamaraj
- Interdisciplinary Institute of Indian System of Medicine (IIISM), Directorate of Research, SRM Institute of Science and Technology (SRM IST), Kattankulathur, 603203, Tamil Nadu, India
| | - Kumar Selvaraj
- Facultad de Ingeniería Química, Universidad Nacional del Litoral (UNL), Santiago del Estero 2829, Santa Fe, 3000, Argentina
| | - Saravanan Pandiaraj
- Department of Self-Development Skills, King Saud University, P.O. 2455, Riyadh, 11451, Saudi Arabia
| | - Abdallah M Elgorban
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh, 11451, Saudi Arabia
| | - Shanmugam Vignesh
- School of Materials Science and Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| | - Haekyoung Kim
- School of Materials Science and Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| |
Collapse
|
4
|
Shyam-Sundar N, Karthi S, Senthil-Nathan S, Narayanan KR, Santoshkumar B, Sivanesh H, Chanthini KMP, Stanley-Raja V, Ramasubramanian R, Abdel-Megeed A, Malafaia G. Eco-friendly biosynthesis of TiO 2 nanoparticles using Desmostachya bipinnata extract: Larvicidal and pupicidal potential against Aedes aegypti and Spodoptera litura and acute toxicity in non-target organisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159512. [PMID: 36265619 DOI: 10.1016/j.scitotenv.2022.159512] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/08/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
The resistance to insecticides among insects, including mosquitoes and agricultural pests, and the impact of these compounds' environmental risks and health issues have motivated the proposition of eco-friendly alternatives. Thus, we aimed to explore the potential use of Desmostachya bipinnata for the biosynthesis of TiO2NPs and evaluate their larvicidal and pupicidal activity of target (Aedes aegypti and Spodoptera litura) and acute toxicity in non-target organisms (Toxorhynchites splendens and Eisenia fetida), at distinct concentrations, after 24 h of exposure. The characterization of the biosynthesized TiO2NPs was carried out by FT-IR, XRD, SEM, and EDX analysis. Under the UV-vis spectrum analysis, a sharp peak was recorded at 200 to 800 nm, which indicated the production of TiO2NPs by the plant extract. The SEM analysis revealed that the synthesized TiO2NPs were spherical with a diameter of 36.4 nm and were detected in the XRD spectrum analysis related to the TiO2NPs. The highest percentage of mortality recorded at 900 μg/mL was 96 % and 94 % in the 2nd instar of A. aegypti and S. litura larvae, respectively, and exhibited the LC50 and LC90 values 5 of 458.79 and 531.01 μg/mL, respectively. The biosynthesized TiO2NPs showed concentration-dependent increased pupal lethality for both A. aegypti and S. litura. We also observed increased detoxification enzyme activity (α esterase, β esterase, and glutathione-S-transferase) of A. aegypti and S. litura exposed to different concentrations of biosynthesized TiO2NPs as histopathological changes in the midgut region of these animals. On the other hand, the mortality rate of non-target organisms (T. splendens and E. fetida) was lower when exposed to TiO2NPs, compared to the high lethality induced by synthetic pesticides (cypermethrin and monocrotophos for E. fetida; and cypermethrin and temphos for T. splendens). Thus, our study provides pioneering evidence on the potential use of D. bipinnata-mediated TiO2NPs for controlling mosquito vectors and agricultural pest management.
Collapse
Affiliation(s)
- Narayanan Shyam-Sundar
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tirunelveli, Tamil Nadu 627 412, India; Department of Zoology, Sri Paramakalyani College, Alwarkurichi, Tirunelveli, Tamil Nadu 627 412, India
| | - Sengodan Karthi
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tirunelveli, Tamil Nadu 627 412, India; Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA
| | - Sengottayan Senthil-Nathan
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tirunelveli, Tamil Nadu 627 412, India.
| | | | | | - Haridoss Sivanesh
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tirunelveli, Tamil Nadu 627 412, India
| | - Kanagaraj Muthu-Pandian Chanthini
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tirunelveli, Tamil Nadu 627 412, India
| | - Vethamonickam Stanley-Raja
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tirunelveli, Tamil Nadu 627 412, India
| | - Ramakrishnan Ramasubramanian
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tirunelveli, Tamil Nadu 627 412, India
| | - Ahmed Abdel-Megeed
- Department of Plant Protection, Faculty of Agriculture Saba Basha, Alexandria University, Egypt
| | - Guilherme Malafaia
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil; Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil.
| |
Collapse
|
5
|
Nguyen DTC, Tran TV, Nguyen TTT, Nguyen DH, Alhassan M, Lee T. New frontiers of invasive plants for biosynthesis of nanoparticles towards biomedical applications: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159278. [PMID: 36216068 DOI: 10.1016/j.scitotenv.2022.159278] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/17/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
Above 1000 invasive species have been growing and developing ubiquitously on Earth. With extremely vigorous adaptability, strong reproduction, and spreading powers, invasive species have posed an alarming threat to indigenous plants, water quality, soil, as well as biodiversity. It was estimated that an economic loss of billions of dollars or equivalent to 1 % of gross domestic product as a consequence of lost crops, control efforts, and damage costs caused by invasive plants in the United States. While eradicating invasive plants from the ecosystems is practically infeasible, taking advantage of invasive plants as a sustainable, locally available, and zero-cost source to provide valuable phytochemicals for bionanoparticles fabrication is worth considering. Here, we review the harms, benefits, and role of invasive species as important botanical sources to extract natural compounds such as piceatannol, resveratrol, and quadrangularin-A, flavonoids, and triterpenoids, which are linked tightly to the formation and application of bionanoparticles. As expected, the invasive plant-mediated bionanoparticles have exhibited outstanding antibacterial, antifungal, anticancer, and antioxidant activities. The mechanism of biomedical activities of the invasive plant-mediated bionanoparticles was insightfully addressed and discussed. We also expect that this review not only contributes to efforts to combat invasive plant species but also opens new frontiers of bionanoparticles in the biomedical applications, therapeutic treatment, and smart agriculture.
Collapse
Affiliation(s)
- Duyen Thi Cam Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Viet Nam; NTT Hi-Tech Institute, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Viet Nam.
| | - Thuan Van Tran
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Viet Nam.
| | - Thuy Thi Thanh Nguyen
- Faculty of Science, Nong Lam University, Thu Duc District, Ho Chi Minh City 700000, Viet Nam
| | - Dai Hai Nguyen
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, Ho Chi Minh City 70000, Viet Nam
| | - Mansur Alhassan
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia; Department of Chemistry, Sokoto State University, PMB 2134, Airport Road, Sokoto, Nigeria
| | - Taeyoon Lee
- Department of Environmental Engineering, College of Environmental and Marine, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan 48513, Republic of Korea.
| |
Collapse
|
6
|
Srisawat R, Sriwichai P, Ruangsittichai J, Rotejanaprasert C, Imaizumi N, Yamaki D, Maekawa M, Eshita Y, Okazaki N. Hydroxyapatite-binding Silver/Titanium Dioxide as a Potential Control Compound Against Mosquito Vectors, Aedes aegypti (Diptera: Culicidae) and Anopheles dirus (Diptera: Culicidae). JOURNAL OF MEDICAL ENTOMOLOGY 2023; 60:122-130. [PMID: 36373613 PMCID: PMC9835759 DOI: 10.1093/jme/tjac175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Indexed: 06/16/2023]
Abstract
Controlling mosquitoes is vital for counteracting the rising number of mosquito-borne illnesses. Vector control requires the implementation of various measures; however, current methods lack complete effectiveness, and new control agents or substances are urgently needed. Therefore, this study developed a nonwoven fabric sheet coated with hydroxyapatite-binding silver/titanium dioxide compound (hydroxyapatite-binding silver/titanium dioxide sheet [HATS])and evaluated its effectiveness on all stages of laboratory Aedes aegypti (Linnaeus); Diptera: Culicidae and Anopheles dirus (Peyton & Harrison); Diptera: Culicidae. We reared larvae with HATS and control sheets and assessed their mortality, emergence, and hatching rates. The submersion rates of engorged female mosquitoes in submerged HATS and control sheets were also compared. The HATS strongly affected mosquito development, resulting in high mortality rates (mean ± SE) of 99.66 ± 0.58% (L1-L2) and 91.11 ± 9.20% (L3-L4) for Ae. aegypti and 100% of both stages for An. dirus. In contrast, mosquitoes raised in the control sheet showed relatively high survival rates of 92.33 ± 3.21% (L1-L2) and 95.67 ± 0.58% (L3-L4) for Ae. aegypti and 86.07 ± 3.53% (L1-L2) and 92.01 ± 8.67% (L3-L4) for An. dirus. Submersion of engorged females was found in the HATS oviposition cup, leading to a decreased number of eggs and a low hatching rate compared to that of the control. Overall, HATS may be a useful new control method for Ae. aegypti and An. dirus.
Collapse
Affiliation(s)
| | - Patchara Sriwichai
- Department of Medical Entomology, Faculty of Tropical Medicine, Mahidol University, Ratchathewi, Bangkok 10400, Thailand
| | - Jiraporn Ruangsittichai
- Department of Medical Entomology, Faculty of Tropical Medicine, Mahidol University, Ratchathewi, Bangkok 10400, Thailand
| | - Chawarat Rotejanaprasert
- Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Ratchathewi, Bangkok 10400, Thailand
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Ratchathewi, Bangkok 10400, Thailand
| | - Naoko Imaizumi
- DR.C Medical Medicine Co., Ltd., Shinjuku, Tokyo 160-0023, Japan
| | - Dai Yamaki
- DR.C Medical Medicine Co., Ltd., Shinjuku, Tokyo 160-0023, Japan
| | - Maki Maekawa
- Seltec Co., Ltd., Hachioji, Tokyo 192-0062, Japan
| | | | - Narumi Okazaki
- DR.C Medical Medicine Co., Ltd., Shinjuku, Tokyo 160-0023, Japan
| |
Collapse
|
7
|
Ahmad MZ, Alasiri AS, Ahmad J, Alqahtani AA, Abdullah MM, Abdel-Wahab BA, Pathak K, Saikia R, Das A, Sarma H, Alzahrani SA. Green Synthesis of Titanium Dioxide Nanoparticles Using Ocimum sanctum Leaf Extract: In Vitro Characterization and Its Healing Efficacy in Diabetic Wounds. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227712. [PMID: 36431808 PMCID: PMC9699599 DOI: 10.3390/molecules27227712] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/05/2022] [Accepted: 11/06/2022] [Indexed: 11/11/2022]
Abstract
Diabetes mellitus is one of the most prevalent metabolic disorders characterized by hyperglycemia due to impaired glucose metabolism. Overproduction of free radicals due to chronic hyperglycemia may cause oxidative stress, which delays wound healing in diabetic conditions. For people with diabetes, this impeded wound healing is one of the predominant reasons for mortality and morbidity. The study aimed to develop an Ocimum sanctum leaf extract-mediated green synthesis of titanium dioxide (TiO2) nanoparticles (NPs) and further incorporate them into 2% chitosan (CS) gel for diabetic wound healing. UV-visible spectrum analysis recorded the sharp peak at 235 and 320 nm, and this was the preliminary sign for the biosynthesis of TiO2 NPs. The FTIR analysis was used to perform a qualitative validation of the biosynthesized TiO2 nanoparticles. XRD analysis indicated the crystallinity of TiO2 NPs in anatase form. Microscopic investigation revealed that TiO2 NPs were spherical and polygonal in shape, with sizes ranging from 75 to 123 nm. The EDX analysis of green synthesized NPs showed the presence of TiO2 NPs, demonstrating the peak of titanium ion and oxygen. The hydrodynamic diameter and polydispersity index (PDI) of the TiO2 NPs were found to be 130.3 nm and 0.237, respectively. The developed TiO2 NPs containing CS gel exhibited the desired thixotropic properties with pseudoplastic behavior. In vivo wound healing studies and histopathological investigations of healed wounds demonstrated the excellent wound-healing efficacy of TiO2 NPs containing CS gel in diabetic rats.
Collapse
Affiliation(s)
- Mohammad Zaki Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 11001, Kingdom of Saudi Arabia
| | - Ali S. Alasiri
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 11001, Kingdom of Saudi Arabia
- Correspondence:
| | - Javed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 11001, Kingdom of Saudi Arabia
| | - Abdulsalam A. Alqahtani
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 11001, Kingdom of Saudi Arabia
| | - Md Margub Abdullah
- Advanced Materials and Nano-Research Centre, Department of Physics, Faculty of Science and Arts, Najran University, Najran 11001, Kingdom of Saudi Arabia
| | - Basel A. Abdel-Wahab
- Department of Pharmacology, College of Pharmacy, Najran University, Najran 11001, Kingdom of Saudi Arabia
- Department of Pharmacology, College of Medicine, Assiut University, Assiut 7111, Egypt
| | - Kalyani Pathak
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh 786004, Assam, India
| | - Riya Saikia
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh 786004, Assam, India
| | - Aparoop Das
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh 786004, Assam, India
| | - Himangshu Sarma
- Sophisticated Analytical Instrument Facility (SAIF), Girijananda Chowdhury Institute of Pharmaceutical Science (GIPS), Guwahati 781017, Assam, India
| | - Seham Abdullah Alzahrani
- Pharmacy Department, Khamis Mushait General Hosptial, King Khalid Rd, Al Shifa, Khamis Mushait 62433, Kingdom of Saudi Arabia
| |
Collapse
|
8
|
Madima N, Kefeni KK, Mishra SB, Mishra AK. TiO 2-modified g-C 3N 4 nanocomposite for photocatalytic degradation of organic dyes in aqueous solution. Heliyon 2022; 8:e10683. [PMID: 36177243 PMCID: PMC9513772 DOI: 10.1016/j.heliyon.2022.e10683] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/14/2022] [Accepted: 09/13/2022] [Indexed: 11/20/2022] Open
Abstract
In the current study, a direct S-scheme titanium dioxide/graphitic carbon nitride (TiO2/g-C3N4) heterojunction structure was fabricated via simultaneous calcination of TiO2 precursors and g-C3N4. Guava leaf extract was utilized as a reductant for TiO2 production through a green synthetic method, and g-C3N4 was prepared by thermal decomposition of melamine. The pristine and nanocomposite photocatalysts were characterized by XRD, FTIR, BET, TGA, HRTEM, UV-vis DRS, and PL to elucidate their physicochemical properties. The photocatalytic activity of synthesized photocatalysts was examined through the degradation of rhodamine B (RhB) and methylene blue (MB) dyes under simulated solar light irradiation. The nanocomposite exhibited commendable photocatalytic performances with 96% degradation efficiency of RhB attained in 120 min and 95% degradation efficiency of MB achieved in 150 min. The enhanced photocatalytic activities were attributable to visible light-harvesting characteristics and the formation of an S-scheme heterojunction system between two catalysts which promotes interfacial charge separation efficiency and longer charge carrier lifespan. After 4 consecutive cycles, the degradation efficiencies of both RhB and MB remained above 85%. According to the trapping experiments, OH• and O2 •- radicals were critical in the degradation of RhB, while h+ and O2 •- radicals were dominant in the degradation of MB. The nanocomposite was also tested for elution of actual water pollutants by combining two dyes, and above 90% degradation efficiencies were achieved for both dyes after 240 min.
Collapse
Affiliation(s)
- Ntakadzeni Madima
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Florida Science Campus, Florida, Roodepoort, Johannesburg, 1709, South Africa
| | - Kebede K. Kefeni
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Florida Science Campus, Florida, Roodepoort, Johannesburg, 1709, South Africa
| | - Shivani B. Mishra
- College of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, China
- Academy of Nanotechnology and Wastewater Innovations, Johannesburg, South Africa
| | - Ajay K. Mishra
- College of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, China
- Academy of Nanotechnology and Wastewater Innovations, Johannesburg, South Africa
- Department of Chemistry, Durban University of Technology, Steve Biko Road, 4001, Durban, South Africa
- Corresponding author.
| |
Collapse
|
9
|
Green Nano-Biotechnology: A New Sustainable Paradigm to Control Dengue Infection. Bioinorg Chem Appl 2022; 2022:3994340. [PMID: 35979184 PMCID: PMC9377959 DOI: 10.1155/2022/3994340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/09/2022] [Indexed: 12/17/2022] Open
Abstract
Dengue is a growing mosquito-borne viral disease prevalent in 128 countries, while 3.9 billion people are at high risk of acquiring the infection. With no specific treatment available, the only way to mitigate the risk of dengue infection is through controlling of vector, i.e., Aedes aegypti. Nanotechnology-based prevention strategies like biopesticides with nanoformulation are now getting popular for preventing dengue fever. Metal nanoparticles (NPs) synthesized by an eco-friendly process, through extracts of medicinal plants have indicated potential anti-dengue applications. Green synthesis of metal NPs is simple, cost-effective, and devoid of hazardous wastes. The recent progress in the phyto-synthesized multifunctional metal NPs for anti-dengue applications has encouraged us to review the available literature and mechanistic aspects of the dengue control using green-synthesized NPs. Furthermore, the molecular bases of the viral inhibition through NPs and the nontarget impacts or hazards with reference to the environmental integrity are discussed in depth. Till date, major focus has been on green synthesis of silver and gold NPs, which need further extension to other innovative composite nanomaterials. Further detailed mechanistic studies are required to critically evaluate the mechanistic insights during the synthesis of the biogenic NPs. Likewise, detailed analysis of the toxicological aspects of NPs and their long-term impact in the environment should be critically assessed.
Collapse
|
10
|
Thakare Y, Kore S, Sharma I, Shah M. A comprehensive review on sustainable greener nanoparticles for efficient dye degradation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:55415-55436. [PMID: 35672632 DOI: 10.1007/s11356-022-20127-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 04/03/2022] [Indexed: 06/15/2023]
Abstract
The effluents released from textile industries mainly consist of dyes, metals and other pollutants. Dyes often are discharged in wastewater streams causing adverse effect on the environment. To eliminate these harmful dyes, various techniques are emerging out of which nanotechnology is the most reliable and safer. Nanotechnology offers convincing applications in case of environmental and economic concerns. The bio-synthesis of nanoparticles has several advantages over conventional methods and approach towards environment concern as well. Biological method of nanoparticles synthesis is concluded to be the most promising and efficient in action. Bio-synthesised nanoparticles could be used for treatment and decolourisation of dyes in an efficient manner. This review comprises the study of number of bio-synthesised nanoparticles utilised for degradation of various dyes present as pollutants in wastewater. Bio-synthesised nanoparticles such as gold, silver, iron, cobalt, zinc, titanium and molybdenum used for degradation of various dyes have been discussed in this review.
Collapse
Affiliation(s)
- Yash Thakare
- Department of Chemical Engineering, School of Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat, India
| | - Sujay Kore
- Department of Chemical Engineering, School of Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat, India
| | - Ishanee Sharma
- Department of Chemical Engineering, School of Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat, India
| | - Manan Shah
- Department of Chemical Engineering, School of Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat, India.
| |
Collapse
|
11
|
Pleurotus sajor caju Mediated TiO2 Nanoparticles: A Novel Source for Control of Mosquito Larvae, Human Pathogenic Bacteria and Bone Cancer Cells. J CLUST SCI 2022. [DOI: 10.1007/s10876-021-02073-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
12
|
Rodríguez-Barajas N, Becerra-Solano L, Gutiérrez-Mercado YK, Macías-Carballo M, M. Gómez C, Pérez-Larios A. Study of the Interaction of Ti-Zn as a Mixed Oxide at Different pH Values Synthesized by the Sol-Gel Method and Its Antibacterial Properties. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1948. [PMID: 35745287 PMCID: PMC9229482 DOI: 10.3390/nano12121948] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 12/15/2022]
Abstract
TiO2, ZnO, and their combination (TiO2−ZnO) at different molar ratios and pH values (Ti−Zn A and B 3:1, 1:1, and 1:3) via the sol−gel method were characterized by SEM, XRD, UV-Vis, and FT-IR. Moreover, antibacterial tests of the nanoparticles were conducted against Escherichia coli (E. coli), Salmonella paratyphi (S. paratyphi), Staphylococcus aureus (S. aureus), and Listeria monocytogenes (L. monocytogenes). The indirect bandgap of the Ti−Zn binary oxide synthesized in the basic process at molar ratios of 3:1, 1:1, and 1:3 exhibited a higher eV (3.31, 3.30, and 3.19 eV, respectively) compared to pure TiO2 (3.2 eV) and synthesized in the acid process (3.22, 3.29, and 3.19 eV at same molar ratio, respectively); in addition, the results of the indirect bandgap were interesting due to a difference found by other authors. Moreover, the sol−gel method promoted the formation of a spherical, semi-sphere, and semi-hexagonal shape (TiO2, Ti−Zn 1:1, and Ti−Zn 1:3) with a size ≤ 150 nm synthesized during the acid process, with a crystallite size of ~71, ~12, ~34, and ~21 nm, respectively, while ZnO NPs developed a hexagonal and large size (200−800 nm) under the same synthesis process (acid). Samples were classified as TiO2 anatase phase (basic synthesis); however, the presented changes developed in the rutile phase (24% rutile phase) at an acid pH during the synthesis process. Moreover, Ti−Zn maintained the anatase phase even with a molar ratio of 1:3. The most interesting assessment was the antibacterial test; the Ti−Zn A (1:3) demonstrated a bacteriostatic effect compared with all treatments except ZnO, which showed a similar effect in dark conditions, and only Gram-positive bacteria were susceptible (Listeria monocytogenes > Staphylococcus aureus). Therefore, the Ti−Zn characteristic suggests that the results have potential in treating wastewater as well as in pharmaceutical (as drug carriers) and medical applications.
Collapse
Affiliation(s)
- Noé Rodríguez-Barajas
- Centro Universitario de los Altos, Laboratorio de Investigación en Nanomateriales, Agua y Energía, Departamento de Ingeniería, Universidad de Guadalajara, Av. Rafael Casillas Aceves 1200, Tepatitlán de Morelos 47600, Mexico;
| | - Luis Becerra-Solano
- Centro Universitario de los Altos, Laboratorio de Biotecnológico de Investigación y Diagnóstico, Departamento de Clínicas, División de Ciencias Biomédicas, Universidad de Guadalajara, Av. Rafael Casillas Aceves 1200, Tepatitlán de Morelos 47600, Mexico; (L.B.-S.); (Y.K.G.-M.); (M.M.-C.)
| | - Yanet Karina Gutiérrez-Mercado
- Centro Universitario de los Altos, Laboratorio de Biotecnológico de Investigación y Diagnóstico, Departamento de Clínicas, División de Ciencias Biomédicas, Universidad de Guadalajara, Av. Rafael Casillas Aceves 1200, Tepatitlán de Morelos 47600, Mexico; (L.B.-S.); (Y.K.G.-M.); (M.M.-C.)
| | - Monserrat Macías-Carballo
- Centro Universitario de los Altos, Laboratorio de Biotecnológico de Investigación y Diagnóstico, Departamento de Clínicas, División de Ciencias Biomédicas, Universidad de Guadalajara, Av. Rafael Casillas Aceves 1200, Tepatitlán de Morelos 47600, Mexico; (L.B.-S.); (Y.K.G.-M.); (M.M.-C.)
| | - Claudia M. Gómez
- Departamento de Química, División de Ciencias Naturales y Exactas, Campus Guanajuato de la Universidad de Guanajuato, Noria Alta S/N, Col. Noria Alta, Guanajuato 36050, Mexico
| | - Alejandro Pérez-Larios
- Centro Universitario de los Altos, Laboratorio de Investigación en Nanomateriales, Agua y Energía, Departamento de Ingeniería, Universidad de Guadalajara, Av. Rafael Casillas Aceves 1200, Tepatitlán de Morelos 47600, Mexico;
| |
Collapse
|
13
|
Balaraman P, Balasubramanian B, Liu WC, Kaliannan D, Durai M, Kamyab H, Alwetaishi M, Maluventhen V, Ashokkumar V, Chelliapan S, Maruthupandian A. Sargassum myriocystum-mediated TiO 2-nanoparticles and their antimicrobial, larvicidal activities and enhanced photocatalytic degradation of various dyes. ENVIRONMENTAL RESEARCH 2022; 204:112278. [PMID: 34757031 DOI: 10.1016/j.envres.2021.112278] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 09/06/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
Recently, the phyco-synthesis of nanoparticles has been applied as a reliable approach to modern research field, and it has yielded a wide spectrum of diverse uses in fields such as biological science and environmental science. This study used marine natural resource seaweed Sargassum myriocystum due to their unique phytochemicals and their significant attributes in giving effective response on various biomedical applications. The response is created by their stress-tolerant environmental adaptations. This inspired us to make an attempt using the above-mentioned charactersitics. Therfore, the current study performed phycosynthesis of titanium dioxide nanoparticles (TiO2-NPs) utilising aqueous extracts of S. myriocystum. The TiO2-NPs formation was confirmed in earlier UV-visible spectroscopy analysis. The crystalline structure, functional groups (phycomolecules), particle morphology (cubic, square, and spherical), size (∼50-90 nm), and surface charge (negative) of the TiO2-NPs were analysed and confirmed by various characterisation analyses. In addition, the seaweed-mediated TiO2-NPs was investigated, which showed potential impacts on antibacterial activity and anti-biofilm actions against pathogens (Staphylococcus aureus, S. epidermidis, Escherichia coli, Proteus vulgaris, Pseudomonas aeruginosa, and Klebsiella pneumoniae). Additionally, some evaluations were performed on larvicidal activities of TiO2-NPs in oppose to Aedes aegypti and Culex quinquefasciatus mosquitos and the environmental effects of photocatalytic activities against methylene blue and crystal violet under sunlight irradiation. The highest percent of methylene blue degradation was observed at 92.92% within 45 min. Overall, our findings suggested that S. myriocystum mediates TiO2-NPs to be a potent disruptive material for bacterial pathogens and mosquito larvae and also to enhance the photocatalytic dye degradation.
Collapse
Affiliation(s)
- Perumal Balaraman
- Ethnopharmacology and Algal Biotechnology Division, Department of Botany, School of Life Sciences, Periyar University, Salem, 636011, Tamil Nadu, India
| | | | - Wen-Chao Liu
- Department of Animal Science, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, PR China
| | - Durairaj Kaliannan
- Department of Environmental Science, School of Life Sciences, Periyar University, Salem, 636 011, India
| | - Mahendran Durai
- Department of Biotechnology, School of Life Sciences, Periyar University, Salem, 636011, Tamil Nadu, India
| | - Hesam Kamyab
- Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia; Department of Electric Power Stations, Network and Supply Systems, South Ural State University (National Research University), 76 Prospekt Lenina, 454080, Chelyabinsk, Russian Federation.
| | - Mamdooh Alwetaishi
- Department of Civil Engineering, College of Engineering, Taif University, P.O. BOX 11099, Taif, 21944, Saudi Arabia
| | - Viji Maluventhen
- Department of Botany, Thiagarajar College, Madurai, 625009, Tamil Nadu, India
| | - Veeramuthu Ashokkumar
- Department of Energy and Environmental Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, India
| | - Shreeshivadasan Chelliapan
- Engineering Department, Razak Faculty of Technology & Informatics, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia
| | - Arumugam Maruthupandian
- Ethnopharmacology and Algal Biotechnology Division, Department of Botany, School of Life Sciences, Periyar University, Salem, 636011, Tamil Nadu, India.
| |
Collapse
|
14
|
Ilyas M, Waris A, Khan AU, Zamel D, Yar L, Baset A, Muhaymin A, Khan S, Ali A, Ahmad A. Biological synthesis of titanium dioxide nanoparticles from plants and microorganisms and their potential biomedical applications. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108968] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
15
|
Abomuti MA, Danish EY, Firoz A, Hasan N, Malik MA. Green Synthesis of Zinc Oxide Nanoparticles Using Salvia officinalis Leaf Extract and Their Photocatalytic and Antifungal Activities. BIOLOGY 2021; 10:1075. [PMID: 34827068 PMCID: PMC8614830 DOI: 10.3390/biology10111075] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/10/2021] [Accepted: 10/13/2021] [Indexed: 11/25/2022]
Abstract
The facile bio-fabrication of zinc oxide (ZnO) nanoparticles (NPs) is described in this study using an aqueous leaf extract of Salvia officinalis L. as an efficient stabilizing/capping agent. Biosynthesis of nanomaterials using phytochemicals present in the plants has received great attention and is gaining significant importance as a possible alternative to the conventional chemical methods. The properties of the bio-fabricated ZnONPs were examined by different techniques, such as UV-visible spectroscopy, X-ray diffraction spectroscopy (XRD), energy-dispersive X-ray spectroscopy (EDX), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and thermogravimetric/differential scanning calorimetry analysis (TGA/DTG). The photocatalytic activity of ZnONPs was investigated against methyl orange (MO) under UV light irradiation. Under optimum experimental conditions, ZnONPs exhibited 92.47% degradation of MO. Furthermore, the antifungal activity of bio-fabricated ZnONPs was determined against different clinical Candida albicans isolates following standard protocols of broth microdilution and disc diffusion assay. The susceptibility assay revealed that ZnONPs inhibit the growth of all the tested fungal isolates at varying levels with MIC values ranging from 7.81 to 1.95 µg/mL. Insight mechanisms of antifungal action appeared to be originated via inhibition of ergosterol biosynthesis and the disruption of membrane integrity. Thus, it was postulated that bio-fabricated ZnONPs have sustainable applications in developing novel antifungal agents with multiple drug targets. In addition, ZnONPs show efficient photocatalytic efficiency without any significant catalytic loss after the catalyst was recycled and reused multiple times.
Collapse
Affiliation(s)
- May Abdullah Abomuti
- Department of Chemistry, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (M.A.A.); (E.Y.D.)
| | - Ekram Y. Danish
- Department of Chemistry, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (M.A.A.); (E.Y.D.)
| | - Ahmad Firoz
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia;
| | - Nazim Hasan
- Department of Chemistry, Faculty of Science, Jazan University, P.O. Box. 2097, Jazan, Saudi Arabia;
| | - Maqsood Ahmad Malik
- Department of Chemistry, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (M.A.A.); (E.Y.D.)
| |
Collapse
|
16
|
Narayanan M, Devi PG, Natarajan D, Kandasamy S, Devarayan K, Alsehli M, Elfasakhany A, Pugazhendhi A. Green synthesis and characterization of titanium dioxide nanoparticles using leaf extract of Pouteria campechiana and larvicidal and pupicidal activity on Aedes aegypti. ENVIRONMENTAL RESEARCH 2021; 200:111333. [PMID: 34051198 DOI: 10.1016/j.envres.2021.111333] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/10/2021] [Accepted: 05/12/2021] [Indexed: 06/12/2023]
Abstract
The frequent application of synthetic insecticides creates resistance among insects, including mosquitoes, and causes environmental pollution and health issues. The current work aim at assessing the possibilities to produce and characterize the titanium dioxide (TiO2) nanoparticles (TiO2 NPs) mediated through the aqueous leaf extract of Pouteria campechiana, and their larvicidal and pupicidal activities against Aedes aegypti. The attained results showed that the aqueous leaf extract of P. campechiana had the efficiency to fabricate TiO2 NPs from TiO2. Under the UV-vis spectrum analysis, a sharp peak was recorded at 320 nm, which indicated the production of TiO2 NPs by the plant extract. The SEM analysis revealed that the synthesized TiO2 NPs were spherical, and 5 dissimilar diffractions were detected in the XRD spectrum analysis related to the TiO2 NPs. In FTIR analysis, a prominent peak was found at 1052.41 cm-1, corresponding to alcohol, and confirmed metal reduction. In the EDX analysis, there was a signal of around 58.44%, confirming the decrease in Ti from TiO2 NPs, and the remaining percentages were Ca, Al, and Mg. About 900 μg mL-1 of TiO2 NPs had excellent lethal activity against various larvae and pupa stages of Ae. aegypti. The attained results showed that the P. campechiana aqueous leaf extract could reduce TiO2 into TiO2 NPs and could be considered a mosquito control agent. Furthermore, this is the initial report about the aqueous leaf extract of P. campechiana effectively synthesizing the TiO2 NPs with anti-mosquito activity.
Collapse
Affiliation(s)
- Mathiyazhagan Narayanan
- PG and Research Centre in Biotechnology, MGR College, Adhiyamaan Educational Research Institute, Hosur, Krishnagiri, Tamil Nadu, India
| | - P Gokila Devi
- Natural Drug Research Laboratory, Department of Biotechnology, School of Biosciences, Periyar University, Periyar Palkalai Nagar, Salem, 636 011, Tamil Nadu, India
| | - Devarajan Natarajan
- Natural Drug Research Laboratory, Department of Biotechnology, School of Biosciences, Periyar University, Periyar Palkalai Nagar, Salem, 636 011, Tamil Nadu, India
| | | | - Kesavan Devarayan
- College of Fisheries Engineering, Tamil Nadu Dr.J.Jayalalithaa Fisheries University, Nagapattinam, Tamil Nadu, 611 002, India
| | - Mishal Alsehli
- Mechanical Engineering Department, College of Engineering, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Ashraf Elfasakhany
- Mechanical Engineering Department, College of Engineering, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Arivalagan Pugazhendhi
- School of Renewable Energy, Maejo University, Chiang Mai 50290, Thailand; College of Medical and Health Science, Asia University, Taichung, Taiwan.
| |
Collapse
|
17
|
Ramasamy K, Dhavamani S, Natesan G, Sengodan K, Sengottayan SN, Tiwari M, Shivendra Vikram S, Perumal V. A potential role of green engineered TiO 2 nanocatalyst towards enhanced photocatalytic and biomedical applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:41207-41223. [PMID: 33782825 DOI: 10.1007/s11356-021-13530-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 03/15/2021] [Indexed: 06/12/2023]
Abstract
This study demonstrates a simple protocol for phytofabrication of titanium dioxide nanoparticles (TiO2NPs) wrapped with bioactive molecules from Ludwigia octovalvis leaf extract and their characterization by UV-visible absorption spectroscopy, Fourier transform spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), X-ray photoelectron spectrum (XPS), and diffuse reflectance spectrum (DRS). The bandgap energy of pure green engineered TiO2 nanoparticles was determined by DRS analysis. The XPS analysis confirmed the purity of the TiO2 nanoparticles. Results show that the synthesized TiO2NPs were spherical in shape with the size ranged from 36 to 81 nm. The green engineered titanium oxide nanocatalyst exhibited enhanced rate of photocatalytic degradation of important textile toxic dyes namely crystal violet (93.1%), followed by methylene blue (90.6%), methyl orange (76.7%), and alizarin red (72.4%) after 6-h exposure under sunlight irradiation. Besides, this study determines the antimicrobial efficiency of TiO2NPs (25 μl and 50 μl), leaf extract (25 μl), and antibiotic (25 μl) against clinically isolated human pathogenic bacterial strains namely Staphylococcus aureus, Klebsiella pneumoniae, Pseudomonas aeruginosa, Proteus vulgaris, Staphylococcus epidermidis, and Escherichia coli. Results show that maximum antibacterial activity with nanotitania treatment noticed was 21.6 and 18.3-mm inhibition in case of S. epidermis and P. aeruginosa, respectively. Enhanced rate of antibiofilm activity towards S. aureus and K. pneumoniae was also observed with TiO2NPs exposure. The biomolecule loaded TiO2NPs exhibited the fastest bacterial deactivation dynamics towards gram-negative bacteria (E. coli), with a complete bacterial inactivation within 105-min exposure. Interestingly, anticancer activity result indicates that percentage of human cervical carcinoma cell (HeLa) viability was negatively correlated with TiO2NPs doses used. The AO/EtBr fluorescent staining result exhibited the occurrence of more apoptosis (dead cells) of HeLa cells due to the exposure of TiO2NPs. Altogether, the present study clearly showed that biomolecules wrapped nanotitania could be used as effective and promising compound for enhanced photocatalytic and biomedical applications in the future.
Collapse
Affiliation(s)
- Kawsalya Ramasamy
- Department of Biotechnology, Periyar University, Salem, TN, 636011, India
| | | | - Geetha Natesan
- Department of Botany, Bharathiar University, Coimbatore, TN, 624 046, India
| | - Karthik Sengodan
- Division of Biopesticide and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, TN, 627 412, India
| | - Senthil-Nathan Sengottayan
- Division of Biopesticide and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, TN, 627 412, India
| | - Manish Tiwari
- CSIR-National Botanical Research Institute, Lucknow, UP, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sahi Shivendra Vikram
- Department of Biological Sciences, University of the Sciences, Philadelphia, PA, 19104-4495, USA
| | | |
Collapse
|
18
|
Green Synthesis, Structural Characterization and Photocatalytic Applications of ZnO Nanoconjugates Using Heliotropium indicum. Catalysts 2021. [DOI: 10.3390/catal11070831] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
In recent years, biosynthesized zinc oxide nanoparticles (ZnO NPs) have been gaining importance due to their unique properties and tremendous applications. This study aimed to fabricate ZnO NPs by using extracts from various parts of the traditional medicinal plant Heliotropium indicum (H. indicum) and evaluate their photocatalytic activity. Further, their potential in photoluminescence and fluorescence resonance energy transfer (FRET) was assessed. The Ultraviolet-Visible spectrum exhibited a hypsochromic shifted absorption band between 350–380 nm. Transmission electron microscopy (TEM) analysis revealed spherical NPs, while X-ray diffraction (XRD) data revealed wurtzite, hexagonal and crystalline nature. The TEM and XRD consistently determined an average particle size range from 19 to 53 nm. The photocatalytic degradation reaches a maximum of 95% for biogenic ZnO NPs by monitoring spectrophotometrically the degradation of methylene blue dye (λmax = 662.8 nm) under solar irradiation. Photoluminescence analysis revealed differentiated spectra with high-intensity emission peaks for biogenic ZnO NPs compared with chemically synthesized ZnO NPs. Eventually, the highest efficiency of FRET (80%) was found in ZnO NPs synthesized from the leaves. This remains the first report highlighting the multifunctional ZnO NPs capabilities mediated by using H. indicum, which could lead to important potential environmental and biomedical applications.
Collapse
|
19
|
Ikram M, Javed B, Hassan SWU, Satti SH, Sarwer A, Raja NI, Mashwani ZUR. Therapeutic potential of biogenic titanium dioxide nanoparticles: a review on mechanistic approaches. Nanomedicine (Lond) 2021; 16:1429-1446. [PMID: 34085534 DOI: 10.2217/nnm-2021-0020] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Biogenic titanium dioxide nanoparticles have unique size, shape and biochemical functional corona that embellish them with the potential to perform therapeutic actions such as anticancer, antimicrobial, antioxidant, larvicidal and photocatalysis by adopting various mechanistic or physiological approaches at the molecular level. We have provided a detailed overview of some of these physiological mechanisms, including disruption of the electron transport chain, DNA fragmentation, mitochondrial damage, induction of apoptosis, disorganization of the plasma membrane, inhibition of ATP synthase activity, suspension of cellular signaling pathways and inhibition of enzymatic activity. The biogenic synthesis of customized titanium dioxide nanoparticles has future application potentials to do breakthroughs in the pharmaceutical sectors to advance precision medicine and to better explain the disease prognosis and treatment strategies.
Collapse
Affiliation(s)
- Muhammad Ikram
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi, Punjab 46300, Pakistan
| | - Bilal Javed
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi, Punjab 46300, Pakistan
| | - Syed Wajeeh Ul Hassan
- Department of General Medicine, Faisalabad Medical University, Faisalabad, Punjab 38000, Pakistan
| | - Seema Hassan Satti
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi, Punjab 46300, Pakistan
| | - Abdullah Sarwer
- Department of Internal Medicine, Nawaz Sharif Medical College, University of Gujrat, Gujrat, Punjab 50700, Pakistan
| | - Naveed Iqbal Raja
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi, Punjab 46300, Pakistan
| | - Zia-Ur-Rehman Mashwani
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi, Punjab 46300, Pakistan
| |
Collapse
|
20
|
Fabrication of iron nanoparticles using Parthenium: A combinatorial eco-innovative approach to eradicate crystal violet dye and phosphate from the aqueous environment. ACTA ACUST UNITED AC 2021. [DOI: 10.1016/j.enmm.2021.100426] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
21
|
Gonçalves RA, Toledo RP, Joshi N, Berengue OM. Green Synthesis and Applications of ZnO and TiO 2 Nanostructures. Molecules 2021; 26:2236. [PMID: 33924397 PMCID: PMC8068979 DOI: 10.3390/molecules26082236] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 03/30/2021] [Accepted: 04/09/2021] [Indexed: 12/19/2022] Open
Abstract
Over the last two decades, oxide nanostructures have been continuously evaluated and used in many technological applications. The advancement of the controlled synthesis approach to design desired morphology is a fundamental key to the discipline of material science and nanotechnology. These nanostructures can be prepared via different physical and chemical methods; however, a green and ecofriendly synthesis approach is a promising way to produce these nanostructures with desired properties with less risk of hazardous chemicals. In this regard, ZnO and TiO2 nanostructures are prominent candidates for various applications. Moreover, they are more efficient, non-toxic, and cost-effective. This review mainly focuses on the recent state-of-the-art advancements in the green synthesis approach for ZnO and TiO2 nanostructures and their applications. The first section summarizes the green synthesis approach to synthesize ZnO and TiO2 nanostructures via different routes such as solvothermal, hydrothermal, co-precipitation, and sol-gel using biological systems that are based on the principles of green chemistry. The second section demonstrates the application of ZnO and TiO2 nanostructures. The review also discusses the problems and future perspectives of green synthesis methods and the related issues posed and overlooked by the scientific community on the green approach to nanostructure oxides.
Collapse
Affiliation(s)
- Rosana A. Gonçalves
- Department of Physics, School of Engineering, São Paulo State University (UNESP), Guaratinguetá, Sao Paulo 12516-410, Brazil; (R.A.G.); (R.P.T.)
| | - Rosimara P. Toledo
- Department of Physics, School of Engineering, São Paulo State University (UNESP), Guaratinguetá, Sao Paulo 12516-410, Brazil; (R.A.G.); (R.P.T.)
| | - Nirav Joshi
- São Carlos Institute of Physics, University of São Paulo, 369, São Carlos, Sao Paulo 13560-970, Brazil
| | - Olivia M. Berengue
- Department of Physics, School of Engineering, São Paulo State University (UNESP), Guaratinguetá, Sao Paulo 12516-410, Brazil; (R.A.G.); (R.P.T.)
| |
Collapse
|
22
|
Loganathan S, Shivakumar MS, Karthi S, Nathan SS, Selvam K. Metal oxide nanoparticle synthesis (ZnO-NPs) of Knoxia sumatrensis (Retz.) DC. Aqueous leaf extract and It's evaluation of their antioxidant, anti-proliferative and larvicidal activities. Toxicol Rep 2020; 8:64-72. [PMID: 33391999 PMCID: PMC7773563 DOI: 10.1016/j.toxrep.2020.12.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/29/2022] Open
Abstract
In around the world, mosquito control is considered a most important because of the incapable of synthetic insecticides and the ecological pollution about by them. In this manner, need the eco-friendly insecticides to efficient control the mosquito disease is the need of the hour. We synthesized the eco-friendly of zinc oxide nanoparticles (ZnO-NPs) using the Knoxia sumatrensis aqueous leaf extract (Ks-ALE) as a reducing and stabilizing agent. The synthesis of ZnO-NPs was confirmed by UV with an absorption peak at 354 nm. ZnO-NPs crystal structure was analyzed by X-ray diffraction (XRD). Fourier transform infrared spectroscopy (FT-IR) spectra revealed the chloride, cyclic alcohols, sulfonamies, carboxylic acids, oximes, phosphines, alkenes and alcohol & phenol. Field emission-scanning electron microscopy (FE-SEM) showed that the NP's are rod shaped with 50-80 nm size and also energy dispersive spectra (EDaX) spectra showed presence of zinc. Antioxidant assay showed superior activity and evidenced by DPPH, ABTS and H2O2 radical assays. Furthermore, the ZnO-NPs exhibited strong activity in MCF-7 cell line with IC50 value is 58.87 μg/mL. Mosquito larvicidal activity of ZnO-NPs produced significant activity and excellent larvicidal activity was noticed in Cx. quinquefasciatus with LC50 0.08, mg/mL and LC9019.46 mg/mL. This study suggests that synthesized ZnO-NPs using Knoxia sumatrensis leaf extract have good biological activities and it makes them an ideal candidate for pharmacological studies.
Collapse
Affiliation(s)
- Settu Loganathan
- Department of Botany, Periyar University, Periyar Palkalai Nagar, Salem, 636 011, Tamil Nadu, India
| | | | - Sengodan Karthi
- Sri Paramakalyani Centre for Excellence and Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tamil Nadu, 627 412, India
| | - Sengottayan Senthil Nathan
- Sri Paramakalyani Centre for Excellence and Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tamil Nadu, 627 412, India
| | - Kuppusamy Selvam
- Department of Botany, Periyar University, Periyar Palkalai Nagar, Salem, 636 011, Tamil Nadu, India
| |
Collapse
|
23
|
Zaman MB, Poolla R, Singh P, Gudipati T. Biogenic synthesis of CuO nanoparticles using Tamarindus indica L. and a study of their photocatalytic and antibacterial activity. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.enmm.2020.100346] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
24
|
Almadiy AA. Chemical profile, mosquitocidal, and biochemical effects of essential oil and major components of Dysphania ambrosioides against Culex quinquefasciatus Say. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:41568-41576. [PMID: 32691320 DOI: 10.1007/s11356-020-10137-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 07/14/2020] [Indexed: 06/11/2023]
Abstract
To seek new mosquito control agents while avoiding the environmental impacts and toxicity hazards of conventional pesticides, the essential oil of Dysphania ambrosioides was obtained by hydrodistillation and analysed using GC-FID and GC-MS. The compounds 1-methyl-4-(1-methylethyl)-2,3-dioxabicyclo[2.2.2]oct-5-ene (cis-ascaridole), 1-methyl-4-(1-methylethyl) benzene (р-cymene), and 1-isopropyl-4-methyl-1,3-cyclohexadiene (p-mentha-1,3-diene also known as α-terpinene) were identified as the major components. The EO and the major fractions showed remarkable mosquitocidal activity against third instar larvae and adults of Culex quinquefasciatus Say. The oil and fractions were assayed at 3.125, 6.25, 12.5, 25, and 50 μl/l. Mortality was time- and dose-dependent. At 24 h post-exposure at an assayed concentration of 50 μl/l, the larval and adult mortalities ranged between 80.11-100% and 91.22-100%, respectively. Strong larvicidal and adulticidal activities were recorded in the cases of the crude oil and cis-ascaridole. The LC50 values after 24 h of treatment ranged between 6.2-20.1 μl/l and 5.1-13.9 μl/l against larvae and adults, respectively. The corrected percentage mortalities increased over time with the tested plant oil and the major fractions relative to the control. The time required to achieve 50% mortality (LT50) decreased remarkably with all treatments. The tested EO and major fractions effectively inhibited larval acetylcholinesterase activity with IC50 values ranging from 8.44 to 64.80 mM compared with 2.08 × 10-3 mM for the reference standard, methomy. The results indicate the potential of developing natural mosquitocides against C. quinquefasciatus based on the tested EO and its major fractions. Graphical abstract.
Collapse
Affiliation(s)
- Abdulrhman A Almadiy
- Department of Biology, Faculty of Arts and Sciences, Najran University, Najran, 1988, Saudi Arabia.
| |
Collapse
|
25
|
Manimaran K, Murugesan S, Ragavendran C, Balasubramani G, Natarajan D, Ganesan A, Seedevi P. Biosynthesis of TiO2 Nanoparticles Using Edible Mushroom (Pleurotus djamor) Extract: Mosquito Larvicidal, Histopathological, Antibacterial and Anticancer Effect. J CLUST SCI 2020. [DOI: 10.1007/s10876-020-01888-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
26
|
Fouda A, Salem SS, Wassel AR, Hamza MF, Shaheen T. Optimization of green biosynthesized visible light active CuO/ZnO nano-photocatalysts for the degradation of organic methylene blue dye. Heliyon 2020; 6:e04896. [PMID: 32995606 PMCID: PMC7511830 DOI: 10.1016/j.heliyon.2020.e04896] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/26/2020] [Accepted: 09/07/2020] [Indexed: 12/14/2022] Open
Abstract
Herein, CuO/ZnO nanocomposites at different ratios were successfully synthesized through a green biosynthesis approach. This was performed by harnessing the fungal-secreted enzymes and proteins during the sol-gel process for nanocomposites seed growth. All fabricated nanoparticles/nanocomposites were characterized using Fourier Transform Infra-Red (FT-IR) Spectroscopy, X-Ray Diffraction (XRD), Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM-EDX) and X-ray Photoelectron Spectroscopy (XPS) analyses. The photocatalytic degradation efficacy of the synthesized nanocomposites was evaluated using a cationic methylene blue (MB) dye as a model of reaction. Results obtained from the FT-IR and EDX analyses revealed that CuO-NPs, ZnO-NPs, CuO/ZnO50/50, CuO/ZnO80/20, and CuO/ZnO20/80 were successfully prepared by harnessing the biomass filtrate of Penicillium corylophilum As-1. Furthermore, XRD and TEM revealed the variation in the particle size of the nanocomposites (10-55 nm) with the ratio of the nanoparticles. Notably, the size of the nanocomposites was proportionally increased with an increasing ratio of ZnO-NPs. XPS analysis affirmed the presence of both Cu and Zn in the nanocomposites with varying binding energies compared with individual nanoparticles. Furthermore, a high photo-degradation efficacy was achieved by increasing the ratio of ZnO-NPs in the nanocomposite formulation, and 97% of organic MB dye was removed after 85 min of irradiation using the CuO/ZnO20/80 nanocomposite.
Collapse
Affiliation(s)
- Amr Fouda
- Botany and Microbiology Department, Faculty of Science, AL-Azhar University, Nasr City, Cairo 11884, Egypt
| | - Salem S. Salem
- Botany and Microbiology Department, Faculty of Science, AL-Azhar University, Nasr City, Cairo 11884, Egypt
| | - Ahmed R. Wassel
- Electron Microscope and Thin Films Department, Physics Research Division, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Mohammed F. Hamza
- Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
- Nuclear Materials Authority, POB 530, El-Maadi, Cairo, Egypt
| | - Th.I. Shaheen
- National Research Centre (Scopus affiliation ID 60014618), Textile Research Division, (former El-Tahrir str.), Dokki, P.O. 1C2622, Giza, Egypt
| |
Collapse
|
27
|
Duarte JL, Maciel de Faria Motta Oliveira AE, Pinto MC, Chorilli M. Botanical insecticide-based nanosystems for the control of Aedes (Stegomyia) aegypti larvae. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:28737-28748. [PMID: 32458306 DOI: 10.1007/s11356-020-09278-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 05/12/2020] [Indexed: 06/11/2023]
Abstract
Aedes (Stegomyia) aegypti is a cosmopolitan species that transmits arbovirus of medical importance as dengue, Zika, and chikungunya. The main strategy employed for the control of this mosquito is the use of larvicidal agents. However, the overuse of synthetic chemical larvicides has led to an increase in resistant insects, making management difficult. Therefore, the use of botanical insecticide-based nanosystems as an alternative to the use of synthetic agents for the control of Ae. aegypti has gained more considerable attention in the last years, mainly due to the advantages of nanostructured delivery systems, such as (a) controlled release; (b) greater surface area; (c) improvement of biological activity; (d) protection of natural bioactive agents from the environment and thus achieving stability; and (e) lipophilic drugs are easier dispersed even in aqueous vehicles. This review summarizes the current knowledge about botanical insecticide-based nanosystems as larvicidal against Ae. aegypti larvae. The majority of papers used metallic nanoparticles (NPs) as larvicidal agents, mainly silver nanoparticles (AgNPs), showing potential for their use as an alternative, followed by nanoemulsions containing vegetable oils, most essential oils, nanosystems that allow the dispersion of this high hydrophobic product in water, the environment of larval development. The final section describes scientific findings about the mode of action of these NPs, showing the gap about this subject in literature.
Collapse
Affiliation(s)
- Jonatas Lobato Duarte
- School of Pharmaceutical Sciences, São Paulo State University-UNESP, Rodovia Araraquara Jaú, Km 01, s/n, Campos Ville, Araraquara, SP, 14800-903, Brazil
| | - Anna Eliza Maciel de Faria Motta Oliveira
- Department of Health and biological sciences, Federal University of Amapá-UNIFAP, Rodovia Juscelino Kubitschek, Km 02, Jardim Marco Zero, Macapá, AP, 68903-361, Brazil
| | - Mara Cristina Pinto
- School of Pharmaceutical Sciences, São Paulo State University-UNESP, Rodovia Araraquara Jaú, Km 01, s/n, Campos Ville, Araraquara, SP, 14800-903, Brazil
| | - Marlus Chorilli
- School of Pharmaceutical Sciences, São Paulo State University-UNESP, Rodovia Araraquara Jaú, Km 01, s/n, Campos Ville, Araraquara, SP, 14800-903, Brazil.
| |
Collapse
|
28
|
Ahsan A, Farooq MA, Ahsan Bajwa A, Parveen A. Green Synthesis of Silver Nanoparticles Using Parthenium Hysterophorus: Optimization, Characterization and In Vitro Therapeutic Evaluation. Molecules 2020; 25:molecules25153324. [PMID: 32707950 PMCID: PMC7435648 DOI: 10.3390/molecules25153324] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/09/2020] [Accepted: 07/17/2020] [Indexed: 01/31/2023] Open
Abstract
Traditional synthetic techniques for silver nanoparticles synthesis involve toxic chemicals that are harmful to humans as well as the environment. The green chemistry method for nanoparticle synthesis is rapid, eco-friendly, and less toxic as compared to the traditional methods. In the present research, we synthesized silver nanoparticles employing a green chemistry approach from Parthenium hysterophorus leaf extract. The optimized parthenium silver nanoparticles (PrSNPs) had a mean particle size of 187.87 ± 4.89 nm with a narrow size distribution of 0.226 ± 0.009 and surface charge −34 ± 3.12 mV, respectively. The physicochemical characterization of optimized SNPs was done by Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). Moreover, the transmission electron microscopy (TEM) analysis indicates the spherical shape of NPs with an average diameter of 20–25 nm. PrSNPs were investigated for in vitro antibacterial, antifungal, anti-inflammatory, and antioxidant properties, and showed excellent profiles. The cytotoxic activity was analyzed against two cancer cell lines, i.e., B16F10 and HepG2 for 24 h and 48 h. PrSNPs proved to be an excellent anticancer agent. These PrSNPs were also employed for the treatment of wastewater by monitoring the E. coli count, and it turned out to be reduced by 58%; hence these NPs could be used for disinfecting water. Hence, we can propose that PrSNPs could be a suitable candidate as an antimicrobial, antioxidant, anti-inflammatory, and antitumor agent for the treatment of several ailments.
Collapse
Affiliation(s)
- Anam Ahsan
- College of Animal Science & Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China;
| | - Muhammad Asim Farooq
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, 211100 Nanjing, China;
| | - Ali Ahsan Bajwa
- Weeds Research Unit, New South Wales Department of Primary Industries, Wagga Wagga, NSW 2650, Australia;
| | - Amna Parveen
- College of Pharmacy, Gachon University, Hambakmoero, Yeonsu-gu Incheon 406–799, Korea
- Correspondence: ; Tel.: +82-10-5925-2733
| |
Collapse
|
29
|
Charkhian H, Bodaqlouie A, Soleimannezhadbari E, Lotfollahi L, Shaykh-Baygloo N, Hosseinzadeh R, Yousefi N, Khodayar M. Comparing the Bacteriostatic Effects of Different Metal Nanoparticles Against Proteus vulgaris. Curr Microbiol 2020; 77:2674-2684. [PMID: 32468183 DOI: 10.1007/s00284-020-02029-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 05/13/2020] [Indexed: 12/23/2022]
Abstract
For many years, researchers were looking for new antibacterial substances to deal with hospital infections and especially resistant infections. Nanoparticles attracted much attentions because of their very small size that increases the surface to capacity ratio and consequently increase chemical activity. In this study, the antibacterial effects of silver, copper oxide, nickel oxide, and titanium dioxide nanoparticles were studied on Proteus vulgaris, as a bacterium involved in the resistant hospital infections. The capability of nanoparticles to inhibit the growth of bacteria was assessed via 9 different methods including cylinder, disk, and well-diffusion, spot test, MBC, MIC, liquid inhibitory action test, diffusion, and assessing the effects of nanoparticles on a 24-h culture. Based on the results, copper oxide and silver nanoparticles had high antibacterial effects on P. vulgaris in both liquid and solid cultures, respectively. However, nickel oxide and titanium dioxide nanoparticles only had a weak effect on the inhibition of bacterial growth in the liquid culture. CuO and Ag NPs could release ions and consequently produce free radicals, disturb the equilibrium of electrons between electron donor groups and inactivate enzymes and DNA of the organisms. Moreover, they triggered holes in the bacterial membrane to disturb cellular ion equilibrium. So, they can be used to inhibit the growth of pathogens. Besides, further studies have shown that they could be used as a supplementary treatment and/or in combination with other drugs to cure infections caused by P. vulgaris.
Collapse
Affiliation(s)
- Hamed Charkhian
- Young Researchers Club, Urmia Branch, Islamic Azad University, Urmia, Iran
| | - Amin Bodaqlouie
- Department of Biotechnology, Urmia Branch, Islamic Azad University, Urmia, Iran
| | | | - Lida Lotfollahi
- Department of Microbiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | | | - Ramin Hosseinzadeh
- Department of Biotechnology, Urmia Branch, Islamic Azad University, Urmia, Iran
| | - Nesa Yousefi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Meysam Khodayar
- Department of Biotechnology, Urmia Branch, Islamic Azad University, Urmia, Iran
| |
Collapse
|
30
|
Sivakumar M, Surendar S, Jayakumar M, Seedevi P, Sivasankar P, Ravikumar M, Anbazhagan M, Murugan T, Siddiqui SS, Loganathan S. Parthenium hysterophorus Mediated Synthesis of Silver Nanoparticles and its Evaluation of Antibacterial and Antineoplastic Activity to Combat Liver Cancer Cells. J CLUST SCI 2020. [DOI: 10.1007/s10876-020-01775-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
31
|
Phyto-Nanocatalysts: Green Synthesis, Characterization, and Applications. Molecules 2019; 24:molecules24193418. [PMID: 31547052 PMCID: PMC6804184 DOI: 10.3390/molecules24193418] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 09/14/2019] [Accepted: 09/18/2019] [Indexed: 01/14/2023] Open
Abstract
Catalysis represents the cornerstone of chemistry, since catalytic processes are ubiquitous in almost all chemical processes developed for obtaining consumer goods. Nanocatalysis represents nowadays an innovative approach to obtain better properties for the catalysts: stable activity, good selectivity, easy to recover, and the possibility to be reused. Over the last few years, for the obtaining of new catalysts, classical methods—based on potential hazardous reagents—have been replaced with new methods emerged by replacing those reagents with plant extracts obtained in different conditions. Due to being diversified in morphology and chemical composition, these materials have different properties and applications, representing a promising area of research. In this context, the present review focuses on the metallic nanocatalysts’ importance, different methods of synthesis with emphasis to the natural compounds used as support, characterization techniques, parameters involved in tailoring the composition, size and shape of nanoparticles and applications in catalysis. This review presents some examples of green nanocatalysts, grouped considering their nature (mono- and bi-metallic nanoparticles, metallic oxides, sulfides, chlorides, and other complex catalysts).
Collapse
|
32
|
Zahra Z, Maqbool T, Arshad M, Badshah MA, Choi HK, Hur J. Changes in fluorescent dissolved organic matter and their association with phytoavailable phosphorus in soil amended with TiO 2 nanoparticles. CHEMOSPHERE 2019; 227:17-25. [PMID: 30981099 DOI: 10.1016/j.chemosphere.2019.03.189] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 03/28/2019] [Accepted: 03/31/2019] [Indexed: 06/09/2023]
Abstract
This study presents the impacts of TiO2 nanoparticles (TNPs) amendment on plant growth, phosphorus (P) content, and dissolved organic matter (DOM) composition in the rhizosphere. For this work, wheat plants (Galaxy-2013) were exposed to soil amended by different amounts of TNPs (i.e., 0, 50, and 100 mg TNP/kg of soil) for 40 days and harvested. The maximum increase in the shoots and roots lengths reached 15.9 ± 0.3% and 3.8 ± 0.3% respectively, which was concurrent with improved P content in the plants. Compared with the control, the P content in the shoots and roots was enriched by 23.4% and 17.9% at 50 mg TNP/kg of soil respectively. The increased electrical conductivity (EC) and decreased pH of the rhizosphere implied that the added TNPs might induce the enhancement of the P dissolution. Fluorescence spectroscopy revealed the increase of microbial activity as depicted by the humification index (HIX) changing from 0.88 ± 0.02 to 0.92 ± 0.01, with increasing TNPs amendments. Excitation-emission matrix coupled with parallel factor analysis (EEM-PARAFAC) showed the presence of four fluorescent components (C1 to C4) in the rhizosphere. Three of them (C1-C3) were related to humic-like substances, while the C4 was associated with protein-like fluorescence. EEM-PARAFAC results revealed the degradation of C4, and the enhancement of the other three components, which supported the stimulation of microbial activity by the TNPs amendment. This study provided new insights into the relation between improved phytoavailble P in plants and the changes in the rhizosphere soil solution chemistry and the DOM composition upon TNPs amendments.
Collapse
Affiliation(s)
- Zahra Zahra
- Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University of Sciences and Technology, Sector H-12, Islamabad, 44000, Pakistan
| | - Tahir Maqbool
- Department of Environment and Energy, Sejong University, Seoul, 05006, Republic of Korea
| | - Muhammad Arshad
- Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University of Sciences and Technology, Sector H-12, Islamabad, 44000, Pakistan
| | - Mohsin Ali Badshah
- School of Mechanical Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea; Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA, 92697 USA
| | - Hyung-Kyoon Choi
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Jin Hur
- Department of Environment and Energy, Sejong University, Seoul, 05006, Republic of Korea.
| |
Collapse
|
33
|
Melinte V, Buruiana T, Rosca I, Chibac AL. TiO
2
‐Based Photopolymerized Hybrid Catalysts with Visible Light Catalytic Activity Induced by In Situ Generated Ag/Au NPs. ChemistrySelect 2019. [DOI: 10.1002/slct.201803930] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Violeta Melinte
- Polyaddition and Photochemistry DepartmentPetru Poni Institute of Macromolecular Chemistry 41 A Grigore Ghica Voda Alley 700487 Iasi Romania
| | - Tinca Buruiana
- Polyaddition and Photochemistry DepartmentPetru Poni Institute of Macromolecular Chemistry 41 A Grigore Ghica Voda Alley 700487 Iasi Romania
| | - Irina Rosca
- Centre of Advanced Research in Bionanoconjugates and BiopolymersPetru Poni Institute of Macromolecular Chemistry 41 A Grigore Ghica Voda Alley 700487 Iasi Romania
| | - Andreea L. Chibac
- Polyaddition and Photochemistry DepartmentPetru Poni Institute of Macromolecular Chemistry 41 A Grigore Ghica Voda Alley 700487 Iasi Romania
| |
Collapse
|
34
|
Pavela R, Maggi F, Iannarelli R, Benelli G. Plant extracts for developing mosquito larvicides: From laboratory to the field, with insights on the modes of action. Acta Trop 2019; 193:236-271. [PMID: 30711422 DOI: 10.1016/j.actatropica.2019.01.019] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/23/2019] [Accepted: 01/23/2019] [Indexed: 01/27/2023]
Abstract
In the last decades, major research efforts have been done to investigate the insecticidal activity of plant-based products against mosquitoes. This is a modern and timely challenge in parasitology, aimed to reduce the frequent overuse of synthetic pesticides boosting resistance development in mosquitoes and causing serious threats to human health and environment. This review covers the huge amount of literature available on plant extracts tested as mosquito larvicides, particularly aqueous and alcoholic ones, due to their easy formulation in water without using surfactants. We analysed results obtained on more than 400 plant species, outlining that 29 of them have outstanding larvicidal activity (i.e., LC50 values below 10 ppm) against major vectors belonging to the genera Anopheles, Aedes and Culex, among others. Furthermore, synergistic and antagonistic effects between plant extracts and conventional pesticides, as well as among selected plant extracts are discussed. The efficacy of pure compounds isolated from the most effective plant extracts and - when available - their mechanism of action, as well as the impact on non-target species, is also covered. These belong to the following class of secondary metabolites: alkaloids, alkamides, sesquiterpenes, triterpenes, sterols, flavonoids, coumarins, anthraquinones, xanthones, acetogenonins and aliphatics. Their mode of action on mosquito larvae ranges from neurotoxic effects to inhibition of detoxificant enzymes and larval development and/or midugut damages. In the final section, current drawbacks as well as key challenges for future research, including technologies to synergize efficacy and improve stability - thus field performances - of the selected plant extracts, are outlined. Unfortunately, despite the huge amount of laboratory evidences about their efficacy, only a limited number of studies was aimed to validate their efficacy in the field, nor the epidemiological impact potentially arising from these vector control operations has been assessed. This strongly limits the development of commercial mosquito larvicides of botanical origin, at variance with plant-borne products developed in the latest decades to kill or repel other key arthropod species of medical and veterinary importance (e.g., ticks and lice), as well as mosquito adults. Further research on these issues is urgently needed.
Collapse
Affiliation(s)
- Roman Pavela
- Crop Research Institute, Drnovska 507, 161 06, Prague 6, Ruzyne, Czech Republic
| | - Filippo Maggi
- School of Pharmacy, University of Camerino, via Sant'Agostino, 62032 Camerino, Italy.
| | - Romilde Iannarelli
- School of Pharmacy, University of Camerino, via Sant'Agostino, 62032 Camerino, Italy
| | - Giovanni Benelli
- Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto 80, 56124 Pisa, Italy.
| |
Collapse
|
35
|
Jaffari ZH, Lam SM, Sin JC, Mohamed AR. Constructing magnetic Pt-loaded BiFeO 3 nanocomposite for boosted visible light photocatalytic and antibacterial activities. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:10204-10218. [PMID: 30758796 DOI: 10.1007/s11356-019-04503-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 02/05/2019] [Indexed: 06/09/2023]
Abstract
Visible light-responsive Pt-loaded coral-like BiFeO3 (Pt-BFO) nanocomposite at different Pt loadings was synthesized via a two-step hydrothermal synthesis method. The as-synthesized photocatalyst was characterized using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy dispersive X-ray (EDX), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), UV-vis diffuse reflectance spectroscopy (UV-vis DRS), photoluminescence (PL) spectroscopy, Fourier transform infrared (FTIR) spectroscopy, and magnetic hysteresis loop (M-H loop) analyses. The FESEM images revealed that Pt nanoparticles were evenly distributed on the coral-like BFO. The UV-vis DRS results indicated that the addition of Pt dopant modified the optical properties of the BFO. The as-synthesized Pt-BFO nanocomposite was effectively applied for the photodegradation of malachite green (MG) dye under visible light irradiation. Specifically, 0.5 wt% Pt-BFO nanocomposite presented boosted photocatalytic performance than those of the pure BFO and commercial TiO2. Such a remarkably improved photoactivity could be mainly attributed to the formation of good interface between Pt and BFO, which not only boosted the separation efficiency of charge carriers but also possessed great redox ability for significant photocatalytic reaction. Moreover, the strong magnetic property of the Pt-BFO nanocomposite was helpful in the particle separation along with its great recyclability. The radical scavenger test indicated that hole (h+), hydroxyl (·OH) radical, and hydrogen peroxide (H2O2) were the main oxidative species for the Pt-BFO photodegradation of MG. Finally, the Pt-BFO nanocomposite was revealed high antibacterial activity towards Bacillus cereus (B. cereus) and Escherichia coli (E. coli) microorganisms, highlighting its potential photocatalytic and antibacterial properties at different industrial and biomedical applications.
Collapse
Affiliation(s)
- Zeeshan Haider Jaffari
- Department of Environmental Engineering, Faculty of Engineering and Green Technology, Universiti Tunku Abdul Rahman, 31900, Kampar, Perak, Malaysia
| | - Sze Mun Lam
- Department of Environmental Engineering, Faculty of Engineering and Green Technology, Universiti Tunku Abdul Rahman, 31900, Kampar, Perak, Malaysia.
| | - Jin Chung Sin
- Department of Petrochemical Engineering, Faculty of Engineering and Green Technology, Universiti Tunku Abdul Rahman, 31900, Kampar, Perak, Malaysia
| | - Abdul Rahman Mohamed
- School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, 14300, Nibong Tebal, Pulau Pinang, Malaysia
| |
Collapse
|
36
|
Khare T, Oak U, Shriram V, Verma SK, Kumar V. Biologically synthesized nanomaterials and their antimicrobial potentials. ENGINEERED NANOMATERIALS AND PHYTONANOTECHNOLOGY: CHALLENGES FOR PLANT SUSTAINABILITY 2019. [DOI: 10.1016/bs.coac.2019.09.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
37
|
Singh J, Dutta T, Kim KH, Rawat M, Samddar P, Kumar P. 'Green' synthesis of metals and their oxide nanoparticles: applications for environmental remediation. J Nanobiotechnology 2018; 16:84. [PMID: 30373622 PMCID: PMC6206834 DOI: 10.1186/s12951-018-0408-4] [Citation(s) in RCA: 674] [Impact Index Per Article: 112.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 10/08/2018] [Indexed: 01/09/2023] Open
Abstract
In materials science, “green” synthesis has gained extensive attention as a reliable, sustainable, and eco-friendly protocol for synthesizing a wide range of materials/nanomaterials including
metal/metal oxides nanomaterials, hybrid materials, and bioinspired materials. As such, green synthesis is regarded as an important tool to reduce the destructive effects associated with the traditional methods of synthesis for nanoparticles commonly utilized in laboratory and industry. In this review, we summarized the fundamental processes and mechanisms of “green” synthesis approaches, especially for metal and metal oxide [e.g., gold (Au), silver (Ag), copper oxide (CuO), and zinc oxide (ZnO)] nanoparticles using natural extracts. Importantly, we explored the role of biological components, essential phytochemicals (e.g., flavonoids, alkaloids, terpenoids, amides, and aldehydes) as reducing agents and solvent systems. The stability/toxicity of nanoparticles and the associated surface engineering techniques for achieving biocompatibility are also discussed. Finally, we covered applications of such synthesized products to environmental remediation in terms of antimicrobial activity, catalytic activity, removal of pollutants dyes, and heavy metal ion sensing.
Collapse
Affiliation(s)
- Jagpreet Singh
- Department of Nanotechnology, Sri Guru Granth Sahib World University, Fatehgarh Sahib, Punjab, 140406, India
| | - Tanushree Dutta
- Department of Chemical, Biological & Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata, 700 098, India
| | - Ki-Hyun Kim
- Department of Civil & Environmental Engineering, Hanyang University, Seoul, 04763, South Korea.
| | - Mohit Rawat
- Department of Nanotechnology, Sri Guru Granth Sahib World University, Fatehgarh Sahib, Punjab, 140406, India
| | - Pallabi Samddar
- Department of Civil & Environmental Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Pawan Kumar
- Department of Nano Science and Materials, Central University of Jammu, Jammu, J & K, 180011, India.
| |
Collapse
|
38
|
Marslin G, Siram K, Maqbool Q, Selvakesavan RK, Kruszka D, Kachlicki P, Franklin G. Secondary Metabolites in the Green Synthesis of Metallic Nanoparticles. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E940. [PMID: 29865278 PMCID: PMC6024997 DOI: 10.3390/ma11060940] [Citation(s) in RCA: 189] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 05/25/2018] [Accepted: 05/30/2018] [Indexed: 12/18/2022]
Abstract
The ability of organisms and organic compounds to reduce metal ions and stabilize them into nanoparticles (NPs) forms the basis of green synthesis. To date, synthesis of NPs from various metal ions using a diverse array of plant extracts has been reported. However, a clear understanding of the mechanism of green synthesis of NPs is lacking. Although most studies have neglected to analyze the green-synthesized NPs (GNPs) for the presence of compounds derived from the extract, several studies have demonstrated the conjugation of sugars, secondary metabolites, and proteins in these biogenic NPs. Despite several reports on the bioactivities (antimicrobial, antioxidant, cytotoxic, catalytic, etc.) of GNPs, only a handful of studies have compared these activities with their chemically synthesized counterparts. These comparisons have demonstrated that GNPs possess better bioactivities than NPs synthesized by other methods, which might be attributed to the presence of plant-derived compounds in these NPs. The ability of NPs to bind with organic compounds to form a stable complex has huge potential in the harvesting of precious molecules and for drug discovery, if harnessed meticulously. A thorough understanding of the mechanisms of green synthesis and high-throughput screening of stabilizing/capping agents on the physico-chemical properties of GNPs is warranted to realize the full potential of green nanotechnology.
Collapse
Affiliation(s)
- Gregory Marslin
- Ratnam Institute of Pharmacy and Research, Nellore 524346, India.
| | - Karthik Siram
- Department of Pharmaceutics, PSG College of Pharmacy, Coimbatore 641004, India.
| | - Qaisar Maqbool
- Institute of Plant Genetics of the Polish Academy of Sciences, Poznan 60479, Poland.
| | | | - Dariusz Kruszka
- Institute of Plant Genetics of the Polish Academy of Sciences, Poznan 60479, Poland.
| | - Piotr Kachlicki
- Institute of Plant Genetics of the Polish Academy of Sciences, Poznan 60479, Poland.
| | - Gregory Franklin
- Institute of Plant Genetics of the Polish Academy of Sciences, Poznan 60479, Poland.
| |
Collapse
|