1
|
Lu H, Xu P, Sun G, Chen B, Zheng Y, Zhang J, Wang G. Early-life exposure to polystyrene micro- and nanoplastics disrupts metabolic homeostasis and gut microbiota in juvenile mice with a size-dependent manner. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176802. [PMID: 39395493 DOI: 10.1016/j.scitotenv.2024.176802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/27/2024] [Accepted: 10/06/2024] [Indexed: 10/14/2024]
Abstract
Early-life exposure to different sizes of micro- and nanoplastics (MNPs) affects biotoxicity, which is related not only to the dose but also directly to particle size. In this study, pregnant ICR mice received drinking water containing 5 μm polystyrene microplastics (5 μm PS-MPs) or 0.05 μm polystyrene nanoplastics (0.05 μm PS-NPs) from pregnancy to the end of lactation. Histopathological and molecular biological detection, 16s rRNA sequencing for intestinal flora analysis, and targeted metabolomics analysis were used to look into how early-life exposure to MNPs of various sizes affects young mice's growth and development, gut flora, and metabolism. The outcomes showed that 0.05 μm and 5 μm PS-MNPs can pass through the placental and mammary barriers, and MNPs accumulating in various organs were size-dependent: the greater the accumulation in organs, the smaller the particle size. Further studies found that the larger 5 μm PS-MPs caused only small accumulation in organs, with the main health hazard being the disruption of intestinal barrier and liver function, indirectly causing gut dysbiosis and metabolic disorders. In contrast, the smaller 0.05 μm PS-NPs caused excessive accumulation in organs, not only impaired the function of the intestine and liver, but also caused direct mechanical damage to physical tissues, and ultimately resulted in more severe intestinal and metabolic disorders. Our findings underline the size-dependent risks associated with micro- and nanoplastics exposure early in life and highlight the necessity for tailored approaches to address health damages from early MNPs exposure.
Collapse
Affiliation(s)
- Hao Lu
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, Anhui, China
| | - Peng Xu
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, Anhui, China
| | - Guobing Sun
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, Anhui, China
| | - Bingxie Chen
- Department of Food Hygiene and Nutrition, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, Anhui, China
| | - Yuncan Zheng
- Department of Clinical Medicine ("5+3" Integration), School of Second Clinical Medicine, Anhui Medical University, No. 81 Meishan Road, Hefei, Anhui, China
| | - Jiaqi Zhang
- Department of Anesthesiology, School of Second Clinical Medicine, Anhui Medical University, No. 81 Meishan Road, Hefei, Anhui, China
| | - Guoxiu Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, Anhui, China.
| |
Collapse
|
2
|
Ferreira ROG, Nag R, Gowen A, Xu JL. Deciphering the cytotoxicity of micro- and nanoplastics in Caco-2 cells through meta-analysis and machine learning. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:124971. [PMID: 39293654 DOI: 10.1016/j.envpol.2024.124971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 09/13/2024] [Accepted: 09/14/2024] [Indexed: 09/20/2024]
Abstract
Plastic pollution, driven by micro- and nanoplastics (MNPs), poses a major environmental threat, exposing humans through various routes. Despite human colorectal adenocarcinoma Caco-2 cells being used as an in vitro model for studying the intestinal epithelium, uncertainties linger about MNPs harming these cells and the factors influencing adverse effects. Addressing this lacuna, our study aimed to elucidate the pivotal MNP parameters influencing cytotoxicity in Caco-2 cells, employing meta-analysis and machine learning techniques for quantitative assessment. Initial scrutiny of 95 publications yielded 17 that met the inclusion criteria, generating a dataset of 320 data points. This dataset underwent meticulous stratification based on polymer type, exposure time, polymer size, MNP concentration, and biological assays utilised. Subsequent dose-response curve analysis revealed moderate correlations for selected subgroups, such as the (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) MTT biological assay and exposure time exceeding 24 h, with coefficient of determination (R2) values of 0.50 (p-value: 0.0065) and 0.60 (p-value: 0.0018) respectively. For the aforementioned two subgroups, the MNP concentrations surpassing 10 μg/mL led to diminished viability of Caco-2 cells. Notably, we observed challenges in employing meta-analysis to navigate this multidimensional MNP dataset. Leveraging a random forest model, we achieved improved predictive performance, with R2 values of 0.79 and a root mean square error (RMSE) of 0.14 for the prediction of the Log Response Ratio on the test set. Model interpretation indicated that size and concentration are the principal drivers influencing Caco-2 cell cytotoxicity. Additionally, the partial dependence plot illustrating the relationship between the size of MNPs and predicted cytotoxicity reveals a complex pattern. Our study provides crucial insights into the health impacts of plastic pollution, informing policymakers for targeted interventions, thus contributing to a comprehensive understanding of its human health consequences.
Collapse
Affiliation(s)
- Raphaela O G Ferreira
- UCD School of Biosystems & Food Engineering, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Rajat Nag
- UCD School of Biosystems & Food Engineering, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Aoife Gowen
- UCD School of Biosystems & Food Engineering, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Jun-Li Xu
- UCD School of Biosystems & Food Engineering, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
3
|
Kumar M, Chaudhary V, Chaudhary V, Srivastav AL, Madhav S. Impacts of microplastics on ecosystem services and their microbial degradation: a systematic review of the recent state of the art and future prospects. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-35472-3. [PMID: 39508948 DOI: 10.1007/s11356-024-35472-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/26/2024] [Indexed: 11/15/2024]
Abstract
Microplastics are tiny plastic particles with a usual diameter ranging from ~ 1 μ to 5 µm. Recently, microplastic pollution has raised the attention of the worldwide environmental and human concerns. In human beings, digestive system illness, respiratory system disorders, sleep disturbances, obesity, diabetes, and even cancer have been reported after microplastic exposure either through food, air, or skin. Similarly, microplastics are also having negative impacts on the plant health, soil microorganisms, aquatic lives, and other animals. Policies and initiatives have already been in the pipeline to address this problem to deal with microplastic pollution. However, many obstacles are also being observed such as lack of knowledge, lack of research, and also absence of regulatory frameworks. This article has covered the distribution of microplastics in water, soil, food and air. Application of multimodel strategies including fewer plastic item consumption, developing low-cost novel technologies using microorganisms, biofilm, and genetic modified microorganisms has been used to reduce microplastics from the environment. Researchers, academician, policy-makers, and environmentalists should work jointly to cope up with microplastic contamination and their effect on the ecosystem as a whole which can be reduced in the coming years and also to make earth clean.
Collapse
Affiliation(s)
- Mukesh Kumar
- College of Horticulture, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, Uttar Pradesh, India
| | - Veena Chaudhary
- Department of Chemistry, Meerut College Meerut, Meerut, Uttar Pradesh, India
| | - Vidisha Chaudhary
- Institute of Business Studies, CCS University, Meerut, India, Uttar Pradesh
| | - Arun Lal Srivastav
- Chitkara University School of Engineering and Technology, Chitkara University, Solan, Himachal Pradesh, India.
- Center of Excellence for Sustainability, Chitkara University, Solan, Himachal Pradesh, India.
| | - Sughosh Madhav
- Department of Civil Engineering, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
4
|
Cejudo E, Acosta-González G, Alvarado-Flores J, Peniche-Pérez JC, Bautista-García JE, Leal-Bautista RM, Ortega-Camacho D, Rosiles-González G, Caballero-Vázquez JA, Hernández-Zepeda C. The condition status index for doline lakes in urban areas. Sci Rep 2024; 14:26815. [PMID: 39500951 PMCID: PMC11538539 DOI: 10.1038/s41598-024-75444-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 10/04/2024] [Indexed: 11/08/2024] Open
Abstract
Karst represents approximately 15% of the planet's surface, hundreds of millions of people live on and rely on these aquifers for water supply and agricultural irrigation. In karstic landscapes, groundwater is exposed in sinkholes, inundated caves, and artesian wells, which are two-way communication spots. When the phreatic level is exposed, the groundwater can change substantially as a result of anthropogenic impacts, modifying the water quality and the environmental integrity by incoming excess nutrients, contaminants, pathogens, and other hazardous substances such as metals and microplastics. In this paper, we develop and test a multimetric index to evaluate the condition status of dolines located within urban areas, including seven indicators: trophic index, fecal bacteria, fecal viruses, microplastics, heavy metals, zooplankton biodiversity, and fish biodiversity. Lastly, we made a proof of concept for the index in the dolines on the island of Cozumel (Mexico), resulting in evaluations from fair to good. The index is powerful due to its sensitivity to pathogens and exotic invasive species. This additive weighted index allows to assess the condition status of dolines in urban areas anywhere in the world; if required, modifications are possible.
Collapse
Affiliation(s)
- Eduardo Cejudo
- Centro de Investigación Científica de Yucatán A.C., Unidad de Ciencias del Agua, Calle 8, No. 39, Mz 29, SM 64, 77524, Cancún, Quintana Roo, Mexico
| | - Gilberto Acosta-González
- Centro de Investigación Científica de Yucatán A.C., Unidad de Ciencias del Agua, Calle 8, No. 39, Mz 29, SM 64, 77524, Cancún, Quintana Roo, Mexico.
| | - Jesús Alvarado-Flores
- Centro de Investigación Científica de Yucatán A.C., Unidad de Ciencias del Agua, Calle 8, No. 39, Mz 29, SM 64, 77524, Cancún, Quintana Roo, Mexico
| | - Jorge Carlos Peniche-Pérez
- Centro de Investigación Científica de Yucatán A.C., Unidad de Ciencias del Agua, Calle 8, No. 39, Mz 29, SM 64, 77524, Cancún, Quintana Roo, Mexico
| | - José Epigmenio Bautista-García
- Centro de Investigación Científica de Yucatán A.C., Unidad de Ciencias del Agua, Calle 8, No. 39, Mz 29, SM 64, 77524, Cancún, Quintana Roo, Mexico
| | - Rosa María Leal-Bautista
- Centro de Investigación Científica de Yucatán A.C., Unidad de Ciencias del Agua, Calle 8, No. 39, Mz 29, SM 64, 77524, Cancún, Quintana Roo, Mexico
| | - Daniela Ortega-Camacho
- Centro de Investigación Científica de Yucatán A.C., Unidad de Ciencias del Agua, Calle 8, No. 39, Mz 29, SM 64, 77524, Cancún, Quintana Roo, Mexico
| | - Gabriela Rosiles-González
- Centro de Investigación Científica de Yucatán A.C., Unidad de Ciencias del Agua, Calle 8, No. 39, Mz 29, SM 64, 77524, Cancún, Quintana Roo, Mexico
| | - José Adán Caballero-Vázquez
- Centro de Investigación Científica de Yucatán A.C., Unidad de Ciencias del Agua, Calle 8, No. 39, Mz 29, SM 64, 77524, Cancún, Quintana Roo, Mexico
| | - Cecilia Hernández-Zepeda
- Centro de Investigación Científica de Yucatán A.C., Unidad de Ciencias del Agua, Calle 8, No. 39, Mz 29, SM 64, 77524, Cancún, Quintana Roo, Mexico
| |
Collapse
|
5
|
Devi SS, Jayan S, Kumar AB. Microplastic assessment in aquaculture feeds: Analyzing polymer variability across commercial fishfeeds from three continents. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135621. [PMID: 39213766 DOI: 10.1016/j.jhazmat.2024.135621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/15/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
This study analysed ten widely used commercial fishfeeds in aquaculture from six countries spanning three continents to assess microplastic (MP) contamination. MPs with an average abundance of 1130 ± 259.07 particles/kg and an average length of 2.64 ± 0.62 mm ( ± SE) were found in aquaculture feeds, with fibres (85 %) and fragments (15 %). The majority of these MPs were black. The abundance of MPs varied among the samples, with the highest in feed SP (26 %), followed by IF, GA, ELS, NT, EW, TB, GR, VR, and the least in HCF (3 %). Polymers identified consisted of Polyethylene terephthalates (PET, 20 %), Polyamide (PA, 30 %), Polymethyl methacrylate (PMMA), Polyurethane (PU), and Polystyrene (PS) with 15 % each, and Polypropylene (PP, 5 %). SEM-EDX analysis of fibres showed flakes, cracks, and pits and the presence of heavy metals Ni, Cu, Zn, Cr, Au, Hg, Cd, Ti, and Pb. Additionally, some fragments contained Nb (Niobium) alongside the naturally occurring elements. The Polymer Hazard Index (PHI) for the polymers in ten feeds was calculated, and nine were in the highly hazardous category (IV and V) with PHI values ranging from 400-394825. The work showcases the graveness of MPs in fishfeeds and advocates control measures to curtail MPs in fishfeeds for sustainable aquaculture production.
Collapse
Affiliation(s)
- Suvarna S Devi
- Department of Aquatic Biology and Fisheries, University of Kerala, Thiruvananthapuram 695581, Kerala, India
| | - Shilpa Jayan
- Department of Aquatic Biology and Fisheries, University of Kerala, Thiruvananthapuram 695581, Kerala, India
| | - Appukuttannair Biju Kumar
- Department of Aquatic Biology and Fisheries, University of Kerala, Thiruvananthapuram 695581, Kerala, India.
| |
Collapse
|
6
|
Marchi BZ, da Silveira PHPM, Almeida Bezerra WB, da Silva MHP, Monteiro SN, da Silva Figueiredo ABH. Evaluation of the thermomechanical properties of novel epoxy composites reinforced with Geonoma baculifera fibers. Sci Rep 2024; 14:26565. [PMID: 39496706 PMCID: PMC11535507 DOI: 10.1038/s41598-024-78449-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/30/2024] [Indexed: 11/06/2024] Open
Abstract
Natural lignocellulosic fibers (NLFs) have shown a great potential as reinforcements in composites in recent decades. Among other reasons, environmental concerns and the depletion of oil reserves justify research on natural composites as they offer an environmentally friendly alternative and align with the principles of sustainable development. Among the plethora of NLFs available in nature, the ubim fiber (Geonoma baculifera) has not yet been investigated as a reinforcement for composites in potential engineering applications. Therefore, this study evaluates, for the first time, the mechanical properties of epoxy composites with 10, 20, and 30 vol% of ubim fibers. These properties were assessed through Izod impact, tensile and flexural tests as well as dynamic mechanical analysis (DMA). The data were statistically analyzed using the ANOVA method. Scanning electron microscopy (SEM) analysis indicated a transition from a purely brittle fracture mechanism to a ductile-brittle combination as the fiber volume in the composite increased. Tensile tests of the composites demonstrated an increasing trend in strength and elastic modulus with fiber volume. The results of the flexural tests also displayed a similar trend in strength and elasticity modulus for the composites. The results of DMA tests showed that composite materials with a 30 vol% of ubim fibers exhibited a high glass transition temperature and a low tan δ value, suggesting higher stiffness of this composite compared to others. Overall, the results indicated that the incorporation of 30 vol% ubim fibers into the composites significantly improved their mechanical properties compared to other tested fiber fractions. Additionally, their functional characteristics, such as simplicity in the manufacturing process, low cost, and excellent strength-to-weight ratio, make these composites particularly suitable for applications in sectors such as the automotive industry, construction panels, and packaging. These factors contribute to the development of an efficient, sustainable, recyclable and environmentally friendly composite.
Collapse
Affiliation(s)
- Belayne Zanini Marchi
- Department of Materials Science, Military Institute of Engineering-IME, Praça General Tibúrcio, 80, Praia Vermelha, Urca, RJ, 22290-270, Brazil.
| | | | - Wendell Bruno Almeida Bezerra
- Federal University of Cariri-UFCA, Science and Technology Center, Avenida Tenente Raimundo Rocha, 1639, Cidade Universitária, Juazeiro do Norte, CE, 63048-080, Brazil
| | - Marcelo Henrique Prado da Silva
- Department of Materials Science, Military Institute of Engineering-IME, Praça General Tibúrcio, 80, Praia Vermelha, Urca, RJ, 22290-270, Brazil
| | - Sergio Neves Monteiro
- Department of Materials Science, Military Institute of Engineering-IME, Praça General Tibúrcio, 80, Praia Vermelha, Urca, RJ, 22290-270, Brazil
| | - André Ben-Hur da Silva Figueiredo
- Department of Materials Science, Military Institute of Engineering-IME, Praça General Tibúrcio, 80, Praia Vermelha, Urca, RJ, 22290-270, Brazil
| |
Collapse
|
7
|
Mohammadi R, Ameri M. A systematic review on sustainable utilization of plastic waste in asphalt: assessing environmental and health impact, performance, and economic viability. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-35395-z. [PMID: 39487917 DOI: 10.1007/s11356-024-35395-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 10/20/2024] [Indexed: 11/04/2024]
Abstract
Increasing amount of plastic waste (PW) poses a global challenge that necessitates multifaceted strategies. Repurposing PW in asphalt pavement is a sustainable strategy with extensive benefits, but there are several challenges that need to be overcome. This systematic review aims to examine three significant aspects associated with plastic-modified asphalt: environmental and health considerations, performance and technical properties, and cost.-effectiveness and economic feasibility. The environmental and health impacts of using PW in asphalt were particularly focused on the release of carcinogenic compounds and harmful fumes like polyaromatic hydrocarbons (PAHs) and volatile organic compounds (VOCs), microplastic pollution, and climate impact. Environmental challenges and potential health risks associated with the use of PW in asphalt production were analyzed and indicated. Afterwards, the effects of different plastic types on the fatigue and rutting resistance of asphalt pavement are investigated. While many types of PWs show potential for enhancing rutting and fatigue performance, conflicting results have been observed for certain plastics. Some PW types, such as polyvinyl chloride (PVC), polypropylene (PP), polystyrene (PS), low-density polyethylene (LDPE), and high-density polyethylene (HDPE), have been shown to yield inconsistent results. Lastly, factors that are recognized to have an impact on the cost-effectiveness of plastic-modified asphalt include the collection and processing costs, asphalt materials price and availability, incorporation method, and possible changes in the asphalt's lifespan. The findings of this review help researchers to identify current gaps and aid stakeholders in making informed decisions towards more environmentally friendly, high-performance, and economically viable approaches to asphalt production.
Collapse
Affiliation(s)
- Reza Mohammadi
- School of Civil Engineering, Iran University of Science & Technology, P.O. Box 16765-163, Tehran, Iran
| | - Mahmoud Ameri
- School of Civil Engineering, Iran University of Science & Technology, P.O. Box 16765-163, Tehran, Iran.
| |
Collapse
|
8
|
Ranjan H, Senthil Kumar S, Priscilla S, Swaminathan S, Umezawa M, Sheik Mohideen S. Polyethylene microplastics affect behavioural, oxidative stress, and molecular responses in the Drosophila model. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024. [PMID: 39484827 DOI: 10.1039/d4em00537f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
The escalating presence of microplastic pollution poses a significant environmental threat, with far-reaching implications for both ecosystems and human health. This study investigated the toxicological impact of polyethylene microplastics (PE MPs) using Drosophila melanogaster, fruit flies, as a model organism. Drosophila were exposed to PE MPs orally at concentrations of 1 mg ml-1 and 10 mg ml-1 agar food. The study assessed behavioural parameters and biochemical markers including reactive oxygen species (ROS), superoxide dismutase (SOD), and glutathione-S-transferase (GST) activity. The expression levels of key genes (Hsp70Bc, rpr, and p53) were also analysed using the RT-qPCR technique. Results indicated a significant decline in climbing activity among adult flies and crawling behaviour in larvae, indicating potential disruption of motor function. Biochemical analysis revealed elevated ROS levels, indicative of oxidative stress, in both larval and fly stages. Moreover, the antioxidant defence system exhibited decreased SOD activity and a concentration-dependent increase in GST activity indicating the functioning of a quick xenobiotic clearance mechanism. Gene expression analysis demonstrated upregulation of rpr, p53, and Hsp70Bc genes, suggesting activation of cell death pathways and stress response mechanisms. Overall, these findings underline the adverse effects of PE MPs on Drosophila, including behavioural impairment, oxidative stress, and activation of stress response pathways.
Collapse
Affiliation(s)
- Himanshu Ranjan
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur-603203, India.
| | - Swetha Senthil Kumar
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur-603203, India.
| | - Sharine Priscilla
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur-603203, India.
| | - Subhashini Swaminathan
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur-603203, India.
| | - Masakazu Umezawa
- Department of Medical and Robotic Engineering Design, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika, Tokyo, 125-8585, Japan.
| | - Sahabudeen Sheik Mohideen
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur-603203, India.
| |
Collapse
|
9
|
George M, Rizman-Idid M, Cheah W, Palaniveloo K, Alias SA. An independent Scientific Committee on Plastic Pollution (SCOPP). MARINE POLLUTION BULLETIN 2024; 208:117041. [PMID: 39366063 DOI: 10.1016/j.marpolbul.2024.117041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/21/2024] [Accepted: 09/21/2024] [Indexed: 10/06/2024]
Abstract
The Intergovernmental Negotiating Committee on Plastic Pollution seeks to address, among other issues, the science-policy interface of plastic pollution in the forthcoming international legally binding instrument on plastic pollution, including in the marine environment (ILBI) to be finalised in 2024 by the United Nations Environment Assembly (UNEA). Given the importance of protecting the marine environment from plastic pollution, this paper reviews ILBI and argues that the UNEA should by Resolution establish an independent scientific committee. The committee should have an overarching global, regional, and local presence with institutional openness and accessibility to elucidate the science behind plastic pollution. This paper proposes that an independent scientific approach is preferrable to a combined science-policy institution seen in Secretariats and Conference of Parties in some conventions. The latter often exhibit numerous weaknesses. Establishing an independent scientific committee will ensure the science behind plastic pollution is robust, credible, and effectively informs policy decisions.
Collapse
Affiliation(s)
- Mary George
- Faculty of Law, Universiti Malaya, 50603 Kuala Lumpur, Malaysia; Institute of Ocean and Earth Sciences, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Mohammed Rizman-Idid
- Institute of Ocean and Earth Sciences, Universiti Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Wee Cheah
- Institute of Ocean and Earth Sciences, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Kishneth Palaniveloo
- Institute of Ocean and Earth Sciences, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Siti Aisyah Alias
- Institute of Ocean and Earth Sciences, Universiti Malaya, 50603 Kuala Lumpur, Malaysia; National Antarctic Research Centre, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
10
|
Islam MZ. Prevention policies for the marine ecological environment in the South China Sea as a consequence of excessive plastic compound use in Vietnam. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2024; 20:2088-2106. [PMID: 38923110 DOI: 10.1002/ieam.4971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 06/02/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024]
Abstract
Vietnam suffers from a distressing predicament: It ranks among the most heavily contaminated nations on earth. Its coastal and marine domains are plagued by an excess of plastic waste. Vietnam has consistently discharged a substantial amount of waste into the oceans, ranging from 0.28 to 0.73 million metric tons annually. Numerous areas have emerged as focal points of plastic pollution throughout its extensive seashore and marine areas. The escalating presence of marine litter poses an increasingly grave threat to the intricate equilibrium of Vietnam's marine ecosystems. This comprehensive policy study reveals that the mounting problem of ocean plastic pollution, characterized by the abundance of floating plastic debris, imperils both plant and animal life, placing various marine species such as seabirds, fish, turtles, and cetaceans at risk. The consumption of minuscule plastic particles and the harmful impact of chemical pollutants from plastic waste in the ocean not only endangers the vitality of marine life but also poses a substantial hazard to human well-being because plastic waste infiltrates the food chain. This research reveals that, despite the existence of numerous laws and policies-including the Law on Environmental Protection 2020, the Marine Plastic Waste Management Initiative for the Fisheries Sector 2020-2030, and the National Action Plan for Management of Marine Plastic Litter-a significant amount of plastic waste is infiltrating the river network and eventually infiltrating oceans as a result of improper monitoring and ineffective enforcement of these legislations. Relying primarily on existing data released by the government and other sources and a wide range of gray literature retrieved from reputable databases, this study aims to evaluate the role of Vietnam's legal framework for combating the critical issue of marine plastic pollution in the South China Sea. Integr Environ Assess Manag 2024;20:2088-2106. © 2024 SETAC.
Collapse
Affiliation(s)
- Md Ziaul Islam
- Research Institute of Environmental Law (RIEL), School of Law, Wuhan University, Wuhan, PR China
| |
Collapse
|
11
|
Cloux S, Pérez P, de Pablo H, Pérez-Muñuzuri V. A regional Lagrangian model to evaluate the dispersion of floating macroplastics in the North Atlantic Ocean from land and river sources in the western coast of Spain. MARINE POLLUTION BULLETIN 2024; 209:117110. [PMID: 39418871 DOI: 10.1016/j.marpolbul.2024.117110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 09/24/2024] [Accepted: 10/04/2024] [Indexed: 10/19/2024]
Abstract
Marine plastic litter is an emerging global problem with serious environmental and economic consequences. Once deposited in the ocean, it is transported by currents for long periods of time, making it a transboundary problem. The variety of plastic items makes the study of their transport in the ocean system a challenge. Identifying the sources and analyzing the extent of their dispersion/accumulation can help solve the problem on a global scale. In this study, using modeling tools, the dispersion of particles from land-based sources located on the Spanish Atlantic coast was analyzed over a seven-year period. The results show that the highest concentrations of plastic are found near the coast. The particle dispersion is consistent with the oceanic dynamics of each region studied. The seasonal behavior of plastics arriving in neighboring countries was also analyzed. The time-varying patterns are consistent with local hydrodynamics and the general circulation of the ocean.
Collapse
Affiliation(s)
- Sara Cloux
- CRETUS Research Center, Nonlinear Physics Group, Faculty of Physics, University of Santiago de Compostela, Spain; IFISC (CSIC-UIB), Instituto de Física Interdisciplinar y Sistemas Complejos, Campus Universitat de les Illes Balears, E-07122, Palma de Mallorca, Spain.
| | - Patricia Pérez
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía (IEO), CSIC, Vigo, Spain
| | - Hilda de Pablo
- MARETEC, Instituto Superior Tecnico, Universidade de Lisboa, Portugal; Faculty of Engineering, Lusófona University, Campo Grande, Lisbon, Portugal
| | - Vicente Pérez-Muñuzuri
- CRETUS Research Center, Nonlinear Physics Group, Faculty of Physics, University of Santiago de Compostela, Spain
| |
Collapse
|
12
|
Goswami S, Adhikary S, Bhattacharya S, Agarwal R, Ganguly A, Nanda S, Rajak P. The alarming link between environmental microplastics and health hazards with special emphasis on cancer. Life Sci 2024; 355:122937. [PMID: 39103046 DOI: 10.1016/j.lfs.2024.122937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/15/2024] [Accepted: 07/27/2024] [Indexed: 08/07/2024]
Abstract
Microplastic contamination is a burgeoning environmental issue that poses serious threats to animal and human health. Microplastics enter the human body through nasal, dermal, and oral routes to contaminate multiple organs. Studies have advocated the existence of microplastics in human breast milk, sputum, faeces, and blood. Microplastics can find their ways to the sub-cellular moiety via active and passive approaches. At cellular level, microplastics follow clathrin and caveolae-dependent pathways to invade the sub-cellular environment. These environmental contaminants modulate the epigenetic control of gene expression, status of inflammatory mediators, redox homeostasis, cell-cycle proteins, and mimic the endocrine mediators like estrogen and androgen to fuel carcinogenesis. Furthermore, epidemiological studies have suggested potential links between the exposure to microplastics and the onset of various chronic diseases. Microplastics trigger uncontrolled cell proliferation and ensue tissue growth leading to various cancers affecting the lungs, blood, breasts, prostate, and ovaries. Additionally, such contamination can potentially affect sub-cellular signaling and injure multiple organs. In essence, numerous reports have claimed microplastic-induced toxicity and tumorigenesis in human and model animals. Nonetheless, the underlying molecular mechanism is still elusive and warrants further investigations. This review provides a comprehensive analysis of microplastics, covering their sources, chemistry, human exposure routes, toxicity, and carcinogenic potential at the molecular level.
Collapse
Affiliation(s)
- Sohini Goswami
- Department of Animal Science, Kazi Nazrul University, Paschim Bardhaman, West Bengal, India
| | - Satadal Adhikary
- Post Graduate Department of Zoology, A.B.N. Seal College, Cooch Behar, West Bengal, India
| | | | - Ruchika Agarwal
- Department of Animal Science, Kazi Nazrul University, Paschim Bardhaman, West Bengal, India
| | - Abhratanu Ganguly
- Department of Animal Science, Kazi Nazrul University, Paschim Bardhaman, West Bengal, India
| | - Sayantani Nanda
- Department of Animal Science, Kazi Nazrul University, Paschim Bardhaman, West Bengal, India
| | - Prem Rajak
- Department of Animal Science, Kazi Nazrul University, Paschim Bardhaman, West Bengal, India.
| |
Collapse
|
13
|
Khoshmanesh M, Sanati AM, Ramavandi B. Influence of cephalexin on cadmium adsorption onto microplastic particles in water: Human health risk evaluation. Heliyon 2024; 10:e37775. [PMID: 39309868 PMCID: PMC11416549 DOI: 10.1016/j.heliyon.2024.e37775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/07/2024] [Accepted: 09/10/2024] [Indexed: 09/25/2024] Open
Abstract
This paper explores the impact of environmental factors on the adsorption of cadmium (Cd) and cephalexin (CEX) onto polyethylene (PE) microplastics. The study focused on Cd adsorption behavior on microplastics (MPs) of various sizes, revealing that particles sized 30-63 μm exhibited the highest adsorption capacity compared to other sizes. Cd sorption was significantly influenced by initial pH and salinity levels. Experimental data closely matched both the Langmuir (R2 > 0.91) and Freundlich (R2 > 0.92) isotherms. Cd adsorption onto PE particles was greater than CEX adsorption, with the maximum Cd uptake capacity measured at 1.8 mg/g. FTIR analysis indicated that Cd and CEX adsorption onto MPs was likely governed by physical interactions, as no new functional groups were detected post-uptake. The desorption rates of Cd and CEX from PE microplastics were evaluated in various liquids, including aqueous solution, tap water, seawater, and synthetic gastric juice. The health risks associated with Cd, in combination with MPs and CEX, for both children and adults were assessed in groundwater and aqueous solutions. This study offers scientific insights and guidelines for examining the environmental behavior, migration, and transformation of microplastics and their related ecological risks in scenarios of combined pollution.
Collapse
Affiliation(s)
- Madineh Khoshmanesh
- Department of Environmental Science, Persian Gulf Research Institute, Persian Gulf University, Bushehr, Iran
| | - Ali Mohammad Sanati
- Department of Environmental Science, Persian Gulf Research Institute, Persian Gulf University, Bushehr, Iran
| | - Bahman Ramavandi
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, 7518759577, Iran
| |
Collapse
|
14
|
Wang J, Wu F, Dong S, Wang X, Ai S, Liu Z, Wang X. Meta-analysis of the effects of microplastic on fish: Insights into growth, survival, reproduction, oxidative stress, and gut microbiota diversity. WATER RESEARCH 2024; 267:122493. [PMID: 39321729 DOI: 10.1016/j.watres.2024.122493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/04/2024] [Accepted: 09/20/2024] [Indexed: 09/27/2024]
Abstract
Aquatic ecosystems are primary repositories for microplastics (MPs), which pose significant risks to aquatic organisms. This study addresses the gap in understanding the effects of MPs pollution by analyzing 3,757 biological endpoints from 85 laboratory studies. Overall, our results indicate that MPs exposure significantly inhibits fish growth, survival, and reproductive ability, and increases oxidative damage, specifically, MPs exposure leads to elevated levels of malondialdehyde. However, MPs do not have a significant impact on the diversity of fish gut microbiota. Subgroup and correlation analyses indicate that the extent of various toxic effects is influenced by multiple factors, including MPs' type, exposure pathway, size, concentration, as well as the aquatic environment or life stage of the fish. In addition, the regression analysis revealed a relationship between the magnitude of toxic effects and the size, concentration, or duration of MPs exposure. This study provides useful information for understanding the potential impacts of MPs on aquatic organisms and offers new insights for the protection and management of aquatic ecosystems.
Collapse
Affiliation(s)
- Jiaqi Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, An wai da yang fang 8, Chaoyang District, Beijing 100012, PR China
| | - Fan Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, An wai da yang fang 8, Chaoyang District, Beijing 100012, PR China
| | - Shunqi Dong
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, An wai da yang fang 8, Chaoyang District, Beijing 100012, PR China
| | - Xusheng Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, An wai da yang fang 8, Chaoyang District, Beijing 100012, PR China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Shunhao Ai
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, An wai da yang fang 8, Chaoyang District, Beijing 100012, PR China; College of Life Sciences, Nanchang University, Nanchang 330047, PR China
| | - Zhengtao Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, An wai da yang fang 8, Chaoyang District, Beijing 100012, PR China
| | - Xiaonan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, An wai da yang fang 8, Chaoyang District, Beijing 100012, PR China.
| |
Collapse
|
15
|
Dogra K, Kumar M, Deoli Bahukhandi K, Zang J. Traversing the prevalence of microplastics in soil-agro ecosystems: Origin, occurrence, and pollutants synergies. JOURNAL OF CONTAMINANT HYDROLOGY 2024; 266:104398. [PMID: 39032427 DOI: 10.1016/j.jconhyd.2024.104398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/17/2024] [Accepted: 07/11/2024] [Indexed: 07/23/2024]
Abstract
The ubiquity of plastics in modern life has made them a significant environmental concern and a marker of the Anthropocene era. The degradation of plastics results in the formation of microplastics (MPs), which measure 5 mm or less. The coexistence of MPs with other pollutants found in sludge, water treatment plant effluents, surface water, and groundwater, shapes the environmental landscape together. Despite extensive investigation, the long-term implications of MPs in soils remain uncertain, underscoring the importance of delving into their transportation and interactions with soil biota and other contaminants. The present article provides a comprehensive overview of MPs contamination in soil, encompassing its sources, prevalence, features, and interactions with soil flora and fauna, heavy metals, and organic compounds. The sources of MPs in soil agroecosystems are mulching, composting, littering, sewage sludge, irrigation water, and fertilizer application. The concentration of MPs reported in plastic mulch, littering, and sewage sludge is 503 ± 2760 items per kg-1, 4483 ± 2315 MPs/kg, and 11,100 ± 570 per/kg. The transport of MPs in soil agroecosystems is due to their horizontal and vertical migration including biotic and abiotic mobility. The article also highlighted the analytical process, which includes sampling planning, collection, purification, extraction, and identification techniques of MPs in soil agroecosystems. The mechanism in the interaction of MPs and organic pollutants includes surface adsorption or adhesion cation bridging, hydrogen bonding, charge transfer, ligand exchange, van der Waals interactions, and ion exchange.
Collapse
Affiliation(s)
- Kanika Dogra
- Sustainability Cluster, School of Advanced Engineering, UPES, Dehradun 248007, Uttarakhand, India
| | - Manish Kumar
- Sustainability Cluster, School of Advanced Engineering, UPES, Dehradun 248007, Uttarakhand, India; Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Campus Monterey, Monterrey 64849, Nuevo León, Mexico.
| | - Kanchan Deoli Bahukhandi
- Sustainability Cluster, School of Advanced Engineering, UPES, Dehradun 248007, Uttarakhand, India
| | - Jian Zang
- Joint International Research Laboratory of Green Buildings and Built Environments, School of Civil Engineering, Chongqing University, Chongqing, China
| |
Collapse
|
16
|
Jeon HJ, Seo S, Lee C, Kim B, Piamsomboon P, Kim JH, Han JE. Effects of Microplastic Exposure against White Spot Syndrome Virus Infection in Pacific White Shrimp ( Penaeus vannamei). J Microbiol Biotechnol 2024; 34:1705-1710. [PMID: 39081252 PMCID: PMC11380513 DOI: 10.4014/jmb.2402.02001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/05/2024] [Accepted: 03/10/2024] [Indexed: 08/29/2024]
Abstract
Plastic waste has emerged as a major environmental concern in recent years. As plastic waste discharged into the marine environment, it undergoes a breakdown process, eventually accumulating in aquatic organisms in the form of microplastics (MPs). To date, reduced food intake, nutritional absorption, and impaired immune system are known adverse effects of MPs-exposed aquatic organisms. This study aims to investigate whether MP exposure accelerated white spot syndrome virus (WSSV) infection in Pacific white shrimp (Penaeus vannamei) via laboratory tests. Briefly, experimental shrimp were divided into four groups; WSSV (group 1); MP (group 2); WSSV + MP (group 3); and Control (group 4). No mortality was observed in group 2, group 4, and even in group 1. However, group 3 showed a cumulative mortality of 50% during the experimental period. The PCR assay results showed no WSSV in the other three groups (groups 1, 2, and 4), but the dead and alive shrimp collected from group 3 were confirmed to be infected with the virus. Histopathological examination revealed normal structures in the hepatopancreas, gill, and muscle tissues of group 4, whereas numerous abnormally shaped nuclei were detected in the gill tissue of group 2. Moreover, group 1 showed minor WSSV-related lesions with few basophilic inclusion bodies in the gills, interestingly, group 3 exhibited severe lesions with numerous basophilic inclusion bodies in the gills. In conclusion, this study confirmed the correlation between the viral disease of shrimp and MPs, which can cause significant economic losses to the shrimp aquaculture industry.
Collapse
Affiliation(s)
- Hye Jin Jeon
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Sangsu Seo
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Chorong Lee
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Bumkeun Kim
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Patharapol Piamsomboon
- Department of Veterinary Medicine, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Veterinary Medical Aquatic Animal Research Center of Excellence, Chulalongkorn University, Bangkok, Thailand
| | - Ji Hyung Kim
- Department of Food Science and Biotechnology, Gachon University, Seongnam 13120, Republic of Korea
| | - Jee Eun Han
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
- Institute for Veterinary Biomedical Science, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
17
|
Dolcini J, Chiavarini M, Firmani G, Ponzio E, D’Errico MM, Barbadoro P. Consumption of Bottled Water and Chronic Diseases: A Nationwide Cross-Sectional Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:1074. [PMID: 39200683 PMCID: PMC11354970 DOI: 10.3390/ijerph21081074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/05/2024] [Accepted: 08/13/2024] [Indexed: 09/02/2024]
Abstract
Plastic pollution is a growing concern. It can form smaller particles called microplastics (<5 mm). Microplastics can break down into even smaller pieces called nanoplastics (<1 μm). These minute particles can infiltrate human cells and tissues, with their health impacts still largely undetermined. On average, a liter of bottled water includes about 240,000 tiny pieces of plastic. The purpose of this study was to evaluate the association between the use of bottled plastic water (BW) and several health outcomes. Utilizing data from the Italian National Institute of Statistics' "Aspects of Daily Life" survey (N = 45,597), we employed logistic regression to explore the correlation between BW consumption and the prevalence of various chronic diseases, including hypertension, gastric/duodenal ulcers, and kidney stones. Adjustments were made for covariates such as education, age, gender, and economic resources. Our analysis indicated a statistically significant association between BW consumption and increased risk of hypertension (Odds ratio [OR] = 1.05, 95% confidence interval [CI] 1.00-1.11), diabetes (OR = 1.09, 95% CI 1.01-1.18), gastric/duodenal ulcers (OR = 1.21, 95% CI 1.07-1.38), and kidney stones (OR = 1.17, 95% CI 1.03-1.32). The consumption of BW is associated with heightened risk for certain health conditions. Policymakers and healthcare providers should consider implementing targeted prevention strategies and awareness campaigns.
Collapse
Affiliation(s)
| | - Manuela Chiavarini
- Department of Biomedical Sciences and Public Health, Section of Hygiene, Preventive Medicine and Public Health, Polytechnic University of the Marche Region, 60126 Ancona, Italy; (J.D.); (E.P.); (M.M.D.); (P.B.)
| | - Giorgio Firmani
- Department of Biomedical Sciences and Public Health, Section of Hygiene, Preventive Medicine and Public Health, Polytechnic University of the Marche Region, 60126 Ancona, Italy; (J.D.); (E.P.); (M.M.D.); (P.B.)
| | | | | | | |
Collapse
|
18
|
Anh Nguyen TK, Trần-Phú T, Daiyan R, Minh Chau Ta X, Amal R, Tricoli A. From Plastic Waste to Green Hydrogen and Valuable Chemicals Using Sunlight and Water. Angew Chem Int Ed Engl 2024; 63:e202401746. [PMID: 38757221 DOI: 10.1002/anie.202401746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/15/2024] [Accepted: 05/15/2024] [Indexed: 05/18/2024]
Abstract
Over 79 % of 6.3 billion tonnes of plastics produced from 1950 to 2015 have been disposed in landfills or found their way to the oceans, where they will reside for up to hundreds of years before being decomposed bringing upon significant dangers to our health and ecosystems. Plastic photoreforming offers an appealing alternative by using solar energy and water to transform plastic waste into value-added chemical commodities, while simultaneously producing green hydrogen via the hydrogen evolution reaction. This review aims to provide an overview of the underlying principles of emerging plastic photoreforming technologies, highlight the challenges associated with experimental protocols and performance assessments, discuss recent global breakthroughs on the photoreforming of plastics, and propose perspectives for future research. A critical assessment of current plastic photoreforming studies shows a lack of standardised conditions, hindering comparison amongst photocatalyst performance. Guidelines to establish a more accurate evaluation of materials and systems are proposed, with the aim to facilitate the translation of promising fundamental discovery in photocatalysts design.
Collapse
Affiliation(s)
- Thi Kim Anh Nguyen
- Nanotechnology Research Laboratory, Faculty of Engineering, University of Sydney, Sydney, NSW 2006, Australia
| | - Thành Trần-Phú
- Nanotechnology Research Laboratory, Faculty of Engineering, University of Sydney, Sydney, NSW 2006, Australia
- Present address: Chemistry and Nanoscience Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Rahman Daiyan
- Particles and Catalysis Research Laboratory, School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Xuan Minh Chau Ta
- Nanotechnology Research Laboratory, Faculty of Engineering, University of Sydney, Sydney, NSW 2006, Australia
| | - Rose Amal
- Particles and Catalysis Research Laboratory, School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Antonio Tricoli
- Nanotechnology Research Laboratory, Faculty of Engineering, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
19
|
Maurizi L, Simon-Sánchez L, Vianello A, Nielsen AH, Vollertsen J. Every breath you take: High concentration of breathable microplastics in indoor environments. CHEMOSPHERE 2024; 361:142553. [PMID: 38851509 DOI: 10.1016/j.chemosphere.2024.142553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/10/2024]
Abstract
The widespread presence of microplastics (MPs) in the air and their potential impact on human health underscore the pressing need to develop robust methods for quantifying their presence, particularly in the breathable fraction (<5 μm). In this study, Raman micro-spectroscopy (μRaman) was employed to assess the concentration of indoor airborne MPs >1 μm in four indoor environments (a meeting room, a workshop, and two apartments) under different levels of human activity. The indoor airborne MP concentration spanned between 58 and 684 MPs per cubic meter (MP m-3) (median 212 MP m-3, MPs/non-plastic ratio 0-1.6%), depending not only on the type and level of human activity, but also on the surface area and air circulation of the investigated locations. Additionally, we assessed in the same environments the filtration performance of a type IIR surgical facemask, which could overall retain 85.4 ± 3.9% of the MPs. We furthermore estimated a human MP intake from indoor air of 3415 ± 2881 MPs day-1 (mostly poly-amide MPs), which could be decreased to 283 ± 317 MPs day-1 using the surgical facemask. However, for the breathable fraction of MPs (1-5 μm), the efficiency of the surgical mask was reduced to 57.6%.
Collapse
Affiliation(s)
- L Maurizi
- Department of The Built Environment, Aalborg University, 9220, Aalborg, Denmark.
| | - L Simon-Sánchez
- Department of The Built Environment, Aalborg University, 9220, Aalborg, Denmark
| | - A Vianello
- Department of The Built Environment, Aalborg University, 9220, Aalborg, Denmark
| | - A H Nielsen
- Department of The Built Environment, Aalborg University, 9220, Aalborg, Denmark
| | - J Vollertsen
- Department of The Built Environment, Aalborg University, 9220, Aalborg, Denmark
| |
Collapse
|
20
|
Wang Y, Fu Z, Guan D, Zhao J, Zhang Q, Liu Q, Xie J, Sun Y, Guo L. Occurrence Characteristics and Ecotoxic Effects of Microplastics in Environmental Media: a Mini Review. Appl Biochem Biotechnol 2024; 196:5484-5507. [PMID: 38158486 DOI: 10.1007/s12010-023-04832-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
The issue of environmental pollution caused by the widespread presence of microplastics (MPs) in environmental media has garnered significant attention. However, research on MPs pollution has mainly focused on aquatic ecosystems in recent years. The sources and pollution characteristics of MPs in the environment, especially in solid waste, have not been well-described. Additionally, there are few reports on the ecotoxicity of MPs, which highlights the need to fill this gap. This review first summarizes the occurrence characteristics of MPs in water, soil, and marine environments, and then provides an overview of their toxic effects on organisms and the relevant mechanisms. This paper also provides an outlook on the hotspots of research on pollution characterization and ecotoxicity of MPs. Finally, this review aims to provide insights for future ecotoxicity control of MPs. Overall, this paper expands our understanding of the pollution characteristics and ecological toxicity of MPs in current environmental media, providing forward-looking guidance for future research.
Collapse
Affiliation(s)
- Yuxin Wang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, China
| | - Zhou Fu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, China
| | - Dezheng Guan
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, China
| | - Jianwei Zhao
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, China.
| | - Qi Zhang
- School of Environmental Science and Engineering, Qingdao Jiebao Ecological Technology Co., Ltd., Qingdao, 266000, China
| | - Qingxin Liu
- School of Environmental Science and Engineering, Qingdao Jiebao Ecological Technology Co., Ltd., Qingdao, 266000, China
| | - Jingliang Xie
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, China
| | - Yingjie Sun
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, China.
| | - Liang Guo
- China Key Laboratory of Marine Environmental and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| |
Collapse
|
21
|
Maw MM, Boontanon N, Aung HKZZ, Jindal R, Fujii S, Visvanathan C, Boontanon SK. Microplastics in wastewater and sludge from centralized and decentralized wastewater treatment plants: Effects of treatment systems and microplastic characteristics. CHEMOSPHERE 2024; 361:142536. [PMID: 38844106 DOI: 10.1016/j.chemosphere.2024.142536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/27/2024] [Accepted: 06/03/2024] [Indexed: 06/11/2024]
Abstract
Domestic wastewater treatment plants (WWTPs) play a vital role in limiting the release of microplastics (MP) into the environment. This study examined MP removal efficiency from five centralized and four decentralized domestic WWTPs in Bangkok, Thailand. MP concentrations in wastewater and sludge were comparable between centralized and decentralized WWTPs, despite these decentralized WWTPs serving smaller populations and having limited treatment capacity. The elimination of MPs ranged from 50 to 96.8% in centralized WWTPs and 14.2-53.6% in decentralized WWTPs. It is noted that the retained MPs concentrations in sludge ranged from 20,000 to 228,100 MP/kg dry weight. The prevalence of synthetic fibers and fragments could be attributed to their pathways from laundry or car tires, and the accidental release of a variety of plastic wastes ended up in investigated domestic WWTPs. Removal of MPs between the centralized and decentralized WWTPs was influenced by several impact factors including initial MP concentrations, longer retention times, MP fragmentation, and variations of MP concentrations in sludge leading to different activated sludge process configurations. Sewage sludge has become a primary location for the accumulation of incoming microplastics in WWTPs. The MPs entering and leaving each unit process were varied due to the unique characteristics of MPs, and their different treatment efficiencies. While the extended hydraulic retention period in decentralized WWTPs decreased the MP removal efficacy, the centralized WWTP with the two-stage activated sludge process achieved the highest MP removal efficiency.
Collapse
Affiliation(s)
- Me Me Maw
- Graduate Program in Environmental and Water Resources Engineering, Department of Civil and Environmental Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom, 73710, Thailand
| | - Narin Boontanon
- Research Center and Technology, Development for Environmental Innovation, Faculty of Environment and Resource Studies, Mahidol University, Nakhon Pathom, 73710, Thailand
| | - Humm Kham Zan Zan Aung
- Graduate Program in Environmental and Water Resources Engineering, Department of Civil and Environmental Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom, 73710, Thailand
| | - Ranjna Jindal
- Graduate Program in Environmental and Water Resources Engineering, Department of Civil and Environmental Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom, 73710, Thailand
| | - Shigeo Fujii
- Graduate School of Global Environmental Studies, Kyoto University, Kyoto, 606-8501, Japan
| | - Chettiyappan Visvanathan
- Graduate Program in Environmental and Water Resources Engineering, Department of Civil and Environmental Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom, 73710, Thailand
| | - Suwanna Kitpati Boontanon
- Graduate Program in Environmental and Water Resources Engineering, Department of Civil and Environmental Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom, 73710, Thailand; Graduate School of Global Environmental Studies, Kyoto University, Kyoto, 606-8501, Japan.
| |
Collapse
|
22
|
Rahman L, Williams A, Wu D, Halappanavar S. Polyethylene Terephthalate Microplastics Generated from Disposable Water Bottles Induce Interferon Signaling Pathways in Mouse Lung Epithelial Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1287. [PMID: 39120391 PMCID: PMC11314056 DOI: 10.3390/nano14151287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/26/2024] [Accepted: 07/28/2024] [Indexed: 08/10/2024]
Abstract
Microplastics (MPs) are present in ambient air in a respirable size fraction; however, their potential impact on human health via inhalation routes is not well documented. In the present study, methods for a lab-scale generation of MPs from regularly used and littered plastic articles were optimized. The toxicity of 11 different types of MPs, both commercially purchased and in-lab prepared MPs, was investigated in lung epithelial cells using cell viability, immune and inflammatory response, and genotoxicity endpoints. The underlying mechanisms were identified by microarray analysis. Although laborious, the laboratory-scale methods generated a sufficient quantity of well characterized MPs for toxicity testing. Of the 11 MPs tested, the small sized polyethylene terephthalate (PETE) MPs prepared from disposable water bottles induced the maximum toxicity. Specifically, the smaller size PETE MPs induced a robust activation of the interferon signaling pathway, implying that PETE MPs are perceived by cells by similar mechanisms as those employed to recognize pathogens. The PETE MPs of heterogenous size and shapes induced cell injury, triggering cell death, inflammatory cascade, and DNA damage, hallmark in vitro events indicative of potential in vivo tissue injury. The study establishes toxicity of specific types of plastic materials in micron and nano size.
Collapse
Affiliation(s)
- Luna Rahman
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON K1A 0K9, Canada; (L.R.); (A.W.); (D.W.)
| | - Andrew Williams
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON K1A 0K9, Canada; (L.R.); (A.W.); (D.W.)
| | - Dongmei Wu
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON K1A 0K9, Canada; (L.R.); (A.W.); (D.W.)
| | - Sabina Halappanavar
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON K1A 0K9, Canada; (L.R.); (A.W.); (D.W.)
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
23
|
Aloisi M, Grifoni D, Zarivi O, Colafarina S, Morciano P, Poma AMG. Plastic Fly: What Drosophila melanogaster Can Tell Us about the Biological Effects and the Carcinogenic Potential of Nanopolystyrene. Int J Mol Sci 2024; 25:7965. [PMID: 39063206 PMCID: PMC11277132 DOI: 10.3390/ijms25147965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Today, plastic pollution is one of the biggest threats to the environment and public health. In the tissues of exposed species, micro- and nano-fragments accumulate, leading to genotoxicity, altered metabolism, and decreased lifespan. A model to investigate the genotoxic and tumor-promoting potential of nanoplastics (NPs) is Drosophila melanogaster. Here we tested polystyrene, which is commonly used in food packaging, is not well recycled, and makes up at least 30% of landfills. In order to investigate the biological effects and carcinogenic potential of 100 µm polystyrene nanoparticles (PSNPs), we raised Oregon [R] wild-type flies on contaminated food. After prolonged exposure, fluorescent PSNPs accumulated in the gut and fat bodies. Furthermore, PSNP-fed flies showed considerable alterations in weight, developmental time, and lifespan, as well as a compromised ability to recover from starvation. Additionally, we noticed a decrease in motor activity in DNAlig4 mutants fed with PSNPs, which are known to be susceptible to dietary stressors. A qPCR molecular investigation of the larval intestines revealed a markedly elevated expression of the genes drice and p53, suggesting a response to cell damage. Lastly, we used warts-defective mutants to assess the carcinogenic potential of PSNPs and discovered that exposed flies had more aberrant masses than untreated ones. In summary, our findings support the notion that ingested nanopolystyrene triggers metabolic and genetic modifications in the exposed organisms, eventually delaying development and accelerating death and disease.
Collapse
Affiliation(s)
- Massimo Aloisi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.A.); (D.G.); (O.Z.); (S.C.); (P.M.)
| | - Daniela Grifoni
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.A.); (D.G.); (O.Z.); (S.C.); (P.M.)
| | - Osvaldo Zarivi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.A.); (D.G.); (O.Z.); (S.C.); (P.M.)
| | - Sabrina Colafarina
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.A.); (D.G.); (O.Z.); (S.C.); (P.M.)
| | - Patrizia Morciano
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.A.); (D.G.); (O.Z.); (S.C.); (P.M.)
- INFN Laboratori Nazionali del Gran Sasso, Assergi, 67100 L’Aquila, Italy
| | - Anna Maria Giuseppina Poma
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.A.); (D.G.); (O.Z.); (S.C.); (P.M.)
| |
Collapse
|
24
|
Vohl S, Kristl M, Stergar J. Harnessing Magnetic Nanoparticles for the Effective Removal of Micro- and Nanoplastics: A Critical Review. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1179. [PMID: 39057856 PMCID: PMC11279442 DOI: 10.3390/nano14141179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024]
Abstract
The spread of micro- (MPs) and nanoplastics (NPs) in the environment has become a significant environmental concern, necessitating effective removal strategies. In this comprehensive scientific review, we examine the use of magnetic nanoparticles (MNPs) as a promising technology for the removal of MPs and NPs from water. We first describe the issues of MPs and NPs and their impact on the environment and human health. Then, the fundamental principles of using MNPs for the removal of these pollutants will be presented, emphasizing that MNPs enable the selective binding and separation of MPs and NPs from water sources. Furthermore, we provide a short summary of various types of MNPs that have proven effective in the removal of MPs and NPs. These include ferromagnetic nanoparticles and MNPs coated with organic polymers, as well as nanocomposites and magnetic nanostructures. We also review their properties, such as magnetic saturation, size, shape, surface functionalization, and stability, and their influence on removal efficiency. Next, we describe different methods of utilizing MNPs for the removal of MPs and NPs. We discuss their advantages, limitations, and potential for further development in detail. In the final part of the review, we provide an overview of the existing studies and results demonstrating the effectiveness of using MNPs for the removal of MPs and NPs from water. We also address the challenges that need to be overcome, such as nanoparticle optimization, process scalability, and the removal and recycling of nanoparticles after the completion of the process. This comprehensive scientific review offers extensive insights into the use of MNPs for the removal of MPs and NPs from water. With improved understanding and the development of advanced materials and methods, this technology can play a crucial role in addressing the issues of MPs and NPs and preserving a clean and healthy environment. The novelty of this review article is the emphasis on MNPs for the removal of MPs and NPs from water and a detailed review of the advantages and disadvantages of various MNPs for the mentioned application. Additionally, a review of a large number of publications in this field is provided.
Collapse
Affiliation(s)
| | | | - Janja Stergar
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, 2000 Maribor, Slovenia; (S.V.); (M.K.)
| |
Collapse
|
25
|
Saudrais F, Schvartz M, Renault JP, Vieira J, Devineau S, Leroy J, Taché O, Boulard Y, Pin S. The Impact of Virgin and Aged Microstructured Plastics on Proteins: The Case of Hemoglobin Adsorption and Oxygenation. Int J Mol Sci 2024; 25:7047. [PMID: 39000151 PMCID: PMC11241625 DOI: 10.3390/ijms25137047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/16/2024] Open
Abstract
Plastic particles, particularly micro- and nanoparticles, are emerging pollutants due to the ever-growing amount of plastics produced across a wide variety of sectors. When plastic particles enter a biological medium, they become surrounded by a corona, giving them their biological identity and determining their interactions in the living environment and their biological effects. Here, we studied the interactions of microstructured plastics with hemoglobin (Hb). Virgin polyethylene microparticles (PEMPs) and polypropylene microparticles (PPMPs) as well as heat- or irradiation-aged microparticles (ag-PEMPs and ag-PPMPs) were used to quantify Hb adsorption. Polypropylene filters (PP-filters) were used to measure the oxygenation of adsorbed Hb. Microstructured plastics were characterized using optical microscopy, SAXS, ATR-FTIR, XPS, and Raman spectroscopy. Adsorption isotherms showed that the Hb corona thickness is larger on PPMPs than on PEMPs and Hb has a higher affinity for PPMPs than for PEMPs. Hb had a lower affinity for ag-PEMPs and ag-PPMPs, but they can be adsorbed in larger amounts. The presence of partial charges on the plastic surface and the oxidation rate of microplastics may explain these differences. Tonometry experiments using an original method, the diffuse reflection of light, showed that adsorbed Hb on PP-filters retains its cooperativity, but its affinity for O2 decreases significantly.
Collapse
Affiliation(s)
- Florent Saudrais
- NIMBE, CNRS, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (F.S.)
| | - Marion Schvartz
- NIMBE, CNRS, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (F.S.)
| | | | - Jorge Vieira
- NIMBE, CNRS, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (F.S.)
| | - Stéphanie Devineau
- NIMBE, CNRS, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (F.S.)
- Unité de Biologie Fonctionnelle et Adaptative, CNRS, Université Paris Cité, 75013 Paris, France
| | - Jocelyne Leroy
- NIMBE, CNRS, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (F.S.)
| | - Olivier Taché
- NIMBE, CNRS, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (F.S.)
| | - Yves Boulard
- Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Serge Pin
- NIMBE, CNRS, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (F.S.)
| |
Collapse
|
26
|
Megha KB, Anvitha D, Parvathi S, Neeraj A, Sonia J, Mohanan PV. Environmental impact of microplastics and potential health hazards. Crit Rev Biotechnol 2024:1-31. [PMID: 38915217 DOI: 10.1080/07388551.2024.2344572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 02/23/2024] [Indexed: 06/26/2024]
Abstract
Microscopic plastic (microplastic) pollutants threaten the earth's biodiversity and ecosystems. As a result of the progressive fragmentation of oversized plastic containers and products or manufacturing in small sizes, microplastics (particles of a diameter of 5 mm with no lower limit) are used in medicines, personal care products, and industry. The incidence of microplastics is found everywhere in the air, marine waters, land, and even food that humans and animals consume. One of the greatest concerns is the permanent damage that is created by plastic waste to our fragile ecosystem. The impossibility of the complete removal of all microplastic contamination from the oceans is one of the principal tasks of our governing body, research scientists, and individuals. Implementing the necessary measures to reduce the levels of plastic consumption is the only way to protect our environment. Cutting off the plastic flow is the key remedy to reducing waste and pollution, and such an approach could show immense significance. This review offers a comprehensive exploration of the various aspects of microplastics, encompassing their composition, types, properties, origins, health risks, and environmental impacts. Furthermore, it delves into strategies for comprehending the dynamics of microplastics within oceanic ecosystems, with a focus on averting their integration into every tier of the food chain.
Collapse
Affiliation(s)
- K B Megha
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Thiruvananthapuram, India
| | - D Anvitha
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Thiruvananthapuram, India
| | - S Parvathi
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Thiruvananthapuram, India
| | - A Neeraj
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Thiruvananthapuram, India
| | - J Sonia
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Thiruvananthapuram, India
| | - P V Mohanan
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Thiruvananthapuram, India
| |
Collapse
|
27
|
Mamedov MN, Savchuk EA. Relationship between microplastics and cardiovascular risk factors. КАРДИОВАСКУЛЯРНАЯ ТЕРАПИЯ И ПРОФИЛАКТИКА 2024; 23:4069. [DOI: 10.15829/1728-8800-2024-4069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024] Open
Abstract
In recent years, plastic has been widely used in various anthropic activity fields, but its waste pollutes the environment. Under the influence of chemical processes, it decomposes micro- and nanoplastics, which enter the human body in various ways. New experimental studies indicate that they can cause a number of cardiovascular disorders, including endothelial cell dysfunction and induction of oxidative processes.The article examines the impact of environmental pollution with microplastics on the development of cardiovascular diseases. It is clear that new data on this new risk factor are accumulating and further clinical studies are required.
Collapse
Affiliation(s)
- M. N. Mamedov
- National Medical Research Center for Therapy and Preventive Medicine
| | - E. A. Savchuk
- National Medical Research Center for Therapy and Preventive Medicine
| |
Collapse
|
28
|
Li X, Chu Z, Feng C, Song P, Yang T, Zhou L, Zhao X, Chai X, Xing J, Chen S, Zhang J, Wang J, Liu G, Tang H. Unveiling the molecular mechanisms of size-dependent effect of polystyrene micro/nano-plastics on Chlamydomonas reinhardtii through proteomic profiling. CHEMOSPHERE 2024; 358:142220. [PMID: 38710410 DOI: 10.1016/j.chemosphere.2024.142220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/24/2024] [Accepted: 04/30/2024] [Indexed: 05/08/2024]
Abstract
Microplastics have become a prevalent environmental pollutant due to widespread release and production. Algae, as primary producers, play a crucial role in maintaining the ecological balance of freshwater environments. Despite reports on the inhibition of microalgae by microplastics, the size-dependent effects on microalgae and associated molecular mechanism remain poorly understood. This study investigates the impacts of three polystyrene micro/nano-plastics (PS-MNPs) with different sizes (100 nm, 350 nm, and 6 μm) and concentrations (25-200 mg/L) on Chlamydomonas reinhardtii (C. reinhardtii) throughout its growth period. Results reveal size- and concentration-dependent growth inhibition and induction of oxidative stress by PS-MNPs, with microalgae exhibiting increased vulnerability to smaller-sized and higher-concentration PS-MNPs. Proteomics analysis elucidates the size-dependent suppression of proteins involved in the photosynthesis process by PS-MNPs. Photosynthetic activity assays demonstrate that smaller PS-MNPs more significantly reduce chlorophyll content and the maximal photochemical efficiency of photosystem II. Finally, electron microscope and Western blot assays collectively confirm the size effect of PS-MNPs on microalgae growth is attributable to suppressed protein expression rather than shading effects. This study contributes to advancing our understanding of the intricate interactions between micro/nano-plastics and algae at the molecular level, emphasizing the efficacy of proteomics in dissecting the mechanistic aspects of microplastics-induced biological effects on environmental indicator organisms.
Collapse
Affiliation(s)
- Xiaoxue Li
- Department of Rehabilitation Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China; Institute of Agricultural Products Preservation and Processing Technology, National Engineering Technology Research Center for Preservation of Agriculture Product, Tianjin Academy of Agricultural Sciences, Tianjin, 300384, China
| | - Zheng Chu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Chenran Feng
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Ping Song
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Tong Yang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Lirun Zhou
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xin Zhao
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xin Chai
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jiale Xing
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Sa Chen
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Junzhe Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jigang Wang
- Department of Rehabilitation Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China; Department of Cardiology, Shenzhen Cardiovascular Minimally Invasive Medical Engineering Technology Research and Development Center, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China; Department of Traditional Chinese Medicine and School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China; State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng, 475004, China.
| | - Gang Liu
- Department of Rehabilitation Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Huan Tang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
29
|
Zhang M, Hou J, Xia J, Wu J, You G, Miao L. The long-term release and particle fracture behaviors of nanoplastics retained in porous media: Effects of surfactants, natural organic matters, antibiotics, and bacteria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 925:171563. [PMID: 38460706 DOI: 10.1016/j.scitotenv.2024.171563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/05/2024] [Accepted: 03/05/2024] [Indexed: 03/11/2024]
Abstract
The transport of nanoplastics (NPs) in porous media has received a lot of attention, but the studies on the long-term release of NPs retained in porous media and the particle fracture during this process are seriously lacking. For filling this deficiency, we examined the individual or synergistic effects of surfactants, natural organic matters (NOMs), antibiotics, and bacteria on the desorption, long-term release, and particle fracture behaviors of polystyrene NPs (PS-NPs) retained in porous media. It was found that the change in hydrophilicity of PS-NPs dominated the long-term release of PS-NPs retained in porous media when surfactants were present. In the single system of surfactants and the dual system of surfactants and NOMs, the release of PS-NPs were improved owing to the increasing hydrophilicity of PS-NPs, although cationic surfactants also reduced the electrostatic repulsion between PS-NPs and porous media. Increasing antibiotic concentration reduced the electrostatic repulsion between PS-NPs and porous media to inhibit the release of PS-NPs. When bacteria were present whether containing antibiotics or not, the effects on roughness of PS-NPs dominated the release of PS-NPs. The effects of surfactants and NOMs on the PS-NP desorption were similar with the long-term release, with changes in hydrophilicity dominating the process. Whereas the effects of antibiotics and bacteria on the PS-NP desorption were different with the long-term release. Surfactants and NOMs in the presence of surfactants inhibited the fracture of PS-NPs by increasing the hydrophilicity of PS-NPs brought about the coating of water molecules on PS-NPs for protection. Antibiotics had no significant effects on the fracture of PS-NPs due to unaltered vertical forces on PS-NPs and no protective effect. Bacteria in the presence or absence of antibiotics inhibited the fracture of PS-NPs by coating PS-NPs retained in porous media to protect PS-NPs from fracture.
Collapse
Affiliation(s)
- Mingzhi Zhang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Jun Hou
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China.
| | - Jun Xia
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Jun Wu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Guoxiang You
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Lingzhan Miao
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| |
Collapse
|
30
|
Vojnits K, de León A, Rathore H, Liao S, Zhao M, Gibon J, Pakpour S. ROS-dependent degeneration of human neurons induced by environmentally relevant levels of micro- and nanoplastics of diverse shapes and forms. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134017. [PMID: 38518696 DOI: 10.1016/j.jhazmat.2024.134017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 03/24/2024]
Abstract
Our study explores the pressing issue of micro- and nanoplastics (MNPs) inhalation and their subsequent penetration into the brain, highlighting a significant environmental health concern. We demonstrate that MNPs can indeed penetrate murine brain, warranting further investigation into their neurotoxic effects in humans. We then proceed to test the impact of MNPs at environmentally relevant concentrations, with focusing on variations in size and shape. Our findings reveal that these MNPs induce oxidative stress, cytotoxicity, and neurodegeneration in human neurons, with cortical neurons being more susceptible than nociceptors. Furthermore, we examine the role of biofilms on MNPs, demonstrating that MNPs can serve as a vehicle for pathogenic biofilms that significantly exacerbate these neurotoxic effects. This sequence of investigations reveals that minimal MNPs accumulation can cause oxidative stress and neurodegeneration in human neurons, significantly risking brain health and highlights the need to understand the neurological consequences of inhaling MNPs. Overall, our developed in vitro testing battery has significance in elucidating the effects of environmental factors and their associated pathological mechanisms in human neurons.
Collapse
Affiliation(s)
- Kinga Vojnits
- School of Engineering, University of British Columbia, Kelowna, BC, Canada
| | - Andrés de León
- School of Engineering, University of British Columbia, Kelowna, BC, Canada; Department of Biology, University of British Columbia, Kelowna, BC, Canada
| | - Harneet Rathore
- School of Engineering, University of British Columbia, Kelowna, BC, Canada
| | - Sophia Liao
- School of Engineering, University of British Columbia, Kelowna, BC, Canada
| | - Michael Zhao
- School of Engineering, University of British Columbia, Kelowna, BC, Canada
| | - Julien Gibon
- Department of Biology, University of British Columbia, Kelowna, BC, Canada; Office of Vice-Principal, Research and Innovation, McGill University, Montreal, Quebec, Canada
| | - Sepideh Pakpour
- School of Engineering, University of British Columbia, Kelowna, BC, Canada.
| |
Collapse
|
31
|
Liu S, He Y, Yin J, Zhu Q, Liao C, Jiang G. Neurotoxicities induced by micro/nanoplastics: A review focusing on the risks of neurological diseases. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134054. [PMID: 38503214 DOI: 10.1016/j.jhazmat.2024.134054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/06/2024] [Accepted: 03/14/2024] [Indexed: 03/21/2024]
Abstract
Pollution of micro/nano-plastics (MPs/NPs) is ubiquitously prevalent in the environment, leading to an unavoidable exposure of the human body. Despite the protection of the blood-brain barrier, MPs/NPs can be transferred and accumulated in the brain, which subsequently exert negative effects on the brain. Nevertheless, the potential neurodevelopmental and/or neurodegenerative risks of MPs/NPs remain largely unexplored. In this review, we provide a systematic overview of recent studies related to the neurotoxicity of MPs/NPs. It covers the environmental hazards and human exposure pathways, translocation and distribution into the brain, the neurotoxic effects, and the possible mechanisms of environmental MPs/NPs. MPs/NPs are widely found in different environment matrices, including air, water, soil, and human food. Ambient MPs/NPs can enter the human body by ingestion, inhalation and dermal contact, then be transferred into the brain via the blood circulation and nerve pathways. When MPs/NPs are present in the brain, they can initiate a series of molecular or cellular reactions that may harm the blood-brain barrier, cause oxidative stress, trigger inflammatory responses, affect acetylcholinesterase activity, lead to mitochondrial dysfunction, and impair autophagy. This can result in abnormal protein folding, loss of neurons, disruptions in neurotransmitters, and unusual behaviours, ultimately contributing to the initiation and progression of neurodegenerative changes and neurodevelopmental abnormalities. Key challenges and further research directions are also proposed in this review as more studies are needed to focus on the potential neurotoxicity of MPs/NPs under realistic conditions.
Collapse
Affiliation(s)
- Shuang Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yinling He
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Jia Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Qingqing Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunyang Liao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan 430056, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
32
|
Zheng Y, Xu S, Liu J, Liu Z. The effects of micro- and nanoplastics on the central nervous system: A new threat to humanity? Toxicology 2024; 504:153799. [PMID: 38608860 DOI: 10.1016/j.tox.2024.153799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/03/2024] [Accepted: 04/07/2024] [Indexed: 04/14/2024]
Abstract
Given the widespread production and use of plastics, poor biodegradability, and inadequate recycling, micro/nanoplastics (MNPs) have caused widespread environmental pollution. As a result, humans inevitably ingest MNPs through various pathways. However, there is still no consensus on whether exposure to MNPs has adverse effects on humans. This article aims to provide a comprehensive overview of the knowledge of MNPs and the potential mechanisms of their impact on the central nervous system. Numerous in vivo and in vitro studies have shown that exposure to MNPs may pass through the blood-brain barrier (BBB) and lead to neurotoxicity through impairments in oxidative and inflammatory balance, neurotransmitter alternation, nerve conduction-related key enzymes, and impact through the gut-brain axis. It is worth noting that MNPs may act as carriers and have more severe effects on the body when co-exposed with other substances. MNPs of smaller sizes cause more severe harm. Despite the scarcity of reports directly relevant to humans, this review brings together a growing body of evidence showing that exposure to MNPs disturbs neurons and has even been found to alter the memory and behavior of organisms. This effect may lead to further potential negative influence on the central nervous system and contribute to the development of other diseases such as central nervous system inflammation and Parkinson 's-like neurodegenerative disorders. There is a need further to investigate the threat of MNPs to human health.
Collapse
Affiliation(s)
- Yanxu Zheng
- Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, PR China
| | - Shengchao Xu
- Department of Neurosurgery, Xiangya Hospital, 87th Xiangya Road, Changsha, Hunan 410008, PR China
| | - Jingyu Liu
- Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, PR China
| | - Zhixiong Liu
- Department of Neurosurgery, Xiangya Hospital, 87th Xiangya Road, Changsha, Hunan 410008, PR China; National Clinical Research Center for Geriatric Disorders, Changsha, Hunan 410013, PR China.
| |
Collapse
|
33
|
Zhang D, Wu C, Liu Y, Li W, Li S, Peng L, Kang L, Ullah S, Gong Z, Li Z, Ding D, Jin Z, Huang H. Microplastics are detected in human gallstones and have the ability to form large cholesterol-microplastic heteroaggregates. JOURNAL OF HAZARDOUS MATERIALS 2024; 467:133631. [PMID: 38335610 DOI: 10.1016/j.jhazmat.2024.133631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/21/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024]
Abstract
Ubiquitous pollution due to microplastics through the food chain is a major cause of various deleterious effects on the human health. The aim of this study was to determine the existence of microplastics and the internal mechanism of microplastics as accelerators of cholelithiasis. Gallstones were collected from 16 patients after cholecystectomy, and microplastics in the gallstones were detected through laser direct infrared and pyrolysis gas chromatographymass spectrometry examinations. Mice model of gallstone were constructed with or without different diameters of microplastic (0.5, 5 and 50 µm). The affinity between microplastic and cholesterol or bilirubin was tested by co-culturing and qualified using molecular dynamics simulations. Finally, altered gut microbiota among the groups were identified using 16 s rRNA sequencing. The presence of microplastics in the gallstones of all the patients were confirmed. Microplastic content was significantly higher in younger chololithiasis patients (age<50 years). Mice fed a high-cholesterol diet with microplastic drinks showed more severe chololithiasis. In terms of the mechanism, microplastics showed a higher affinity for cholesterol than for bilirubin. Significant alterations in the gut microbiota have also been identified after microplastic intake in mice. Our study revealed the presence of microplastics in human gallstones, showcasing their potential to aggravate chololithiasis by forming large cholesterol-microplastic heteroaggregates and altering the gut microbiota.
Collapse
Affiliation(s)
- Deyu Zhang
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Chang Wu
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Yue Liu
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Wanshun Li
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Shiyu Li
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Lisi Peng
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Le Kang
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Saif Ullah
- Department of Gastroenterology, First affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Zijun Gong
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zhaoshen Li
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Dan Ding
- Department of General Surgery, Changhai Hospital, Naval Medical University, Shanghai 200433, China.
| | - Zhendong Jin
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai 200433, China.
| | - Haojie Huang
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai 200433, China.
| |
Collapse
|
34
|
Berg EM, Dila DK, Schaul O, Eros A, McLellan SL, Newton RJ, Hoellein TJ, Kelly JJ. Anthropogenic particle concentrations and fluxes in an urban river are temporally variable and impacted by storm events. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e11021. [PMID: 38605502 DOI: 10.1002/wer.11021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/14/2024] [Accepted: 03/23/2024] [Indexed: 04/13/2024]
Abstract
Anthropogenic particles (AP), which include microplastics and other synthetic, semisynthetic, and anthropogenically modified materials, are pollutants of concern in aquatic ecosystems worldwide. Rivers are important conduits and retention sites for AP, and time series data on the movement of these particles in lotic ecosystems are needed to assess the role of rivers in the global AP cycle. Much research assessing AP pollution extrapolates stream loads based on single time point measurements, but lotic ecosystems are highly variable over time (e.g., seasonality and storm events). The accuracy of models describing AP dynamics in rivers is constrained by the limited studies that examine how frequent changes in discharge drive particle retention and transport. This study addressed this knowledge gap by using automated, high-resolution sampling to track AP concentrations and fluxes during multiple storm events in an urban river (Milwaukee River) and comparing these measurements to commonly monitored water quality metrics. AP concentrations and fluxes varied significantly across four storm events, highlighting the temporal variability of AP dynamics. When data from the sampling periods were pooled, there were increases in particle concentration and flux during the early phases of the storms, suggesting that floods may flush AP into the river and/or resuspend particles from the benthic zone. AP flux was closely linked to river discharge, suggesting large loads of AP are delivered downstream during storms. Unexpectedly, AP concentrations were not correlated with other simultaneously measured water quality metrics, including total suspended solids, fecal coliforms, chloride, nitrate, and sulfate, indicating that these metrics cannot be used to estimate AP. These data will contribute to more accurate models of particle dynamics in rivers and global plastic export to oceans. PRACTITIONER POINTS: Anthropogenic particle (AP) concentrations and fluxes in an urban river varied across four storm events. AP concentrations and fluxes were the highest during the early phases of the storms. Storms increased AP transport downstream compared with baseflow. AP concentrations did not correlate with other water quality metrics during storms.
Collapse
Affiliation(s)
- Elizabeth M Berg
- Department of Biology, Loyola University Chicago, Chicago, Illinois, USA
| | - Deborah K Dila
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Olivia Schaul
- Department of Biology, Loyola University Chicago, Chicago, Illinois, USA
| | - Audrey Eros
- Department of Biology, Loyola University Chicago, Chicago, Illinois, USA
| | - Sandra L McLellan
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Ryan J Newton
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Timothy J Hoellein
- Department of Biology, Loyola University Chicago, Chicago, Illinois, USA
| | - John J Kelly
- Department of Biology, Loyola University Chicago, Chicago, Illinois, USA
| |
Collapse
|
35
|
Wang X, Deng K, Zhang P, Chen Q, Magnuson JT, Qiu W, Zhou Y. Microplastic-mediated new mechanism of liver damage: From the perspective of the gut-liver axis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170962. [PMID: 38360312 DOI: 10.1016/j.scitotenv.2024.170962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/03/2024] [Accepted: 02/11/2024] [Indexed: 02/17/2024]
Abstract
Microplastics (MPs) are environmental contaminants that are present in all environments and can enter the human body, accumulate in various organs, and cause harm through the ingestion of food, inhalation, and dermal contact. The connection between bowel and liver disease and the interplay between gut, liver, and flora has been conceptualized as the "gut-liver axis". Microplastics can alter the structure of microbial communities in the gut and the liver can also be a target for microplastic invasion. Numerous studies have found that when MPs impair human health, they not only promote dysbiosis of the gut microbiota and disruption of the gut barrier but also cause liver damage. For this reason, the gut-liver axis provides a new perspective in understanding this toxic response. The cross-talk between MPs and the gut-liver axis has attracted the attention of the scientific community, but knowledge about whether MPs cause gut-liver interactions through the gut-liver axis is still very limited, and the effect of MPs on liver injury is not well understood. MPs can directly induce microbiota disorders and gut barrier dysfunction. As a result, harmful bacteria and metabolites in the gut enter the blood through the weak intestinal barrier (portal vein channel along the gut-liver axis) and reach the liver, causing liver damage (inflammatory damage, metabolic disorders, oxidative stress, etc.). This review provides an integrated perspective of the gut-liver axis to help conceptualize the mechanisms by which MP exposure induces gut microbiota dysbiosis and hepatic injury and highlights the connection between MPs and the gut-liver axis. Therefore, from the perspective of the gut-liver axis, targeting intestinal flora is an important way to eliminate microplastic liver damage.
Collapse
Affiliation(s)
- Xiaomei Wang
- Health Science Center, Ningbo University, Ningbo 315211, China; The First Affiliated Hospital of Ningbo University, Ningbo 315020, China
| | - Kaili Deng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Pei Zhang
- Ningbo Hangzhou Bay Hospital, Ningbo 315336, China
| | - Qiqing Chen
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Jason T Magnuson
- U.S. Geological Survey, Columbia Environmental Research Center, Columbia, MO 65201, USA
| | - Wenhui Qiu
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Yuping Zhou
- The First Affiliated Hospital of Ningbo University, Ningbo 315020, China; Ningbo Key Laboratory of Translational Medicine Research on Gastroenterology and Hepatology, Ningbo 315020, China; Institute of Digestive Disease of Ningbo University, Ningbo 315020, China.
| |
Collapse
|
36
|
Shi W, Wu N, Zhang Z, Liu Y, Chen J, Li J. A global review on the abundance and threats of microplastics in soils to terrestrial ecosystem and human health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169469. [PMID: 38154650 DOI: 10.1016/j.scitotenv.2023.169469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/29/2023] [Accepted: 12/16/2023] [Indexed: 12/30/2023]
Abstract
Soil is the source and sink of microplastics (MPs), which is more polluted than water and air. In this paper, the pollution levels of MPs in the agriculture, roadside, urban and landfill soils were reviewed, and the influence of MPs on soil ecosystem, including soil properties, microorganisms, animals and plants, was discussed. According to the results of in vivo and in vitro experiments, the possible risks of MPs to soil ecosystem and human health were predicted. Finally, in light of the current status of MPs research, several prospects are provided for future research directions to better evaluate the ecological risk and human health risk of MPs. MPs concentrations in global agricultural soils, roadside soils, urban soils and landfill soils had a great variance in different studies and locations. The participation of MPs has an impact on all aspects of terrestrial ecosystems. For soil properties, pH value, bulk density, pore space and evapotranspiration can be changed by MPs. For microorganisms, MPs can alter the diversity and abundance of microbiome, and different MPs have different effects on bacteria and fungi differently. For plants, MPs may interfere with their biochemical and physiological conditions and produce a wide range of toxic effects, such as inhibiting plant growth, delaying or reducing seed germination, reducing biological and fruit yield, and interfering with photosynthesis. For soil animals, MPs can affect their mobility, growth rate and reproductive capacity. At present epidemiological evidences regarding MPs exposure and negative human health effects are unavailable, but in vitro and in vivo data suggest that they pose various threats to human health, including respiratory system, digestive system, urinary system, endocrine system, nervous system, and circulation system. In conclusion, the existence and danger of MPs cannot be ignored and requires a global effort.
Collapse
Affiliation(s)
- Wenshan Shi
- School of Public Health, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow University, Suzhou 215123, China
| | - Nan Wu
- School of Geography, Queen Mary University of London, London E1 4NS, UK
| | - Zengli Zhang
- School of Public Health, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow University, Suzhou 215123, China.
| | - Yuting Liu
- School of Public Health, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow University, Suzhou 215123, China
| | - Jingsi Chen
- School of Public Health, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow University, Suzhou 215123, China
| | - Jiafu Li
- School of Public Health, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow University, Suzhou 215123, China.
| |
Collapse
|
37
|
Zhao B, Rehati P, Yang Z, Cai Z, Guo C, Li Y. The potential toxicity of microplastics on human health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168946. [PMID: 38043812 DOI: 10.1016/j.scitotenv.2023.168946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/25/2023] [Accepted: 11/25/2023] [Indexed: 12/05/2023]
Abstract
Microplastics are plastic particles, films, and fibers with a diameter of < 5 mm. Given their long-standing existence in the environment and terrible increase in annual emissions, concerns were raised about the potential health risk of microplastics on human beings. In particular, the increased consumption of masks during the COVID-19 pandemic has dramatically increased human contact with microplastics. To date, the emergence of microplastics in the human body, such as feces, blood, placenta, lower airway, and lungs, has been reported. Related toxicological investigations of microplastics were gradually increased. To comprehensively illuminate the interplay of microplastic exposure and human health, we systematically reviewed the updated toxicological data of microplastics and summarized their mode of action, adverse effects, and toxic mechanisms. The emerging critical issues in the current toxicological investigations were proposed and discussed. Our work would facilitate a better understanding of MPs-induced health hazards for toxicological evaluation and provide helpful information for regulatory decisions.
Collapse
Affiliation(s)
- Bosen Zhao
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Palizhati Rehati
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Zhu Yang
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong, China
| | - Caixia Guo
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China.
| | - Yanbo Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
38
|
Lee SE, Yoon HK, Kim DY, Jeong TS, Park YS. An Emerging Role of Micro- and Nanoplastics in Vascular Diseases. Life (Basel) 2024; 14:255. [PMID: 38398764 PMCID: PMC10890539 DOI: 10.3390/life14020255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/06/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Vascular diseases are the leading causes of death worldwide, and they are attributable to multiple pathologies, such as atherosclerosis, diabetes, and chronic obstructive pulmonary disease. Exposure to various environmental contaminants is associated with the development of various diseases, including vascular diseases. Among environmental contaminants, micro- and nanoplastics have gained attention as global environmental risk factors that threaten human health. Recently, extensive research has been conducted on the effects of micro- and nanoplastics on various human diseases, including vascular diseases. In this review, we highlight the effects of micro- and nanoplastics on vascular diseases.
Collapse
Affiliation(s)
- Seung Eun Lee
- Department of Microbiology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hyun Kyung Yoon
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (H.K.Y.); (D.Y.K.); (T.S.J.)
| | - Do Yun Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (H.K.Y.); (D.Y.K.); (T.S.J.)
| | - Taek Seung Jeong
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (H.K.Y.); (D.Y.K.); (T.S.J.)
| | - Yong Seek Park
- Department of Microbiology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
39
|
Cha J, Lee JY, Lee J. Effects of groundwater sample volume on identified microplastics in groundwater of an agricultural area in Korea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 911:168650. [PMID: 37979868 DOI: 10.1016/j.scitotenv.2023.168650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/06/2023] [Accepted: 11/15/2023] [Indexed: 11/20/2023]
Abstract
Groundwater serves various purposes worldwide, including agricultural, drinking, domestic, and industrial uses. In the Republic of Korea, groundwater is used primarily for agricultural purpose. Understanding the quality of groundwater is crucial because microplastics (MPs) can enter groundwater through agricultural activities and potentially pose harm to humans. Therefore, groundwater sampling plays a vital role in determining the presence of MPs. However, the optimal volume of groundwater sampling required for accurate MP assessment remains uncertain. This study examined the optimal sample size for collecting MPs from groundwater in the heavy agricultural area of the Haean Basin, Korea. Groundwater sampling and MP analyses were conducted during the wet and dry seasons of 2022. A total of 500 L of groundwater was continuously sampled in increments of 100 L to 500 L (100, 200, 300, 400, and 500 L). Additionally, we investigated the land use surrounding the sampling wells and the predominant types of plastics used in agriculture. To ensure reliable MP analysis, precautions were taken to minimize plastic contact during sampling, pretreatment, and μ-FTIR analysis. The concentration of MPs in groundwater ranged from 0.04 to 17.77 particles/L during the wet season and from 0 to 0.56 particles/L during the dry season. The highest concentration of MPs was observed at the first 100 L sample volume, with concentrations decreasing as the sampling volume increased. Fragmented particles accounted for 86.3 % during the wet season and 91.5 % during the dry season, whereas fibers constituted 13.7 and 8.5 %, respectively. MPs in the size range of 20-100 μm were predominant in both seasons. The polymers identified in both seasons were polypropylene (PP), polyethylene (PE), polyvinyl chloride (PVC), and polyamide (PA). While some studies suggest that 500 L is the optimal sample volume for assessing MPs in groundwater, the findings of this study indicate that a larger sample volume may be necessary. This study was the first attempt to determine the optimum sample volume required to collect MPs from groundwater, emphasizing the importance of conducting further research to validate these findings.
Collapse
Affiliation(s)
- Jihye Cha
- Department of Geology, Kangwon National University, Chuncheon 24341, Republic of Korea; Research on Microplastics in Groundwater (RMPG), Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Jin-Yong Lee
- Department of Geology, Kangwon National University, Chuncheon 24341, Republic of Korea; Research on Microplastics in Groundwater (RMPG), Kangwon National University, Chuncheon 24341, Republic of Korea.
| | - Jejung Lee
- School of Science and Engineering, University of Missouri-Kansas City, MO 64110, USA
| |
Collapse
|
40
|
Kong J, Lee J, Jeong S. Distribution of microplastics in rainfall and their control by a permeable pavement in low-impact development facility. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119710. [PMID: 38061101 DOI: 10.1016/j.jenvman.2023.119710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/02/2023] [Accepted: 11/22/2023] [Indexed: 01/14/2024]
Abstract
Microplastics (MPs) released from plastic products in daily life are present in the air and could be transported to freshwater environments along with rain. Recently, low-impact development (LID) facilities, such as permeable pavements, have been used to treat non-point source pollutants, including rainfall runoff. While runoff is treated by LID facilities, the periodic monitoring of MPs in rainfall and the efficiency of removal of MPs through LID facilities have rarely been investigated. Therefore, this case study focused on monitoring MPs in rainwater runoff and permeate from a permeable pavement in Busan, South Korea, thus evaluating the removal efficiency of MPs by a LID system. The initial rainfall runoff and permeate through the LID system were sampled, and the amounts, types, sizes, and shapes of MPs in the samples were analyzed using micro-Fourier Transform Infrared (FTIR) spectroscopy. The results showed that the distribution of MPs in the initial rainfall was affected by population in tested area. Polyethylene was the most common type of MPs in all the samples. Polyamide was only found in the LID samples because of the pollution caused by water flows and pavement materials. Fragment type MPs was most commonly observed and consisted of relatively small-sized (under 100 μm) particles. LID facilities were able to capture approximately 98% of MPs in the rainfall through a filtration process in the permeable pavement.
Collapse
Affiliation(s)
- Jiwon Kong
- Civil and Environmental Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Jieun Lee
- Institute for Environment and Energy, Pusan National University, Busan, 46241, Republic of Korea.
| | - Sanghyun Jeong
- Civil and Environmental Engineering, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
41
|
Eydi Gabrabad M, Yari M, Bonyadi Z. Using Spirulina platensis as a natural biocoagulant for polystyrene removal from aqueous medium: performance, optimization, and modeling. Sci Rep 2024; 14:2506. [PMID: 38291171 PMCID: PMC10828415 DOI: 10.1038/s41598-024-53123-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/29/2024] [Indexed: 02/01/2024] Open
Abstract
Microplastics (MPs) are newly recognized contaminants that result from the breakdown of plastics released into aquatic environments. This study focuses on the elimination of polystyrene (PS) using S. platensis, a natural biocoagulant, from aqueous solutions. The research investigated several crucial variables, including the initial level of PS ranging from 100 to 900 mg L-1, pH levels from 4 to 10, the contact time of 20-40 min, and doses of S. platensis ranging from 50 to 250 mg L-1. The analysis of the data revealed that the quadratic model offered the best fit for the experimental results. In the present study, we utilized S. platensis as a novel natural biocoagulant to effectively eliminate PS from aqueous solutions. Process optimization was performed using a Box-Behnken design (BBD). The best-fitting model for the data was the quadratic model. The results displayed that the highest elimination of PS (81%) was occurred at a pH of 4, with a contact time of 30 min, a dose of S. platensis at 250 mg L-1, and a PS concentration of 500 mg L-1. These findings show that S. platensis has a significant effect on removing PS from the aquatic environment. Algae can serve as a convenient and eco-friendly method, replacing chemical coagulants, to effectively remove MPs from the aquatic environment.
Collapse
Affiliation(s)
- Mohaddeseh Eydi Gabrabad
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Environmental Health Engineering, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammadreza Yari
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Environmental Health Engineering, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ziaeddin Bonyadi
- Department of Environmental Health Engineering, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
42
|
Vélez-Terreros PY, Romero-Estévez D, Yánez-Jácome GS. Microplastics in Ecuador: A review of environmental and health-risk assessment challenges. Heliyon 2024; 10:e23232. [PMID: 38163182 PMCID: PMC10754870 DOI: 10.1016/j.heliyon.2023.e23232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/26/2023] [Accepted: 11/29/2023] [Indexed: 01/03/2024] Open
Abstract
Pollution from plastic debris and microplastics (MPs) is a worldwide issue. Classified as emerging contaminants, MPs have become widespread and have been found not only in terrestrial and aquatic ecosystems but also within the food chain, which affects both the environment and human health. Since the outbreak of COVID-19, the consumption of single-use plastics has drastically increased, intensifying mismanaged plastic waste in countries such as Ecuador. Therefore, the aim of this review is to 1) summarize the state of MP-related knowledge, focusing on studies conducted with environmental matrices, biota, and food, and 2) analyze the efforts by different national authorities and entities in Ecuador to control MP contamination. Results showed a limited number of studies have been done in Ecuador, which have mainly focused on the surface water of coastal areas, followed by studies on sediment and food. MPs were identified in all samples, indicating the lack of wastewater management policies, deficient management of solid wastes, and the contribution of anthropogenic activities such as artisanal fishing and aquaculture to water ecosystem pollution, which affects food webs. Moreover, studies have shown that food contamination can occur through atmospheric deposition of MPs; however, ingredients and inputs from food production, processing, and packaging, as well as food containers, contribute to MP occurrence in food. Further research is needed to develop more sensitive, precise, and reliable detection methods and assess MPs' impact on terrestrial and aquatic ecosystems, biota, and human health. In Ecuador specifically, implementing wastewater treatment plants in major cities, continuously monitoring MP coastal contamination, and establishing environmental and food safety regulations are crucial. Additionally, national authorities need to develop programs to raise public awareness of plastic use and its environmental effects, as well as MP exposure's effects on human health.
Collapse
Affiliation(s)
- Pamela Y. Vélez-Terreros
- Centro de Estudios Aplicados en Química, Pontificia Universidad Católica del Ecuador, Av. 12 de Octubre 1076 y Roca, Quito, Pichincha, 170525, Ecuador
| | | | | |
Collapse
|
43
|
Gupta N, Parsai T, Kulkarni HV. A review on the fate of micro and nano plastics (MNPs) and their implication in regulating nutrient cycling in constructed wetland systems. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 350:119559. [PMID: 38016236 DOI: 10.1016/j.jenvman.2023.119559] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 10/06/2023] [Accepted: 11/04/2023] [Indexed: 11/30/2023]
Abstract
This review discusses the micro-nano plastics (MNPs) and their interaction with physical, chemical and biological processes in a constructed wetland (CW) system that is typically used as a nature-based tertiary wastewater treatment for municipal as well as industrial applications. Individual components of the CW system such as substrate, microorganisms and plants were considered to assess how MNPs influence the CW processes. One of the main functions of a CW system is removal of nutrients like nitrogen (N) and phosphorus (P) and here we highlight the pathways through which the MNPs influence CW's efficacy of nutrient removal. The presence of morphologically (size and shape) and chemically different MNPs influence the growth rate of microorganisms important in N and P cycling, invertebrates, decomposers, and the plants which affect the overall efficiency of a CW treatment system. Certain plant species take up the MNPs, and some toxicity has been observed. This review focuses on two significant aspects: (1) the presence of MNPs in a significant concentration affects the efficiency of N and P removal, and (2) the removal of MNPs. Because MNPs reduce the enzyme activities in abundance and overproduction of ROS oxidizes the enzyme active sites, resulting in the depletion of proteins, ultimately inhibiting nitrogen and phosphorus removal within the substrate layer. The review found that the majority of the studies used sand-activated carbon (SAC), granular-activated carbon (GAC), rice straw, granular limestone, and calcium carbonate, as a substrate for CW treatment systems. Common plant species used in the CW include Phragmites, Arabidopsis thaliana, Lepidium sativum, Thalia dealbata, and Canna indica, which were also found to be dominant in the uptake of the MNPs in the CWs. The MNPs were found to affect earthworms such as Eisenia fetida, Caenorhabditis elegans, and, Enchytraeus crypticus, whereas Metaphire vulgaris were found unaffected. Though various mechanisms take place during the removal process, adsorption and uptake mechanism effectively emphasize the removal of MNPs and nitrogen and phosphorus in CW. The MNPs characteristics (type, size, and concentration) play a crucial role in the removal efficiency of nano-plastics (NPs) and micro-plastics (MPs). The enhanced removal efficiency of NPs compared to MPs can be attributed to their smaller size, resulting in a faster reaction rate. However, NPs dose variation showed fluctuating removal efficiency, whereas MPs dose increment reduces removal efficiency. MP and NPs dose variation also affected toxicity to plants and earthworms as observed from data. Understanding the fate and removal of microplastics in wetland systems will help determine the reuse potential of wastewater and restrict the release of microplastics. This study provides information on various aspects and highlights future gaps and needs for MNP fate study in CW systems.
Collapse
Affiliation(s)
- Nikita Gupta
- School of Civil and Environmental Engineering, Indian Institute of Technology (IIT) Mandi, Kamand, Himachal Pradesh, 175005, India.
| | - Tanushree Parsai
- Department of Civil Engineering, Indian Institute of Technology Madras, Chennai, 600036, India.
| | - Harshad Vijay Kulkarni
- School of Civil and Environmental Engineering, Indian Institute of Technology (IIT) Mandi, Kamand, Himachal Pradesh, 175005, India.
| |
Collapse
|
44
|
Janani R, Bhuvana S, Geethalakshmi V, Jeyachitra R, Sathishkumar K, Balu R, Ayyamperumal R. Micro and nano plastics in food: A review on the strategies for identification, isolation, and mitigation through photocatalysis, and health risk assessment. ENVIRONMENTAL RESEARCH 2024; 241:117666. [PMID: 37984787 DOI: 10.1016/j.envres.2023.117666] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 11/22/2023]
Abstract
Over the past few years, it has become increasingly evident that microplastic pollutant heavily contaminates water sources, posing a potential threat to both human and wildlife. These plastic pollutants do not get degraded efficiently by natural processes and the existing traditional treatment methods are incapable of fully eradicating them. In this regard, degradation of microplastic contaminants through photocatalytic methods has emerged as a powerful technique. Unfortunately, only a limited number of investigations have been reported in the field of photocatalytic degradation of microplastics. This comprehensive assessment focuses on the detailed analysis of the latest cutting edge engineered technologies aimed at efficiently separating, identifying microplastic contaminants present in food samples and degrading them through photocatalysis. Moreover, detailed information on various instrumental techniques that can be adopted to analyze the isolated micro sized plastic particles has been discussed. The assessment and degradation of these micro contaminants through photocatalytic methods is still in juvenile stage and there are lot of rooms to be explored. The need for profound contemplation on methods to degrade them through photocatalytic approaches as well as their possible health risks to humans motivated us to bring out this review.
Collapse
Affiliation(s)
- R Janani
- Department of Physics, KIT-Kalaignarkarunanidhi Institute of Technology, Coimbatore, 641402, Tamil Nadu, India.
| | - S Bhuvana
- Department of Physics, Dr. N.G.P. Institute of Technology, Coimbatore, 641048, Tamil Nadu, India
| | - V Geethalakshmi
- Department of Chemistry, KIT-Kalaignarkarunanidhi Institute of Technology, Coimbatore, 641402, Tamil Nadu, India
| | - R Jeyachitra
- Department of Physics, KIT-Kalaignarkarunanidhi Institute of Technology, Coimbatore, 641402, Tamil Nadu, India
| | - Kuppusamy Sathishkumar
- Rhizosphere Biology Laboratory, Department of Microbiology, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620 024, India
| | - Ranjith Balu
- Department of Materials Physics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, Tamil Nadu, 602105, India
| | - Ramamoorthy Ayyamperumal
- Key Laboratory of Western China's Environmental System, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
45
|
Miller J, Nimlos CT, Li Y, Young AC, Ciesielski PN, Chapman LM, Foust TD, Mukarakate C. Risk Minimization in Scale-Up of Biomass and Waste Carbon Upgrading Processes. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2024; 12:666-679. [PMID: 38239432 PMCID: PMC10792666 DOI: 10.1021/acssuschemeng.3c06231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/22/2023] [Accepted: 12/01/2023] [Indexed: 01/22/2024]
Abstract
Improving the odds and pace of successful biomass and waste carbon utilization technology scale-up is crucial to decarbonizing key industries such as aviation and materials within timelines required to meet global climate goals. In this perspective, we review deficiencies commonly encountered during scale-up to show that many nascent technology developers place too much focus on simply demonstrating that technologies work in progressively larger units ("profit") without expending enough up-front research effort to identify and derisk roadblocks to commercialization (collecting "information") to inform the design of these units. We combine this conclusion with economic and timeline data collected from technology scale-up and piloting operations at the National Renewable Energy Laboratory (NREL) to motivate a more scientific, risk-minimized approach to biomass and waste carbon upgrading scale-up. Our proposed approach emphasizes maximizing information collection in the smallest, most agile, and least expensive experimental setups possible, emulating the mentality embraced by R&D across the petrochemical industry. Key points are supported by examples of successful and unsuccessful scale-up efforts undertaken at NREL and elsewhere. We close by showing that the U.S. national laboratory system is uniquely well equipped to serve as a hub to facilitate effective scale-up of promising biomass and waste carbon upgrading technologies.
Collapse
Affiliation(s)
- Jacob
H. Miller
- Catalytic
Carbon Transformation and Scale-Up Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Claire T. Nimlos
- Catalytic
Carbon Transformation and Scale-Up Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Yudong Li
- Catalytic
Carbon Transformation and Scale-Up Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Andrew C. Young
- Catalytic
Carbon Transformation and Scale-Up Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Peter N. Ciesielski
- Renewable
Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Liz M. Chapman
- Catalytic
Carbon Transformation and Scale-Up Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Thomas D. Foust
- Catalytic
Carbon Transformation and Scale-Up Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Calvin Mukarakate
- Catalytic
Carbon Transformation and Scale-Up Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| |
Collapse
|
46
|
Sun J, Xiong Y, Jia H, Han L, Yin K. Superb microplastics separation performance of graphene oxide tuned by laser bombardment. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132599. [PMID: 37757553 DOI: 10.1016/j.jhazmat.2023.132599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/10/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023]
Abstract
Microplastics have been identified as a significant environmental threat to aquatic ecosystems and human health. Consequently, there is an urgent need for efficient separation methods for small-sized MPs. In this study, a super-hydrophilic graphene oxide (GO) membrane is successfully prepared by facilely depositing GO on a microfiltration substrate, without introducing any surface modification materials, especially nanoparticles, which may cause secondary pollution. Laser bombardment reduces GO lamellar size (23.6% of its original size) and creates an abundance of defects and undulating wrinkles, enabling the deposited GO membrane to have more and shorter pathways for water. As a result, the filtration permeance for 10 μm polyvinyl chloride reaches up to 3396 L m-2 h-1 bar-1, a 1-2-order-of-magnitude enhancement compared to the unirradiated GO membrane, and is also superior to most nanoparticle-modified GO membranes. Simultaneously, the labyrinth structure endows the membrane with a high filtration efficiency of approximately 99% for the majority of MPs. This excellent performance remains virtually unchanged after repeated use. The integration of outstanding separation effects and health safety presents opportunities for practical applications in long-term MP-in-water separation.
Collapse
Affiliation(s)
- Jiawei Sun
- College of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing 210096, China; Jiangsu Industrial Intelligent and Low-carbon Technology Engineering Center, Suzhou 215000, China; Suzhou Key Laboratory of Intelligent Low-carbon Technology Application, Suzhou 215000, China.
| | - Yuwei Xiong
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing 210096, China
| | - Haiyang Jia
- School of Physics and New Energy, Xuzhou University of Technology, Xuzhou 221018, China
| | - Longxiang Han
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing 210096, China
| | - Kuibo Yin
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing 210096, China.
| |
Collapse
|
47
|
Ali N, Katsouli J, Marczylo EL, Gant TW, Wright S, Bernardino de la Serna J. The potential impacts of micro-and-nano plastics on various organ systems in humans. EBioMedicine 2024; 99:104901. [PMID: 38061242 PMCID: PMC10749881 DOI: 10.1016/j.ebiom.2023.104901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 12/29/2023] Open
Abstract
Humans are exposed to micro-and-nano plastics (MNPs) through various routes, but the adverse health effects of MNPs on different organ systems are not yet fully understood. This review aims to provide an overview of the potential impacts of MNPs on various organ systems and identify knowledge gaps in current research. The summarized results suggest that exposure to MNPs can lead to health effects through oxidative stress, inflammation, immune dysfunction, altered biochemical and energy metabolism, impaired cell proliferation, disrupted microbial metabolic pathways, abnormal organ development, and carcinogenicity. There is limited human data on the health effects of MNPs, despite evidence from animal and cellular studies. Most of the published research has focused on specific types of MNPs to assess their toxicity, while other types of plastic particles commonly found in the environment remain unstudied. Future studies should investigate MNPs exposure by considering realistic concentrations, dose-dependent effects, individual susceptibility, and confounding factors.
Collapse
Affiliation(s)
- Nurshad Ali
- National Heart and Lung Institute, Imperial College London, Sir Alexander Fleming Building, London, SW7 2AZ, UK; Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh.
| | - Jenny Katsouli
- National Heart and Lung Institute, Imperial College London, Sir Alexander Fleming Building, London, SW7 2AZ, UK
| | - Emma L Marczylo
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK; Toxicology Department, Radiation, Chemical and Environmental Hazards, UK Health Security Agency, Harwell Campus, Chilton, Oxfordshire, OX11 0RQ, UK
| | - Timothy W Gant
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK; Toxicology Department, Radiation, Chemical and Environmental Hazards, UK Health Security Agency, Harwell Campus, Chilton, Oxfordshire, OX11 0RQ, UK
| | - Stephanie Wright
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
| | - Jorge Bernardino de la Serna
- National Heart and Lung Institute, Imperial College London, Sir Alexander Fleming Building, London, SW7 2AZ, UK.
| |
Collapse
|
48
|
Chen R, Zhao X, Wu X, Wang J, Wang X, Liang W. Research progress on occurrence characteristics and source analysis of microfibers in the marine environment. MARINE POLLUTION BULLETIN 2024; 198:115834. [PMID: 38061148 DOI: 10.1016/j.marpolbul.2023.115834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/13/2023] [Accepted: 11/18/2023] [Indexed: 01/05/2024]
Abstract
Synthetic microfiber pollution is a growing concern in the marine environment. However, critical issues associated with microfiber origins in marine environments have not been resolved. Herein, the potential sources of marine microfibers are systematically reviewed. The obtained results indicate that surface runoffs are primary contributors that transport land-based microfibers to oceans, and the breakdown of larger fiber plastic waste due to weathering processes is also a notable secondary source of marine microfibers. Additionally, there are three main approaches for marine microplastic source apportionment, namely, anthropogenic source classification, statistical analysis, and numerical simulations based on the Lagrangian particle tracking method. These methods establish the connections between characteristics, transport pathways and sources of microplastics, which provides new insights to further conduct microfiber source apportionment. This study helps to better understand sources analysis and transport pathways of microfibers into oceans and presents a scientific basis to further control microfiber pollution in marine environments.
Collapse
Affiliation(s)
- Rouzheng Chen
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 10012, China
| | - Xiaoli Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 10012, China.
| | - Xiaowei Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 10012, China
| | - Junyu Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 10012, China
| | - Xia Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 10012, China
| | - Weigang Liang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 10012, China
| |
Collapse
|
49
|
Airs PM, Tinsley JHI, Mvula W, Ventura-Cordero J, Takahashi T, Nalivata P, van Wyk JA, Morgan ER, Safalaoh ACL. Prevalence of Plastic and Hardware Foreign Bodies among Goats at Malawi Markets. Animals (Basel) 2024; 14:147. [PMID: 38200878 PMCID: PMC10778286 DOI: 10.3390/ani14010147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/18/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Smallholder goat production plays a major role in rural livelihoods and food security in Malawi, but suffers from drastic and unpredictable production losses. While goat production is closely linked to small-scale local markets for slaughter and butchering, the perspectives of butchers and their potential as a source of animal health information are largely untapped. Butchers can provide insights into goat health status at slaughter as well as issues that go unseen before slaughter, such as the presence of indigestible foreign bodies (IFBs). IFBs include solid materials such as plastics and hardware (metals, stones, and other hard objects) that cause foreign body syndrome and can lead to impaction, oedema, malnutrition, and death. To estimate the presence of IFBs, 150 market stand butchers were surveyed across five districts in Malawi, focusing on a distinction between hardware and single-use plastics, which are still widely present in Malawi despite bans on production. Most butchers found plastic IFBs (80.7%), with over half (56.7%) reporting plastic IFBs recently among the past five slaughters. Hardware IFBs were less common, reported by 45.3% of butchers. While some butchers commented on the impact of IFBs on meat quality metrics ex-post, the majority observed no differences. While butchers unanimously considered health to be an important characteristic when sourcing goats, 70.7% consider injury status to be less important or not important. Overall, this study highlights the issue of anthropogenic waste pollution on goat production in Malawi and demonstrates the potential for the surveillance of goat health at market.
Collapse
Affiliation(s)
- Paul M. Airs
- Biological Sciences, Queen’s University of Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK; (J.H.I.T.); (J.V.-C.); (E.R.M.)
| | - Jonathan H. I. Tinsley
- Biological Sciences, Queen’s University of Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK; (J.H.I.T.); (J.V.-C.); (E.R.M.)
| | - Winchester Mvula
- Animal Science Department, Lilongwe University of Agriculture and Natural Resources (LUANAR), Lilongwe P.O. Box 219, Malawi (P.N.)
| | - Javier Ventura-Cordero
- Biological Sciences, Queen’s University of Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK; (J.H.I.T.); (J.V.-C.); (E.R.M.)
| | - Taro Takahashi
- Agri-Food and Biosciences Institute, Hillsborough, Co. Down, Northern Ireland BT16 6DR, UK
| | - Patson Nalivata
- Animal Science Department, Lilongwe University of Agriculture and Natural Resources (LUANAR), Lilongwe P.O. Box 219, Malawi (P.N.)
| | - Jan A. van Wyk
- Department of Veterinary Tropical Diseases, University of Pretoria, Pretoria Private Bag X20, South Africa
| | - Eric R. Morgan
- Biological Sciences, Queen’s University of Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK; (J.H.I.T.); (J.V.-C.); (E.R.M.)
| | - Andrews C. L. Safalaoh
- Animal Science Department, Lilongwe University of Agriculture and Natural Resources (LUANAR), Lilongwe P.O. Box 219, Malawi (P.N.)
| |
Collapse
|
50
|
Le VG, Nguyen MK, Nguyen HL, Lin C, Hadi M, Hung NTQ, Hoang HG, Nguyen KN, Tran HT, Hou D, Zhang T, Bolan NS. A comprehensive review of micro- and nano-plastics in the atmosphere: Occurrence, fate, toxicity, and strategies for risk reduction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166649. [PMID: 37660815 DOI: 10.1016/j.scitotenv.2023.166649] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/11/2023] [Accepted: 08/26/2023] [Indexed: 09/05/2023]
Abstract
Micro- and nano-plastics (MNPs) have received considerable attention over the past 10 years due to their environmental prevalence and potential toxic effects. With the increase in global plastic production and disposal, MNP pollution has become a topic of emerging concern. In this review, we describe MNPs in the atmospheric environment, and potential toxicological effects of exposure to MNPs. Studies have reported the occurrence of MNPs in outdoor and indoor air at concentrations ranging from 0.0065 items m-3 to 1583 items m-3. Findings have identified plastic fragments, fibers, and films in sizes predominantly <1000 μm with polyamide (PA), polyester (PES), polyethylene terephthalate (PET), polypropylene (PP), rayon, polyethylene (PE), polystyrene (PS), polyvinyl chloride (PVC), polyacrylonitrile (PAN), and ethyl vinyl acetate (EVA) as the major compounds. Exposure through indoor air and dust is an important pathway for humans. Airborne MNPs pose health risks to plants, animals, and humans. Atmospheric MNPs can enter organism bodies via inhalation and subsequent deposition in the lungs, which triggers inflammation and other adverse health effects. MNPs could be eliminated through source reduction, policy/regulation, environmental awareness and education, biodegradable materials, bioremediation, and efficient air-filtration systems. To achieve a sustainable society, it is crucial to implement effective strategies for reducing the usage of single-use plastics (SUPs). Further, governments play a pivotal role in addressing the pressing issue of MNPs pollution and must establish viable solutions to tackle this significant challenge.
Collapse
Affiliation(s)
- Van-Giang Le
- Central Institute for Natural Resources and Environmental Studies, Vietnam National University (CRES-VNU), Hanoi, 111000, Viet Nam
| | - Minh-Ky Nguyen
- Faculty of Environment and Natural Resources, Nong Lam University of Ho Chi Minh City, Hamlet 6, Linh Trung Ward, Thu Duc City, Ho Chi Minh City 700000, Viet Nam; Ph.D. Program in Maritime Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan.
| | - Hoang-Lam Nguyen
- Department of Civil Engineering, McGill University, Montreal, Canada
| | - Chitsan Lin
- Ph.D. Program in Maritime Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Mohammed Hadi
- Department of Ocean Operations and Civil Engineering, Norwegian University of Science and Technology, Norway
| | - Nguyen Tri Quang Hung
- Faculty of Environment and Natural Resources, Nong Lam University of Ho Chi Minh City, Hamlet 6, Linh Trung Ward, Thu Duc City, Ho Chi Minh City 700000, Viet Nam
| | - Hong-Giang Hoang
- Faculty of Medicine, Dong Nai Technology University, Bien Hoa, Dong Nai 810000, Viet Nam
| | - Khoi Nghia Nguyen
- Department of Soil Science, College of Agriculture, Can Tho University, Can Tho City 270000, Viet Nam
| | - Huu-Tuan Tran
- Laboratory of Ecology and Environmental Management, Science and Technology Advanced Institute, Van Lang University, Ho Chi Minh City 700000, Viet Nam; Faculty of Applied Technology, School of Technology, Van Lang University, Ho Chi Minh City 700000, Viet Nam.
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Tao Zhang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Nanthi S Bolan
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia; School of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia
| |
Collapse
|