1
|
Ul Baligah H, Chesti MH, Ahmed Baba Z, Mir S, Wani FJ, Bhat JA, Khan IM. Vermicomposting technology as a dynamic strategy to mitigate environmental crisis: a bibliometric study of last three decades. ENVIRONMENTAL TECHNOLOGY 2025; 46:72-86. [PMID: 38623591 DOI: 10.1080/09593330.2024.2339191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 11/21/2023] [Indexed: 04/17/2024]
Abstract
Efficient recycling of resources forms the cornerstone of sustainable development. Among multiple options in stock for waste recycling, vermicomposting technology is regarded as a futuristic strategy, being tested in every part of the globe due to easy accessibility. Hence, a bibliometric study was planned to set a sight on global scientific trends encompassing vermicomposting research in last three decades. The data were retrieved from Google Scholar, Scopus and PubMed. Publications from different search engines were filtered out and 2064 unique documents were collected and illustrated in MS Excel and Vos-viewer. Inferences were drawn on significant aspects, such as publication growth trend, journal analysis and co-occurrence of keywords. The study revealed that the number of publications increased from 3 in 1992 to 166 in 2021. The number of citations also increased and peaked at 4314 in 2015. Following this, we clustered keywords using principle component analysis and worked out links between domains of vermicomposting. Vermicomposting conjoined to words substrate manipulation, quality improvement, heavy metal adsorption, and yield parameters. This implies that vermicompost is being explored for many alternate uses in addition to its use as a fertiliser. We concluded that vermicomposting is one of the promising technologies for waste recycling. It modulates plant growth and subdues stress in plants. Additionally, being an efficient adsorbent, it serves bioremediation of contaminated sites. Therefore, the future of this technology lies in synthesising nano-formulations, integrating into biosensor technology, simulating for predicting timelines under different conditions and making efforts to improve their adsorption.
Collapse
Affiliation(s)
| | - M H Chesti
- Division of Soil Science FoA, SKUAST-K Wadura, Jammu Kashmir, India
| | - Zahoor Ahmed Baba
- Division of Basic Sciences and Humanities FoA, SKUAST- K Wadura, Jammu Kashmir, India
| | - Shakeel Mir
- Division of Soil Science FoH, SKUAST-K Shalimar, Jammu Kashmir, India
| | - Fehim Jeelani Wani
- Division of Agricultural Statistics and Economics FoA, SKUAST- K Wadura, Kashmir, India
| | - Javid Ahmad Bhat
- Division of Soil Science FoA, SKUAST-K Wadura, Jammu Kashmir, India
| | - Inayat M Khan
- Division of Soil Science FoA, SKUAST-K Wadura, Jammu Kashmir, India
| |
Collapse
|
2
|
Ghasempour S, Ghanbari Jahromi M, Mousavi A, Iranbakhsh A. Seed priming with cold plasma, iron, and manganese nanoparticles modulates salinity stress in hemp (Cannabis sativa L.) by improving germination, growth, and biochemical attributes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:65315-65327. [PMID: 39579191 DOI: 10.1007/s11356-024-35590-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 11/14/2024] [Indexed: 11/25/2024]
Abstract
Using cutting-edge technologies such as non-thermal plasma and metallic nanoparticles has shown promise in ameliorating salinity-induced stress in plants. However, there are still knowledge gaps concerning the most effective strategies for mitigating salinity stress in hemp (Cannabis sativa L.) plants. Consequently, this study was undertaken to investigate the impact of seed priming with cold plasma (CP), iron (Fe), and manganese (Mn) nanoparticles (NPs) on salinity modulation in hemp plants, aiming to improve seed germination, plant growth, and biochemical attributes. A pot experiment was conducted with salinity at three levels (0, 60, and 120 mM NaCl) and seed priming at five levels (control, 60 s CP, 90 s CP, 50 mg L-1 Fe NPs, and 50 mg L-1 Mn NPs). The results showed that salinity at 120 mM decreased germination percentage (GP, 34%), germination speed (GS, 61%), seedling vigor index (SVI, 47%), shoot weight (38%), root weight (15%), chlorophyll (Chl) a + b (31%), and relative water content (RWC, 24%) while increasing malondialdehyde (MDA, 48%) and proline (39%). Seed priming with CP, Fe NPs, and Mn NPs increased plant weight, GP, GS, SVI, RWC, and Chl but decreased MDA accumulation. Fe NPs and salinity at 60 mM led to high levels of total phenolic content and total flavonoid content, which represent 29 and 44% increases, respectively, compared to the control. The heat map showed that among the treatments, GS and SVI had the highest degrees of variability. Fe NPs at 50 mg L-1 and CP at 90 s produced the best plant tolerance to salt stress.
Collapse
Affiliation(s)
- Samaneh Ghasempour
- Department of Horticultural Science and Agronomy, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Marzieh Ghanbari Jahromi
- Department of Horticultural Science and Agronomy, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Amir Mousavi
- Department of Plant Molecular Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Alireza Iranbakhsh
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
3
|
Liu J, Yang W, Zhou H, Zia-Ur-Rehman M, Salam M, Ouyang L, Chen Y, Yang L, Wu P. Exploring the mechanisms of organic fertilizers on Cd bioavailability in rice fields: Environmental behavior and effect factors. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117094. [PMID: 39317071 DOI: 10.1016/j.ecoenv.2024.117094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 09/26/2024]
Abstract
The problem of paddy Cadmium (Cd) contamination is currently the focus of global research. Earlier researches have confirmed that utilization of organic fertilizers regulates Cd chemical fraction distribution by increases organic bound Cd. However, environmental behaviours of organic fertilizers in paddy are still lack exploration. Here, we critical reviewed previous publications and proposed a novel research concept to help us better understand it. Three potential impact pathways of utilization of organic fertilizers on the bioavailability of Cd are presented: (i) use of organic fertilizers changes soil physicochemical properties, which directly affects Cd bioavailability by changing chemical form of Cd(II); (ii) use of organic fertilizers increases soil nutrient content, which indirectly regulates Cd supply and bioaccumulation through ion adsorption and competition for ion-transport channels between nutrients and Cd; and (iii) use of organic fertilizers increases activity of microorganisms and efflux of rice root exudates, which indirectly affects Cd bioavailability of through complexation and sequestration of these organic materials with Cd. Meanwhile, dissolved organic matter (DOM) in the rhizosphere of rice is believed to be the key to revealing the effects of organic fertilizers on Cd. DOM is capable of adsorption and complexation-chelation reactions with Cd and the fractionation of Cd(II) is regulated by DOM. Molecular mass, chemical composition, major functional groups and reaction sequence of DOM determine the formation and solubilization of DOM-Cd complexes.
Collapse
Affiliation(s)
- Jingbin Liu
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guiyang 550025, China
| | - Wentao Yang
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guiyang 550025, China.
| | - Hang Zhou
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | | | - Muhammad Salam
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing, 400044, China
| | - Linnan Ouyang
- Research Institute of Fast-growing Trees, Chinese Academy of Forestry, State Key Laboratory of Efficient Production of Forest Resources, Zhanjiang 524022, China
| | - Yonglin Chen
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guiyang 550025, China
| | - Liyu Yang
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guiyang 550025, China
| | - Pan Wu
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guiyang 550025, China
| |
Collapse
|
4
|
Nafchi MA, Kachoie MA, Ghodrati L. Co-application of titanium dioxide and hydroxyapatite nanoparticles modulated chromium and salinity stress via modifying physio-biochemical attributes in Solidago canadensis L. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:50464-50477. [PMID: 39093394 DOI: 10.1007/s11356-024-34454-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 07/18/2024] [Indexed: 08/04/2024]
Abstract
Climate change and human activity have led to an increase in salinity levels and the toxicity of chromium (Cr). One promising approach to modifying these stressors in plants is to use effective nanoparticles (NPs). While titanium dioxide nanoparticles (TiO2 NPs) and hydroxyapatite (HAP NPs) have been demonstrated to increase plant tolerance to abiotic stress by enhancing antioxidant capacity, lipid peroxidation, and secondary metabolites, it is unknown how these two compounds can work together in situations when salt and Cr toxicity are present. The objective of the current study was to determine the effects of foliar-applied TiO2 NPs (15 mg L-1) and HAP NPs (250 mg L-1) separately and in combination on growth, chlorophyll (Chl), water content, lipid peroxidation, antioxidant capacity, phenolic content, and essential oils (EOs) of Solidago canadensis L. under salinity (100 mM NaCl) and Cr toxicity (100 mg kg-1 soil). Salinity was more deleterious than Cr by decreasing plant weight, Chl a + b, relative water content (RWC), EO yield, and increasing malondialdehyde (MDA), electrolyte leakage (EL), superoxide dismutase (SOD) activity, and catalase (CAT) activity. The co-application of TiO2 and HAP NPs proved to be more successful. This was evidenced by the increased shoot weight (36%), root weight (29%), Chl a + b (23%), RWC (15%), total phenolic content (TPC, 34%), total flavonoid content (TFC, 28%), and EO yield (56%), but decreased MDA (21%), EL (11%), SOD (22%) and CAT activity (38%) in salt-exposed plants. The study demonstrated the effective strategy of co-applying these NPs to modify abiotic stress by enhancing phenolic compounds and EO yield as key results.
Collapse
Affiliation(s)
| | - Mehrdad Ataie Kachoie
- Medicinal Plants Research and Processing Center, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Leila Ghodrati
- Medicinal Plants Research and Processing Center, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| |
Collapse
|
5
|
Koohi A, Rahdari P, Babakhani B, Asadi M. Foliar-applied melatonin and titanium nanoparticles modulate cadmium (Cd) toxicity through minimizing Cd accumulation and optimizing physiological and biochemical properties in sage (Salvia officinalis L.). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:45370-45382. [PMID: 38965106 DOI: 10.1007/s11356-024-34126-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/21/2024] [Indexed: 07/06/2024]
Abstract
Notwithstanding the fact that melatonin (MT) and titanium nanoparticles (Ti NPs) alone have been widely used recently to modulate cadmium (Cd) stress in plants, there is a gap in the comparative impacts of these materials on lowering Cd toxicity in sage plants. The objective of this study was to determine how foliar application of MT and Ti NPs affected the growth, Cd accumulation, photosynthesis, water content, lipid peroxidation, and essential oil (EO) quality and quantity of sage plants in Cd-contaminated soils. A factorial experiment was conducted using MT at 100 and 200 μM and Ti NPs at 50 and 100 mg L-1 topically, together with Cd toxicity at 10 and 20 mg Cd kg-1 soil. The results showed that Cd toxicity decreased plant growth and enhanced lipid peroxidation. The Cd stress at 20 mg kg-1 soil resulted in increases in Cd root (693%), Cd shoot (429%), electrolyte leakage (EL, 29%), malondialdehyde (MDA, 72%), shoot weight (31%), root weight (27%), chlorophyll (Chl) a + b (26%), relative water content (RWC, 23%), and EO yield (30%). The application of MT and Ti NPs controlled drought stress by reducing MDA and EL, enhancing plant weight, Chl, RWC, and EO production, and minimizing Cd accumulation in plant tissues. The predominant compounds in the EO were α-thujone, 1,8-cineole, β-thujone, camphor, and α-humulene. MT and Ti NPs caused α-thujone to rise, whereas Cd stress caused it to fall. Based on heat map analysis, MDA was the trait that was most sensitive to treatments. In summary, the research emphasizes the possibility of MT and Ti NPs, particularly MT at 200 μM, to mitigate Cd toxicity in sage plants and enhance their biochemical reactions.
Collapse
Affiliation(s)
- Atefeh Koohi
- Department of Biology, Tonekabone Branch, Islamic Azad University, Tonekabone, Iran
| | - Parvaneh Rahdari
- Department of Biology, Tonekabone Branch, Islamic Azad University, Tonekabone, Iran.
| | - Babak Babakhani
- Department of Biology, Tonekabone Branch, Islamic Azad University, Tonekabone, Iran
| | - Mahmoud Asadi
- Department of Biology, Tonekabone Branch, Islamic Azad University, Tonekabone, Iran
| |
Collapse
|
6
|
Tajik Khademi H, Khodadadi M, Hassanpanah D, Hajainfar R. Changes in fruit yield, biochemical attributes, and leaf minerals of different cucumber (Cucumis sativus L.) cultivars under foliar application of silicon nanoparticles. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:42012-42022. [PMID: 38853231 DOI: 10.1007/s11356-024-33890-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/10/2023] [Indexed: 06/11/2024]
Abstract
Silicon nanoparticles (Si NPs) have an eminent role in improving plant yield through improving yield. The present study was conducted to find the effect of Si NPs on plant yield, biochemical attributes, and minerals of different cucumber cultivars. The greenhouse experiment with foliar application of Si NPs (100, 200, and 300 mg L-1) was carried out on cucumber cultivars (Emilie, Mirsoltan, Mitio, and Viola). The application of Si NPs at 300 mg L-1 led to the highest fruit yield, with a 17% increase in fruit production compared to the control. Fruit firmness differed by 31% between Emilie and Si NPs at 100 mg L-1 and Mito at 300 mg L-1. Plants experiencing Si NPs at 300 mg L-1 had the greatest chlorophyll (Chl) a+b. Compared to the other cultivars, Mito had a greater fruit yield and Chl content. The Si NPs increased TSS by 11% while lowering TA by 24% when compared to the control at 300 mg L-1. Foliar application of Si NPs reduced the value of TSS/TA. The largest value of K was reached in the Mito cultivar with Si NPs at 200 mg L-1, with a 22% increase in comparison to the control, indicating that Si NPs considerably boosted the K content. The Si NPs at 200 mg L-1 significantly increased leaf N and P in the Mito cultivar by 16 and 50%, respectively. By using agglomerative hierarchy clustering (AHC), Emilie and Mito were located in two separate clusters, whilst Viola and Mirsoltan were grouped in one cluster. In conclusion, Si NPs at 200-300 mg L-1 enhanced fruit yield, and Mito showed the highest yield when compared to other cultivars.
Collapse
Affiliation(s)
- Hossein Tajik Khademi
- Department of Horticultural Science and Agronomy, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohsen Khodadadi
- Vegetable Research Center, Horticulture Sciences Research Institute, Agricultural Research, Education, and Extension Organization, Karaj, Iran.
| | - Davoud Hassanpanah
- Horticulture Crops Research Department, Ardabil Agricultural and Natural Resources, Agricultural Research, Education & Extension Organization (AREEO), Ardabil, Iran
| | - Ramin Hajainfar
- Vegetable Research Center, Horticulture Sciences Research Institute, Agricultural Research, Education, and Extension Organization, Karaj, Iran
| |
Collapse
|
7
|
Farnoosh S, Masoudian N, Safipour Afshar A, Nematpour FS, Roudi B. Foliar-applied iron and zinc nanoparticles improved plant growth, phenolic compounds, essential oil yield, and rosmarinic acid production of lemon balm (Melissa officinalis L.). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:36882-36893. [PMID: 38758440 DOI: 10.1007/s11356-024-33680-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/10/2024] [Indexed: 05/18/2024]
Abstract
Metallic nanoparticles (NPs) have been highlighted to improve plant growth and development in the recent years. Although positive effects of some NPs have been reported on medicinal plants, the knowledge for stimulations application of iron (Fe) and zinc (Zn) NPs is not available. Hence, the present work aimed to discover the effects of Fe NPs at 10, 20, and 30 mg L-1 and Zn NPs at 60 and 120 mg L-1 on growth, water content, photosynthesis pigments, phenolic content, essential oil (EO) quality, and rosmarinic acid (RA) production of lemon balm (Melissa officinalis L.). The results showed that Fe NPs at 20 and 30 mg L-1 and Zn NPs at 120 mg L-1 significantly improved biochemical attributes. Compared with control plants, the interaction of Fe NPs at 30 mg-1 and Zn NPs at 120 mg L-1 led to noticeable increases in shoot weight (72%), root weight (92%), chlorophyll (Chl) a (74%), Chl b (47%), RA (66%), proline (81%), glycine betaine (GB, 231%), protein (286%), relative water content (8%), EO yield (217%), total phenolic content (63%), and total flavonoid content (57%). Heat map analysis revealed that protein, GB, EO yield, shoot weight, root weight, and proline had the maximum changes upon Fe NPs. Totally, the present study recommended the stimulations application of Fe NPs at 20-30 mg L-1 and Zn NPs at 120 mg L-1 to reach the optimum growth and secondary metabolites of lemon balm.
Collapse
Affiliation(s)
- Samaneh Farnoosh
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Nahid Masoudian
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | | | | | - Bostan Roudi
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| |
Collapse
|
8
|
Amirfakhrian Z, Abdossi V, Mohammadi Torkashvand A, Weisany W, Ghanbari Jahromi M. Co-applied magnesium nanoparticles and biochar modulate salinity stress via regulating yield, biochemical attribute, and fatty acid profile of Physalis alkekengi L. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:31806-31817. [PMID: 38637482 DOI: 10.1007/s11356-024-33329-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/11/2024] [Indexed: 04/20/2024]
Abstract
While previous studies have addressed the desirable effects of biochar (BC) or magnesium nanoparticles (Mg NPs) on salinity stress individually, there is a research gap regarding their simultaneous application. Additionally, the specific mechanisms underlying the effects of BC and Mg NPs on salinity in Physalis alkekengi L. remain unclear. This study aimed to investigate the synergistic effects of BC and Mg NPs on P. alkekengi L. under salinity stress conditions. A pot experiment was conducted with salinity at 100 and 200 mM sodium chloride (NaCl), as well as soil applied BC (4% v/v) and foliar applied Mg NPs (500 mg L-1) on physiological and biochemical properties of P. alkekengi L. The results represented that salinity, particularly 200 mM NaCl, significantly reduced plant yield (58%) and total chlorophyll (Chl, 36%), but increased superoxide dismutase (SOD, 82%) and catalase (CAT, 159%) activity relative to non-saline conditions. However, the co-application of BC and Mg NPs mitigated these negative effects and improved fruit yield, Chl, anthocyanin, and ascorbic acid. It also decreased the activity of antioxidant enzymes. Salinity also altered the fatty acid composition, increasing saturated fatty acids (SFAs) and polyunsaturated fatty acids (PUFAs), while decreasing monounsaturated fatty acids (MUFAs). The heat map analysis showed that fruit yield, anthocyanin, Chl, and CAT were sensitive to salinity. The findings can provide insights into the possibility of these amendments as sustainable strategies to mitigate salt stress and enhance plant productivity in affected areas.
Collapse
Affiliation(s)
- Zahra Amirfakhrian
- Department of Horticultural Science and Agronomy, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Vahid Abdossi
- Department of Horticultural Science and Agronomy, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | | | - Weria Weisany
- Department of Horticultural Science and Agronomy, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Marzieh Ghanbari Jahromi
- Department of Horticultural Science and Agronomy, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
9
|
Jahantigh M, Jahromi MG, Sefidkon F, Diyanat M, Weisany W. Co-application of biochar and selenium nanoparticles improves yield and modifies fatty acid profile and essential oil composition of fennel (Foeniculum vulgare Mill.) under cadmium toxicity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:31331-31342. [PMID: 38630399 DOI: 10.1007/s11356-024-33270-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 04/05/2024] [Indexed: 10/27/2024]
Abstract
Fatty acids and essential oils (EOs) are the primary variables that influence the quality of fennel (Foeniculum vulgare Mill.). Soil toxicity to cadmium (Cd) is the main environmental issue facing fennel, and priming methods like soil amendments and nanoparticles (NPs) are commonly utilized to deal with it. The goal of the current study was to examine the effects of biochar (BC) and selenium nanoparticles (Se NPs) on fennel plants in Cd-contaminated soils. The pot experiment was conducted with Cd stress at 0, 10, and 20 mg kg-1 soil, BC at 5% (v/v), and foliar-spraying Se NPs at 40 mg L-1 as a factorial completely randomized design (CRD) at a greenhouse condition in 2022. The findings demonstrated that Cd toxicity significantly decreased plant performance, while BC and Se NPs enhanced it. Without BC and Se NPs, Cd toxicity at 20 mg kg-1 soil decreased biological yield (39%), seed yield (37%), EO yield (32%), and monounsaturated fatty acids (14%), while increased saturated fatty acid (26%) and polyunsaturated fatty acids (40%) of fennel. The main EO profile was anethole (65.32-73.25%), followed by limonene (16.12-22.07%), fenchone (5.57-6.83%), and estragole (2.25-3.65%), which mainly were oxygenated monoterpenes. The combined application of BC and Se NPs improved the yield, EO production, and fatty acid profile of fennel plants under Cd stress, increasing the plants' resistance to Cd toxicity.
Collapse
Affiliation(s)
- Masoumeh Jahantigh
- Department of Horticultural Science and Agronomy, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Marzieh Ghanbari Jahromi
- Department of Horticultural Science and Agronomy, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Fatemeh Sefidkon
- Department of Medicinal Plants, Agricultural Research Education and Extension Organization (AREEO), Research Institute of Forests and Rangelands, Tehran, Iran
| | - Marjan Diyanat
- Department of Horticultural Science and Agronomy, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Weria Weisany
- Department of Horticultural Science and Agronomy, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
10
|
Maryam H, Abbasi GH, Waseem M, Ahmed T, Rizwan M. Preparation and characterization of green silicon nanoparticles and their effects on growth and lead (Pb) accumulation in maize (Zea mays L.). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123691. [PMID: 38431245 DOI: 10.1016/j.envpol.2024.123691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 03/05/2024]
Abstract
The excessive accumulation of heavy metals, particularly lead (Pb) in agricultural soils, is a growing problem worldwide and needs urgent attention. This study aimed to prepare green silicon (Si) NPs using extract of Chenopodium quinoa leaves and evaluated their effects on Pb uptake and growth of maize (Zea mays L.). The results indicated that Pb exposure negatively affected the growth and chlorophyll contents of maize varieties, while SiNPs positively affected these attributes. Pb alone increased the electrolyte-leakage (EL), hydrogen-peroxide (H2O2) and selected antioxidant enzyme activities in leaves, whereas SiNPs decreased EL and H2O2 concentrations and further enhanced the enzyme activities as compared to their respective treatments without SiNPs. Pb-only treatments led to an increase in Pb concentrations and total Pb uptake in both shoots and roots. In contrast, SiNPs resulted in reduced Pb concentrations, with a concurrent decrease in total Pb uptake in shoots compared to the control treatment. The findings demonstrated that foliar application of SiNPs can mitigate the toxic effects of Pb in maize plants by triggering the antioxidant enzyme system and reducing the oxidative stress. Taken together, SiNPs have the potential to enhance maize production in Pb-contaminated soils. However, future research and application efforts should prioritize key aspects such as optimizing NPs synthesis, understanding positive mechanisms of green-synthesized NPs, and conducting multiple crop tests and real-world field trials.
Collapse
Affiliation(s)
- Haseeba Maryam
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Ghulam Hassan Abbasi
- Institute of Agro-Industry & Environment, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Muhammad Waseem
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Temoor Ahmed
- Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China; Xianghu Laboratory, Hangzhou, 311231, China; MEU Research Unit, Middle East University, Amman, Jordan
| | - Muhammad Rizwan
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad, 38000, Pakistan.
| |
Collapse
|
11
|
Pan P, Liu H, Liu A, Zhang X, Chen Q, Wang G, Liu B, Li Q, Lei M. Rhizosphere environmental factors regulated the cadmium adsorption by vermicompost: Influence of pH and low-molecular-weight organic acids. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 266:115593. [PMID: 37856985 DOI: 10.1016/j.ecoenv.2023.115593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/22/2023] [Accepted: 10/11/2023] [Indexed: 10/21/2023]
Abstract
Vermicompost is a promising amendment for immobilization of cadmium (Cd) in soils; however, its effectiveness can be influenced by rhizosphere environment conditions, such as pH and the presence of low-molecular-weight organic acids (LMWOAs). In this study, a batch experiment was conducted to examine the characteristics of Cd adsorption by vermicompost at different pH (pH = 3, 5, and 7) and after the addition of different LMWOAs (oxalic acid; citric acid; malic acid). Furthermore, a series of morphology and structural analyses were conducted to elucidate the mechanisms of observed effects. The results showed that the adsorption capacity of vermicompost for Cd increased as pH increased, and chemisorption dominated the adsorption process. Changes in pH altered adsorption performance by affecting the -OH groups of alcohol/phenol and the -CH2 groups of aliphatics. Further, the addition of oxalic acid promoted Cd adsorption, and the effect was concentration dependent. Modifying the verimicompost surface with more adsorption sites might be the main reason. Conversely, citric acid and malic acid showed the ability to inhibit Cd adsorption by vermicompost. Citric acid caused a blocking effect by covering flocculent substances on the vermicompost surface while reducing surface adsorption sites by dissolving mineral components such as iron oxides. However, the action of malic acid did not appear to be related to changes in morphology or the structure of vermicompost. Overall, the results of this study partially explain the limited effectiveness of Cd immobilization within the rhizosphere by vermicompost, and provide theoretical support for regulating rhizosphere environments to improve the effectiveness of vermicompost immobilization of Cd.
Collapse
Affiliation(s)
- Pan Pan
- Institute of Environmental and Plant Protection, Chinese Academy of Tropical Agricultural Science, Haikou, Hainan 571101, China; National Agricultural Environmental Science Observation and Experiment Station, Danzhou 571737, China; Hainan Key Laboratory of Tropical Eco-Circular Agriculture, Haikou 571101, China
| | - Huizhan Liu
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Ang Liu
- Institute of Environmental and Plant Protection, Chinese Academy of Tropical Agricultural Science, Haikou, Hainan 571101, China
| | - Xinchun Zhang
- Institute of Environmental and Plant Protection, Chinese Academy of Tropical Agricultural Science, Haikou, Hainan 571101, China
| | - Qingmian Chen
- Institute of Environmental and Plant Protection, Chinese Academy of Tropical Agricultural Science, Haikou, Hainan 571101, China
| | - Guihua Wang
- College of Forestry, Hainan University, Haikou, Hainan 570228, China.
| | - Beibei Liu
- Institute of Environmental and Plant Protection, Chinese Academy of Tropical Agricultural Science, Haikou, Hainan 571101, China; National Agricultural Environmental Science Observation and Experiment Station, Danzhou 571737, China; Hainan Key Laboratory of Tropical Eco-Circular Agriculture, Haikou 571101, China.
| | - Qinfen Li
- Institute of Environmental and Plant Protection, Chinese Academy of Tropical Agricultural Science, Haikou, Hainan 571101, China; National Agricultural Environmental Science Observation and Experiment Station, Danzhou 571737, China; Hainan Key Laboratory of Tropical Eco-Circular Agriculture, Haikou 571101, China
| | - Mei Lei
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
12
|
Abdi MJ, Ghanbari Jahromi M, Mortazavi SN, Kalateh Jari S, Nazarideljou MJ. Foliar-applied silicon and selenium nanoparticles modulated salinity stress through modifying yield, biochemical attribute, and fatty acid profile of Physalis alkekengi L. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:100513-100525. [PMID: 37632614 DOI: 10.1007/s11356-023-29450-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/18/2023] [Indexed: 08/28/2023]
Abstract
Soil salinity is a major environmental problem owing to its negative impact on agricultural productivity and sustainability. Nanoparticles (NPs) have recently been highlighted for their ability to alleviate salinity stress. The current study aimed to alleviate salt stress by using silicon (Si) and selenium (Se) NPs on the growth and physiological attributes of Physalis alkekengi L. Plants were irrigated with saline water at 50, 100, and 200 mM NaCl, and Si NPs (200 mg L-1) and Se NPs (50 mg L-1) were sprayed on leaves three times in a pot experiment in 2022. Leaf chlorophyll (Chl) content, antioxidant capacity, and fatty acid (FA) profile of fruits were measured to find the effects of NPs and salinity in the plants. Salinity at 50 mM did not significantly differ from the control, but at 100-200 mM, salt stress had a substantial impact on the majority of traits. Compared with non-saline conditions, 200 mM NaCl led to decreases in shoot weight (40%), fruit weight (30%), Chl a (30%), Chl b (39%), anthocyanin (31%), ascorbic acid (16%), total phenolic content (TPC, 11%) but increases in total soluble solids (TSS, 79%), titration acidity (TA, 17%), and TSS/TA (52%) in plants without spraying the NPs. However, Si and Se NPs modulated salinity stress by increasing shoot and fruit weight, Chl content, anthocyanin, and TPC, and with decreasing TSS and TSS/TA. Salinity elevated polyunsaturated fatty acids (PUFAs) and lowered monounsaturated fatty acids (MUFAs). According to multivariate analysis, 50 mM and control were found to be in the same cluster, whereas 100 and 200 mM were shown to be in different clusters. Foliar application of Si and Se NPs at 200 and 50 mg L-1, respectively, can be recommended for mitigating salt stress at 100-200 mM NaCl in P. alkekengi L. Plants. Farmers can use the findings to increase the ability of Si and Se NPs to protect plants against salt.
Collapse
Affiliation(s)
- Mohammad Javad Abdi
- Department of Horticultural Science and Agronomy, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Marzieh Ghanbari Jahromi
- Department of Horticultural Science and Agronomy, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | | | - Sepideh Kalateh Jari
- Department of Horticultural Science and Agronomy, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | |
Collapse
|
13
|
Bakhtiari M, Raeisi Sadati F, Raeisi Sadati SY. Foliar application of silicon, selenium, and zinc nanoparticles can modulate lead and cadmium toxicity in sage (Salvia officinalis L.) plants by optimizing growth and biochemical status. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:54223-54233. [PMID: 36872405 DOI: 10.1007/s11356-023-25959-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 02/11/2023] [Indexed: 06/18/2023]
Abstract
Different techniques have been used to alleviate metal toxicity in medicinal plants; accordingly, nanoparticles (NPs) have a noticeable interest in modulating oxidative stresses. Therefore, this work aimed to compare the impacts of silicon (Si), selenium (Se), and zinc (Zn) NPs on the growth, physiological status, and essential oil (EO) of sage (Salvia officinalis L.) treated with foliar application of Si, Se, and Zn NPs upon lead (Pb) and cadmium (Cd) stresses. The results showed that Se, Si, and Zn NPs decreased Pb accumulation by 35, 43, and 40%, and Cd concentration by 29, 39, and 36% in sage leaves. Shoot plant weight showed a noticeable reduction upon Cd (41%) and Pb (35%) stress; however, NPs, particularly Si and Zn improved plant weight under metal toxicity. Metal toxicity diminished relative water content (RWC) and chlorophyll, whereas NPs significantly enhanced these variables. The noticeable raises in malondialdehyde (MDA) and electrolyte leakage (EL) were observed in plants exposed to metal toxicity; however, they were alleviated with foliar application of NPs. The EO content and EO yield of sage plants decreased by the heavy metals but increased by the NPs. Accordingly, Se, Si, and Zn NPS elevated EO yield by 36, 37, and 43%, respectively, compared with non-NPs. The primary EO constituents were 1,8-cineole (9.42-13.41%), α-thujone (27.40-38.73%), β-thujone (10.11-12.94%), and camphor (11.31-16.45%). This study suggests that NPs, particularly Si and Zn, boosted plant growth by modulating Pb and Cd toxicity, which could be advantageous for cultivating this plant in areas with heavy metal-polluted soils.
Collapse
Affiliation(s)
- Mitra Bakhtiari
- Department of Agronomy, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran.
| | - Fereshteh Raeisi Sadati
- Department of Landscape Engineering, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Seyede Yalda Raeisi Sadati
- Department of Plant Genetics and Production Engineering, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| |
Collapse
|
14
|
Babashpour-Asl M, Farajzadeh-Memari-Tabrizi E, Yousefpour-Dokhanieh A. Foliar-applied selenium nanoparticles alleviate cadmium stress through changes in physio-biochemical status and essential oil profile of coriander (Coriandrum sativum L.) leaves. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:80021-80031. [PMID: 35397029 DOI: 10.1007/s11356-022-19941-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Since large areas of agricultural soils around the world are contaminated by Cd, a cost-effective and practical method is needed for the safe production of edible plants. The effective role of many nanomaterials to improve plant yield by mitigating environmental pollutions is addressed; however, the impacts of selenium nanoparticles (Se-NPs) have not been well-known yet. The aim of this work was to investigate foliar application of Se-NPs on yield, water content, proline concentration, phenolic content, lipid peroxidation, and essential oil (EO) attributes of coriander (Coriandrum sativum L.) under Cd stress. The plants were exposed to Cd contamination (0, 4, and 8 mg L-1) and foliar application of Se-NPs (0, 20, 40, and 60 mg L-1). The results showed increased Cd accumulation in roots and shoots of coriander plants upon Cd stress; however, Se-NPs alleviated the uptake of Cd. Cd toxicity, particularly 8 mg L-1, decreased shoot and root weight, chlorophyll (Chl), and relative water content (RWC), while Se-NPs improved these attributes. The Cd concentration at 4 mg L-1 and Se-NPs at 40 or 60 mg L-1 increased phenolic and flavonoid contents as well as EO yield. Proline concentration and malondialdehyde (MDA) increased by enhancing Cd stress, but Se-NPs decreased MDA. The GC/MS analysis showed that the main EO constitutes were n-decanal (18.80-29.70%), 2E-dodecanal (14.23-19.87%), 2E-decanal (12.60-19.40%), and n-nonane (7.23-12.87%), representing different amounts under Cd pollution and Se-NPs. To sum up, Se-NPs at 40-60 mg L-1 are effective in alleviating Cd stress.
Collapse
Affiliation(s)
- Marzieh Babashpour-Asl
- Department of Horticultural Science, Maragheh Branch, Islamic Azad University, Maragheh, Iran.
| | | | | |
Collapse
|
15
|
Ojagh SE, Moaveni P. Foliar-applied magnesium nanoparticles modulate drought stress through changes in physio-biochemical attributes and essential oil profile of yarrow (Achillea millefolium L.). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:59374-59384. [PMID: 35386083 DOI: 10.1007/s11356-022-19559-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Nanoparticles (NPs) are an emerging tool for mitigating environmental stresses. Although beneficial roles of NPs have been reported in some plants, there is little data on magnesium (Mg)-NPs in alleviating drought stress. Therefore, the field experiment was conducted to study changes in biochemical attributes and essential oil (EO) compositions of yarrow (Achillea millefolium L.) plants under drought stress and Mg-NPs in 2016 and 2017. Irrigation regimes were used in two levels as well-watered (irrigation intervals of 7 days) and drought stress (irrigation intervals of 14 days) conditions, and Mg-NPs were sprayed on leaves in four levels (0, 0.1, 0.3, and 0.5 g L-1). The results showed drought stress led to increased electrolyte leakage (EL), proline, carotenoid, anthocyanin, and total flavonoid content (TFC). However, flowers yield and EO yield were lower in plants exposed to drought stress as compared to well-watered conditions. The 0.3 and 0.5 g L-1 Mg-NPs were more effective in alleviating drought stress by enhancing these traits. Heat map results showed that EL and TSS represented the high variability upon different treatments. The GC and GC/MS results represented that α-pinene (8.60-12.20%), 1,8-cineol (9.03-14.02%), camphor (6.84-9.80%), α-bisabolol (8.54-18.81%), chamazulene (14.23-22.50%), and caryophyllene oxide (7.20-9.80%) were the min EO constitutes of yarrow plants. Totally, drought decreased monopertens but increased sesquiterpenes of EO. To sum up, foliar applied Mg-NPs in a range of 0.3-0.5 g L-1 can be recommended as effective tool to improve plant yield through changes in biochemical attributes of yarrow plants.
Collapse
Affiliation(s)
- Seyyed Ebrahim Ojagh
- Department of Agronomy, Shahr-E-Qods Branch, Islamic Azad University, Tehran, Iran
| | - Payam Moaveni
- Department of Agronomy, Shahr-E-Qods Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
16
|
Ghasemzadeh N, Iranbakhsh A, Oraghi-Ardebili Z, Saadatmand S, Jahanbakhsh-Godehkahriz S. Cold plasma can alleviate cadmium stress by optimizing growth and yield of wheat (Triticum aestivum L.) through changes in physio-biochemical properties and fatty acid profile. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:35897-35907. [PMID: 35064506 DOI: 10.1007/s11356-022-18630-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
Cold plasma (CP) application has increasing interest due to its environmental-friendly, high efficient, and low cost aspects to mitigate deletion effects of heavy metals on plants. A pot experiment was carried out to evaluate the CP application on yield, physiological, and fatty acid profile of wheat (Triticum aestivum L.) in a completely randomized design (CRD) with five replicates. Cadmium (Cd) was applied at four levels (0, 50, 100, and 150 μM), and CP were used on germinated seeds at three levels (0, 60, and 120 s) in a hydroponic system. The results showed CP alleviated the Cd accumulation in roots, shoots, and grains. The significant reduction of grain yield (GY) and thousand grain yield (TGY) was observed in plants exposed to 100 and 150 μM compared with the control plants; however, CP improved GY and TGY particularly at severe Cd stress. The minimum chlorophyll (Chl) and relative water content (RWC) were observed in plants exposed in 100 μM Cd and non-CP treatments. Proline increased by Cd stress but decreased with CP in most treatments. Unlike proline, methionine showed significant reduction under Cd stress. The fatty acid profile of wheat represented that severe Cd stress decreased monounsaturated fatty acid (MUFA) but increased polyunsaturated fatty acid (PUFA). Heat map (HM) showed that GY and methionine were the most sensitive traits under treatments of Cd and CP. Totally, we suggest the use of 120 s of CP to mitigate Cd stress on wheat plants.
Collapse
Affiliation(s)
- Nasim Ghasemzadeh
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Alireza Iranbakhsh
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | | | - Sara Saadatmand
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | |
Collapse
|