1
|
Daneshgar N, Lan R, Regnier M, Mackintosh SG, Venkatasubramanian R, Dai DF. Klotho enhances diastolic function in aged hearts through Sirt1-mediated pathways. GeroScience 2024; 46:4729-4741. [PMID: 38976132 PMCID: PMC11336011 DOI: 10.1007/s11357-024-01209-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 05/16/2024] [Indexed: 07/09/2024] Open
Abstract
Aging leads to a progressive decline in cardiac function, increasing the risk of heart failure with preserved ejection fraction (HFpEF). This study elucidates the impact of α-Klotho, an anti-aging hormone, on cardiac diastolic dysfunction and explore its downstream mechanisms. Aged wild-type and heterozygous Klotho-deficient mice received daily injection of soluble α-Klotho (sKL) for 10 weeks, followed by a comprehensive assessment of heart function by echocardiography, intracardiac pressure catheter, exercise tolerance, and cardiac pathology. Our findings show that klotho deficiency accentuated cardiac hypertrophy, diastolic dysfunction, and exercise intolerance, while sKL treatment ameliorates these abnormalities and improves cardiac capillary densities. Downstream of klotho, we focused on the Sirtuin1 (Sirt1) signaling pathway to elucidate the potential underlying mechanism by which Klotho improves diastolic function. We found that decreased Klotho levels were linked with Sirt1 deficiency, whereas sKL treatment restored Sirt1 expression in aged hearts and mitigated the DNA damage response pathway activation. Through tandem mass tag proteomics and unbiased acetylomics analysis, we identified 220 significantly hyperacetylated lysine sites in critical cardiac proteins of aged hearts. We found that sKL supplementation attenuated age-dependent DNA damage and cardiac diastolic dysfunction. In contrast, Klotho deficiency significantly increased hyperacetylation of several crucial cardiac contractile proteins, potentially impairing ventricular relaxation and diastolic function, thus predisposing to HFpEF. These results suggest the potential benefit of sKL supplementation as a promising therapeutic strategy for combating HFpEF in aging.
Collapse
Affiliation(s)
- Nastaran Daneshgar
- Department of Pathology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Renny Lan
- UAMS, Arkansas Children's Nutrition Center, Little Rock, AR, USA
| | - Michael Regnier
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Samuel G Mackintosh
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | | | - Dao-Fu Dai
- Department of Pathology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
2
|
Ramirez-Sagredo A, Sunny AT, Cupp-Sutton KA, Chowdhury T, Zhao Z, Wu S, Chiao YA. Characterizing age-related changes in intact mitochondrial proteoforms in murine hearts using quantitative top-down proteomics. Clin Proteomics 2024; 21:57. [PMID: 39343872 PMCID: PMC11440756 DOI: 10.1186/s12014-024-09509-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 09/19/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Cardiovascular diseases (CVDs) are the leading cause of death worldwide, and the prevalence of CVDs increases markedly with age. Due to the high energetic demand, the heart is highly sensitive to mitochondrial dysfunction. The complexity of the cardiac mitochondrial proteome hinders the development of effective strategies that target mitochondrial dysfunction in CVDs. Mammalian mitochondria are composed of over 1000 proteins, most of which can undergo post-translational modifications (PTMs). Top-down proteomics is a powerful technique for characterizing and quantifying proteoform sequence variations and PTMs. However, there are still knowledge gaps in the study of age-related mitochondrial proteoform changes using this technique. In this study, we used top-down proteomics to identify intact mitochondrial proteoforms in young and old hearts and determined changes in protein abundance and PTMs in cardiac aging. METHODS Intact mitochondria were isolated from the hearts of young (4-month-old) and old (24-25-month-old) mice. The mitochondria were lysed, and mitochondrial lysates were subjected to denaturation, reduction, and alkylation. For quantitative top-down analysis, there were 12 runs in total arising from 3 biological replicates in two conditions, with technical duplicates for each sample. The collected top-down datasets were deconvoluted and quantified, and then the proteoforms were identified. RESULTS From a total of 12 LC-MS/MS runs, we identified 134 unique mitochondrial proteins in the different sub-mitochondrial compartments (OMM, IMS, IMM, matrix). 823 unique proteoforms in different mass ranges were identified. Compared to cardiac mitochondria of young mice, 7 proteoforms exhibited increased abundance and 13 proteoforms exhibited decreased abundance in cardiac mitochondria of old mice. Our analysis also detected PTMs of mitochondrial proteoforms, including N-terminal acetylation, lysine succinylation, lysine acetylation, oxidation, and phosphorylation. Data are available via ProteomeXchange with the identifier PXD051505. CONCLUSION By combining mitochondrial protein enrichment using mitochondrial fractionation with quantitative top-down analysis using ultrahigh-pressure liquid chromatography (UPLC)-MS and label-free quantitation, we successfully identified and quantified intact proteoforms in the complex mitochondrial proteome. Using this approach, we detected age-related changes in abundance and PTMs of mitochondrial proteoforms in the heart.
Collapse
Affiliation(s)
- Andrea Ramirez-Sagredo
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, MS21, 825 NE 13th St, Oklahoma City, OK, 73104, USA
| | - Anju Teresa Sunny
- Department of Chemistry and Biochemistry, University of Alabama, 250 Hackberry ln, Tuscaloosa, AL, 35487, USA
| | - Kellye A Cupp-Sutton
- Department of Chemistry and Biochemistry, University of Alabama, 250 Hackberry ln, Tuscaloosa, AL, 35487, USA
| | - Trishika Chowdhury
- Department of Chemistry and Biochemistry, University of Alabama, 250 Hackberry ln, Tuscaloosa, AL, 35487, USA
| | - Zhitao Zhao
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Room 2210, Norman, OK, 73019-5251, USA
| | - Si Wu
- Department of Chemistry and Biochemistry, University of Alabama, 250 Hackberry ln, Tuscaloosa, AL, 35487, USA.
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Room 2210, Norman, OK, 73019-5251, USA.
| | - Ying Ann Chiao
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, MS21, 825 NE 13th St, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
3
|
Nasuhidehnavi A, Zarzycka W, Górecki I, Chiao YA, Lee CF. Emerging interactions between mitochondria and NAD + metabolism in cardiometabolic diseases. Trends Endocrinol Metab 2024:S1043-2760(24)00191-7. [PMID: 39198117 DOI: 10.1016/j.tem.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 09/01/2024]
Abstract
Nicotinamide adenine dinucleotide (NAD+) is an essential coenzyme for redox reactions and regulates cellular catabolic pathways. An intertwined relationship exists between NAD+ and mitochondria, with consequences for mitochondrial function. Dysregulation in NAD+ homeostasis can lead to impaired energetics and increased oxidative stress, contributing to the pathogenesis of cardiometabolic diseases. In this review, we explore how disruptions in NAD+ homeostasis impact mitochondrial function in various cardiometabolic diseases. We discuss emerging studies demonstrating that enhancing NAD+ synthesis or inhibiting its consumption can ameliorate complications of this family of pathological conditions. Additionally, we highlight the potential role and therapeutic promise of mitochondrial NAD+ transporters in regulating cellular and mitochondrial NAD+ homeostasis.
Collapse
Affiliation(s)
- Azadeh Nasuhidehnavi
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Binghamton University, Binghamton, NY 13790, USA
| | - Weronika Zarzycka
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Ignacy Górecki
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Ying Ann Chiao
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Chi Fung Lee
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| |
Collapse
|
4
|
Gomez-Pinilla F, Thapak P. Exercise epigenetics is fueled by cell bioenergetics: Supporting role on brain plasticity and cognition. Free Radic Biol Med 2024; 220:43-55. [PMID: 38677488 PMCID: PMC11144461 DOI: 10.1016/j.freeradbiomed.2024.04.237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/04/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024]
Abstract
Exercise has the unique aptitude to benefit overall health of body and brain. Evidence indicates that the effects of exercise can be saved in the epigenome for considerable time to elevate the threshold for various diseases. The action of exercise on epigenetic regulation seems central to building an "epigenetic memory" to influence long-term brain function and behavior. As an intrinsic bioenergetic process, exercise engages the function of the mitochondria and redox pathways to impinge upon molecular mechanisms that regulate synaptic plasticity and learning and memory. We discuss how the action of exercise uses mechanisms of bioenergetics to support a "epigenetic memory" with long-term implications for neural and behavioral plasticity. This information is crucial for directing the power of exercise to reduce the burden of neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Fernando Gomez-Pinilla
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA; Department of Neurosurgery, UCLA Brain Injury Research Center, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| | - Pavan Thapak
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
5
|
Hao W, Jialong Z, Jiuzhi Y, Yang Y, Chongning L, Jincai L. ADP-ribosylation, a multifaceted modification: Functions and mechanisms in aging and aging-related diseases. Ageing Res Rev 2024; 98:102347. [PMID: 38815933 DOI: 10.1016/j.arr.2024.102347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/18/2024] [Accepted: 05/23/2024] [Indexed: 06/01/2024]
Abstract
Aging, a complex biological process, plays key roles the development of multiple disorders referred as aging-related diseases involving cardiovascular diseases, stroke, neurodegenerative diseases, cancers, lipid metabolism-related diseases. ADP-ribosylation is a reversible modification onto proteins and nucleic acids to alter their structures and/or functions. Growing evidence support the importance of ADP-ribosylation and ADP-ribosylation-associated enzymes in aging and age-related diseases. In this review, we summarized ADP-ribosylation-associated proteins including ADP-ribosyl transferases, the ADP-ribosyl hydrolyses and ADP-ribose binding domains. Furthermore, we outlined the latest knowledge about regulation of ADP-ribosylation in the pathogenesis and progression of main aging-related diseases, organism aging and cellular senescence, and we also speculated the underlying mechanisms to better disclose this novel molecular network. Moreover, we discussed current issues and provided an outlook for future research, aiming to revealing the unknown bio-properties of ADP-ribosylation, and establishing a novel therapeutic perspective in aging-related diseases and health aging via targeting ADP-ribosylation.
Collapse
Affiliation(s)
- Wu Hao
- College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Zhao Jialong
- College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Yuan Jiuzhi
- College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Yu Yang
- College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Lv Chongning
- College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China; Liaoning Provincial Key Laboratory of TCM Resources Conservation and Development, Shenyang Pharmaceutical University, Shenyang, China
| | - Lu Jincai
- College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China; Liaoning Provincial Key Laboratory of TCM Resources Conservation and Development, Shenyang Pharmaceutical University, Shenyang, China.
| |
Collapse
|
6
|
Amar D, Gay NR, Jimenez-Morales D, Jean Beltran PM, Ramaker ME, Raja AN, Zhao B, Sun Y, Marwaha S, Gaul DA, Hershman SG, Ferrasse A, Xia A, Lanza I, Fernández FM, Montgomery SB, Hevener AL, Ashley EA, Walsh MJ, Sparks LM, Burant CF, Rector RS, Thyfault J, Wheeler MT, Goodpaster BH, Coen PM, Schenk S, Bodine SC, Lindholm ME. The mitochondrial multi-omic response to exercise training across rat tissues. Cell Metab 2024; 36:1411-1429.e10. [PMID: 38701776 PMCID: PMC11152996 DOI: 10.1016/j.cmet.2023.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/27/2023] [Accepted: 12/15/2023] [Indexed: 05/05/2024]
Abstract
Mitochondria have diverse functions critical to whole-body metabolic homeostasis. Endurance training alters mitochondrial activity, but systematic characterization of these adaptations is lacking. Here, the Molecular Transducers of Physical Activity Consortium mapped the temporal, multi-omic changes in mitochondrial analytes across 19 tissues in male and female rats trained for 1, 2, 4, or 8 weeks. Training elicited substantial changes in the adrenal gland, brown adipose, colon, heart, and skeletal muscle. The colon showed non-linear response dynamics, whereas mitochondrial pathways were downregulated in brown adipose and adrenal tissues. Protein acetylation increased in the liver, with a shift in lipid metabolism, whereas oxidative proteins increased in striated muscles. Exercise-upregulated networks were downregulated in human diabetes and cirrhosis. Knockdown of the central network protein 17-beta-hydroxysteroid dehydrogenase 10 (HSD17B10) elevated oxygen consumption, indicative of metabolic stress. We provide a multi-omic, multi-tissue, temporal atlas of the mitochondrial response to exercise training and identify candidates linked to mitochondrial dysfunction.
Collapse
Affiliation(s)
- David Amar
- Stanford University, Stanford, CA, USA; Insitro, San Francisco, CA, USA
| | | | | | | | | | | | | | - Yifei Sun
- Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | | | - David A Gaul
- Georgia Institute of Technology, Atlanta, GA, USA
| | | | | | - Ashley Xia
- National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | | | - Martin J Walsh
- Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Lauren M Sparks
- Translational Research Institute AdventHealth, Orlando, FL, USA
| | | | | | - John Thyfault
- University of Kansas Medical Center, Kansas City, KS, USA
| | | | | | - Paul M Coen
- Translational Research Institute AdventHealth, Orlando, FL, USA
| | - Simon Schenk
- University of California, San Diego, La Jolla, CA, USA
| | - Sue C Bodine
- Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | | |
Collapse
|
7
|
Huang C, Zhang X, Wang S, Shen A, Xu T, Hou Y, Gao S, Xie Y, Zeng Y, Chen J, Lin R, Zhang Y, Wan C, Cai Y. PARP-2 mediates cardiomyocyte aging and damage induced by doxorubicin through SIRT1 Inhibition. Apoptosis 2024; 29:816-834. [PMID: 38281279 DOI: 10.1007/s10495-023-01929-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2023] [Indexed: 01/30/2024]
Abstract
Doxorubicin (DOX) is an anthracycline antibiotic used as an antitumor treatment. However, its clinical application is limited due to severe side effects such as cardiotoxicity. In recent years, numerous studies have demonstrated that cellular aging has become a therapeutic target for DOX-induced cardiomyopathy. However, the underlying mechanism and specific molecular targets of DOX-induced cardiomyocyte aging remain unclear. Poly (ADP-ribose) polymerase (PARP) is a family of protein post-translational modification enzymes in eukaryotic cells, including 18 members. PARP-1, the most well-studied member of this family, has become a potential molecular target for the prevention and treatment of various cardiovascular diseases, such as DOX cardiomyopathy and heart failure. PARP-1 and PARP-2 share 69% homology in the catalytic regions. However, they do not entirely overlap in function. The role of PARP-2 in cardiovascular diseases, especially in DOX-induced cardiomyocyte aging, is less studied. In this study, we found for the first time that down-regulation of PARP-2 can inhibit DOX-induced cellular aging in cardiomyocytes. On the contrary, overexpression of PARP-2 can aggravate DOX-induced cardiomyocyte aging and injury. Further research showed that PARP-2 inhibited the expression and activity of SIRT1, which in turn was involved in the development of DOX-induced cardiomyocyte aging and injury. Our findings provide a preliminary experimental basis for establishing PARP-2 as a new target for preventing and treating DOX cardiomyopathy and related drug development.
Collapse
Affiliation(s)
- Chaoming Huang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Xuan Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Shulin Wang
- Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 511500, Qingyuan, China
| | - Ao Shen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Tianfen Xu
- Department of Medical Genetics and Cell Biology, GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yanhong Hou
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Shuhan Gao
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yongwan Xie
- School of Public Health, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yi Zeng
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Jiayu Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Runxiang Lin
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yu Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China.
| | - Chunpeng Wan
- Research Center of Tea and Tea Culture, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Yi Cai
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
8
|
Stewart JE, Crawford JM, Mullen WE, Jacques A, Stoner MW, Scott I, Thapa D. Cardiomyocyte-specific deletion of GCN5L1 reduces lysine acetylation and attenuates diastolic dysfunction in aged mice by improving cardiac fatty acid oxidation. Biochem J 2024; 481:423-436. [PMID: 38390938 DOI: 10.1042/bcj20230421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 02/24/2024]
Abstract
Cardiac mitochondrial dysfunction is a critical contributor to the pathogenesis of aging and many age-related conditions. As such, complete control of mitochondrial function is critical to maintain cardiac efficiency in the aged heart. Lysine acetylation is a reversible post-translational modification shown to regulate several mitochondrial metabolic and biochemical processes. In the present study, we investigated how mitochondrial lysine acetylation regulates fatty acid oxidation (FAO) and cardiac function in the aged heart. We found a significant increase in mitochondrial protein acetylation in the aged heart which correlated with increased level of mitochondrial acetyltransferase-related protein GCN5L1. We showed that acetylation status of several fatty acid and glucose oxidation enzymes (long-chain acyl-coenzyme A dehydrogenase, hydroxyacyl-coA dehydrogenase, and pyruvate dehydrogenase) were significantly up-regulated in aged heart which correlated with decreased enzymatic activities. Using a cardiac-specific GCN5L1 knockout (KO) animal model, we showed that overall acetylation of mitochondrial proteins was decreased in aged KO animals, including FAO proteins which led to improved FAO activity and attenuated cardiac diastolic dysfunction observed in the aged heart. Together, these findings indicate that lysine acetylation regulates FAO in the aged heart which results in improved cardiac diastolic function and this is in part regulated by GCN5L1.
Collapse
Affiliation(s)
- Jackson E Stewart
- Division of Pathophysiology, Rehabilitation, and Performance, West Virginia University, 1 Medical Center Drive, P.O. Box 9227, Morgantown, WV 26506, U.S.A
- Mitochondria, Metabolism and Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV, U.S.A
| | - Jenna M Crawford
- Division of Pathophysiology, Rehabilitation, and Performance, West Virginia University, 1 Medical Center Drive, P.O. Box 9227, Morgantown, WV 26506, U.S.A
- Mitochondria, Metabolism and Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV, U.S.A
| | - William E Mullen
- Division of Pathophysiology, Rehabilitation, and Performance, West Virginia University, 1 Medical Center Drive, P.O. Box 9227, Morgantown, WV 26506, U.S.A
- Mitochondria, Metabolism and Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV, U.S.A
| | - Angelica Jacques
- Division of Pathophysiology, Rehabilitation, and Performance, West Virginia University, 1 Medical Center Drive, P.O. Box 9227, Morgantown, WV 26506, U.S.A
- Mitochondria, Metabolism and Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV, U.S.A
| | - Michael W Stoner
- Division of Cardiology, University of Pittsburgh, Pittsburgh, PA, U.S.A
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Iain Scott
- Division of Cardiology, University of Pittsburgh, Pittsburgh, PA, U.S.A
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Dharendra Thapa
- Division of Pathophysiology, Rehabilitation, and Performance, West Virginia University, 1 Medical Center Drive, P.O. Box 9227, Morgantown, WV 26506, U.S.A
- Mitochondria, Metabolism and Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV, U.S.A
| |
Collapse
|
9
|
Kołacz K, Robaszkiewicz A. PARP1 at the crossroad of cellular senescence and nucleolar processes. Ageing Res Rev 2024; 94:102206. [PMID: 38278370 DOI: 10.1016/j.arr.2024.102206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/09/2024] [Accepted: 01/22/2024] [Indexed: 01/28/2024]
Abstract
Senescent cells that occur in response to telomere shortening, oncogenes, extracellular and intracellular stress factors are characterized by permanent cell cycle arrest, the morphological and structural changes of the cell that include the senescence-associated secretory phenotype (SASP) and nucleoli rearrangement. The associated DNA lesions induce DNA damage response (DDR), which activates the DNA repair protein - poly-ADP-ribose polymerase 1 (PARP1). This protein consumes NAD+ to synthesize ADP-ribose polymer (PAR) on its own protein chain and on other interacting proteins. The involvement of PARP1 in nucleoli processes, such as rRNA transcription and ribosome biogenesis, the maintenance of heterochromatin and nucleoli structure, as well as controlling the crucial DDR protein release from the nucleoli to nucleus, links PARP1 with cellular senescence and nucleoli functioning. In this review we describe and discuss the impact of PARP1-mediated ADP-ribosylation on early cell commitment to senescence with the possible role of senescence-induced PARP1 transcriptional repression and protein degradation on nucleoli structure and function. The cause-effect interplay between PARP1 activation/decline and nucleoli functioning during senescence needs to be studied in detail.
Collapse
Affiliation(s)
- Kinga Kołacz
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; Bio-Med-Chem Doctoral School of the University of Lodz and Lodz Institutes of the Polish Academy of Sciences, University of Lodz, Banacha 12 /16, 90-237 Lodz, Poland.
| | - Agnieszka Robaszkiewicz
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research (IFBR), 600 5th Street South, St. Petersburgh, FL 33701, USA.
| |
Collapse
|
10
|
Ramirez-Sagredo A, Sunny A, Cupp-Sutton K, Chowdhury T, Zhao Z, Wu S, Ann Chiao Y. Characterizing Age-related Changes in Intact Mitochondrial Proteoforms in Murine Hearts using Quantitative Top-Down Proteomics. RESEARCH SQUARE 2024:rs.3.rs-3868218. [PMID: 38313302 PMCID: PMC10836115 DOI: 10.21203/rs.3.rs-3868218/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death worldwide, and the prevalence of CVDs increases markedly with age. Due to the high energetic demand, the heart is highly sensitive to mitochondrial dysfunction. The complexity of the cardiac mitochondrial proteome hinders the development of effective strategies that target mitochondrial dysfunction in CVDs. Mammalian mitochondria are composed of over 1000 proteins, most of which can undergo post-translational protein modifications (PTMs). Top-down proteomics is a powerful technique for characterizing and quantifying all protein sequence variations and PTMs. However, there are still knowledge gaps in the study of age-related mitochondrial proteoform changes using this technique. In this study, we used top-down proteomics to identify intact mitochondrial proteoforms in young and old hearts and determined changes in protein abundance and PTMs in cardiac aging. METHODS Intact mitochondria were isolated from the hearts of young (4-month-old) and old (24-25-month-old) mice. The mitochondria were lysed, and mitochondrial lysates were subjected to denaturation, reduction, and alkylation. For quantitative top-down analysis, there were 12 runs in total arising from 3 biological replicates in two conditions, with technical duplicates for each sample. The collected top-down datasets were deconvoluted and quantified, and then the proteoforms were identified. RESULTS From a total of 12 LC-MS/MS runs, we identified 134 unique mitochondrial proteins in the different sub-mitochondrial compartments (OMM, IMS, IMM, matrix). 823 unique proteoforms in different mass ranges were identified. Compared to cardiac mitochondria of young mice, 7 proteoforms exhibited increased abundance and 13 proteoforms exhibited decreased abundance in cardiac mitochondria of old mice. Our analysis also detected PTMs of mitochondrial proteoforms, including N-terminal acetylation, lysine succinylation, lysine acetylation, oxidation, and phosphorylation. CONCLUSION By combining mitochondrial protein enrichment using mitochondrial fractionation with quantitative top-down analysis using ultrahigh-pressure liquid chromatography (UPLC)-MS and label-free quantitation, we successfully identified and quantified intact proteoforms in the complex mitochondrial proteome. Using this approach, we detected age-related changes in abundance and PTMs of mitochondrial proteoforms in the heart.
Collapse
|
11
|
Haak JL, Kregel KC, Bloomer SA. Altered accumulation of hepatic mitochondrial antioxidant proteins with age and environmental heat stress. J Appl Physiol (1985) 2023; 135:1339-1347. [PMID: 37881850 PMCID: PMC10979832 DOI: 10.1152/japplphysiol.00610.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/20/2023] [Accepted: 10/20/2023] [Indexed: 10/27/2023] Open
Abstract
Aging impairs overall physiological function, particularly the response to environmental stressors. Repeated heat stress elevates reactive oxygen species and macromolecular damage in the livers of aged animals, likely due to mitochondrial dysfunction. The goal of this investigation was to determine potential mechanisms for mitochondrial dysfunction after heat stress by evaluating key redox-sensitive and antioxidant proteins (Sirt-3, MnSOD, Trx-2, and Ref-1). We hypothesized that heat stress would result in greater mitochondrial abundance of these proteins, but that aging would attenuate this response. For this purpose, young (6 mo) and old (24 mo) Fisher 344 rats were exposed to heat stress on two consecutive days. During each heating trial, colonic temperature was elevated to 41°C during the first 60 min, and then clamped at this temperature for 30 min. Nonheated animals served as controls. At 2 and 24 h after the second heat stress, hepatic mitochondria were isolated from each animal, and then immunoblotted for Sirt-3, acetylated lysine residues (Ac-K), MnSOD, Trx-2, and Ref-1. Aging increased Sirt-3 and lowered Ac-K. In response to heat stress, Sirt-3, Ac-K, MnSOD, and Ref-1 increased in mitochondrial fractions in both young and old animals. At 2 h after the second heat stress, mitochondrial Trx-2 declined in old, but not in young animals. Our results suggest that some components of the response to heat stress are preserved with aging. However, the decline in Trx-2 represents a potential mechanism for age-related mitochondrial damage and dysfunction after heat stress.NEW & NOTEWORTHY Our results suggest heat stress-induced mitochondrial translocation of Sirt-3, MnSOD, and Ref-1 in young and old animals. Aged rats experienced a decline in Trx-2 after heat stress, suggesting a potential mechanism for age-related mitochondrial dysfunction.
Collapse
Affiliation(s)
- Jodie L Haak
- Health Sciences Department, Drexel University, Philadelphia, Pennsylvania, United States
| | - Kevin C Kregel
- Department of Health and Human Physiology, The University of Iowa, Iowa City, Iowa, United States
| | - Steven A Bloomer
- Division of Science and Engineering, Penn State Abington, Abington, Pennsylvania, United States
| |
Collapse
|
12
|
Pandics T, Major D, Fazekas-Pongor V, Szarvas Z, Peterfi A, Mukli P, Gulej R, Ungvari A, Fekete M, Tompa A, Tarantini S, Yabluchanskiy A, Conley S, Csiszar A, Tabak AG, Benyo Z, Adany R, Ungvari Z. Exposome and unhealthy aging: environmental drivers from air pollution to occupational exposures. GeroScience 2023; 45:3381-3408. [PMID: 37688657 PMCID: PMC10643494 DOI: 10.1007/s11357-023-00913-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/14/2023] [Indexed: 09/11/2023] Open
Abstract
The aging population worldwide is facing a significant increase in age-related non-communicable diseases, including cardiovascular and brain pathologies. This comprehensive review paper delves into the impact of the exposome, which encompasses the totality of environmental exposures, on unhealthy aging. It explores how environmental factors contribute to the acceleration of aging processes, increase biological age, and facilitate the development and progression of a wide range of age-associated diseases. The impact of environmental factors on cognitive health and the development of chronic age-related diseases affecting the cardiovascular system and central nervous system is discussed, with a specific focus on Alzheimer's disease, Parkinson's disease, stroke, small vessel disease, and vascular cognitive impairment (VCI). Aging is a major risk factor for these diseases. Their pathogenesis involves cellular and molecular mechanisms of aging such as increased oxidative stress, impaired mitochondrial function, DNA damage, and inflammation and is influenced by environmental factors. Environmental toxicants, including ambient particulate matter, pesticides, heavy metals, and organic solvents, have been identified as significant contributors to cardiovascular and brain aging disorders. These toxicants can inflict both macro- and microvascular damage and many of them can also cross the blood-brain barrier, inducing neurotoxic effects, neuroinflammation, and neuronal dysfunction. In conclusion, environmental factors play a critical role in modulating cardiovascular and brain aging. A deeper understanding of how environmental toxicants exacerbate aging processes and contribute to the pathogenesis of neurodegenerative diseases, VCI, and dementia is crucial for the development of preventive strategies and interventions to promote cardiovascular, cerebrovascular, and brain health. By mitigating exposure to harmful environmental factors and promoting healthy aging, we can strive to reduce the burden of age-related cardiovascular and brain pathologies in the aging population.
Collapse
Affiliation(s)
- Tamas Pandics
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- Department of Public Health Laboratory, National Public Health Centre, Budapest, Hungary
- Department of Public Health Siences, Faculty of Health Sciences, Semmelweis University, Budapest, Hungary
| | - David Major
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Vince Fazekas-Pongor
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Zsofia Szarvas
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anna Peterfi
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Peter Mukli
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Rafal Gulej
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anna Ungvari
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Monika Fekete
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Anna Tompa
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Stefano Tarantini
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Shannon Conley
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anna Csiszar
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Adam G Tabak
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- UCL Brain Sciences, University College London, London, UK
- Department of Internal Medicine and Oncology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Zoltan Benyo
- Department of Translational Medicine, Semmelweis University, Budapest, Hungary
- Eötvös Loránd Research Network and Semmelweis University (ELKH-SE) Cerebrovascular and Neurocognitive Disorders Research Group, Budapest, H-1052, Hungary
| | - Roza Adany
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- ELKH-DE Public Health Research Group, Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, 4032, Debrecen, Hungary
- Epidemiology and Surveillance Centre, Semmelweis University, 1085, Budapest, Hungary
| | - Zoltan Ungvari
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA.
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
13
|
Nevi L, Pöllänen N, Penna F, Caretti G. Targeting Epigenetic Regulators with HDAC and BET Inhibitors to Modulate Muscle Wasting. Int J Mol Sci 2023; 24:16404. [PMID: 38003594 PMCID: PMC10671811 DOI: 10.3390/ijms242216404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/07/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Epigenetic changes contribute to the profound alteration in the transcriptional program associated with the onset and progression of muscle wasting in several pathological conditions. Although HDACs and their inhibitors have been extensively studied in the field of muscular dystrophies, the potential of epigenetic inhibitors has only been marginally explored in other disorders associated with muscle atrophy, such as in cancer cachexia and sarcopenia. BET inhibitors represent a novel class of recently developed epigenetic drugs that display beneficial effects in a variety of diseases beyond malignancies. Based on the preliminary in vitro and preclinical data, HDACs and BET proteins contribute to the pathogenesis of cancer cachexia and sarcopenia, modulating processes related to skeletal muscle mass maintenance and/or metabolism. Thus, epigenetic drugs targeting HDACs and BET proteins may emerge as promising strategies to reverse the catabolic phenotype associated with cachexia and sarcopenia. Further preclinical studies are warranted to delve deeper into the molecular mechanisms associated with the functions of HDACs and BET proteins in muscle atrophy and to establish whether their epigenetic inhibitors represent a prospective therapeutic avenue to alleviate muscle wasting.
Collapse
Affiliation(s)
- Lorenzo Nevi
- Department of Biosciences, University of Milan, 20133 Milan, Italy;
| | - Noora Pöllänen
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Fabio Penna
- Department of Clinical and Biological Sciences, University of Torino, 10125 Torino, Italy
| | | |
Collapse
|
14
|
Miao T, Bai H. Identification of Acetylation Sites of Fatty Acid Synthase (FASN) by Mass Spectrometry and FASN Activity Assay. Bio Protoc 2023; 13:e4873. [PMID: 37969759 PMCID: PMC10632157 DOI: 10.21769/bioprotoc.4873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/28/2023] [Accepted: 09/24/2023] [Indexed: 11/17/2023] Open
Abstract
Lysine acetylation is a conserved post-translational modification and a key regulatory mechanism for various cellular processes, including metabolic control, epigenetic regulation, and cellular signaling transduction. Recent advances in mass spectrometry (MS) enable the extensive identification of acetylated lysine residues of histone and non-histone proteins. However, protein enrichment before MS analysis may be necessary to improve the detection of low-abundant proteins or proteins that exhibit low acetylation levels. Fatty acid synthase (FASN), an essential enzyme catalyzing the de novo synthesis of fatty acids, has been found to be acetylated in various species, from fruit flies to humans. Here, we describe a step-by-step process of antibody-based protein enrichment and sample preparation for acetylation identification of endogenous FASN protein by MS-based proteomics analysis. Meanwhile, we provide a protocol for nicotinamide adenine dinucleotide phosphate (NADPH) absorbance assay for FASN activity measurement, which is one of the primary functional readouts of de novo lipogenesis. Key features • A comprehensive protocol for protein immunoprecipitation and sample preparation for acetylation site identification by mass spectrometry. • Step-by-step procedures for measurement of FASN activity of fruit fly larvae using an absorbance assay.
Collapse
Affiliation(s)
- Ting Miao
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Hua Bai
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| |
Collapse
|
15
|
Xu Y, Xiao W. NAD+: An Old but Promising Therapeutic Agent for Skeletal Muscle Ageing. Ageing Res Rev 2023; 92:102106. [PMID: 39492424 DOI: 10.1016/j.arr.2023.102106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 10/25/2023] [Accepted: 10/25/2023] [Indexed: 11/05/2024]
Abstract
More than a century after the discovery of nicotinamide adenine dinucleotide (NAD+), our understanding of the molecule's role in the biology of ageing continues to evolve. As a coenzyme or substrate for many enzymes, NAD+ governs a wide range of biological processes, including energy metabolism, genomic stability, signal transduction, and cell fate. NAD+ deficiency has been recognised as a bona fide hallmark of tissue degeneration, and restoring NAD+ homeostasis helps to rejuvenate multiple mechanisms associated with tissue ageing. The progressive loss of skeletal muscle homeostasis with age is directly associated with high morbidity, disability and mortality. The aetiology of skeletal muscle ageing is complex, involving mitochondrial dysfunction, senescence and stem cell depletion, autophagy defects, chronic cellular stress, intracellular ion overload, immune cell dysfunction, circadian clock disruption, microcirculation disorders, persistent denervation, and gut microbiota dysbiosis. This review focuses on the therapeutic potential of NAD+ restoration to alleviate the above pathological factors and discusses the effects of in vivo administration of different NAD+ boosting strategies on skeletal muscle homeostasis, aiming to provide a reference for combating skeletal muscle ageing.
Collapse
Affiliation(s)
- Yingying Xu
- Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai 200438, China; The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China.
| | - Weihua Xiao
- Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai 200438, China; The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China.
| |
Collapse
|
16
|
Li Z, Luo A, Xie B. The Complex Network of ADP-Ribosylation and DNA Repair: Emerging Insights and Implications for Cancer Therapy. Int J Mol Sci 2023; 24:15028. [PMID: 37834477 PMCID: PMC10573881 DOI: 10.3390/ijms241915028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/23/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
ADP-ribosylation is a post-translational modification of proteins that plays a key role in various cellular processes, including DNA repair. Recently, significant progress has been made in understanding the mechanism and function of ADP-ribosylation in DNA repair. ADP-ribosylation can regulate the recruitment and activity of DNA repair proteins by facilitating protein-protein interactions and regulating protein conformations. Moreover, ADP-ribosylation can influence additional post-translational modifications (PTMs) of proteins involved in DNA repair, such as ubiquitination, methylation, acetylation, phosphorylation, and SUMOylation. The interaction between ADP-ribosylation and these additional PTMs can fine-tune the activity of DNA repair proteins and ensure the proper execution of the DNA repair process. In addition, PARP inhibitors have been developed as a promising cancer therapeutic strategy by exploiting the dependence of certain cancer types on the PARP-mediated DNA repair pathway. In this paper, we review the progress of ADP-ribosylation in DNA repair, discuss the crosstalk of ADP-ribosylation with additional PTMs in DNA repair, and summarize the progress of PARP inhibitors in cancer therapy.
Collapse
Affiliation(s)
| | - Aiqin Luo
- Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Bingteng Xie
- Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
17
|
Li J, Cao Y, Yang Y, Ma H, Zhao J, Zhang Y, Liu N. Quantitative Acetylomics Reveals Substrates of Lysine Acetyltransferase GCN5 in Adult and Aging Drosophila. J Proteome Res 2023; 22:2909-2924. [PMID: 37545086 DOI: 10.1021/acs.jproteome.3c00247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Protein lysine acetylation is a dynamic post-translational modification (PTM) that regulates a wide spectrum of cellular events including aging. General control nonderepressible 5 (GCN5) is a highly conserved lysine acetyltransferase (KAT). However, the acetylation substrates of GCN5 in vivo remain poorly studied, and moreover, how lysine acetylation changes with age and the contribution of KATs to aging remain to be addressed. Here, using Drosophila, we perform label-free quantitative acetylomic analysis, identifying new substrates of GCN5 in the adult and aging process. We further characterize the dynamics of protein acetylation with age, which exhibits a trend of increase. Since the expression of endogenous fly Gcn5 progressively increases during aging, we reason that, by combining the substrate analysis, the increase in acetylation with age is triggered, at least in part, by GCN5. Collectively, our study substantially expands the atlas of GCN5 substrates in vivo, provides a resource of protein acetylation that naturally occurs with age, and demonstrates how individual KAT contributes to the aging acetylome.
Collapse
Affiliation(s)
- Jingshu Li
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Hai Ke Rd., Pudong, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ye Cao
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Hai Ke Rd., Pudong, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yun Yang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Hai Ke Rd., Pudong, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huanhuan Ma
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Hai Ke Rd., Pudong, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Zhao
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Hai Ke Rd., Pudong, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaoyang Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Hai Ke Rd., Pudong, Shanghai 201210, China
- Shanghai Key Laboratory of Aging Studies, 100 Hai Ke Rd., Pudong, Shanghai 201210, China
| | - Nan Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Hai Ke Rd., Pudong, Shanghai 201210, China
- Shanghai Key Laboratory of Aging Studies, 100 Hai Ke Rd., Pudong, Shanghai 201210, China
| |
Collapse
|
18
|
Zhang J, Qiu Z, Zhang Y, Wang G, Hao H. Intracellular spatiotemporal metabolism in connection to target engagement. Adv Drug Deliv Rev 2023; 200:115024. [PMID: 37516411 DOI: 10.1016/j.addr.2023.115024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/05/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
The metabolism in eukaryotic cells is a highly ordered system involving various cellular compartments, which fluctuates based on physiological rhythms. Organelles, as the smallest independent sub-cell unit, are important contributors to cell metabolism and drug metabolism, collectively designated intracellular metabolism. However, disruption of intracellular spatiotemporal metabolism can lead to disease development and progression, as well as drug treatment interference. In this review, we systematically discuss spatiotemporal metabolism in cells and cell subpopulations. In particular, we focused on metabolism compartmentalization and physiological rhythms, including the variation and regulation of metabolic enzymes, metabolic pathways, and metabolites. Additionally, the intricate relationship among intracellular spatiotemporal metabolism, metabolism-related diseases, and drug therapy/toxicity has been discussed. Finally, approaches and strategies for intracellular spatiotemporal metabolism analysis and potential target identification are introduced, along with examples of potential new drug design based on this.
Collapse
Affiliation(s)
- Jingwei Zhang
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism & Pharmacokinetics, China Pharmaceutical University, Nanjing, China
| | - Zhixia Qiu
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yongjie Zhang
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Guangji Wang
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism & Pharmacokinetics, China Pharmaceutical University, Nanjing, China; Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, Research Unit of PK-PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, Nanjing, China.
| | - Haiping Hao
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism & Pharmacokinetics, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
19
|
Deng Y, Adam V, Nepovimova E, Heger Z, Valko M, Wu Q, Wei W, Kuca K. c-Jun N-terminal kinase signaling in cellular senescence. Arch Toxicol 2023; 97:2089-2109. [PMID: 37335314 DOI: 10.1007/s00204-023-03540-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/06/2023] [Indexed: 06/21/2023]
Abstract
Cellular senescence leads to decreased tissue regeneration and inflammation and is associated with diabetes, neurodegenerative diseases, and tumorigenesis. However, the mechanisms of cellular senescence are not fully understood. Emerging evidence has indicated that c-Jun N-terminal kinase (JNK) signaling is involved in the regulation of cellular senescence. JNK can downregulate hypoxia inducible factor-1α to accelerate hypoxia-induced neuronal cell senescence. The activation of JNK inhibits mTOR activity and triggers autophagy, which promotes cellular senescence. JNK can upregulate the expression of p53 and Bcl-2 and accelerates cancer cell senescence; however, this signaling also mediates the expression of amphiregulin and PD-LI to achieve cancer cell immune evasion and prevents their senescence. The activation of JNK further triggers forkhead box O expression and its target gene Jafrac1 to extend the lifespan of Drosophila. JNK can also upregulate the expression of DNA repair protein poly ADP-ribose polymerase 1 and heat shock protein to delay cellular senescence. This review discusses recent advances in understanding the function of JNK signaling in cellular senescence and includes a comprehensive analysis of the molecular mechanisms underlying JNK-mediated senescence evasion and oncogene-induced cellular senescence. We also summarize the research progress in anti-aging agents that target JNK signaling. This study will contribute to a better understanding of the molecular targets of cellular senescence and provides insights into anti-aging, which may be used to develop drugs for the treatment of aging-related diseases.
Collapse
Affiliation(s)
- Ying Deng
- College of Life Science, Yangtze University, Jingzhou, 434025, China
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, 613 00, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Brno, 602 00, Czech Republic
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Králové, 500 03, Hradec Králové, Czech Republic
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, 613 00, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Brno, 602 00, Czech Republic
| | - Marian Valko
- Faculty of Chemical and Food Technology, Slovak University of Technology, 812 37, Bratislava, Slovakia
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou, 434025, China.
- Department of Chemistry, Faculty of Science, University of Hradec Králové, 500 03, Hradec Králové, Czech Republic.
| | - Wei Wei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Králové, 500 03, Hradec Králové, Czech Republic.
- Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI), University of Granada, Granada, Spain.
| |
Collapse
|
20
|
Zhong Q, Xiao X, Qiu Y, Xu Z, Chen C, Chong B, Zhao X, Hai S, Li S, An Z, Dai L. Protein posttranslational modifications in health and diseases: Functions, regulatory mechanisms, and therapeutic implications. MedComm (Beijing) 2023; 4:e261. [PMID: 37143582 PMCID: PMC10152985 DOI: 10.1002/mco2.261] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 05/06/2023] Open
Abstract
Protein posttranslational modifications (PTMs) refer to the breaking or generation of covalent bonds on the backbones or amino acid side chains of proteins and expand the diversity of proteins, which provides the basis for the emergence of organismal complexity. To date, more than 650 types of protein modifications, such as the most well-known phosphorylation, ubiquitination, glycosylation, methylation, SUMOylation, short-chain and long-chain acylation modifications, redox modifications, and irreversible modifications, have been described, and the inventory is still increasing. By changing the protein conformation, localization, activity, stability, charges, and interactions with other biomolecules, PTMs ultimately alter the phenotypes and biological processes of cells. The homeostasis of protein modifications is important to human health. Abnormal PTMs may cause changes in protein properties and loss of protein functions, which are closely related to the occurrence and development of various diseases. In this review, we systematically introduce the characteristics, regulatory mechanisms, and functions of various PTMs in health and diseases. In addition, the therapeutic prospects in various diseases by targeting PTMs and associated regulatory enzymes are also summarized. This work will deepen the understanding of protein modifications in health and diseases and promote the discovery of diagnostic and prognostic markers and drug targets for diseases.
Collapse
Affiliation(s)
- Qian Zhong
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Xina Xiao
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Yijie Qiu
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Zhiqiang Xu
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Chunyu Chen
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Baochen Chong
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Xinjun Zhao
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Shan Hai
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Shuangqing Li
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Zhenmei An
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Lunzhi Dai
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| |
Collapse
|
21
|
Wang Y, Li J, Zhang Z, Wang R, Bo H, Zhang Y. Exercise Improves the Coordination of the Mitochondrial Unfolded Protein Response and Mitophagy in Aging Skeletal Muscle. Life (Basel) 2023; 13:life13041006. [PMID: 37109535 PMCID: PMC10142204 DOI: 10.3390/life13041006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/09/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
The mitochondrial unfolded protein response (UPRmt) and mitophagy are two mitochondrial quality control (MQC) systems that work at the molecular and organelle levels, respectively, to maintain mitochondrial homeostasis. Under stress conditions, these two processes are simultaneously activated and compensate for each other when one process is insufficient, indicating mechanistic coordination between the UPRmt and mitophagy that is likely controlled by common upstream signals. This review focuses on the molecular signals regulating this coordination and presents evidence showing that this coordination mechanism is impaired during aging and promoted by exercise. Furthermore, the bidirectional regulation of reactive oxygen species (ROS) and AMPK in modulating this mechanism is discussed. The hierarchical surveillance network of MQC can be targeted by exercise-derived ROS to attenuate aging, which offers a molecular basis for potential therapeutic interventions for sarcopenia.
Collapse
Affiliation(s)
- Yan Wang
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, School of Exercise and Health, Tianjin University of Sport, Tianjin 301617, China
- School of Physical Education, Guangdong Institute of Petrochemical Technology, Maoming 525000, China
| | - Jialin Li
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, School of Exercise and Health, Tianjin University of Sport, Tianjin 301617, China
| | - Ziyi Zhang
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, School of Exercise and Health, Tianjin University of Sport, Tianjin 301617, China
| | - Runzi Wang
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, School of Exercise and Health, Tianjin University of Sport, Tianjin 301617, China
| | - Hai Bo
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, School of Exercise and Health, Tianjin University of Sport, Tianjin 301617, China
- Department of Military Training Medicines, Logistics University of Chinese People's Armed Police Force, Tianjin 300162, China
| | - Yong Zhang
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, School of Exercise and Health, Tianjin University of Sport, Tianjin 301617, China
| |
Collapse
|
22
|
Li P, Newhardt MF, Matsuzaki S, Eyster C, Pranay A, Peelor FF, Batushansky A, Kinter C, Subramani K, Subrahmanian S, Ahamed J, Yu P, Kinter M, Miller BF, Humphries KM. The loss of cardiac SIRT3 decreases metabolic flexibility and proteostasis in an age-dependent manner. GeroScience 2023; 45:983-999. [PMID: 36460774 PMCID: PMC9886736 DOI: 10.1007/s11357-022-00695-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/17/2022] [Indexed: 12/04/2022] Open
Abstract
SIRT3 is a longevity factor that acts as the primary deacetylase in mitochondria. Although ubiquitously expressed, previous global SIRT3 knockout studies have shown primarily a cardiac-specific phenotype. Here, we sought to determine how specifically knocking out SIRT3 in cardiomyocytes (SIRTcKO mice) temporally affects cardiac function and metabolism. Mice displayed an age-dependent increase in cardiac pathology, with 10-month-old mice exhibiting significant loss of systolic function, hypertrophy, and fibrosis. While mitochondrial function was maintained at 10 months, proteomics and metabolic phenotyping indicated SIRT3 hearts had increased reliance on glucose as an energy substrate. Additionally, there was a significant increase in branched-chain amino acids in SIRT3cKO hearts without concurrent increases in mTOR activity. Heavy water labeling experiments demonstrated that, by 3 months of age, there was an increase in protein synthesis that promoted hypertrophic growth with a potential loss of proteostasis in SIRT3cKO hearts. Cumulatively, these data show that the cardiomyocyte-specific loss of SIRT3 results in severe pathology with an accelerated aging phenotype.
Collapse
Affiliation(s)
- Ping Li
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, 825 NE 13thSt, Oklahoma City, OK, 73104, USA
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Department of Cardiology, Central South University, The Third Xiangya Hospital, Changsha, Hunan, China
| | - Maria F Newhardt
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, 825 NE 13thSt, Oklahoma City, OK, 73104, USA.
| | - Satoshi Matsuzaki
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, 825 NE 13thSt, Oklahoma City, OK, 73104, USA
| | - Craig Eyster
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, 825 NE 13thSt, Oklahoma City, OK, 73104, USA
| | - Atul Pranay
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, 825 NE 13thSt, Oklahoma City, OK, 73104, USA
| | - Frederick F Peelor
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, 825 NE 13thSt, Oklahoma City, OK, 73104, USA
| | - Albert Batushansky
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, 825 NE 13thSt, Oklahoma City, OK, 73104, USA
- Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Caroline Kinter
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, 825 NE 13thSt, Oklahoma City, OK, 73104, USA
| | - Kumar Subramani
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Sandeep Subrahmanian
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Jasimuddin Ahamed
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Pengchun Yu
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Michael Kinter
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, 825 NE 13thSt, Oklahoma City, OK, 73104, USA
| | - Benjamin F Miller
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, 825 NE 13thSt, Oklahoma City, OK, 73104, USA
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Kenneth M Humphries
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, 825 NE 13thSt, Oklahoma City, OK, 73104, USA.
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
23
|
Bakhtina AA, Pharaoh GA, Campbell MD, Keller A, Stuppard RS, Marcinek DJ, Bruce JE. Skeletal muscle mitochondrial interactome remodeling is linked to functional decline in aged female mice. NATURE AGING 2023; 3:313-326. [PMID: 37118428 PMCID: PMC10154043 DOI: 10.1038/s43587-023-00366-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 01/10/2023] [Indexed: 04/30/2023]
Abstract
Genomic, transcriptomic and proteomic approaches have been used to gain insight into molecular underpinnings of aging in laboratory animals and in humans. However, protein function in biological systems is under complex regulation and includes factors besides abundance levels, such as modifications, localization, conformation and protein-protein interactions. By making use of quantitative chemical cross-linking technologies, we show that changes in the muscle mitochondrial interactome contribute to mitochondrial functional decline in aging in female mice. Specifically, we identify age-related changes in protein cross-links relating to assembly of electron transport system complexes I and IV, activity of glutamate dehydrogenase, and coenzyme-A binding in fatty acid β-oxidation and tricarboxylic acid cycle enzymes. These changes show a remarkable correlation with complex I respiration differences within the same young-old animal pairs. Each observed cross-link can serve as a protein conformational or protein-protein interaction probe in future studies, which will provide further molecular insights into commonly observed age-related phenotypic differences. Therefore, this data set could become a valuable resource for additional in-depth molecular studies that are needed to better understand complex age-related molecular changes.
Collapse
Affiliation(s)
- Anna A Bakhtina
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Gavin A Pharaoh
- Department of Radiology, University of Washington, Seattle, WA, USA
| | | | - Andrew Keller
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | | | - David J Marcinek
- Department of Radiology, University of Washington, Seattle, WA, USA.
| | - James E Bruce
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
| |
Collapse
|
24
|
Amar D, Gay NR, Jimenez-Morales D, Beltran PMJ, Ramaker ME, Raja AN, Zhao B, Sun Y, Marwaha S, Gaul D, Hershman SG, Xia A, Lanza I, Fernandez FM, Montgomery SB, Hevener AL, Ashley EA, Walsh MJ, Sparks LM, Burant CF, Rector RS, Thyfault J, Wheeler MT, Goodpaster BH, Coen PM, Schenk S, Bodine SC, Lindholm ME. The mitochondrial multi-omic response to exercise training across tissues. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.13.523698. [PMID: 36711881 PMCID: PMC9882193 DOI: 10.1101/2023.01.13.523698] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Mitochondria are adaptable organelles with diverse cellular functions critical to whole-body metabolic homeostasis. While chronic endurance exercise training is known to alter mitochondrial activity, these adaptations have not yet been systematically characterized. Here, the Molecular Transducers of Physical Activity Consortium (MoTrPAC) mapped the longitudinal, multi-omic changes in mitochondrial analytes across 19 tissues in male and female rats endurance trained for 1, 2, 4 or 8 weeks. Training elicited substantial changes in the adrenal gland, brown adipose, colon, heart and skeletal muscle, while we detected mild responses in the brain, lung, small intestine and testes. The colon response was characterized by non-linear dynamics that resulted in upregulation of mitochondrial function that was more prominent in females. Brown adipose and adrenal tissues were characterized by substantial downregulation of mitochondrial pathways. Training induced a previously unrecognized robust upregulation of mitochondrial protein abundance and acetylation in the liver, and a concomitant shift in lipid metabolism. The striated muscles demonstrated a highly coordinated response to increase oxidative capacity, with the majority of changes occurring in protein abundance and post-translational modifications. We identified exercise upregulated networks that are downregulated in human type 2 diabetes and liver cirrhosis. In both cases HSD17B10, a central dehydrogenase in multiple metabolic pathways and mitochondrial tRNA maturation, was the main hub. In summary, we provide a multi-omic, cross-tissue atlas of the mitochondrial response to training and identify candidates for prevention of disease-associated mitochondrial dysfunction.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yifei Sun
- Icahn School of Medicine at Mount Sinai, New York City, NY
| | | | | | | | - Ashley Xia
- National Institutes of Health, Bethesda, MD
| | | | | | | | | | | | - Martin J Walsh
- Icahn School of Medicine at Mount Sinai, New York City, NY
| | - Lauren M Sparks
- AdventHealth Translational Research Institute for Metabolism and Diabetes, Orlando, FL
| | | | | | - John Thyfault
- University of Kansas Medical Center, Kansas City, KS
| | | | - Bret H. Goodpaster
- AdventHealth Translational Research Institute for Metabolism and Diabetes, Orlando, FL
| | - Paul M. Coen
- AdventHealth Translational Research Institute for Metabolism and Diabetes, Orlando, FL
| | - Simon Schenk
- University of California, San Diego, La Jolla, CA
| | | | | | | |
Collapse
|
25
|
Xiang M, Zhao X, Lu Y, Zhang Y, Ding F, Lv L, Wang Y, Shen Z, Li L, Cui X. Modified Linggui Zhugan Decoction protects against ventricular remodeling through ameliorating mitochondrial damage in post-myocardial infarction rats. Front Cardiovasc Med 2023; 9:1038523. [PMID: 36704451 PMCID: PMC9872118 DOI: 10.3389/fcvm.2022.1038523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
Introduction Modified Linggui Zhugan Decoction (MLZD) is a Traditional Chinese Medicine prescription developed from Linggui Zhugan Decoction (LZD) that has been used for the clinical treatment of ischemic cardiovascular diseases. However, the cardioprotective mechanism of MLZD against post-myocardial infarction (MI) ventricular remodeling remains unclear. Methods We explored the effects of MLZD on ventricular remodeling and their underlying mechanisms, respectively, in SD rats with MI models and in H9c2 cardiomyocytes with oxygen-glucose deprivation (OGD) models. The cardiac structure and function of rats were measured by echocardiography, HE staining, and Masson staining. Apoptosis, inflammation, mitochondrial structure and function, and sirtuin 3 (SIRT3) expression were additionally examined. Results MLZD treatment significantly ameliorated cardiac structure and function, and thus reversed ventricular remodeling, compared with the control. Further research showed that MLZD ameliorated mitochondrial structural disruption, protected against mitochondrial dynamics disorder, restored impaired mitochondrial function, inhibited inflammation, and thus inhibited apoptosis. Moreover, the decreased expression level of SIRT3 was enhanced after MLZD treatment. The protective effects of MLZD on SIRT3 and mitochondria, nevertheless, were blocked by 3-TYP, a selective inhibitor of SIRT3. Discussion These findings together revealed that MLZD could improve the ventricular remodeling of MI rats by ameliorating mitochondrial damage and its associated apoptosis, which might exert protective effects by targeting SIRT3.
Collapse
Affiliation(s)
- Mi Xiang
- Department of Cardiovascular, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xin Zhao
- Department of Cardiovascular, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yingdong Lu
- Department of Pathology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yang Zhang
- Department of Cardiovascular, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China,First Clinical Medical School, Shandong University of Chinese Medicine, Shandong, China
| | - Fan Ding
- Department of Cardiovascular, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lifei Lv
- Department of Cardiovascular, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuling Wang
- Department of Cardiovascular, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zihuan Shen
- Department of Cardiovascular, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Li Li
- Department of Pathology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China,Li Li,
| | - Xiangning Cui
- Department of Cardiovascular, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China,*Correspondence: Xiangning Cui,
| |
Collapse
|
26
|
Zhou L, Pinho R, Gu Y, Radak Z. The Role of SIRT3 in Exercise and Aging. Cells 2022; 11:cells11162596. [PMID: 36010672 PMCID: PMC9406297 DOI: 10.3390/cells11162596] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Abstract
The health benefits of regular exercise are well established. Nonetheless, the molecular mechanism(s) responsible for exercise-induced health benefits remain a topic of debate. One of the key cell-signaling candidates proposed to provide exercise-induced benefits is sirtuin 3 (SIRT3). SIRT3, an NAD+ dependent mitochondrial deacetylase, positively modulates many cellular processes, including energy metabolism, mitochondrial biogenesis, and protection against oxidative stress. Although the exercise-induced change in SIRT3 signaling is a potential mechanism contributing to the health advantages of exercise on aging, studies investigating the impact of exercise on SIRT3 abundance in cells provide conflicting results. To resolve this conundrum, this narrative review provides a detailed analysis of the role that exercise-induced changes in SIRT3 play in providing the health and aging benefits associated with regular physical activity. We begin with an overview of SIRT3 function in cells followed by a comprehensive review of the impact of exercise on SIRT3 expression in humans and other mammalians. We then discuss the impact of SIRT3 on aging, followed by a thorough analysis of the cell-signaling links between SIRT3 and exercise-induced adaptation. Notably, to stimulate future research, we conclude with a discussion of key unanswered questions related to exercise, aging, and SIRT3 expression.
Collapse
Affiliation(s)
- Lei Zhou
- Research Institute of Molecular Exercise Science, Hungarian University of Sport Science, H-1123 Budapest, Hungary
| | - Ricardo Pinho
- Laboratory of Exercise Biochemistry in Health, Graduate Program in Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Brazil
| | - Yaodong Gu
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China
| | - Zsolt Radak
- Research Institute of Molecular Exercise Science, Hungarian University of Sport Science, H-1123 Budapest, Hungary
- Faculty of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan
- Correspondence: ; Tel.: +36-304918224
| |
Collapse
|
27
|
Disturbance of Fatty Acid Metabolism Promoted Vascular Endothelial Cell Senescence via Acetyl-CoA-Induced Protein Acetylation Modification. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1198607. [PMID: 35993026 PMCID: PMC9385365 DOI: 10.1155/2022/1198607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 06/27/2022] [Accepted: 07/01/2022] [Indexed: 11/18/2022]
Abstract
Endothelial cell senescence is the main risk factor contributing to vascular dysfunction and the progression of aging-related cardiovascular diseases. However, the relationship between endothelial cell metabolism and endothelial senescence remains unclear. The present study provides novel insight into fatty acid metabolism in the regulation of endothelial senescence. In the replicative senescence model and H2O2-induced premature senescence model of primary cultured human umbilical vein endothelial cells (HUVECs), fatty acid oxidation (FAO) was suppressed and fatty acid profile was disturbed, accompanied by downregulation of proteins associated with fatty acid uptake and mitochondrial entry, in particular the FAO rate-limiting enzyme carnitine palmitoyl transferase 1A (CPT1A). Impairment of fatty acid metabolism by silencing CPT1A or CPT1A inhibitor etomoxir facilitated the development of endothelial senescence, as implied by the increase of p53, p21, and senescence-associated β-galactosidase, as well as the decrease of EdU-positive proliferating cells. In the contrary, rescue of FAO by overexpression of CPT1A or supplement of short chain fatty acids (SCFAs) acetate and propionate ameliorated endothelial senescence. In vivo, treatment of acetate for 4 weeks lowered the blood pressure and alleviated the senescence-related phenotypes in aortas of Ang II-infused mice. Mechanistically, fatty acid metabolism regulates endothelial senescence via acetyl-coenzyme A (acetyl-CoA), as implied by the observations that suppression of acetyl-CoA production using the inhibitor of ATP citrate lyase NDI-091143 accelerated senescence of HUVECs and that supplementation of acetyl-CoA prevented H2O2-induced endothelial senescence. Deficiency of acetyl-CoA resulted in alteration of acetylated protein profiles which are associated with cell metabolism and cell cycle. These findings thus suggest that improvement of fatty acid metabolism might ameliorate endothelial senescence-associated cardiovascular diseases.
Collapse
|
28
|
Li J, Cao Y, Niu K, Qiu J, Wang H, You Y, Li D, Luo Y, Zhu Z, Zhang Y, Liu N. Quantitative acetylomics reveals dynamics of protein lysine acetylation in mouse livers during aging and upon the treatment of nicotinamide mononucleotide. Mol Cell Proteomics 2022; 21:100276. [PMID: 35931320 PMCID: PMC9436820 DOI: 10.1016/j.mcpro.2022.100276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 06/25/2022] [Accepted: 07/27/2022] [Indexed: 10/24/2022] Open
Abstract
Lysine acetylation is a reversible and dynamic post-translational modification that play vital roles in regulating multiple cellular processes including aging. However, acetylome-wide analysis in the aging process remains poorly studied in mammalian tissues. Nicotinamide adenine dinucleotide (NAD+), a hub metabolite, benefits healthspan at least in part due to the activation of Sirtuins, a family of NAD+-consuming deacetylases, indicating changes in acetylome. Here, we combine two antibodies for the enrichment of acetylated peptides and perform label-free quantitative acetylomic analysis of mouse livers during natural aging and upon the treatment of beta-nicotinamide mononucleotide (NMN), a NAD+ booster. Our study describes previously unknown acetylation sites and reveals the acetylome-wide dynamics with age as well as upon the treatment of NMN. We discover protein acetylation events as potential aging biomarkers. We demonstrate that the life-beneficial effect of NMN could be partially reflected by the changes in age-related protein acetylation. Our quantitative assessment indicates that NMN has mild effects on acetylation sites previously reported as substrates of Sirtuins. Collectively, our data analyzes protein acetylation with age, laying critical foundation for the functional study of protein post-translational modification essential for healthy aging and perhaps disease conditions.
Collapse
Affiliation(s)
- Jingshu Li
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Hai Ke Rd., Pudong, Shanghai, 201210, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ye Cao
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Hai Ke Rd., Pudong, Shanghai, 201210, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kongyan Niu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Hai Ke Rd., Pudong, Shanghai, 201210, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiaqian Qiu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Hai Ke Rd., Pudong, Shanghai, 201210, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Han Wang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Hai Ke Rd., Pudong, Shanghai, 201210, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yingnan You
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Hai Ke Rd., Pudong, Shanghai, 201210, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dean Li
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Hai Ke Rd., Pudong, Shanghai, 201210, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu Luo
- Abiochem Biotechnology, 1299 Zi Yue Rd., Shanghai, 200241, China
| | - Zhengjiang Zhu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Hai Ke Rd., Pudong, Shanghai, 201210, China
| | - Yaoyang Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Hai Ke Rd., Pudong, Shanghai, 201210, China.
| | - Nan Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Hai Ke Rd., Pudong, Shanghai, 201210, China.
| |
Collapse
|
29
|
Wagner S, Manickam R, Brotto M, Tipparaju SM. NAD + centric mechanisms and molecular determinants of skeletal muscle disease and aging. Mol Cell Biochem 2022; 477:1829-1848. [PMID: 35334034 PMCID: PMC10065019 DOI: 10.1007/s11010-022-04408-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 03/03/2022] [Indexed: 12/20/2022]
Abstract
The nicotinamide adenine dinucleotide (NAD+) is an essential redox cofactor, involved in various physiological and molecular processes, including energy metabolism, epigenetics, aging, and metabolic diseases. NAD+ repletion ameliorates muscular dystrophy and improves the mitochondrial and muscle stem cell function and thereby increase lifespan in mice. Accordingly, NAD+ is considered as an anti-oxidant and anti-aging molecule. NAD+ plays a central role in energy metabolism and the energy produced is used for movements, thermoregulation, and defense against foreign bodies. The dietary precursors of NAD+ synthesis is targeted to improve NAD+ biosynthesis; however, studies have revealed conflicting results regarding skeletal muscle-specific effects. Recent advances in the activation of nicotinamide phosphoribosyltransferase in the NAD+ salvage pathway and supplementation of NAD+ precursors have led to beneficial effects in skeletal muscle pathophysiology and function during aging and associated metabolic diseases. NAD+ is also involved in the epigenetic regulation and post-translational modifications of proteins that are involved in various cellular processes to maintain tissue homeostasis. This review provides detailed insights into the roles of NAD+ along with molecular mechanisms during aging and disease conditions, such as the impacts of age-related NAD+ deficiencies on NAD+-dependent enzymes, including poly (ADP-ribose) polymerase (PARPs), CD38, and sirtuins within skeletal muscle, and the most recent studies on the potential of nutritional supplementation and distinct modes of exercise to replenish the NAD+ pool.
Collapse
Affiliation(s)
- Sabrina Wagner
- Department of Pharmaceutical Sciences, USF Health Taneja College of Pharmacy, University of South Florida, 12901 Bruce B. Downs Blvd, MDC 030, Tampa, FL, 33612, USA
| | - Ravikumar Manickam
- Department of Pharmaceutical Sciences, USF Health Taneja College of Pharmacy, University of South Florida, 12901 Bruce B. Downs Blvd, MDC 030, Tampa, FL, 33612, USA
| | - Marco Brotto
- Bone-Muscle Research Center, College of Nursing & Health Innovation, University of Texas-Arlington (UTA), Arlington, TX, USA
| | - Srinivas M Tipparaju
- Department of Pharmaceutical Sciences, USF Health Taneja College of Pharmacy, University of South Florida, 12901 Bruce B. Downs Blvd, MDC 030, Tampa, FL, 33612, USA.
| |
Collapse
|
30
|
Whitson JA, Johnson R, Wang L, Bammler TK, Imai SI, Zhang H, Fredrickson J, Latorre-Esteves E, Bitto A, MacCoss MJ, Rabinovitch PS. Age-related disruption of the proteome and acetylome in mouse hearts is associated with loss of function and attenuated by elamipretide (SS-31) and nicotinamide mononucleotide (NMN) treatment. GeroScience 2022; 44:1621-1639. [PMID: 35416576 PMCID: PMC9213586 DOI: 10.1007/s11357-022-00564-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 04/04/2022] [Indexed: 11/04/2022] Open
Abstract
We analyzed the effects of aging on protein abundance and acetylation, as well as the ability of the mitochondrial-targeted drugs elamipretide (SS-31) and nicotinamide mononucleotide (NMN) to reverse aging-associated changes in mouse hearts. Both drugs had a modest effect on restoring the abundance and acetylation of proteins that are altered with age, while also inducing additional changes. Age-related increases in protein acetylation were predominantly in mitochondrial pathways such as mitochondrial dysfunction, oxidative phosphorylation, and TCA cycle signaling. We further assessed how these age-related changes associated with diastolic function (Ea/Aa) and systolic function (fractional shortening under higher workload) measurements from echocardiography. These results identify a subset of protein abundance and acetylation changes in muscle, mitochondrial, and structural proteins that appear to be essential in regulating diastolic function in old hearts.
Collapse
Affiliation(s)
- Jeremy A Whitson
- Department of Biology, Davidson College, 405 N Main St, Davidson, NC, 28035, USA
| | - Richard Johnson
- Department of Genome Sciences, University of Washington, 3720 15th Street NE, Seattle, WA, 98195, USA
| | - Lu Wang
- Department of Environmental & Occupational Health Sciences, University of Washington, 4225 Roosevelt Way NE, Seattle, WA, 98105, USA
| | - Theo K Bammler
- Department of Environmental & Occupational Health Sciences, University of Washington, 4225 Roosevelt Way NE, Seattle, WA, 98105, USA
| | - Shin-Ichiro Imai
- Department of Developmental Biology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO, 63110, USA
| | - Huiliang Zhang
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, 4301 W Markham St, Little Rock, AR, 72205, USA
| | - Jeanne Fredrickson
- Department of Pathology, University of Washington, 1959 NE Pacific St, Seattle, WA, 98195, USA
| | - Elena Latorre-Esteves
- Department of Pathology, University of Washington, 1959 NE Pacific St, Seattle, WA, 98195, USA
| | - Alessandro Bitto
- Department of Pathology, University of Washington, 1959 NE Pacific St, Seattle, WA, 98195, USA
| | - Michael J MacCoss
- Department of Pathology, University of Washington, 1959 NE Pacific St, Seattle, WA, 98195, USA
| | - Peter S Rabinovitch
- Department of Pathology, University of Washington, 1959 NE Pacific St, Seattle, WA, 98195, USA.
| |
Collapse
|
31
|
Wan W, Hua F, Fang P, Li C, Deng F, Chen S, Ying J, Wang X. Regulation of Mitophagy by Sirtuin Family Proteins: A Vital Role in Aging and Age-Related Diseases. Front Aging Neurosci 2022; 14:845330. [PMID: 35615591 PMCID: PMC9124796 DOI: 10.3389/fnagi.2022.845330] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 04/19/2022] [Indexed: 12/18/2022] Open
Abstract
Sirtuins are protein factors that can delay aging and alleviate age-related diseases through multiple molecular pathways, mainly by promoting DNA damage repair, delaying telomere shortening, and mediating the longevity effect of caloric restriction. In the last decade, sirtuins have also been suggested to exert mitochondrial quality control by mediating mitophagy, which targets damaged mitochondria and delivers them to lysosomes for degradation. This is especially significant for age-related diseases because dysfunctional mitochondria accumulate in aging organisms. Accordingly, it has been suggested that sirtuins and mitophagy have many common and interactive aspects in the aging process. This article reviews the mechanisms and pathways of sirtuin family-mediated mitophagy and further discusses its role in aging and age-related diseases.
Collapse
Affiliation(s)
- Wei Wan
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Fuzhou Hua
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Pu Fang
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Chang Li
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Fumou Deng
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Shoulin Chen
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Jun Ying
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
- Jun Ying
| | - Xifeng Wang
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- *Correspondence: Xifeng Wang
| |
Collapse
|
32
|
Yuan Y, Liang B, Liu XL, Liu WJ, Huang BH, Yang SB, Gao YZ, Meng JS, Li MJ, Ye T, Wang CZ, Hu XK, Xing DM. Targeting NAD+: is it a common strategy to delay heart aging? Cell Death Dis 2022; 8:230. [PMID: 35474295 PMCID: PMC9042931 DOI: 10.1038/s41420-022-01031-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 12/17/2022]
Abstract
Heart aging is the main susceptible factor to coronary heart disease and significantly increases the risk of heart failure, especially when the aging heart is suffering from ischemia-reperfusion injury. Numerous studies with NAD+ supplementations have suggested its use in anti-aging treatment. However, systematic reviews regarding the overall role of NAD+ in cardiac aging are scarce. The relationship between NAD+ signaling and heart aging has yet to be clarified. This review comprehensively summarizes the current studies on the role of NAD+ signaling in delaying heart aging from the following aspects: the influence of NAD+ supplementations on the aging heart; the relationship and cross-talks between NAD+ signaling and other cardiac aging-related signaling pathways; Importantly, the therapeutic potential of targeting NAD+ in delaying heart aging will be discussed. In brief, NAD+ plays a vital role in delaying heart aging. However, the abnormalities such as altered glucose and lipid metabolism, oxidative stress, and calcium overload could also interfere with NAD+ function in the heart. Therefore, the specific physiopathology of the aging heart should be considered before applying NAD+ supplementations. We believe that this article will help augment our understanding of heart aging mechanisms. In the meantime, it provides invaluable insights into possible therapeutic strategies for preventing age-related heart diseases in clinical settings.
Collapse
Affiliation(s)
- Yang Yuan
- Cancer Institute of The Affiliated Hospital of Qingdao University and Qingdao Cancer Institute, Qingdao, China
| | - Bing Liang
- Cancer Institute of The Affiliated Hospital of Qingdao University and Qingdao Cancer Institute, Qingdao, China
| | - Xin-Lin Liu
- Cancer Institute of The Affiliated Hospital of Qingdao University and Qingdao Cancer Institute, Qingdao, China
| | - Wen-Jing Liu
- Cancer Institute of The Affiliated Hospital of Qingdao University and Qingdao Cancer Institute, Qingdao, China
| | - Bing-Huan Huang
- Cancer Institute of The Affiliated Hospital of Qingdao University and Qingdao Cancer Institute, Qingdao, China
| | - Shan-Bo Yang
- Cancer Institute of The Affiliated Hospital of Qingdao University and Qingdao Cancer Institute, Qingdao, China
| | - Yuan-Zhen Gao
- Cancer Institute of The Affiliated Hospital of Qingdao University and Qingdao Cancer Institute, Qingdao, China
| | - Jing-Sen Meng
- Cancer Institute of The Affiliated Hospital of Qingdao University and Qingdao Cancer Institute, Qingdao, China
| | - Meng-Jiao Li
- Cancer Institute of The Affiliated Hospital of Qingdao University and Qingdao Cancer Institute, Qingdao, China
| | - Ting Ye
- Cancer Institute of The Affiliated Hospital of Qingdao University and Qingdao Cancer Institute, Qingdao, China
| | - Chuan-Zhi Wang
- Cancer Institute of The Affiliated Hospital of Qingdao University and Qingdao Cancer Institute, Qingdao, China
| | - Xiao-Kun Hu
- Interventional Medicine Center, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Dong-Ming Xing
- Cancer Institute of The Affiliated Hospital of Qingdao University and Qingdao Cancer Institute, Qingdao, China. .,School of Life Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
33
|
Wu SN, Tsai MS, Huang CH, Chen WJ. Omecamtiv mecarbil treatment improves post-resuscitation cardiac function and neurological outcome in a rat model. PLoS One 2022; 17:e0264165. [PMID: 35176110 PMCID: PMC8853579 DOI: 10.1371/journal.pone.0264165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 02/02/2022] [Indexed: 11/29/2022] Open
Abstract
Background Myocardial dysfunction is a major cause of poor outcomes in the post-cardiac arrest period. Omecamtiv mecarbil (OM) is a selective small molecule activator of cardiac myosin that prolongs myocardial systole and increases stroke volume without apparent effects on myocardial oxygen demand. OM administration is safe and improves cardiac function in patients with acute heart failure. Whether OM improves post-resuscitation myocardial dysfunction remains unclear. This study investigated the effect of OM treatment on post-resuscitation myocardial dysfunction and outcomes. Methods and results Adult male rats were resuscitated after 9.5 min of asphyxia-induced cardiac arrest. OM and normal saline was continuously intravenously infused after return of spontaneous circulation (ROSC) at 0.25 mg/kg/h for 4 h in the experimental group and control group, respectively (n = 20 in each group). Hemodynamic parameters were measured hourly and monitored for 4 h after cardiac arrest. Recovery of neurological function was evaluated by neurological functioning scores (0–12; favorable: 11–12) for rats 72 h after cardiac arrest. OM treatment prolonged left ventricular ejection time and improved post-resuscitation cardiac output. Post-resuscitation heart rate and left ventricular systolic function (dp/dt40) were not different between groups. Kaplan-Meier analysis showed non-statistically higher 72-h survival in the OM group (72.2% [13/18] and 58.8% [10/17], p = 0.386). The OM group had a higher chance of having favorable neurological outcomes in surviving rats 72 h after cardiac arrest (84.6% [11/13] vs. 40% [4/10], p = 0.026). The percentage of damaged neurons was lower in the OM group in a histology study at 72 h after cardiac arrest (55.5±2.3% vs. 76.2±10.2%, p = 0.004). Conclusions OM treatment improved post-resuscitation myocardial dysfunction and neurological outcome in an animal model. These findings support further pre-clinical studies to improve outcomes in post-cardiac arrest care.
Collapse
Affiliation(s)
- Shih-Ni Wu
- Department of Emergency Medicine, National Taiwan University Medical College and Hospital, Taipei, Taiwan
| | - Min-Shan Tsai
- Department of Emergency Medicine, National Taiwan University Medical College and Hospital, Taipei, Taiwan
| | - Chien-Hua Huang
- Department of Emergency Medicine, National Taiwan University Medical College and Hospital, Taipei, Taiwan
- * E-mail:
| | - Wen-Jone Chen
- Department of Emergency Medicine, National Taiwan University Medical College and Hospital, Taipei, Taiwan
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Medical College and Hospital, Taipei, Taiwan
| |
Collapse
|
34
|
Maintenance of NAD+ Homeostasis in Skeletal Muscle during Aging and Exercise. Cells 2022; 11:cells11040710. [PMID: 35203360 PMCID: PMC8869961 DOI: 10.3390/cells11040710] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/07/2022] [Accepted: 02/12/2022] [Indexed: 12/20/2022] Open
Abstract
Nicotinamide adenine dinucleotide (NAD) is a versatile chemical compound serving as a coenzyme in metabolic pathways and as a substrate to support the enzymatic functions of sirtuins (SIRTs), poly (ADP-ribose) polymerase-1 (PARP-1), and cyclic ADP ribose hydrolase (CD38). Under normal physiological conditions, NAD+ consumption is matched by its synthesis primarily via the salvage pathway catalyzed by nicotinamide phosphoribosyltransferase (NAMPT). However, aging and muscular contraction enhance NAD+ utilization, whereas NAD+ replenishment is limited by cellular sources of NAD+ precursors and/or enzyme expression. This paper will briefly review NAD+ metabolic functions, its roles in regulating cell signaling, mechanisms of its degradation and biosynthesis, and major challenges to maintaining its cellular level in skeletal muscle. The effects of aging, physical exercise, and dietary supplementation on NAD+ homeostasis will be highlighted based on recent literature.
Collapse
|
35
|
FTIR Spectroscopy as a Tool to Study Age-Related Changes in Cardiac and Skeletal Muscle of Female C57BL/6J Mice. Molecules 2021; 26:molecules26216410. [PMID: 34770818 PMCID: PMC8587752 DOI: 10.3390/molecules26216410] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 11/30/2022] Open
Abstract
Studying aging is important to further understand the molecular mechanisms underlying this physiological process and, ideally, to identify a panel of aging biomarkers. Animals, in particular mice, are often used in aging studies, since they mimic important features of human aging, age quickly, and are easy to manipulate. The present work describes the use of Fourier Transform Infrared (FTIR) spectroscopy to identify an age-related spectroscopic profile of the cardiac and skeletal muscle tissues of C57BL/6J female mice. We acquired ATR-FTIR spectra of cardiac and skeletal muscle at four different ages: 6; 12; 17 and 24 months (10 samples at each age) and analyzed the data using multivariate statistical tools (PCA and PLS) and peak intensity analyses. The results suggest deep changes in protein secondary structure in 24-month-old mice compared to both tissues in 6-month-old mice. Oligomeric structures decreased with age in both tissues, while intermolecular β-sheet structures increased with aging in cardiac muscle but not in skeletal muscle. Despite FTIR spectroscopy being unable to identify the proteins responsible for these conformational changes, this study gives insights into the potential of FTIR to monitor the aging process and identify an age-specific spectroscopic signature.
Collapse
|
36
|
PARPs in lipid metabolism and related diseases. Prog Lipid Res 2021; 84:101117. [PMID: 34450194 DOI: 10.1016/j.plipres.2021.101117] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/10/2021] [Accepted: 08/18/2021] [Indexed: 12/28/2022]
Abstract
PARPs and tankyrases (TNKS) represent a family of 17 proteins. PARPs and tankyrases were originally identified as DNA repair factors, nevertheless, recent advances have shed light on their role in lipid metabolism. To date, PARP1, PARP2, PARP3, tankyrases, PARP9, PARP10, PARP14 were reported to have multi-pronged connections to lipid metabolism. The activity of PARP enzymes is fine-tuned by a set of cholesterol-based compounds as oxidized cholesterol derivatives, steroid hormones or bile acids. In turn, PARPs modulate several key processes of lipid homeostasis (lipotoxicity, fatty acid and steroid biosynthesis, lipoprotein homeostasis, fatty acid oxidation, etc.). PARPs are also cofactors of lipid-responsive nuclear receptors and transcription factors through which PARPs regulate lipid metabolism and lipid homeostasis. PARP activation often represents a disruptive signal to (lipid) metabolism, and PARP-dependent changes to lipid metabolism have pathophysiological role in the development of hyperlipidemia, obesity, alcoholic and non-alcoholic fatty liver disease, type II diabetes and its complications, atherosclerosis, cardiovascular aging and skin pathologies, just to name a few. In this synopsis we will review the evidence supporting the beneficial effects of pharmacological PARP inhibitors in these diseases/pathologies and propose repurposing PARP inhibitors already available for the treatment of various malignancies.
Collapse
|
37
|
Redox Signaling and Sarcopenia: Searching for the Primary Suspect. Int J Mol Sci 2021; 22:ijms22169045. [PMID: 34445751 PMCID: PMC8396474 DOI: 10.3390/ijms22169045] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 12/16/2022] Open
Abstract
Sarcopenia, the age-related decline in muscle mass and function, derives from multiple etiological mechanisms. Accumulative research suggests that reactive oxygen species (ROS) generation plays a critical role in the development of this pathophysiological disorder. In this communication, we review the various signaling pathways that control muscle metabolic and functional integrity such as protein turnover, cell death and regeneration, inflammation, organismic damage, and metabolic functions. Although no single pathway can be identified as the most crucial factor that causes sarcopenia, age-associated dysregulation of redox signaling appears to underlie many deteriorations at physiological, subcellular, and molecular levels. Furthermore, discord of mitochondrial homeostasis with aging affects most observed problems and requires our attention. The search for the primary suspect of the fundamental mechanism for sarcopenia will likely take more intense research for the secret of this health hazard to the elderly to be unlocked.
Collapse
|
38
|
Ji LL, Yeo D. NAD + deficit, protein acetylation and muscle aging. Aging (Albany NY) 2021; 13:14546-14548. [PMID: 34099589 PMCID: PMC8221323 DOI: 10.18632/aging.203177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 04/16/2021] [Indexed: 01/07/2023]
Affiliation(s)
- Li Li Ji
- Laboratory of Physiological Hygiene and Exercise Science, School of Kinesiology, University of Minnesota Twin Cities, Minneapolis, MN 55455, USA
| | - Dongwook Yeo
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
39
|
Francois A, Canella A, Marcho LM, Stratton MS. Protein acetylation in cardiac aging. J Mol Cell Cardiol 2021; 157:90-97. [PMID: 33915138 DOI: 10.1016/j.yjmcc.2021.04.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 03/14/2021] [Accepted: 04/21/2021] [Indexed: 11/15/2022]
Abstract
Biological aging is attributed to progressive dysfunction in systems governing genetic and metabolic integrity. At the cellular level, aging is evident by accumulated DNA damage and mutation, reactive oxygen species, alternate lipid and protein modifications, alternate gene expression programs, and mitochondrial dysfunction. These effects sum to drive altered tissue morphology and organ dysfunction. Protein-acylation has emerged as a critical mediator of age-dependent changes in these processes. Despite decades of research focus from academia and industry, heart failure remains a leading cause of death in the United States while the 5 year mortality rate for heart failure remains over 40%. Over 90% of heart failure deaths occur in patients over the age of 65 and heart failure is the leading cause of hospitalization in Medicare beneficiaries. In 1931, Cole and Koch discovered age-dependent accumulation of phosphates in skeletal muscle. These and similar findings provided supporting evidence for, now well accepted, theories linking metabolism and aging. Nearly two decades later, age-associated alterations in biochemical molecules were described in the heart. From these small beginnings, the field has grown substantially in recent years. This growing research focus on cardiac aging has, in part, been driven by advances on multiple public health fronts that allow population level clinical presentation of aging related disorders. It is estimated that by 2030, 25% of the worldwide population will be over the age of 65. This review provides an overview of acetylation-dependent regulation of biological processes related to cardiac aging and introduces emerging non-acetyl, acyl-lysine modifications in cardiac function and aging.
Collapse
Affiliation(s)
- Ashley Francois
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Alessandro Canella
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Lynn M Marcho
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Matthew S Stratton
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
40
|
Acetyl-CoA Metabolism and Histone Acetylation in the Regulation of Aging and Lifespan. Antioxidants (Basel) 2021; 10:antiox10040572. [PMID: 33917812 PMCID: PMC8068152 DOI: 10.3390/antiox10040572] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/31/2021] [Accepted: 04/02/2021] [Indexed: 12/16/2022] Open
Abstract
Acetyl-CoA is a metabolite at the crossroads of central metabolism and the substrate of histone acetyltransferases regulating gene expression. In many tissues fasting or lifespan extending calorie restriction (CR) decreases glucose-derived metabolic flux through ATP-citrate lyase (ACLY) to reduce cytoplasmic acetyl-CoA levels to decrease activity of the p300 histone acetyltransferase (HAT) stimulating pro-longevity autophagy. Because of this, compounds that decrease cytoplasmic acetyl-CoA have been described as CR mimetics. But few authors have highlighted the potential longevity promoting roles of nuclear acetyl-CoA. For example, increasing nuclear acetyl-CoA levels increases histone acetylation and administration of class I histone deacetylase (HDAC) inhibitors increases longevity through increased histone acetylation. Therefore, increased nuclear acetyl-CoA likely plays an important role in promoting longevity. Although cytoplasmic acetyl-CoA synthetase 2 (ACSS2) promotes aging by decreasing autophagy in some peripheral tissues, increased glial AMPK activity or neuronal differentiation can stimulate ACSS2 nuclear translocation and chromatin association. ACSS2 nuclear translocation can result in increased activity of CREB binding protein (CBP), p300/CBP-associated factor (PCAF), and other HATs to increase histone acetylation on the promoter of neuroprotective genes including transcription factor EB (TFEB) target genes resulting in increased lysosomal biogenesis and autophagy. Much of what is known regarding acetyl-CoA metabolism and aging has come from pioneering studies with yeast, fruit flies, and nematodes. These studies have identified evolutionary conserved roles for histone acetylation in promoting longevity. Future studies should focus on the role of nuclear acetyl-CoA and histone acetylation in the control of hypothalamic inflammation, an important driver of organismal aging.
Collapse
|
41
|
Pang BPS, Chan WS, Chan CB. Mitochondria Homeostasis and Oxidant/Antioxidant Balance in Skeletal Muscle-Do Myokines Play a Role? Antioxidants (Basel) 2021; 10:antiox10020179. [PMID: 33513795 PMCID: PMC7911667 DOI: 10.3390/antiox10020179] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 12/19/2022] Open
Abstract
Mitochondria are the cellular powerhouses that generate adenosine triphosphate (ATP) to substantiate various biochemical activities. Instead of being a static intracellular structure, they are dynamic organelles that perform constant structural and functional remodeling in response to different metabolic stresses. In situations that require a high ATP supply, new mitochondria are assembled (mitochondrial biogenesis) or formed by fusing the existing mitochondria (mitochondrial fusion) to maximize the oxidative capacity. On the other hand, nutrient overload may produce detrimental metabolites such as reactive oxidative species (ROS) that wreck the organelle, leading to the split of damaged mitochondria (mitofission) for clearance (mitophagy). These vital processes are tightly regulated by a sophisticated quality control system involving energy sensing, intracellular membrane interaction, autophagy, and proteasomal degradation to optimize the number of healthy mitochondria. The effective mitochondrial surveillance is particularly important to skeletal muscle fitness because of its large tissue mass as well as its high metabolic activities for supporting the intensive myofiber contractility. Indeed, the failure of the mitochondrial quality control system in skeletal muscle is associated with diseases such as insulin resistance, aging, and muscle wasting. While the mitochondrial dynamics in cells are believed to be intrinsically controlled by the energy content and nutrient availability, other upstream regulators such as hormonal signals from distal organs or factors generated by the muscle itself may also play a critical role. It is now clear that skeletal muscle actively participates in systemic energy homeostasis via producing hundreds of myokines. Acting either as autocrine/paracrine or circulating hormones to crosstalk with other organs, these secretory myokines regulate a large number of physiological activities including insulin sensitivity, fuel utilization, cell differentiation, and appetite behavior. In this article, we will review the mechanism of myokines in mitochondrial quality control and ROS balance, and discuss their translational potential.
Collapse
|
42
|
Wang W, Li J, Cai L. Research progress of sirtuins in renal and cardiovascular diseases. Curr Opin Nephrol Hypertens 2021; 30:108-114. [PMID: 33229910 DOI: 10.1097/mnh.0000000000000660] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW Sirtuins are a family of nicotinamide adenine dinucleotide+-dependent enzymes catalyzing target protein deacetylation to modulate cellular metabolism, response to oxidative stress and inflammation, senescence, autophagy and apoptosis. In this review, we provide an overview of recent studies regarding the alterations and roles of sirtuins in a variety of renal and cardiovascular diseases. We are also going to highlight activators and inhibitors of sirtuins in the prevention of these diseases. This will help us to understand how this field may change in the future. RECENT FINDING Recent studies have elucidated how physical or diseased conditions alter the expressions and enzyme activity of sirtuins and expounded sexual differences in sirtuins functions. In addition, interventions by targeting sirtuins have been applied in preclinical and clinical studies to prevent or slow the development of related diseases. SUMMARY The advantages of female sex in renal and cardiovascular diseases are partially due to the expression and function of sirtuins. Estrogen activates sirtuins and in turn sirtuins promote estrogen receptor signaling. In addition, the hypoglycemic agents, sodium-glucose cotransporter 2 inhibitors protect against diabetic nephropathy at least in part via activating SIRT-1. Although several compounds targeted sirtuins are promising drug candidates in a variety of renal and cardiovascular diseases, well designed large clinical trials are still required to identify their efficacy and safety.
Collapse
Affiliation(s)
- Wanning Wang
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| | - Jia Li
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
- Departments of Pediatrics, Radiation Oncology, Pharmacology and Toxicology, Pediatric Research Institute, The University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Lu Cai
- Departments of Pediatrics, Radiation Oncology, Pharmacology and Toxicology, Pediatric Research Institute, The University of Louisville School of Medicine, Louisville, Kentucky, USA
| |
Collapse
|