1
|
Lu H, Wang J, Wu Z, Yang M, Zhou W, Li Y, Li H, Zhang Y, Yang J, Yu G, Liu S. Constructing an electrochemical sensor with screen-printed electrodes incorporating Ti 3C 2T x-PDA-AgNPs for lactate detection in sweat. Talanta 2025; 285:127423. [PMID: 39718302 DOI: 10.1016/j.talanta.2024.127423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/04/2024] [Accepted: 12/17/2024] [Indexed: 12/25/2024]
Abstract
Sweat lactate levels are closely related to an individual's physiological state and serve as critical indicators for assessing exercise intensity, muscle fatigue, and certain pathological conditions. Screen-printed electrodes (SPEs) offer a promising avenue for the development of low-cost, high-performance wearable devices for electrochemical sweat analysis. The material composition of SPEs significantly impacts their detection sensitivity and stability. In this study, we designed a screen-printed carbon electrode (SPCE) modified with Ti3C2Tx Polydopamine (PDA), and silver nanoparticles (AgNPs) (Ti3C2Tx-PDA-AgNPs) for lactate detection in sweat. The accordion-like structure of Ti3C2Tx provides a large specific surface area and exceptional electrical conductivity. PDA, acting as both a reducing agent and binder, supports the in-situ formation of AgNPs on the Ti3C2Tx nanosheets. These AgNPs prevent the restacking of Ti3C2Tx layers, further improving conductivity. The sensor exhibited sensitivities of 0.145 μA mM-1, with limit of detection (LOD) of 0.181 mM (S/N = 3) in phosphate-buffered saline (PBS), meeting the requirements for for sweat lactate detection. The sensor was integrated into a wearable micro-electrochemical platform paired with a custom Android application for real-time sweat analysis. Testing on human sweat demonstrated the platform's potential for practical fitness monitoring and healthcare diagnostics applications.
Collapse
Affiliation(s)
- Haozi Lu
- Institute of Chemical Biology and Nanomedicine (ICBN), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Junhua Wang
- Institute of Chemical Biology and Nanomedicine (ICBN), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Ziyi Wu
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Meiqing Yang
- Zoology Key Laboratory of Hunan Higher Education, College of Life and Environmental Science, Hunan University of Arts and Science, Changde, 415000, China
| | - Wei Zhou
- Changsha Semiconductor Technology and Application Innovation Research Institute, College of Semiconductors(College of Integrated Circuits), Hunan University, Changsha, 410082, China
| | - Ye Li
- Institute of Chemical Biology and Nanomedicine (ICBN), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Huimin Li
- Institute of Chemical Biology and Nanomedicine (ICBN), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Yang Zhang
- School of Physical Education, Hunan First Normal University, Changsha, 410221, China
| | - Jifei Yang
- Changsha Sunjeen Electronics Technology Co., Ltd., Changsha, 410205, China
| | - Gang Yu
- Institute of Chemical Biology and Nanomedicine (ICBN), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
| | - Song Liu
- Institute of Chemical Biology and Nanomedicine (ICBN), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
| |
Collapse
|
2
|
Mattoli L, Fodaroni G, Proietti G, Flamini E, Paoli B, Massa L, Ferrara GC, Giovagnoni E, Gianni M. Biodegradability of dietary supplements: Advanced analytical methods to study the environmental fate of artificial sweeteners and dyes. J Pharm Biomed Anal 2025; 255:116575. [PMID: 39644680 DOI: 10.1016/j.jpba.2024.116575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/16/2024] [Accepted: 11/18/2024] [Indexed: 12/09/2024]
Abstract
Artificial sweeteners (ASs) and dyes are widely used in foods, beverages and pharmaceutical and are recognized as emerging environmental contaminants due to their persistence and widespread occurrence. These substances often pass through the human body unchanged and resist wastewater treatment processes, leading to continuous introduction into aquatic environments and potential long-lasting term environmental effects. This study investigated, for the first time, the biodegradability of nine commercial dietary supplements, both natural and those containing ASs and synthetic dyes, using the Organisation for Economic Cooperation and Development (OECD) 301 F ready biodegradation test (RBT), which is a respirometry-manometric method. While the products showed good biodegradability, those containing ASs and dyes were further studied to determine their fate at the end of the RBT. The study involved developing and validating a chromatographic method to quantitatively determine the presence of Acesulfame K (1), Sucralose (2), Tartrazine (3) and Carmoisine (4) in the RBT mineral medium, using ultra-high performance liquid chromatography (UHPLC) coupled with two detectors: a high-resolution mass-spectrometer with quadrupole time-of-flight (qToF) and a UV-Vis diode array detector (DAD). Results indicated that these additives were not readily biodegraded, highlighting a potential significant environmental concern. This issue extends beyond dietary supplements to all Pharmaceutical and Personal Care Products (PPCP) including drugs and medical devices. The findings underscore the importance of raising cultural awareness about the environmental impact of persistent substances, encouraging the healthcare chain and patients to make informed choices. From a One Health perspective, reducing environmental contamination can lead to positive outcomes for human health.
Collapse
Affiliation(s)
- Luisa Mattoli
- Metabolomics & Analytical Sciences, Aboca SpA, Località Aboca, 20, Sansepolcro, AR, Italy.
| | - Giada Fodaroni
- Metabolomics & Analytical Sciences, Aboca SpA, Località Aboca, 20, Sansepolcro, AR, Italy
| | - Giacomo Proietti
- Metabolomics & Analytical Sciences, Aboca SpA, Località Aboca, 20, Sansepolcro, AR, Italy
| | - Enrico Flamini
- Metabolomics & Analytical Sciences, Aboca SpA, Località Aboca, 20, Sansepolcro, AR, Italy
| | - Bernardino Paoli
- Metabolomics & Analytical Sciences, Aboca SpA, Località Aboca, 20, Sansepolcro, AR, Italy
| | - Luca Massa
- Metabolomics & Analytical Sciences, Aboca SpA, Località Aboca, 20, Sansepolcro, AR, Italy
| | | | - Emiliano Giovagnoni
- Metabolomics & Analytical Sciences, Aboca SpA, Località Aboca, 20, Sansepolcro, AR, Italy
| | - Mattia Gianni
- Metabolomics & Analytical Sciences, Aboca SpA, Località Aboca, 20, Sansepolcro, AR, Italy
| |
Collapse
|
3
|
Qian X, Li C, Zheng M, Wang J, Huang H, Deng K. Bimetallic MOF derived electrocatalyst with magnetic alloy nanoparticles confined in S, N-doped carbon nanotubes: A disposable magnetic sensor for simultaneous determination of antibiotics in food. Food Chem 2025; 465:142141. [PMID: 39581099 DOI: 10.1016/j.foodchem.2024.142141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/30/2024] [Accepted: 11/16/2024] [Indexed: 11/26/2024]
Abstract
Very few MOF-related derivatives have been applied for sensors. Sensitive analysis of antibiotics in food products is one of the crucial research fields. The work described the synthesis of magnetic electrocatalyst with FeCo alloy nanoparticles confined in S, N-doped bamboo-like carbon nanotubes (FeCo@S,N-CNTs) by using bimetallic MOF as precursor. For comparison, a series of materials were prepared and used to modify screen-printed electrode (SPE). Their electrocatalytic capacities were investigated for the electrochemical reduction of two antibiotics, chloramphenicol (CAP) and nitrofurantoin (NFT). By using cyclic voltammetry (CV) and differential pulse voltammetry (DPV), the magnetic FeCo@S,N-CNTs was found to possess the better electrocatalysis. Using the disposable FeCo@S,N-CNTs/SPE constructed by magnetic control, simultaneous analysis of CAP and NFT was achieved in linear ranges of 0.05-320.0 μM and 0.01-75.0 μM with the limit of detection of 20.0 nM and 3.5 nM, respectively. The real sample detection validated the practicability of FeCo@S,N-CNTs/SPE.
Collapse
Affiliation(s)
- Xinmei Qian
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, Hunan University of Science and Technology, Xiangtan 411201, People's Republic of China; Hunan Province College Key Laboratory of Molecular Design and Green Chemistry, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Chunxiang Li
- Hunan Province College Key Laboratory of Molecular Design and Green Chemistry, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Mingyu Zheng
- Hunan Province College Key Laboratory of Molecular Design and Green Chemistry, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Jinglun Wang
- Hunan Province College Key Laboratory of Molecular Design and Green Chemistry, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Haowen Huang
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, Hunan University of Science and Technology, Xiangtan 411201, People's Republic of China
| | - Keqin Deng
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, Hunan University of Science and Technology, Xiangtan 411201, People's Republic of China.
| |
Collapse
|
4
|
Vasu S, Verma D, Souraph S OS, Anki Reddy K, Packirisamy G, S UK. In Situ Ag-Seeded Lamellar Ti 3C 2 Nanosheets: An Electroactive Interface for Noninvasive Diagnosis of Oral Carcinoma via Salivary TNF-α Sensing. ACS APPLIED BIO MATERIALS 2025; 8:420-434. [PMID: 39787292 DOI: 10.1021/acsabm.4c01379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
In the fast-paced quest for early cancer detection, noninvasive screening techniques have emerged as game-changers, offering simple and accessible avenues for precession diagnostics. In line with this, our study highlights the potential of silver nanoparticle-decorated titanium carbide MXene nanosheets (Ti3C2_AgNPs) as an electroactive interface for the noninvasive diagnosis of oral carcinoma based on the prevalence of the salivary biomarker, tumor necrosis factor-α (TNF-α). An in situ reduction was utilized to synthesize the Ti3C2_AgNPs nanohybrid, wherein Ti3C2 acts as the reducing agent, and the resulting nanohybrid was subjected to various characterization techniques to examine the optical, structural, and morphological attributes. The results revealed that spherical AgNPs formed on the surface of Ti3C2 MXene nanosheets by virtue of the low-valent Ti species present in Ti3C2, which facilitated the reduction of AgNO3 to AgNPs. Furthermore, the electrochemical characterization of the nanohybrid-modified screen-printed electrode (Ti3C2_AgNPs/SPE) indicated enhanced heterogeneous electron transfer kinetics. With these encouraging results, the Ti3C2_AgNPs nanohybrid was employed as an immobilization matrix for TNF-α antibodies and applied for electrochemical sensing. Analytical studies of the fabricated immunosensor, conducted by differential pulse voltammetry (DPV), exhibited a broader linear range (1 to 180 pg mL-1), a low limit of detection (0.97 pg mL-1), and high sensitivity (1.214 μA mL pg-1 cm-2) and specificity, even in artificial saliva, indicating its reliability for oral carcinoma diagnosis. Therefore, the Ti3C2_AgNP nanohybrid seems a promising candidate for the effective sensing of TNF-α and could also be explored for other biomarkers.
Collapse
Affiliation(s)
- Sunil Vasu
- Department of Chemical Engineering, Indian Institute of Technology Tirupati, Tirupati, Andhra Pradesh 517619, India
| | - Damini Verma
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Omal Surya Souraph S
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Katha Anki Reddy
- Department of Chemical Engineering, Indian Institute of Technology Tirupati, Tirupati, Andhra Pradesh 517619, India
| | - Gopinath Packirisamy
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Uday Kumar S
- Department of Chemical Engineering, Indian Institute of Technology Tirupati, Tirupati, Andhra Pradesh 517619, India
| |
Collapse
|
5
|
Roy S, Singh S, Rawat R, Wadhwa S, Munthala D, Pojprapai S, Mathur A, Avasthi DK. Exploiting the Electrostatic Binding of Ruthenium Hexamine Molecular Redox Nanowires onto DNA/OGCN Biohybrid Electrodes toward the Electrochemical Detection of COVID-19. ACS APPLIED BIO MATERIALS 2025; 8:715-725. [PMID: 39772401 DOI: 10.1021/acsabm.4c01573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
The Coronavirus Disease 2019 (COVID-19) recently emerged as a life-threatening global pandemic that has ravaged millions of lives. The affected patients are known to frequently register numerous comorbidities induced by COVID-19 such as diabetes, asthma, cardiac arrest, hypertension, and neurodegenerative diseases, to name a few. The expensiveness and probability of false negative results of conventional screening tests often delay timely diagnosis and treatment. In such cases, the deployment of a suitable biosensing platform can readily expedite the rapid diagnosis process for enhanced patient outcomes. We report the development of an electrochemical genosensor based on DNA/OGCN (DNA/oxygenated graphitic carbon nitride) nanohybrids for the quantification of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) DNA─the key biomarker for COVID-19. This is achieved by exploiting the molecular nanowire-formation capability of the [Ru(NH3)6]2+/3+ redox probe onto the DNA phosphate backbone via electrostatic interactions. The microstructural characterization of OGCN was performed using scanning electron microscopy (SEM) coupled with an energy-dispersive X-ray (EDX) module, X-ray diffraction (XRD), and Fourier transform infrared spectroscopy. The electrochemical analyses were performed using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), while the analytical performance of the sensor was evaluated using square wave voltammetry (SWV). The developed sensor exhibited a wide linear detection range within 10 fM-10 μM, with a limit of detection (LoD) of ∼7.23 fM with a high degree of selectivity toward SARS-CoV-2 target DNA, thereby indicating its potential to be employed in a point-of-care scenario toward providing affordable healthcare to the global populace.
Collapse
Affiliation(s)
- Souradeep Roy
- Health Technology Cluster, School of Health Sciences and Technology, UPES (Bidholi), Dehradun, Uttarakhand 248007, India
| | - Sonam Singh
- Department of Chemistry, School of Advanced Engineering, UPES (Bidholi), Dehradun, Uttarakhand 248007, India
| | - Reema Rawat
- Health Technology Cluster, School of Health Sciences and Technology, UPES (Bidholi), Dehradun, Uttarakhand 248007, India
| | - Shikha Wadhwa
- Department of Chemistry, School of Advanced Engineering, UPES (Bidholi), Dehradun, Uttarakhand 248007, India
| | - Dhanunjaya Munthala
- School of Ceramic Engineering, Suranaree University of Technology, Mueang Nakhon Ratchasima District, Nakhon Ratchasima 30000, Thailand
| | - Soodkhet Pojprapai
- School of Ceramic Engineering, Suranaree University of Technology, Mueang Nakhon Ratchasima District, Nakhon Ratchasima 30000, Thailand
| | - Ashish Mathur
- Centre for Interdisciplinary Research and Innovation (CIDRI), UPES (Bidholi), Dehradun, Uttarakhand 248007, India
| | - Devesh Kumar Avasthi
- Centre for Interdisciplinary Research and Innovation (CIDRI), UPES (Bidholi), Dehradun, Uttarakhand 248007, India
| |
Collapse
|
6
|
Fan Y, Zuo Y, Liu J, Wang C, Zhao X, Ma J, Wang M. Fabrication of 3D CuFe 2O 4/Cu 0 hierarchical nanostructures on carbon fiber paper by simple hydrothermal method for efficient detection of malachite green, sunset yellow and tartrazine in food samples. Food Chem 2024; 459:140378. [PMID: 38991446 DOI: 10.1016/j.foodchem.2024.140378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/20/2024] [Accepted: 07/05/2024] [Indexed: 07/13/2024]
Abstract
In this study, a hydrothermal process was utilized to grow mixed-valence CuFe2O4/Cu0 nanosheets on carbon fiber paper, forming a three-dimensional hierarchical electrode (CuFe2O4/Cu0@CFP). The ordered array structure, coupled with the porous bowl-like structure, enhances the exposure of more electrode active sites and facilitates analyte penetration, thus enhancing the electrode sensing performance. As a binder-free sensor, the CuFe2O4/Cu0@CFP sensor exhibited remarkable sensitivity in detecting Malachite Green (MG), Sunset Yellow (SY) and Tartrazine (TA) over wide concentration ranges: 0.1-300 μM for MG (R2 = 0.994), 0.005-200 μM for SY (R2 = 0.996), and 0.005-300 μM for TA (R2 = 0.995) with low detection limits of 0.033 μM for MG, 0.0016 μM for SY, and 0.0016 μM for TA (S/N = 3), respectively. Additionally, the 3D CuFe2O4/Cu0@CFP sensor detected MG, SY, and TA in a mixed solution with satisfactory results. It also performs well in beverage, fruit juice powder, and jelly samples, with results matching those from HPLC.
Collapse
Affiliation(s)
- Ying Fan
- College of Environment and Chemical Engineering, Jiangsu Ocean University, Lianyungang 222005, China
| | - YuanXia Zuo
- College of Environment and Chemical Engineering, Jiangsu Ocean University, Lianyungang 222005, China
| | - JiaQiang Liu
- College of Environment and Chemical Engineering, Jiangsu Ocean University, Lianyungang 222005, China
| | - ChaoRui Wang
- College of Environment and Chemical Engineering, Jiangsu Ocean University, Lianyungang 222005, China
| | - XinHui Zhao
- College of Environment and Chemical Engineering, Jiangsu Ocean University, Lianyungang 222005, China.
| | - Juanjuan Ma
- College of Environment and Chemical Engineering, Jiangsu Ocean University, Lianyungang 222005, China.
| | - MingYan Wang
- College of Environment and Chemical Engineering, Jiangsu Ocean University, Lianyungang 222005, China.
| |
Collapse
|
7
|
Park J, Cho YS, Seo DW, Choi JY. An update on the sample preparation and analytical methods for synthetic food colorants in food products. Food Chem 2024; 459:140333. [PMID: 38996638 DOI: 10.1016/j.foodchem.2024.140333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/23/2024] [Accepted: 07/02/2024] [Indexed: 07/14/2024]
Abstract
Colorants, especially synthetic colorants, play a crucial role in enhancing the aesthetic qualities of food owing to their cost-effectiveness and stability against environmental factors. Ensuring the safe and regulated use of colorants is essential for maintaining consumer trust in food safety. Various preparation and analytical technologies, which are continuously undergoing improvement, are currently used to quantify of synthetic colorants in food products. This paper reviews recent developments in analytical techniques for synthetic food colorants, detection and compares the operational principles, advantages, and disadvantages of each technology. Additionally, it also explores advancements in these technologies, discussing several invaluable tools of analysis, such as high-performance liquid chromatography, liquid chromatography-tandem mass spectrometry, electrochemical sensors, digital image analysis, near-infrared spectroscopy, and surface-enhanced Raman spectroscopy. This comprehensive overview aims to provide valuable insights into current progress and research in the field of food colorant analysis.
Collapse
Affiliation(s)
- Juhee Park
- Food Analysis Research Center, Food Industry Research Division, Korea Food Research Institute, Wanju 55365, Republic of Korea.
| | - Yong Sun Cho
- Food Analysis Research Center, Food Industry Research Division, Korea Food Research Institute, Wanju 55365, Republic of Korea.
| | - Dong Won Seo
- Food Analysis Research Center, Food Industry Research Division, Korea Food Research Institute, Wanju 55365, Republic of Korea.
| | - Ji Yeon Choi
- Food Analysis Research Center, Food Industry Research Division, Korea Food Research Institute, Wanju 55365, Republic of Korea.
| |
Collapse
|
8
|
Yu P, Li M, Wang S, Li S, Cui J, Yang J, Liu S, Kong L, Chen Z. Bi 2S 3/BiOCl heterojunction-based photoelectrochemical aptasensor for ultrasensitive assay of fumonisin B 1 via signal amplification with in situ grown Ag 2S quantum dots. Mikrochim Acta 2024; 191:762. [PMID: 39589431 DOI: 10.1007/s00604-024-06846-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/13/2024] [Indexed: 11/27/2024]
Abstract
Fumonisin B1 (FB1) is a mycotoxin mainly found in corn, peanuts, and wheat crops, which affects human health. Based on bismuth sulfide/bismuth oxychloride (Bi2S3/BiOCl) composite material, silver sulfide (Ag2S) was grown in situ as a quantum dot sensitization signal, and a photoelectrochemical (PEC) aptasensor was designed by layer upon layer modification to detect FB1. Bi2S3/BiOCl has a wide range of visible light absorption, stable chemical properties, and a simple synthesis method. In the construction process, L-ascorbic acid (AA) is selected to provide electrons and inhibit photogenerated electron-hole (e-/h+) recombination. Under the optimal experimental conditions, the detection range of the fabricated PEC aptasensor was 0.001 ~ 100 ng/mL, and the detection limit was 0.016 pg/mL. The prepared PEC aptasensor has high sensitivity, stability, and reproducibility. The combination of aptamer and PEC sensor provides a novel method for the application of PEC sensor in mycotoxin detection.
Collapse
Affiliation(s)
- Pengfei Yu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, People's Republic of China
| | - Meixin Li
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, People's Republic of China
| | - Shun Wang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, People's Republic of China
| | - Shanshan Li
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, People's Republic of China
| | - Jiaqi Cui
- School of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo, 255000, People's Republic of China
| | - Jun Yang
- School of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo, 255000, People's Republic of China
| | - Shuang Liu
- School of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo, 255000, People's Republic of China
| | - Ling Kong
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, People's Republic of China.
| | - Zhiwei Chen
- School of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo, 255000, People's Republic of China.
- Shandong Provincial Innovation Center for Dairy Technology, Zibo, 255000, People's Republic of China.
- Shandong Engineering Research Center for Food Rapid Analysis Technology, Zibo, 255000, People's Republic of China.
| |
Collapse
|
9
|
Tajik S, Beitollahi H, Garkani Nejad F, Zaimbashi R. CoWO 4/Reduced Graphene Oxide Nanocomposite-Modified Screen-Printed Carbon Electrode for Enhanced Voltammetric Determination of 2,4-Dichlorophenol in Water Samples. MICROMACHINES 2024; 15:1360. [PMID: 39597172 PMCID: PMC11596183 DOI: 10.3390/mi15111360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024]
Abstract
Water pollution with phenolic compounds is a serious environmental issue that can pose a major threat to the water sources. This pollution can come from various agricultural and industrial activities. Phenolic compounds can have detrimental effects on both human health and the environment. Therefore, it is essential to develop and improve analytical methods for determination of these compounds in the water samples. In this work, the aim was to design and develop an electrochemical sensing platform for the determination of 2,4-dichlorophenol (2,4-DCP) in water samples. In this regard, a nanocomposite consisting of CoWO4 nanoparticles (NPs) anchored on reduced graphene oxide nanosheets (rGO NSs) was prepared through a facile hydrothermal method. The formation of the CoWO4/rGO nanocomposite was confirmed via different characterization techniques. Then, the prepared CoWO4/rGO nanocomposite was used to modify the surface of a screen-printed carbon electrode (SPCE) for enhanced determination of 2,4-DCP. The good electrochemical response of the modified SPCE towards the oxidation of 2,4-DCP was observed by using cyclic voltammetry (CV) due to the good properties of CoWO4 NPs and rGO NSs along with their synergistic effects. Under optimized conditions, the CoWO4/rGO/SPCE sensor demonstrated a broad linear detection range (0.001 to 100.0 µM) and low limit of detection (LOD) (0.0007 µM) for 2,4-DCP determination. Also, the sensitivity of CoWO4/rGO/SPCE for detecting 2,4-DCP was 0.3315 µA/µM. In addition, the good recoveries for determining spiked 2,4-DCP in the water samples at the surface of CoWO4/rGO/SPCE showed its potential for determination of this compound in real samples.
Collapse
Affiliation(s)
- Somayeh Tajik
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman 7616913555, Iran;
| | - Hadi Beitollahi
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman 7631885356, Iran; (F.G.N.); (R.Z.)
| | - Fariba Garkani Nejad
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman 7631885356, Iran; (F.G.N.); (R.Z.)
| | - Reza Zaimbashi
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman 7631885356, Iran; (F.G.N.); (R.Z.)
| |
Collapse
|
10
|
Park J, Lee MH, Cho YS, Seo DW, Choi JY. Rapid identification and quantitation of 34 synthetic colorants in 125 beverages and candies by ultraperformance liquid chromatography with photodiode array detection. J Food Compost Anal 2024; 133:106479. [DOI: 10.1016/j.jfca.2024.106479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
11
|
Mohamed AM, Fouad FH, Raouf Fayek G, El Sayed KM, Ahmed MN, Mahmoud RZ, El Nashar RM. Recent advances in electrochemical sensors based on nanomaterials for detection of red dyes in food products: A review. Food Chem 2024; 435:137656. [PMID: 37806207 DOI: 10.1016/j.foodchem.2023.137656] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/26/2023] [Accepted: 10/01/2023] [Indexed: 10/10/2023]
Abstract
Red dyes as Allura Red (E129), Amaranth (E124), Ponceau 4R (E123), Erythrosine (E127) and Carmoisine (E122), are very popular food additives due to their stability, low cost, and minimal microbial contamination. Despite these advantages, their consumption may result in asthma, hyperactivity, carcinogenic effects, etc depending on the uptake and age. Therefore, the United States Food and Drug Administration (FDA) and European Food Safety Authority (EFSA) have managed the permissions of allowed daily intake (ADI) for consumption levels of these dyes to be 0.01-7.0 mg/kg to assure foodstuffs consumer's safety and avoid their adverse effects. Yet, many countries as Japan and USA have prohibited their use in food and drinks to reduce their possible health risks. Based on the above concentration ranges, highly sensitive and selective detection techniques are required, accordingly, the application of electrochemical sensors for the analysis of these dyes in food samples is very promising due to their superior sensitivity and selectivity, low cost and rapid response compared to traditional spectrophotometric or chromatographic methods. Also, they can be miniaturized, portable and require no complicated sampling or preparation procedures, besides being ecofriendly which allows their commercialization for public consumers in fast detection kits. In this review, the role of nanomaterials such as: carbon-based, transition metal oxides, metal organic frameworks, ionic liquids and others in enhancing the detection properties of modified electrochemical sensors for red dyes will be evaluated in terms of the type of nanomaterial applied, tested food samples and their impact on the evaluation of foodstuffs quality.
Collapse
Affiliation(s)
- Aya M Mohamed
- Chemistry Department, Faculty of Science, Cairo University, Giza 112631, Egypt
| | - Fouad Hassan Fouad
- Chemistry Department, Faculty of Science, Cairo University, Giza 112631, Egypt
| | - George Raouf Fayek
- Chemistry Department, Faculty of Science, Cairo University, Giza 112631, Egypt
| | | | - Mohamed Nabil Ahmed
- Chemistry Department, Faculty of Science, Cairo University, Giza 112631, Egypt
| | | | - Rasha M El Nashar
- Chemistry Department, Faculty of Science, Cairo University, Giza 112631, Egypt.
| |
Collapse
|
12
|
Hamzeh S, Mahmoudi-Moghaddam H, Zinatloo-Ajabshir S, Amiri M, Razavi Nasab SA. Eco-friendly synthesis of mesoporous praseodymium oxide nanoparticles for highly efficient electrochemical sensing of carmoisine in food samples. Food Chem 2024; 433:137363. [PMID: 37688817 DOI: 10.1016/j.foodchem.2023.137363] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 09/11/2023]
Abstract
Herein, a mesoporous Pr6O11 nanoparticle (NPs) has been prepared via a simple sonochemical process employing an eco-friendly capping agent, grape juice, and utilized for the development of a novel electrochemical sensor to measure carmoisine. Chronoamperometry, cyclic voltammetry (CV), and differential pulse voltammetry (DPV) have been used for the investigation of the electrochemical behavior of mesoporous Pr6O11/Ionic liquid/Carbon paste electrode (MP-Pr6O11/IL/CPE) in the presence of carmoisine. The oxidation behavior of carmoisine has been examined, and it has been discovered that there was a greater enhancing signal with the MP-Pr6O11/IL/CPE. A lowdetection limit of 12 nM in a linear range of 0.09-135 µM was achieved by the novel carmoisine sensor. Good selectivity, repeatability, stability, and reproducibility were all features of the newly constructed sensor. As a result, the suggested procedurewas appropriate for routine analysis and ought to serve as a viable option for analyzing food colorant.
Collapse
Affiliation(s)
| | - Hadi Mahmoudi-Moghaddam
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| | | | - Mahnaz Amiri
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Science, Kerman, Iran
| | | |
Collapse
|
13
|
Hu Z, Wang H, Chen H, Fan GC, Luo X. Target-triggered cascade signal amplification in nanochannels: An ingenious strategy for ultrasensitive photoelectrochemical DNA bioanalysis. Biosens Bioelectron 2023; 242:115724. [PMID: 37801836 DOI: 10.1016/j.bios.2023.115724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/23/2023] [Accepted: 09/30/2023] [Indexed: 10/08/2023]
Abstract
Artificial solid-state nanochannels have aroused intense interests in biosensors and bioelectronics because of their special architectures. Herein, we pioneered an ingenious approach of target-triggered cascade signal amplification in porous anodic aluminum oxide (AAO) nanochannels for ultrasensitive photoelectrochemical (PEC) DNA bioanalysis. In the design, AAO nanochannels were modified initially with capture DNA (cDNA) and then incorporated with a photoelectrode, yielding the desired architecture of highly ordered nanoarrays on top of the signal transducer. For target DNA (tDNA) probing, exonuclease III (Exo-III) mediated target recycling (ETR) was first activated to generate plenty of output DNA (oDNA) fragments. After oDNA and the conjugate of Au-labeled probe DNA (Au-pDNA) were anchored within the nanochannels via DNA hybridization, in-situ synthesis of Ag shells on tethered Au nanoparticles was conducted. The resulting large-sized Au@Ag core-shell nanostructure within the nanochannels would cause conspicuous blocking effect to hinder the transportation of electrons accessing the photoelectrode. Since the signal inhibition was directly related to tDNA concentration, an innovative nanochannels PEC DNA assay was exploited and qualified for ultrasensitive detection. The anti-interference ability of this platform was also emphasized by the split AAO membrane for biological incubation without participation of the photoelectrode. This featured nanochannels PEC strategy with cascade amplification launched a novel detecting platform for trace levels of DNA, and it could spark more inspiration for a follow-up exploration of other smart nanochannels PEC bioassays.
Collapse
Affiliation(s)
- Ze Hu
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Hao Wang
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Huimin Chen
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Gao-Chao Fan
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
| | - Xiliang Luo
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
| |
Collapse
|
14
|
Tajik S, Sharifi F, Aflatoonian B, Mohammadi SZ. An Efficient Electrochemical Sensor Based on NiCo 2O 4 Nanoplates and Ionic Liquid for Determination of Favipiravir in the Presence of Acetaminophen. BIOSENSORS 2023; 13:814. [PMID: 37622900 PMCID: PMC10452330 DOI: 10.3390/bios13080814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/26/2023] [Accepted: 07/27/2023] [Indexed: 08/26/2023]
Abstract
Based on the modification of carbon paste electrode with NiCo2O4 nanoplates and 1-hexyl-3-methylimidazolium tetrafluoroborate, a new electrochemical sensing platform for the sensing of favipiravir (a drug with potential therapeutic efficacy in treating COVID-19 patients) in the presence of acetaminophen was prepared. For determining the electrochemical behavior of favipiravir, cyclic voltammetry, differential pulse voltammetry, and chronoamperometry have been utilized. When compared to the unmodified carbon paste electrode, the results of the cyclic voltammetry showed that the proposed NiCo2O4 nanoplates/1-hexyl-3-methylimidazolium tetrafluoroborate/carbon paste electrode had excellent catalytic activity for the oxidation of the favipiravir in phosphate buffer solution (pH = 7.0). This was due to the synergistic influence of 1-hexyl-3-methylimidazolium tetrafluoroborate (ionic liquid) and NiCo2O4 nanoplates. In the optimized conditions of favipiravir measurement, NiCo2O4 nanoplates/1-hexyl-3-methylimidazolium tetrafluoroborate/carbon paste electrode had several benefits, such as a wide dynamic linear between 0.004 and 115.0 µM, a high sensitivity of 0.1672 µA/µM, and a small limit of detection of 1.0 nM. Furthermore, the NiCo2O4 nanoplates/1-hexyl-3-methylimidazolium tetrafluoroborate/carbon paste electrode sensor presented a good capability to investigate the favipiravir and acetaminophen levels in real samples with satisfactory recoveries.
Collapse
Affiliation(s)
- Somayeh Tajik
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman P.O. Box 76169-13555, Iran; (F.S.); (B.A.)
| | - Fatemeh Sharifi
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman P.O. Box 76169-13555, Iran; (F.S.); (B.A.)
| | - Behnaz Aflatoonian
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman P.O. Box 76169-13555, Iran; (F.S.); (B.A.)
| | - Sayed Zia Mohammadi
- Department of Chemistry, Payame Noor University, Tehran P.O. Box 19395-3697, Iran;
| |
Collapse
|
15
|
Karami-Kolmoti P, Beitollahi H, Modiri S. Electrochemical Sensor for Simple and Sensitive Determination of Hydroquinone in Water Samples Using Modified Glassy Carbon Electrode. Biomedicines 2023; 11:1869. [PMID: 37509508 PMCID: PMC10377069 DOI: 10.3390/biomedicines11071869] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/21/2023] [Accepted: 06/25/2023] [Indexed: 07/30/2023] Open
Abstract
This study addressed the use of manganese dioxide nanorods/graphene oxide nanocomposite (MnO2 NRs/GO) for modifying a glassy carbon electrode (GCE). The modified electrode (MnO2 NRs/GO/GCE) was used as an electrochemical sensor for the determination of hydroquinone (HQ) in water samples. Differential pulse voltammetry (DPV), cyclic voltammetry (CV), and chronoamperometry were used for more analysis of the HQ electrochemical behavior. Analyses revealed acceptable electrochemical functions with lower transfer resistance of electrons and greater conductivity of the MnO2 NRs/GO/GCE. The small peak-to-peak separation is an indication of a rapid electron transfer reaction. Therefore, this result is probably related to the effect of the MnO2 NRs/GO nanocomposite on the surface of GCE. In the concentration range of 0.5 μM to 300.0 μM with the detection limit as 0.012 μM, there was linear response between concentration of HQ and the current. The selectivity of the modified electrode was determined by detecting 50.0 μM of HQ in the presence of various interferent molecules. At the end, the results implied the acceptable outcome of the prepared electrode for determining HQ in the water samples.
Collapse
Affiliation(s)
- Parisa Karami-Kolmoti
- Department of Chemistry, Graduate University of Advanced Technology, Kerman 76311-33131, Iran
| | - Hadi Beitollahi
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman 76311-33131, Iran
| | - Sina Modiri
- Polymer Department, Graduate University of Advanced Technology, Kerman 76311-33131, Iran
| |
Collapse
|
16
|
Beitollahi H, Nejad FG, Dourandish Z, Aflatoonian MR. Electrochemical detection of carmoisine in the presence of tartrazine on the surface of screen printed graphite electrode modified with nickel-cobalt layered double hydroxide ultrathin nanosheets. CHEMOSPHERE 2023:139369. [PMID: 37392790 DOI: 10.1016/j.chemosphere.2023.139369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/08/2023] [Accepted: 06/27/2023] [Indexed: 07/03/2023]
Abstract
Toxic effluents containing azo dyes are discharged from various industries and they adversely affect water resoures, soil, aquatic ecosystems. Also, excessive use of food azo dyes can be carcinogenic, toxic, and adversely affect human health. Therefore, the determination of food azo dyes is significant from the perspective of human health and aquatic organisms. In the present work, nickel-cobalt layered double hydroxide nanosheets were prepared and analyzed by various techniques (field emission-scanning electron microscopy, X-ray diffraction, and fourier Transform-Infrared spectroscopy). Then, the screen printed graphite electrode modified with nickel-cobalt layered double hydroxide nanosheets was used for the detection of carmoisine. The nickel-cobalt layered double hydroxide nanosheets/screen printed graphite electrode significantly improved the oxidation of carmoisine by increasing the response current and lowering potentials compared to unmodified screen printed graphite electrode. Based on the findings from differential pulse voltammetry, the nickel-cobalt layered double hydroxide nanosheets/screen printed graphite electrode sensor response towards carmoisine was linear (0.3-125.0 μM) with a detection limit of 0.09 μM. A sensitivity of 0.3088 μA μM-1 was achieved. Also, the nickel-cobalt layered double hydroxide nanosheets/screen printed graphite electrode was used for voltammetric detection of carmoisine in the presence of tartrazine. Due to the catalytic activity of prepared layered double hydroxide, the prepared sensor exhibited remarkable separation of the peaks when carmoisine and tartrazine coexist. In addition, the prepared sensor showed good stability. Finally, the proposed sensor had promising applicability for analysis of study analytes in powdered juice and lemon juice, with commendable recoveries between 97.3% and 104.8%.
Collapse
Affiliation(s)
- Hadi Beitollahi
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, P.O. Box 76318-85356, Iran.
| | - Fariba Garkani Nejad
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, P.O. Box 76318-85356, Iran
| | - Zahra Dourandish
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, P.O. Box 76318-85356, Iran
| | - Mohammad Reza Aflatoonian
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, P.O. Box 76169-13555, Iran
| |
Collapse
|
17
|
Rapid and straightforward electrochemical approach for the determination of the toxic food azo dye tartrazine using sensors based on silver solid amalgam. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
18
|
Ibraheem Shelash Al-Hawary S, Omar Bali A, Askar S, Lafta HA, Jawad Kadhim Z, Kholdorov B, Riadi Y, Solanki R, ismaeel kadhem Q, Fakri Mustafa Y. Recent advances in nanomaterials-based electrochemical and optical sensing approaches for detection of food dyes in food samples: A comprehensive overview. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
19
|
Development and Factorial Experimental Design Optimization of Deep Eutectic Solvent‐Based Microextraction of Carmoisine (E122) in Candy and Water Samples. ANAL LETT 2022. [DOI: 10.1080/00032719.2022.2158194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
20
|
Dourandish Z, Sheikhshoaie I, Maghsoudi S. Synthesis of NiRu-metal organic framework nanosheets: as active catalyst for the fabrication of rapid and simple electrochemical sensor for the determination of sudan I in presence of bisphenol A. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01614-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
21
|
Self-supported loofah-like Co(OH)F@NiMn-LDH hierarchical core-shell nanosheet arrays as efficient electrocatalyst for hydrazine sensing. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
22
|
Ganesh PS, Teradale AB, Kim SY, Ko HU, Ebenso EE. Electrochemical sensing of anti-inflammatory drug mesalazine in pharmaceutical samples at polymerized-congo red modified carbon paste electrode. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.140043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
23
|
Sun R, Lv R, Li Y, Du T, Chen L, Zhang Y, Zhang X, Zhang L, Ma H, Sun H, Qi Y. Simple and sensitive electrochemical detection of sunset yellow and Sudan I in food based on AuNPs/Zr-MOF-Graphene. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
24
|
Zheng Y, Mao S, Zhu J, Fu L, Moghadam M. A scientometric study on application of electrochemical sensors for detection of pesticide using graphene-based electrode modifiers. CHEMOSPHERE 2022; 307:136069. [PMID: 35985381 DOI: 10.1016/j.chemosphere.2022.136069] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 07/29/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
Pesticide testing is an important topic in environmental protection and food safety. The development of green, accurate and reliable pesticide residue detection methods is an important technical support for implementing of agricultural quality supervision. Electrochemical sensors are a very promising analytical method for pesticide detection due to their high sensitivity, speed, low cost and portability. Performance enhancement of electrochemical sensors is often accompanied by research advances in materials science. Among them, carbon material is a very important electrode material for the fabrication of electrochemical sensors. The discovery of graphene makes it the most promising candidate among carbon materials for sensor performance enhancement. The topic of this review is the use of graphene-modified electrochemical sensors for pesticide detection in the last decade. Traditional literature summaries and bibliometric analyses were used for an in-depth analysis of this topic. In addition to the introduction of different sensor types and performance comparisons, this review also parses the authors' country, keywords and publication frequency. The related research experienced rapid growth several years ago and has now reached a relatively stable stage. We also discuss the perspectives on this topic.
Collapse
Affiliation(s)
- Yuhong Zheng
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden, Memorial Sun Yat-Sen), Nanjing, 210014, China
| | - Shuduan Mao
- Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, 310021, PR China.
| | - Jiangwei Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Li Fu
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China.
| | - Majid Moghadam
- Department of Chemistry, University of Isfahan, Isfahan, 81746-73441, Iran
| |
Collapse
|
25
|
Voltammetric analysis of serotonin and epinephrine in the presence of guanine and adenine at Bismarck brown R amplified pencil graphite electrode. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Mahobiya S, Balayan S, Chauhan N, Khanuja M, Kuchhal NK, Islam SS, Jain U. Tungsten Disulfide Decorated Screen-Printed Electrodes for Sensing of Glycated Hemoglobin. ACS OMEGA 2022; 7:34676-34684. [PMID: 36188317 PMCID: PMC9520739 DOI: 10.1021/acsomega.2c04926] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/01/2022] [Indexed: 06/16/2023]
Abstract
Diabetes is a global menace, and its severity results in various disorders including cardiovascular, retinopathy, neuropathy, and nephropathy. Recently, diabetic conditions are diagnosed through the level of glycated hemoglobin. The level of glycated hemoglobin is determined with enzymatic methodology. Although the system is sensitive, it has various restrictions such as long processing times, expensive equipment required for testing, and complex steps involved in sample preparation. These limitations are a hindrance to faster results. The limitations of the developed methods can be eliminated through biosensors. In this work, an electrochemical platform was fabricated that facilitates the identification of glycated hemoglobin protein in diabetic patients. The working electrode on the integrated circuit was modified with molecularly imprinted polymer decorated with tungsten disulfide nanoparticles to enhance its analytical properties. The analytical properties of the biosensor were studied using electrochemical techniques. The obtained detection limit of the nanoelectronic sensor was 0.01 pM. The calculated sensitivity of the biosensor was observed to be 0.27 μA/pM. Also, the sensor promises to operate in a dynamic working concentration range and provide instant results.
Collapse
Affiliation(s)
- Sunil
Kumar Mahobiya
- Amity
Institute of Nanotechnology (AINT), Amity
University Uttar Pradesh (AUUP), Sector 125, Noida 201313, Uttar Pradesh, India
| | - Sapna Balayan
- Amity
Institute of Nanotechnology (AINT), Amity
University Uttar Pradesh (AUUP), Sector 125, Noida 201313, Uttar Pradesh, India
| | - Nidhi Chauhan
- Amity
Institute of Nanotechnology (AINT), Amity
University Uttar Pradesh (AUUP), Sector 125, Noida 201313, Uttar Pradesh, India
| | - Manika Khanuja
- Centre
for Nanoscience and Nanotechnology, Jamia
Millia Islamia, New Delhi 110025, India
| | | | - S. S. Islam
- Centre
for Nanoscience and Nanotechnology, Jamia
Millia Islamia, New Delhi 110025, India
| | - Utkarsh Jain
- Amity
Institute of Nanotechnology (AINT), Amity
University Uttar Pradesh (AUUP), Sector 125, Noida 201313, Uttar Pradesh, India
| |
Collapse
|
27
|
Yamuna A, Karikalan N, Na JH, Lee TY. Lanthanum tin oxide-modified sensor electrode for the rapid detection of environmentally hazardous insecticide carbaryl in soil, water, and vegetable samples. JOURNAL OF HAZARDOUS MATERIALS 2022; 437:129415. [PMID: 35752051 DOI: 10.1016/j.jhazmat.2022.129415] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/03/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
The growing population and global food demands have encouraged the use of pesticides to increase agricultural yields; however, the irrational use of pesticides threatens human health and the environment. Carbaryl (CRBL) is the most widespread insecticide and severely affects soil, water systems, and human health. Thus, it is crucial to monitor CRBL residues in the environment and vegetable samples. This study reports the rapid and sensitive electrochemical detection of CRBL based on a pyrochlore-type lanthanum tin oxide (LSO) nanoparticles (NPs)-modified screen-printed carbon electrode (SPCE). A low-temperature hydrothermal method was employed to prepare the LSO NPs. The structural properties of the LSO NPs were characterized by X-ray diffraction, Raman, and X-ray photoelectron spectroscopy analyses. The LSO NPs/SPCE demonstrated good electroanalytical performance for CRBL detection, with a low detection limit of 0.4 nM (0.08 µg/L) and a sensitivity of 1.05 µA/(µM cm2). Furthermore, the LSO NPs/SPCE exhibited high selectivity among highly interfering carbamate and organophosphorus pesticides, which share similar mechanisms of action. Additionally, the LSO NPs/SPCE sensor achieved > 90% recovery for the detection of CRBL in soil, water, and vegetable samples, thus verifying its suitability for the rapid detection of CRBL.
Collapse
Affiliation(s)
- Annamalai Yamuna
- Department of Biomedical Engineering and Department of Convergence System Engineering, Chungnam National University, Daejeon 34134, South Korea
| | - Natarajan Karikalan
- Department of Biomedical Engineering and Department of Convergence System Engineering, Chungnam National University, Daejeon 34134, South Korea
| | - Jun-Hee Na
- Department of Electrical, Electronics and Communication Engineering Education, Chungnam National University, Daejeon 34134, South Korea
| | - Tae Yoon Lee
- Department of Biomedical Engineering and Department of Convergence System Engineering, Chungnam National University, Daejeon 34134, South Korea; Department of Technology Education, Chungnam National University, Daejeon 34134, South Korea.
| |
Collapse
|
28
|
4-ethyphenol detection in wine by fullerene modified screen-printed carbon electrodes. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
29
|
Moradi O. A review on nanomaterial-based electrochemical sensors for determination of vanillin in food samples. Food Chem Toxicol 2022; 168:113391. [PMID: 36041662 DOI: 10.1016/j.fct.2022.113391] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/10/2022] [Accepted: 08/21/2022] [Indexed: 12/27/2022]
Abstract
Vanillin is an organic compound that not only acts as a flavoring and fragrance enhancer in some foods, but also can have antioxidant, anti-inflammatory, anti-cancer and anti-depressant effects. Nevertheless, its excessive use can be associated with side effects on human health. Consequently, there is a need to achieve a rapid vanillin determination approach to enhance food safety. The diversity and high sensitivity of analytical approaches has led researchers to use more advanced and efficient methods providing quantitative and qualitative outcomes in complex matrices. Among these, prominent attention has been drawn to electrochemical sensors for reasons such as reliability, simplicity, cost-effectiveness, portability, selectivity, and ease of operation, especially for the determination of vanillin. Nanomaterials are a good candidate for sensor construction due to their commendable physicochemical attributes. Some advanced nanostructures with promising platforms for high-sensitivity, highly selective, and long-lasting electrochemical sensors include graphene (Gr) and its derivatives, graphite carbon nitride (g-C3N4), carbon nanotubes (CNTs), metal nanoparticles, metal organic frameworks, carbon nanofibers (CNFs) and quantum dots. Study about sizes, dimensions, and morphologies of nanomaterials makes strong candidates for improving sensitivity or selectivity according to electrocatalytic abilities. The low LOD and wide linear range of samples demonstrated an excellent catalytic performance towards the vanillin oxidation. Some investigations have reported the synergistic effects like great conductivity of carbon nanomaterials which improved the electrocatalytic performance of nanocomposites which demonstrated the estimable sensitivity of nanomaterial-supported electrochemical sensors for determination of vanillin concentrations. The sensors which have reported have a commendable response to practical potential and evaluated in biscuit, pudding powder, chocolate, custard specimens and etc. sensitivity, stability, reproducibility and repeatability of suggested sensor were investigated. The present review article scrutinizes recent advances in the fabrication of nanomaterial-based electrochemical sensors to detect vanillin in various food matrices.
Collapse
Affiliation(s)
- Omid Moradi
- Department of Chemistry, Faculty of Science, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
30
|
Pliuta K, Snigur D. Carbon-paste electrode modified by β-cyclodextrin as sensor for voltammetric determination of Tartrazine and Carmoisine from one drop. ANAL SCI 2022; 38:1377-1384. [PMID: 35932413 DOI: 10.1007/s44211-022-00170-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 07/21/2022] [Indexed: 11/01/2022]
Abstract
For food quality control methods, low cost, speed, and simplicity are essential. Electrochemical methods can satisfy all of these requirements. In this paper, we propose a fast and simple voltammetric method using a carbon-paste electrode modified with β-cyclodestrin for the determination of two common food azo dyes: Tartrazine and Carmoisine. To reduce the amount of sample required for analysis, in this work, we explored the prospect of another methodology similar to adsorption stripping voltammetry. The redox behavior of dyes, the influence of pH and scan rate on oxidation currents were investigated. Based on the results the scheme of oxidation of azo dyes was proposed. The use of the proposed approach in combination with the developed sensor makes it possible to determine Tartrazine and Carmoisine within their concentrations of 314-5024 ng/mL and 167-5340 ng/mL with calculation LOD 101 ng/mL and 60 ng/mL respectively. The proposed sensor was tested during analysis of model solutions and soft drinks and showed good results with high reproducibility.
Collapse
Affiliation(s)
- Konstantin Pliuta
- Department of Analytical and Toxicological Chemistry, Faculty of Chemistry and Pharmacy, Odessa I.I. Mechnikov National University, Odessa, 65082, Ukraine
| | - Denys Snigur
- Department of Analytical and Toxicological Chemistry, Faculty of Chemistry and Pharmacy, Odessa I.I. Mechnikov National University, Odessa, 65082, Ukraine.
| |
Collapse
|
31
|
Manjunatha K, Kumara Swamy B, Jayaprakash G, Sharma S, Lalitha P, Vishnumurthy K. Electrochemical determination of paracetamol at Cu doped ZnO/Nanoparticle with TX-100-surfactant MCPE: A cyclic voltammetric technique. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
32
|
Hollow Hierarchical Cu-BTC as Nanocarriers to Immobilize Lipase for Electrochemical Biosensor. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02434-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
33
|
Aloe barbadensis Mill leaf gel assisted combustion synthesized ZnO:Ni3+: Electrochemical sensor for Ascorbic Acid detection and Photocatalysis. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
34
|
Kaewjua K, Siangproh W. A novel tyramine sensing-based polymeric L-histidine film-coated screen-printed graphene electrode: Capability for practical applications. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
35
|
Garkani Nejad F, Asadi MH, Sheikhshoaie I, Dourandish Z, Zaimbashi R, Beitollahi H. Construction of modified screen-printed graphite electrode for the application in electrochemical detection of sunset yellow in food samples. Food Chem Toxicol 2022; 166:113243. [PMID: 35728724 DOI: 10.1016/j.fct.2022.113243] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/07/2022] [Accepted: 06/15/2022] [Indexed: 01/10/2023]
Abstract
The current work introduced a novel electrochemical sensor (screen-printed graphite electrode (SPGE) modified with MnO2 nanorods anchored graphene oxide nanocomposite (MnO2 NRs/GO) for sensitive determination of sunset yellow. The characterization of MnO2 NRs/GO nanocomposite synthesized through a simple hydrothermal approach was determined employing varied analytical equipment like Field emission-scanning electron microscopy (FE-SEM), Fourier transform infrared spectroscopy (FT-IR), and X-ray diffraction (XRD). Chronoamperometric measurements, differential pulse voltammetry (DPV), cyclic voltammetry (CV) and linear sweep voltammetry (LSV) were recruited to recognize the electrochemical oxidation of sunset yellow on the MnO2 NRs/GO/SPGE. The results of CV proved that the as-synthesized MnO2 NRs/GO nanocomposite has a good electrocatalytic activity toward sunset yellow. The MnO2 NRs/GO/SPGE electrode under optimized conditions using the DPV possessed a linear response for different concentrations of sunset yellow (between 0.01 and 115.0 μM) with a low limit of detection (LOD) (0.008 μM). Finally, the impressive applicability of this sensor was confirmed via real sample analysis with excellent recoveries (between 97.3 and 104.6%).
Collapse
Affiliation(s)
- Fariba Garkani Nejad
- Department of Chemistry, Faculty of Science, Shahid Bahonar University of Kerman, Kerman, 76175-133, Iran
| | - Malek Hossein Asadi
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Iran Sheikhshoaie
- Department of Chemistry, Faculty of Science, Shahid Bahonar University of Kerman, Kerman, 76175-133, Iran
| | - Zahra Dourandish
- Department of Chemistry, Faculty of Science, Shahid Bahonar University of Kerman, Kerman, 76175-133, Iran
| | - Reza Zaimbashi
- Department of Chemistry, Faculty of Science, Shahid Bahonar University of Kerman, Kerman, 76175-133, Iran
| | - Hadi Beitollahi
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran.
| |
Collapse
|
36
|
A novel electroanalytical biosensor based on ZIF‐8/acetylcholinesterase bio‐nanohybrids for early management of Hirschsprung Disease. ELECTROANAL 2022. [DOI: 10.1002/elan.202200203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
37
|
A brief review on the recent achievements in electrochemical detection of folic acid. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01421-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
38
|
Comparison of the modification of graphite electrodes with poly(4-aminobenzoic acid) and poly(4-hydroxyphenylacetic acid) for determination of Pb(II). CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02282-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
39
|
Electrochemical Determination of Paracetamol at Cu doped ZnO/Nanoparticle with TX-100-Surfactant MCPE : A Cyclic Voltammetric Technique. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
40
|
Karimi F, Demir E, Aydogdu N, Shojaei M, Taher MA, Asrami PN, Alizadeh M, Ghasemi Y, Cheraghi S. Advancement in electrochemical strategies for quantification of Brown HT and Carmoisine (Acid Red 14) Drom Azo Dyestuff class. Food Chem Toxicol 2022; 165:113075. [PMID: 35487338 DOI: 10.1016/j.fct.2022.113075] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/16/2022] [Accepted: 04/22/2022] [Indexed: 12/24/2022]
Abstract
Brown HT and carmoisine, which are the most used dyestuffs in pharmaceuticals, textiles, cosmetics and foods, are important components of the Azo family. Although the Azo group is not toxic or carcinogenic under normal conditions, these dyestuffs require great care due to the reduction of the Azo functional group to amines. In particular, fast, reliable, easy, on-site and precise determinations of these substances are extremely necessary and important. In this review, the properties, applications, and electrochemical determinations of brown HT and carmoisine, which are used as synthetic food colorants, are discussed in detail. Up to now, sensor types, detection limits (LOD and LOQ), and analytical applications in the developed electrochemical strategies for both substances were compared. In addition, the validation parameters such as the variety of the sensors, sensitivity, selectivity and electrochemical technique in these studies were clarified one by one. While the electrochemical techniques recommended for brown HT were mostly used for the removal of dyestuff, for carmoisine they included fully quantitative centered studies. The percentiles of voltammetric techniques, which are the most widely used among these electroanalytical methods, were determined. The benefits of a robust electrochemical strategy for the determination of both food colors are summed up in this review. Finally, the brown HT and carmoisine suggestions for future perspectives in electrochemical strategy are given according to all their applications.
Collapse
Affiliation(s)
- Fatemeh Karimi
- Department of Chemical Engineering, Quhchan University of Technology, Quchan, Iran.
| | - Ersin Demir
- Afyonkarahisar Health Sciences University, Faculty of Pharmacy, Department of Analytical Chemistry, 03030, Afyonkarahisar, Turkey.
| | - Nida Aydogdu
- Afyonkarahisar Health Sciences University, Faculty of Pharmacy, Department of Analytical Chemistry, 03030, Afyonkarahisar, Turkey
| | - Moein Shojaei
- Department of Chemistry, Shahid Bahonar University of Kerman, Iran
| | - Mohammad A Taher
- Department of Chemistry, Shahid Bahonar University of Kerman, Iran
| | | | - Marzieh Alizadeh
- Department of Pharmaceutical Biotechnology and Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Younes Ghasemi
- Department of Pharmaceutical Biotechnology and Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Somaye Cheraghi
- Department of Chemistry, Shahid Bahonar University of Kerman, Iran.
| |
Collapse
|
41
|
Karimi-Maleh H, Beitollahi H, Senthil Kumar P, Tajik S, Jahani PM, Karimi F, Karaman C, Vasseghian Y, Baghayeri M, Rouhi J, Show PL, Rajendran S, Fu L, Zare N. Recent advances in carbon nanomaterials-based electrochemical sensors for food azo dyes detection. Food Chem Toxicol 2022; 164:112961. [PMID: 35395340 DOI: 10.1016/j.fct.2022.112961] [Citation(s) in RCA: 153] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/17/2022] [Accepted: 03/22/2022] [Indexed: 01/24/2023]
Abstract
Azo dyes as widely applied food colorants are popular for their stability and affordability. On the other hand, many of these dyes can have harmful impacts on living organs, which underscores the need to control the content of this group of dyes in food. Among the various analytical approaches for detecting the azo dyes, special attention has been paid to electro-analytical techniques for reasons such as admirable sensitivity, excellent selectivity, reproducibility, miniaturization, green nature, low cost, less time to prepare and detect of specimens and the ability to modify the electrode. Satisfactory results have been obtained so far for carbon-based nanomaterials in the fabrication of electrochemical sensing systems in detecting the levels of these materials in various specimens. The purpose of this review article is to investigate carbon nanomaterial-supported techniques for electrochemical sensing systems on the analysis of azo dyes in food samples in terms of carbon nanomaterials used, like carbon nanotubes (CNT) and grapheme (Gr).
Collapse
Affiliation(s)
- Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, P.O. Box 611731, Xiyuan Ave, Chengdu, PR China; Department of Chemical Engineering, Quchan University of Technology, Quchan, 9477177870, Iran.
| | - Hadi Beitollahi
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran.
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Chennai, 603110, India.
| | - Somayeh Tajik
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Fatemeh Karimi
- Department of Chemical Engineering, Quchan University of Technology, Quchan, 9477177870, Iran.
| | - Ceren Karaman
- Department of Electricity and Energy, Akdeniz University, Antalya, 07070, Turkey
| | - Yasser Vasseghian
- Department of Chemistry, Soongsil University, Seoul, 06978, South Korea
| | - Mehdi Baghayeri
- Department of Chemistry, Faculty of Science, Hakim Sabzevari University, P.O. Box 397, Sabzevar, Iran
| | - Jalal Rouhi
- Faculty of Physics, University of Tabriz, Tabriz, 51566, Iran
| | - Pau-Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih, 43500, Selangor Darul Ehsan, Malaysia
| | - Saravanan Rajendran
- Faculty of Engineering, Department of Mechanical Engineering, University of Tarapaca, 1775, Arica, Chile
| | - Li Fu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, PR China
| | - Najmeh Zare
- Department of Chemical Engineering, Quchan University of Technology, Quchan, 9477177870, Iran
| |
Collapse
|
42
|
Jahani PM, Aflatoonian MR, Rayeni RA, Di Bartolomeo A, Mohammadi SZ. Graphite carbon nitride-modified screen-printed electrode as a highly sensitive and selective sensor for detection of amaranth. Food Chem Toxicol 2022; 163:112962. [DOI: 10.1016/j.fct.2022.112962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/12/2022] [Accepted: 03/22/2022] [Indexed: 12/27/2022]
|
43
|
Mao Z, Zhu H, Peng X, Chen J, Chen Q, Chen X, Hu X, Chen H. In situ vertical alignment of 2D MoS 2 layers on GO film: enhanced electrochemical properties for PD-L1 sensing. Mikrochim Acta 2022; 189:155. [PMID: 35347433 DOI: 10.1007/s00604-022-05269-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 03/08/2022] [Indexed: 12/01/2022]
Abstract
There is an urgent need for a flexible and simple programmed cell death ligand 1 (PD-L1) dynamic measurement method enabling real-time monitoring of cancer progression and assessment of immunotherapy efficacy. In the current study, we show facile in situ synthesis of vertical alignment two-dimensional molybdenum disulfide (2D MoS2) layers on graphene-oxide-modified ITO (MoS2┴GO-ITO) using a hydrothermal approach and demonstrate the importance of the alignment of 2D in achieving high-probe capturing, enhanced electrochemical properties and target selectivity during sensing. After modification of designed PD-L1 binding peptides on the MoS2┴GO-ITO, a sensitive PD-L1 electrochemical sensor was designed using vertical alignment MoS2 to capture more probes for PD-L1 recognition and excellent in plane electron transport to accelerate electrochemical signals. The fabricated electrochemical sensor could sensitively determine PD-L1 in a wide linear range of 25-500 ng/mL and exhibit desirable accuracy and reliability in clinical samples application. This simple and sensitive method is likely to investigate further research into the exploration of the perpendicular alignment of 2D surfaces for diverse applications.
Collapse
Affiliation(s)
- Zhihui Mao
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China.,Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Han Zhu
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Xinsheng Peng
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Jie Chen
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, China.,School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Qiang Chen
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - XiaoBing Chen
- Department of Oncology, the Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, 450008, China
| | - Xiaojun Hu
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Hongxia Chen
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
44
|
Tigari G, Manjunatha JG, Souza ED, Raril C, Hareesha N, Charithra MM. Electrochemical determination of levofloxacin drug at poly(clayton yellow)/carbon paste electrode. MONATSHEFTE FUR CHEMIE 2022. [DOI: 10.1007/s00706-022-02910-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
45
|
Tajik S, Afshar AA, Shamsaddini S, Askari MB, Dourandish Z, Garkani Nejad F, Beitollahi H, Di Bartolomeo A. Fe 3O 4@MoS 2/rGO Nanocomposite/Ionic Liquid Modified Carbon Paste Electrode for Electrochemical Sensing of Dasatinib in the Presence of Doxorubicin. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00370] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Somayeh Tajik
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman 76169-13555, Iran
| | - Abbas Aghaei Afshar
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman 76169-13555, Iran
| | - Saeedeh Shamsaddini
- Research Center for Hydatid Disease in Iran, Kerman University of Medical Sciences, Kerman 76169-13555, Iran
| | - Mohammad Bagher Askari
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman 76318-85356, Iran
| | - Zahra Dourandish
- Department of Chemistry, Faculty of Science, Shahid Bahonar University of Kerman, Kerman 76169-14111, Iran
| | - Fariba Garkani Nejad
- Department of Chemistry, Faculty of Science, Shahid Bahonar University of Kerman, Kerman 76169-14111, Iran
| | - Hadi Beitollahi
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman 76318-85356, Iran
| | - Antonio Di Bartolomeo
- Physics Department “E.R. Caianiello”, University of Salerno, via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy
| |
Collapse
|
46
|
Alizadeh M, Demir E, Aydogdu N, Zare N, Karimi F, Kandomal SM, Rokni H, Ghasemi Y. Recent advantages in electrochemical monitoring for the analysis of amaranth and carminic acid food colors. Food Chem Toxicol 2022; 163:112929. [PMID: 35307455 DOI: 10.1016/j.fct.2022.112929] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/09/2022] [Accepted: 03/15/2022] [Indexed: 12/19/2022]
Abstract
This study provides a comprehensive review of the latest developments in the electrochemical impressions of the important dyestuffs including amaranth and carminic acid. Food colors are organic substances that have important effects on human health and food safety. While these substances do not pose a problem when used in the daily intake (ADI) amounts, they harm human health when consumed excessively. Amaranth and carminic acid are synthetic and natural food colors ingredients, respectively. Analysis of these substances in food, pharmaceutical, cosmetic and textile samples is extremely important because of their genotoxicity, cytostatic and cytotoxic effects. Electroanalytical methods, which have great advantages over traditional analytical methods, shed light on the scientific world. Electrochemical monitoring modules, which are fast, simple, accurate, reliable, and highly selective, are promising for the determination of both substances. Until now, amaranth and carminic acid food determinations have been carried out successfully with electrochemical monitoring techniques in many numbers in the literature. Voltammetric techniques are the most widely used among these electroanalytical methods. In particular, square wave and differential pulse voltammetric techniques, which have extraordinary properties, have been heavily preferred. Limits of detection (LOD) comparable to the standard analytical method have been achieved using these methods, which have very quick analysis durations, high precision and accuracy, do not require long preprocessing, and have great selectivity. In addition, more sensitive and selective analyses of amaranth and carminic acid in natural samples were carried out with numerous indicator electrodes. The merits of powerful electrochemical monitoring studies for the determination of both food colors during the last decade are presented in this study. Moreover, parameters such as analytical applications, detection limits, electrochemical methods, selectivity, working electrodes, and working ranges are summarized in detail.
Collapse
Affiliation(s)
- Marzieh Alizadeh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Laboratory of Basic Sciences, Mohammad Rasul Allah Research Tower, Shiraz University of Medical Sciences, Shiraz, 71348-14336, Iran
| | - Ersin Demir
- Afyonkarahisar Health Sciences University, Faculty of Pharmacy, Department of Analytical Chemistry, 03030, Afyonkarahisar, Turkey.
| | - Nida Aydogdu
- Afyonkarahisar Health Sciences University, Faculty of Pharmacy, Department of Analytical Chemistry, 03030, Afyonkarahisar, Turkey
| | - Najmeh Zare
- Department of Chemical Engineering, Quchan University of Technology, Quchan, 9477177870, Iran
| | - Fatemeh Karimi
- Department of Chemical Engineering, Quchan University of Technology, Quchan, 9477177870, Iran.
| | - S Masoud Kandomal
- Department of Chemical Engineering, Quchan University of Technology, Quchan, 9477177870, Iran
| | - Hassan Rokni
- Department of Chemical Engineering, Quchan University of Technology, Quchan, 9477177870, Iran
| | - Younes Ghasemi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|