1
|
Tung PW, Thaker VV, Gallagher D, Kupsco A. Mitochondrial Health Markers and Obesity-Related Health in Human Population Studies: A Narrative Review of Recent Literature. Curr Obes Rep 2024; 13:724-738. [PMID: 39287712 DOI: 10.1007/s13679-024-00588-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/29/2024] [Indexed: 09/19/2024]
Abstract
PURPOSE OF REVIEW This narrative review summarizes current literature on the relationship of mitochondrial biomarkers with obesity-related characteristics, including body mass index and body composition. RECENT FINDINGS Mitochondria, as cellular powerhouses, play a pivotal role in energy production and the regulation of metabolic process. Altered mitochondrial functions contribute to obesity, yet evidence of the intricate relationship between mitochondrial dynamics and obesity-related outcomes in human population studies is scarce and warrants further attention. We discuss emerging evidence linking obesity and related health outcomes to impaired oxidative phosphorylation pathways, oxidative stress and mtDNA variants, copy number and methylation, all hallmark of suboptimal mitochondrial function. We also explore the influence of dietary interventions and metabolic and bariatric surgery procedures on restoring mitochondrial attributes of individuals with obesity. Finally, we report on the potential knowledge gaps in the mitochondrial dynamics for human health for future study.
Collapse
Affiliation(s)
- Pei Wen Tung
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA.
| | - Vidhu V Thaker
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
| | - Dympna Gallagher
- Department of Medicine, Columbia University Irving Medical Center , New York, NY, USA
| | - Allison Kupsco
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| |
Collapse
|
2
|
Colangeli L, Escobar Marcillo DI, Simonelli V, Iorio E, Rinaldi T, Sbraccia P, Fortini P, Guglielmi V. The Crosstalk between Gut Microbiota and White Adipose Tissue Mitochondria in Obesity. Nutrients 2023; 15:nu15071723. [PMID: 37049562 PMCID: PMC10097238 DOI: 10.3390/nu15071723] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/19/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Adipose tissue (AT) dysregulation is a key process in the pathophysiology of obesity and its cardiometabolic complications, but even if a growing body of evidence has been collected over recent decades, the underlying molecular basis of adiposopathy remains to be fully understood. In this context, mitochondria, the intracellular organelles that orchestrate energy production and undergo highly dynamic adaptive changes in response to changing environments, have emerged as crucial regulators of both white (WAT) and brown adipose tissue (BAT) metabolism and function. Given that the gut microbiota and its metabolites are able to regulate host metabolism, adipogenesis, WAT inflammation, and thermogenesis, we hypothesize that their frequently observed dysregulation in obesity could affect AT metabolism by exerting direct and indirect effects on AT mitochondria. By collecting and revising the current evidence on the connections between gut microbiota and AT mitochondria in obesity, we gained insights into the molecular biology of their hitherto largely unexplored crosstalk, tracing how gut microbiota may regulate AT mitochondrial function.
Collapse
|
3
|
Santos AL, Sinha S. Ageing, Metabolic Dysfunction, and the Therapeutic Role of Antioxidants. Subcell Biochem 2023; 103:341-435. [PMID: 37120475 DOI: 10.1007/978-3-031-26576-1_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
The gradual ageing of the world population has been accompanied by a dramatic increase in the prevalence of obesity and metabolic diseases, especially type 2 diabetes. The adipose tissue dysfunction associated with ageing and obesity shares many common physiological features, including increased oxidative stress and inflammation. Understanding the mechanisms responsible for adipose tissue dysfunction in obesity may help elucidate the processes that contribute to the metabolic disturbances that occur with ageing. This, in turn, may help identify therapeutic targets for the treatment of obesity and age-related metabolic disorders. Because oxidative stress plays a critical role in these pathological processes, antioxidant dietary interventions could be of therapeutic value for the prevention and/or treatment of age-related diseases and obesity and their complications. In this chapter, we review the molecular and cellular mechanisms by which obesity predisposes individuals to accelerated ageing. Additionally, we critically review the potential of antioxidant dietary interventions to counteract obesity and ageing.
Collapse
Affiliation(s)
- Ana L Santos
- IdISBA - Fundación de Investigación Sanitaria de las Islas Baleares, Palma, Spain.
| | | |
Collapse
|
4
|
Sun J, Leng P, Li X, Guo Q, Zhao J, Liang Y, Zhang X, Yang X, Li J. Salvianolic acid A promotes mitochondrial biogenesis and mitochondrial function in 3T3-L1 adipocytes through regulation of the AMPK-PGC1α signalling pathway. Adipocyte 2022; 11:562-571. [PMID: 36053001 PMCID: PMC9450893 DOI: 10.1080/21623945.2022.2116790] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Mitochondrial dysfunction is associated with insulin resistance and type 2 diabetes (T2DM). Decreased mitochondrial abundance and function were found in white adipose tissue (WAT) of T2DM patients. Therefore, promoting WAT mitochondrial biogenesis and improving adipocyte metabolism may be strategies to prevent and reverse T2DM. Salvianolic acid A (SAA) has been found to exert anti-diabetic and lipid disorder-improving effects. However whether SAA benefits mitochondrial biogenesis and function in adipose tissue is unclear. Here, we evaluated SAA's effect on mitochondrial biogenesis and function in 3T3-L1 adipocytes and investigated its potential regulatory mechanism. Results showed that SAA treatment significantly promoted the transcription and expression of peroxisome proliferator-activated receptor γ coactivator- 1α (PGC-1α), nuclear respiratory factor 1 (NRF1) and mitochondrial transcription factor A (TFAM). Meanwhile, SAA treatment significantly promoted mitochondrial biogenesis by increasing mitochondrial DNA (mtDNA) quantity, mitochondrial mass, and expression of mitochondrial respiratory chain enzyme complexes III and complex IV. These enhancements were accompanied by enhanced phosphorylation of AMPK and ACC and were suppressed by Compound C, a specific AMPK inhibitor. Furthermore, SAA treatment improved adipocytes mitochondrial respiration and stimulated ATP generation. These findings indicate that SAA exerts a potential therapeutic capacity against adipocytes mitochondrial dysfunction in diabetes by activating the AMPK-PGC-1α pathway.
Collapse
Affiliation(s)
- Jialin Sun
- Department of Pharmacy, the Affiliated Hospital of Qingdao University, Qingdao, China,CONTACT Jialin Sun
| | - Ping Leng
- Department of Pharmacy, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiao Li
- Department of Pharmacy, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qie Guo
- Department of Pharmacy, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jun Zhao
- Department of Pharmacy, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yu Liang
- Department of Pharmacy, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaolei Zhang
- Department of Pharmacy, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xue Yang
- Department of Pharmacy, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jing Li
- Department of Pharmacy, the Affiliated Hospital of Qingdao University, Qingdao, China,Jing Li Department of Pharmacy, the Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Shinan District, Qingdao266003, Shandong, China
| |
Collapse
|
5
|
Sekiya FS, Silva CPND, Oba-Shinjo SM, Santos-Bezerra DP, Ravagnani FG, Pasqualucci CA, Gil S, Gualano B, Baptista MDS, Correa-Giannella ML, Marie SKN. Identification of two patterns of mitochondrial DNA-copy number variation in postcentral gyrus during aging, influenced by body mass index and type 2 diabetes. Exp Gerontol 2022; 168:111932. [PMID: 35995312 DOI: 10.1016/j.exger.2022.111932] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022]
Abstract
AIMS Mitochondrial (mt) DNA replication is strongly associated with oxidative stress, a condition triggered by aging and hyperglycemia, both of which contribute to mitophagy disruption and inflammation. This observational exploratory study evaluated mtDNA-copy number (mtDNA-CN) and expression of genes involved in mitochondriogenesis (PPARGC1A, TFAM, TFB1M, TFB2M), mitophagy (PINK1, PRKN), and inflammatory pathways triggered by hyperglycemia (TXNIP, NLRP3, NFKB1), in the postcentral gyrus of adults and older individuals with and without type 2 diabetes mellitus (T2D). MAIN METHODS Quantitative real-time PCR was employed to evaluate mtDNA-CN and gene expression; tissue autofluorescence, a marker of aging and of cells with damaged organelles, was also quantified. KEY FINDINGS No correlation was found between age and mtDNA-CN, but a direct correlation was observed for cases with mtDNA-CN >1000 (r = 0.41). The mtDNA-CN >1000 group had greater tissue autofluorescence and higher body mass index compared to the mtDNA-CN <1000 group (BMI; 25.7 vs 22.0 kg/m2, respectively). mtDNA-CN correlated with tissue autofluorescence in the overall sample (r = 0.55) and in the T2D group (r = 0.64). PINK and PRKN expressions were inversely correlated with age. Mitochondriogenesis genes and TXNIP expressions were higher in the T2D group, and correlations among the mitochondriogenesis genes were also stronger in this group, relative to the subgroup with mtDNA-CN >1000.
Collapse
Affiliation(s)
- Felipe Seiti Sekiya
- Laboratório de Biologia Celular e Molecular, LIM 15, Departamento de Neurologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Clarisse Pereira Nunes da Silva
- Laboratório de Biologia Celular e Molecular, LIM 15, Departamento de Neurologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Sueli Mieko Oba-Shinjo
- Laboratório de Biologia Celular e Molecular, LIM 15, Departamento de Neurologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Daniele Pereira Santos-Bezerra
- Laboratório de Carboidratos e Radioimunoensaio (LIM-18) do Hospital das Clinicas HCFMUSP, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | | | - Carlos Augusto Pasqualucci
- Departamento de Patologia, Grupo Brasileiro de Estudo de Envelhecimento Cerebral, Faculdade de Medicina FMUSP, Sao Paulo, Brazil
| | - Saulo Gil
- Applied Physiology & Nutrition Research Group, Division of Rheumatology, Faculdade de Medicina FMUSP, School of Physical Education and Sport, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Bruno Gualano
- Applied Physiology & Nutrition Research Group, Division of Rheumatology, Faculdade de Medicina FMUSP, School of Physical Education and Sport, Universidade de Sao Paulo, Sao Paulo, Brazil; Food Research Center, University of São Paulo, Sao Paulo, Brazil
| | | | - Maria Lucia Correa-Giannella
- Laboratório de Carboidratos e Radioimunoensaio (LIM-18) do Hospital das Clinicas HCFMUSP, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Suely Kazue Nagahashi Marie
- Laboratório de Biologia Celular e Molecular, LIM 15, Departamento de Neurologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil.
| |
Collapse
|
6
|
Mitochondrial DNA and Epigenetics: Investigating Interactions with the One-Carbon Metabolism in Obesity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9171684. [PMID: 35132354 PMCID: PMC8817841 DOI: 10.1155/2022/9171684] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 12/13/2022]
Abstract
Mitochondrial DNA copy number (mtDNAcn) has been proposed for use as a surrogate biomarker of mitochondrial health, and evidence suggests that mtDNA might be methylated. Intermediates of the one-carbon cycle (1CC), which is duplicated in the cytoplasm and mitochondria, have a major role in modulating the impact of diet on the epigenome. Moreover, epigenetic pathways and the redox system are linked by the metabolism of glutathione (GSH). In a cohort of 101 normal-weight and 97 overweight/obese subjects, we evaluated mtDNAcn and methylation levels in both mitochondrial and nuclear areas to test the association of these marks with body weight, metabolic profile, and availability of 1CC intermediates associated with diet. Body composition was associated with 1CC intermediate availability. Reduced levels of GSH were measured in the overweight/obese group (p = 1.3∗10−5). A high BMI was associated with lower LINE-1 (p = 0.004) and nominally lower methylenetetrahydrofolate reductase (MTHFR) gene methylation (p = 0.047). mtDNAcn was lower in overweight/obese subjects (p = 0.004) and independently correlated with MTHFR methylation levels (p = 0.005) but not to LINE-1 methylation levels (p = 0.086). DNA methylation has been detected in the light strand but not in the heavy strand of the mtDNA. Although mtDNA methylation in the light strand did not differ between overweight/obese and normal-weight subjects, it was nominally correlated with homocysteine levels (p = 0.035) and MTHFR methylation (p = 0.033). This evidence suggests that increased body weight might perturb mitochondrial-nuclear homeostasis affecting the availability of nutrients acting as intermediates of the one-carbon cycle.
Collapse
|
7
|
Fazzini F, Lamina C, Raftopoulou A, Koller A, Fuchsberger C, Pattaro C, Del Greco FM, Döttelmayer P, Fendt L, Fritz J, Meiselbach H, Schönherr S, Forer L, Weissensteiner H, Pramstaller PP, Eckardt K, Hicks AA, Kronenberg F. Association of mitochondrial DNA copy number with metabolic syndrome and type 2 diabetes in 14 176 individuals. J Intern Med 2021; 290:190-202. [PMID: 33453124 PMCID: PMC8359248 DOI: 10.1111/joim.13242] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/24/2020] [Accepted: 12/14/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Mitochondria play an important role in cellular metabolism, and their dysfunction is postulated to be involved in metabolic disturbances. Mitochondrial DNA is present in multiple copies per cell. The quantification of mitochondrial DNA copy number (mtDNA-CN) might be used to assess mitochondrial dysfunction. OBJECTIVES We aimed to investigate the cross-sectional association of mtDNA-CN with type 2 diabetes and the potential mediating role of metabolic syndrome. METHODS We examined 4812 patients from the German Chronic Kidney Disease (GCKD) study and 9364 individuals from the Cooperative Health Research in South Tyrol (CHRIS) study. MtDNA-CN was measured in whole blood using a plasmid-normalized qPCR-based assay. RESULTS In both studies, mtDNA-CN showed a significant correlation with most metabolic syndrome parameters: mtDNA-CN decreased with increasing number of metabolic syndrome components. Furthermore, individuals with low mtDNA-CN had significantly higher odds of metabolic syndrome (OR = 1.025; 95% CI = 1.011-1.039, P = 3.19 × 10-4 , for each decrease of 10 mtDNA copies) and type 2 diabetes (OR = 1.027; 95% CI = 1.012-1.041; P = 2.84 × 10-4 ) in a model adjusted for age, sex, smoking and kidney function in the meta-analysis of both studies. Mediation analysis revealed that the association of mtDNA-CN with type 2 diabetes was mainly mediated by waist circumference in the GCKD study (66%) and by several metabolic syndrome parameters, especially body mass index and triglycerides, in the CHRIS study (41%). CONCLUSIONS Our data show an inverse association of mtDNA-CN with higher risk of metabolic syndrome and type 2 diabetes. A major part of the total effect of mtDNA-CN on type 2 diabetes is mediated by obesity parameters.
Collapse
Affiliation(s)
- F. Fazzini
- From theDepartment of Genetics and PharmacologyInstitute of Genetic EpidemiologyMedical University of InnsbruckInnsbruckAustria
| | - C. Lamina
- From theDepartment of Genetics and PharmacologyInstitute of Genetic EpidemiologyMedical University of InnsbruckInnsbruckAustria
| | - A. Raftopoulou
- Eurac ResearchInstitute for BiomedicineAffiliated Institute of the University of LübeckBolzanoItaly
| | - A. Koller
- From theDepartment of Genetics and PharmacologyInstitute of Genetic EpidemiologyMedical University of InnsbruckInnsbruckAustria
| | - C. Fuchsberger
- Eurac ResearchInstitute for BiomedicineAffiliated Institute of the University of LübeckBolzanoItaly
| | - C. Pattaro
- Eurac ResearchInstitute for BiomedicineAffiliated Institute of the University of LübeckBolzanoItaly
| | - F. M. Del Greco
- Eurac ResearchInstitute for BiomedicineAffiliated Institute of the University of LübeckBolzanoItaly
| | - P. Döttelmayer
- From theDepartment of Genetics and PharmacologyInstitute of Genetic EpidemiologyMedical University of InnsbruckInnsbruckAustria
| | - L. Fendt
- From theDepartment of Genetics and PharmacologyInstitute of Genetic EpidemiologyMedical University of InnsbruckInnsbruckAustria
| | - J. Fritz
- Department of Medical StatisticsInformatics and Health EconomicsMedical University of InnsbruckInnsbruckAustria
- Department of Integrative PhysiologyUniversity of Colorado BoulderBoulderCOUSA
| | - H. Meiselbach
- Department of Nephrology and HypertensionFriedrich‐Alexander Universität Erlangen‐Nürnberg (FAU)ErlangenGermany
| | - S. Schönherr
- From theDepartment of Genetics and PharmacologyInstitute of Genetic EpidemiologyMedical University of InnsbruckInnsbruckAustria
| | - L. Forer
- From theDepartment of Genetics and PharmacologyInstitute of Genetic EpidemiologyMedical University of InnsbruckInnsbruckAustria
| | - H. Weissensteiner
- From theDepartment of Genetics and PharmacologyInstitute of Genetic EpidemiologyMedical University of InnsbruckInnsbruckAustria
| | - P. P. Pramstaller
- Eurac ResearchInstitute for BiomedicineAffiliated Institute of the University of LübeckBolzanoItaly
| | - K.‐U. Eckardt
- Department of Nephrology and HypertensionFriedrich‐Alexander Universität Erlangen‐Nürnberg (FAU)ErlangenGermany
- Department of Nephrology and Medical Intensive CareCharité – Universitätsmedizin BerlinBerlinGermany
| | - A. A. Hicks
- Eurac ResearchInstitute for BiomedicineAffiliated Institute of the University of LübeckBolzanoItaly
| | - F. Kronenberg
- From theDepartment of Genetics and PharmacologyInstitute of Genetic EpidemiologyMedical University of InnsbruckInnsbruckAustria
| | | |
Collapse
|
8
|
Dorji J, Vander Jagt CJ, Garner JB, Marett LC, Mason BA, Reich CM, Xiang R, Clark EL, Cocks BG, Chamberlain AJ, MacLeod IM, Daetwyler HD. Expression of mitochondrial protein genes encoded by nuclear and mitochondrial genomes correlate with energy metabolism in dairy cattle. BMC Genomics 2020; 21:720. [PMID: 33076826 PMCID: PMC7574280 DOI: 10.1186/s12864-020-07018-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 08/20/2020] [Indexed: 12/21/2022] Open
Abstract
Background Mutations in the mitochondrial genome have been implicated in mitochondrial disease, often characterized by impaired cellular energy metabolism. Cellular energy metabolism in mitochondria involves mitochondrial proteins (MP) from both the nuclear (NuMP) and mitochondrial (MtMP) genomes. The expression of MP genes in tissues may be tissue specific to meet varying specific energy demands across the tissues. Currently, the characteristics of MP gene expression in tissues of dairy cattle are not well understood. In this study, we profile the expression of MP genes in 29 adult and six foetal tissues in dairy cattle using RNA sequencing and gene expression analyses: particularly differential gene expression and co-expression network analyses. Results MP genes were differentially expressed (DE; over-expressed or under-expressed) across tissues in cattle. All 29 tissues showed DE NuMP genes in varying proportions of over-expression and under-expression. On the other hand, DE of MtMP genes was observed in < 50% of tissues and notably MtMP genes within a tissue was either all over-expressed or all under-expressed. A high proportion of NuMP (up to 60%) and MtMP (up to 100%) genes were over-expressed in tissues with expected high metabolic demand; heart, skeletal muscles and tongue, and under-expressed (up to 45% of NuMP, 77% of MtMP genes) in tissues with expected low metabolic rates; leukocytes, thymus, and lymph nodes. These tissues also invariably had the expression of all MtMP genes in the direction of dominant NuMP genes expression. The NuMP and MtMP genes were highly co-expressed across tissues and co-expression of genes in a cluster were non-random and functionally enriched for energy generation pathway. The differential gene expression and co-expression patterns were validated in independent cow and sheep datasets. Conclusions The results of this study support the concept that there are biological interaction of MP genes from the mitochondrial and nuclear genomes given their over-expression in tissues with high energy demand and co-expression in tissues. This highlights the importance of considering MP genes from both genomes in future studies related to mitochondrial functions and traits related to energy metabolism.
Collapse
Affiliation(s)
- Jigme Dorji
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, 3083, Australia. .,Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, 3083, Australia.
| | - Christy J Vander Jagt
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, 3083, Australia
| | - Josie B Garner
- Agriculture Victoria, Ellinbank Dairy Centre, Ellinbank, VIC, 3822, Australia
| | - Leah C Marett
- Agriculture Victoria, Ellinbank Dairy Centre, Ellinbank, VIC, 3822, Australia
| | - Brett A Mason
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, 3083, Australia
| | - Coralie M Reich
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, 3083, Australia
| | - Ruidong Xiang
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, 3083, Australia.,Faculty of Veterinary & Agricultural Science, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Emily L Clark
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Scotland, UK
| | - Benjamin G Cocks
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, 3083, Australia.,Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, 3083, Australia
| | - Amanda J Chamberlain
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, 3083, Australia
| | - Iona M MacLeod
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, 3083, Australia
| | - Hans D Daetwyler
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, 3083, Australia.,Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, 3083, Australia
| |
Collapse
|
9
|
Zhou Z, Moore TM, Drew BG, Ribas V, Wanagat J, Civelek M, Segawa M, Wolf DM, Norheim F, Seldin MM, Strumwasser AR, Whitney KA, Lester E, Reddish BR, Vergnes L, Reue K, Rajbhandari P, Tontonoz P, Lee J, Mahata SK, Hewitt SC, Shirihai O, Gastonbury C, Small KS, Laakso M, Jensen J, Lee S, Drevon CA, Korach KS, Lusis AJ, Hevener AL. Estrogen receptor α controls metabolism in white and brown adipocytes by regulating Polg1 and mitochondrial remodeling. Sci Transl Med 2020; 12:eaax8096. [PMID: 32759275 PMCID: PMC8212422 DOI: 10.1126/scitranslmed.aax8096] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 11/04/2019] [Accepted: 07/16/2020] [Indexed: 12/14/2022]
Abstract
Obesity is heightened during aging, and although the estrogen receptor α (ERα) has been implicated in the prevention of obesity, its molecular actions in adipocytes remain inadequately understood. Here, we show that adipose tissue ESR1/Esr1 expression inversely associated with adiposity and positively associated with genes involved in mitochondrial metabolism and markers of metabolic health in 700 Finnish men and 100 strains of inbred mice from the UCLA Hybrid Mouse Diversity Panel. To determine the anti-obesity actions of ERα in fat, we selectively deleted Esr1 from white and brown adipocytes in mice. In white adipose tissue, Esr1 controlled oxidative metabolism by restraining the targeted elimination of mitochondria via the E3 ubiquitin ligase parkin. mtDNA content was elevated, and adipose tissue mass was reduced in adipose-selective parkin knockout mice. In brown fat centrally involved in body temperature maintenance, Esr1 was requisite for both mitochondrial remodeling by dynamin-related protein 1 (Drp1) and uncoupled respiration thermogenesis by uncoupled protein 1 (Ucp1). In both white and brown fat of female mice and adipocytes in culture, mitochondrial dysfunction in the context of Esr1 deletion was paralleled by a reduction in the expression of the mtDNA polymerase γ subunit Polg1 We identified Polg1 as an ERα target gene by showing that ERα binds the Polg1 promoter to control its expression in 3T3L1 adipocytes. These findings support strategies leveraging ERα action on mitochondrial function in adipocytes to combat obesity and metabolic dysfunction.
Collapse
Affiliation(s)
- Zhenqi Zhou
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Timothy M Moore
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Brian G Drew
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Vicent Ribas
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Jonathan Wanagat
- Division of Geriatrics, Department of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Mete Civelek
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Mayuko Segawa
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Dane M Wolf
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Frode Norheim
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Marcus M Seldin
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Alexander R Strumwasser
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Kate A Whitney
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Ellen Lester
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Britany R Reddish
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Laurent Vergnes
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Karen Reue
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Prashant Rajbhandari
- Department of Pathology and Laboratory Medicine and the Howard Hughes Research Institute, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Peter Tontonoz
- Department of Pathology and Laboratory Medicine and the Howard Hughes Research Institute, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Jason Lee
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Sushil K Mahata
- VA San Diego Healthcare System, San Diego, CA 92161, USA
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Sylvia C Hewitt
- Receptor Biology Section, NIEHS, NIH, Research Triangle Park, NC 27709, USA
| | - Orian Shirihai
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Craig Gastonbury
- Department of Twin Research and Genetic Epidemiology, King's College London, London SE17EH, UK
| | - Kerrin S Small
- Department of Twin Research and Genetic Epidemiology, King's College London, London SE17EH, UK
| | - Markku Laakso
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio 70210, Finland
| | - Jorgen Jensen
- Department of Physical Performance, Norwegian School of Sport Science, Oslo 0806, Norway
| | - Sindre Lee
- University Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo 0316, Norway
| | - Christian A Drevon
- University Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo 0316, Norway
| | - Kenneth S Korach
- Receptor Biology Section, NIEHS, NIH, Research Triangle Park, NC 27709, USA
| | - Aldons J Lusis
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Andrea L Hevener
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, University of California, Los Angeles, CA 90095, USA.
- Iris Cantor-UCLA Women's Health Research Center, Los Angeles, CA 90095, USA
| |
Collapse
|
10
|
Heinonen S, Jokinen R, Rissanen A, Pietiläinen KH. White adipose tissue mitochondrial metabolism in health and in obesity. Obes Rev 2020; 21:e12958. [PMID: 31777187 DOI: 10.1111/obr.12958] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 08/27/2019] [Accepted: 09/03/2019] [Indexed: 12/11/2022]
Abstract
White adipose tissue is one of the largest organs of the body. It plays a key role in whole-body energy status and metabolism; it not only stores excess energy but also secretes various hormones and metabolites to regulate body energy balance. Healthy adipose tissue capable of expanding is needed for metabolic well-being and to prevent accumulation of triglycerides to other organs. Mitochondria govern several important functions in the adipose tissue. We review the derangements of mitochondrial function in white adipose tissue in the obese state. Downregulation of mitochondrial function or biogenesis in the white adipose tissue is a central driver for obesity-associated metabolic diseases. Mitochondrial functions compromised in obesity include oxidative functions and renewal and enlargement of the adipose tissue through recruitment and differentiation of adipocyte progenitor cells. These changes adversely affect whole-body metabolic health. Dysfunction of the white adipose tissue mitochondria in obesity has long-term consequences for the metabolism of adipose tissue and the whole body. Understanding the pathways behind mitochondrial dysfunction may help reveal targets for pharmacological or nutritional interventions that enhance mitochondrial biogenesis or function in adipose tissue.
Collapse
Affiliation(s)
- Sini Heinonen
- Obesity Research Unit, Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Riikka Jokinen
- Obesity Research Unit, Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Aila Rissanen
- Obesity Research Unit, Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Department of Psychiatry, Helsinki University Hospital, Helsinki, Finland
| | - Kirsi H Pietiläinen
- Obesity Research Unit, Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Endocrinology, Abdominal Center, Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
11
|
McElwain CJ, Tuboly E, McCarthy FP, McCarthy CM. Mechanisms of Endothelial Dysfunction in Pre-eclampsia and Gestational Diabetes Mellitus: Windows Into Future Cardiometabolic Health? Front Endocrinol (Lausanne) 2020; 11:655. [PMID: 33042016 PMCID: PMC7516342 DOI: 10.3389/fendo.2020.00655] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/11/2020] [Indexed: 12/12/2022] Open
Abstract
Placental insufficiency and adipose tissue dysregulation are postulated to play key roles in the pathophysiology of both pre-eclampsia (PE) and gestational diabetes mellitus (GDM). A dysfunctional release of deleterious signaling motifs can offset an increase in circulating oxidative stressors, pro-inflammatory factors and various cytokines. It has been previously postulated that endothelial dysfunction, instigated by signaling from endocrine organs such as the placenta and adipose tissue, may be a key mediator of the vasculopathy that is evident in both adverse obstetric complications. These signaling pathways also have significant effects on long term maternal cardiometabolic health outcomes, specifically cardiovascular disease, hypertension, and type II diabetes. Recent studies have noted that both PE and GDM are strongly associated with lower maternal flow-mediated dilation, however the exact pathways which link endothelial dysfunction to clinical outcomes in these complications remains in question. The current diagnostic regimen for both PE and GDM lacks specificity and consistency in relation to clinical guidelines. Furthermore, current therapeutic options rely largely on clinical symptom control such as antihypertensives and insulin therapy, rather than that of early intervention or prophylaxis. A better understanding of the pathogenic origin of these obstetric complications will allow for more targeted therapeutic interventions. In this review we will explore the complex signaling relationship between the placenta and adipose tissue in PE and GDM and investigate how these intricate pathways affect maternal endothelial function and, hence, play a role in acute pathophysiology and the development of future chronic maternal health outcomes.
Collapse
Affiliation(s)
- Colm J. McElwain
- Department of Pharmacology and Therapeutics, Western Gateway Building, University College Cork, Cork, Ireland
- *Correspondence: Colm J. McElwain
| | - Eszter Tuboly
- Department of Pharmacology and Therapeutics, Western Gateway Building, University College Cork, Cork, Ireland
| | - Fergus P. McCarthy
- Department of Obstetrics and Gynaecology, Cork University Maternity Hospital, Cork, Ireland
| | - Cathal M. McCarthy
- Department of Pharmacology and Therapeutics, Western Gateway Building, University College Cork, Cork, Ireland
| |
Collapse
|
12
|
Wessels B, Honecker J, Schöttl T, Stecher L, Klingenspor M, Hauner H, Skurk T. Adipose Mitochondrial Respiratory Capacity in Obesity is Impaired Independently of Glycemic Status of Tissue Donors. Obesity (Silver Spring) 2019; 27:756-766. [PMID: 30912621 DOI: 10.1002/oby.22435] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 01/12/2019] [Indexed: 11/11/2022]
Abstract
OBJECTIVE The study aimed to investigate how obesity and glycemic state affect mitochondrial respiration and ATP-generating pathways in mature human adipocytes. METHODS Subcutaneous (sc) and visceral (vc) adipocytes were isolated from patients undergoing abdominal surgery. Respiratory chain function was analyzed by high-resolution respirometry. Adipocyte ATP levels and lactate release were measured separately in the presence of either glycolysis (2-deoxy-D-glucose) or ATP synthase (oligomycin) inhibitors. RESULTS A significant negative correlation between oxidative phosphorylation capacity and the BMI of tissue donors found in sc adipocytes (P < 0.05). Furthermore, respirometry revealed an inverse relationship between BMI and the electron transfer system capacity of sc (P < 0.05) but not vc adipocytes. In both depots, the respiratory capacity was not affected by the glycemic state. A positive correlation between BMI and adipocyte lactate release was measured independently of the tissue origin (sc: P = 0.01; vc: P < 0.05). Direct ATP measurements indicated that energy demands of adipocytes were predominantly fulfilled by glycolytic activity. CONCLUSIONS The study's data suggest that obesity is the primary driver of impaired adipocyte mitochondrial respiration because the glycemic state did not further deteriorate this situation. The adipocytes' energy needs are covered primarily by the glycolytic pathway.
Collapse
Affiliation(s)
- Britta Wessels
- Department of Nutritional Medicine, Else Kröner-Fresenius Center for Nutritional Medicine, Technical University of Munich, Freising-Weihenstephan, Germany
| | - Julius Honecker
- Department of Nutritional Medicine, Else Kröner-Fresenius Center for Nutritional Medicine, Technical University of Munich, Freising-Weihenstephan, Germany
| | - Theresa Schöttl
- Department of Molecular Nutritional Medicine, Technical University of Munich, Freising-Weihenstephan, Germany
| | - Lynne Stecher
- Institute for Nutritional Medicine, Rechts der Isar Hospital, Technical University of Munich, Munich, Germany
| | - Martin Klingenspor
- Department of Molecular Nutritional Medicine, Technical University of Munich, Freising-Weihenstephan, Germany
| | - Hans Hauner
- Department of Nutritional Medicine, Else Kröner-Fresenius Center for Nutritional Medicine, Technical University of Munich, Freising-Weihenstephan, Germany
- Institute for Nutritional Medicine, Rechts der Isar Hospital, Technical University of Munich, Munich, Germany
| | - Thomas Skurk
- Department of Nutritional Medicine, Else Kröner-Fresenius Center for Nutritional Medicine, Technical University of Munich, Freising-Weihenstephan, Germany
- Institute for Food and Health, Core Facility Human Studies, Technical University of Munich, Freising-Weihenstephan, Germany
| |
Collapse
|
13
|
Cao H, Wu J, Luo J, Chen X, Yang J, Fang L. Urinary mitochondrial DNA: A potential early biomarker of diabetic nephropathy. Diabetes Metab Res Rev 2019; 35:e3131. [PMID: 30677222 DOI: 10.1002/dmrr.3131] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 01/21/2019] [Accepted: 01/22/2019] [Indexed: 01/19/2023]
Abstract
BACKGROUND Mitochondrial dysfunction and chronic sterile inflammation are common features of type 2 diabetes. Therefore, we aimed to investigate whether mitochondrial DNA (mtDNA) could be a biomarker implicated in the progression of type 2 diabetes and diabetic nephropathy and explore the underlying mechanism. MATERIAL AND METHODS We developed a method for relative quantification of mtDNA content in clinical practice. qRT-PCR was used to measure the mtDNA content both in vivo in CD-1 mice with diabetes induction by streptozotocin and in vitro in murine endothelial cells and conditionally immortalized mouse podocytes. By pumping mtDNA into the mouse circulation, the effect of mtDNA on the kidney was assessed in mice. In patients with type 2 diabetes (n = 42; 24 males; mean age 57.9 ± 12.00 years), plasma mtDNA was evaluated. RESULTS Plasma mtDNA content was significantly decreased in patients with type 2 diabetes, particularly those with significant proteinuria. In vitro, high glucose treatment suppressed intracellular mtDNA content and facilitated the extracellular release of mtDNA, so excessive circulatory mtDNA induced by high glucose might be filtered through the kidney and then into urine. Indeed, urinary mtDNA content was significantly increased in both diabetic patients and mice. Moreover, by pumping excess mtDNA into circulation in mice, filtered mtDNA could trigger inflammation and induce kidney injury. CONCLUSION Excessive mtDNA filtered through the kidney under diabetic conditions may be involved in chronic renal inflammation. Reduced plasma mtDNA content and increased urinary mtDNA/creatinine ratio might play a potential role as an early biomarker of diabetic nephropathy.
Collapse
Affiliation(s)
- Hongdi Cao
- Department of Nephrology, 2nd Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Jining Wu
- Department of Nephrology, 2nd Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Jing Luo
- Department of Nephrology, 2nd Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Xiaolan Chen
- Department of Nephrology, Affiliated Hospital of Nantong University, Nantong, China
| | - Junwei Yang
- Department of Nephrology, 2nd Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Li Fang
- Department of Nephrology, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
14
|
Ejarque M, Ceperuelo-Mallafré V, Serena C, Maymo-Masip E, Duran X, Díaz-Ramos A, Millan-Scheiding M, Núñez-Álvarez Y, Núñez-Roa C, Gama P, Garcia-Roves PM, Peinado MA, Gimble JM, Zorzano A, Vendrell J, Fernández-Veledo S. Adipose tissue mitochondrial dysfunction in human obesity is linked to a specific DNA methylation signature in adipose-derived stem cells. Int J Obes (Lond) 2018; 43:1256-1268. [PMID: 30262812 PMCID: PMC6760577 DOI: 10.1038/s41366-018-0219-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 08/23/2018] [Accepted: 09/02/2018] [Indexed: 02/07/2023]
Abstract
Background A functional population of adipocyte precursors, termed adipose-derived stromal/stem cells (ASCs), is crucial for proper adipose tissue (AT) expansion, lipid handling, and prevention of lipotoxicity in response to chronic positive energy balance. We previously showed that obese human subjects contain a dysfunctional pool of ASCs. Elucidation of the mechanisms underlying abnormal ASC function might lead to therapeutic interventions for prevention of lipotoxicity by improving the adipogenic capacity of ASCs. Methods Using epigenome-wide association studies, we explored the impact of obesity on the methylation signature of human ASCs and their differentiated counterparts. Mitochondrial phenotyping of lean and obese ASCs was performed. TBX15 loss- and gain-of-function experiments were carried out and western blotting and electron microscopy studies of mitochondria were performed in white AT biopsies from lean and obese individuals. Results We found that DNA methylation in adipocyte precursors is significantly modified by the obese environment, and adipogenesis, inflammation, and immunosuppression were the most affected pathways. Also, we identified TBX15 as one of the most differentially hypomethylated genes in obese ASCs, and genetic experiments revealed that TBX15 is a regulator of mitochondrial mass in obese adipocytes. Accordingly, morphological analysis of AT from obese subjects showed an alteration of the mitochondrial network, with changes in mitochondrial shape and number. Conclusions We identified a DNA methylation signature in adipocyte precursors associated with obesity, which has a significant impact on the metabolic phenotype of mature adipocytes.
Collapse
Affiliation(s)
- Miriam Ejarque
- Hospital Universitari de Tarragona Joan XXIII-Institut d´Investigació Sanitària Pere Virgili-Universitat Rovira i Virgili, Tarragona, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III, Madrid, Spain
| | - Victoria Ceperuelo-Mallafré
- Hospital Universitari de Tarragona Joan XXIII-Institut d´Investigació Sanitària Pere Virgili-Universitat Rovira i Virgili, Tarragona, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III, Madrid, Spain
| | - Carolina Serena
- Hospital Universitari de Tarragona Joan XXIII-Institut d´Investigació Sanitària Pere Virgili-Universitat Rovira i Virgili, Tarragona, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III, Madrid, Spain
| | - Elsa Maymo-Masip
- Hospital Universitari de Tarragona Joan XXIII-Institut d´Investigació Sanitària Pere Virgili-Universitat Rovira i Virgili, Tarragona, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III, Madrid, Spain
| | - Xevi Duran
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III, Madrid, Spain
| | - Angels Díaz-Ramos
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III, Madrid, Spain.,Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Monica Millan-Scheiding
- Hospital Universitari de Tarragona Joan XXIII-Institut d´Investigació Sanitària Pere Virgili-Universitat Rovira i Virgili, Tarragona, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III, Madrid, Spain
| | - Yaiza Núñez-Álvarez
- Health Sciences Research Institute Germans Trias i Pujol (IGTP)-Institute of Predictive and Personalized Medicine of Cancer (IMPPC), Badalona, Spain
| | - Catalina Núñez-Roa
- Hospital Universitari de Tarragona Joan XXIII-Institut d´Investigació Sanitària Pere Virgili-Universitat Rovira i Virgili, Tarragona, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III, Madrid, Spain
| | - Pau Gama
- Department of Physiological Sciences II, Faculty of Medicine-University of Barcelona, Hospitalet del Llobregat, Barcelona, Spain
| | - Pablo M Garcia-Roves
- Department of Physiological Sciences II, Faculty of Medicine-University of Barcelona, Hospitalet del Llobregat, Barcelona, Spain
| | - Miquel A Peinado
- Health Sciences Research Institute Germans Trias i Pujol (IGTP)-Institute of Predictive and Personalized Medicine of Cancer (IMPPC), Badalona, Spain
| | - Jeffrey M Gimble
- LaCell LLC and Center for Stem Cell Research and Regenerative Medicine, School of Medicine, Tulane University, New Orleans, LA, USA
| | - Antonio Zorzano
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III, Madrid, Spain.,Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Joan Vendrell
- Hospital Universitari de Tarragona Joan XXIII-Institut d´Investigació Sanitària Pere Virgili-Universitat Rovira i Virgili, Tarragona, Spain. .,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III, Madrid, Spain.
| | - Sonia Fernández-Veledo
- Hospital Universitari de Tarragona Joan XXIII-Institut d´Investigació Sanitària Pere Virgili-Universitat Rovira i Virgili, Tarragona, Spain. .,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
15
|
Guyatt AL, Burrows K, Guthrie PAI, Ring S, McArdle W, Day INM, Ascione R, Lawlor DA, Gaunt TR, Rodriguez S. Cardiometabolic phenotypes and mitochondrial DNA copy number in two cohorts of UK women. Mitochondrion 2018; 39:9-19. [PMID: 28818596 PMCID: PMC5832987 DOI: 10.1016/j.mito.2017.08.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 06/06/2017] [Accepted: 08/10/2017] [Indexed: 12/14/2022]
Abstract
The mitochondrial genome is present at variable copy number between individuals. Mitochondria are vulnerable to oxidative stress, and their dysfunction may be associated with cardiovascular disease. The association of mitochondrial DNA copy number with cardiometabolic risk factors (lipids, glycaemic traits, inflammatory markers, anthropometry and blood pressure) was assessed in two independent cohorts of European origin women, one in whom outcomes were measured at mean (SD) age 30 (4.3) years (N=2278) and the second at 69.4 (5.5) years (N=2872). Mitochondrial DNA copy number was assayed by quantitative polymerase chain reaction. Associations were adjusted for smoking, sociodemographic status, laboratory factors and white cell traits. Out of a total of 12 outcomes assessed in both cohorts, mitochondrial DNA copy number showed little or no association with the majority (point estimates were close to zero and nearly all p-values were >0.01). The strongest evidence was for an inverse association in the older cohort with insulin (standardised beta [95%CI]: -0.06, [-0.098, -0.022], p=0.002), but this association did not replicate in the younger cohort. Our findings do not provide support for variation in mitochondrial DNA copy number having an important impact on cardio-metabolic risk factors in European origin women.
Collapse
Affiliation(s)
- Anna L Guyatt
- MRC Integrative Epidemiology Unit, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK; School of Social and Community Medicine, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK
| | - Kimberley Burrows
- MRC Integrative Epidemiology Unit, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK; School of Social and Community Medicine, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK
| | - Philip A I Guthrie
- School of Social and Community Medicine, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK
| | - Sue Ring
- MRC Integrative Epidemiology Unit, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK; School of Social and Community Medicine, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK
| | - Wendy McArdle
- MRC Integrative Epidemiology Unit, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK; School of Social and Community Medicine, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK
| | - Ian N M Day
- School of Social and Community Medicine, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK
| | - Raimondo Ascione
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol, Bristol, UK
| | - Debbie A Lawlor
- MRC Integrative Epidemiology Unit, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK; School of Social and Community Medicine, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK
| | - Tom R Gaunt
- MRC Integrative Epidemiology Unit, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK; School of Social and Community Medicine, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK
| | - Santiago Rodriguez
- MRC Integrative Epidemiology Unit, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK; School of Social and Community Medicine, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK.
| |
Collapse
|
16
|
Skuratovskaia DA, Sofronova JK, Zatolokin PA, Popadin KY, Vasilenko MA, Litvinova LS, Mazunin IO. Additional evidence of the link between mtDNA copy number and the body mass index. Mitochondrial DNA A DNA Mapp Seq Anal 2018; 29:1240-1244. [PMID: 29429383 DOI: 10.1080/24701394.2018.1436170] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
| | - J K Sofronova
- a Immanuel Kant Baltic Federal University , Kaliningrad , Russia
| | - P A Zatolokin
- b Kaliningrad Regional Hospital , Kaliningrad , Russia
| | - K Y Popadin
- a Immanuel Kant Baltic Federal University , Kaliningrad , Russia.,c Department of Genetic Medicine and Development , University of Geneva Medical School , Geneva , Switzerland.,d Center for Integrative Genomics, University of Lausanne , Lausanne , Switzerland.,e Swiss Institute of Bioinformatics , Lausanne , Switzerland
| | - M A Vasilenko
- a Immanuel Kant Baltic Federal University , Kaliningrad , Russia
| | - L S Litvinova
- a Immanuel Kant Baltic Federal University , Kaliningrad , Russia
| | - I O Mazunin
- a Immanuel Kant Baltic Federal University , Kaliningrad , Russia
| |
Collapse
|
17
|
Role of Mitochondrial Complex IV in Age-Dependent Obesity. Cell Rep 2017; 16:2991-3002. [PMID: 27626667 DOI: 10.1016/j.celrep.2016.08.041] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 09/14/2015] [Accepted: 08/14/2016] [Indexed: 12/18/2022] Open
Abstract
Aging is associated with progressive white adipose tissue (WAT) enlargement initiated early in life, but the molecular mechanisms involved remain unknown. Here we show that mitochondrial complex IV (CIV) activity and assembly are already repressed in white adipocytes of middle-aged mice and involve a HIF1A-dependent decline of essential CIV components such as COX5B. At the molecular level, HIF1A binds to the Cox5b proximal promoter and represses its expression. Silencing of Cox5b decreased fatty acid oxidation and promoted intracellular lipid accumulation. Moreover, local in vivo Cox5b silencing in WAT of young mice increased the size of adipocytes, whereas restoration of COX5B expression in aging mice counteracted adipocyte enlargement. An age-dependent reduction in COX5B gene expression was also found in human visceral adipose tissue. Collectively, our findings establish a pivotal role for CIV dysfunction in progressive white adipocyte enlargement during aging, which can be restored to alleviate age-dependent WAT expansion.
Collapse
|
18
|
Abstract
Aging is associated with progressive visceral white adipose tissue (WAT) expansion both in human and mouse. Importantly, WAT enlargement is initiated early in life, suggesting that molecular mechanisms underlying age-dependent obesity are activated at early stages of lifetime. Our recent study found that age-dependent obesity was associated with a specific decline in mitochondrial complex IV activity, which leads to reduced fatty acid oxidation and subsequent adipocyte hypertrophy. At the molecular level, global mitochondrial complex IV inhibition was driven by hypoxia-inducible factor-1α (HIF1α)-mediated repression of some of its key subunits, including cytochrome c oxidase 5b (Cox5b). In this commentary, we compare age-dependent WAT responses with those observed in the high fat diet model of extreme obesity. Furthermore, we discuss the potential scenarios that could initiate age-dependent WAT expansion as well as the mechanisms by which HIF1α could be activated in WAT.
Collapse
Affiliation(s)
- Qilong Oscar Yang Li
- Research Unit, Hospital of Santa Cristina, Research Institute Princesa (IP), Autonomous University of Madrid, Madrid, Spain
| | - Ines Soro-Arnaiz
- Research Unit, Hospital of Santa Cristina, Research Institute Princesa (IP), Autonomous University of Madrid, Madrid, Spain
- Current address, Health Sciences and Technology Department, Laboratory of Exercise and Health, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland
| | - Julián Aragonés
- Research Unit, Hospital of Santa Cristina, Research Institute Princesa (IP), Autonomous University of Madrid, Madrid, Spain
- CIBERCV, Carlos III Health Institute, Madrid, Spain
| |
Collapse
|
19
|
Gómez-Serrano M, Camafeita E, López JA, Rubio MA, Bretón I, García-Consuegra I, García-Santos E, Lago J, Sánchez-Pernaute A, Torres A, Vázquez J, Peral B. Differential proteomic and oxidative profiles unveil dysfunctional protein import to adipocyte mitochondria in obesity-associated aging and diabetes. Redox Biol 2016; 11:415-428. [PMID: 28064117 PMCID: PMC5220168 DOI: 10.1016/j.redox.2016.12.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 12/12/2016] [Accepted: 12/16/2016] [Indexed: 12/19/2022] Open
Abstract
Human age-related diseases, including obesity and type 2 diabetes (T2DM), have long been associated to mitochondrial dysfunction; however, the role for adipose tissue mitochondria in these conditions remains unknown. We have tackled the impact of aging and T2DM on adipocyte mitochondria from obese patients by quantitating not only the corresponding abundance changes of proteins, but also the redox alterations undergone by Cys residues thereof. For that, we have resorted to a high-throughput proteomic approach based on isobaric labeling, liquid chromatography and mass spectrometry. The alterations undergone by the mitochondrial proteome revealed aging- and T2DM-specific hallmarks. Thus, while a global decrease of oxidative phosphorylation (OXPHOS) subunits was found in aging, the diabetic patients exhibited a reduction of specific OXPHOS complexes as well as an up-regulation of the anti-oxidant response. Under both conditions, evidence is shown for the first time of a link between increased thiol protein oxidation and decreased protein abundance in adipose tissue mitochondria. This association was stronger in T2DM, where OXPHOS mitochondrial- vs. nuclear-encoded protein modules were found altered, suggesting impaired mitochondrial protein translocation and complex assembly. The marked down-regulation of OXPHOS oxidized proteins and the alteration of oxidized Cys residues related to protein import through the redox-active MIA (Mitochondrial Intermembrane space Assembly) pathway support that defects in protein translocation to the mitochondria may be an important underlying mechanism for mitochondrial dysfunction in T2DM and physiological aging. The present draft of redox targets together with the quantification of protein and oxidative changes may help to better understand the role of oxidative stress in both a physiological process like aging and a pathological condition like T2DM.
Collapse
Affiliation(s)
- María Gómez-Serrano
- Instituto de Investigaciones Biomédicas, Alberto Sols, (IIBM); Consejo Superior de Investigaciones Científicas & Universidad Autónoma de Madrid (CSIC-UAM), Madrid 28029, Spain
| | - Emilio Camafeita
- Laboratory of Cardiovascular Proteomics, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid 28029, Spain
| | - Juan A López
- Laboratory of Cardiovascular Proteomics, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid 28029, Spain
| | - Miguel A Rubio
- Department of Endocrinology, Hospital Clínico San Carlos (IDISSC), Facultad de Medicina, Universidad Complutense, Madrid 28040, Spain
| | - Irene Bretón
- Department of Endocrinology and Nutrition, Hospital General Universitario Gregorio Marañón (IISGM), Madrid 28007, Spain
| | - Inés García-Consuegra
- Instituto de Investigación, Hospital Universitario 12 de Octubre (i+12), Madrid 28041, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), U723, Madrid 28029, Spain
| | - Eva García-Santos
- Instituto de Investigaciones Biomédicas, Alberto Sols, (IIBM); Consejo Superior de Investigaciones Científicas & Universidad Autónoma de Madrid (CSIC-UAM), Madrid 28029, Spain
| | - Jesús Lago
- Department of Surgery, Hospital General Universitario Gregorio Marañón (IISGM), Madrid 28007, Spain
| | - Andrés Sánchez-Pernaute
- Department of Surgery, Hospital Clínico San Carlos (IDISSC), Facultad de Medicina, Universidad Complutense, Madrid 28040, Spain
| | - Antonio Torres
- Department of Surgery, Hospital Clínico San Carlos (IDISSC), Facultad de Medicina, Universidad Complutense, Madrid 28040, Spain
| | - Jesús Vázquez
- Laboratory of Cardiovascular Proteomics, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid 28029, Spain
| | - Belén Peral
- Instituto de Investigaciones Biomédicas, Alberto Sols, (IIBM); Consejo Superior de Investigaciones Científicas & Universidad Autónoma de Madrid (CSIC-UAM), Madrid 28029, Spain.
| |
Collapse
|
20
|
Yamazaki M, Munetsuna E, Yamada H, Ando Y, Mizuno G, Murase Y, Kondo K, Ishikawa H, Teradaira R, Suzuki K, Ohashi K. Fructose consumption induces hypomethylation of hepatic mitochondrial DNA in rats. Life Sci 2016; 149:146-52. [PMID: 26869391 DOI: 10.1016/j.lfs.2016.02.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 12/11/2015] [Accepted: 02/06/2016] [Indexed: 10/22/2022]
Abstract
AIMS Fructose may play a crucial role in the pathogenesis of metabolic syndrome (MetS). However, the pathogenic mechanism of the fructose-induced MetS has not yet been investigated fully. Recently, several reports have investigated the association between mitochondrial DNA (mtDNA) and MetS. We examined the effect of fructose-rich diets on mtDNA content, transcription, and epigenetic changes. MAIN METHODS Four-week-old male Sprague-Dawley rats were offered a 20% fructose solution for 14weeks. We quantified mRNAs for hepatic mitochondrial genes and analyzed the mtDNA methylation (5-mC and 5-hmC) levels using ELISA kits. KEY FINDINGS Histological analysis revealed non-alcoholic fatty liver disease (NAFLD) in fructose-fed rats. Hepatic mtDNA content and transcription were higher in fructose-fed rats than in the control group. Global hypomethylation of mtDNA was also observed in fructose-fed rats. SIGNIFICANCE We showed that fructose consumption stimulates hepatic mtDNA-encoded gene expression. This phenomenon might be due to epigenetic changes in mtDNA. Fructose-induced mitochondrial epigenetic changes appear to be a novel mechanism underlying the pathology of MetS and NAFLD.
Collapse
Affiliation(s)
- Mirai Yamazaki
- Department of Clinical Biochemistry, Fujita Health University School of Health Sciences, Toyoake, Japan
| | - Eiji Munetsuna
- Department of Biochemistry, Fujita Health University School of Medicine, Toyoake, Japan
| | - Hiroya Yamada
- Department of Hygiene, Fujita Health University School of Medicine, Toyoake, Japan.
| | - Yoshitaka Ando
- Department of Joint Research Laboratory of Clinical Medicine, Fujita Health University School of Medicine, Toyoake, Japan
| | - Genki Mizuno
- Department of Clinical Biochemistry, Fujita Health University School of Health Sciences, Toyoake, Japan
| | - Yuri Murase
- Department of Clinical Biochemistry, Fujita Health University School of Health Sciences, Toyoake, Japan
| | - Kanako Kondo
- Department of Clinical Biochemistry, Fujita Health University School of Health Sciences, Toyoake, Japan
| | - Hiroaki Ishikawa
- Department of Clinical Biochemistry, Fujita Health University School of Health Sciences, Toyoake, Japan
| | - Ryoji Teradaira
- Department of Clinical Biochemistry, Fujita Health University School of Health Sciences, Toyoake, Japan
| | - Koji Suzuki
- Department of Public Health, Fujita Health University School of Health Sciences, Toyoake, Japan
| | - Koji Ohashi
- Department of Clinical Biochemistry, Fujita Health University School of Health Sciences, Toyoake, Japan.
| |
Collapse
|
21
|
Shoar Z, Goldenthal MJ, De Luca F, Suarez E. Mitochondrial DNA content and function, childhood obesity, and insulin resistance. Endocr Res 2016; 41:49-56. [PMID: 26513277 DOI: 10.3109/07435800.2015.1068797] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVES The objectives of our study were to compare the mitochondrial enzyme activity between obese and non-obese children and to assess the association between mitochondrial DNA content and function and markers of metabolic syndrome. METHODS Clinical and anthropometric data of obese and normal-weight children ages 2-18 years were collected. We collected buccal swabs for mitochondrial respiratory enzymes (complex I, IV, and Citrate Synthase). In obese children only, serum levels of metabolic parameters and mitochondrial DNA from mononuclear cells were quantitated. RESULTS We recruited 75 obese and 65 normal-weight children. There was no difference in respiratory complex enzyme activity levels between obese and normal-weight subjects. In obese subjects, mitochondrial to nuclear DNA (mt/nDNA) ratio was significantly correlated with BMI Z-score and BMI percentile (p < 0.05, and p < 0.01, respectively), and the strength of this correlation was proportionate to the degree of obesity. We did not find any association between mt/nDNA ratio and metabolic parameters. We observed a significant positive association between complex IV activity and fasting insulin level (p < 0.05). Finally, fasting insulin explained 45% of the variation in the complex IV activity level (p < 0.05). CONCLUSION Our findings indicate that mitochondrial DNA content is directly related to obesity, but not to the markers of metabolic syndrome/insulin resistance in children. Longitudinal studies involving larger samples are needed to confirm our findings and help elucidate the relationship between mitochondrial function, adiposity, and insulin resistance.
Collapse
Affiliation(s)
| | - Michael J Goldenthal
- b Section of Child Neurology, St. Christopher's Hospital for Children, Drexel University College of Medicine , Philadelphia , PA , USA
| | | | | |
Collapse
|
22
|
Important mitochondrial proteins in human omental adipose tissue show reduced expression in obesity. J Proteomics 2015; 124:79-87. [PMID: 25865306 DOI: 10.1016/j.jprot.2015.03.037] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 03/29/2015] [Accepted: 03/31/2015] [Indexed: 01/14/2023]
Abstract
UNLABELLED Impaired mitochondrial function is important in obesity and the development of insulin resistance and diabetes. The aim of this study was to identify human adipocyte-derived mitochondrial proteins associated with obesity. Mitochondrial proteins from 20 abdominal omental adipose tissue biopsies (13 obese and 7 control subjects) were separated by anion-exchange chromatography coupled to SDS-PAGE. Protein contents were compared and identified by MALDI-TOF-TOF mass spectrometry. Proteins of interest were validated, verified and quantified using immuno dot blot assays in a total of 76 mitochondrial preparations from both obese and non-obese patients. Mass spectrometric comparison of 20 mitochondrial proteomes yielded 62 proteins that were differentially expressed in adipose tissue of obese subjects. The immunological quantification of 12 mitochondrial proteins from 76 omental adipose tissue biopsies revealed four proteins, citrate synthase, HADHA, LETM1 and mitofilin inversely being associated with BMI, and mitofilin being inversely correlated with gender. BIOLOGICAL SIGNIFICANCE The finding that obese human subjects have reduced levels of important mitochondrial proteins in adipocytes of omental adipose tissue as compared to non-obese controls gives new insights in the impairment of mitochondrial function in this specialized compartment of human adipose tissue in obesity and may eventually lead to the definition of valuable obesity markers.
Collapse
|
23
|
Schöttl T, Kappler L, Braun K, Fromme T, Klingenspor M. Limited mitochondrial capacity of visceral versus subcutaneous white adipocytes in male C57BL/6N mice. Endocrinology 2015; 156:923-33. [PMID: 25549046 DOI: 10.1210/en.2014-1689] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Accumulation of visceral fat is associated with metabolic risk whereas excessive amounts of peripheral fat are considered less problematic. At the same time, altered white adipocyte mitochondrial bioenergetics has been implicated in the pathogenesis of insulin resistance and type 2 diabetes. We therefore investigated whether the metabolic risk of visceral vs peripheral fat coincides with a difference in mitochondrial capacity of white adipocytes. We assessed bioenergetic parameters of subcutaneous inguinal and visceral epididymal white adipocytes from male C57BL/6N mice employing a comprehensive respirometry setup of intact and permeabilized adipocytes as well as isolated mitochondria. Inguinal adipocytes clearly featured a higher respiratory capacity attributable to increased mitochondrial respiratory chain content compared with epididymal adipocytes. The lower capacity of mitochondria from epididymal adipocytes was accompanied by an increased generation of reactive oxygen species per oxygen consumed. Feeding a high-fat diet (HFD) for 1 week reduced white adipocyte mitochondrial capacity, with stronger effects in epididymal when compared with inguinal adipocytes. This was accompanied by impaired body glucose homeostasis. Therefore, the limited bioenergetic performance combined with the proportionally higher generation of reactive oxygen species of visceral adipocytes could be seen as a candidate mechanism mediating the elevated metabolic risk associated with this fat depot.
Collapse
Affiliation(s)
- Theresa Schöttl
- Molecular Nutritional Medicine, Technische Universität München, Else Kröner Fresenius Center for Nutritional Medicine, 85350 Freising, Germany
| | | | | | | | | |
Collapse
|
24
|
Hastie R, Lappas M. The effect of pre-existing maternal obesity and diabetes on placental mitochondrial content and electron transport chain activity. Placenta 2014; 35:673-83. [PMID: 25002362 DOI: 10.1016/j.placenta.2014.06.368] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 06/14/2014] [Accepted: 06/17/2014] [Indexed: 01/30/2023]
Abstract
INTRODUCTION Mitochondria dysfunction has been extensively implicated in the progression of these metabolic disorders, their role in placental tissue of diabetic and/or obese pregnant women is yet to be investigated. The aim of this study was to determine the effect of pre-existing type 1 and type 2 diabetes mellitus (DM), and pre-existing maternal obesity on placental mitochondrial function as assessed by mitochondrial content, electron transport chain (ETC) complex activities and oxidative stress. METHODS Human placenta was obtained at the time of term Caesarean section from (i) non-obese (n = 19) and obese (n = 23) normal glucose tolerant (NGT) pregnant women; (ii) women with type 1 DM (n = 14) and BMI-matched NGT women (n = 14); and (iii) women with type 2 DM (n = 11) and BMI-matched NGT women (n = 11). The following endpoints were assessed: placental mitochondrial content by citrate synthase activity and mitochondrial DNA (mtDNA content); mitochondrial respiratory chain activity (complexes I, II, II & III, III and IV), and mitochondrial ROS (as assessed by mitochondrial hydrogen peroxide (H2O2) levels). RESULTS When compared to placenta from NGT non-obese women, there was significantly lower mitochondrial DNA (mtDNA) content and electron transport chain complex I activity, and significantly higher mitochondrial H2O2 levels in placenta from NGT obese women (P < 0.05). Placental tissue from type 1 DM women showed significant reductions in ETC complex I, II & III, and III activity and increased H2O2 levels when compared to BMI-matched NGT women (P < 0.05). Type 2 DM women only exhibited significantly reduced ETC complex II & III activity when compared to BMI-matched NGT women (P < 0.05). DISCUSSION AND CONCLUSIONS Women with pre-existing obesity or diabetes have decreased placental mitochondrial respiratory chain enzyme activities which may have detrimental consequences on placental function and therefore fetal growth and development.
Collapse
Affiliation(s)
- R Hastie
- Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Mercy Hospital for Women, Heidelberg, Victoria, Australia; Mercy Perinatal Research Centre, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| | - M Lappas
- Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Mercy Hospital for Women, Heidelberg, Victoria, Australia; Mercy Perinatal Research Centre, Mercy Hospital for Women, Heidelberg, Victoria, Australia.
| |
Collapse
|
25
|
Schwartz B, Yehuda-Shnaidman E. Putative role of adipose tissue in growth and metabolism of colon cancer cells. Front Oncol 2014; 4:164. [PMID: 25019059 PMCID: PMC4071563 DOI: 10.3389/fonc.2014.00164] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 06/09/2014] [Indexed: 12/24/2022] Open
Abstract
Newly emerging data highlight obesity as an important risk factor for developing certain types of cancer, including colorectal cancer. Although evidence supports a link between the two, the mechanisms responsible for this relationship have not yet been fully elucidated. Hypertrophied and dysfunctional adipose tissue of the obese state is characterized by low-grade inflammation. Adipokines and cytokines secreted from adipocytes, together with the abundant availability of lipids from adipocytes in the tumor microenvironment, promote adhesion, migration, and invasion of tumor cells and support tumor progression and uncontrolled growth. One of the predisposed targets of the deleterious effects exerted by secretions from adipose tissue in obesity is the activities associated with the cellular mitochondria. Mitochondrial oxidative metabolism plays a key role in meeting cells' energetic demands by oxidative phosphorylation (OxPhos). Here we discuss: (a) the dynamic relationship between glycolysis, the tricarboxylic acid cycle, and OxPhos; (b) the evidence for impaired OxPhos (i.e., mitochondrial dysfunction) in colon cancer; (c) the mechanisms by which mitochondrial dysfunction can predispose to cancer. We propose that impaired OxPhos increases susceptibility to colon cancer since OxPhos is sensitive to a large number of factors that are intrinsic to the host (e.g., inflammation). Given that adipocytes are a major source of adipokines and energy for the cancer cell, understanding the mechanisms of metabolic symbiosis between cancer cells and adipocytes should reveal new therapeutic possibilities.
Collapse
Affiliation(s)
- Betty Schwartz
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem , Rehovot , Israel
| | - Einav Yehuda-Shnaidman
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem , Rehovot , Israel
| |
Collapse
|
26
|
Yin X, Lanza IR, Swain JM, Sarr MG, Nair KS, Jensen MD. Adipocyte mitochondrial function is reduced in human obesity independent of fat cell size. J Clin Endocrinol Metab 2014; 99:E209-16. [PMID: 24276464 PMCID: PMC3913808 DOI: 10.1210/jc.2013-3042] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
CONTEXT It has been suggested that mitochondrial dysfunction in adipocytes contributes to obesity-related metabolic complications. However, obesity results in adipocyte hypertrophy, and large and small adipocytes from the same depot have different characteristics, raising the possibility that obesity-related mitochondrial defects are an inherent function of large adipocytes. OBJECTIVE Our goal was to examine whether obesity, independent of fat cell size and fat depot, is associated with mitochondria dysfunction. DESIGN We compared adipocyte mitochondrial function using a cross-sectional comparison study design. SETTING The studies were performed at Mayo Clinic, an academic medical center. PATIENTS OR OTHER PARTICIPANTS Omental and/or abdominal subcutaneous adipose samples were collected from 20 age-matched obese and nonobese nondiabetic men and women undergoing either elective abdominal surgery or research needle biopsy. INTERVENTION Interventions were not conducted as part of these studies. MAIN OUTCOME MEASURES We measured mitochondrial DNA abundance, oxygen consumption rates, and citrate synthase activity from populations of large and small adipocytes (separated with differential floatation). RESULTS For both omental and subcutaneous adipocytes, at the cell and organelle level, oxygen consumption rates and citrate synthase activity were significantly reduced in cells from obese compared with nonobese volunteers, even when matched for cell size by comparing large adipocytes from nonobese and small adipocytes from obese. Adipocyte mitochondrial content was not significantly different between obese and nonobese volunteers. Mitochondrial function and content parameters were not different between small and large cells, omental, and subcutaneous adipocytes from the same person. CONCLUSION Adipocyte mitochondrial oxidative capacity is reduced in obese compared with nonobese adults and this difference is not due to cell size differences. Adipocyte mitochondrial dysfunction in obesity is therefore related to overall adiposity rather than adipocyte hypertrophy.
Collapse
Affiliation(s)
- Xiao Yin
- Endocrine Research Unit (I.R.L., K.S.N., M.D.J.), Mayo Clinic, Rochester, Minnesota 55905; Department of Surgery (J.M.S., M.G.S.), Mayo Clinic, Rochester, Minnesota 55905; and Department of Endocrinology (X.Y.), Shandong University Affiliated Jinan Central Hospital, Jinan, 250013 China
| | | | | | | | | | | |
Collapse
|
27
|
Lee JY, Lee DC, Im JA, Lee JW. Mitochondrial DNA copy number in peripheral blood is independently associated with visceral fat accumulation in healthy young adults. Int J Endocrinol 2014; 2014:586017. [PMID: 24707289 PMCID: PMC3953665 DOI: 10.1155/2014/586017] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 12/22/2013] [Accepted: 01/01/2014] [Indexed: 11/17/2022] Open
Abstract
Aims. Visceral obesity is associated with an increased risk of cardiometabolic diseases and it is important to identify the underlying mechanisms. There is growing evidence that mitochondrial dysfunction is associated with metabolic disturbances related to visceral obesity. In addition, maintaining mitochondrial DNA (mtDNA) copy number is important for preserving mitochondrial function. Therefore, we investigated the relationship between mtDNA copy number and visceral fat in healthy young adults. Methods. A total of 94 healthy young subjects were studied. Biomarkers of metabolic risk factors were assessed along with body composition by computed tomography. mtDNA copy number was measured in peripheral leukocytes using real-time polymerase chain reaction (PCR) methods. Results. The mtDNA copy number correlated with BMI (r = -0.22, P = 0.04), waist circumference (r = -0.23, P = 0.03), visceral fat area (r = -0.28, P = -0.01), HDL-cholesterol levels (r = 0.25, P = 0.02), and hs-CRP (r = 0.32, P = 0.02) after adjusting for age and sex. Both stepwise and nonstepwise multiple regression analyses confirmed that visceral fat area was independently associated with mtDNA copy number (β = -0.33, P < 0.01, β = 0.32, and P = 0.03, resp.). Conclusions. An independent association between mtDNA content and visceral adiposity was identified. These data suggest that mtDNA copy number is a potential predictive marker for metabolic disturbances. Further studies are required to understand the causality and clinical significance of our findings.
Collapse
Affiliation(s)
- Jee-Yon Lee
- Department of Family Medicine, Severance Hospital, Yonsei University, College of Medicine, 250 Seongsanno, Seodaemun-gu 120-752, Republic of Korea
| | - Duk-Chul Lee
- Department of Family Medicine, Severance Hospital, Yonsei University, College of Medicine, 250 Seongsanno, Seodaemun-gu 120-752, Republic of Korea
| | - Jee-Aee Im
- Sport and Medicine Research Center, INTOTO Inc., 401 Dawoo BD, 90-6 Daeshin-Dong, Seodaemun-gu, Seoul 120-160, Republic of Korea
| | - Ji-Won Lee
- Department of Family Medicine, Severance Hospital, Yonsei University, College of Medicine, 250 Seongsanno, Seodaemun-gu 120-752, Republic of Korea
- *Ji-Won Lee:
| |
Collapse
|
28
|
Obesity affects mitochondrial citrate synthase in human omental adipose tissue. ISRN OBESITY 2013; 2013:826027. [PMID: 24555156 PMCID: PMC3901984 DOI: 10.1155/2013/826027] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 05/07/2013] [Indexed: 01/07/2023]
Abstract
The activities of some key enzymes in mitochondria from 135 human omental adipose tissue samples of obese and nonobese patients were analyzed for potential association with the patients' state of obesity. The activities of respiratory complexes I and II as well as citrate synthase in isolated mitochondria were measured using spectrophotometric enzyme assays. ATP generation of mitochondria was determined with a bioluminescence assay. Protein levels of citrate synthase were quantified by western blot. The rates of ATP generation and the enzymatic activities of complexes I and II did not display associations with age, gender, obesity, or diabetes. By contrast, the enzymatic activities of citrate synthase and its protein levels were significantly reduced in obesity as compared to controls. In diabetic patients, protein levels but not enzymatic activities of citrate synthase were elevated. Thus, this investigation based on enzymatic assay and determination of protein levels revealed that the development of obesity is associated with a significant impact on citrate synthase in mitochondria of human omental adipose tissue. The state of obesity appears to affect mitochondrial function in human omental adipose tissue by limiting this key enzyme of the tricarboxylic acid cycle rather than by limiting the activities of respiratory chain enzymes.
Collapse
|
29
|
Malik AN, Czajka A. Is mitochondrial DNA content a potential biomarker of mitochondrial dysfunction? Mitochondrion 2012; 13:481-92. [PMID: 23085537 DOI: 10.1016/j.mito.2012.10.011] [Citation(s) in RCA: 339] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 10/10/2012] [Accepted: 10/11/2012] [Indexed: 12/17/2022]
Abstract
Mitochondrial dysfunction is central to numerous diseases of oxidative stress. Changes in mitochondrial DNA (MtDNA) content, often measured as mitochondrial genome to nuclear genome ratio (Mt/N) using real time quantitative PCR, have been reported in a broad range of human diseases, such as diabetes and its complications, obesity, cancer, HIV complications, and ageing. We propose the hypothesis that MtDNA content in body fluids and tissues could be a biomarker of mitochondrial dysfunction and review the evidence supporting this theory. Increased reactive oxygen species resulting from an external trigger such as hyperglycaemia or increased fat in conditions of oxidative stress could lead to enhanced mitochondrial biogenesis, and increased Mt/N. Altered MtDNA levels may contribute to enhanced oxidative stress and inflammation and could play a pathogenic role in mitochondrial dysfunction and disease. Changes in Mt/N are detectable in circulating cells such as peripheral blood mononuclear cells and these could be used as surrogate to predict global changes in tissues and organs. We review a large number of studies reporting changes in MtDNA levels in body fluids such as circulating blood cells, cell free serum, saliva, sperm, and cerebrospinal fluid as well as in tumour and normal tissue samples. However, the data are often conflicting as the current methodology used to measure Mt/N can give false results because of one or more of the following reasons (1) use of mitochondrial primers which co-amplify nuclear pseudogenes (2) use of nuclear genes which are variable and/or duplicated in numerous locations (3) a dilution bias caused by the differing genome sizes of the mitochondrial and nuclear genome and (4) template preparation protocols which affect the yields of nuclear and mitochondrial genomes. Development of robust and reproducible methodology is needed to test the hypothesis that MtDNA content in body fluids is biomarker of mitochondrial dysfunction.
Collapse
Affiliation(s)
- Afshan N Malik
- Diabetes Research Group, Division of Diabetes and Nutritional Sciences, School of Medicine, King's college London, London, UK.
| | | |
Collapse
|
30
|
De Naeyer H, Ouwens DM, Van Nieuwenhove Y, Pattyn P, ‘t Hart LM, Kaufman JM, Sell H, Eckel J, Cuvelier C, Taes YE, Ruige JB. Combined gene and protein expression of hormone-sensitive lipase and adipose triglyceride lipase, mitochondrial content, and adipocyte size in subcutaneous and visceral adipose tissue of morbidly obese men. Obes Facts 2011; 4:407-16. [PMID: 22166762 PMCID: PMC6450043 DOI: 10.1159/000333445] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
AIMS Lipotoxicity in obesity might be a failure of adipocytes to respond sufficiently adequate to persistent energy surplus. To evaluate the role of lipolytic enzymes or mitochondria in lipotoxicity, we studied expression levels of genes and proteins involved in lipolysis and mitochondrial DNA (mtDNA) content. METHODS As differences in lipid metabolism between men and women are extremely complex, we recruited only men (lean and morbidly obese) and collected subcutaneous and visceral adipose tissue during abdominal surgery for real-time PCR gene expression, protein expression, and microscopic study. RESULTS Although mRNA levels of hormone-sensitive lipase (HSL) and adipose triglyceride lipase (ATGL) were increased in visceral adipose tissue of morbidly obese men, this was not paralleled by alterations in protein expression and phosphorylation of HSL and ATGL. mtDNA content of visceral adipose tissue was increased in morbidly obese men as compared to lean controls (p < 0.013). Positive correlations were observed between visceral adipocyte size and serum triacylglycerol (r = 0.6, p < 0.007) as well as between visceral adipocyte size and CRP (r = 0.6, p < 0.009) in analyses performed separately in obese men. CONCLUSION Lipotoxicity of morbidly obese men might be related to the quantitative impact of the visceral fat depot rather than to important dysregulation of involved lipolytic enzymes or adipocyte mitochondria.
Collapse
Affiliation(s)
- Hélène De Naeyer
- Department of Abdominal Surgery, University Hospital, Ghent, Belgium
- Department of Endocrinology
| | - D. Margriet Ouwens
- German Diabetes Center, Institute for Clinical Biochemistry and Pathobiochemistry, Düsseldorf, Germany
| | | | - Piet Pattyn
- Department of Abdominal Surgery, University Hospital, Ghent, Belgium
| | - Leen M. ‘t Hart
- Molecular Cell Biology and Molecular Epidemiology, Leiden University Center, Leiden, the Netherlands
| | | | - Henrike Sell
- German Diabetes Center, Institute for Clinical Biochemistry and Pathobiochemistry, Düsseldorf, Germany
| | - Juergen Eckel
- German Diabetes Center, Institute for Clinical Biochemistry and Pathobiochemistry, Düsseldorf, Germany
| | - Claude Cuvelier
- Department of Pathology, University Hospital, Ghent, Belgium
| | | | - Johannes B. Ruige
- Department of Endocrinology
- * Department of Endocrinology, Ghent University Hospital, De Pintelaan 185, Building 9 K12, Ghent, Belgium, Tel. +32 9 332-6861, Fax -3897,
| |
Collapse
|