1
|
Gupta A, Agarwal V. Inflammation as a shared mechanism of chronic stress related disorders with potential novel therapeutic targets. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:8383-8394. [PMID: 38850304 DOI: 10.1007/s00210-024-03205-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/31/2024] [Indexed: 06/10/2024]
Abstract
Stress is a subjective experience that varies across individuals depending on their sensitivity, resilience, and length of exposure to stressors. Stress may be categorised as acute (positive stress) or chronic (negative stress). Acute stress is advantageous for the human body, but chronic stress results in changes in cardiovascular, neuroendocrine, autonomic, and immunological functions, eventually causing different illnesses. The specific process relating stress to chronic stress associated diseases is still a topic of continuing debate. Inflammation has been recognised as a new and fascinating physiological mechanism that connects chronic stress and its associated illnesses. This article explored the relationships between chronic stress, inflammation, and chronic illnesses, including depression, cancer, and cardiovascular disease. This article also emphasises on various possible therapeutic targets for the management of chronic stress related illnesses by targeting inflammation, namely lipoxins and alpha7 nicotinic receptors. These therapeutic targets may be useful in developing new and safe therapies for the management of chronic stress related dysfunctions.
Collapse
Affiliation(s)
- Anugya Gupta
- Faculty of Medical and Paramedical Sciences, Madhyanchal Professional University, Bhopal, 462044, Madhya Pradesh, India
| | - Vipul Agarwal
- Ankerite College of Pharmacy, Sausheer Khera, Parvar Purab, Mohanlalganj, Lucknow, Uttar Pradesh, India.
| |
Collapse
|
2
|
Li YY, Chen HR, Yang Y, Pan YJ, Yuan QC, Liu YZ. Murine exosomal miR-30a aggravates cardiac function after acute myocardial infarction via regulating cell fate of cardiomyocytes and cardiac resident macrophages. Int J Cardiol 2024; 414:132395. [PMID: 39074620 DOI: 10.1016/j.ijcard.2024.132395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 07/02/2024] [Accepted: 07/24/2024] [Indexed: 07/31/2024]
Abstract
After acute myocardial infarction (AMI), intercellular communication is crucial for maintaining cardiac homeostasis and patient survival. Exosomes secreted by cardiomyocytes serve as carriers for transporting microRNA(miRNAs), participating in intercellular signaling and the regulation of cardiac function. This study aims to investigate the role of exosomal microRNA-30a(miR-30a) during AMI and its underlying mechanisms. AMI was induced by permanent ligation of the left anterior descending (LAD) artery in C57BL/6 mice. The expression of miR-30a in mice was respectively enhanced and inhibited by administering agomiR-30a and antagomiR-30a. Using HL-1 cardiomyocytes and RAW264.7 macrophages for in vitro experiments, HL-1 cardiomyocytes were cultured under hypoxic conditions to induce ischemic injury. Following isolation and injection of exosomals, a variety of validation methods were utilized to assess the expression of miR-30a, and investigate the effects of enriched exosomal miR-30a on the state of cardiomyocytes. After AMI, the level of exosomal miR-30a in the serum of mice significantly increased and was highly enriched in cardiac tissue. Cardiomyocytes treated with agomiR-30a and miR-30a-enriched exosomes exhibited inhibition of cell autophagy, increased cell apoptosis, mice showed an larger myocardial infarct area and poorer cardiac function. Exosomes released from hypoxic cardiomyocytes transferred miR-30a to cardiac resident macrophages, promoting the polarization into pro-inflammatory M1 macrophages. In conclusion, murine exosomal miR-30a exacerbates cardiac dysfunction post-AMI by disrupting the autophagy-apoptosis balance in cardiomyocytes and polarizing cardiac resident macrophages into pro-inflammatory M1 macrophages. Modulating the expression of miR-30a may reduce cardiac damage following AMI, and targeting exosomal miR-30a could be a potential therapeutic approach for AMI.
Collapse
Affiliation(s)
- Ying-Ying Li
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Hong-Rui Chen
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yan Yang
- Department of General, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ya-Jie Pan
- Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qing-Chen Yuan
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Yu-Zhou Liu
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
3
|
Shaftoe JB, Gillis TE. Effects of hemodynamic load on cardiac remodeling in fish and mammals: the value of comparative models. J Exp Biol 2024; 227:jeb247836. [PMID: 39429041 DOI: 10.1242/jeb.247836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
The ability of the vertebrate heart to remodel enables the cardiac phenotype to be responsive to changes in physiological conditions and aerobic demand. Examples include exercise-induced cardiac hypertrophy, and the significant remodeling of the trout heart during thermal acclimation. Such changes are thought to occur in response to a change in hemodynamic load (i.e. the forces that the heart must work against to circulate blood). Variations in hemodynamic load are caused by either a volume overload (high volume of blood returning to the heart, impairing contraction) or a pressure overload (elevated afterload pressure that the heart must contract against). The changes observed in the heart during remodeling are regulated by multiple cellular signaling pathways. The cardiac response to these regulatory mechanisms occurs across levels of biological organization, affecting cardiac morphology, tissue composition and contractile function. Importantly, prolonged exposure to pressure overload can cause a physiological response - that improves function - to transition to a pathological response that causes loss of function. This Review explores the role of changes in hemodynamic load in regulating the remodeling response, and considers the cellular signals responsible for regulating remodeling, incorporating knowledge gained from studying biomedical models and comparative animal models. We specifically focus on the renin-angiotensin system, and the role of nitric oxide, oxygen free radicals and transforming growth factor beta. Through this approach, we highlight the strong conservation of the regulatory pathways of cardiac remodeling, and the specific conditions within endotherms that may be conducive to the development of pathological phenotypes.
Collapse
Affiliation(s)
- Jared B Shaftoe
- Department of Integrative Biology, University of Guelph, Ontario, Canada, N1G 2W1
| | - Todd E Gillis
- Department of Integrative Biology, University of Guelph, Ontario, Canada, N1G 2W1
| |
Collapse
|
4
|
Snyder Y, Mann FAT, Middleton J, Murashita T, Carney J, Bianco RW, Jana S. Non-immune factors cause prolonged myofibroblast phenotype in implanted synthetic heart valve scaffolds. APPLIED MATERIALS TODAY 2024; 39:102323. [PMID: 39131741 PMCID: PMC11308761 DOI: 10.1016/j.apmt.2024.102323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
The clinical application of heart valve scaffolds is hindered by complications associated with the activation of valvular interstitial cell-like (VIC-like) cells and their transdifferentiation into myofibroblasts. This study aimed to examine several molecular pathway(s) that may trigger the overactive myofibroblast phenotypes in the implanted scaffolds. So, we investigated the influence of three molecular pathways - macrophage-induced inflammation, the TGF-β1-SMAD2, and WNT/β-catenin β on VIC-like cells during tissue engineering of heart valve scaffolds. We implanted electrospun heart valve scaffolds in adult sheep for up to 6 months in the right ventricular outflow tract (RVOT) and analyzed biomolecular (gene and protein) expression associated with the above three pathways by the scaffold infiltrating cells. The results showed a gradual increase in gene and protein expression of markers related to the activation of VIC-like cells and the myofibroblast phenotypes over 6 months of scaffold implantation. Conversely, there was a gradual increase in macrophage activity for the first three months after scaffold implantation. However, a decrease in macrophage activity from three to six months of scaffold tissue engineering suggested that immunological signal factors were not the primary cause of myofibroblast phenotype. Similarly, the gene and protein expression of factors associated with the TGF-β1-SMAD2 pathway in the cells increased in the first three months but declined in the next three months. Contrastingly, the gene and protein expression of factors associated with the WNT/β-catenin pathway increased significantly over the six-month study. Thus, the WNT/β-catenin pathway could be the predominant mechanism in activating VIC-like cells and subsequent myofibroblast phenotype.
Collapse
Affiliation(s)
- Yuriy Snyder
- Department of Chemical and Biomedical Engineering, University of Missouri, 1406 Rollins Street, Columbia, MO 65211, USA
| | - FA Tony Mann
- Veterinary Health Center, University of Missouri, 900 East Campus Drive, Columbia, MO 65211-0001
| | - John Middleton
- Veterinary Health Center, University of Missouri, 900 East Campus Drive, Columbia, MO 65211-0001
| | - Takashi Murashita
- Department of Surgery, School of Medicine, University of Missouri, One Hospital Drive, Columbia, MO 65212
| | - John Carney
- Experimental Surgical Services, University of Minnesota, 420 Delaware Street SE, Minneapolis, MN 55455
| | - Richard W. Bianco
- Experimental Surgical Services, University of Minnesota, 420 Delaware Street SE, Minneapolis, MN 55455
| | - Soumen Jana
- Department of Chemical and Biomedical Engineering, University of Missouri, 1406 Rollins Street, Columbia, MO 65211, USA
| |
Collapse
|
5
|
Shao HH, Yin RX. Pathogenic mechanisms of cardiovascular damage in COVID-19. Mol Med 2024; 30:92. [PMID: 38898389 PMCID: PMC11186295 DOI: 10.1186/s10020-024-00855-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 06/07/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND COVID-19 is a new infectious disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS CoV-2). Since the outbreak in December 2019, it has caused an unprecedented world pandemic, leading to a global human health crisis. Although SARS CoV-2 mainly affects the lungs, causing interstitial pneumonia and severe acute respiratory distress syndrome, a number of patients often have extensive clinical manifestations, such as gastrointestinal symptoms, cardiovascular damage and renal dysfunction. PURPOSE This review article discusses the pathogenic mechanisms of cardiovascular damage in COVID-19 patients and provides some useful suggestions for future clinical diagnosis, treatment and prevention. METHODS An English-language literature search was conducted in PubMed and Web of Science databases up to 12th April, 2024 for the terms "COVID-19", "SARS CoV-2", "cardiovascular damage", "myocardial injury", "myocarditis", "hypertension", "arrhythmia", "heart failure" and "coronary heart disease", especially update articles in 2023 and 2024. Salient medical literatures regarding the cardiovascular damage of COVID-19 were selected, extracted and synthesized. RESULTS The most common cardiovascular damage was myocarditis and pericarditis, hypertension, arrhythmia, myocardial injury and heart failure, coronary heart disease, stress cardiomyopathy, ischemic stroke, blood coagulation abnormalities, and dyslipidemia. Two important pathogenic mechanisms of the cardiovascular damage may be direct viral cytotoxicity as well as indirect hyperimmune responses of the body to SARS CoV-2 infection. CONCLUSIONS Cardiovascular damage in COVID-19 patients is common and portends a worse prognosis. Although the underlying pathophysiological mechanisms of cardiovascular damage related to COVID-19 are not completely clear, two important pathogenic mechanisms of cardiovascular damage may be the direct damage of the SARSCoV-2 infection and the indirect hyperimmune responses.
Collapse
Affiliation(s)
- Hong-Hua Shao
- Department of Infectious Diseases, HIV/AIDS Clinical Treatment Center of Guangxi (Nanning), The Fourth People's Hospital of Nanning, No. 1 Erli, Changgang Road, Nanning, Guangxi, 530023, People's Republic of China
| | - Rui-Xing Yin
- Department of Infectious Diseases, HIV/AIDS Clinical Treatment Center of Guangxi (Nanning), The Fourth People's Hospital of Nanning, No. 1 Erli, Changgang Road, Nanning, Guangxi, 530023, People's Republic of China.
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital, Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi, 530021, People's Republic of China.
| |
Collapse
|
6
|
Michel L, Ferdinandy P, Rassaf T. Cellular Alterations in Immune Checkpoint Inhibitor Therapy-Related Cardiac Dysfunction. Curr Heart Fail Rep 2024; 21:214-223. [PMID: 38430308 PMCID: PMC11090976 DOI: 10.1007/s11897-024-00652-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/26/2024] [Indexed: 03/03/2024]
Abstract
PURPOSE OF REVIEW Immune checkpoint inhibitor (ICI) therapy has emerged as a pivotal advancement in cancer treatment, but the widespread adoption has given rise to a growing number of reports detailing significant cardiovascular toxicity. This review concentrates on elucidating the mechanisms behind ICI-related cardiovascular complications, emphasizing preclinical and mechanistic data. RECENT FINDINGS Accumulating evidence indicates a more significant role of immune checkpoints in maintaining cardiac integrity than previously understood, and new key scientific data are available to improve our understanding of ICI-related cardiovascular toxicity, including hidden cardiotoxicity. New avenues for innovative concepts are hypothesized, and opportunities to leverage the knowledge from ICI-therapy for pioneering approaches in related scientific domains can be derived from the latest scientific projects. Cardiotoxicity from ICI therapy is a paramount challenge for cardio-oncology. Understanding the underlying effects builds the foundation for tailored cardioprotective approaches in the growing collective at risk for severe cardiovascular complications.
Collapse
Affiliation(s)
- Lars Michel
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, University Hospital Essen, Hufelandstr. 55, 45147, Essen, Germany.
| | - Peter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Tienush Rassaf
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, University Hospital Essen, Hufelandstr. 55, 45147, Essen, Germany
| |
Collapse
|
7
|
Tonon CR, Monte MG, Balin PS, Fujimori ASS, Ribeiro APD, Ferreira NF, Vieira NM, Cabral RP, Okoshi MP, Okoshi K, Zornoff LAM, Minicucci MF, Paiva SAR, Gomes MJ, Polegato BF. Liraglutide Pretreatment Does Not Improve Acute Doxorubicin-Induced Cardiotoxicity in Rats. Int J Mol Sci 2024; 25:5833. [PMID: 38892020 PMCID: PMC11172760 DOI: 10.3390/ijms25115833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
Doxorubicin is an effective drug for cancer treatment; however, cardiotoxicity limits its use. Cardiotoxicity pathophysiology is multifactorial. GLP-1 analogues have been shown to reduce oxidative stress and inflammation. In this study, we evaluated the effect of pretreatment with liraglutide on doxorubicin-induced acute cardiotoxicity. A total of 60 male Wistar rats were allocated into four groups: Control (C), Doxorubicin (D), Liraglutide (L), and Doxorubicin + Liraglutide (DL). L and DL received subcutaneous injection of liraglutide 0.6 mg/kg daily, while C and D received saline for 2 weeks. Afterwards, D and DL received a single intraperitoneal injection of doxorubicin 20 mg/kg; C and L received an injection of saline. Forty-eight hours after doxorubicin administration, the rats were subjected to echocardiogram, isolated heart functional study, and euthanasia. Liraglutide-treated rats ingested significantly less food and gained less body weight than animals that did not receive the drug. Rats lost weight after doxorubicin injection. At echocardiogram and isolated heart study, doxorubicin-treated rats had systolic and diastolic function impairment. Myocardial catalase activity was statistically higher in doxorubicin-treated rats. Myocardial protein expression of tumor necrosis factor alpha (TNF-α), phosphorylated nuclear factor-κB (p-NFκB), troponin T, and B-cell lymphoma 2 (Bcl-2) was significantly lower, and the total NFκB/p-NFκB ratio and TLR-4 higher in doxorubicin-treated rats. Myocardial expression of OPA-1, MFN-2, DRP-1, and topoisomerase 2β did not differ between groups (p > 0.05). In conclusion, doxorubicin-induced cardiotoxicity is accompanied by decreased Bcl-2 and phosphorylated NFκB and increased catalase activity and TLR-4 expression. Liraglutide failed to improve acute doxorubicin-induced cardiotoxicity in rats.
Collapse
Affiliation(s)
- Carolina R. Tonon
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil; (M.G.M.); (P.S.B.); (A.S.S.F.); (A.P.D.R.); (N.F.F.); (N.M.V.); (R.P.C.); (M.P.O.); (K.O.); (L.A.M.Z.); (M.F.M.); (S.A.R.P.); (B.F.P.)
| | - Marina G. Monte
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil; (M.G.M.); (P.S.B.); (A.S.S.F.); (A.P.D.R.); (N.F.F.); (N.M.V.); (R.P.C.); (M.P.O.); (K.O.); (L.A.M.Z.); (M.F.M.); (S.A.R.P.); (B.F.P.)
| | - Paola S. Balin
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil; (M.G.M.); (P.S.B.); (A.S.S.F.); (A.P.D.R.); (N.F.F.); (N.M.V.); (R.P.C.); (M.P.O.); (K.O.); (L.A.M.Z.); (M.F.M.); (S.A.R.P.); (B.F.P.)
| | - Anderson S. S. Fujimori
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil; (M.G.M.); (P.S.B.); (A.S.S.F.); (A.P.D.R.); (N.F.F.); (N.M.V.); (R.P.C.); (M.P.O.); (K.O.); (L.A.M.Z.); (M.F.M.); (S.A.R.P.); (B.F.P.)
| | - Ana Paula D. Ribeiro
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil; (M.G.M.); (P.S.B.); (A.S.S.F.); (A.P.D.R.); (N.F.F.); (N.M.V.); (R.P.C.); (M.P.O.); (K.O.); (L.A.M.Z.); (M.F.M.); (S.A.R.P.); (B.F.P.)
| | - Natália F. Ferreira
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil; (M.G.M.); (P.S.B.); (A.S.S.F.); (A.P.D.R.); (N.F.F.); (N.M.V.); (R.P.C.); (M.P.O.); (K.O.); (L.A.M.Z.); (M.F.M.); (S.A.R.P.); (B.F.P.)
| | - Nayane M. Vieira
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil; (M.G.M.); (P.S.B.); (A.S.S.F.); (A.P.D.R.); (N.F.F.); (N.M.V.); (R.P.C.); (M.P.O.); (K.O.); (L.A.M.Z.); (M.F.M.); (S.A.R.P.); (B.F.P.)
| | - Ronny P. Cabral
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil; (M.G.M.); (P.S.B.); (A.S.S.F.); (A.P.D.R.); (N.F.F.); (N.M.V.); (R.P.C.); (M.P.O.); (K.O.); (L.A.M.Z.); (M.F.M.); (S.A.R.P.); (B.F.P.)
| | - Marina P. Okoshi
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil; (M.G.M.); (P.S.B.); (A.S.S.F.); (A.P.D.R.); (N.F.F.); (N.M.V.); (R.P.C.); (M.P.O.); (K.O.); (L.A.M.Z.); (M.F.M.); (S.A.R.P.); (B.F.P.)
| | - Katashi Okoshi
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil; (M.G.M.); (P.S.B.); (A.S.S.F.); (A.P.D.R.); (N.F.F.); (N.M.V.); (R.P.C.); (M.P.O.); (K.O.); (L.A.M.Z.); (M.F.M.); (S.A.R.P.); (B.F.P.)
| | - Leonardo A. M. Zornoff
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil; (M.G.M.); (P.S.B.); (A.S.S.F.); (A.P.D.R.); (N.F.F.); (N.M.V.); (R.P.C.); (M.P.O.); (K.O.); (L.A.M.Z.); (M.F.M.); (S.A.R.P.); (B.F.P.)
| | - Marcos F. Minicucci
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil; (M.G.M.); (P.S.B.); (A.S.S.F.); (A.P.D.R.); (N.F.F.); (N.M.V.); (R.P.C.); (M.P.O.); (K.O.); (L.A.M.Z.); (M.F.M.); (S.A.R.P.); (B.F.P.)
| | - Sergio A. R. Paiva
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil; (M.G.M.); (P.S.B.); (A.S.S.F.); (A.P.D.R.); (N.F.F.); (N.M.V.); (R.P.C.); (M.P.O.); (K.O.); (L.A.M.Z.); (M.F.M.); (S.A.R.P.); (B.F.P.)
| | - Mariana J. Gomes
- Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX 77843, USA;
| | - Bertha F. Polegato
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil; (M.G.M.); (P.S.B.); (A.S.S.F.); (A.P.D.R.); (N.F.F.); (N.M.V.); (R.P.C.); (M.P.O.); (K.O.); (L.A.M.Z.); (M.F.M.); (S.A.R.P.); (B.F.P.)
| |
Collapse
|
8
|
Yin D, Liu Y, Xue B, Ding R, Wang G, Xia S, Zhang D. IL-37 Modulates Myocardial Calcium Handling via the p-STAT3/SERCA2a Axis in HF-Related Engineered Human Heart Tissue. Adv Healthc Mater 2024; 13:e2303957. [PMID: 38339835 DOI: 10.1002/adhm.202303957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 02/03/2024] [Indexed: 02/12/2024]
Abstract
Interleukin-37 (IL-37) is a potent anti-inflammatory cytokine belonging to the IL-1 family. This study investigates the regulatory mechanism and reparative effects of IL-37 on HF-related human induced pluripotent stem cells derived cardiomyocytes (hiPSC-CMs) and engineered human heart tissue subjected to hypoxia and H2O2 treatment. The contractile force and Ca2+ conduction capacity of the tissue are assessed using a stretching platform and high-resolution fluorescence imaging system. This investigation reveals that IL-37 treatment significantly enhances cell viability, calcium transient levels, contractile force, and Ca2+ conduction capacity in HF-related hiPSC-CMs and engineered human heart tissue. Notably, IL-37 facilitates the upregulation of sarcoplasmic reticulum calcium ATPase 2a (SERCA2a) through enhancing nuclear p-STAT3 levels. This effect is mediated by the binding of p-STAT3 to the SERCA2a promoter, providing a novel insight on the reparative potential of IL-37 in HF. IL-37 demonstrates its ability to enhance systolic function by modulating myocardial calcium handling via the p-STAT3/SERCA2a axis in HF-related engineered human heart tissue (as shown in schematic diagram).
Collapse
Affiliation(s)
- Dan Yin
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, 430062, China
| | - Yong Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, 430062, China
| | - Bingqing Xue
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, 430062, China
| | - Rui Ding
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, 430062, China
| | - Gang Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, 430062, China
| | - Shutao Xia
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, 430062, China
| | - Donghui Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, 430062, China
| |
Collapse
|
9
|
Harrington A, Moore-Morris T. Cardiac fibroblasts in heart failure and regeneration. Front Cell Dev Biol 2024; 12:1388378. [PMID: 38699159 PMCID: PMC11063332 DOI: 10.3389/fcell.2024.1388378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/04/2024] [Indexed: 05/05/2024] Open
Abstract
In heart disease patients, myocyte loss or malfunction invariably leads to fibrosis, involving the activation and accumulation of cardiac fibroblasts that deposit large amounts of extracellular matrix. Apart from the vital replacement fibrosis that follows myocardial infarction, ensuring structural integrity of the heart, cardiac fibrosis is largely considered to be maladaptive. Much work has focused on signaling pathways driving the fibrotic response, including TGF-β signaling and biomechanical strain. However, currently there are very limited options for reducing cardiac fibrosis, with most patients suffering from chronic fibrosis. The adult heart has very limited regenerative capacity. However, cardiac regeneration has been reported in humans perinatally, and reproduced experimentally in neonatal mice. Furthermore, model organisms such as the zebrafish are able to fully regenerate their hearts following massive cardiac damage into adulthood. Increasing evidence points to a transient immuno-fibrotic response as being key for cardiac regeneration to occur. The mechanisms at play in this context are changing our views on fibrosis, and could be leveraged to promote beneficial remodeling in heart failure patients. This review summarizes our current knowledge of fibroblast properties associated with the healthy, failing or regenerating heart. Furthermore, we explore how cardiac fibroblast activity could be targeted to assist future therapeutic approaches.
Collapse
Affiliation(s)
| | - Thomas Moore-Morris
- Institut de Génomique Fonctionnelle, University of Montpellier, CNRS, INSERM, Montpellier, France
| |
Collapse
|
10
|
Kumar S, Conners KM, Shearer JJ, Joo J, Turecamo S, Sampson M, Wolska A, Remaley AT, Connelly MA, Otvos JD, Larson NB, Bielinski SJ, Roger VL. Frailty and Metabolic Vulnerability in Heart Failure: A Community Cohort Study. J Am Heart Assoc 2024; 13:e031616. [PMID: 38533960 PMCID: PMC11262513 DOI: 10.1161/jaha.123.031616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 02/23/2024] [Indexed: 03/28/2024]
Abstract
BACKGROUND Frailty is common in heart failure (HF) and is associated with death but not routinely captured clinically. Frailty is linked with inflammation and malnutrition, which can be assessed by a novel plasma multimarker score: the metabolic vulnerability index (MVX). We sought to evaluate the associations between frailty and MVX and their prognostic impact. METHODS AND RESULTS In an HF community cohort (2003-2012), we measured frailty as a proportion of deficits present out of 32 physical limitations and comorbidities, MVX by nuclear magnetic resonance spectroscopy, and collected extensive longitudinal clinical data. Patients were categorized by frailty score (≤0.14, >0.14 and ≤0.27, >0.27) and MVX score (≤50, >50 and ≤60, >60 and ≤70, >70). Cox models estimated associations of frailty and MVX with death, adjusted for Meta-Analysis Global Group in Chronic Heart Failure (MAGGIC) score and NT-proBNP (N-terminal pro-B-type natriuretic peptide). Uno's C-statistic measured the incremental value of MVX beyond frailty and clinical factors. Weibull's accelerated failure time regression assessed whether MVX mediated the association between frailty and death. We studied 985 patients (median age, 77; 48% women). Frailty and MVX were weakly correlated (Spearman's ρ=0.21). The highest frailty group experienced an increased rate of death, independent of MVX, MAGGIC score, and NT-proBNP (hazard ratio, 3.3 [95% CI, 2.5-4.2]). Frailty improved Uno's c-statistic beyond MAGGIC score and NT-proBNP (0.69-0.73). MVX only mediated 3.3% and 4.5% of the association between high and medium frailty groups and death, respectively. CONCLUSIONS In this HF cohort, frailty and MVX are weakly correlated. Both independently contribute to stratifying the risk of death, suggesting that they capture distinct domains of vulnerability in HF.
Collapse
Affiliation(s)
- Sant Kumar
- Medstar Georgetown University HospitalWashingtonDC
| | - Katherine M. Conners
- Heart Disease Phenomics Laboratory, Epidemiology and Community Health BranchNational Heart, Lung, and Blood Institute, National Institutes of HealthBethesdaMD
| | - Joseph J. Shearer
- Heart Disease Phenomics Laboratory, Epidemiology and Community Health BranchNational Heart, Lung, and Blood Institute, National Institutes of HealthBethesdaMD
| | - Jungnam Joo
- Office of Biostatistics ResearchNational Heart, Lung, and Blood Institute, National Institutes of HealthBethesdaMD
| | - Sarah Turecamo
- Heart Disease Phenomics Laboratory, Epidemiology and Community Health BranchNational Heart, Lung, and Blood Institute, National Institutes of HealthBethesdaMD
| | - Maureen Sampson
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine BranchNational Heart, Lung, and Blood Institute, National Institutes of HealthBethesdaMD
| | - Anna Wolska
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine BranchNational Heart, Lung, and Blood Institute, National Institutes of HealthBethesdaMD
| | - Alan T. Remaley
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine BranchNational Heart, Lung, and Blood Institute, National Institutes of HealthBethesdaMD
| | | | | | - Nicholas B. Larson
- Division of Clinical Trials and Biostatistics, Department of Quantitative Health SciencesMayo ClinicRochesterMN
| | - Suzette J. Bielinski
- Division of Epidemiology, Department of Quantitative Health SciencesMayo ClinicRochesterMN
| | - Véronique L. Roger
- Heart Disease Phenomics Laboratory, Epidemiology and Community Health BranchNational Heart, Lung, and Blood Institute, National Institutes of HealthBethesdaMD
| |
Collapse
|
11
|
Bhushan S, Huang X, Jiang F, Xiao Z. Impact of angiotensin receptor-neprilysin inhibition (ARNI) in improving ejection fraction and left and right ventricular remodeling in heart failure. Curr Probl Cardiol 2024; 49:102464. [PMID: 38369206 DOI: 10.1016/j.cpcardiol.2024.102464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 02/09/2024] [Accepted: 02/15/2024] [Indexed: 02/20/2024]
Abstract
Angiotensin receptor neprilysin inhibitors (ARNI), a new therapeutic class of agents acting on the renin angiotensin aldosterone system (RAAS) and neutral endopeptidase system has been developed in treatment of ventricular remodeling and has attracted considerable attention. The first in class is LCZ696, which is a molecule that combines Valsartan (ARB) and Sacubitril (neprilysin inhibitor) within a single substance. Sacubitril-Valsartan is the first angiotensin receptor enkephalin inhibitors (ARNI), which can block angiotensin II type 1 receptor (AT1R) while inhibiting enkephalin (NEP) and effectively reverse ventricular remodeling in heart failure patients. It has been recommended by the European and American authoritative guidelines on heart failure as Class I for the treatment of chronic heart failure particularly as intensive care medicine. Sacubitril-Valsartan demonstrated significant effects in improving left ventricular performance and remodeling in patients with heart failure with reduced ejection fraction. Sacubitril acts on increased levels of circulating natriuretic peptides by preventing their enzymatic breakdown and Valsartan, which acts to lessen the effects of the RAAS. However, not more research has been done on its effects on the right ventricle remodeling. This review aimed to assess the impact of angiotensin receptor neprilysin inhibitors on left and right ventricular remodeling in heart failure patients.
Collapse
Affiliation(s)
- Sandeep Bhushan
- Department of Cardio-Thoracic Surgery, Chengdu Second People's Hospital, Chengdu, Sichuan 610017, China
| | - Xin Huang
- Department of Anesthesiology, West China Hospital of Medicine, Sichuan University, Sichuan 610017, China
| | - Fenglin Jiang
- Department of Anesthesia and Surgery, Chengdu Second People's Hospital, Chengdu, Sichuan 610017, China
| | - Zongwei Xiao
- Department of Cardio-Thoracic Surgery, Chengdu Second People's Hospital, Chengdu, Sichuan 610017, China.
| |
Collapse
|
12
|
Mariappan V, Srinivasan R, Pratheesh R, Jujjuvarapu MR, Pillai AB. Predictive biomarkers for the early detection and management of heart failure. Heart Fail Rev 2024; 29:331-353. [PMID: 37702877 DOI: 10.1007/s10741-023-10347-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/04/2023] [Indexed: 09/14/2023]
Abstract
Cardiovascular disease (CVD) is a serious public health concern whose incidence has been on a rise and is projected by the World Health Organization to be the leading global cause of mortality by 2030. Heart failure (HF) is a complicated syndrome resulting from various CVDs of heterogeneous etiologies and exhibits varying pathophysiology, including activation of inflammatory signaling cascade, apoptosis, fibrotic pathway, and neuro-humoral system, thereby leading to compromised cardiac function. During this process, several biomolecules involved in the onset and progression of HF are released into circulation. These circulating biomolecules could serve as unique biomarkers for the detection of subclinical changes and can be utilized for monitoring disease severity. Hence, it is imperative to identify these biomarkers to devise an early predictive strategy to stop the deterioration of cardiac function caused by these complex cellular events. Furthermore, measurement of multiple biomarkers allows clinicians to divide HF patients into sub-groups for treatment and management based on early health outcomes. The present article provides a comprehensive overview of current omics platform available for discovering biomarkers for HF management. Some of the existing and novel biomarkers for the early detection of HF with special reference to endothelial biology are also discussed.
Collapse
Affiliation(s)
- Vignesh Mariappan
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to be University), Puducherry, 607402, India
| | - Rajesh Srinivasan
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to be University), Puducherry, 607402, India
| | - Ravindran Pratheesh
- Department of Neurosurgery, Mahatma Gandhi Medical College and Research Institute (MGMCRI), Sri Balaji Vidyapeeth (Deemed to be University), Puducherry, 607402, India
| | - Muraliswar Rao Jujjuvarapu
- Radiodiagnosis and Imageology, Aware Gleneagles Global Hospital, LB Nagar, Hyderabad, Telangana, 500035, India
| | - Agieshkumar Balakrishna Pillai
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to be University), Puducherry, 607402, India.
| |
Collapse
|
13
|
Chandwani ND, Gedam UD, Deshmukh R, Dakshindas DM, Shrigiriwar M. Mines of cytokine: A treasure trove in pulpal and periapical diseases. JOURNAL OF CONSERVATIVE DENTISTRY AND ENDODONTICS 2024; 27:227-232. [PMID: 38634023 PMCID: PMC11019815 DOI: 10.4103/jcde.jcde_289_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 04/19/2024]
Abstract
Pulpitis is a special disease of dental pulp. It causes localized inflammation, due to various inflammatory mediators such as cytokines and chemokines. These inflammatory mediators are responsible for various reparative and resorptive processes in the dental pulp. The balance between these processes ultimately determines the viability of the tooth. Due to the important properties of various inflammatory markers, the correlation of cytokinin gene expression in various stages of inflammation becomes necessary to focus on. Several studies in the past have focused on the importance of such correlation to help in diagnostic applications. The nature of these inflammatory mediators can help us in diagnostic evaluation. Several attempts have been made to focus on these associations so that it can assist in making clinical decisions effectively. The data available are vast but are the most neglected topic. This review article briefly outlines and summarizes the importance of various inflammatory mediators such as cytokinin and chemokines in various pathways of pulpal and periapical inflammation in explanatory and diagrammatic forms. Knowledge gained about pulpal inflammatory response may aid in understanding the molecular level of inflammatory pulpal and periapical diseases, which shall modify our future diagnostic modalities. Several medicaments are used in the treatment of minimal to advanced dental caries which leads to periapical infections. Thorough understanding of these medicaments can resolve secondary infection and can improve the prognosis of the treated tooth.
Collapse
Affiliation(s)
- Neelam D Chandwani
- Department of Dentistry, All India Institute of Medical Sciences, Nagpur, Maharashtra, India
| | - Unnati Devanand Gedam
- Department of Dentistry, All India Institute of Medical Sciences, Nagpur, Maharashtra, India
| | - Ranjana Deshmukh
- Department of Dentistry, All India Institute of Medical Sciences, Nagpur, Maharashtra, India
| | - Darshan M Dakshindas
- Department of Conservative Dentistry and Endodontics, Government Dental College and Hospital, Nagpur, Maharashtra, India
| | - Manish Shrigiriwar
- Department of FMT, All India Institute of Medical Sciences, Nagpur, Maharashtra, India
| |
Collapse
|
14
|
Chan MJ, Liu KD. Acute Kidney Injury and Subsequent Cardiovascular Disease: Epidemiology, Pathophysiology, and Treatment. Semin Nephrol 2024; 44:151515. [PMID: 38849258 DOI: 10.1016/j.semnephrol.2024.151515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
Cardiovascular disease poses a significant threat to individuals with kidney disease, including those affected by acute kidney injury (AKI). In the short term, AKI has several physiological consequences that can impact the cardiovascular system. These include fluid and sodium overload, activation of the renin-angiotensin-aldosterone system and sympathetic nervous system, and inflammation along with metabolic complications of AKI (acidosis, electrolyte imbalance, buildup of uremic toxins). Recent studies highlight the role of AKI in elevating long-term risks of hypertension, thromboembolism, stroke, and major adverse cardiovascular events, though some of this increased risk may be due to the impact of AKI on the course of chronic kidney disease. Current management strategies involve avoiding nephrotoxic agents, optimizing hemodynamics and fluid balance, and considering renin-angiotensin-aldosterone system inhibition or sodium-glucose cotransporter 2 inhibitors. However, future research is imperative to advance preventive and therapeutic strategies for cardiovascular complications in AKI. This review explores the existing knowledge on the cardiovascular consequences of AKI, delving into epidemiology, pathophysiology, and treatment of various cardiovascular complications following AKI.
Collapse
Affiliation(s)
- Ming-Jen Chan
- Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Graduate Institute of Clinical Medical Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Kathleen D Liu
- Divisions of Nephrology and Critical Care Medicine, Departments of Medicine and Anesthesia, University of California, San Francisco, CA.
| |
Collapse
|
15
|
Gallo G, Rubattu S, Volpe M. Mitochondrial Dysfunction in Heart Failure: From Pathophysiological Mechanisms to Therapeutic Opportunities. Int J Mol Sci 2024; 25:2667. [PMID: 38473911 DOI: 10.3390/ijms25052667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/17/2024] [Accepted: 02/24/2024] [Indexed: 03/14/2024] Open
Abstract
Mitochondrial dysfunction, a feature of heart failure, leads to a progressive decline in bioenergetic reserve capacity, consisting in a shift of energy production from mitochondrial fatty acid oxidation to glycolytic pathways. This adaptive process of cardiomyocytes does not represent an effective strategy to increase the energy supply and to restore the energy homeostasis in heart failure, thus contributing to a vicious circle and to disease progression. The increased oxidative stress causes cardiomyocyte apoptosis, dysregulation of calcium homeostasis, damage of proteins and lipids, leakage of mitochondrial DNA, and inflammatory responses, finally stimulating different signaling pathways which lead to cardiac remodeling and failure. Furthermore, the parallel neurohormonal dysregulation with angiotensin II, endothelin-1, and sympatho-adrenergic overactivation, which occurs in heart failure, stimulates ventricular cardiomyocyte hypertrophy and aggravates the cellular damage. In this review, we will discuss the pathophysiological mechanisms related to mitochondrial dysfunction, which are mainly dependent on increased oxidative stress and perturbation of the dynamics of membrane potential and are associated with heart failure development and progression. We will also provide an overview of the potential implication of mitochondria as an attractive therapeutic target in the management and recovery process in heart failure.
Collapse
Affiliation(s)
- Giovanna Gallo
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Via di Grottarossa 1035-1039, 00189 Rome, RM, Italy
| | - Speranza Rubattu
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Via di Grottarossa 1035-1039, 00189 Rome, RM, Italy
- IRCCS Neuromed, 86077 Pozzilli, IS, Italy
| | | |
Collapse
|
16
|
Ang SP, Chia JE, Jaiswal V, Hanif M, Iglesias J. Prognostic Value of Neutrophil-to-Lymphocyte Ratio in Patients with Acute Decompensated Heart Failure: A Meta-Analysis. J Clin Med 2024; 13:1212. [PMID: 38592030 PMCID: PMC10931846 DOI: 10.3390/jcm13051212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/07/2024] [Accepted: 02/14/2024] [Indexed: 04/10/2024] Open
Abstract
Background: Inflammation plays a pivotal role in the pathogenesis of both acute and chronic heart failure. Recent studies showed that the neutrophil-to-lymphocyte ratio (NLR) could be related to adverse outcomes in patients with cardiovascular diseases. We sought to evaluate whether NLR could predict mortality in patients with acute heart failure by means of a meta-analysis. Methods: A comprehensive literature search was performed in PubMed, Embase, and Cochrane databases through January 2023 for studies evaluating the association of NLR with mortality in patients with acute heart failure. Primary outcomes were in-hospital mortality and long-term all-cause mortality. Endpoints were pooled using a random-effects DerSimonian-and-Laird model and were expressed as a hazard ratio (HR) or mean difference (MD) with their corresponding 95% confidence intervals. Results: A total of 15 studies with 15,995 patients with acute heart failure were included in the final study. Stratifying patients based on a cut-off NLR, we found that high NLR was associated with a significantly higher in-hospital mortality [HR 1.54, 95% CI (1.18-2.00), p < 0.001] and long-term all-cause mortality [HR 1.61, 95% CI (1.40-1.86), p < 0.001] compared to the low-NLR group. Comparing the highest against the lowest NLR quartile, it was shown that patients in the highest NLR quartile has a significantly heightened risk of long-term all-cause mortality [HR 1.77, 95% CI (1.38-2.26), p < 0.001] compared to that of lowest NLR quartile. However, the risks of in-hospital mortality were compared between both quartiles of patients [HR 1.78, 95% CI (0.91-3.47), p = 0.09]. Lastly, NLR values were significantly elevated among non-survivors compared to survivors during index hospitalization [MD 5.07, 95% CI (3.34-6.80), p < 0.001] and during the follow-up period [MD 1.06, 95% CI (0.54-1.57), p < 0.001]. Conclusions: Elevated NLR was associated with an increased risk of short- and long-term mortality and could be a useful tool or incorporated in the risk stratification in patients with acute heart failure.
Collapse
Affiliation(s)
- Song Peng Ang
- Department of Internal Medicine, Rutgers Health/Community Medical Center, Toms River, NJ 08755, USA;
| | - Jia Ee Chia
- Department of Internal Medicine, Texas Tech University Health Science Center, El Paso, TX 79905, USA;
| | - Vikash Jaiswal
- Department of Internal Medicine, Larkin Community Hospital, South Miami, FL 33143, USA;
| | - Muhammad Hanif
- Department of Internal Medicine, Suny Upstate Medical University, Syracuse, NY 13210, USA;
| | - Jose Iglesias
- Department of Internal Medicine, Rutgers Health/Community Medical Center, Toms River, NJ 08755, USA;
- Department of Internal Medicine, Hackensack Meridian School of Medicine, Nutley, NJ 07110, USA
| |
Collapse
|
17
|
Lai J, Pan Q, Chen G, Liu Y, Chen C, Pan Y, Liu L, Zeng B, Yu L, Xu Y, Tang J, Yang Y, Rao L. Triple Hybrid Cellular Nanovesicles Promote Cardiac Repair after Ischemic Reperfusion. ACS NANO 2024; 18:4443-4455. [PMID: 38193813 DOI: 10.1021/acsnano.3c10784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
The management of myocardial ischemia/reperfusion (I/R) damage in the context of reperfusion treatment remains a significant hurdle in the field of cardiovascular disorders. The injured lesions exhibit distinctive features, including abnormal accumulation of necrotic cells and subsequent inflammatory response, which further exacerbates the impairment of cardiac function. Here, we report genetically engineered hybrid nanovesicles (hNVs), which contain cell-derived nanovesicles overexpressing high-affinity SIRPα variants (SαV-NVs), exosomes (EXOs) derived from human mesenchymal stem cells (MSCs), and platelet-derived nanovesicles (PLT-NVs), to facilitate the necrotic cell clearance and inhibit the inflammatory responses. Mechanistically, the presence of SαV-NVs suppresses the CD47-SIRPα interaction, leading to the promotion of the macrophage phagocytosis of dead cells, while the component of EXOs aids in alleviating inflammatory responses. Moreover, the PLT-NVs endow hNVs with the capacity to evade immune surveillance and selectively target the infarcted area. In I/R mouse models, coadministration of SαV-NVs and EXOs showed a notable synergistic effect, leading to a significant enhancement in the left ventricular ejection fraction (LVEF) on day 21. These findings highlight that the hNVs possess the ability to alleviate myocardial inflammation, minimize infarct size, and improve cardiac function in I/R models, offering a simple, safe, and robust strategy in boosting cardiac repair after I/R.
Collapse
Affiliation(s)
- Jialin Lai
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China
- Department of Chemistry, The University of Hong Kong, Hong Kong 999077, China
| | - Qi Pan
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Guihao Chen
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Yu Liu
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China
- Department of Dermatovenereology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
| | - Cheng Chen
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Yuanwei Pan
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Lujie Liu
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Binglin Zeng
- Department of Chemistry, The University of Hong Kong, Hong Kong 999077, China
| | - Ling Yu
- Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Yunsheng Xu
- Department of Dermatovenereology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
| | - Jinyao Tang
- Department of Chemistry, The University of Hong Kong, Hong Kong 999077, China
- State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong 999077, China
| | - Yuejin Yang
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Lang Rao
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China
| |
Collapse
|
18
|
Conners KM, Shearer JJ, Joo J, Park H, Manemann SM, Remaley AT, Otvos JD, Connelly MA, Sampson M, Bielinski SJ, Wolska A, Turecamo S, Roger VL. The Metabolic Vulnerability Index: A Novel Marker for Mortality Prediction in Heart Failure. JACC. HEART FAILURE 2024; 12:290-300. [PMID: 37480881 PMCID: PMC10949384 DOI: 10.1016/j.jchf.2023.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 07/24/2023]
Abstract
BACKGROUND Inflammation and protein energy malnutrition are associated with heart failure (HF) mortality. The metabolic vulnerability index (MVX) is derived from markers of inflammation and malnutrition and measured by nuclear magnetic resonance spectroscopy. MVX has not been examined in HF. OBJECTIVES The authors sought to examine the prognostic value of MVX in patients with HF. METHODS The authors prospectively assembled a population-based cohort of patients with HF from 2003 to 2012 and measured MVX scores with a nuclear magnetic resonance scan from plasma collected at enrollment. Patients were divided into 4 MVX score groups and followed until March 31, 2021. RESULTS The authors studied 1,382 patients (median age: 78 years; 48% women). The median MVX score was 64.6. Patients with higher MVX were older, more likely to be male, have atrial fibrillation, have higher NYHA functional class, and have HF duration of >18 months. Higher MVX was associated with mortality independent of Meta-analysis Global Group in Chronic Heart Failure score, ejection fraction, and other prognostic biomarkers. Compared to those with the lowest MVX, the HRs for MVX groups 2, 3, and 4 were 1.2 (95% CI: 0.9-1.4), 1.6 (95% CI: 1.3-2.0), and 1.8 (95% CI: 1.4-2.2), respectively (Ptrend < 0.001). Measures of model improvement document the added value of MVX in HF for classifying the risk of death beyond the Meta-analysis Global Group in Chronic Heart Failure score and other biomarkers. CONCLUSIONS In this HF community cohort, MVX was strongly associated with mortality independently of established clinical factors and improved mortality risk classification beyond clinically validated markers. These data underscore the potential of MVX to stratify risk in HF.
Collapse
Affiliation(s)
- Katherine M Conners
- Heart Disease Phenomics Laboratory, Epidemiology and Community Health Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Joseph J Shearer
- Heart Disease Phenomics Laboratory, Epidemiology and Community Health Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jungnam Joo
- Office of Biostatistics Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Hoyoung Park
- Heart Disease Phenomics Laboratory, Epidemiology and Community Health Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Sheila M Manemann
- Division of Epidemiology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota, USA
| | - Alan T Remaley
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - James D Otvos
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Maureen Sampson
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Suzette J Bielinski
- Division of Epidemiology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota, USA
| | - Anna Wolska
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Sarah Turecamo
- Heart Disease Phenomics Laboratory, Epidemiology and Community Health Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Véronique L Roger
- Heart Disease Phenomics Laboratory, Epidemiology and Community Health Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
19
|
Mahmoud NN, Hamad K, Al Shibitini A, Juma S, Sharifi S, Gould L, Mahmoudi M. Investigating Inflammatory Markers in Wound Healing: Understanding Implications and Identifying Artifacts. ACS Pharmacol Transl Sci 2024; 7:18-27. [PMID: 38230290 PMCID: PMC10789122 DOI: 10.1021/acsptsci.3c00336] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/08/2023] [Accepted: 12/13/2023] [Indexed: 01/18/2024]
Abstract
Understanding the complex interplay of pro-inflammatory and anti-inflammatory cytokines is crucial in the field of wound healing, as it holds the key to developing effective therapeutics. In the initial stages of wound healing, pro-inflammatory cytokines like IL-1β, IL-6, TNF-α, and various chemokines play vital roles in recruiting cells for debris clearance and the recruitment of growth factors. Careful regulation and timely resolution of this early inflammation are essential for optimal wound repair. As the healing process progresses, anti-inflammatory proteins such as IL-10 and IL-4 become instrumental in facilitating the transition to later stages where pro-inflammatory cytokines promote angiogenesis and wound remodeling. This Perspective underscores the complexity of inflammatory cytokines in wound healing research and emphasizes the need for comprehensive and unbiased methodologies in their evaluation. For robust and reliable results in wound-healing research, a more holistic approach is necessary-one that considers the roles, interactions, and timing of biological molecules, alongside careful sampling and evaluation strategies.
Collapse
Affiliation(s)
- Nouf N. Mahmoud
- Faculty
of Pharmacy, Al-Zaytoonah University of
Jordan, Amman 11733, Jordan
- Department
of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar
| | - Khawla Hamad
- School
of Medicine, Royal College of Surgeons in
Ireland-Bahrain, Busaiteen 228, Bahrain
| | - Aya Al Shibitini
- School
of Medicine, Royal College of Surgeons in
Ireland-Bahrain, Busaiteen 228, Bahrain
| | - Sarah Juma
- School
of Medicine, Royal College of Surgeons in
Ireland-Bahrain, Busaiteen 228, Bahrain
| | - Shahriar Sharifi
- Department
of Radiology and Precision Health Program, Michigan State University, East Lansing, Michigan 48824, United States
| | - Lisa Gould
- Warren
Alpert Medical School of Brown University, Providence, Rhode Island 02912, United
States
- South Shore
Health Center for Wound Healing, Weymouth, Massachusetts 02189, United States
| | - Morteza Mahmoudi
- Department
of Radiology and Precision Health Program, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
20
|
Nchodu M, Efuntayo A, du Preez R, Ali H, Olateju OI. Simvastatin Significantly Reduced Alcohol-Induced Cardiac Damage in Adolescent Mice. Cardiovasc Toxicol 2024; 24:15-26. [PMID: 38261135 PMCID: PMC10838240 DOI: 10.1007/s12012-023-09821-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 12/16/2023] [Indexed: 01/24/2024]
Abstract
Alcohol abuse by adolescents is becoming a serious health concern as they often progress to becoming alcoholics later in life which may lead to heart problems. Chronic alcohol use alters the cardiac function and structure, such as haemodynamic changes, weakening and loss of cardiomyocytes, myocardial fibrosis, and inflammation. Simvastatin is a commonly used drug for the treatment and management of various cardiovascular problems but information on its protective effects against alcohol-induced cardiomyocyte hypertrophy, fibrosis, and inflammation is lacking in the literature. Four-week-old male (n = 5) and female (n = 5) C57BL/6 J mice were assigned to each experimental group: (I) NT-no administration of alcohol or Simvastatin; (II) ALC-2.5 g/Kg/day of 20% alcohol via intraperitoneal injection (i.p.); (III) SIM-5 mg/Kg/day of Simvastatin via oral gavage; (iv) ALC + SIM5-5 mg/Kg/day of Simvastatin via oral gavage followed by 2.5 g/Kg/day of 20% alcohol via i.p.; and (v) ALC + SIM15-15 mg/Kg/day Simvastatin via oral gavage followed by 2.5 g/Kg/day of 20% alcohol via i.p. After the 28-day treatment period, the heart was removed and processed for H&E, Masson's trichrome, or TNF-α immunolabelling. The area and diameter of cardiomyocytes were measured on the H&E-stained sections. The distribution of collagen or TNF-α expression was quantified using the deconvolution tool of ImageJ software. The results confirmed alcohol-induced toxicity on the cardiomyocytes and Simvastatin reduced alcohol-induced cardiomyocyte hypertrophy, fibrosis, and inflammation in both sexes. This study demonstrated that Simvastatin, an FDA approved and easily accessible drug, may be beneficial in lowering the prevalence of alcohol-induced cardiovascular diseases (especially in adolescents) which will have a huge financial implication on health systems worldwide.
Collapse
Affiliation(s)
- Makgotso Nchodu
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193, Republic of South Africa
| | - Alice Efuntayo
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193, Republic of South Africa
| | - Robin du Preez
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193, Republic of South Africa
| | - Hasiena Ali
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193, Republic of South Africa
| | - Oladiran I Olateju
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193, Republic of South Africa.
| |
Collapse
|
21
|
Papamichail A, Kourek C, Briasoulis A, Xanthopoulos A, Tsougos E, Farmakis D, Paraskevaidis I. Targeting Key Inflammatory Mechanisms Underlying Heart Failure: A Comprehensive Review. Int J Mol Sci 2023; 25:510. [PMID: 38203681 PMCID: PMC10778956 DOI: 10.3390/ijms25010510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Inflammation is a major component of heart failure (HF), causing peripheral vasculopathy and cardiac remodeling. High levels of circulating inflammatory cytokines in HF patients have been well recognized. The hallmark of the inflammatory imbalance is the insufficient production of anti-inflammatory mediators, a condition that leads to dysregulated cytokine activity. The condition progresses because of the pathogenic consequences of the cytokine imbalance, including the impact of endothelial dysfunction and adrenergic responsiveness deterioration, and unfavorable inotropic effects on the myocardium. Hence, to develop possible anti-inflammatory treatment options that will enhance the outcomes of HF patients, it is essential to identify the potential pathophysiological mechanisms of inflammation in HF. Inflammatory mediators, such as cytokines, adhesion molecules, and acute-phase proteins, are elevated during this process, highlighting the complex association between inflammation and HF. Therefore, these inflammatory markers can be used in predicting prognosis of the syndrome. Various immune cells impact on myocardial remodeling and recovery. They lead to stimulation, release of alarmins and risk-related molecule patterns. Targeting key inflammatory mechanisms seems a quite promising therapy strategy in HF. Cytokine modulation is only one of several possible targets in the fight against inflammation, as the potential molecular targets for therapy in HF include immune activation, inflammation, oxidative stress, alterations in mitochondrial bioenergetics, and autophagy.
Collapse
Affiliation(s)
- Adamantia Papamichail
- Medical School of Athens, National and Kapodistrian University of Athens, 15772 Athens, Greece; (A.P.); (C.K.); (A.B.)
| | - Christos Kourek
- Medical School of Athens, National and Kapodistrian University of Athens, 15772 Athens, Greece; (A.P.); (C.K.); (A.B.)
| | - Alexandros Briasoulis
- Medical School of Athens, National and Kapodistrian University of Athens, 15772 Athens, Greece; (A.P.); (C.K.); (A.B.)
| | - Andrew Xanthopoulos
- Department of Cardiology, University Hospital of Larissa, 41110 Larissa, Greece;
| | - Elias Tsougos
- Department of Cardiology, Hygeia Hospital, 15123 Athens, Greece;
| | - Dimitrios Farmakis
- Attikon University Hospital, Medical School of Athens, National and Kapodistrian University of Athens, 12462 Athens, Greece;
| | - Ioannis Paraskevaidis
- Medical School of Athens, National and Kapodistrian University of Athens, 15772 Athens, Greece; (A.P.); (C.K.); (A.B.)
| |
Collapse
|
22
|
Arvunescu AM, Ionescu RF, Cretoiu SM, Dumitrescu SI, Zaharia O, Nanea IT. Inflammation in Heart Failure-Future Perspectives. J Clin Med 2023; 12:7738. [PMID: 38137807 PMCID: PMC10743797 DOI: 10.3390/jcm12247738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/01/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Chronic heart failure is a terminal point of a vast majority of cardiac or extracardiac causes affecting around 1-2% of the global population and more than 10% of the people above the age of 65. Inflammation is persistently associated with chronic diseases, contributing in many cases to the progression of disease. Even in a low inflammatory state, past studies raised the question of whether inflammation is a constant condition, or if it is, rather, triggered in different amounts, according to the phenotype of heart failure. By evaluating the results of clinical studies which focused on proinflammatory cytokines, this review aims to identify the ones that are independent risk factors for heart failure decompensation or cardiovascular death. This review assessed the current evidence concerning the inflammatory activation cascade, but also future possible targets for inflammatory response modulation, which can further impact the course of heart failure.
Collapse
Affiliation(s)
- Alexandru Mircea Arvunescu
- Department of Internal Medicine and Cardiology, “Prof. Dr. Th. Burghele” Clinical Hospital, 061344 Bucharest, Romania; (O.Z.); (I.T.N.)
- Department of Cardio-Thoracic Pathology, Cardio-Thoracic Pathology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050471 Bucharest, Romania
| | - Ruxandra Florentina Ionescu
- Department of Cardiology I, Central Military Emergency Hospital “Dr Carol Davila”, 030167 Bucharest, Romania (S.I.D.)
- Department of Morphological Sciences, Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Sanda Maria Cretoiu
- Department of Morphological Sciences, Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Silviu Ionel Dumitrescu
- Department of Cardiology I, Central Military Emergency Hospital “Dr Carol Davila”, 030167 Bucharest, Romania (S.I.D.)
- Department of Cardiology, Faculty of Medicine, Titu Maiorescu University, 040441 Bucharest, Romania
| | - Ondin Zaharia
- Department of Internal Medicine and Cardiology, “Prof. Dr. Th. Burghele” Clinical Hospital, 061344 Bucharest, Romania; (O.Z.); (I.T.N.)
- Department of Cardio-Thoracic Pathology, Cardio-Thoracic Pathology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050471 Bucharest, Romania
| | - Ioan Tiberiu Nanea
- Department of Internal Medicine and Cardiology, “Prof. Dr. Th. Burghele” Clinical Hospital, 061344 Bucharest, Romania; (O.Z.); (I.T.N.)
- Department of Cardio-Thoracic Pathology, Cardio-Thoracic Pathology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050471 Bucharest, Romania
| |
Collapse
|
23
|
Ribeiro Vitorino T, Ferraz do Prado A, Bruno de Assis Cau S, Rizzi E. MMP-2 and its implications on cardiac function and structure: Interplay with inflammation in hypertension. Biochem Pharmacol 2023; 215:115684. [PMID: 37459959 DOI: 10.1016/j.bcp.2023.115684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 08/01/2023]
Abstract
Hypertension is one of the leading risk factors for the development of heart failure. Despite being a multifactorial disease, in recent years, preclinical and clinical studies suggest strong evidence of the pivotal role of inflammatory cells and cytokines in the remodeling process and cardiac dysfunction. During the heart remodeling, activation of extracellular matrix metalloproteinases (MMPs) occurs, with MMP-2 being one of the main proteases secreted by cardiomyocytes, fibroblasts, endothelial and inflammatory cells in cardiac tissue. In this review, we will address the process of cardiac remodeling and injury induced by the increase in MMP-2 and the main signaling pathways involving cytokines and inflammatory cells in the process of transcriptional, secretion and activation of MMP-2. In addition, an interaction and coordinated action between MMP-2 and inflammation are explored and significant in maintaining the cardiac cycle. These observations suggest that new therapeutic opportunities targeting MMP-2 could be used to reduce inflammatory biomarkers and reduce cardiac damage in hypertension.
Collapse
Affiliation(s)
- Thaís Ribeiro Vitorino
- Unit of Biotechnology, University of Ribeirao Preto, UNAERP, Brazil; Department of Pharmacology, Faculty of Medical Sciences, University of Campinas, UNICAMP, Brazil
| | - Alejandro Ferraz do Prado
- Cardiovascular System Pharmacology and Toxicology, Institute of Biological Sciences, Federal University of Para, UFPA, Brazil
| | - Stefany Bruno de Assis Cau
- Department of Pharmacology, Institute of Biological Science, Federal University of Minas Gerais, UFMG, Brazil.
| | - Elen Rizzi
- Unit of Biotechnology, University of Ribeirao Preto, UNAERP, Brazil.
| |
Collapse
|
24
|
Grisanti LA. TRAIL and its receptors in cardiac diseases. Front Physiol 2023; 14:1256852. [PMID: 37621762 PMCID: PMC10445540 DOI: 10.3389/fphys.2023.1256852] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 07/28/2023] [Indexed: 08/26/2023] Open
Abstract
Cardiovascular disease is a leading cause of death worldwide. Loss of cardiomyocytes that occurs during many types of damage to the heart such as ischemic injury and stress caused by pressure overload, diminishes cardiac function due to their limited regenerative capacity and promotes remodeling, which further damages the heart. Cardiomyocyte death occurs through two primary mechanisms, necrosis and apoptosis. Apoptosis is a highly regulated form of cell death that can occur through intrinsic (mitochondrial) or extrinsic (receptor mediated) pathways. Extrinsic apoptosis occurs through a subset of Tumor Necrosis Receptor (TNF) family receptors termed "Death Receptors." While some ligands for death receptors have been extensively studied in the heart, such as TNF-α, others have been virtually unstudied. One poorly characterized cardiac TNF related ligand is TNF-Related Apoptosis Inducing Ligand (TRAIL). TRAIL binds to two apoptosis-inducing receptors, Death Receptor (DR) 4 and DR5. There are also three decoy TRAIL receptors, Decoy Receptor (DcR) 1, DcR2 and osteoprotegerin (OPG). While TRAIL has been extensively studied in the cancer field due to its ability to selectively induce apoptosis in transformed cell types, emerging clinical evidence points towards a role for TRAIL and its receptors in cardiac pathology. This article will highlight our current understanding of TRAIL and its receptors in normal and pathological conditions in the heart.
Collapse
Affiliation(s)
- Laurel A. Grisanti
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
| |
Collapse
|
25
|
Chi CC, Wu YW, Chao TH, Chen CC, Chen YJ, Cheng HM, Chiu HY, Chiu YW, Chung WH, Hsieh TY, Huang PH, Huang YH, Lin SH, Lin TH, Ueng KC, Wang CC, Wang YC, Wu NL, Jia-Yin Hou C, Tsai TF. 2022 Taiwanese Dermatological Association (TDA), Taiwanese Association for Psoriasis and Skin Immunology (TAPSI), and Taiwan Society of cardiology (TSOC) joint consensus recommendations for the management of psoriatic disease with attention to cardiovascular comorbidities. J Formos Med Assoc 2023; 122:442-457. [PMID: 36347733 DOI: 10.1016/j.jfma.2022.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 08/09/2022] [Accepted: 10/20/2022] [Indexed: 11/08/2022] Open
Abstract
Psoriatic disease is a chronic inflammatory disorder with skin and joint manifestations. Due to the persistent inflammatory state exhibited by patients with psoriasis, multiple systemic comorbidities occur more frequently in patients with psoriasis than in the general population, and the risk of cardiovascular (CV) diseases is significantly increased. As the pathophysiology of psoriatic disease is becoming better understood, the sharing of underlying pathogenic mechanisms between psoriatic and CV diseases is becoming increasingly apparent. Consequently, careful attention to CV comorbidities that already exist or may potentially develop is needed in the management of patients with psoriasis, particularly in the screening and primary prevention of CV disease and in treatment selection due to potential drug-drug and drug-disease interactions. Furthermore, as the use of effective biologic therapy and more aggressive oral systemic treatment for psoriatic disease is increasing, consideration of the potential positive and negative effects of oral and biologic treatment on CV disease is warranted. To improve outcomes and quality of care for patients with psoriasis, the Taiwanese Dermatological Association, the Taiwanese Association for Psoriasis and Skin Immunology, and the Taiwan Society of Cardiology established a Task Force of 20 clinicians from the fields of dermatology, cardiology, and rheumatology to jointly develop consensus expert recommendations for the management of patients with psoriatic disease with attention to CV comorbidities.
Collapse
Affiliation(s)
- Ching-Chi Chi
- Department of Dermatology, Chang Gung Memorial Hospital-Linkou, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yen-Wen Wu
- Division of Cardiology, Cardiovascular Medical Center, Far Eastern Memorial Hospital, New Taipei City, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ting-Hsing Chao
- Division of Cardiology, Department of Internal Medicine, National Cheng Kung University Hospital, Tainan, Taiwan; College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chih-Chiang Chen
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Dermatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yi-Ju Chen
- Department of Dermatology, Taichung Veterans General Hospital, Taichung, Taiwan; College of Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Hao-Min Cheng
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Center for Evidence-Based Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Hsien-Yi Chiu
- Department of Dermatology, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu, Taiwan; College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Wei Chiu
- Division of Cardiology, Cardiovascular Medical Center, Far Eastern Memorial Hospital, New Taipei City, Taiwan; Department of Computer Science and Engineering, Yuan Ze University, Taoyuan, Taiwan
| | - Wen-Hung Chung
- Department of Dermatology, Chang Gung Memorial Hospital-Linkou, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Tsu-Yi Hsieh
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Po-Hsun Huang
- Division of Cardiology, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Cardiovascular Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yu-Huei Huang
- Department of Dermatology, Chang Gung Memorial Hospital-Linkou, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Shang-Hung Lin
- College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Dermatology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Tsung-Hsien Lin
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Kwo-Chang Ueng
- Division of Cardiology, Department of Internal Medicine, Chung-Shan Medical University Hospital, Taichung, Taiwan; College of Medicine, Chung-Shan Medical University, Taichung, Taiwan
| | - Chun-Chieh Wang
- College of Medicine, Chang Gung University, Taoyuan, Taiwan; Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital-Linkou, Taoyuan, Taiwan
| | - Yu-Chen Wang
- Division of Cardiology, Department of Internal Medicine, Asia University Hospital, Taichung, Taiwan; Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
| | - Nan-Lin Wu
- Department of Dermatology, MacKay Memorial Hospital, Taipei, Taiwan; Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
| | - Charles Jia-Yin Hou
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan; Division of Cardiology, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan.
| | - Tsen-Fang Tsai
- College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Dermatology, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
26
|
Aryee E, Ozkan B, Ndumele CE. Heart failure and obesity: The latest pandemic. Prog Cardiovasc Dis 2023:S0033-0620(23)00051-8. [PMID: 37236574 DOI: 10.1016/j.pcad.2023.05.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 05/14/2023] [Indexed: 05/28/2023]
Abstract
The marked rise in rates of obesity, which is most prominent among individuals from socio-economically disadvantaged circumstances, has been a powerful contributor to the rising prevalence of heart failure (HF). Obesity has indirect effects on HF through the development of several metabolic risk factors, but also direct adverse effects on the myocardium. Obesity contributes to myocardial dysfunction and HF risk through multiple mechanisms, including hemodynamic changes, neurohormonal activation, endocrine and paracrine effects of adipose tissue, ectopic fat deposition and lipotoxicity. These processes principally result in concentric left ventricular (LV) remodeling and predominant increase in the risk for HF with preserved LV ejection fraction (HFpEF). Despite the excess risk for HF associated with obesity, there is a well described obesity paradox in which individuals with overweight and grade I obesity have better survival than those with normal weight and overweight. Despite the obesity paradox among individuals with prevalent HF, intentional weight loss is associated with improvements in metabolic risk factors, myocardial dysfunction and quality of life, in a dose-response fashion. In matched observational studies of bariatric surgery patients, marked weight loss is associated with decreased risk for developing HF, as well as improved cardiovascular disease (CVD) outcomes in those with existing HF. Ongoing clinical trials using powerful new obesity pharmacotherapies in individuals in with obesity and CVD may provide definitive information regarding the cardiovascular impact of weight loss. Given the powerful contribution of rising obesity prevalence to rates of HF, addressing these intertwined epidemics is a clinical and public health priority.
Collapse
Affiliation(s)
- Ebenezer Aryee
- Division of Cardiology, Ciccarone Center for the Prevention of Cardiovascular Diseases, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America; Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States of America
| | - Bige Ozkan
- Division of Cardiology, Ciccarone Center for the Prevention of Cardiovascular Diseases, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America; Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States of America
| | - Chiadi E Ndumele
- Division of Cardiology, Ciccarone Center for the Prevention of Cardiovascular Diseases, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America; Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States of America.
| |
Collapse
|
27
|
Messer EK, Meyer AL, Klaeske K, Sieg F, Eifert S, Schmiedel D, Haunschild J, Jawad K, Saeed D, Hildebrandt L, Borger MA, Dieterlen MT. The Impact of Obesity on T and NK Cells after LVAD Implantation. Obes Facts 2023; 16:364-373. [PMID: 37232004 PMCID: PMC10427956 DOI: 10.1159/000530174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 03/06/2023] [Indexed: 05/27/2023] Open
Abstract
INTRODUCTION Infections are a major problem after left ventricular assist device (LVAD) implantation that affects morbidity, mortality, and the quality of life. Obesity often increases the risk for infection. In the cohort of LVAD patients, it is unknown if obesity affects the immunological parameters involved in viral defense. Therefore, this study investigated whether overweight or obesity affects immunological parameters such as CD8+ T cells and natural killer (NK) cells. METHODS Immune cell subsets of CD8+ T cells and NK cells were compared between normal-weight (BMI 18.5-24.9 kg/m2, n = 17), pre-obese (BMI 25.0-29.9 kg/m2, n = 24), and obese (BMI ≥30 kg/m2, n = 27) patients. Cell subsets and cytokine serum levels were quantified prior to LVAD implantation and at 3, 6, and 12 months after LVAD implantation. RESULTS At the end of the first postoperative year, obese patients (31.8% ± 2.1%) had a lower proportion of CD8+ T cells than normal-weight patients (42.4% ± 4.1%; p = 0.04), and the percentage of CD8+ T cells was negatively correlated with BMI (p = 0.03; r = -0.329). The proportion of circulating NK cells increased after LVAD implantation patients in normal-weight (p = 0.01) and obese patients (p < 0.01). Patients with pre-obesity showed a delayed increase (p < 0.01) 12 months after LVAD implantation. Further, obese patients showed an increase in the percentage of CD57+ NK cells after 6 and 12 months (p = 0.01) of treatment, higher proportions of CD56bright NK cells (p = 0.01), and lower proportions of CD56dim/neg NK cells (p = 0.03) 3 months after LVAD implantation than normal-weight patients. The proportion of CD56bright NK cells positively correlated with BMI (p < 0.01, r = 0.403) 1 year after LVAD implantation. CONCLUSIONS This study documented that obesity affects CD8+ T cells and subsets of NK cells in patients with LVAD in the first year after LVAD implantation. Lower proportions of CD8+ T cells and CD56dim/neg NK cells and higher proportion of CD56bright NK cells were detected in obese but not in pre-obese and normal-weight LVAD patients during the first year after LVAD implantation. The induced immunological imbalance and phenotypic changes of T and NK cells may influence viral and bacterial immunoreactivity.
Collapse
Affiliation(s)
- Eva Katharina Messer
- Heart Center, Department of Cardiac Surgery, HELIOS Clinic, University Hospital Leipzig, Leipzig, Germany
| | - Anna Lassia Meyer
- Heart Center, Department of Cardiac Surgery, HELIOS Clinic, University Hospital Leipzig, Leipzig, Germany
| | - Kristin Klaeske
- Heart Center, Department of Cardiac Surgery, HELIOS Clinic, University Hospital Leipzig, Leipzig, Germany
| | - Franz Sieg
- Heart Center, Department of Cardiac Surgery, HELIOS Clinic, University Hospital Leipzig, Leipzig, Germany
| | - Sandra Eifert
- Heart Center, Department of Cardiac Surgery, HELIOS Clinic, University Hospital Leipzig, Leipzig, Germany
| | - Dominik Schmiedel
- Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Josephina Haunschild
- Heart Center, Department of Cardiac Surgery, HELIOS Clinic, University Hospital Leipzig, Leipzig, Germany
| | - Khalil Jawad
- Heart Center, Department of Cardiac Surgery, HELIOS Clinic, University Hospital Leipzig, Leipzig, Germany
| | - Diyar Saeed
- Heart Center, Department of Cardiac Surgery, HELIOS Clinic, University Hospital Leipzig, Leipzig, Germany
| | - Lea Hildebrandt
- Heart Center, Department of Cardiac Surgery, HELIOS Clinic, University Hospital Leipzig, Leipzig, Germany
| | - Michael Andrew Borger
- Heart Center, Department of Cardiac Surgery, HELIOS Clinic, University Hospital Leipzig, Leipzig, Germany
| | - Maja-Theresa Dieterlen
- Heart Center, Department of Cardiac Surgery, HELIOS Clinic, University Hospital Leipzig, Leipzig, Germany
| |
Collapse
|
28
|
Lin Z. More than a key-the pathological roles of SARS-CoV-2 spike protein in COVID-19 related cardiac injury. SPORTS MEDICINE AND HEALTH SCIENCE 2023:S2666-3376(23)00024-0. [PMID: 37361919 PMCID: PMC10062797 DOI: 10.1016/j.smhs.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/13/2023] [Accepted: 03/22/2023] [Indexed: 06/28/2023] Open
Abstract
Cardiac injury is common in hospitalized coronavirus disease 2019 (COVID-19) patients and cardiac abnormalities have been observed in a significant number of recovered COVID-19 patients, portending long-term health issues for millions of infected individuals. To better understand how Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2, CoV-2 for short) damages the heart, it is critical to fully comprehend the biology of CoV-2 encoded proteins, each of which may play multiple pathological roles. For example, CoV-2 spike glycoprotein (CoV-2-S) not only engages angiotensin converting enzyme II (ACE2) to mediate virus infection but also directly activates immune responses. In this work, the goal is to review the known pathological roles of CoV-2-S in the cardiovascular system, thereby shedding lights on the pathogenesis of COVID-19 related cardiac injury.
Collapse
Affiliation(s)
- Zhiqiang Lin
- Masonic Medical Research Institute, 2150 Bleecker Street, Utica, NY, 13501, USA
| |
Collapse
|
29
|
Lodewijks F, McKinsey TA, Robinson EL. Fat-to-heart crosstalk in health and disease. Front Genet 2023; 14:990155. [PMID: 37035745 PMCID: PMC10079901 DOI: 10.3389/fgene.2023.990155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 03/13/2023] [Indexed: 04/11/2023] Open
Abstract
According to the latest World Health Organization statistics, cardiovascular disease (CVD) is one of the leading causes of death globally. Due to the rise in the prevalence of major risk factors, such as diabetes mellitus and obesity, the burden of CVD is expected to worsen in the decades to come. Whilst obesity is a major and consistent risk factor for CVD, the underlying pathological molecular communication between peripheral fat depots and the heart remains poorly understood. Adipose tissue (AT) is a major endocrine organ in the human body, with composite cells producing and secreting hormones, cytokines, and non-coding RNAs into the circulation to alter the phenotype of multiple organs, including the heart. Epicardial AT (EAT) is an AT deposit that is in direct contact with the myocardium and can therefore influence cardiac function through both mechanical and molecular means. Moreover, resident and recruited immune cells comprise an important adipose cell type, which can create a pro-inflammatory environment in the context of obesity, potentially contributing to systemic inflammation and cardiomyopathies. New mechanisms of fat-to-heart crosstalk, including those governed by non-coding RNAs and extracellular vesicles, are being investigated to deepen the understanding of this highly common risk factor. In this review, molecular crosstalk between AT and the heart will be discussed, with a focus on endocrine and paracrine signaling, immune cells, inflammatory cytokines, and inter-organ communication through non-coding RNAs.
Collapse
Affiliation(s)
- Fleur Lodewijks
- Department of Pathology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands
| | - Timothy A. McKinsey
- Department of Medicine, Division of Cardiology and Consortium for Fibrosis Research and Translation, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Emma L. Robinson
- Department of Medicine, Division of Cardiology and Consortium for Fibrosis Research and Translation, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
30
|
Perin EC, Borow KM, Henry TD, Mendelsohn FO, Miller LW, Swiggum E, Adler ED, Chang DH, Fish RD, Bouchard A, Jenkins M, Yaroshinsky A, Hayes J, Rutman O, James CW, Rose E, Itescu S, Greenberg B. Randomized Trial of Targeted Transendocardial Mesenchymal Precursor Cell Therapy in Patients With Heart Failure. J Am Coll Cardiol 2023; 81:849-863. [PMID: 36858705 DOI: 10.1016/j.jacc.2022.11.061] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/18/2022] [Accepted: 11/28/2022] [Indexed: 03/03/2023]
Abstract
BACKGROUND Mesenchymal precursor cells (MPCs) are allogeneic, immunoselected cells with anti-inflammatory properties that could improve outcomes in heart failure with reduced ejection fraction (HFrEF). OBJECTIVES This study assessed the efficacy and safety of MPCs in patients with high-risk HFrEF. METHODS This randomized, double-blind, multicenter study evaluated a single transendocardial administration procedure of MPCs or sham-control in 565 intention-to-treat patients with HFrEF on guideline-directed therapies. The primary endpoint was time-to-recurrent events caused by decompensated HFrEF or successfully resuscitated symptomatic ventricular arrhythmias. Hierarchical secondary endpoints included components of the primary endpoint, time-to-first terminal cardiac events, and all-cause death. Separate and composite major adverse cardiovascular events analyses were performed for myocardial infarction or stroke or cardiovascular death. Baseline and 12-month echocardiography was performed. Baseline plasma high-sensitivity C-reactive protein levels were evaluated for disease severity. RESULTS The primary endpoint was similar between treatment groups (HR: 1.17; 95% CI: 0.81-1.69; P = 0.41) as were terminal cardiac events and secondary endpoints. Compared with control subjects, MPCs increased left ventricular ejection fraction from baseline to 12 months, especially in patients with inflammation. MPCs decreased the risk of myocardial infarction or stroke by 58% (HR: 0.42; 95% CI: 0.23-0.76) and the risk of 3-point major adverse cardiovascular events by 28% (HR: 0.72; 95% CI: 0.51-1.03) in the analysis population (n = 537), and by 75% (HR: 0.25; 95% CI: 0.09-0.66) and 38% (HR: 0.62; 95% CI: 0.39-1.00), respectively, in patients with inflammation (baseline high-sensitivity C-reactive protein ≥2 mg/L). CONCLUSIONS The primary and secondary endpoints of the trial were negative. Positive signals in prespecified, and post hoc exploratory analyses suggest MPCs may improve outcomes, especially in patients with inflammation.
Collapse
Affiliation(s)
- Emerson C Perin
- Center for Clinical Research, The Texas Heart Institute, Houston, Texas, USA.
| | | | - Timothy D Henry
- Department of Cardiology, The Carl and Edyth Lindner Center for Research and Education, The Christ Hospital, Cincinnati, Ohio, USA
| | - Farrell O Mendelsohn
- Princeton Baptist Medical Center, Cardiology PC Research, Birmingham, Alabama, USA
| | - Leslie W Miller
- Department of Cardiology, Morton Plant Hospital, Clearwater, Florida, USA
| | - Elizabeth Swiggum
- Division of Cardiology, Royal Jubilee Hospital and Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Eric D Adler
- Division of Cardiology, Department of Medicine, University of California-San Diego, La Jolla, California, USA
| | - David H Chang
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - R David Fish
- Center for Clinical Research, The Texas Heart Institute, Houston, Texas, USA
| | - Alain Bouchard
- Princeton Baptist Medical Center, Cardiology PC Research, Birmingham, Alabama, USA
| | - Margaret Jenkins
- Global Pharma Consulting Pty, Ltd, Melbourne, Victoria, Australia
| | | | | | | | | | - Eric Rose
- Mesoblast, Ltd, Melbourne, Victoria, Australia
| | | | - Barry Greenberg
- Division of Cardiology, University of California-San Diego, La Jolla, California, USA
| |
Collapse
|
31
|
Ndzie Noah ML, Adzika GK, Mprah R, Adekunle AO, Koda S, Adu-Amankwaah J, Xu Y, Kanwore K, Wowui PI, Sun H. Estrogen downregulates CD73/adenosine axis hyperactivity via adaptive modulation PI3K/Akt signaling to prevent myocarditis and arrhythmias during chronic catecholamines stress. Cell Commun Signal 2023; 21:41. [PMID: 36823590 PMCID: PMC9948346 DOI: 10.1186/s12964-023-01052-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/15/2023] [Indexed: 02/25/2023] Open
Abstract
BACKGROUND During myocardial damage, the sex hormone estrogen and CD73, the main enzyme that converts AMP into adenosine, are cardioprotective molecules. However, it is unclear how these two molecules work together to provide cardioprotection. The current study aimed to elucidate the interaction between estrogen and CD73 under chronic stress. METHODS Ovariectomy and SHAM operations were done on FVB wild-type (WT) female mice. Two weeks after the operation, the mice were treated with daily isoproterenol (10 mg/kg/day) injections for 14 days. The effect of E2 on relevant cardiac injury biomarkers (BNP, ANP), myocardial morphology (cardiomyocyte surface area), electrocardiography, CD73 protein expression and activity, and macrophage (CD86 + and CD206 +) infiltrations were assessed. In vitro, H9C2 cells were treated with 1 nM of estrogen and 10 mM APCP (CD73 inhibitor α, β-methylene adenosine-5'-diphosphate), 10 µM isoproterenol and 20 µm LY294002 (PI3K inhibitor) for 24 h and western blot was done to elucidate the mechanism behind the effect of estrogen on the CD73/adenosine axis. RESULTS Estrogen deficiency during chronic catecholamine stress caused myocardial injury, thereby triggering the hyperactivity of the CD73/adenosine axis, which aggravated myocarditis, adverse remodeling, and arrhythmias. However, estrogen normalizes CD73/Adenosine axis via the upregulation of PI3K/Akt pathways to prevent adverse outcomes during stress. In vivo results showed that the inhibition of PI3K significantly decreased PI3K/Akt pathways while upregulating the CD73/adenosine axis and apoptosis. CONCLUSION Estrogen's pleiotropy cardioprotection mechanism during stress includes its normalization of the CD73/Adenosine axis via the PI3K/Akt pathway. Video Abstract.
Collapse
Affiliation(s)
- Marie Louise Ndzie Noah
- Department of Physiology, Xuzhou Medical University, 209 Tongshan Road, XuzhouJiangsu, 221004, China
| | - Gabriel Komla Adzika
- Department of Physiology, Xuzhou Medical University, 209 Tongshan Road, XuzhouJiangsu, 221004, China
| | - Richard Mprah
- Department of Physiology, Xuzhou Medical University, 209 Tongshan Road, XuzhouJiangsu, 221004, China
| | | | - Stephane Koda
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, China
| | - Joseph Adu-Amankwaah
- Department of Physiology, Xuzhou Medical University, 209 Tongshan Road, XuzhouJiangsu, 221004, China
| | - Yaxin Xu
- Department of Physiology, Xuzhou Medical University, 209 Tongshan Road, XuzhouJiangsu, 221004, China
| | - Kouminin Kanwore
- Public Experimental Research Center, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou, China
| | - Prosperl Ivette Wowui
- Department of Physiology, Xuzhou Medical University, 209 Tongshan Road, XuzhouJiangsu, 221004, China
| | - Hong Sun
- Department of Physiology, Xuzhou Medical University, 209 Tongshan Road, XuzhouJiangsu, 221004, China.
| |
Collapse
|
32
|
Ushakov A, Ivanchenko V, Gagarina A. Heart Failure And Type 2 Diabetes Mellitus: Neurohumoral, Histological And Molecular Interconnections. Curr Cardiol Rev 2023; 19:e170622206132. [PMID: 35718961 PMCID: PMC10201898 DOI: 10.2174/1573403x18666220617121144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/27/2022] [Accepted: 05/04/2022] [Indexed: 11/22/2022] Open
Abstract
Heart failure (HF) is a global healthcare burden and a leading cause of morbidity and mortality worldwide. Type 2 diabetes mellitus (T2DM) appears to be one of the major risk factors that significantly worsen HF prognosis and increase the risk of fatal cardiovascular outcomes. Despite a great knowledge of pathophysiological mechanisms involved in HF development and progression, hospitalization rates in patients with HF and concomitant T2DM remain elevated. In this review, we discuss the complex interplay between systemic neurohumoral regulation and local cardiac mechanisms participating in myocardial remodeling and HF development in T2DM with special attention to cardiomyocyte energy metabolism, mitochondrial function and calcium metabolism, cardiomyocyte hypertrophy and death, extracellular matrix remodeling.
Collapse
Affiliation(s)
- A. Ushakov
- Department of Internal Medicine 1, Medical Academy named after S.I. Georgievsky of V.I. Vernadsky Crimean Federal University, Simferopol, Russian Federation
| | - V. Ivanchenko
- Department of Internal Medicine 1, Medical Academy named after S.I. Georgievsky of V.I. Vernadsky Crimean Federal University, Simferopol, Russian Federation
| | - A. Gagarina
- Department of Internal Medicine 1, Medical Academy named after S.I. Georgievsky of V.I. Vernadsky Crimean Federal University, Simferopol, Russian Federation
| |
Collapse
|
33
|
Trang NN, Lee TW, Kao YH, Chao TF, Lee TI, Chen YJ. Ketogenic diet modulates cardiac metabolic dysregulation in streptozocin-induced diabetic rats. J Nutr Biochem 2023; 111:109161. [PMID: 36184012 DOI: 10.1016/j.jnutbio.2022.109161] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 11/27/2022]
Abstract
The ketogenic diet (KD) might improve cardiac function in diabetic cardiomyopathy, but the mechanisms remain unclear. This study investigated the effects of KD on myocardial fatty acid (FA), glucose, and ketone metabolism in diabetic cardiomyopathy. Echocardiograms, biochemistry, and micro-positron emission tomography were performed to evaluate cardiac function and glucose uptake in control rats and streptozotocin-induced diabetes mellitus (DM) rats with normal diet (ND) or KD for 6 weeks. Histopathology, adenosine triphosphate measurement, and Western blot were performed in the ventricular myocytes to analyze fibrosis, FA, ketone body, and glucose utilization. The ND-fed DM rats exhibited impaired left ventricular systolic function and increased chamber dilatation, whereas control and KD-fed DM rats did not. The KD reduced myocardial fibrosis and apoptosis in the DM rats. Myocardial glucose uptake in the micro-positron emission tomography was similar between ND-fed DM rats and KD-fed DM rats and was substantially lower than the control rats. Compared with the control rats, ND-fed DM rats had increased phosphorylation of acetyl CoA carboxylase and higher expressions of CD-36, carnitine palmitoyltransferase-1β, tumor necrosis factor-α, interleukin-1β, interleukin6, PERK, and e-IF2α as well as more myocardial fibrosis and apoptosis (assessed by Bcl-2, BAX, and caspase-3 expression); these increases were attenuated in the KD-fed DM rats. Moreover, ND-fed DM rats had significantly lower myocardial adenosine triphosphate, BHB, and OXCT1 levels than the control and KD-fed DM rats. The KD may improve the condition of diabetic cardiomyopathy by suppressing FA metabolism, increasing ketone utilization, and decreasing endoplasmic reticulum stress and inflammation.
Collapse
Affiliation(s)
| | - Ting-Wei Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taiwan; Division of Endocrinology and Metabolism, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yu-Hsun Kao
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University Taipei, Taiwan
| | - Tze-Fan Chao
- Department of Medicine, Heart Rhythm Center and Division of Cardiology, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Clinical Medicine and Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Ting-I Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taiwan; Division of Endocrinology and Metabolism, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| | - Yi-Jen Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Cardiovascular Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
34
|
Crorkin P, Hao S, Ferreri NR. Responses to Ang II (Angiotensin II), Salt Intake, and Lipopolysaccharide Reveal the Diverse Actions of TNF-α (Tumor Necrosis Factor-α) on Blood Pressure and Renal Function. Hypertension 2022; 79:2656-2670. [PMID: 36129177 PMCID: PMC9649876 DOI: 10.1161/hypertensionaha.122.19464] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
TNF-α (tumor necrosis factor-alpha) is the best known as a proinflammatory cytokine; yet, this cytokine also has important immunomodulatory and regulatory functions. As the effects of TNF-α on immune system function were being revealed, the spectrum of its activities appeared in conflict with each other before investigators defined the settings and mechanisms by which TNF-α contributed to both host defense and chronic inflammation. These effects reflect self-protective mechanisms that may become harmful when dysregulated. The paradigm of physiological and pathophysiological effects of TNF-α has since been uncovered in the lung, colon, and kidney where its role has been identified in pulmonary edema, electrolyte reabsorption, and blood pressure regulation, respectively. Recent studies on the prohypertensive and inflammatory effects of TNF-α in the cardiovascular system juxtaposed to those related to NaCl and blood pressure homeostasis, the response of the kidney to lipopolysaccharide, and protection against bacterial infections are helping define the mechanisms by which TNF-α modulates distinct functions within the kidney. This review discusses how production of TNF-α by renal epithelial cells may contribute to regulatory mechanisms that not only govern electrolyte excretion and blood pressure homeostasis but also maintain the appropriate local hypersalinity environment needed for optimizing the innate immune response to bacterial infections in the kidney. It is possible that the wide range of effects mediated by TNF-α may be related to severity of disease, amount of inflammation and TNF-α levels, and the specific cell types that produce this cytokine, areas that remain to be investigated further.
Collapse
Affiliation(s)
- Patrick Crorkin
- Department of Pharmacology, New York Medical College, Valhalla, NY
| | - Shoujin Hao
- Department of Pharmacology, New York Medical College, Valhalla, NY
| | | |
Collapse
|
35
|
Liao J, Su X, Wang M, Jiang L, Chen X, Liu Z, Tang G, Zhou L, Li H, Lv X, Yin J, Wang H, Wang Y. The E3 ubiquitin ligase CHIP protects against sepsis-induced myocardial dysfunction by inhibiting NF-κB-mediated inflammation via promoting ubiquitination and degradation of karyopherin-α 2. Transl Res 2022; 255:50-65. [PMID: 36400309 DOI: 10.1016/j.trsl.2022.11.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/06/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022]
Abstract
Cardiac dysfunction has been recognized as a major contributor to mortality in sepsis, which is closely associated with inflammatory reactions. The carboxy terminus of Hsc70-interacting protein (CHIP), a U-box E3 ubiquitin ligase, defends against cardiac injury caused by other factors, but its role in sepsis-induced cardiac dysfunction has yet to be determined. The present study was designed to investigate the effects of CHIP on cardiac dysfunction caused by sepsis and the molecular mechanisms underlying these processes. We discovered that the CHIP level decreased gradually in the heart at different time points after septic model construction. The decline in CHIP expression of lipopolysaccharide (LPS)-stimulated cardiomyocytes was related to c-Jun activation that inhibited the transcription of CHIP. Functional biology experiments indicated that CHIP bound directly to karyopherin-α 2 (KPNA2) and promoted its degradation through polyubiquitination in cardiomyocytes. CHIP overexpression in cardiomyocytes obviously inhibited LPS-initiated release of TNF-α and IL-6 by promoting KPNA2 degradation, reducing NF-κB translocation into the nucleus. Consistent with the in vitro results, data obtained from animal experiments indicated that septic transgenic mice with heart-specific CHIP overexpression showed a weaker proinflammatory response and reduced cardiac dysfunction than septic control mice. Furthermore, we found that the therapeutic effect of compound YL-109 on cardiac dysfunction in septic mice was due to the upregulation of myocardial CHIP expression. These findings demonstrated that sepsis-initiated the activation of c-Jun suppressed CHIP transcription. CHIP directly promoted ubiquitin-mediated degradation of KPNA2, which reduced the production of proinflammatory cytokines by inhibiting the translocation of NF-κB from the cytoplasm into the nucleus in myocardium, thereby attenuating sepsis-induced cardiac dysfunction.
Collapse
Affiliation(s)
- Jia Liao
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Xingyu Su
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Miao Wang
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Lucen Jiang
- Department of Pathology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Xi Chen
- Department of Cardiology, Zhuhai People's Hospital Affiliated with Jinan University, Zhuhai, Guangdong, China
| | - Zixi Liu
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Guoqing Tang
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Li Zhou
- Department of Chemistry, Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, Georgia
| | - Hongmei Li
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Xiuxiu Lv
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Jun Yin
- Department of Chemistry, Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, Georgia
| | - Huadong Wang
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Yiyang Wang
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, Guangdong, China.
| |
Collapse
|
36
|
Therapeutic Utility and Adverse Effects of Biologic Disease-Modifying Anti-Rheumatic Drugs in Inflammatory Arthritis. Int J Mol Sci 2022; 23:ijms232213913. [PMID: 36430392 PMCID: PMC9692587 DOI: 10.3390/ijms232213913] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/03/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Targeting specific pathologic pro-inflammatory cytokines or related molecules leads to excellent therapeutic effects in inflammatory arthritis, including rheumatoid arthritis, ankylosing spondylitis, and psoriatic arthritis. Most of these agents, known as biologic disease-modifying anti-rheumatic drugs (bDMARDs), are produced in live cell lines and are usually monoclonal antibodies. Several types of monoclonal antibodies target different pro-inflammatory cytokines, such as tumor necrosis factor-α, interleukin (IL)-17A, IL-6, and IL-23/12. Some bDMARDs, such as rituximab and abatacept, target specific cell-surface molecules to control the inflammatory response. The therapeutic effects of these bDMARDs differ in different forms of inflammatory arthritis and are associated with different adverse events. In this article, we summarize the therapeutic utility and adverse effects of bDMARDs and suggest future research directions for developing bDMARDs.
Collapse
|
37
|
Signaling Pathways in Inflammation and Cardiovascular Diseases: An Update of Therapeutic Strategies. IMMUNO 2022. [DOI: 10.3390/immuno2040039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Inflammatory processes represent a pivotal element in the development and complications of cardiovascular diseases (CVDs). Targeting these processes can lead to the alleviation of cardiomyocyte (CM) injury and the increase of reparative mechanisms. Loss of CMs from inflammation-associated cardiac diseases often results in heart failure (HF). Evidence of the crosstalk between nuclear factor-kappa B (NF-κB), Hippo, and mechanistic/mammalian target of rapamycin (mTOR) has been reported in manifold immune responses and cardiac pathologies. Since these signaling cascades regulate a broad array of biological tasks in diverse cell types, their misregulation is responsible for the pathogenesis of many cardiac and vascular disorders, including cardiomyopathies and atherosclerosis. In response to a myriad of proinflammatory cytokines, which induce reactive oxygen species (ROS) production, several molecular mechanisms are activated within the heart to inaugurate the structural remodeling of the organ. This review provides a global landscape of intricate protein–protein interaction (PPI) networks between key constituents of NF-κB, Hippo, and mTOR signaling pathways as quintessential targetable candidates for the therapy of cardiovascular and inflammation-related diseases.
Collapse
|
38
|
DeJesus JE, Wen JJ, Radhakrishnan R. Cytokine Pathways in Cardiac Dysfunction following Burn Injury and Changes in Genome Expression. J Pers Med 2022; 12:jpm12111876. [PMID: 36579591 PMCID: PMC9696755 DOI: 10.3390/jpm12111876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/28/2022] [Accepted: 11/05/2022] [Indexed: 11/12/2022] Open
Abstract
In 2016, an estimated 486,000 individuals sustained burn injuries requiring medical attention. Severe burn injuries lead to a persistent, hyperinflammatory response that may last up to 2 years. The persistent release of inflammatory mediators contributes to end-organ dysfunction and changes in genome expression. Burn-induced cardiac dysfunction may lead to heart failure and changes in cardiac remodeling. Cytokines promote the inflammatory cascade and promulgate mechanisms resulting in cardiac dysfunction. Here, we review the mechanisms by which TNFα, IL-1 beta, IL-6, and IL-10 cause cardiac dysfunction in post-burn injuries. We additionally review changes in the cytokine transcriptome caused by inflammation and burn injuries.
Collapse
|
39
|
Uhl FE, Vanherle L, Meissner A. Cystic fibrosis transmembrane regulator correction attenuates heart failure-induced lung inflammation. Front Immunol 2022; 13:928300. [PMID: 35967318 PMCID: PMC9365932 DOI: 10.3389/fimmu.2022.928300] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/05/2022] [Indexed: 11/13/2022] Open
Abstract
Heart failure (HF) affects 64 million people worldwide. Despite advancements in prevention and therapy, quality of life remains poor for many HF patients due to associated target organ damage. Pulmonary manifestations of HF are well-established. However, difficulties in the treatment of HF patients with chronic lung phenotypes remain as the underlying patho-mechanistic links are still incompletely understood. Here, we aim to investigate the cystic fibrosis transmembrane regulator (CFTR) involvement in lung inflammation during HF, a concept that may provide new mechanism-based therapies for HF patients with pulmonary complications. In a mouse model of HF, pharmacological CFTR corrector therapy (Lumacaftor (Lum)) was applied systemically or lung-specifically for 2 weeks, and the lungs were analyzed using histology, flow cytometry, western blotting, and qPCR. Experimental HF associated with an apparent lung phenotype characterized by vascular inflammation and remodeling, pronounced tissue inflammation as evidenced by infiltration of pro-inflammatory monocytes, and a reduction of pulmonary CFTR+ cells. Moreover, the elevation of a classically-activated phenotype of non-alveolar macrophages coincided with a cell-specific reduction of CFTR expression. Pharmacological correction of CFTR with Lum mitigated the HF-induced downregulation of pulmonary CFTR expression and increased the proportion of CFTR+ cells in the lung. Lum treatment diminished the HF-associated elevation of classically-activated non-alveolar macrophages, while promoting an alternatively-activated macrophage phenotype within the lungs. Collectively, our data suggest that downregulation of CFTR in the HF lung extends to non-alveolar macrophages with consequences for tissue inflammation and vascular structure. Pharmacological CFTR correction possesses the capacity to alleviate HF-associated lung inflammation.
Collapse
Affiliation(s)
- Franziska E. Uhl
- Department of Experimental Medical Science, Lund University, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Lotte Vanherle
- Department of Experimental Medical Science, Lund University, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Anja Meissner
- Department of Experimental Medical Science, Lund University, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
- Department of Physiology, Institute of Theoretical Medicine, Medical Faculty, University of Augsburg, Augsburg, Germany
- *Correspondence: Anja Meissner,
| |
Collapse
|
40
|
Cuthbert JJ, Ransome N, Clark AL. Re-defining iron deficiency in patients with heart failure. Expert Rev Cardiovasc Ther 2022; 20:667-681. [DOI: 10.1080/14779072.2022.2100349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- JJ Cuthbert
- Department of Cardiorespiratory Medicine, Centre for Clinical Sciences, Hull York Medical School, University of Hull, Kingston-Upon-Hull, East Riding of Yorkshire, UK
- Department of Cardiology, Hull University Teaching Hospital Trust, Castle Hill Hospital, Castle Road, Cottingham, Kingston-Upon-Hull, East Riding of Yorkshire, UK
| | - N Ransome
- Department of Haematology, York and Scarborough Teaching Hospitals NHS Trust, York, UK
| | - AL Clark
- Department of Cardiology, Hull University Teaching Hospital Trust, Castle Hill Hospital, Castle Road, Cottingham, Kingston-Upon-Hull, East Riding of Yorkshire, UK
| |
Collapse
|
41
|
Gropler MRF, Lipshultz SE, Wilkinson JD, Towbin JA, Colan SD, Canter CE, Lavine KJ, Simpson KE. Pediatric and adult dilated cardiomyopathy are distinguished by distinct biomarker profiles. Pediatr Res 2022; 92:206-215. [PMID: 34404929 DOI: 10.1038/s41390-021-01698-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 07/29/2021] [Accepted: 08/04/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Emerging evidence suggests that pediatric and adult dilated cardiomyopathy (DCM) represent distinct diseases. Few diagnostic tools exist for pediatric cardiologists to assess clinical status and prognosis. We hypothesized that pediatric DCM would have a unique biomarker profile compared to adult DCM and controls. METHODS We utilized a DNA aptamer array (SOMAScan) to compare biomarker profiles between pediatric and adult DCM. We simultaneously measured 1310 plasma proteins and peptides from 39 healthy children (mean age 3 years, interquartile range (IQR) 1-14), 39 ambulatory subjects with pediatric DCM (mean age 2.7 years, IQR 1-13), and 40 ambulatory adults with DCM (mean age 53 years, IQR 46-63). RESULTS Pediatric and adult DCM patients displayed distinct biomarker profiles, despite similar clinical characteristics. We identified 20 plasma peptides and proteins that were increased in pediatric DCM compared to age- and sex-matched controls. Unbiased multidimensionality reduction analysis suggested previously unrecognized heterogeneity among pediatric DCM subjects. Biomarker profile analysis identified four subgroups of pediatric DCM with distinguishing clinical characteristics. CONCLUSIONS These findings support the emerging concept that pediatric and adult DCM are distinct disease entities, signify the need to develop pediatric-specific biomarkers for disease prognostication, and challenge the paradigm that pediatric DCM should be viewed as a single disease. IMPACT Pediatric and adult DCM patients displayed distinct biomarker profiles, despite similar clinical characteristics and outcomes. Our findings suggest that pediatric DCM may be a heterogeneous disease with various sub-phenotypes, including differing biomarker profiles and clinical findings. These data provide prerequisite information for future prospective studies that validate the identified pediatric DCM biomarkers, address their diagnostic accuracy and prognostic significance, and explore the full extent of heterogeneity amongst pediatric DCM patients.
Collapse
Affiliation(s)
- Melanie R F Gropler
- Division of Pediatric Cardiology, Department of Pediatrics, University of Colorado Anschutz Medical center, Aurora, CO, USA
| | - Steven E Lipshultz
- Department of Pediatrics, University of Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY, USA
| | - James D Wilkinson
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Jeffrey A Towbin
- Division of Pediatric Cardiology, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Steven D Colan
- Department of Pediatric Cardiology, Boston Children's Hospital, Boston, MA, USA
| | - Charles E Canter
- Division of Pediatric Cardiology, Department of Pediatrics, Washington University School of Medicine, Saint Louis, MO, USA
| | - Kory J Lavine
- Division of Cardiology, Department of Medicine, Center for Cardiovascular Research, Washington University School of Medicine, Saint Louis, MO, USA
| | - Kathleen E Simpson
- Division of Pediatric Cardiology, Department of Pediatrics, University of Colorado Anschutz Medical center, Aurora, CO, USA.
| |
Collapse
|
42
|
Saleh ZT, Alraoush AT, Aqel AA, Shawashi TO, Chung M, Lennie TA. Sex Differences in the Association Between Inflammation and Event-Free Survival in Patients With Heart Failure. J Cardiovasc Nurs 2022; 37:386-393. [PMID: 37707972 PMCID: PMC8733054 DOI: 10.1097/jcn.0000000000000831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Heart failure (HF) is associated with chronic inflammation, which is adversely associated with survival. Although sex-related differences in inflammation have been described in patients with HF, whether sex-related differences in inflammation are associated with event-free survival has not been examined. AIM The aim of this study was to determine whether the association between inflammation as indicated by tumor necrosis factor-α and event-free survival differs between men and women with HF after controlling for demographic and clinical variables. METHOD This was a secondary analysis of data from 301 male (age, 61.0 ± 11.4 years) and 137 female (age, 60.3 ± 12.1 years) patients with HF. Serum levels of soluble tumor necrosis factor receptor 1 were used to indicate inflammatory status. Patients were grouped according to median split of soluble tumor necrosis factor receptor 1 level and sex into male with low inflammation (≤1820 pg/mL) (n = 158) or high inflammation (>1820 pg/mL) (n = 143), and female with low inflammation (n = 63) or high inflammation (n = 74). Cox regression models were run separately for men and women to determine whether inflammation contributed to differences in event-free survival between sexes with HF. RESULTS There were 84 male (27.9%) and 27 female (19.7%) patients who had an event. Event-free survival in women did not differ by the severity of inflammation in the Cox regression analysis. In contrast, men with high inflammation had 1.85 times higher risk for an event compared with men with low inflammation. CONCLUSION These data provide evidence that inflammation contributed to differences in event-free survival in men but not women with HF. Clinicians should be aware that men who have higher inflammation may be at a greater risk of HF or cardiac-related events than others with HF.
Collapse
Affiliation(s)
- Zyad T. Saleh
- School of Nursing, The University of Jordan, Queen Rania Street, Amman, Jordan 11942
| | - Ahmad T. Alraoush
- Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan 22110
| | - Ahmad A. Aqel
- School of Nursing, The University of Jordan, Queen Rania Street, Amman, Jordan 11942
| | - Tagreed O. Shawashi
- School of Nursing, The University of Jordan, Queen Rania Street, Amman, Jordan 11942
| | - Misook Chung
- College of Nursing, University of Kentucky, 315 College of Nursing Building, 751 Rose Street, Lexington, KY 40536
| | - Terry A. Lennie
- College of Nursing, University of Kentucky, 315 College of Nursing Building, 751 Rose Street, Lexington, KY 40536
| |
Collapse
|
43
|
Najjar RS, Knapp D, Wanders D, Feresin RG. Raspberry and blackberry act in a synergistic manner to improve cardiac redox proteins and reduce NF-κB and SAPK/JNK in mice fed a high-fat, high-sucrose diet. Nutr Metab Cardiovasc Dis 2022; 32:1784-1796. [PMID: 35487829 DOI: 10.1016/j.numecd.2022.03.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 11/20/2022]
Abstract
BACKGROUND AND AIMS Increased cardiac inflammation and oxidative stress are common features in obesity, and toll-like receptor (TLR)4 signaling is a key inflammatory pathway in this deleterious process. This study aimed to investigate whether berries could attenuate the detrimental effects of a high-fat, high-sucrose (HFHS) diet on the myocardium at the molecular level. METHODS AND RESULTS Eight-week-old male C57BL/6 mice consumed a low-fat, low-sucrose (LFLS) diet alone or supplemented with 10% blackberry (BL), 10% raspberry (RB) or 10% blackberry + raspberry (BL + RB) for four weeks. Animals were then switched to a HFHS diet for 24 weeks with or without berry supplementation or maintained on a LFLS control diet without berry supplementation. Left ventricles of the heart were isolated for protein and mRNA analysis. Berry consumption, particularly BL + RB reduced NADPH-oxidase (NOX)1 and NOX2 and increased catalase (CAT) and superoxide dismutase (SOD)2, expression while BL and RB supplementation alone was less efficacious. Downstream TLR4 signaling was attenuated mostly by both RB and BL + RB supplementation, while NF-κB pathway was attenuated by BL + RB supplementation. Stress-activated protein kinase (SAPK)/Jun amino-terminal kinase (JNK) was also attenuated by BL + RB supplementation, and reduced TNF-α transcription and protein expression was observed only with BL + RB supplementation. CONCLUSION The synergistic effects of BL + RB may reduce obesity-induced cardiac inflammation and oxidative stress to a greater extent than BL or RB alone.
Collapse
Affiliation(s)
- Rami S Najjar
- Department of Nutrition, Georgia State University, Atlanta, GA, USA
| | - Denise Knapp
- Department of Nutrition, Georgia State University, Atlanta, GA, USA; Department of Exercise Science and Sport Management, Kennesaw State University, Kennesaw, GA, USA
| | - Desiree Wanders
- Department of Nutrition, Georgia State University, Atlanta, GA, USA
| | - Rafaela G Feresin
- Department of Nutrition, Georgia State University, Atlanta, GA, USA.
| |
Collapse
|
44
|
Dong X, Han X, Zhang X, Li S, Li Z, Kang J, Jiang J, Ni S, Lu L, He Z, Huang H, Xian S, Yuan T, Yang Z, Long W, Wan Z. A Simplified Herbal Formula Improves Cardiac Function and Reduces Inflammation in Mice Through the TLR-Mediated NF-κB Signaling Pathway. Front Pharmacol 2022; 13:865614. [PMID: 35734399 PMCID: PMC9207450 DOI: 10.3389/fphar.2022.865614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 05/16/2022] [Indexed: 12/03/2022] Open
Abstract
Nuanxinkang tablet (NXK), a Chinese herbal formula, can improve heart function and quality of life in patients with chronic heart failure (CHF). However, the mechanisms of action of NXK are not fully understood. In this study, we investigated the effects of NXK on inflammation in the CHF mouse model. This model was established by transverse aortic constriction (TAC) and treated with NXK for 8 weeks. Then, the cardiac function and myocardial fibrosis were evaluated. The monocytes/macrophages were evaluated by immunofluorescence. The mRNA levels of IL-1β, IL-6, TNF-α, ICAM-1, and VCAM-1 were measured by quantitative real-time polymerase chain reaction (qRT-PCR), while TLR4, MyD88, NF-κB p65, P-IκBα, TLR2, TLR7 and TLR9 protein levels were evaluated by Western blot. The results showed that NXK improved the left ventricular ejection fraction (LVEF) and left ventricular end-systolic dimension, reversed myocardial fibrosis, and inhibited pro-inflammatory (CD11b + Ly6C+) monocytes/macrophages in the TAC mouse model. NXK also reduced the mRNA and protein levels of the above markers. Taken together, NXK improved heart function and reduced inflammation through the TLR-mediated NF-κB signaling pathway, suggesting that it might be used as an innovative treatment strategy for CHF.
Collapse
Affiliation(s)
- Xiaoming Dong
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaowei Han
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaojiao Zhang
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Sijing Li
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ziru Li
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jinhua Kang
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jialin Jiang
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shihao Ni
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lu Lu
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhiling He
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Cardiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Haoming Huang
- Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shaoxiang Xian
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Geriatrics, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Tianhui Yuan
- Department of Geriatrics, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhongqi Yang
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Geriatrics, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Zhongqi Yang, ; Wenjie Long, ; Zemin Wan,
| | - Wenjie Long
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Geriatrics, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Zhongqi Yang, ; Wenjie Long, ; Zemin Wan,
| | - Zemin Wan
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Zhongqi Yang, ; Wenjie Long, ; Zemin Wan,
| |
Collapse
|
45
|
Giannattasio S, Citarella A, Trocchianesi S, Filardi T, Morano S, Lenzi A, Ferretti E, Crescioli C. Cell-Target-Specific Anti-Inflammatory Effect of Empagliflozin: In Vitro Evidence in Human Cardiomyocytes. Front Mol Biosci 2022; 9:879522. [PMID: 35712355 PMCID: PMC9194473 DOI: 10.3389/fmolb.2022.879522] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 04/11/2022] [Indexed: 12/21/2022] Open
Abstract
The antidiabetic sodium–glucose cotransporter type 2 inhibitor (SGLT2i) empagliflozin efficiently reduces heart failure (HF) hospitalization and cardiovascular death in type 2 diabetes (T2D). Empagliflozin-cardioprotection likely includes anti-inflammatory effects, regardless glucose lowering, but the underlying mechanisms remain unclear. Inflammation is a primary event in diabetic cardiomyopathy (DCM) and HF development. The interferon (IFN)γ-induced 10-kDa protein (IP-10/CXCL10), a T helper 1 (Th1)-type chemokine, promotes cardiac inflammation, fibrosis, and diseases, including DCM, ideally representing a therapeutic target. This preliminary study aims to explore whether empagliflozin directly affects Th1-challenged human cardiomyocytes, in terms of CXCL10 targeting. To this purpose, empagliflozin dose–response curves were performed in cultured human cardiomyocytes maintained within a Th1-dominant inflammatory microenvironment (IFNγ/TNFα), and CXCL10 release with the intracellular IFNγ-dependent signaling pathway (Stat-1) was investigated. To verify possible drug–cell-target specificity, the same assays were run in human skeletal muscle cells. Empagliflozin dose dependently inhibited CXCL10 secretion (IC50 = 76,14 × 10-9 M) in association with Stat-1 pathway impairment only in Th1-induced human cardiomyocytes, suggesting drug-selective cell-type-targeting. As CXCL10 plays multifaceted functions in cardiac remodeling toward HF and currently there is no effective method to prevent it, these preliminary data might be hypothesis generating to open new scenarios in the translational approach to SGLT2i-dependent cardioprotection.
Collapse
Affiliation(s)
- Silvia Giannattasio
- Laboratory of Endocrine Research, Department of Movement, Human and Health Sciences, Section of Health Sciences, University of Rome “Foro Italico”, Rome, Italy
- Laboratory of Nutrigenetic and Nutrigenomic, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Anna Citarella
- Laboratory of Oncogemics, Department of Experimental Medicine, “Sapienza” University of Rome, Rome, Italy
| | - Sofia Trocchianesi
- Laboratory of Molecular Medicine “Alberto Gulino” Group, Department of Molecular Medicine, “Sapienza” University of Rome, Rome, Italy
| | - Tiziana Filardi
- Laboratory of Oncogemics, Department of Experimental Medicine, “Sapienza” University of Rome, Rome, Italy
| | - Susanna Morano
- Laboratory of Oncogemics, Department of Experimental Medicine, “Sapienza” University of Rome, Rome, Italy
| | - Andrea Lenzi
- Laboratory of Oncogemics, Department of Experimental Medicine, “Sapienza” University of Rome, Rome, Italy
| | - Elisabetta Ferretti
- Laboratory of Oncogemics, Department of Experimental Medicine, “Sapienza” University of Rome, Rome, Italy
- *Correspondence: Elisabetta Ferretti, ; Clara Crescioli,
| | - Clara Crescioli
- Laboratory of Endocrine Research, Department of Movement, Human and Health Sciences, Section of Health Sciences, University of Rome “Foro Italico”, Rome, Italy
- *Correspondence: Elisabetta Ferretti, ; Clara Crescioli,
| |
Collapse
|
46
|
Ding G, An J, Li L. MicroRNA-103a-3p enhances sepsis-induced acute kidney injury via targeting CXCL12. Bioengineered 2022; 13:10288-10298. [PMID: 35510354 PMCID: PMC9278413 DOI: 10.1080/21655979.2022.2062195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Acute kidney injury (AKI) is a common and fatal complication in inflammatory sepsis. Several microRNAs (miRNAs or miRs) have been identified to control sepsis. MiR-103a-3p has been reported to take part in the various inflammatory response. However, its role in AKI remains unclear. The present research aimed to explore the role and mechanisms of miR-103a-3p in AKI. Neurogenic sepsis mouse model and lipopolysaccharide-induced HK-2 and 293 cell models were established. The renal functions in each group of mice were measured. After evaluating the biological functions of C-X-C motif chemokine 12 (CXCL12) and miR-103a-3p on HK-2 and HEK-293 T cells, their interaction was determined. Detection of CXCL12 and apoptosis and inflammation-related factors in renal tissue was done. MiR-103a-3p was significantly repressed in the sepsis model, while CXCL12 was elevated. Furthermore, miR-103a-3p inversely controlled CXCL12. Knockdown of miR-103a-3p or overexpression of CXCL12 could significantly inhibit the progression of HK-2 and HEK293 cells, whereas elevated miR-103a-3p or knockdown of CXCL12 showed the opposite effects. Collectively, miR-103a-3p heightens renal cell damage caused by sepsis by targeting CXCL12.
Collapse
Affiliation(s)
- Gaihong Ding
- Department of Nephrology, Xuchang University Medical College, Xuchang City, Henan Province, China
| | - Jinhua An
- Department of Nephrology, Xuchang University Medical College, Xuchang City, Henan Province, China
| | - Luyao Li
- Department of Nephrology, Xuchang University Medical College, Xuchang City, Henan Province, China
| |
Collapse
|
47
|
Morris RM, Mortimer TO, O’Neill KL. Cytokines: Can Cancer Get the Message? Cancers (Basel) 2022; 14:cancers14092178. [PMID: 35565306 PMCID: PMC9103018 DOI: 10.3390/cancers14092178] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/24/2022] [Accepted: 04/26/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Cytokines are important molecular players in cancer development, progression, and potential targets for treatment. Despite being small and overlooked, research has revealed that cytokines influence cancer biology in multiple ways. Cytokines are often found to contribute to immune function, cell damage, inflammation, angiogenesis, metastasis, and several other cellular processes important to tumor survival. Cytokines have also proven to have powerful effects on complex tumor microenvironment molecular biology and microbiology. Due to their heavy involvement in critical cancer-related processes, cytokines have also become attractive therapeutic targets for cancer treatment. In this review, we describe the relationship between several cytokines and crucial cancer-promoting processes and their therapeutic potential. Abstract Cytokines are small molecular messengers that have profound effects on cancer development. Increasing evidence shows that cytokines are heavily involved in regulating both pro- and antitumor activities, such as immune activation and suppression, inflammation, cell damage, angiogenesis, cancer stem-cell-like cell maintenance, invasion, and metastasis. Cytokines are often required to drive these cancer-related processes and, therefore, represent an important research area for understanding cancer development and the potential identification of novel therapeutic targets. Interestingly, some cytokines are reported to be related to both pro- and anti-tumorigenicity, indicating that cytokines may play several complex roles relating to cancer pathogenesis. In this review, we discuss some major cancer-related processes and their relationship with several cytokines.
Collapse
|
48
|
Besse S, Nadaud S, Balse E, Pavoine C. Early Protective Role of Inflammation in Cardiac Remodeling and Heart Failure: Focus on TNFα and Resident Macrophages. Cells 2022; 11:1249. [PMID: 35406812 PMCID: PMC8998130 DOI: 10.3390/cells11071249] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 02/24/2022] [Accepted: 04/01/2022] [Indexed: 12/13/2022] Open
Abstract
Cardiac hypertrophy, initiated by a variety of physiological or pathological stimuli (hemodynamic or hormonal stimulation or infarction), is a critical early adaptive compensatory response of the heart. The structural basis of the progression from compensated hypertrophy to pathological hypertrophy and heart failure is still largely unknown. In most cases, early activation of an inflammatory program reflects a reparative or protective response to other primary injurious processes. Later on, regardless of the underlying etiology, heart failure is always associated with both local and systemic activation of inflammatory signaling cascades. Cardiac macrophages are nodal regulators of inflammation. Resident macrophages mostly attenuate cardiac injury by secreting cytoprotective factors (cytokines, chemokines, and growth factors), scavenging damaged cells or mitochondrial debris, and regulating cardiac conduction, angiogenesis, lymphangiogenesis, and fibrosis. In contrast, excessive recruitment of monocyte-derived inflammatory macrophages largely contributes to the transition to heart failure. The current review examines the ambivalent role of inflammation (mainly TNFα-related) and cardiac macrophages (Mφ) in pathophysiologies from non-infarction origin, focusing on the protective signaling processes. Our objective is to illustrate how harnessing this knowledge could pave the way for innovative therapeutics in patients with heart failure.
Collapse
Affiliation(s)
| | | | | | - Catherine Pavoine
- INSERM, Institute of Cardiometabolism and Nutrition (ICAN), Sorbonne Université, UMR_S1166, F-75013 Paris, France; (S.B.); (S.N.); (E.B.)
| |
Collapse
|
49
|
Wadie W, Ahmed GS, Shafik AN, El-Sayed M. Effects of insulin and sitagliptin on early cardiac dysfunction in diabetic rats. Life Sci 2022; 299:120542. [PMID: 35395243 DOI: 10.1016/j.lfs.2022.120542] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 03/23/2022] [Accepted: 04/04/2022] [Indexed: 10/18/2022]
Abstract
AIMS Cardiac affection is common in diabetic patients. Although insulin exerts a cardioprotective role, it may not be enough to totally prevent this affection. The current study aimed to compare the cardioprotective effect of insulin alone or combined with sitagliptin in a rat model of type 1 diabetes mellitus. MATERIALS AND METHODS Diabetes was induced by a single intraperitoneal injection of streptozotocin (STZ; 60 mg/kg). Diabetic rats were treated with insulin (3 IU), insulin (6 IU), or insulin (3 IU) + sitagliptin (10 mg/kg) for 42 days. KEY FINDINGS Diabetic rats exhibited significant systolic and diastolic cardiac affection with significant elevation of tumor necrosis factor α (TNF-α), interleukin 6 (IL-6) and brain natriuretic peptide (BNP) levels. Treatment with insulin prevented the deterioration of diabetes-induced cardiac condition, an effect that was significantly potentiated by the combined use of sitagliptin. SIGNIFICANCE The combined use of sitagliptin and insulin significantly improved the cardioprotective effect of insulin and prevented the early cardiac dysfunction in STZ diabetic rats.
Collapse
Affiliation(s)
- Walaa Wadie
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Gehad S Ahmed
- Department of Medical Pharmacology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Amani N Shafik
- Department of Medical Pharmacology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mohamed El-Sayed
- Department of Medical Pharmacology, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
50
|
Buda V, Prelipcean A, Cozma D, Man DE, Negres S, Scurtu A, Suciu M, Andor M, Danciu C, Crisan S, Dehelean CA, Petrescu L, Rachieru C. An Up-to-Date Article Regarding Particularities of Drug Treatment in Patients with Chronic Heart Failure. J Clin Med 2022; 11:2020. [PMID: 35407628 PMCID: PMC8999552 DOI: 10.3390/jcm11072020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/24/2022] [Accepted: 04/01/2022] [Indexed: 11/17/2022] Open
Abstract
Since the prevalence of heart failure (HF) increases with age, HF is now one of the most common reasons for the hospitalization of elderly people. Although the treatment strategies and overall outcomes of HF patients have improved over time, hospitalization and mortality rates remain elevated, especially in developed countries where populations are aging. Therefore, this paper is intended to be a valuable multidisciplinary source of information for both doctors (cardiologists and general physicians) and pharmacists in order to decrease the morbidity and mortality of heart failure patients. We address several aspects regarding pharmacological treatment (including new approaches in HF treatment strategies [sacubitril/valsartan combination and sodium glucose co-transporter-2 inhibitors]), as well as the particularities of patients (age-induced changes and sex differences) and treatment (pharmacokinetic and pharmacodynamic changes in drugs; cardiorenal syndrome). The article also highlights several drugs and food supplements that may worsen the prognosis of HF patients and discusses some potential drug-drug interactions, their consequences and recommendations for health care providers, as well as the risks of adverse drug reactions and treatment discontinuation, as an interdisciplinary approach to treatment is essential for HF patients.
Collapse
Affiliation(s)
- Valentina Buda
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (V.B.); (A.P.); (A.S.); (M.S.); (C.D.); (C.A.D.)
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Andreea Prelipcean
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (V.B.); (A.P.); (A.S.); (M.S.); (C.D.); (C.A.D.)
| | - Dragos Cozma
- Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (D.E.M.); (M.A.); (S.C.); (L.P.); (C.R.)
- Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
| | - Dana Emilia Man
- Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (D.E.M.); (M.A.); (S.C.); (L.P.); (C.R.)
- Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
| | - Simona Negres
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania;
| | - Alexandra Scurtu
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (V.B.); (A.P.); (A.S.); (M.S.); (C.D.); (C.A.D.)
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Maria Suciu
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (V.B.); (A.P.); (A.S.); (M.S.); (C.D.); (C.A.D.)
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Minodora Andor
- Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (D.E.M.); (M.A.); (S.C.); (L.P.); (C.R.)
| | - Corina Danciu
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (V.B.); (A.P.); (A.S.); (M.S.); (C.D.); (C.A.D.)
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Simina Crisan
- Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (D.E.M.); (M.A.); (S.C.); (L.P.); (C.R.)
- Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
| | - Cristina Adriana Dehelean
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (V.B.); (A.P.); (A.S.); (M.S.); (C.D.); (C.A.D.)
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Lucian Petrescu
- Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (D.E.M.); (M.A.); (S.C.); (L.P.); (C.R.)
- Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
| | - Ciprian Rachieru
- Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (D.E.M.); (M.A.); (S.C.); (L.P.); (C.R.)
- Center for Advanced Research in Cardiovascular Pathology and Hemostasis, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| |
Collapse
|