1
|
Deng J, Wu P. Integrated bioinformatics analysis and in vivo validation of potential immune-related genes linked to diabetic nephropathy. Heliyon 2024; 10:e40151. [PMID: 39583850 PMCID: PMC11582746 DOI: 10.1016/j.heliyon.2024.e40151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 11/04/2024] [Accepted: 11/04/2024] [Indexed: 11/26/2024] Open
Abstract
Background Diabetic nephropathy (DN) is a common microvascular complication of diabetes mellitus and the main cause of chronic renal failure. This study explored the potential immunomodulation-related genes (IRGs) in DN using bioinformatics. Methods IRGs were identified using GeneCards, and differentially expressed genes were identified using the GSE99339, GSE96804, and GSE30122 datasets. We conducted enrichment analyses using Gene Ontology, gene set enrichment analysis (GSEA), and Kyoto Encyclopedia of Genes and Genomes to identify the associated signaling pathways. Prognostic models were constructed using Least Absolute Shrinkage and Selection Operator regression. The predictive power of IRGs was evaluated using receiver operating characteristic (ROC) curves. Furthermore, we utilized ssGSEA to determine the relative abundance of immune cell infiltration. The expression of five significant IRGs was further validated using immunohistochemistry (IHC) in individuals with DN and real-time PCR (RT-PCR) in animal experiments. Results In total, 17 immunomodulation-related differentially expressed genes were identified, which were enriched in immune-associated pathways and inflammation. GSEA unveiled substantial enrichments in metabolic irregularities and the structural composition of the extracellular matrix. ROC analysis results revealed that the diagnostic efficacy of IFNAR2 and CASP3 was comparatively high. Notably, we identified potential IRGs for DN, including CASP3, LGALS9, and SST, using IHC and RT-PCR. Conclusions CASP3, LGALS9, and SST are potential IRGs in patients with DN. Our findings may offer a theoretical basis for developing more focused and innovative immunotherapy approaches for patients with DN.
Collapse
Affiliation(s)
- Jinxiu Deng
- Department of Endocrinology, the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350005, China
- Department of Nephrology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, 364000, China
| | - Peiwen Wu
- Department of Endocrinology, the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350005, China
- Department of Endocrinology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350212, China
- Clinical Research Center for Metabolic Diseases of Fujian Province, the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350005, China
- Fujian Key Laboratory of Glycolipid and Bone Mineral Metabolism, the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350005, China
| |
Collapse
|
2
|
Machado PAB, Lass A, Pilger BI, Fornazari R, de Moraes TP, Pinho RA. SGLT2 inhibitors and NLRP3 inflammasome: potential target in diabetic kidney disease. J Bras Nefrol 2024; 46:e20230187. [PMID: 39412512 PMCID: PMC11539899 DOI: 10.1590/2175-8239-jbn-2023-0187en] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 05/28/2024] [Indexed: 11/08/2024] Open
Abstract
Diabetic kidney disease (DKD) remains the leading cause of chronic kidney disease (CKD) worldwide. The pathogenesis of DKD is influenced by functional, histopathological, and immune mechanisms, including NLRP3 inflammasome activity and oxidative stress. The sodium-glucose cotransporter 2 inhibitors (SGLT2i) have shown metabolic benefits and the ability to slow the progression of DKD in several clinical studies over the years. Recent studies suggest that the antidiabetic activity also extends to inhibition of the inflammatory response, including modulation of the NLRP3 inflammasome, reduction of pro-inflammatory markers and reduction of oxidative stress. Here we review the efficacy of SGLT2i in the treatment of CKD and discuss the role of the inflammatory response in the development of DKD, including its relationship to the NLRP3 inflammasome and oxidative stress.
Collapse
Affiliation(s)
- Paulo André Bispo Machado
- Pontifícia Universidade Católica do Paraná, Laboratório de Bioquímica do Exercício em Saúde, Curitiba, PR, Brazil
- Pontificia Universidade Católica do Paraná, Pós-graduação em Ciências da Saúde, Curitiba, PR, Brazil
| | - André Lass
- Pontifícia Universidade Católica do Paraná, Laboratório de Bioquímica do Exercício em Saúde, Curitiba, PR, Brazil
- Pontificia Universidade Católica do Paraná, Pós-graduação em Ciências da Saúde, Curitiba, PR, Brazil
| | - Bruna Isadora Pilger
- Pontifícia Universidade Católica do Paraná, Laboratório de Bioquímica do Exercício em Saúde, Curitiba, PR, Brazil
- Pontificia Universidade Católica do Paraná, Pós-graduação em Ciências da Saúde, Curitiba, PR, Brazil
| | - Raphaella Fornazari
- Pontifícia Universidade Católica do Paraná, Laboratório de Bioquímica do Exercício em Saúde, Curitiba, PR, Brazil
- Pontifícia Universidade Católica do Paraná, Curitiba, PR, Brazil
| | - Thyago Proença de Moraes
- Pontifícia Universidade Católica do Paraná, Laboratório de Bioquímica do Exercício em Saúde, Curitiba, PR, Brazil
- Pontificia Universidade Católica do Paraná, Pós-graduação em Ciências da Saúde, Curitiba, PR, Brazil
| | - Ricardo Aurino Pinho
- Pontifícia Universidade Católica do Paraná, Laboratório de Bioquímica do Exercício em Saúde, Curitiba, PR, Brazil
- Pontificia Universidade Católica do Paraná, Pós-graduação em Ciências da Saúde, Curitiba, PR, Brazil
| |
Collapse
|
3
|
Sinha SK, Carpio MB, Nicholas SB. Fiery Connections: Macrophage-Mediated Inflammation, the Journey from Obesity to Type 2 Diabetes Mellitus and Diabetic Kidney Disease. Biomedicines 2024; 12:2209. [PMID: 39457523 PMCID: PMC11503991 DOI: 10.3390/biomedicines12102209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/12/2024] [Accepted: 09/23/2024] [Indexed: 10/28/2024] Open
Abstract
The high prevalence of diabetes mellitus (DM) poses a significant public health challenge, with diabetic kidney disease (DKD) as one of its most serious consequences. It has become increasingly clear that type 2 DM (T2D) and the complications of DKD are not purely metabolic disorders. This review outlines emerging evidence related to the step-by-step contribution of macrophages to the development and progression of DKD in individuals who specifically develop T2D as a result of obesity. The macrophage is a prominent inflammatory cell that contributes to obesity, where adipocyte hypertrophy leads to macrophage recruitment and eventually to the expansion of adipose tissue. The recruited macrophages secrete proinflammatory cytokines, which cause systemic inflammation, glucose dysregulation, and insulin sensitivity, ultimately contributing to the development of T2D. Under such pathological changes, the kidney is susceptible to elevated glucose and thereby activates signaling pathways that ultimately drive monocyte recruitment. In particular, the early recruitment of proinflammatory macrophages in the diabetic kidney produces inflammatory cytokines/chemokines that contribute to inflammation and tissue damage associated with DKD pathology. Macrophage activation and recruitment are crucial inciting factors that also persist as DKD progresses. Thus, targeting macrophage activation and function could be a promising therapeutic approach, potentially offering significant benefits for managing DKD at all stages of progression.
Collapse
Affiliation(s)
- Satyesh K. Sinha
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA;
- Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA
| | - Maria Beatriz Carpio
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA;
| | - Susanne B. Nicholas
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA;
| |
Collapse
|
4
|
Delrue C, Speeckaert R, Moresco RN, Speeckaert MM. Cyclic Adenosine Monophosphate Signaling in Chronic Kidney Disease: Molecular Targets and Therapeutic Potentials. Int J Mol Sci 2024; 25:9441. [PMID: 39273390 PMCID: PMC11395066 DOI: 10.3390/ijms25179441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
Chronic kidney disease (CKD) is characterized by a steady decline in kidney function and affects roughly 10% of the world's population. This review focuses on the critical function of cyclic adenosine monophosphate (cAMP) signaling in CKD, specifically how it influences both protective and pathogenic processes in the kidney. cAMP, a critical secondary messenger, controls a variety of cellular functions, including transcription, metabolism, mitochondrial homeostasis, cell proliferation, and apoptosis. Its compartmentalization inside cellular microdomains ensures accurate signaling. In kidney physiology, cAMP is required for hormone-regulated activities, particularly in the collecting duct, where it promotes water reabsorption through vasopressin signaling. Several illnesses, including Fabry disease, renal cell carcinoma, nephrogenic diabetes insipidus, Bartter syndrome, Liddle syndrome, diabetic nephropathy, autosomal dominant polycystic kidney disease, and renal tubular acidosis, have been linked to dysfunction in the cAMP system. Both cAMP analogs and phosphodiesterase inhibitors have the potential to improve kidney function and reduce kidney damage. Future research should focus on developing targeted PDE inhibitors for the treatment of CKD.
Collapse
Affiliation(s)
- Charlotte Delrue
- Department of Nephrology, Ghent University Hospital, 9000 Ghent, Belgium
| | | | - Rafael Noal Moresco
- Graduate Program in Pharmaceutical Sciences, Center of Health Sciences, Federal University of Santa Maria, Santa Maria 97105-900, Brazil
| | - Marijn M Speeckaert
- Department of Nephrology, Ghent University Hospital, 9000 Ghent, Belgium
- Research Foundation-Flanders (FWO), 1000 Brussels, Belgium
| |
Collapse
|
5
|
Jonny J, Sitepu EC, Lister INE, Chiuman L, Putranto TA. The Potential of Anti-Inflammatory DC Immunotherapy in Improving Proteinuria in Type 2 Diabetes Mellitus. Vaccines (Basel) 2024; 12:972. [PMID: 39340004 PMCID: PMC11435532 DOI: 10.3390/vaccines12090972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/19/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024] Open
Abstract
A typical consequence of type 2 diabetes mellitus, diabetic kidney disease (DKD) is a significant risk factor for end-stage renal disease. The pathophysiology of diabetic kidney disease (DKD) is mainly associated with the immune system, which involves adhesion molecules and growth factors disruption, excessive expression of inflammatory mediators, decreased levels of anti-inflammatory mediators, and immune cell infiltration in the kidney. Dendritic cells are professional antigen-presenting cells acting as a bridge connecting innate and adaptive immune responses. The anti-inflammatory subset of DCs is also capable of modulating inflammation. Autologous anti-inflammatory dendritic cells can be made by in vitro differentiation of peripheral blood monocytes and utilized as a cell-based therapy. Treatment with anti-inflammatory cytokines, immunosuppressants, and substances derived from pathogens can induce tolerogenic or anti-inflammatory features in ex vivo-generated DCs. It has been established that targeting inflammation can alleviate the progression of DKD. Recent studies have focused on the potential of dendritic cell-based therapies to modulate immune responses favorably. By inducing a tolerogenic phenotype in dendritic cells, it is possible to decrease the inflammatory response and subsequent kidney damage. This article highlights the possibility of using anti-inflammatory DCs as a cell-based therapy for DKD through its role in controlling inflammation.
Collapse
Affiliation(s)
- Jonny Jonny
- Indonesia Army Cellcure Center, Gatot Soebroto Central Army Hospital, Jakarta 10410, Indonesia; (E.C.S.)
- Faculty of Medicine, Dentistry, and Health Sciences, University Prima Indonesia, Medan 20118, Indonesia
- Faculty of Military Medicine, Indonesia Defense University, Jakarta 16810, Indonesia
- Faculty of Medicine, University of Pembangunan Nasional “Veteran” Jakarta, Jakarta 12450, Indonesia
| | - Enda Cindylosa Sitepu
- Indonesia Army Cellcure Center, Gatot Soebroto Central Army Hospital, Jakarta 10410, Indonesia; (E.C.S.)
| | - I Nyoman Ehrich Lister
- Faculty of Medicine, Dentistry, and Health Sciences, University Prima Indonesia, Medan 20118, Indonesia
| | - Linda Chiuman
- Faculty of Medicine, Dentistry, and Health Sciences, University Prima Indonesia, Medan 20118, Indonesia
| | - Terawan Agus Putranto
- Indonesia Army Cellcure Center, Gatot Soebroto Central Army Hospital, Jakarta 10410, Indonesia; (E.C.S.)
| |
Collapse
|
6
|
Liu W, Zhang J, Zhang D, Zhang L. Role of circulating inflammatory protein in the development of diabetic renal complications: proteome-wide Mendelian randomization and colocalization analyses. Front Endocrinol (Lausanne) 2024; 15:1406442. [PMID: 39040677 PMCID: PMC11260607 DOI: 10.3389/fendo.2024.1406442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/13/2024] [Indexed: 07/24/2024] Open
Abstract
Background Diabetes ranks among the most widespread diseases globally, with the kidneys being particularly susceptible to its vascular complications. The identification of proteins for pathogenesis and novel drug targets remains imperative. This study aims to investigate roles of circulating inflammatory proteins in diabetic renal complications. Methods Data on the proteins were derived from a genome-wide protein quantitative trait locus (pQTL) study, while data on diabetic renal complications came from the FinnGen study. In this study, proteome-wide Mendelian randomization (MR) and colocalization analyses were used to assess the relationship between circulating inflammatory proteins and diabetic renal complications. Results MR approach indicated that elevated levels of interleukin 12B (IL-12B) (OR 1.691, 95%CI 1.179-2.427, P=4.34×10-3) and LIF interleukin 6 family cytokine (LIF) (OR 1.349, 95%CI 1.010-1.801, P=4.23×10-2) increased the risk of type 1 diabetes (T1D) with renal complications, while higher levels of fibroblast growth factor 19 (FGF19) (OR 1.202, 95%CI 1.009-1.432, P=3.93×10-2), fibroblast growth factor 23 (FGF23) (OR 1.379, 95%CI 1.035-1.837, P=2.82×10-2), C-C motif chemokine ligand 7 (CCL7) (OR 1.385, 95%CI 1.111-1.725, P=3.76×10-3), and TNF superfamily member 14 (TNFSF14) (OR 1.244, 95%CI 1.066-1.451, P=5.63×10-3) indicated potential risk factors for type 2 diabetes (T2D) with renal complications. Colocalization analysis supported these findings, revealing that most identified proteins, except for DNER, likely share causal variants with diabetic renal complications. Conclusion Our study established associations between specific circulating inflammatory proteins and the risk of diabetic renal complications, suggesting these proteins as targets for further investigation into the pathogenesis and potential therapeutic interventions for T1D and T2D with renal complications.
Collapse
Affiliation(s)
- Wenli Liu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Nephrology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiaqi Zhang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Nephrology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Duo Zhang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Nephrology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lei Zhang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Nephrology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
7
|
Chen J, Zhang D, Zhou D, Dai Z, Wang J. Association between red cell distribution width/serum albumin ratio and diabetic kidney disease. J Diabetes 2024; 16:e13575. [PMID: 38923843 PMCID: PMC11200132 DOI: 10.1111/1753-0407.13575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/25/2024] [Accepted: 05/06/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Previous studies have shown that the red cell distribution width (RDW)/serum albumin ratio (RA) is an integrative and new inflammatory marker. RA is associated with clinical outcomes in a variety of diseases, but the clinical value of RDW/RA in the assessment of diabetic kidney disease (DKD) has not been elucidated. We examined the link between diabetic RA and DKD while controlling for a wide variety of possible confounders. METHODS Retrospective cohort analysis of the National Health and Nutrition Examination Survey (NHANES: 2009-2018) database from the Second Affiliated Hospital and Yuying Children's Hospital and the Wenzhou Medical University (WMU) database was conducted. Multivariate logistic regression analysis was used to assess the association between RA and DKD. RESULTS Overall, 4513 diabetic patients from the NHANES database (n = 2839) and the WMU (n = 1412) were included in this study; 974 patients were diagnosed with DKD in NHANES and 462 in WMU. In the NHANES cohort, diabetes mellitus (DM) patients with higher RA level had a higher risk of DKD (odds ratio = 1.461, 95% confidence interval: 1.250-1.707, p < 0.00001). After adjusting for confounders and propensity score-matched (PSM) analysis, both shown RA levels were independently linked to DKD (pAdjust = 0.00994, pPSM = 0.02889). Similar results were also observed in the WMU cohort (p < 0.00001). CONCLUSIONS The study observes that the RA was an independent predictor of DKD in DM patients. The RA, a biomarker that is cost-effective and easy-to-access, may have potential for risk stratification of DKD.
Collapse
Affiliation(s)
- Jiaqi Chen
- Department of EndocrinologySecond Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Daguan Zhang
- Department of GastroenterologyFirst Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Depu Zhou
- Department of EndocrinologyFirst Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Zhijuan Dai
- Department of EndocrinologySecond Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Jie Wang
- Department of EndocrinologySecond Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| |
Collapse
|
8
|
Gaudet A, Zheng X, Kambham N, Bhalla V. Esm-1 mediates transcriptional polarization associated with diabetic kidney disease. Am J Physiol Renal Physiol 2024; 326:F1016-F1031. [PMID: 38601985 PMCID: PMC11386982 DOI: 10.1152/ajprenal.00419.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/20/2024] [Accepted: 04/04/2024] [Indexed: 04/12/2024] Open
Abstract
Esm-1, endothelial cell-specific molecule-1, is a susceptibility gene for diabetic kidney disease (DKD) and is a secreted proteoglycan, with notable expression in kidney, which attenuates inflammation and albuminuria. However, little is known about Esm1 expression in mature tissues in the presence or absence of diabetes. We utilized publicly available single-cell RNA sequencing data to characterize Esm1 expression in 27,786 renal endothelial cells (RECs) obtained from three mouse and four human databases. We validated our findings using bulk transcriptome data from 20 healthy subjects and 41 patients with DKD and using RNAscope. In both mice and humans, Esm1 is expressed in a subset of all REC types and represents a minority of glomerular RECs. In patients, Esm1(+) cells exhibit conserved enrichment for blood vessel development genes. With diabetes, these cells are fewer in number and shift expression toward chemotaxis pathways. Esm1 correlates with a majority of genes within these pathways, delineating a glomerular transcriptional polarization reflected by the magnitude of Esm1 deficiency. Diabetes correlates with lower Esm1 expression and with changes in the functional characterization of Esm1(+) cells. Thus, Esm1 appears to be a marker for glomerular transcriptional polarization in DKD.NEW & NOTEWORTHY Esm-1 is primarily expressed in glomerular endothelium in humans. Cells expressing Esm1 exhibit a high degree of conservation in the enrichment of genes related to blood vessel development. In the context of diabetes, these cells are reduced in number and show a significant transcriptional shift toward the chemotaxis pathway. In diabetes, there is a transcriptional polarization in the glomerulus that is reflected by the degree of Esm1 deficiency.
Collapse
Affiliation(s)
- Alexandre Gaudet
- Division of Nephrology, Department of Medicine, Stanford University School of Medicine, Stanford, California, United States
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017-CIIL-Centre d'Infection et d'Immunité de Lille, Lille, France
| | - Xiaoyi Zheng
- Division of Nephrology, Department of Medicine, Stanford University School of Medicine, Stanford, California, United States
| | - Neeraja Kambham
- Department of Pathology, Stanford University School of Medicine, Stanford, California, United States
| | - Vivek Bhalla
- Division of Nephrology, Department of Medicine, Stanford University School of Medicine, Stanford, California, United States
| |
Collapse
|
9
|
Ekperikpe US, Mandal S, Bhopatkar AA, Shields CA, Coley CA, Chambers CL, Johnson TD, Cornelius DC, Williams JM. Abatacept Decreases Renal T-cell Infiltration and Renal Inflammation and Ameliorates Progressive Renal Injury in Obese Dahl Salt-sensitive Rats Before Puberty. J Cardiovasc Pharmacol 2024; 83:635-645. [PMID: 38547515 DOI: 10.1097/fjc.0000000000001565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 03/01/2024] [Indexed: 11/01/2024]
Abstract
ABSTRACT Prepubertal obesity is growing at an alarming rate and is now considered a risk factor for renal injury. Recently, we reported that the early development of renal injury in obese Dahl salt-sensitive (SS) leptin receptor mutant (SS LepR mutant) rats was associated with increased T-cell infiltration and activation before puberty. Therefore, the current study investigated the effect of inhibiting T-cell activation with abatacept on the progression of renal injury in young obese SS LepR mutant rats before puberty. Four-week-old SS and SS LepR mutant rats were treated with IgG or abatacept (1 mg/kg; ip, every other day) for 4 weeks. Abatacept reduced the renal infiltration of T cells by almost 50% in SS LepR mutant rats. Treatment with abatacept decreased the renal expression of macrophage inflammatory protein-3 alpha while increasing IL-4 in SS LepR mutant rats without affecting SS rats. While not having an impact on blood glucose levels, abatacept reduced hyperinsulinemia and plasma triglycerides in SS LepR mutant rats without affecting SS rats. We did not observe any differences in the mean arterial pressure among the groups. Proteinuria was markedly higher in SS LepR mutant rats than in SS rats throughout the study, and treatment with abatacept decreased proteinuria by about 40% in SS LepR mutant rats without affecting SS rats. We observed significant increases in glomerular and tubular injury and renal fibrosis in SS LepR mutant rats versus SS rats, and chronic treatment with abatacept significantly reduced these renal abnormalities in SS LepR mutant rats. These data suggest that renal T-cell activation contributes to the early progression of renal injury associated with prepubertal obesity.
Collapse
Affiliation(s)
- Ubong S Ekperikpe
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Zhou X, He K, Zhao J, Wei G, You Q, Du H, Gu W, Niu H, Jin Q, Wang J, Tang F. Use of Transcriptome Sequencing to Analyze the Effects of Different Doses of an Astragalus-Rhubarb-Saffron Mixture in Mice with Diabetic Kidney Disease. Diabetes Metab Syndr Obes 2024; 17:1795-1808. [PMID: 38655491 PMCID: PMC11036333 DOI: 10.2147/dmso.s449792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/08/2024] [Indexed: 04/26/2024] Open
Abstract
Purpose To investigate the therapeutic effect and underlying mechanism of a traditional Chinese medicine (TCM) mixture consisting of Astragalus, rhubarb, and saffron in a mouse model of diabetic kidney disease (DKD). Methods Forty-eight db/db mice received no TCM (DKD model), low-dose TCM, medium-dose TCM, or high-dose TCM, and an additional 12 db/m mice received no TCM (normal control). Intragastric TCM or saline (controls) was administered daily for 24 weeks. Blood glucose, body weight, serum creatinine (SCr), blood urea nitrogen (BUN), blood lipids, and urinary microalbumin were measured every four weeks, and the urinary albumin excretion rate (UAER) was calculated. After 24 weeks, kidney tissues were collected for transcriptome sequencing, and the main functions of these genes were determined via functional enrichment analysis. Results Compared with the DKD model group, the medium-dose and high-dose TCM groups had significantly decreased levels of SCr, BUN, total cholesterol, triglycerides, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, and UAER (all p<0.05). We identified 42 genes that potentially functioned in this therapeutic response, and the greatest effect on gene expression was in the high-dose TCM group. We also performed functional enrichment analysis to explore the potential mechanisms of action of these different genes. Conclusion A high-dose of the Astragalus-rhubarb-saffron TCM provided the best prevention of DKD. Analysis of the kidney transcriptome suggested that this TCM mixture may prevent DKD by altering immune responses and oxygen delivery by hemoglobin.
Collapse
Affiliation(s)
- Xiaochun Zhou
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, Gansu, People’s Republic of China
- Department of Cardiovascular Disease, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, Gansu, People’s Republic of China
- Department of Nephrology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, Gansu, People’s Republic of China
| | - Kaiying He
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, Gansu, People’s Republic of China
- Department of Nephrology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, Gansu, People’s Republic of China
| | - Jing Zhao
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, Gansu, People’s Republic of China
- Department of Nephrology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, Gansu, People’s Republic of China
| | - Guohua Wei
- Department of Nephrology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, Gansu, People’s Republic of China
| | - Qicai You
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, Gansu, People’s Republic of China
- Department of Nephrology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, Gansu, People’s Republic of China
| | - Hongxuan Du
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, Gansu, People’s Republic of China
- Department of Nephrology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, Gansu, People’s Republic of China
| | - Wenjiao Gu
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, Gansu, People’s Republic of China
- Department of Cardiovascular Disease, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, Gansu, People’s Republic of China
| | - Haiyu Niu
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, Gansu, People’s Republic of China
- Department of Tumor, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, Gansu, People’s Republic of China
| | - Qiaoying Jin
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, Gansu, People’s Republic of China
- Cuiying Biomedical Research Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, Gansu, People’s Republic of China
| | - Jianqin Wang
- Department of Nephrology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, Gansu, People’s Republic of China
| | - Futian Tang
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, Gansu, People’s Republic of China
- Department of Cardiovascular Disease, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, Gansu, People’s Republic of China
| |
Collapse
|
11
|
Pal S, Yellurkar ML, Das P, Sai Prasanna V, Sarkar S, Gajbhiye RL, Taraphdar AK, Velayutham R, Arumugam S. A network pharmacology, molecular docking and in vitro investigation of Picrorhiza kurroa extract for the treatment of diabetic nephropathy. J Biomol Struct Dyn 2024:1-12. [PMID: 38356141 DOI: 10.1080/07391102.2024.2314259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 01/30/2024] [Indexed: 02/16/2024]
Abstract
Picrorhiza kurroa Royle ex Benth. (P. kurroa/PK/Kutki), a Himalayan herb belonging to the family Scrophulariaceae, is widely known for its hepatoprotective activity. Traditionally, it is found to be effective for upper respiratory tract disorders, kidney and liver problems, dyspepsia and chronic diarrhoea but the mechanism of action is unclear. In this study, the mode of action of P. kurroa for the treatment of diabetic nephropathy (DN) was investigated by network pharmacology, molecular docking and in vitro assays. Numerous databases have been screened and 33 P. kurroa bioactive compounds and 56 targets were identified. The compounds-targets network, targets-pathways network and compounds-targets-pathways network were constructed. The major bioactive compounds include picrorhizaoside D, scrophuloside A, vanillic acid, arvenin I, cinnamic acid, picein, 6-feruloyl catalpol, picroside V, pikuroside, apocynin, picroside I, picroside IV, androsin, cucurbitacin P, boschnaloside, kutkoside, cucurbitacin O, cucurbitacin K, picracin, etc. The potential protein targets identified in this study were MMP1, PRKCA, MMP7, IL18, IL1, TNF, ACE, ASC, CASP1, NLRP3, MAP, KURROA1, mitogen-activated protein kinase (MAPK)14 and MAPK8. In the Database for annotation visualization and integrated discovery (DAVID) pathways and Gene Ontology enrichment analysis, 14 major DN signalling pathways were identified, including MAPK, renin-angiotensin system (RAS), TNF, signal transducer and activator of transcription (JAK-STAT), TLR, vascular endothelial growth factor (VEGF), mTOR, Wnt, Ras, PPARs, NFB, NOD and phosphatidylinositol signalling pathways. A molecular docking study revealed that 32 bioactive compounds of P. kurroa interacted with 14 significant proteins/genes associated with DN. P. kurroa extract was proven to enhance the survival rate of HEK cells significantly. Protein expression analysis using Western blot demonstrated that P. kurroa extract significantly altered the expression of p47phox, p67phox, gp91phox, IL-1 and TGFβ-1. As a result of network pharmacology and docking work, new concepts for discovering bioactive compounds and effective modes of action could be developed. The potential effect of P. kurroa extract on DN disease was evident in the in-vitro studies aided by network pharmacology and molecular docking.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shiv Pal
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Hajipur, Export Promotion Industrial Park (EPIP), Industrial area Hajipur, Bihar, India
| | - Manoj Limbraj Yellurkar
- National Institute of Pharmaceutical Education and Research (NIPER), Chunilal Bhawan, Kolkata, India
| | - Pamelika Das
- National Institute of Pharmaceutical Education and Research (NIPER), Chunilal Bhawan, Kolkata, India
| | - Vani Sai Prasanna
- National Institute of Pharmaceutical Education and Research (NIPER), Chunilal Bhawan, Kolkata, India
| | - Sulogna Sarkar
- National Institute of Pharmaceutical Education and Research (NIPER), Chunilal Bhawan, Kolkata, India
| | - Rahul L Gajbhiye
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Hajipur, Export Promotion Industrial Park (EPIP), Industrial area Hajipur, Bihar, India
- National Institute of Pharmaceutical Education and Research (NIPER), Chunilal Bhawan, Kolkata, India
| | - Amit Kumar Taraphdar
- Department of Dravyaguna (Ayurved Pharmacology) Institute of Post Graduate Ayurvedic Education and Research, Kolkata, India
| | - Ravichandiran Velayutham
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Hajipur, Export Promotion Industrial Park (EPIP), Industrial area Hajipur, Bihar, India
- National Institute of Pharmaceutical Education and Research (NIPER), Chunilal Bhawan, Kolkata, India
| | - Somasundaram Arumugam
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Hajipur, Export Promotion Industrial Park (EPIP), Industrial area Hajipur, Bihar, India
- National Institute of Pharmaceutical Education and Research (NIPER), Chunilal Bhawan, Kolkata, India
| |
Collapse
|
12
|
Tsukada A, Takata K, Aikawa J, Iwase D, Mukai M, Uekusa Y, Metoki Y, Inoue G, Miyagi M, Takaso M, Uchida K. Association between High HbA1c Levels and Mast Cell Phenotype in the Infrapatellar Fat Pad of Patients with Knee Osteoarthritis. Int J Mol Sci 2024; 25:877. [PMID: 38255949 PMCID: PMC10815720 DOI: 10.3390/ijms25020877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/02/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Diabetes mellitus (DM) has been suggested as a potential risk factor for knee osteoarthritis (KOA), and its underlying mechanisms remain unclear. The infrapatellar fat pad (IPFP) contributes to OA through inflammatory mediator secretion. Mast cells' (MCs) role in diabetic IPFP pathology is unclear. In 156 KOA patients, hemoglobin A1c (HbA1c) was stratified (HbA1c ≥ 6.5, n = 28; HbA1c < 6.5, n = 128). MC markers (TPSB2, CPA3) in IPFP were studied. Propensity-matched cohorts (n = 27 each) addressed demographic differences. MC-rich fraction (MC-RF) and MC-poor fraction (MC-PF) were isolated, comparing MC markers and genes elevated in diabetic skin-derived MC (PAXIP1, ARG1, HAS1, IL3RA). TPSB2 and CPA3 expression were significantly higher in HbA1c ≥ 6.5 vs. <6.5, both before and after matching. MC-RF showed higher TPSB2 and CPA3 expression than MC-PF in both groups. In the HbA1c ≥ 6.5 group, PAXIP1 and ARG1 expression were significantly higher in the MC-RF than MC-PF. However, no statistical difference in the evaluated genes was detected between the High and Normal groups in the MC-RF. Elevated TPSB2 and CPA3 levels in the IPFP of high HbA1c patients likely reflect higher numbers of MCs in the IPFP, though no difference was found in MC-specific markers on a cell-to-cell basis, as shown in the MC-RF comparison. These findings deepen our understanding of the intricate interplay between diabetes and KOA, guiding targeted therapeutic interventions.
Collapse
Affiliation(s)
- Ayumi Tsukada
- Department of Orthopedic Surgery, Kitasato University School of Medicine, 1-15-1 Minami-ku Kitasato, Sagamihara City 252-0374, Kanagawa, Japan; (A.T.); (K.T.); (J.A.); (D.I.); (M.M.); (Y.U.); (Y.M.); (G.I.); (M.M.); (M.T.)
| | - Ken Takata
- Department of Orthopedic Surgery, Kitasato University School of Medicine, 1-15-1 Minami-ku Kitasato, Sagamihara City 252-0374, Kanagawa, Japan; (A.T.); (K.T.); (J.A.); (D.I.); (M.M.); (Y.U.); (Y.M.); (G.I.); (M.M.); (M.T.)
| | - Jun Aikawa
- Department of Orthopedic Surgery, Kitasato University School of Medicine, 1-15-1 Minami-ku Kitasato, Sagamihara City 252-0374, Kanagawa, Japan; (A.T.); (K.T.); (J.A.); (D.I.); (M.M.); (Y.U.); (Y.M.); (G.I.); (M.M.); (M.T.)
| | - Dai Iwase
- Department of Orthopedic Surgery, Kitasato University School of Medicine, 1-15-1 Minami-ku Kitasato, Sagamihara City 252-0374, Kanagawa, Japan; (A.T.); (K.T.); (J.A.); (D.I.); (M.M.); (Y.U.); (Y.M.); (G.I.); (M.M.); (M.T.)
| | - Manabu Mukai
- Department of Orthopedic Surgery, Kitasato University School of Medicine, 1-15-1 Minami-ku Kitasato, Sagamihara City 252-0374, Kanagawa, Japan; (A.T.); (K.T.); (J.A.); (D.I.); (M.M.); (Y.U.); (Y.M.); (G.I.); (M.M.); (M.T.)
| | - Yui Uekusa
- Department of Orthopedic Surgery, Kitasato University School of Medicine, 1-15-1 Minami-ku Kitasato, Sagamihara City 252-0374, Kanagawa, Japan; (A.T.); (K.T.); (J.A.); (D.I.); (M.M.); (Y.U.); (Y.M.); (G.I.); (M.M.); (M.T.)
| | - Yukie Metoki
- Department of Orthopedic Surgery, Kitasato University School of Medicine, 1-15-1 Minami-ku Kitasato, Sagamihara City 252-0374, Kanagawa, Japan; (A.T.); (K.T.); (J.A.); (D.I.); (M.M.); (Y.U.); (Y.M.); (G.I.); (M.M.); (M.T.)
| | - Gen Inoue
- Department of Orthopedic Surgery, Kitasato University School of Medicine, 1-15-1 Minami-ku Kitasato, Sagamihara City 252-0374, Kanagawa, Japan; (A.T.); (K.T.); (J.A.); (D.I.); (M.M.); (Y.U.); (Y.M.); (G.I.); (M.M.); (M.T.)
| | - Masayuki Miyagi
- Department of Orthopedic Surgery, Kitasato University School of Medicine, 1-15-1 Minami-ku Kitasato, Sagamihara City 252-0374, Kanagawa, Japan; (A.T.); (K.T.); (J.A.); (D.I.); (M.M.); (Y.U.); (Y.M.); (G.I.); (M.M.); (M.T.)
| | - Masashi Takaso
- Department of Orthopedic Surgery, Kitasato University School of Medicine, 1-15-1 Minami-ku Kitasato, Sagamihara City 252-0374, Kanagawa, Japan; (A.T.); (K.T.); (J.A.); (D.I.); (M.M.); (Y.U.); (Y.M.); (G.I.); (M.M.); (M.T.)
| | - Kentaro Uchida
- Department of Orthopedic Surgery, Kitasato University School of Medicine, 1-15-1 Minami-ku Kitasato, Sagamihara City 252-0374, Kanagawa, Japan; (A.T.); (K.T.); (J.A.); (D.I.); (M.M.); (Y.U.); (Y.M.); (G.I.); (M.M.); (M.T.)
- Shonan University Medical Sciences Research Institute, Nishikubo 500, Chigasaki City 253-0083, Kanagawa, Japan
| |
Collapse
|
13
|
Yang M, Zhang C. The role of innate immunity in diabetic nephropathy and their therapeutic consequences. J Pharm Anal 2024; 14:39-51. [PMID: 38352948 PMCID: PMC10859537 DOI: 10.1016/j.jpha.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 07/12/2023] [Accepted: 09/05/2023] [Indexed: 02/16/2024] Open
Abstract
Diabetic nephropathy (DN) is an enduring condition that leads to inflammation and affects a substantial number of individuals with diabetes worldwide. A gradual reduction in glomerular filtration and emergence of proteins in the urine are typical aspects of DN, ultimately resulting in renal failure. Mounting evidence suggests that immunological and inflammatory factors are crucial for the development of DN. Therefore, the activation of innate immunity by resident renal and immune cells is critical for initiating and perpetuating inflammation. Toll-like receptors (TLRs) are an important group of receptors that identify patterns and activate immune responses and inflammation. Meanwhile, inflammatory responses in the liver, pancreatic islets, and kidneys involve inflammasomes and chemokines that generate pro-inflammatory cytokines. Moreover, the activation of the complement cascade can be triggered by glycated proteins. This review highlights recent findings elucidating how the innate immune system contributes to tissue fibrosis and organ dysfunction, ultimately leading to renal failure. This review also discusses innovative approaches that can be utilized to modulate the innate immune responses in DN for therapeutic purposes.
Collapse
Affiliation(s)
- Min Yang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
14
|
Nordbø OP, Landolt L, Eikrem Ø, Scherer A, Leh S, Furriol J, Apeland T, Mydel P, Marti H. Transcriptomic analysis reveals partial epithelial-mesenchymal transition and inflammation as common pathogenic mechanisms in hypertensive nephrosclerosis and Type 2 diabetic nephropathy. Physiol Rep 2023; 11:e15825. [PMID: 37813528 PMCID: PMC10562137 DOI: 10.14814/phy2.15825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 08/28/2023] [Accepted: 09/04/2023] [Indexed: 10/12/2023] Open
Abstract
Hypertensive nephrosclerosis (HN) and Type 2 diabetic nephropathy (T2DN) are the leading causes of chronic kidney disease (CKD). To explore shared pathogenetic mechanisms, we analyzed transcriptomes of kidney biopsies from patients with HN or T2DN. Total RNA was extracted from 10 μm whole kidney sections from patients with HN, T2DN, and normal controls (Ctrl) (n = 6 for each group) and processed for RNA sequencing. Differentially expressed (log2 fold change >1, adjusted p < 0.05) genes (DEG) and molecular pathways were analyzed, and selected results were validated by immunohistochemistry (IHC). ELISA on serum samples was performed on a related cohort consisting of patients with biopsy-proven HN (n = 13) and DN (n = 9), and a normal control group (n = 14). Cluster analysis on RNA sequencing data separated diseased and normal tissues. RNA sequencing revealed that 88% (341 out of 384) of DEG in HN were also altered in T2DN, while gene set enrichment analysis (GSEA) showed that over 90% of affected molecular pathways, including those related to inflammation, immune response, and cell-cycle regulation, were similarly impacted in both HN and T2DN samples. The increased expression of genes tied to interleukin signaling and lymphocyte activation was more pronounced in HN, while genes associated with extracellular matrix organization were more evident in T2DN. Both HN and T2DN tissues exhibited significant upregulation of genes connected with inflammatory responses, T-cell activity, and partial epithelial to mesenchymal transition (p-EMT). Immunohistochemistry (IHC) further confirmed T-cell (CD4+ and CD8+ ) infiltration in the diseased tissues. Additionally, IHC revealed heightened AXL protein expression, a key regulator of inflammation and p-EMT, in both HN and T2DN, while serum analysis indicated elevated soluble AXL levels in patients with both conditions. These findings underline the shared molecular mechanisms between HN and T2DN, hinting at the potential for common therapeutic strategies targeting both diseases.
Collapse
Affiliation(s)
- Ole Petter Nordbø
- Department of Clinical MedicineUniversity of BergenBergenNorway
- Department of Medicine, Haugesund HospitalHelse FonnaHaugesundNorway
| | - Lea Landolt
- Department of Clinical MedicineUniversity of BergenBergenNorway
- Department of MedicineHaukeland University HospitalBergenNorway
| | - Øystein Eikrem
- Department of Clinical ScienceUniversity of BergenBergenNorway
| | | | - Sabine Leh
- Department of Clinical MedicineUniversity of BergenBergenNorway
- Department of PathologyHaukeland University HospitalBergenNorway
| | - Jessica Furriol
- Department of Clinical MedicineUniversity of BergenBergenNorway
| | | | - Piotr Mydel
- Department of Clinical MedicineUniversity of BergenBergenNorway
- Department of MedicineHaukeland University HospitalBergenNorway
| | - Hans‐Peter Marti
- Department of Clinical MedicineUniversity of BergenBergenNorway
- Department of MedicineHaukeland University HospitalBergenNorway
| |
Collapse
|
15
|
Rostoka E, Shvirksts K, Salna E, Trapina I, Fedulovs A, Grube M, Sokolovska J. Prediction of type 1 diabetes with machine learning algorithms based on FTIR spectral data in peripheral blood mononuclear cells. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:4926-4937. [PMID: 37721124 DOI: 10.1039/d3ay01080e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
The incidence of autoimmunity is increasing, to ensure timely and comprehensive treatment, there must be a diagnostic method or markers that would be available to the general public. Fourier-transform infrared spectroscopy (FTIR) is a relatively inexpensive and accurate method for determining metabolic fingerprint. The metabolism, molecular composition and function of blood cells vary according to individual physiological and pathological conditions. Thus, by obtaining autoimmune disease-specific metabolic fingerprint markers in peripheral blood mononuclear cells (PBMC) and subsequently using machine learning algorithms, it might be possible to create a tool that will allow the diagnosis of autoimmune diseases. In this preliminary study, it was found that the peak shift at 1545 cm-1 could be considered specific for autoimmune disease type 1 diabetes (T1D), while the shifts at 1070 and 1417 cm-1 could be more attributed to the autoimmune condition per se. The prediction of T1D, despite the small number of participants in the study, showed an inverse AUC = 0.33 ± 0.096, n = 15, indicating a stable trend in the prediction of T1D based on FTIR metabolic fingerprint data in the PBMC.
Collapse
Affiliation(s)
- Evita Rostoka
- Faculty of Medicine, University of Latvia, Jelgavas iela 3, LV 1004, Riga, Latvia.
| | - Karlis Shvirksts
- Institute of Microbiology and Biotechnology, University of Latvia, Jelgavas iela 1, LV1004, Riga, Latvia
| | - Edgars Salna
- Faculty of Medicine, University of Latvia, Jelgavas iela 3, LV 1004, Riga, Latvia.
| | - Ilva Trapina
- Institute of Biology, University of Latvia, Jelgavas iela 1, LV1004 Riga, Latvia
| | - Aleksejs Fedulovs
- Faculty of Medicine, University of Latvia, Jelgavas iela 3, LV 1004, Riga, Latvia.
| | - Mara Grube
- Institute of Microbiology and Biotechnology, University of Latvia, Jelgavas iela 1, LV1004, Riga, Latvia
| | | |
Collapse
|
16
|
Lin Z, Lv D, Liao X, Peng R, Liu H, Wu T, Wu K, Sun Y, Zhang Z. CircUBXN7 promotes macrophage infiltration and renal fibrosis associated with the IGF2BP2-dependent SP1 mRNA stability in diabetic kidney disease. Front Immunol 2023; 14:1226962. [PMID: 37744330 PMCID: PMC10516575 DOI: 10.3389/fimmu.2023.1226962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/20/2023] [Indexed: 09/26/2023] Open
Abstract
Introduction Inflammatory cell infiltration is a novel hallmark of diabetic kidney disease (DKD), in part, by activated macrophages. Macrophage-to-tubular epithelial cell communication may play an important role in renal fibrosis. Circular RNAs (circRNAs) have been reported in the pathogenesis of various human diseases involving macrophages activation, including DKD. However, the exact mechanism of circRNAs in macrophage infiltration and renal fibrosis of DKD remains obscure. Methods In our study, a novel circRNA circUBXN7 was identified in DKD patients using microarray. The function of circUBXN7 in vitro and in vivo was investigated by qRT-PCR, western blot, and immunofluorescence. Finally, a dual-luciferase reporter assay, ChIP, RNA pull-down, RNA immunoprecipitation and rescue experiments were performed to investigate the mechanism of circUBXN7. Results We demonstrated that the expression of circUBXN7 was significantly upregulated in the plasma of DKD patients and correlated with renal function, which might serve as an independent biomarker for DKD patients. According to investigations, ectopic expression of circUBXN7 promoted macrophage activation, EMT and fibrosis in vitro, and increased macrophage infiltration, EMT, fibrosis and proteinuria in vivo. Mechanistically, circUBXN7 was transcriptionally upregulated by transcription factor SP1 and could reciprocally promote SP1 mRNA stability and activation via directly binding to the m6A-reader IGF2BP2 in DKD. Conclusion CircUBXN7 is highly expressed in DKD patients may provide the potential biomarker and therapeutic target for DKD.
Collapse
Affiliation(s)
- Ziyue Lin
- Department of Nephrology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Cell Biology and Genetics, Chongqing Medical University, Chongqing, China
| | - Dan Lv
- Department of Nephrology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Cell Biology and Genetics, Chongqing Medical University, Chongqing, China
| | - Xiaohui Liao
- Department of Nephrology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Rui Peng
- Department of Bioinformatics, Chongqing Medical University, Chongqing, China
| | - Handeng Liu
- Center of Teaching and Learning, Chongqing Medical University, Chongqing, China
| | - Tianhui Wu
- Department of Cell Biology and Genetics, Chongqing Medical University, Chongqing, China
| | - Keqian Wu
- Department of Cell Biology and Genetics, Chongqing Medical University, Chongqing, China
| | - Yan Sun
- Department of Nephrology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Cell Biology and Genetics, Chongqing Medical University, Chongqing, China
| | - Zheng Zhang
- Department of Nephrology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Cell Biology and Genetics, Chongqing Medical University, Chongqing, China
| |
Collapse
|
17
|
Jin S, Song Y, Zhou L, Jiang W, Qin L, Wang Y, Yu R, Liu Y, Diao Y, Zhang F, Liu K, Li P, Hu H, Jiang B, Tang W, Yi F, Gong Y, Liu G, Sun G. Depletion of CUL4B in macrophages ameliorates diabetic kidney disease via miR-194-5p/ITGA9 axis. Cell Rep 2023; 42:112550. [PMID: 37224018 DOI: 10.1016/j.celrep.2023.112550] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 02/26/2023] [Accepted: 05/08/2023] [Indexed: 05/26/2023] Open
Abstract
Diabetic kidney disease (DKD) is the most prevalent chronic kidney disease. Macrophage infiltration in the kidney is critical for the progression of DKD. However, the underlying mechanism is far from clear. Cullin 4B (CUL4B) is the scaffold protein in CUL4B-RING E3 ligase complexes. Previous studies have shown that depletion of CUL4B in macrophages aggravates lipopolysaccharide-induced peritonitis and septic shock. In this study, using two mouse models for DKD, we demonstrate that myeloid deficiency of CUL4B alleviates diabetes-induced renal injury and fibrosis. In vivo and in vitro analyses reveal that loss of CUL4B suppresses migration, adhesion, and renal infiltration of macrophages. Mechanistically, we show that high glucose upregulates CUL4B in macrophages. CUL4B represses expression of miR-194-5p, which leads to elevated integrin α9 (ITGA9), promoting migration and adhesion. Our study suggests the CUL4B/miR-194-5p/ITGA9 axis as an important regulator for macrophage infiltration in diabetic kidneys.
Collapse
Affiliation(s)
- Shiqi Jin
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yu Song
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Li Zhou
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Wei Jiang
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Liping Qin
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yufeng Wang
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Ruiqi Yu
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yuting Liu
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yujie Diao
- Department of Nephrology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Fan Zhang
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Kaixuan Liu
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Peishan Li
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123, China
| | - Huili Hu
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Department of Systems Biomedicine and Research Center of Stem Cell and Regenerative Medicine, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Baichun Jiang
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Wei Tang
- Department of Pathogenic Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Fan Yi
- Department of Pharmacology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yaoqin Gong
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Guangyi Liu
- Department of Nephrology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| | - Gongping Sun
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
18
|
Qiu Y, Tang J, Zhao Q, Jiang Y, Liu YN, Liu WJ. From Diabetic Nephropathy to End-Stage Renal Disease: The Effect of Chemokines on the Immune System. J Diabetes Res 2023; 2023:3931043. [PMID: 37287620 PMCID: PMC10243947 DOI: 10.1155/2023/3931043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/08/2023] [Accepted: 05/11/2023] [Indexed: 06/09/2023] Open
Abstract
Background Diabetic nephropathy (DN) is a major cause of end-stage renal disease (ESRD), and there is growing evidence to support the role of immunity in the progression of DN to ESRD. Chemokines and chemokine receptors (CCRs) can recruit immune cells to sites of inflammation or injury. Currently, no studies have reported the effect of CCRs on the immune environment during the progression of DN to ESRD. Methods Differentially expressed genes (DEGs) from the GEO database were identified in DN patients versus ESRD patients. GO and KEGG enrichment analyses were performed using DEGs. A protein-protein interaction (PPI) network was constructed to identify hub CCRs. Differentially expressed immune cells were screened by immune infiltration analysis, and the correlation between immune cells and hub CCRs was also calculated. Result In this study, a total of 181 DEGs were identified. Enrichment analysis showed that chemokines, cytokines, and inflammation-related pathways were significantly enriched. Combining the PPI network and CCRs, four hub CCRs (CXCL2, CXCL8, CXCL10, and CCL20) were identified. These hub CCRs showed an upregulation trend in DN patients and a downregulation trend in ESRD patients. Immune infiltration analysis identified a variety of immune cells that underwent significant changes during disease progression. Among them, CD56bright natural killer cell, effector memory CD8 T cell, memory B cell, monocyte, regulatory T cell, and T follicular helper cell were significantly associated with all hub CCR correlation. Conclusion The effect of CCRs on the immune environment may contribute to the progression of DN to ESRD.
Collapse
Affiliation(s)
- Yuheng Qiu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Renal Research Institution of Beijing University of Chinese Medicine, Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Jingyi Tang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Renal Research Institution of Beijing University of Chinese Medicine, Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Qihan Zhao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Renal Research Institution of Beijing University of Chinese Medicine, Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Yuhua Jiang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Renal Research Institution of Beijing University of Chinese Medicine, Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Yu Ning Liu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Renal Research Institution of Beijing University of Chinese Medicine, Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Wei Jing Liu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Renal Research Institution of Beijing University of Chinese Medicine, Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
19
|
Wu Z, Lohmöller J, Kuhl C, Wehrle K, Jankowski J. Use of Computation Ecosystems to Analyze the Kidney-Heart Crosstalk. Circ Res 2023; 132:1084-1100. [PMID: 37053282 DOI: 10.1161/circresaha.123.321765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Abstract
The identification of mediators for physiologic processes, correlation of molecular processes, or even pathophysiological processes within a single organ such as the kidney or heart has been extensively studied to answer specific research questions using organ-centered approaches in the past 50 years. However, it has become evident that these approaches do not adequately complement each other and display a distorted single-disease progression, lacking holistic multilevel/multidimensional correlations. Holistic approaches have become increasingly significant in understanding and uncovering high dimensional interactions and molecular overlaps between different organ systems in the pathophysiology of multimorbid and systemic diseases like cardiorenal syndrome because of pathological heart-kidney crosstalk. Holistic approaches to unraveling multimorbid diseases are based on the integration, merging, and correlation of extensive, heterogeneous, and multidimensional data from different data sources, both -omics and nonomics databases. These approaches aimed at generating viable and translatable disease models using mathematical, statistical, and computational tools, thereby creating first computational ecosystems. As part of these computational ecosystems, systems medicine solutions focus on the analysis of -omics data in single-organ diseases. However, the data-scientific requirements to address the complexity of multimodality and multimorbidity reach far beyond what is currently available and require multiphased and cross-sectional approaches. These approaches break down complexity into small and comprehensible challenges. Such holistic computational ecosystems encompass data, methods, processes, and interdisciplinary knowledge to manage the complexity of multiorgan crosstalk. Therefore, this review summarizes the current knowledge of kidney-heart crosstalk, along with methods and opportunities that arise from the novel application of computational ecosystems providing a holistic analysis on the example of kidney-heart crosstalk.
Collapse
Affiliation(s)
- Zhuojun Wu
- Institute of Molecular Cardiovascular Research (Z.W., J.J.), Rheinisch-Westfälische Technische Hochschule Aachen University, Germany
- Department of Radiology (C.K.), Rheinisch-Westfälische Technische Hochschule Aachen University, Germany
| | - Johannes Lohmöller
- Medical Faculty, and Department of Computer Science, Communication and Distributed Systems (COMSYS) (J.L., K.W.), Rheinisch-Westfälische Technische Hochschule Aachen University, Germany
| | - Christiane Kuhl
- Department of Radiology (C.K.), Rheinisch-Westfälische Technische Hochschule Aachen University, Germany
| | - Klaus Wehrle
- Institute of Molecular Cardiovascular Research (Z.W., J.J.), Rheinisch-Westfälische Technische Hochschule Aachen University, Germany
- Medical Faculty, and Department of Computer Science, Communication and Distributed Systems (COMSYS) (J.L., K.W.), Rheinisch-Westfälische Technische Hochschule Aachen University, Germany
| | - Joachim Jankowski
- Institute of Molecular Cardiovascular Research (Z.W., J.J.), Rheinisch-Westfälische Technische Hochschule Aachen University, Germany
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), University of Maastricht, The Netherlands (J.J.)
- Aachen-Maastricht Institute for Cardiorenal Disease (AMICARE), University Hospital Rheinisch-Westfälische Technische Hochschule Aachen, Germany (J.J.)
| |
Collapse
|
20
|
Yuan Y, Sun M, Jin Z, Zheng C, Ye H, Weng H. Dapagliflozin ameliorates diabetic renal injury through suppressing the self-perpetuating cycle of inflammation mediated by HMGB1 feedback signaling in the kidney. Eur J Pharmacol 2023; 943:175560. [PMID: 36736941 DOI: 10.1016/j.ejphar.2023.175560] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023]
Abstract
Dapagliflozin, the Sodium-glucose cotransporter 2 (SGLT2) inhibitor class of glucose-lowering agents, has shown the significantly nephroprotective effects to reduce the risk of kidney failure in diabetes. However, the underlying mechanisms are incompletely understood to explain the beneficial effects of dapagliflozin on kidney function. Here, we demonstrated that the administered of dapagliflozin for 12 weeks improved the proteinuria, histomorphology damage, oxidative stress, and macrophage infiltrations in the kidney of streptozotocin (STZ)-induced diabetic mice. Meanwhile, dapagliflozin attenuated the renal inflammation and fibrosis by reducing the pro-inflammatory factors interleukin-6 (IL-6), IL-1β, and tumor necrosis factor α (TNF-α) and anti-fiber factor fibronectin (FN) and elevating the anti-inflammatory factor IL-10. Our data revealed that dapagliflozin exerted anti-inflammatory effects by inhibiting the activation of high mobility group box 1 (HMGB1)/TLR2/4/NF-κB signaling pathway. Consistently, we found that dapagliflozin suppressed the expression of HMGB1 and downstream TLR2/4/NF-κB signaling proteins in the human proximal tubular (HK-2) stimulated by high glucose and lipids or HMGB1 and RAW264.7 cells stimulated by IL-1β, respectively. Further experiments were performed in the indirect co-culture model of RAW264.7 and HK-2 cells induced by high glucose and lipids. The results again confirmed the effects of dapagliflozin on alleviating inflammatory response and regulating the proportions of M1/M2 macrophage. It is indicated that the feedback signaling of HMGB1 between the tubules and macrophage involves in the persistence of the inflammation. These data demonstrate that dapagliflozin suppress the self-perpetuating inflammation by blocking the feedback loop of HMGB1 in the kidney, which contribute to ameliorate the renal injury in diabetes.
Collapse
Affiliation(s)
- Yan Yuan
- School of Pharmacy, Fudan University, 201203, Shanghai, China
| | - Mengyao Sun
- School of Pharmacy, Fudan University, 201203, Shanghai, China
| | - Zijie Jin
- School of Pharmacy, Fudan University, 201203, Shanghai, China
| | - Chen Zheng
- School of Pharmacy, Fudan University, 201203, Shanghai, China
| | - Huijing Ye
- School of Pharmacy, Fudan University, 201203, Shanghai, China
| | - Hongbo Weng
- School of Pharmacy, Fudan University, 201203, Shanghai, China.
| |
Collapse
|
21
|
Gaudet A, Zheng X, Kambham N, Bhalla V. Esm-1 mediates transcriptional polarization associated with diabetic kidney disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.01.530562. [PMID: 36993439 PMCID: PMC10054923 DOI: 10.1101/2023.03.01.530562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Background Esm-1, endothelial cell-specific molecule-1, is a susceptibility gene for diabetic kidney disease (DKD) and is a cytokine- and glucose-regulated, secreted proteoglycan, that is notably expressed in kidney and attenuates inflammation and albuminuria. Esm1 has restricted expression at the vascular tip during development but little is known about its expression pattern in mature tissues, and its precise effects in diabetes. Methods We utilized publicly available single-cell RNA sequencing data to explore the characteristics of Esm1 expression in 27,786 renal endothelial cells obtained from four adult human and three mouse databases. We validated our findings using bulk transcriptome data from an additional 20 healthy subjects and 41 patients with DKD and using RNAscope. Using correlation matrices, we relate Esm1 expression to the glomerular transcriptome and evaluated these matrices with systemic over-expression of Esm-1. Results In both mice and humans, Esm1 is expressed in a subset of all renal endothelial cell types and represents a minority of glomerular endothelial cells. In patients, Esm1 (+) cells exhibit a highly conserved enrichment for blood vessel development genes. With diabetes, these cells are fewer in number and profoundly shift expression to reflect chemotaxis pathways. Analysis of these gene sets highlight candidate genes such as Igfbp5 for cross talk between cell types. We also find that diabetes induces correlations in the expression of large clusters of genes, within cell type-enriched transcripts. Esm1 significantly correlates with a majority genes within these clusters, delineating a glomerular transcriptional polarization reflected by the magnitude of Esm1 deficiency. In diabetic mice, these gene clusters link Esm1 expression to albuminuria, and over-expression of Esm-1 reverses the expression pattern in many of these genes. Conclusions A comprehensive analysis of single cell and bulk transcriptomes demonstrates that diabetes correlates with lower Esm1 expression and with changes in the functional characterization of Esm1 (+) cells. Esm1 is both a marker for glomerular transcriptional polarization, and a mediator that re-orients the transcriptional program in DKD.
Collapse
|
22
|
Huang SJ, Zhang Y, Wang GH, Lu J, Chen PP, Zhang JX, Li XQ, Yuan BY, Liu XQ, Jiang TT, Wang MY, Liu WT, Ruan XZ, Liu BC, Ma KL. Deposition of platelet-derived microparticles in podocytes contributes to diabetic nephropathy. Int Urol Nephrol 2023; 55:355-366. [PMID: 35931920 DOI: 10.1007/s11255-022-03332-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/25/2022] [Indexed: 01/25/2023]
Abstract
BACKGROUND Diabetic nephropathy (DN) is the leading cause of end-stage renal disease in the developed world. Podocyte injury is a critical cellular event involved in the progression of DN. Our previous studies demonstrated that platelet-derived microparticles (PMPs) mediated endothelial injury in diabetic rats. This study aimed to investigate whether PMPs are deposited in podocytes and to assess their potential effects on podocyte injury in DN. METHODS The deposition of PMPs in podocytes was assessed by immunofluorescent staining and electron microscopy. The changes in renal pathology and ultra-microstructure were assessed by periodic acid-Schiff staining and electron microscopy, respectively. The expression of inflammatory cytokines and extracellular matrix proteins was measured by immuno-histochemical staining and western blot. RESULTS PMPs were widely deposited in podocytes of glomeruli in diabetic patients and animal models and closely associated with DN progression. Interestingly, aspirin treatment significantly inhibited the accumulation of PMPs in the glomeruli of diabetic rats, alleviated mesangial matrix expansion and fusion of foot processes, and decreased the protein expression of inflammatory cytokines and extracellular matrix secretion. An in vitro study further confirmed the deposition of PMPs in podocytes. Moreover, PMP stimulation induced the phenotypic transition of podocytes through decreased podocin protein expression and increased protein expression of α-SMA and fibronectin, which was correlated with increased production of inflammatory cytokines. CONCLUSION Our findings demonstrated for the first time that the deposition of PMPs in podocytes contributed to the development of DN.
Collapse
Affiliation(s)
- Si Jia Huang
- Institute of Nephrology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Yang Zhang
- Renal Department, Nanjing First Hospital, Nanjing, 210006, China
| | - Gui Hua Wang
- Institute of Nephrology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Jian Lu
- Institute of Nephrology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Pei Pei Chen
- Institute of Nephrology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Jia Xiu Zhang
- Institute of Nephrology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Xue Qi Li
- Institute of Nephrology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Ben Yin Yuan
- Institute of Nephrology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Xiao Qi Liu
- Institute of Nephrology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Ting Ting Jiang
- Institute of Nephrology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Meng Ying Wang
- Institute of Nephrology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Wen Tao Liu
- Institute of Nephrology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Xiong Zhong Ruan
- John Moorhead Research Laboratory, Department of Renal Medicine, University College London (UCL) Medical School, Royal Free Campus, London, NW3 2PF, UK
| | - Bi Cheng Liu
- Institute of Nephrology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Kun Ling Ma
- Department of Nephrology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
23
|
Jin J, Wang L, Liu Y, He W, Zheng D, Ni Y, He Q. Depiction of immune heterogeneity of peripheral blood from patients with type II diabetic nephropathy based on mass cytometry. Front Endocrinol (Lausanne) 2023; 13:1018608. [PMID: 36686486 PMCID: PMC9853014 DOI: 10.3389/fendo.2022.1018608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 12/19/2022] [Indexed: 01/09/2023] Open
Abstract
Diabetic nephropathy (DN) is the most prominent cause of chronic kidney disease and end-stage renal failure. However, the pathophysiology of DN, especially the risk factors for early onset remains elusive. Increasing evidence has revealed the role of the innate immune system in developing DN, but relatively little is known about early immunological change that proceeds from overt DN. Herein, this work aims to investigate the immune-driven pathogenesis of DN using mass cytometry (CyTOF). The peripheral blood mononuclear lymphocytes (PBMC) from 6 patients with early-stage nephropathy and 7 type II diabetes patients without nephropathy were employed in the CyTOF test. A panel that contains 38 lineage markers was designed to monitor immune protein levels in PBMC. The unsupervised clustering analysis was performed to profile the proportion of individual cells. t-Distributed Stochastic Neighbor Embedding (t-SNE) was used to visualize the differences in DN patients' immune phenotypes. Comprehensive immune profiling revealed substantial immune system alterations in the early onset of DN, including the significant decline of B cells and the marked increase of monocytes. The level of CXCR3 was dramatically reduced in the different immune cellular subsets. The CyTOF data classified the fine-grained differential immune cell subsets in the early stage of DN. Innovatively, we identified several significant changed T cells, B cell, and monocyte subgroups in the early-stage DN associated with several potential biomarkers for developing DN, such as CTLA-4, CXCR3, PD-1, CD39, CCR4, and HLA-DR. Correlation analysis further demonstrated the robust relationship between above immune cell biomarkers and clinical parameters in the DN patients. Therefore, we provided a convincible view of understanding the immune-driven early pathogenesis of DN. Our findings exhibited that patients with DN are more susceptible to immune system disorders. The classification of fine-grained immune cell subsets in this present research might provide novel targets for the immunotherapy of DN.
Collapse
Affiliation(s)
- Juan Jin
- Urology & Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Longqiang Wang
- Department of Thyroid and Breast Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yongjun Liu
- Department of Thyroid and Breast Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenfang He
- Urology & Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Danna Zheng
- Urology & Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yinhua Ni
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Qiang He
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, China
| |
Collapse
|
24
|
Therapeutic efficacy of dapagliflozin on diabetic kidney disease in rats. Int Immunopharmacol 2022; 113:109272. [DOI: 10.1016/j.intimp.2022.109272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 11/05/2022]
|
25
|
Li HD, You YK, Shao BY, Wu WF, Wang YF, Guo JB, Meng XM, Chen H. Roles and crosstalks of macrophages in diabetic nephropathy. Front Immunol 2022; 13:1015142. [PMID: 36405700 PMCID: PMC9666695 DOI: 10.3389/fimmu.2022.1015142] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/20/2022] [Indexed: 11/05/2022] Open
Abstract
Diabetic nephropathy (DN) is the most common chronic kidney disease. Accumulation of glucose and metabolites activates resident macrophages in kidneys. Resident macrophages play diverse roles on diabetic kidney injuries by releasing cytokines/chemokines, recruiting peripheral monocytes/macrophages, enhancing renal cell injuries (podocytes, mesangial cells, endothelial cells and tubular epithelial cells), and macrophage-myofibroblast transition. The differentiation and cross-talks of macrophages ultimately result renal inflammation and fibrosis in DN. Emerging evidence shows that targeting macrophages by suppressing macrophage activation/transition, and macrophages-cell interactions may be a promising approach to attenuate DN. In the review, we summarized the diverse roles of macrophages and the cross-talks to other cells in DN, and highlighted the therapeutic potentials by targeting macrophages.
Collapse
Affiliation(s)
- Hai-Di Li
- Department of Chinese Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Yong-Ke You
- Department of Nephrology, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, China
| | - Bao-Yi Shao
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Wei-Feng Wu
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Yi-Fan Wang
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Jian-Bo Guo
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Xiao-Ming Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- *Correspondence: Haiyong Chen, ; Xiao-Ming Meng,
| | - Haiyong Chen
- Department of Chinese Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- *Correspondence: Haiyong Chen, ; Xiao-Ming Meng,
| |
Collapse
|
26
|
Shao S, Zhang X, Xu Q, Pan R, Chen Y. Emerging roles of Glucagon like peptide-1 in the management of autoimmune diseases and diabetes-associated comorbidities. Pharmacol Ther 2022; 239:108270. [PMID: 36002078 DOI: 10.1016/j.pharmthera.2022.108270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 11/26/2022]
|
27
|
cGAS-STING activation contributes to podocyte injury in diabetic kidney disease. iScience 2022; 25:105145. [PMID: 36176590 PMCID: PMC9513272 DOI: 10.1016/j.isci.2022.105145] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 08/25/2022] [Accepted: 09/12/2022] [Indexed: 11/23/2022] Open
Abstract
Diabetic kidney disease (DKD) is the leading cause of end-stage renal diseases. DKD does not have efficacious treatment. The cGAS-STING pathway is activated in podocytes at the early stage of kidney dysfunction, which is associated with the activation of STING downstream effectors TBK1 and NF-κB but not IRF3. Lipotoxicity induces mitochondrial damage and mtDNA leakage to the cytosol through Bcl-2 associated X protein (BAX) in podocytes. BAX-mediated mtDNA cytosolic leakage can activate the cGAS-STING pathway in the absence of lipotoxicity and is sufficient to cause podocyte injury. Depletion of cytosolic mtDNA, genetic STING knockdown, or pharmacological inhibition of STING or TBK1 alleviates podocyte injury and improves renal functions in cultured podocytes or mouse models of diabetes and obesity. These results suggest that the mtDNA-cGAS-STING pathway promotes podocyte injury and is a potential therapeutic target for DKD or other obesity-related kidney diseases.
Collapse
|
28
|
Fu S, Cheng Y, Wang X, Huang J, Su S, Wu H, Yu J, Xu Z. Identification of diagnostic gene biomarkers and immune infiltration in patients with diabetic kidney disease using machine learning strategies and bioinformatic analysis. Front Med (Lausanne) 2022; 9:918657. [PMID: 36250071 PMCID: PMC9556813 DOI: 10.3389/fmed.2022.918657] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 09/13/2022] [Indexed: 11/23/2022] Open
Abstract
Objective Diabetic kidney disease (DKD) is the leading cause of chronic kidney disease and end-stage renal disease worldwide. Early diagnosis is critical to prevent its progression. The aim of this study was to identify potential diagnostic biomarkers for DKD, illustrate the biological processes related to the biomarkers and investigate the relationship between them and immune cell infiltration. Materials and methods Gene expression profiles (GSE30528, GSE96804, and GSE99339) for samples obtained from DKD and controls were downloaded from the Gene Expression Omnibus database as a training set, and the gene expression profiles (GSE47185 and GSE30122) were downloaded as a validation set. Differentially expressed genes (DEGs) were identified using the training set, and functional correlation analyses were performed. The least absolute shrinkage and selection operator (LASSO), support vector machine-recursive feature elimination (SVM-RFE), and random forests (RF) were performed to identify potential diagnostic biomarkers. To evaluate the diagnostic efficacy of these potential biomarkers, receiver operating characteristic (ROC) curves were plotted separately for the training and validation sets, and immunohistochemical (IHC) staining for biomarkers was performed in the DKD and control kidney tissues. In addition, the CIBERSORT, XCELL and TIMER algorithms were employed to assess the infiltration of immune cells in DKD, and the relationships between the biomarkers and infiltrating immune cells were also investigated. Results A total of 95 DEGs were identified. Using three machine learning algorithms, DUSP1 and PRKAR2B were identified as potential biomarker genes for the diagnosis of DKD. The diagnostic efficacy of DUSP1 and PRKAR2B was assessed using the areas under the curves in the ROC analysis of the training set (0.945 and 0.932, respectively) and validation set (0.789 and 0.709, respectively). IHC staining suggested that the expression levels of DUSP1 and PRKAR2B were significantly lower in DKD patients compared to normal. Immune cell infiltration analysis showed that B memory cells, gamma delta T cells, macrophages, and neutrophils may be involved in the development of DKD. Furthermore, both of the candidate genes are associated with these immune cell subtypes to varying extents. Conclusion DUSP1 and PRKAR2B are potential diagnostic markers of DKD, and they are closely associated with immune cell infiltration.
Collapse
Affiliation(s)
- Shaojie Fu
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| | - Yanli Cheng
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| | - Xueyao Wang
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| | - Jingda Huang
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| | - Sensen Su
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| | - Hao Wu
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| | - Jinyu Yu
- Department of Urology, The First Hospital of Jilin University, Changchun, China
| | - Zhonggao Xu
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
- *Correspondence: Zhonggao Xu,
| |
Collapse
|
29
|
Chen J, Liu Q, He J, Li Y. Immune responses in diabetic nephropathy: Pathogenic mechanisms and therapeutic target. Front Immunol 2022; 13:958790. [PMID: 36045667 PMCID: PMC9420855 DOI: 10.3389/fimmu.2022.958790] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/28/2022] [Indexed: 11/14/2022] Open
Abstract
Diabetic nephropathy (DN) is a chronic, inflammatory disease affecting millions of diabetic patients worldwide. DN is associated with proteinuria and progressive slowing of glomerular filtration, which often leads to end-stage kidney diseases. Due to the complexity of this metabolic disorder and lack of clarity about its pathogenesis, it is often more difficult to diagnose and treat than other kidney diseases. Recent studies have highlighted that the immune system can inadvertently contribute to DN pathogenesis. Cells involved in innate and adaptive immune responses can target the kidney due to increased expression of immune-related localization factors. Immune cells then activate a pro-inflammatory response involving the release of autocrine and paracrine factors, which further amplify inflammation and damage the kidney. Consequently, strategies to treat DN by targeting the immune responses are currently under study. In light of the steady rise in DN incidence, this timely review summarizes the latest findings about the role of the immune system in the pathogenesis of DN and discusses promising preclinical and clinical therapies.
Collapse
Affiliation(s)
| | | | - Jinhan He
- *Correspondence: Jinhan He, ; Yanping Li,
| | - Yanping Li
- *Correspondence: Jinhan He, ; Yanping Li,
| |
Collapse
|
30
|
Xu Z, Tao L, Su H. The Complement System in Metabolic-Associated Kidney Diseases. Front Immunol 2022; 13:902063. [PMID: 35924242 PMCID: PMC9339597 DOI: 10.3389/fimmu.2022.902063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/20/2022] [Indexed: 11/17/2022] Open
Abstract
Metabolic syndrome (MS) is a group of clinical abnormalities characterized by central or abdominal obesity, hypertension, hyperuricemia, and metabolic disorders of glucose or lipid. Currently, the prevalence of MS is estimated about 25% in general population and is progressively increasing, which has become a challenging public health burden. Long-term metabolic disorders can activate the immune system and trigger a low-grade chronic inflammation named “metaflammation.” As an important organ involved in metabolism, the kidney is inevitably attacked by immunity disequilibrium and “metaflammation.” Recently, accumulating studies have suggested that the complement system, the most important and fundamental component of innate immune responses, is actively involved in the development of metabolic kidney diseases. In this review, we updated and summarized the different pathways through which the complement system is activated in a series of metabolic disturbances and the mechanisms on how complement mediate immune cell activation and infiltration, renal parenchymal cell damage, and the deterioration of renal function provide potential new biomarkers and therapeutic options for metabolic kidney diseases.
Collapse
|
31
|
Cao C, Zhu H, Yao Y, Zeng R. Gut Dysbiosis and Kidney Diseases. Front Med (Lausanne) 2022; 9:829349. [PMID: 35308555 PMCID: PMC8927813 DOI: 10.3389/fmed.2022.829349] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/09/2022] [Indexed: 12/16/2022] Open
Abstract
Gut dysbiosis is defined as disorders of gut microbiota and loss of barrier integrity, which are ubiquitous on pathological conditions and associated with the development of various diseases. Kidney diseases are accompanied with gut dysbiosis and metabolic disorders, which in turn contribute to the pathogenesis and progression of kidney diseases. Microbial alterations trigger production of harmful metabolites such as uremic toxins and a decrease in the number of beneficial ones such as SCFAs, which is the major mechanism of gut dysbiosis on kidney diseases according to current studies. In addition, the activation of immune responses and mitochondrial dysfunction by gut dysbiosis, also lead to the development of kidney diseases. Based on the molecular mechanisms, modification of gut dysbiosis via probiotics, prebiotics and synbiotics is a potential approach to slow kidney disease progression. Fecal microbiota transplantation (FMT) and genetic manipulation of the gut microbiota are also promising choices. However, the clinical use of probiotics in kidney disease is not supported by the current clinical evidence. Further studies are necessary to explore the causal relationships of gut dysbiosis and kidney diseases, the efficiency and safety of therapeutic strategies targeting gut-kidney axis.
Collapse
Affiliation(s)
- Chujin Cao
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Han Zhu
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Yao
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Division of Nutrition, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Zeng
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
32
|
Liu J, Zhang Y, Sheng H, Liang C, Liu H, Moran Guerrero JA, Lu Z, Mao W, Dai Z, Liu X, Zhang L. Hyperoside Suppresses Renal Inflammation by Regulating Macrophage Polarization in Mice With Type 2 Diabetes Mellitus. Front Immunol 2021; 12:733808. [PMID: 34925317 PMCID: PMC8678409 DOI: 10.3389/fimmu.2021.733808] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 11/04/2021] [Indexed: 12/29/2022] Open
Abstract
Accumulating evidence reveals that both inflammation and lymphocyte dysfunction play a vital role in the development of diabetic nephropathy (DN). Hyperoside (HPS) or quercetin-3-O-galactoside is an active flavonoid glycoside mainly found in the Chinese herbal medicine Tu-Si-Zi. Although HPS has a variety of pharmacological effects, including anti-oxidative and anti-apoptotic activities as well as podocyte-protective effects, its underlying anti-inflammatory mechanisms remain unclear. Herein, we investigated the therapeutic effects of HPS on murine DN and the potential mechanisms responsible for its efficacy. We used C57BLKS/6J Lepdb/db mice and a high glucose (HG)-induced bone marrow-derived macrophage (BMDM) polarization system to investigate the potentially protective effects of HPS on DN. Our results showed that HPS markedly reduced diabetes-induced albuminuria and glomerular mesangial matrix expansion, accompanied with a significant improvement of fasting blood glucose level, hyperlipidaemia and body weight. Mechanistically, pretreatment with HPS effectively regulated macrophage polarization by shifting proinflammatory M1 macrophages (F4/80+CD11b+CD86+) to anti-inflammatory M2 ones (F4/80+CD11b+CD206+) in vivo and in bone marrow-derived macrophages (BMDMs) in vitro, resulting in the inhibition of renal proinflammatory macrophage infiltration and the reduction in expression of monocyte chemoattractant protein-1 (MCP-1), tumor necrosis factor (TNF-α) and inducible nitric oxide synthase (iNOS) while increasing expression of anti-inflammatory cytokine Arg-1 and CD163/CD206 surface molecules. Unexpectedly, pretreatment with HPS suppressed CD4+ T cell proliferation in a coculture model of IL-4-induced M2 macrophages and splenic CD4+ T cells while promoting their differentiation into CD4+IL-4+ Th2 and CD4+Foxp3+ Treg cells. Taken together, we demonstrate that HPS ameliorates murine DN via promoting macrophage polarization from an M1 to M2 phenotype and CD4+ T cell differentiation into Th2 and Treg populations. Our findings may be implicated for the treatment of DN in clinic.
Collapse
Affiliation(s)
- Jialing Liu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Nephrology Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Yanmei Zhang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Nephrology Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hongqin Sheng
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Nephrology Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chunling Liang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Section of Immunology and Joint Immunology Program, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Huazhen Liu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Section of Immunology and Joint Immunology Program, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | | | - Zhaoyu Lu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Nephrology Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wei Mao
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Nephrology Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhenhua Dai
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Section of Immunology and Joint Immunology Program, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Diseases, Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Zhenhua Dai, ; Xusheng Liu, ; Lei Zhang,
| | - Xusheng Liu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Nephrology Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Zhenhua Dai, ; Xusheng Liu, ; Lei Zhang,
| | - Lei Zhang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Nephrology Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Section of Immunology and Joint Immunology Program, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China
- *Correspondence: Zhenhua Dai, ; Xusheng Liu, ; Lei Zhang,
| |
Collapse
|
33
|
Heerspink HJL, Law G, Psachoulia K, Connolly K, Whatling C, Ericsson H, Knöchel J, Lindstedt EL, MacPhee I. Design of FLAIR: a Phase 2b Study of the 5-Lipoxygenase Activating Protein Inhibitor AZD5718 in Patients With Proteinuric CKD. Kidney Int Rep 2021; 6:2803-2810. [PMID: 34805632 PMCID: PMC8589691 DOI: 10.1016/j.ekir.2021.08.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 08/03/2021] [Accepted: 08/16/2021] [Indexed: 01/02/2023] Open
Abstract
Introduction Patients with chronic kidney disease (CKD) remain at risk for kidney and cardiovascular events resulting from residual albuminuria, despite available treatments. Leukotrienes are proinflammatory and vasoconstrictive lipid mediators implicated in the etiology of chronic inflammatory diseases. AZD5718 is a potent, selective, and reversible 5-lipoxygenase activating protein (FLAP) inhibitor that suppresses leukotriene production. Methods FLAIR (FLAP Inhibition in Renal disease) is an ongoing phase 2b, randomized, double-blind, placebo-controlled, multicenter study to evaluate the efficacy and safety of AZD5718 in patients with proteinuric CKD with or without type 2 diabetes. Participants receive AZD5718 at 3 different doses or placebo once daily for 12 weeks, followed by an 8-week extension in which they also receive dapagliflozin (10 mg/d) as anticipated future standard of care. The planned sample size is 632 participants, providing 91% power to detect 30% reduction in urinary albumin-to-creatinine ratio (UACR) between the maximum dose of AZD5718 and placebo. The dose-response effect of AZD5718 on UACR after the dapagliflozin extension is the primary efficacy objective. Key secondary objectives are the dose-response effect of AZD5718 plus current standard of care on UACR and acute effects of treatment on the estimated glomerular filtration rate. Safety, tolerability, AZD5718 pharmacokinetics, and analyses of biomarkers that may predict or reflect response to AZD5718 are additional objectives. Conclusion FLAIR will provide data on the effects of 5-lipoxygenase pathway inhibition in patients with proteinuric CKD with or without type 2 diabetes, and will form the basis for future clinical trials (ClinicalTrials.gov: NCT04492722).
Collapse
Affiliation(s)
- Hiddo J L Heerspink
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Gordon Law
- Early Biometrics & Statistical Innovation, Data Science and Artificial Intelligence, R&D, AstraZeneca, Gaithersburg, Maryland, USA
| | - Konstantina Psachoulia
- Early Clinical Development, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, USA
| | - Kathleen Connolly
- Early Clinical Development, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Carl Whatling
- Translational Science and Experimental Medicine, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Hans Ericsson
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology & Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Jane Knöchel
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology & Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Eva-Lotte Lindstedt
- Research and Early Clinical Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Iain MacPhee
- Early Clinical Development, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| |
Collapse
|
34
|
Vartak T, Godson C, Brennan E. Therapeutic potential of pro-resolving mediators in diabetic kidney disease. Adv Drug Deliv Rev 2021; 178:113965. [PMID: 34508793 DOI: 10.1016/j.addr.2021.113965] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 07/26/2021] [Accepted: 09/05/2021] [Indexed: 02/06/2023]
Abstract
Renal microvascular disease associated with diabetes [Diabetic kidney disease - DKD] is the leading cause of chronic kidney disease. In DKD, glomerular basement membrane thickening, mesangial expansion, endothelial dysfunction, podocyte cell loss and renal tubule injury contribute to progressive glomerulosclerosis and tubulointerstitial fibrosis. Chronic inflammation is recognized as a major pathogenic mechanism for DKD, with resident and circulating immune cells interacting with local kidney cell populations to provoke an inflammatory response. The onset of inflammation is driven by the release of well described proinflammatory mediators, and this is typically followed by a resolution phase. Inflammation resolution is achieved through the bioactions of endogenous specialized pro-resolving lipid mediators (SPMs). As our understanding of SPMs advances 'resolution pharmacology' based approaches using these molecules are being explored in DKD.
Collapse
Affiliation(s)
- Tanwi Vartak
- Diabetes Complications Research Centre, Conway Institute and School of Medicine, University College Dublin, Dublin, Ireland
| | - Catherine Godson
- Diabetes Complications Research Centre, Conway Institute and School of Medicine, University College Dublin, Dublin, Ireland
| | - Eoin Brennan
- Diabetes Complications Research Centre, Conway Institute and School of Medicine, University College Dublin, Dublin, Ireland.
| |
Collapse
|
35
|
Jia Y, Xu H, Yu Q, Tan L, Xiong Z. Identification and verification of vascular cell adhesion protein 1 as an immune-related hub gene associated with the tubulointerstitial injury in diabetic kidney disease. Bioengineered 2021; 12:6655-6673. [PMID: 34506229 PMCID: PMC8806788 DOI: 10.1080/21655979.2021.1976540] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2022] Open
Abstract
Diabetic kidney disease (DKD) is the leading cause of chronic kidney disease (CKD) and end-stage renal disease (ESRD), but the pathogenesis is not completely understood. Tubulointerstitial injury plays critical roles in the development and progression of DKD. The present study aimed to investigate the profile of tubulointerstitial immune cell infiltration and reveal the underlying mechanisms between tubular cell injury and interstitial inflammation in DKD using bioinformatics strategies. First, xCell analysis identified immune cells displaying significant changes in the DKD tubulointerstitium, including upregulated CD4+ T cells, Th2 cells, CD8+ T cells, M1 macrophages, activated dendritic cells (DCs) and conventional DCs, as well as downregulated Tregs. Second, pyroptosis was identified as the main form of cell death compared with other forms of programmed cell death. Vascular cell adhesion protein 1 (VCAM1) was identified as the top ranked hub gene. The correlation analysis showed that VCAM1 was significantly positively correlated with pyroptosis and infiltrated immune cells in the tubulointerstitium. Upregulation of VCAM1 in the DKD tubulointerstitium was further verified in European Renal cDNA Bank cohort and was observed to negatively correlate with the glomerular filtration rate (GFR). Our in vitro study validated increased VCAM1 expression in HK-2 cells under diabetic conditions, and pyroptosis inhibition by disulfiram decreased VCAM1 expression, inflammatory cytokine release and fibrosis. In conclusion, our study identified upregulated VCAM1 expression in renal tubular cells, which might interact with infiltrated immune cells, thus promoting fibrosis. The FDA-approved drug disulfiram might improve fibrosis in DKD by targeting tubular pyroptosis and VCAM1 expression.
Collapse
Affiliation(s)
- Yan Jia
- Nephrology Department, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Hui Xu
- Department of Pathology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Qi Yu
- Renal Division, Department of Medicine, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
| | - Lishan Tan
- Nephrology Department, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Zuying Xiong
- Nephrology Department, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| |
Collapse
|
36
|
Xu Q, Li B, Wang Y, Wang C, Feng S, Xue L, Chen J, Jiang H. Identification of VCAN as Hub Gene for Diabetic Kidney Disease Immune Injury Using Integrated Bioinformatics Analysis. Front Physiol 2021; 12:651690. [PMID: 34557107 PMCID: PMC8454927 DOI: 10.3389/fphys.2021.651690] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 04/01/2021] [Indexed: 12/11/2022] Open
Abstract
Background: Diabetic kidney disease (DKD) is a leading cause of chronic kidney disease in China. Tubular injury contributes to the progression of DKD. Our study was conducted to explore the differential gene expression profiles between kidneys from patients with DKD and kidney living donors (LDs). Methods: In total, seven DKD and eighteen LD gene expression profiles from the GSE104954 dataset were downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) were analyzed in R with the limma package. DEGs were uploaded to the g:Profiler online database to explore the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Ingenuity pathway analysis (IPA) was carried out using online IPA software. Weighted gene co-expression network analysis (WGCNA) was performed using the WGCNA R package. By integrating DEGs and genes from the top 1 phenotype-gene associated module, we determined the hub gene. We next tested the hub gene, VCAN, in the GSE30122 dataset. We also validated the versican levels in human kidney tissues, explored immune cell type enrichment using an online database xCell, and investigated the correlation between cell types and VCAN expression. Results: A total of 563 DEGs was identified. A large number of pathways were involved in the immune response process according to the results of GO, KEGG, and IPA. Using WGCNA, we selected the lightcyan module in which genes showed the strongest correlation with the phenotype and smallest P-value. We also identified VCAN as a hub gene by integrating DEG analysis and WGCNA. Versican expression was upregulated in human diabetic kidney tissue. Moreover, versican was speculated to play a role in immune injury according to the enrichment of functions and signaling pathways. VCAN transcript levels correlate with the assembly of immune cells in the kidney. Conclusion: Immune processes played an essential role in DKD tubulointerstitium injury. The hub gene VCAN contributed to this process.
Collapse
Affiliation(s)
- Qiannan Xu
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Nephropathy, Hangzhou, China
- Institute of Nephropathy, Zhejiang University, Hangzhou, China
| | - Binjue Li
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Nephropathy, Hangzhou, China
- Institute of Nephropathy, Zhejiang University, Hangzhou, China
| | - Yucheng Wang
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Nephropathy, Hangzhou, China
- Institute of Nephropathy, Zhejiang University, Hangzhou, China
| | - Cuili Wang
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Nephropathy, Hangzhou, China
- Institute of Nephropathy, Zhejiang University, Hangzhou, China
| | - Shi Feng
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Nephropathy, Hangzhou, China
- Institute of Nephropathy, Zhejiang University, Hangzhou, China
| | - Lu Xue
- Department of Otolaryngology Head and Neck Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Jianghua Chen
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Nephropathy, Hangzhou, China
- Institute of Nephropathy, Zhejiang University, Hangzhou, China
| | - Hong Jiang
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Nephropathy, Hangzhou, China
- Institute of Nephropathy, Zhejiang University, Hangzhou, China
| |
Collapse
|
37
|
Chen J, Zhang Q, Liu D, Liu Z. Exosomes: Advances, development and potential therapeutic strategies in diabetic nephropathy. Metabolism 2021; 122:154834. [PMID: 34217734 DOI: 10.1016/j.metabol.2021.154834] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 02/06/2023]
Abstract
Exosomes, a major type of extracellular vesicles (EVs), are nanoscale vesicles excreted by almost all cell types via invagination of the endosomal membrane pathway. Exosomes play a crucial role in the mediation of intercellular communication both in health and disease, which can be ascribed to their capacity to be transported to neighboring or distant cells, thus regulating the biological function of recipient cells through cargos such as DNA, mRNA, proteins and microRNA. Diabetic nephropathy (DN) is a serious microvascular complication associated with diabetes mellitus as well as a significant cause of end-stage renal disease worldwide, which has resulted in a substantial economic burden on individuals and society. However, despite extensive efforts, therapeutic approaches that prevent the progression of DN do not exist, which implies new approaches are required. An increasing number of studies suggest that exosomes are involved in the pathophysiological processes associated with DN, which may potentially provide novel biomarkers and therapeutic targets for DN. Hence, this review summarizes recent advances involving exosome mechanisms in DN and their potential as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Jingfang Chen
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, China; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, China; Core Unit of National Clinical Medical Research Center of Kidney Disease, Zhengzhou 450052, China
| | - Qing Zhang
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, China; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, China; Core Unit of National Clinical Medical Research Center of Kidney Disease, Zhengzhou 450052, China
| | - Dongwei Liu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, China; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, China; Core Unit of National Clinical Medical Research Center of Kidney Disease, Zhengzhou 450052, China.
| | - Zhangsuo Liu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, China; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, China; Core Unit of National Clinical Medical Research Center of Kidney Disease, Zhengzhou 450052, China.
| |
Collapse
|
38
|
Wang Y, Zhao M, Zhang Y. Identification of fibronectin 1 (FN1) and complement component 3 (C3) as immune infiltration-related biomarkers for diabetic nephropathy using integrated bioinformatic analysis. Bioengineered 2021; 12:5386-5401. [PMID: 34424825 PMCID: PMC8806822 DOI: 10.1080/21655979.2021.1960766] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Immune cell infiltration (ICI) plays a pivotal role in the development of diabetic nephropathy (DN). Evidence suggests that immune-related genes play an important role in the initiation of inflammation and the recruitment of immune cells. However, the underlying mechanisms and immune-related biomarkers in DN have not been elucidated. Therefore, this study aimed to explore immune-related biomarkers in DN and the underlying mechanisms using bioinformatic approaches. In this study, four DN glomerular datasets were downloaded, merged, and divided into training and test cohorts. First, we identified 55 differentially expressed immune-related genes; their biological functions were mainly enriched in leukocyte chemotaxis and neutrophil migration. The CIBERSORT algorithm was then used to evaluate the infiltrated immune cells; macrophages M1/M2, T cells CD8, and resting mast cells were strongly associated with DN. The ICI-related gene modules as well as 25 candidate hub genes were identified to construct a protein-protein interactive network and conduct molecular complex detection using the GOSemSim algorithm. Consequently, FN1, C3, and VEGFC were identified as immune-related biomarkers in DN, and a related transcription factor-miRNA-target network was constructed. Receiver operating characteristic curve analysis was estimated in the test cohort; FN1 and C3 had large area under the curve values (0.837 and 0.824, respectively). Clinical validation showed that FN1 and C3 were negatively related to the glomerular filtration rate in patients with DN. Six potential therapeutic small molecule compounds, such as calyculin, phenamil, and clofazimine, were discovered in the connectivity map. In conclusion, FN1 and C3 are immune-related biomarkers of DN.
Collapse
Affiliation(s)
- Yuejun Wang
- Department of Nephrology, Zhejiang Aged Care Hospital, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Mingming Zhao
- Department of Nephrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yu Zhang
- Department of Nephrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
39
|
Loretelli C, Rocchio F, D'Addio F, Ben Nasr M, Castillo-Leon E, Dellepiane S, Vergani A, Abdelsalam A, Assi E, Maestroni A, Usuelli V, Bassi R, Pastore I, Yang J, El Essawy B, Elased KM, Fadini GP, Ippolito E, Seelam AJ, Pezzolesi M, Corradi D, Zuccotti GV, Gallieni M, Allegretti M, Niewczas MA, Fiorina P. The IL-8-CXCR1/2 axis contributes to diabetic kidney disease. Metabolism 2021; 121:154804. [PMID: 34097917 DOI: 10.1016/j.metabol.2021.154804] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/29/2021] [Accepted: 06/01/2021] [Indexed: 01/26/2023]
Abstract
AIMS/HYPOTHESIS Inflammation has a major role in diabetic kidney disease. We thus investigated the role of the IL-8-CXCR1/2 axis in favoring kidney damage in diabetes. METHODS Urinary IL-8 levels were measured in 1247 patients of the Joslin Kidney Study in type 2 diabetes (T2D). The expression of IL-8 and of its membrane receptors CXCR1/CXCR2 was quantified in kidney tissues in patients with T2D and in controls. The effect of CXCR1/2 blockade on diabetic kidney disease was evaluated in db/db mice. RESULTS IL-8 urinary levels were increased in patients with T2D and diabetic kidney disease, with the highest urinary IL-8 levels found in the patients with the largest decline in glomerular filtration rate, with an increased albumin/creatine ratio and the worst renal outcome. Moreover, glomerular IL-8 renal expression was increased in patients with T2D, as compared to controls. High glucose elicits abundant IL-8 secretion in cultured human immortalized podocytes in vitro. Finally, in diabetic db/db mice and in podocytes in vitro, CXCR1/2 blockade mitigated albuminuria, reduced mesangial expansion, decreased podocyte apoptosis and reduced DNA damage. CONCLUSIONS/INTERPRETATION The IL-8- CXCR1/2 axis may have a role in diabetic kidney disease by inducing podocyte damage. Indeed, targeting the IL-8-CXCR1/2 axis may reduce the burden of diabetic kidney disease.
Collapse
MESH Headings
- Adult
- Animals
- Case-Control Studies
- Cells, Cultured
- Cohort Studies
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/pathology
- Diabetic Nephropathies/genetics
- Diabetic Nephropathies/metabolism
- Diabetic Nephropathies/pathology
- Humans
- Interleukin-8/genetics
- Interleukin-8/metabolism
- Interleukin-8/physiology
- Italy
- Kidney/metabolism
- Kidney/pathology
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Podocytes/metabolism
- Podocytes/pathology
- Receptors, CXCR/physiology
- Receptors, Interleukin-8A/genetics
- Receptors, Interleukin-8A/metabolism
- Receptors, Interleukin-8B/genetics
- Receptors, Interleukin-8B/metabolism
- Signal Transduction/physiology
Collapse
Affiliation(s)
- Cristian Loretelli
- International Center for T1D, Centro di Ricerca Pediatrica Romeo ed Enrica Invernizzi, Dipartimento di Scienze Biomediche e Cliniche "L. Sacco", Università di Milano, Milan, Italy
| | - Francesca Rocchio
- International Center for T1D, Centro di Ricerca Pediatrica Romeo ed Enrica Invernizzi, Dipartimento di Scienze Biomediche e Cliniche "L. Sacco", Università di Milano, Milan, Italy
| | - Francesca D'Addio
- International Center for T1D, Centro di Ricerca Pediatrica Romeo ed Enrica Invernizzi, Dipartimento di Scienze Biomediche e Cliniche "L. Sacco", Università di Milano, Milan, Italy
| | - Moufida Ben Nasr
- International Center for T1D, Centro di Ricerca Pediatrica Romeo ed Enrica Invernizzi, Dipartimento di Scienze Biomediche e Cliniche "L. Sacco", Università di Milano, Milan, Italy; Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Eduardo Castillo-Leon
- Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sergio Dellepiane
- Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Andrea Vergani
- Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ahmed Abdelsalam
- International Center for T1D, Centro di Ricerca Pediatrica Romeo ed Enrica Invernizzi, Dipartimento di Scienze Biomediche e Cliniche "L. Sacco", Università di Milano, Milan, Italy; Department of Biochemistry and Biotechnology, Heliopolis University, Cairo, Egypt
| | - Emma Assi
- International Center for T1D, Centro di Ricerca Pediatrica Romeo ed Enrica Invernizzi, Dipartimento di Scienze Biomediche e Cliniche "L. Sacco", Università di Milano, Milan, Italy
| | - Anna Maestroni
- International Center for T1D, Centro di Ricerca Pediatrica Romeo ed Enrica Invernizzi, Dipartimento di Scienze Biomediche e Cliniche "L. Sacco", Università di Milano, Milan, Italy
| | - Vera Usuelli
- International Center for T1D, Centro di Ricerca Pediatrica Romeo ed Enrica Invernizzi, Dipartimento di Scienze Biomediche e Cliniche "L. Sacco", Università di Milano, Milan, Italy; Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Roberto Bassi
- Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ida Pastore
- Endocrinology Division, ASST Fatebenefratelli Sacco, Milan, Italy
| | - Jun Yang
- Institute of Organ Transplantation, Tongji Hospital and Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Basset El Essawy
- Medicine, Al-Azhar University, Cairo, Egypt; Transplantation Research Center, Nephrology Division, Brigham and Women's Hospital, Boston, MA, USA
| | - Khalid M Elased
- Department of Pharmacology & Toxicology Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| | | | - Elio Ippolito
- International Center for T1D, Centro di Ricerca Pediatrica Romeo ed Enrica Invernizzi, Dipartimento di Scienze Biomediche e Cliniche "L. Sacco", Università di Milano, Milan, Italy
| | - Andy Joe Seelam
- International Center for T1D, Centro di Ricerca Pediatrica Romeo ed Enrica Invernizzi, Dipartimento di Scienze Biomediche e Cliniche "L. Sacco", Università di Milano, Milan, Italy
| | - Marcus Pezzolesi
- Division of Nephrology & Hypertension and Diabetes & Metabolism Research Center, University of Utah, Salt Lake City, UT, USA
| | - Domenico Corradi
- Pathology and Laboratory Medicine, University of Parma, Parma, Italy
| | - Gian Vincenzo Zuccotti
- Centro di Ricerca Pediatrica Romeo ed Enrica Invernizzi, Dipartimento di Scienze Biomediche e Cliniche "L. Sacco", Università di Milano and Dipartimento di Pediatria, Ospedale dei Bambini Buzzi, Milan, Italy
| | - Maurizio Gallieni
- Dipartimento di Scienze Biomediche e Cliniche "L. Sacco", Università di Milano, Milan, Italy; Nephrology and Dialysis Unit, ASST Fatebenefratelli-Sacco, Milan, Italy
| | | | | | - Paolo Fiorina
- International Center for T1D, Centro di Ricerca Pediatrica Romeo ed Enrica Invernizzi, Dipartimento di Scienze Biomediche e Cliniche "L. Sacco", Università di Milano, Milan, Italy; Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Endocrinology Division, ASST Fatebenefratelli Sacco, Milan, Italy.
| |
Collapse
|
40
|
Tommerdahl KL, Nadeau KJ, Bjornstad P. Mechanisms of Cardiorenal Protection of Glucagon-Like Peptide-1 Receptor Agonists. Adv Chronic Kidney Dis 2021; 28:337-346. [PMID: 34922690 DOI: 10.1053/j.ackd.2021.06.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 05/03/2021] [Accepted: 06/01/2021] [Indexed: 11/11/2022]
Abstract
The worldwide prevalence of type 2 diabetes (T2D) is steadily increasing, and it remains a challenging public health problem for populations in both developing and developed countries around the world. Despite the recent advances in novel antidiabetic agents, diabetic kidney disease and cardiovascular disease remain the leading causes of morbidity and mortality in T2D. Glucagon-like peptide-1 (GLP-1) receptor agonists (RAs), incretin hormones that stimulate postprandial insulin secretion, serve as a promising avenue for treatment of T2D as they result in a variety of antihyperglycemic effects including increased endogenous insulin secretion, decreased gluconeogenesis, inhibition of pancreatic α-cell glucagon production, decreased pancreatic β-cell apoptosis, and increased β-cell proliferation. GLP-1RAs have also been found to delay gastric emptying, promote weight loss, increase satiety, decrease hypertension, improve dyslipidemia, reduce inflammation, improve albuminuria, induce natriuresis, improve cardiovascular function, and prevent thrombogenesis. In this review, we will present risk factors for the development of cardiac and kidney disease in individuals with T2D and discuss possible mechanisms for the cardiorenal protective effects seen with GLP-1RAs. We will also present the possibility of dual- and tri-receptor agonist therapies with GLP-1, gastric inhibitory peptide, and glucagon RAs as an area of possible mechanistic synergy in the treatment of T2D and the prevention of cardiorenal complications.
Collapse
|
41
|
Yu K, Li D, Xu F, Guo H, Feng F, Ding Y, Wan X, Sun N, Zhang Y, Fan J, Liu L, Yang H, Yang X. IDO1 as a new immune biomarker for diabetic nephropathy and its correlation with immune cell infiltration. Int Immunopharmacol 2021; 94:107446. [PMID: 33581581 DOI: 10.1016/j.intimp.2021.107446] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/24/2021] [Accepted: 01/27/2021] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Indoleamine 2,3-dioxygenase 1(IDO1) has complicated roles in immune-inflammatory response regulation, but its correlation with immune cell infiltration in diabetic nephropathy (DN) remains unknown. METHODS Gene expression data were extracted from the GEO database. Differentially expressed genes (DEGs) were identified and functional correlation analysis was performed. The immune hub gene was screened using Maximal Clique Centrality, and verified in DN model mice via western blotting, immunohistochemistry, and immunofluorescence analysis. CIBERSORTx was used to assign values to immune cell infiltration in DN and determine a correlation with the hub gene. The prognostic significance of the hub gene was then validated. RESULTS The 330 screened DEGs from the GEO dataset were most enriched in GO functions and KEGG pathways associated with immune inflammation. IDO1 was identified as a hub immune gene, with upregulated expression in DN model mice. IDO1 expression was positively correlated with M1 macrophages (R = 0.58, P < 0.001) and monocytes (R = 0.44, P = 0.049), and was negatively correlated with resting memory CD4 T cells (R = -0.51, P = 0.019). IDO1 expression was upregulated in peritoneal macrophages after high glucose stimulation, and inflammatory factor production was reversed by IDO1 inhibition. Higher IDO1 expression was associated with worse prognosis in DN patients via multivariate survival analysis (P < 0.001). CONCLUSIONS IDO1 was identified as a diagnostic and prognostic biomarker for DN and shown to play a vital role in immune cell infiltration in DN, ascertained using microarray data and CIBERSORTx for the first time.
Collapse
Affiliation(s)
- Kuipeng Yu
- Department of Nephrology, Qilu Hospital of Shandong University, Jinan, 250012 Shandong, China; Laboratory of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, 250012 Shandong, China; NHC Key Laboratory of Otorhinolaryngology, Qilu Hospital of Shandong University, Jinan, 250012 Shandong, China
| | - Dengren Li
- Department of Nephrology, Qilu Hospital of Shandong University, Jinan, 250012 Shandong, China
| | - Fuping Xu
- Neurology Department, Zibo Central Hospital, Shandong University, Zibo 255036, Shandong, China
| | - Hao Guo
- High-tech Zone Branch Hospital, Qilu Hospital of Shandong University, Jinan 250101, Shandong, China
| | - Feng Feng
- Department of Nephrology, Qilu Hospital of Shandong University, Jinan, 250012 Shandong, China; NHC Key Laboratory of Otorhinolaryngology, Qilu Hospital of Shandong University, Jinan, 250012 Shandong, China
| | - Yu Ding
- Department of Nephrology, Qilu Hospital of Shandong University, Jinan, 250012 Shandong, China
| | - Xiang Wan
- Department of Nephrology, Qilu Hospital of Shandong University, Jinan, 250012 Shandong, China
| | - Nan Sun
- Department of Nephrology, Qilu Hospital of Shandong University, Jinan, 250012 Shandong, China
| | - Yang Zhang
- Department of Nephrology, Qilu Hospital of Shandong University, Jinan, 250012 Shandong, China
| | - Jiahui Fan
- Department of Nephrology, Qilu Hospital of Shandong University, Jinan, 250012 Shandong, China
| | - Lei Liu
- Department of Nephrology, Qilu Hospital of Shandong University, Jinan, 250012 Shandong, China
| | - Huimin Yang
- Department of General Practice, Qilu Hospital of Shandong University, Jinan 250012 Shandong, China
| | - Xiangdong Yang
- Department of Nephrology, Qilu Hospital of Shandong University, Jinan, 250012 Shandong, China.
| |
Collapse
|
42
|
Srivastava SP, Zhou H, Setia O, Liu B, Kanasaki K, Koya D, Dardik A, Fernandez-Hernando C, Goodwin J. Loss of endothelial glucocorticoid receptor accelerates diabetic nephropathy. Nat Commun 2021; 12:2368. [PMID: 33888696 PMCID: PMC8062600 DOI: 10.1038/s41467-021-22617-y] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 03/23/2021] [Indexed: 12/12/2022] Open
Abstract
Endothelial cells play a key role in the regulation of disease. Defective regulation of endothelial cell homeostasis may cause mesenchymal activation of other endothelial cells or neighboring cell types, and in both cases contributes to organ fibrosis. Regulatory control of endothelial cell homeostasis is not well studied. Diabetes accelerates renal fibrosis in mice lacking the endothelial glucocorticoid receptor (GR), compared to control mice. Hypercholesterolemia further enhances severe renal fibrosis. The fibrogenic phenotype in the kidneys of diabetic mice lacking endothelial GR is associated with aberrant cytokine and chemokine reprogramming, augmented Wnt signaling and suppression of fatty acid oxidation. Both neutralization of IL-6 and Wnt inhibition improve kidney fibrosis by mitigating mesenchymal transition. Conditioned media from endothelial cells from diabetic mice lacking endothelial GR stimulate Wnt signaling-dependent epithelial-to-mesenchymal transition in tubular epithelial cells from diabetic controls. These data demonstrate that endothelial GR is an essential antifibrotic molecule in diabetes.
Collapse
Affiliation(s)
- Swayam Prakash Srivastava
- Department of Pediatrics, Yale University School of Medicine New Haven, New Haven, CT, USA
- Vascular Biology and Therapeutics Program, Yale University School of Medicine New Haven, New Haven, CT, USA
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Japan
| | - Han Zhou
- Department of Pediatrics, Yale University School of Medicine New Haven, New Haven, CT, USA
- Vascular Biology and Therapeutics Program, Yale University School of Medicine New Haven, New Haven, CT, USA
| | - Ocean Setia
- Vascular Biology and Therapeutics Program, Yale University School of Medicine New Haven, New Haven, CT, USA
- Department of Surgery, Yale University School of Medicine New Haven, New Haven, CT, USA
| | - Bing Liu
- Department of Pediatrics, Yale University School of Medicine New Haven, New Haven, CT, USA
- Vascular Biology and Therapeutics Program, Yale University School of Medicine New Haven, New Haven, CT, USA
| | - Keizo Kanasaki
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Japan
| | - Daisuke Koya
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Japan
| | - Alan Dardik
- Vascular Biology and Therapeutics Program, Yale University School of Medicine New Haven, New Haven, CT, USA
- Department of Surgery, Yale University School of Medicine New Haven, New Haven, CT, USA
- Department of Surgery, VA Connecticut Healthcare System, West Haven, CT, USA
| | - Carlos Fernandez-Hernando
- Vascular Biology and Therapeutics Program, Yale University School of Medicine New Haven, New Haven, CT, USA
- Department of Comparative Medicine, Yale University School of Medicine New Haven, New Haven, CT, USA
- Program in Integrative Cell Signaling and Neurobiology of Metabolism (ICSNM), Yale University School of Medicine New Haven, New Haven, CT, USA
- Department of Pathology, Yale University School of Medicine New Haven, New Haven, CT, USA
| | - Julie Goodwin
- Department of Pediatrics, Yale University School of Medicine New Haven, New Haven, CT, USA.
- Vascular Biology and Therapeutics Program, Yale University School of Medicine New Haven, New Haven, CT, USA.
| |
Collapse
|
43
|
Hirudo Lyophilized Powder Ameliorates Renal Injury in Diabetic Rats by Suppressing Oxidative Stress and Inflammation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6657673. [PMID: 33688363 PMCID: PMC7920712 DOI: 10.1155/2021/6657673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/15/2021] [Accepted: 02/06/2021] [Indexed: 12/25/2022]
Abstract
As diabetic nephropathy (DN) is one of the most common and destructive microvascular complications of diabetes mellitus, the goal of this study, therefore, was to investigate the renal protective effect and latent mechanisms of Hirudo lyophilized powder on diabetic rats. In this study, all rats were randomly assigned into the control group and diabetic group. The rats of diabetic group were injected with low-dose STZ (35 mg/kg) intraperitoneal plus high-fat diet to induce diabetes. Then, the successful diabetic model rats were weighed and randomly assigned into four groups: (1) diabetic model group (DM group); (2) Hirudo lyophilized powder 0.3 g/kg treatment group (SL group); (3) Hirudo lyophilized powder 0.6 g/kg treatment group (SM group); (4) Hirudo lyophilized powder 1.2 g/kg treatment group (SH group). Their fasting blood glucoses (FBG) were measured every 4 weeks. After treatment with Hirudo lyophilized powder at a corresponding dose once a day for 16 weeks, their metabolic and biochemical as well as oxidative stress parameters were tested, and the kidney weight (KW)/body weight (BW) was calculated. The renal tissues were used for histological, mRNA, and protein expression analysis. The results showed that Hirudo lyophilized powder could protect against the structural damages and functional changes of diabetic renal tissue by inhibiting oxidative stress, inflammation, and fibrosis. Furthermore, it was found in the further research that inhibiting the NOX4 expression and JAK2/STAT1/STAT3 pathway activation might be the underlying mechanisms. Collectively, Hirudo lyophilized powder might be a promising therapeutic agent for the treatment of DN.
Collapse
|
44
|
Tang PCT, Chan ASW, Zhang CB, García Córdoba CA, Zhang YY, To KF, Leung KT, Lan HY, Tang PMK. TGF-β1 Signaling: Immune Dynamics of Chronic Kidney Diseases. Front Med (Lausanne) 2021; 8:628519. [PMID: 33718407 PMCID: PMC7948440 DOI: 10.3389/fmed.2021.628519] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/21/2021] [Indexed: 12/13/2022] Open
Abstract
Chronic kidney disease (CKD) is a major cause of morbidity and mortality worldwide, imposing a great burden on the healthcare system. Regrettably, effective CKD therapeutic strategies are yet available due to their elusive pathogenic mechanisms. CKD is featured by progressive inflammation and fibrosis associated with immune cell dysfunction, leading to the formation of an inflammatory microenvironment, which ultimately exacerbating renal fibrosis. Transforming growth factor β1 (TGF-β1) is an indispensable immunoregulator promoting CKD progression by controlling the activation, proliferation, and apoptosis of immunocytes via both canonical and non-canonical pathways. More importantly, recent studies have uncovered a new mechanism of TGF-β1 for de novo generation of myofibroblast via macrophage-myofibroblast transition (MMT). This review will update the versatile roles of TGF-β signaling in the dynamics of renal immunity, a better understanding may facilitate the discovery of novel therapeutic strategies against CKD.
Collapse
Affiliation(s)
- Philip Chiu-Tsun Tang
- State Key Laboratory of Translational Oncology, Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Alex Siu-Wing Chan
- Department of Applied Social Sciences, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Cai-Bin Zhang
- State Key Laboratory of Translational Oncology, Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Cristina Alexandra García Córdoba
- State Key Laboratory of Translational Oncology, Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Ying-Ying Zhang
- Department of Nephrology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ka-Fai To
- State Key Laboratory of Translational Oncology, Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Kam-Tong Leung
- Department of Paediatrics, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Hui-Yao Lan
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong.,Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Patrick Ming-Kuen Tang
- State Key Laboratory of Translational Oncology, Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
45
|
Li Y, Wang L, Xu B, Zhao L, Li L, Xu K, Tang A, Zhou S, Song L, Zhang X, Zhan H. Based on Network Pharmacology Tools to Investigate the Molecular Mechanism of Cordyceps sinensis on the Treatment of Diabetic Nephropathy. J Diabetes Res 2021; 2021:8891093. [PMID: 33628839 PMCID: PMC7884116 DOI: 10.1155/2021/8891093] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 01/17/2021] [Accepted: 01/24/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Diabetic nephropathy (DN) is one of the most common complications of diabetes mellitus and is a major cause of end-stage kidney disease. Cordyceps sinensis (Cordyceps, Dong Chong Xia Cao) is a widely applied ingredient for treating patients with DN in China, while the molecular mechanisms remain unclear. This study is aimed at revealing the therapeutic mechanisms of Cordyceps in DN by undertaking a network pharmacology analysis. MATERIALS AND METHODS In this study, active ingredients and associated target proteins of Cordyceps sinensis were obtained via Traditional Chinese Medicine Systems Pharmacology Database (TCMSP) and Swiss Target Prediction platform, then reconfirmed by using PubChem databases. The collection of DN-related target genes was based on DisGeNET and GeneCards databases. A DN-Cordyceps common target interaction network was carried out via the STRING database, and the results were integrated and visualized by utilizing Cytoscape software. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed to determine the molecular mechanisms and therapeutic effects of Cordyceps on the treatment of DN. RESULTS Seven active ingredients were screened from Cordyceps, 293 putative target genes were identified, and 85 overlapping targets matched with DN were considered potential therapeutic targets, such as TNF, MAPK1, EGFR, ACE, and CASP3. The results of GO and KEGG analyses revealed that hub targets mainly participated in the AGE-RAGE signaling pathway in diabetic complications, TNF signaling pathway, PI3K-Akt signaling pathway, and IL-17 signaling pathway. These targets were correlated with inflammatory response, apoptosis, oxidative stress, insulin resistance, and other biological processes. CONCLUSIONS Our study showed that Cordyceps is characterized as multicomponent, multitarget, and multichannel. Cordyceps may play a crucial role in the treatment of DN by targeting TNF, MAPK1, EGFR, ACE, and CASP3 signaling and involved in the inflammatory response, apoptosis, oxidative stress, and insulin resistance.
Collapse
Affiliation(s)
- Yan Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072 Sichuan, China
| | - Lei Wang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Bojun Xu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072 Sichuan, China
| | - Liangbin Zhao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072 Sichuan, China
| | - Li Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072 Sichuan, China
| | - Keyang Xu
- Zhejiang Chinese Medical University, Hangzhou, 310053 Zhejiang, China
| | - Anqi Tang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072 Sichuan, China
| | - Shasha Zhou
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072 Sichuan, China
| | - Lu Song
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072 Sichuan, China
| | - Xiao Zhang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072 Sichuan, China
| | - Huakui Zhan
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072 Sichuan, China
| |
Collapse
|
46
|
Dong J, Chen L, Zhang Y, Jayaswal N, Mezghani I, Zhang W, Veves A. Mast Cells in Diabetes and Diabetic Wound Healing. Adv Ther 2020; 37:4519-4537. [PMID: 32935286 PMCID: PMC7547971 DOI: 10.1007/s12325-020-01499-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/04/2020] [Indexed: 12/11/2022]
Abstract
Mast cells (MCs) are granulated, immune cells of the myeloid lineage that are present in connective tissues. Apart from their classical role in allergies, MCs also mediate various inflammatory responses due to the nature of their secretory products. They are involved in important physiological and pathophysiological responses related to inflammation, chronic wounds, and autoimmune diseases. There are also indications that MCs are associated with diabetes and its complications. MCs and MC-derived mediators participate in all wound healing stages and are involved in the pathogenesis of non-healing, chronic diabetic foot ulcers (DFUs). More specifically, recent work has shown increased degranulation of skin MCs in human diabetes and diabetic mice, which is associated with impaired wound healing. Furthermore, MC stabilization, either systemic or local at the skin level, improves wound healing in diabetic mice. Understanding the precise role of MCs in wound progression and healing processes can be of critical importance as it can lead to the development of new targeted therapies for diabetic foot ulceration, one of the most devastating complications of diabetes.
Collapse
Affiliation(s)
- Jie Dong
- Joslin-Beth Israel Deaconess Foot Center and The Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Lihong Chen
- Joslin-Beth Israel Deaconess Foot Center and The Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Ying Zhang
- Joslin-Beth Israel Deaconess Foot Center and The Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Navin Jayaswal
- Joslin-Beth Israel Deaconess Foot Center and The Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Ikram Mezghani
- Joslin-Beth Israel Deaconess Foot Center and The Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Weijie Zhang
- Joslin-Beth Israel Deaconess Foot Center and The Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
- LanZhou University of Technology, 287 Langongping Road, Qilihe District, Lanzhou, Gansu, China
| | - Aristidis Veves
- Joslin-Beth Israel Deaconess Foot Center and The Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
47
|
Mosterd CM, Bjornstad P, van Raalte DH. Nephroprotective effects of GLP-1 receptor agonists: where do we stand? J Nephrol 2020; 33:965-975. [PMID: 32356231 PMCID: PMC7560915 DOI: 10.1007/s40620-020-00738-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 04/11/2020] [Indexed: 12/12/2022]
Abstract
Glucagon-like peptide (GLP)-1 receptor agonists are the cornerstone in the treatment of hyperglycemia in many people suffering from type 2 diabetes (T2D). These drugs have potent glucose-lowering actions and, additionally, lower body weight through satiety induction while reducing blood pressure and dyslipidemia. Partly through these actions, GLP-1 receptor agonism was shown to reduce cardiovascular disease (CVD) in people with T2D with previous CVD or at high-risk thereof. In these cardiovascular safety trials, in secondary or exploratory analyses, GLP-1 receptor agonists were also shown to reduce macro-albuminuria, an accepted surrogate marker for diabetic kidney disease (DKD), a condition that still represents a major unmet medical need. In this review we will discuss the evidence which suggests renoprotection induced by GLP-1 receptor agonists and the potential mechanisms that may be involved. These include mitigation of hyperglycemia, overweight and insulin resistance, systemic and glomerular hypertension, dyslipidemia, sodium retention, inflammation and renal hypoxia. The recently initiated large-sized FLOW trial investigating the effects of semaglutide on hard renal outcomes in patients with DKD will provide clarity whether GLP-1 receptor agonists may reduce the burden of DKD in addition to their other beneficial metabolic and cardiovascular effects.
Collapse
Affiliation(s)
- Charlotte M Mosterd
- Diabetes Center, Department of Internal Medicine, Amsterdam University Medical Centers, Location VUMC, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Petter Bjornstad
- Section of Endocrinology, Department of Pediatrics and Division of Nephrology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Daniël H van Raalte
- Diabetes Center, Department of Internal Medicine, Amsterdam University Medical Centers, Location VUMC, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
48
|
Liao H, Li Y, Zhang X, Zhao X, Zheng D, Shen D, Li R. Protective Effects of Thalidomide on High-Glucose-Induced Podocyte Injury through In Vitro Modulation of Macrophage M1/M2 Differentiation. J Immunol Res 2020; 2020:8263598. [PMID: 32908940 PMCID: PMC7474395 DOI: 10.1155/2020/8263598] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/25/2020] [Accepted: 07/11/2020] [Indexed: 12/19/2022] Open
Abstract
Objective. It has been shown that podocyte injury represents an important pathological basis that contributes to proteinuria and eventually leads to kidney failure. High glucose (HG) activates macrophage polarization, further exacerbating HG-induced podocyte injury. Our previous study on diabetic nephropathy rats indicated that thalidomide (Tha) has renoprotective properties. The present study explored the effects of Tha on mRNA and protein expressions of inducible nitric oxide synthase (iNOS), tumor necrosis factor- (TNF-) α, mannose receptor (CD206), and arginase- (Arg-) 1 in HG-activated macrophages. iNOS and TNF-α are established as markers of classically activated macrophage (M1). CD206 and Arg-1 are regarded as markers of alternatively activated macrophages (M2). During the experiment, the supernatants of (HG)-treated and (Tha)-treated macrophages, designated as (HG) MS and (Tha) MS, were simultaneously collected and processed. TNF-α and interleukin- (IL-) 1β levels as well as protein expressions of nephrin and podocin in HG, (HG) MS, and (Tha) MS-cultured podocytes were evaluated. The results showed that compared to the 11.1 mM normal glucose (NG), the 33.3 mM HG-cultured RAW 264.7 cells exhibited upregulated iNOS and TNF-α mRNAs and protein expressions, and downregulated CD206 and Arg-1 expressions significantly (p < 0.05). Tha 200 μg/ml suppressed iNOS and TNF-α, and promoted CD206 and Arg-1 expressions significantly compared to the HG group (p < 0.05). Furthermore, (HG) MS-treated podocytes showed an increase in TNF-α and IL-1β levels and a downregulation in nephrin and podocin expression significantly compared to NG-treated and HG-treated podocytes (p < 0.05). The (Tha 200 μg/ml) MS group exhibited a decrease in TNF-α and IL-1β level, and an upregulation in nephrin and podocin expressions significantly compared to the (HG) MS group (p < 0.05). Our research confirmed that HG-activated macrophage differentiation aggravates HG-induced podocyte injury in vitro and the protective effects of Tha might be related to its actions on TNF-α and IL-1β levels via its modulation on M1/M2 differentiation.
Collapse
Affiliation(s)
- Hui Liao
- Department of Pharmacy, Shanxi Provincial People's Hospital of Shanxi Medical University, Taiyuan 030012, China
| | - Yuanping Li
- Department of Pharmacy, Shanxi Provincial People's Hospital of Shanxi Medical University, Taiyuan 030012, China
| | - Xilan Zhang
- Department of Pharmacy, Shanxi Provincial People's Hospital of Shanxi Medical University, Taiyuan 030012, China
| | - Xiaoyun Zhao
- Department of Pharmacy, Shanxi Provincial People's Hospital of Shanxi Medical University, Taiyuan 030012, China
| | - Dan Zheng
- Department of Pharmacy, Shanxi Provincial People's Hospital of Shanxi Medical University, Taiyuan 030012, China
| | - Dayue Shen
- Department of Pharmacy, Shanxi Provincial People's Hospital of Shanxi Medical University, Taiyuan 030012, China
| | - Rongshan Li
- Department of Pharmacy, Shanxi Provincial People's Hospital of Shanxi Medical University, Taiyuan 030012, China
| |
Collapse
|
49
|
Ram C, Jha AK, Ghosh A, Gairola S, Syed AM, Murty US, Naidu VGM, Sahu BD. Targeting NLRP3 inflammasome as a promising approach for treatment of diabetic nephropathy: Preclinical evidences with therapeutic approaches. Eur J Pharmacol 2020; 885:173503. [PMID: 32858047 DOI: 10.1016/j.ejphar.2020.173503] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/19/2020] [Accepted: 08/23/2020] [Indexed: 12/12/2022]
Abstract
Diabetes mellitus is an increasingly prevalent disease around the globe. The epidemic of diabetes mellitus and its complications pretenses the foremost health threat globally. Diabetic nephropathy is the notable complication in diabetes, leading to end-stage renal disease (ESRD) and premature death. Abundant experimental evidence indicates that oxidative stress and inflammation are the important mediators in diabetic kidney diseases and interlinked with various signal transduction molecular mechanisms. Inflammasomes are the critical components of innate immunity and are recognized as a critical mediator of inflammation and autoimmune disorders. NOD-like receptor protein 3 (NLRP3) inflammasome is the well-characterized protein and it exhibits the sterile inflammation through the regulation of pro-inflammatory cytokines interleukin (IL)-1β and IL-18 production in tissues. In recent years, the role of NLRP3 inflammasome in the pathophysiology of diabetic kidney diseases in both clinical and experimental studies has generated great interest. In the current review, we focused on and discussed the role of NLRP3 inflammasome in diabetic nephropathy. A literature review was performed using online databases namely, PubMed, Scopus, Google Scholar and Web of science to explore the possible pharmacological interventions that blunt the NLRP3 inflammasome-caspase-1-IL-1β/IL-18 axis and shown to have a beneficial effect in diabetic kidney diseases. This review describes the inhibition of NLRP3 inflammasome activation as a promising therapeutic target for drug discovery in future.
Collapse
Affiliation(s)
- Chetan Ram
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, PIN-781101, Assam, India
| | - Ankush Kumar Jha
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, PIN-781101, Assam, India
| | - Aparajita Ghosh
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, PIN-781101, Assam, India
| | - Shobhit Gairola
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, PIN-781101, Assam, India
| | - Abu Mohammad Syed
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, PIN-781101, Assam, India
| | - Upadhyayula Suryanarayana Murty
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, PIN-781101, Assam, India
| | - V G M Naidu
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, PIN-781101, Assam, India
| | - Bidya Dhar Sahu
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, PIN-781101, Assam, India.
| |
Collapse
|
50
|
Tang PCT, Zhang YY, Chan MKK, Lam WWY, Chung JYF, Kang W, To KF, Lan HY, Tang PMK. The Emerging Role of Innate Immunity in Chronic Kidney Diseases. Int J Mol Sci 2020; 21:ijms21114018. [PMID: 32512831 PMCID: PMC7312694 DOI: 10.3390/ijms21114018] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/28/2020] [Accepted: 06/02/2020] [Indexed: 12/12/2022] Open
Abstract
Renal fibrosis is a common fate of chronic kidney diseases. Emerging studies suggest that unsolved inflammation will progressively transit into tissue fibrosis that finally results in an irreversible end-stage renal disease (ESRD). Renal inflammation recruits and activates immunocytes, which largely promotes tissue scarring of the diseased kidney. Importantly, studies have suggested a crucial role of innate immunity in the pathologic basis of kidney diseases. This review provides an update of both clinical and experimental information, focused on how innate immune signaling contributes to renal fibrogenesis. A better understanding of the underlying mechanisms may uncover a novel therapeutic strategy for ESRD.
Collapse
Affiliation(s)
- Philip Chiu-Tsun Tang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong 999077, China; (P.C.-T.T.); (M.K.-K.C.); (J.Y.-F.C.); (W.W.-Y.L.); (W.K.); (K.-F.T.)
| | - Ying-Ying Zhang
- Department of Nephrology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China;
| | - Max Kam-Kwan Chan
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong 999077, China; (P.C.-T.T.); (M.K.-K.C.); (J.Y.-F.C.); (W.W.-Y.L.); (W.K.); (K.-F.T.)
| | - Winson Wing-Yin Lam
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong 999077, China; (P.C.-T.T.); (M.K.-K.C.); (J.Y.-F.C.); (W.W.-Y.L.); (W.K.); (K.-F.T.)
| | - Jeff Yat-Fai Chung
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong 999077, China; (P.C.-T.T.); (M.K.-K.C.); (J.Y.-F.C.); (W.W.-Y.L.); (W.K.); (K.-F.T.)
| | - Wei Kang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong 999077, China; (P.C.-T.T.); (M.K.-K.C.); (J.Y.-F.C.); (W.W.-Y.L.); (W.K.); (K.-F.T.)
| | - Ka-Fai To
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong 999077, China; (P.C.-T.T.); (M.K.-K.C.); (J.Y.-F.C.); (W.W.-Y.L.); (W.K.); (K.-F.T.)
| | - Hui-Yao Lan
- Li Ka Shing Institute of Health Sciences, and Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong 999077, China;
| | - Patrick Ming-Kuen Tang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong 999077, China; (P.C.-T.T.); (M.K.-K.C.); (J.Y.-F.C.); (W.W.-Y.L.); (W.K.); (K.-F.T.)
- Correspondence:
| |
Collapse
|