1
|
Demirturk M, Cinar MS, Avci FY. The immune interactions of gut glycans and microbiota in health and disease. Mol Microbiol 2024; 122:313-330. [PMID: 38703041 DOI: 10.1111/mmi.15267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 05/06/2024]
Abstract
The human digestive system harbors a vast diversity of commensal bacteria and maintains a symbiotic relationship with them. However, imbalances in the gut microbiota accompany various diseases, such as inflammatory bowel diseases (IBDs) and colorectal cancers (CRCs), which significantly impact the well-being of populations globally. Glycosylation of the mucus layer is a crucial factor that plays a critical role in maintaining the homeostatic environment in the gut. This review delves into how the gut microbiota, immune cells, and gut mucus layer work together to establish a balanced gut environment. Specifically, the role of glycosylation in regulating immune cell responses and mucus metabolism in this process is examined.
Collapse
Affiliation(s)
- Mahmut Demirturk
- Department of Biochemistry, Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Mukaddes Sena Cinar
- Department of Biochemistry, Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Fikri Y Avci
- Department of Biochemistry, Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
2
|
Perez KM, Strobel KM, Hendrixson DT, Brandon O, Hair AB, Workneh R, Abayneh M, Nangia S, Hoban R, Kolnik S, Rent S, Salas A, Ojha S, Valentine GC. Nutrition and the gut-brain axis in neonatal brain injury and development. Semin Perinatol 2024; 48:151927. [PMID: 38897828 DOI: 10.1016/j.semperi.2024.151927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Early nutritional exposures, including during embryogenesis and the immediate postnatal period, affect offspring outcomes in both the short- and long-term. Alterations of these modifiable exposures shape the developing gut microbiome, intestinal development, and even neurodevelopmental outcomes. A gut-brain axis exists, and it is intricately connected to early life feeding and nutritional exposures. Here, we seek to discuss the (1) origins of the gut-brain access and relationship with neurodevelopment, (2) components of human milk (HM) beyond nutrition and their role in the developing newborn, and (3) clinical application of nutritional practices, including fluid management and feeding on the development of the gut-brain axis, and long-term neurodevelopmental outcomes. We conclude with a discussion on future directions and unanswered questions that are critical to provide further understanding and insight into how clinicians and healthcare providers can optimize early nutritional practices to ensure children not only survive, but thrive, free of neurodevelopmental impairment.
Collapse
Affiliation(s)
- Krystle M Perez
- Division of Neonatology, University of Washington/Seattle Children's Hospital, Seattle, WA, United States of America
| | - Katie M Strobel
- Division of Neonatology, University of Washington/Seattle Children's Hospital, Seattle, WA, United States of America
| | - D Taylor Hendrixson
- Division of Neonatology, University of Washington/Seattle Children's Hospital, Seattle, WA, United States of America
| | - Olivia Brandon
- Division of Neonatology, University of Washington/Seattle Children's Hospital, Seattle, WA, United States of America
| | - Amy B Hair
- Division of Neonatology, Baylor College of Medicine, Houston, TX, United States of America
| | - Redeat Workneh
- St Paul's Hospital Millennium Medical College, Addis Ababa, Ethiopia
| | - Mahlet Abayneh
- St Paul's Hospital Millennium Medical College, Addis Ababa, Ethiopia
| | - Sushma Nangia
- Department of Neonatology, Lady Hardinge Medical College and Kalawati Saran Children's Hospital, New Delhi, India
| | - Rebecca Hoban
- Division of Neonatology, University of Washington/Seattle Children's Hospital, Seattle, WA, United States of America
| | - Sarah Kolnik
- Division of Neonatology, University of Washington/Seattle Children's Hospital, Seattle, WA, United States of America
| | - Sharla Rent
- Division of Neonatology, Duke University, Durham, NC, United States of America
| | - Ariel Salas
- Department of Pediatrics, Division of Neonatology, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Shalini Ojha
- School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Gregory C Valentine
- Division of Neonatology, University of Washington/Seattle Children's Hospital, Seattle, WA, United States of America; Department of Oral Health Sciences, University of Washington, Seattle, WA, United States of America; Department of Obstetrics & Gynecology, Baylor College of Medicine, Houston, TX, United States of America.
| |
Collapse
|
3
|
Lee C, Kim SW, Verma R, Noh J, Park JC, Park S, Lee H, Park HE, Kim CJ, Byun S, Ko H, Choi S, Kim I, Jeon S, Lee J, Im SH. Probiotic Consortium Confers Synergistic Anti-Inflammatory Effects in Inflammatory Disorders. Nutrients 2024; 16:790. [PMID: 38542701 PMCID: PMC10975258 DOI: 10.3390/nu16060790] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 01/05/2025] Open
Abstract
The composition and diversity of gut microbiota significantly influence the immune system and are linked to various diseases, including inflammatory and allergy disorders. While considerable research has focused on exploring single bacterial species or consortia, the optimal strategies for microbiota-based therapeutics remain underexplored. Specifically, the comparative effectiveness of bacterial consortia versus individual species warrants further investigation. In our study, we assessed the impact of the bacterial consortium MPRO, comprising Lactiplantibacillus plantarum HY7712, Bifidobacterium animalis ssp. lactis HY8002, and Lacticaseibacillus casei HY2782, in comparison to its individual components. The administration of MPRO demonstrated enhanced therapeutic efficacy in experimental models of atopic dermatitis and inflammatory colitis when compared to single strains. MPRO exhibited the ability to dampen inflammatory responses and alter the gut microbial landscape significantly. Notably, MPRO administration led to an increase in intestinal CD103+CD11b+ dendritic cells, promoting the induction of regulatory T cells and the robust suppression of inflammation in experimental disease settings. Our findings advocate the preference for bacterial consortia over single strains in the treatment of inflammatory disorders, carrying potential clinical relevance.
Collapse
Affiliation(s)
- Changhon Lee
- Department of Life Sciences, POSTECH Biotech Center, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea; (C.L.); (S.W.K.); (J.N.); (J.C.P.); (H.L.); (H.E.P.); (C.J.K.); (S.B.); (H.K.)
| | - Seung Won Kim
- Department of Life Sciences, POSTECH Biotech Center, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea; (C.L.); (S.W.K.); (J.N.); (J.C.P.); (H.L.); (H.E.P.); (C.J.K.); (S.B.); (H.K.)
| | - Ravi Verma
- ImmmunoBiome Inc., 77 Cheongam-ro, Nam-gu, Pohang 37673, Republic of Korea; (R.V.); (S.P.); (S.C.); (I.K.)
| | - Jaegyun Noh
- Department of Life Sciences, POSTECH Biotech Center, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea; (C.L.); (S.W.K.); (J.N.); (J.C.P.); (H.L.); (H.E.P.); (C.J.K.); (S.B.); (H.K.)
| | - John Chulhoon Park
- Department of Life Sciences, POSTECH Biotech Center, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea; (C.L.); (S.W.K.); (J.N.); (J.C.P.); (H.L.); (H.E.P.); (C.J.K.); (S.B.); (H.K.)
| | - Sunhee Park
- ImmmunoBiome Inc., 77 Cheongam-ro, Nam-gu, Pohang 37673, Republic of Korea; (R.V.); (S.P.); (S.C.); (I.K.)
| | - Haena Lee
- Department of Life Sciences, POSTECH Biotech Center, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea; (C.L.); (S.W.K.); (J.N.); (J.C.P.); (H.L.); (H.E.P.); (C.J.K.); (S.B.); (H.K.)
| | - Hye Eun Park
- Department of Life Sciences, POSTECH Biotech Center, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea; (C.L.); (S.W.K.); (J.N.); (J.C.P.); (H.L.); (H.E.P.); (C.J.K.); (S.B.); (H.K.)
| | - Chan Johng Kim
- Department of Life Sciences, POSTECH Biotech Center, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea; (C.L.); (S.W.K.); (J.N.); (J.C.P.); (H.L.); (H.E.P.); (C.J.K.); (S.B.); (H.K.)
| | - Seohyun Byun
- Department of Life Sciences, POSTECH Biotech Center, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea; (C.L.); (S.W.K.); (J.N.); (J.C.P.); (H.L.); (H.E.P.); (C.J.K.); (S.B.); (H.K.)
| | - Haeun Ko
- Department of Life Sciences, POSTECH Biotech Center, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea; (C.L.); (S.W.K.); (J.N.); (J.C.P.); (H.L.); (H.E.P.); (C.J.K.); (S.B.); (H.K.)
| | - Seungyeon Choi
- ImmmunoBiome Inc., 77 Cheongam-ro, Nam-gu, Pohang 37673, Republic of Korea; (R.V.); (S.P.); (S.C.); (I.K.)
| | - Inhae Kim
- ImmmunoBiome Inc., 77 Cheongam-ro, Nam-gu, Pohang 37673, Republic of Korea; (R.V.); (S.P.); (S.C.); (I.K.)
| | - Soomin Jeon
- hy Co., Ltd., 22 Giheungdanji-ro 24 beon-gil, Giheung-gu, Yongin 17086, Republic of Korea;
| | - Junglyoul Lee
- hy Co., Ltd., 22 Giheungdanji-ro 24 beon-gil, Giheung-gu, Yongin 17086, Republic of Korea;
| | - Sin-Hyeog Im
- Department of Life Sciences, POSTECH Biotech Center, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea; (C.L.); (S.W.K.); (J.N.); (J.C.P.); (H.L.); (H.E.P.); (C.J.K.); (S.B.); (H.K.)
- ImmmunoBiome Inc., 77 Cheongam-ro, Nam-gu, Pohang 37673, Republic of Korea; (R.V.); (S.P.); (S.C.); (I.K.)
- Institute for Convergence Research and Education, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
4
|
Parker LA, Koernere R, Fordham K, Bubshait H, Eugene A, Gefre A, Bendixen M. Mother's Own Milk Versus Donor Human Milk: What's the Difference? Crit Care Nurs Clin North Am 2024; 36:119-133. [PMID: 38296370 DOI: 10.1016/j.cnc.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Mother's own milk (MOM) is known to decrease complications in preterm infants and when unavailable, it is recommended that preterm very low-birth weight infants be fed donor human milk (DHM). Due to the pasteurization, processing, and lactation stage of donors, DHM does not contain the same nutritional, immunologic, and microbial components as MOM. This review summarizes the differences between MOM and DHM, the potential effects on health outcomes, and the clinical implications of these differences. Finally, implications for research and clinical practice are discussed.
Collapse
Affiliation(s)
- Leslie A Parker
- College of Nursing, University of Florida, Box 100187 College of Nursing, Gainesville, FL, USA.
| | - Rebecca Koernere
- College of Nursing, University of Florida, Box 100187 College of Nursing, Gainesville, FL, USA
| | - Keliy Fordham
- College of Nursing, University of Florida, Box 100187 College of Nursing, Gainesville, FL, USA
| | - Hussah Bubshait
- College of Nursing, University of Florida, Box 100187 College of Nursing, Gainesville, FL, USA
| | - Alissandre Eugene
- College of Nursing, University of Florida, Box 100187 College of Nursing, Gainesville, FL, USA
| | - Adrienne Gefre
- College of Nursing, University of Florida, Box 100187 College of Nursing, Gainesville, FL, USA
| | - Marion Bendixen
- College of Nursing, University of Florida, Box 100187 College of Nursing, Gainesville, FL, USA
| |
Collapse
|
5
|
Shang J, Ning J, Bai X, Cao X, Yue X, Yang M. Identification and analysis of miRNAs expression profiles in human, bovine, and donkey milk exosomes. Int J Biol Macromol 2023; 252:126321. [PMID: 37586635 DOI: 10.1016/j.ijbiomac.2023.126321] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/25/2023] [Accepted: 08/10/2023] [Indexed: 08/18/2023]
Abstract
The purpose of this study is to identify and characterize mirnas in mammalian exosomes. Using Illumina sequencing technology, we sequenced miRNAs in the exosomes of mammalian human milk, bovine milk, and donkey milk. 36 known mature miRNAs and 256 novel miRNAs were identified in human milk. 61 known mature miRNAs and 346 novel miRNAs were identified in milk. 16 known mature miRNAs and 196 novel miRNAs were identified in donkey milk, and miRNAs target genes were predicted. Gene Ontology analysis showed that the miRNAs of human, bovine and donkey milk exosomes all labeled the functions related to body metabolism. Kyoto Encyclopedia pathway analysis showed that human, bovine and donkey milk miRNAs enriched AGE-RAGE signaling pathway in Complications of diabetes. Diabetes is a Metabolic disorder. Based on this pathway, we screened out hsa-miR-8485, bta-miR-342, miR-29c and other genes related to diabetes. This study has a new understanding of the physiological function of mammalian milk miRNAs, and also provides a new way to explore diabetes related miRNAs.
Collapse
Affiliation(s)
- Jingwen Shang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Jianting Ning
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Xue Bai
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Xueyan Cao
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Xiqing Yue
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Mei Yang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China.
| |
Collapse
|
6
|
Tzirkel-Hancock N, Sharabi L, Argov-Argaman N. Milk fat globule size: Unraveling the intricate relationship between metabolism, homeostasis, and stress signaling. Biochimie 2023; 215:4-11. [PMID: 37802210 DOI: 10.1016/j.biochi.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 10/08/2023]
Abstract
Fat is an important component of milk which delivers energy, nutrients, and bioactive molecules from the lactating mother to the suckling neonate. Milk fat consists of a complex mixture of different types of lipids; hundreds of fatty acids, triglycerides, phospholipids, sphingolipids, cholesterol and cholesteryl ester, and glycoconjugates, secreted by the mammary gland epithelial cells (MEC) in the form of a lipid-protein assembly termed the milk fat globule (MFG). The mammary gland in general, and specifically that of modern dairy cows, faces metabolic stress once lactation commences, which changes the lipogenic capacity of MECs directly by reducing available energy and reducing factors required for both lipid synthesis and secretion or indirectly by activating a proinflammatory response. Both processes have the capacity to change the morphometric features (e.g., number and size) of the secreted MFG and its precursor-the intracellular lipid droplet (LD). The MFG size is tightly associated with its lipidome and proteome and also affects the bioavailability of milk fat and protein. Thus, MFG size has the potential to regulate the bioactivity of milk and dairy products. MFG size also plays a central role in the functional properties of milk and dairy products such as texture and stability. To understand how stress affects the structure-function of the MFG, we cover: (i) The mechanism of production and secretion of the MFG and the implications of MFG size, (ii) How the response mechanisms to stress can change the morphometric features of MFGs, and (iii) The possible consequences of such modifications.
Collapse
Affiliation(s)
- Noam Tzirkel-Hancock
- Department of Animal Science, The Robert H Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Israel
| | - Lior Sharabi
- Department of Animal Science, The Robert H Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Israel
| | - Nurit Argov-Argaman
- Department of Animal Science, The Robert H Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Israel.
| |
Collapse
|
7
|
Velumula PK, Elbakoush F, Elfadeel H, Lulic-Botica M, Natarajan G, Bajaj M. Comparative Growth Outcomes in Preterm Infants Fed Either Mother's Own Milk or Donor Human Milk. Breastfeed Med 2023; 18:300-306. [PMID: 36971613 DOI: 10.1089/bfm.2022.0224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/19/2023]
Abstract
Objective: To compare growth velocity (GV) in preterm infants fed mother's own milk (MOM) fortified with human milk-based fortifier (HMBF) to those who received donor human milk (DHM) fortified with HMBF. Study Design: A retrospective study of preterm infants with birth weight <1,250 g receiving an exclusive human milk diet. Maternal and infant charts were reviewed for feeding, growth, and short-term neonatal morbidities. Results: On regression analysis, after adjusting (gestational age, multiple births, antenatal steroids, and small for gestational age), no significant difference was observed between the two groups in GV from birth to 32 weeks postmenstrual age (β-coefficient 0.83, 95% confidence interval [CI]: -0.47 to 2.14, p = 0.21), GV from the day of regaining of birth weight to discharge (β-coefficient -0.015, 95% CI: -1.08 to 1.05, p = 0.98). The rate of Grade 3 and 4 intraventricular hemorrhage was significantly higher in the DHM group (19.6% compared to 5.5% in MOM, p = 0.03). Conclusion: At our institution, there was no difference in GV of preterm infants fed HMBF-fortified MOM versus HMBF-fortified DBM.
Collapse
Affiliation(s)
| | - Faesal Elbakoush
- Department of Pediatrics, Children's Hospital of Michigan, Detroit, Michigan, USA
- Department of Pediatrics, Hutzel Women's Hospital/Detroit Medical Center, Detroit, Michigan, USA
| | - Hiba Elfadeel
- Department of Pediatrics, Children's Hospital of Michigan, Detroit, Michigan, USA
- Department of Pediatrics, Hutzel Women's Hospital/Detroit Medical Center, Detroit, Michigan, USA
| | - Mirjana Lulic-Botica
- Department of Pediatrics, Hutzel Women's Hospital/Detroit Medical Center, Detroit, Michigan, USA
- Department of Pharmacy, Wayne State University, Detroit, Michigan, USA
| | - Girija Natarajan
- Department of Pediatrics, Children's Hospital of Michigan, Detroit, Michigan, USA
- Department of Pediatrics, Hutzel Women's Hospital/Detroit Medical Center, Detroit, Michigan, USA
- Department of Pediatrics, Central Michigan University, Detroit, Michigan, USA
| | - Monika Bajaj
- Department of Pediatrics, Children's Hospital of Michigan, Detroit, Michigan, USA
- Department of Pediatrics, Hutzel Women's Hospital/Detroit Medical Center, Detroit, Michigan, USA
- Department of Pediatrics, Central Michigan University, Detroit, Michigan, USA
| |
Collapse
|
8
|
Cardoso M, Virella D, Papoila AL, Alves M, Macedo I, E Silva D, Pereira-da-Silva L. Individualized Fortification Based on Measured Macronutrient Content of Human Milk Improves Growth and Body Composition in Infants Born Less than 33 Weeks: A Mixed-Cohort Study. Nutrients 2023; 15:nu15061533. [PMID: 36986263 PMCID: PMC10052754 DOI: 10.3390/nu15061533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
The optimal method for human milk (HM) fortification has not yet been determined. This study assessed whether fortification relying on measured HM macronutrient content (Miris AB analyzer, Upsala, Sweden) composition is superior to fortification based on assumed HM macronutrient content, to optimize the nutrition support, growth, and body composition in infants born at <33 weeks' gestation. In a mixed-cohort study, 57 infants fed fortified HM based on its measured content were compared with 58 infants fed fortified HM based on its assumed content, for a median of 28 and 23 exposure days, respectively. The ESPGHAN 2010 guidelines for preterm enteral nutrition were followed. Growth assessment was based on body weight, length, and head circumference Δ z-scores, and the respective growth velocities until discharge. Body composition was assessed using air displacement plethysmography. Fortification based on measured HM content provided significantly higher energy, fat, and carbohydrate intakes, although with a lower protein intake in infants weighing ≥ 1 kg and lower protein-to-energy ratio in infants weighing < 1 kg. Infants fed fortified HM based on its measured content were discharged with significantly better weight gain, length, and head growth. These infants had significantly lower adiposity and greater lean mass near term-equivalent age, despite receiving higher in-hospital energy and fat intakes, with a mean fat intake higher than the maximum recommended and a median protein-to-energy ratio intake (in infants weighing < 1 kg) lower than the minimum recommended.
Collapse
Affiliation(s)
- Manuela Cardoso
- Nutrition Unit, Maternidade Dr. Alfredo da Costa, Centro Hospitalar Universitário de Lisboa Central, Centro Clínico Académico de Lisboa, 2890-495 Lisbon, Portugal
| | - Daniel Virella
- Research Unit, Centro Hospitalar Universitário de Lisboa Central, Centro Clínico Académico de Lisboa, 1169-045 Lisbon, Portugal
- Neonatal Intensive Care Unit, Hospital Dona Estefânia, Centro Hospitalar Universitário de Lisboa Central, Centro Clínico Académico de Lisboa, 1169-045 Lisbon, Portugal
| | - Ana Luísa Papoila
- Research Unit, Centro Hospitalar Universitário de Lisboa Central, Centro Clínico Académico de Lisboa, 1169-045 Lisbon, Portugal
- Centre of Statistics and Its Applications, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Marta Alves
- Research Unit, Centro Hospitalar Universitário de Lisboa Central, Centro Clínico Académico de Lisboa, 1169-045 Lisbon, Portugal
- Centre of Statistics and Its Applications, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Israel Macedo
- Neonatal Intensive Care Unit, Maternidade Dr. Alfredo da Costa, Centro Hospitalar Universitário de Lisboa Central, Centro Clínico Académico de Lisboa, 2890-495 Lisbon, Portugal
| | - Diana E Silva
- Faculty of Nutrition and Food Sciences, University of Porto, 4150-180 Porto, Portugal
- CINTESIS-Center for Health Technology and Services Research, 4200-450 Porto, Portugal
| | - Luís Pereira-da-Silva
- Neonatal Intensive Care Unit, Hospital Dona Estefânia, Centro Hospitalar Universitário de Lisboa Central, Centro Clínico Académico de Lisboa, 1169-045 Lisbon, Portugal
- Nutrition Lab, Hospital Dona Estefânia, Centro Hospitalar Universitário de Lisboa Central, Centro Clínico Académico de Lisboa, 1169-045 Lisbon, Portugal
- Medicine of Woman, Childhood and Adolescence Academic Area, NOVA Medical School, Universidade Nova de Lisboa, 1349-008 Lisbon, Portugal
- CHRC-Comprehensive Health Research Centre, Nutrition Group, NOVA Medical School, Universidade Nova de Lisboa, 1349-008 Lisbon, Portugal
| |
Collapse
|
9
|
Lachover-Roth I, Cohen-Engler A, Furman Y, Shachar I, Rosman Y, Meir-Shafrir K, Mozer-Mandel M, Farladansky-Gershnabel S, Biron-Shental T, Mandel M, Confino-Cohen R. Early, continuing exposure to cow's milk formula and cow's milk allergy: The COMEET study, a single center, prospective interventional study. Ann Allergy Asthma Immunol 2023; 130:233-239.e4. [PMID: 36441058 DOI: 10.1016/j.anai.2022.10.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/14/2022] [Accepted: 10/18/2022] [Indexed: 11/11/2022]
Abstract
BACKGROUND Cow's milk allergy (CMA) is a common food allergy among infants. Information regarding the best timing for first exposure to cow's milk formula (CMF) is controversial and more evidence is required. Few randomized control trials have tried to accurately assess the timing and preventive effect of exposure to CMF on small cohorts. OBJECTIVE This study assessed the association between early, continuing exposure to CMF on the basis of the parents' preferences and the development of immunoglobulin E (IgE)-mediated CMA in a large birth cohort. METHODS Newborns were prospectively recruited shortly before birth and divided into 2 groups according to parental feeding preference for the first 2 months of life: (1) exclusive breastfeeding (EBF); or (2) at least 1 meal of CMF (with or without breastfeeding) daily. Infants were followed up monthly until the age of 12 months. RESULTS Among 1992 infants participating in the study, 1073 (53.86%) were in the EBF group until 2 months of age. IgE-mediated CMA was confirmed in 0.85% (n = 17); all were in the EBF group. Within this group, the prevalence of IgE-mediated CMA was 1.58% compared with 0 in the other groups (relative risk, 29.98; P < .001). Post hoc analysis revealed IgE-mediated CMA prevalence of 0.7% in the per-protocol EBF group vs 3.27% among breastfed infants who were exposed to a small amount of CMF during the first 2 months of life. A family atopic background did not affect the results. CONCLUSION Early, continuing exposure to CMF from birth has the potential to prevent the development of IgE-mediated CMA and should be encouraged. However, the exposure needs to be consistent because occasional exposure increases the risk of developing IgE-mediated CMA and should be avoided.
Collapse
Affiliation(s)
- Idit Lachover-Roth
- Allergy and Clinical Immunology Unit, Meir Medical Center, Kfar Saba, Israel; Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Anat Cohen-Engler
- Allergy and Clinical Immunology Unit, Meir Medical Center, Kfar Saba, Israel
| | - Yael Furman
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel; Department of Obstetrics and Gynecology, Meir Medical Center, Kfar Saba, Israel
| | - Ido Shachar
- Department of Statistics and Data Science, Faculty of Social Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yossi Rosman
- Allergy and Clinical Immunology Unit, Meir Medical Center, Kfar Saba, Israel; Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Keren Meir-Shafrir
- Allergy and Clinical Immunology Unit, Meir Medical Center, Kfar Saba, Israel
| | - Michal Mozer-Mandel
- Department of Statistics and Data Science, Faculty of Social Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Sivan Farladansky-Gershnabel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel; Department of Obstetrics and Gynecology, Meir Medical Center, Kfar Saba, Israel
| | - Tal Biron-Shental
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel; Department of Obstetrics and Gynecology, Meir Medical Center, Kfar Saba, Israel
| | - Micha Mandel
- Department of Statistics and Data Science, Faculty of Social Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ronit Confino-Cohen
- Allergy and Clinical Immunology Unit, Meir Medical Center, Kfar Saba, Israel; Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
10
|
Dilemmas in initiation of very preterm infant enteral feeds-when, what, how? J Perinatol 2023; 43:108-113. [PMID: 36447040 DOI: 10.1038/s41372-022-01564-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 12/03/2022]
Abstract
With limited clinical evidence available to guide common nutritional decisions, significant variation exists in approaches to enteral feeding for very preterm infants, specifically when feedings are initiated, what is fed, and the method used for feedings. Preclinical studies have highlighted the benefits associated with avoiding nil per os and providing early-stage mother's own milk or colostrum. However, these recommended approaches are often mutually exclusive due to the delays in lactation associated with very preterm delivery, resulting in uncertainty regarding which approach should be prioritized. Few studies have evaluated feeding frequency in preterm infants, with limited generalizability to extremely preterm infants. Therefore, even evidence-based approaches to very preterm infant feed initiation can differ. Future research is needed to identify optimal strategies for enteral nutrition in very preterm infants, but, until then, evidence-informed approaches may vary depending on each neonatal intensive care unit's assessment of risk and benefit.
Collapse
|
11
|
Ramiro-Cortijo D, Gila-Diaz A, Herranz Carrillo G, Cañas S, Gil-Ramírez A, Ruvira S, Martin-Cabrejas MA, Arribas SM. Influence of Neonatal Sex on Breast Milk Protein and Antioxidant Content in Spanish Women in the First Month of Lactation. Antioxidants (Basel) 2022; 11:antiox11081472. [PMID: 36009190 PMCID: PMC9405477 DOI: 10.3390/antiox11081472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/16/2022] [Accepted: 07/26/2022] [Indexed: 11/16/2022] Open
Abstract
Breast milk (BM) is the best food for newborns. Male sex is associated with a higher risk of fetal programming, prematurity, and adverse postnatal outcome, being that BM is an important health determinant. BM composition is dynamic and modified by several factors, including lactation period, prematurity, maternal nutritional status, and others. This study was designed to evaluate the influence of sex on BM composition during the first month of lactation, focused on macronutrients and antioxidants. Forty-eight breastfeeding women and their fifty-five newborns were recruited at the Hospital Clínico San Carlos (Madrid, Spain). Clinical sociodemographic data and anthropometric parameters were collected. BM samples were obtained at days 7, 14, and 28 of lactation to assess fat (Mojonnier method), protein (Bradford method), and biomarkers of oxidative status: total antioxidant capacity (ABTS and FRAP methods), thiol groups, reduced glutathione, superoxide dismutase and catalase activities, lipid peroxidation, and protein oxidation (spectrophotometric methods). Linear mixed models with random effects adjusted by maternal anthropometry, neonatal Z-scores at birth, and gestational age were used to assess the main effects of sex, lactation period, and their interaction. BM from mothers with male neonates exhibited significantly higher protein, ABTS, FRAP, and GSH levels, while catalase showed the opposite trend. No differences between sexes were observed in SOD, total thiols, and oxidative damage biomarkers. Most changes were observed on day 7 of lactation. Adjusted models demonstrated a significant association between male sex and proteins (β = 2.70 ± 1.20; p-Value = 0.048). In addition, total antioxidant capacity by ABTS (β = 0.11 ± 0.06) and GSH (β = 1.82 ± 0.94) showed a positive trend near significance (p-Value = 0.056; p-Value = 0.064, respectively). In conclusion, transitional milk showed sex differences in composition with higher protein and GSH levels in males. This may represent an advantage in the immediate perinatal period, which may help to counteract the worse adaptation of males to adverse intrauterine environments and prematurity.
Collapse
Affiliation(s)
- David Ramiro-Cortijo
- Department of Physiology, Faculty of Medicine, Universidad Autónoma de Madrid, C/Arzobispo Morcillo, 2, 28029 Madrid, Spain; (D.R.-C.); (A.G.-D.); (S.R.)
- Food, Oxidative Stress and Cardiovascular Health (FOSCH) Research Group, Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain; (S.C.); (A.G.-R.); (M.A.M.-C.)
| | - Andrea Gila-Diaz
- Department of Physiology, Faculty of Medicine, Universidad Autónoma de Madrid, C/Arzobispo Morcillo, 2, 28029 Madrid, Spain; (D.R.-C.); (A.G.-D.); (S.R.)
- Food, Oxidative Stress and Cardiovascular Health (FOSCH) Research Group, Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain; (S.C.); (A.G.-R.); (M.A.M.-C.)
| | - Gloria Herranz Carrillo
- Division of Neonatology, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), C/Profesor Martin Lagos s/n, 28040 Madrid, Spain;
| | - Silvia Cañas
- Food, Oxidative Stress and Cardiovascular Health (FOSCH) Research Group, Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain; (S.C.); (A.G.-R.); (M.A.M.-C.)
- Department of Agricultural Chemistry and Food Science, Faculty of Science, Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain
- Institute of Food Science Research, CIAL (UAM-CSIC), Universidad Autonoma de Madrid, C/Nicolás Cabrera, 9, 28049 Madrid, Spain
| | - Alicia Gil-Ramírez
- Food, Oxidative Stress and Cardiovascular Health (FOSCH) Research Group, Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain; (S.C.); (A.G.-R.); (M.A.M.-C.)
- Department of Agricultural Chemistry and Food Science, Faculty of Science, Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain
- Institute of Food Science Research, CIAL (UAM-CSIC), Universidad Autonoma de Madrid, C/Nicolás Cabrera, 9, 28049 Madrid, Spain
| | - Santiago Ruvira
- Department of Physiology, Faculty of Medicine, Universidad Autónoma de Madrid, C/Arzobispo Morcillo, 2, 28029 Madrid, Spain; (D.R.-C.); (A.G.-D.); (S.R.)
- Food, Oxidative Stress and Cardiovascular Health (FOSCH) Research Group, Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain; (S.C.); (A.G.-R.); (M.A.M.-C.)
- PhD Programme in Pharmacology and Physiology, Doctoral School, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - María A. Martin-Cabrejas
- Food, Oxidative Stress and Cardiovascular Health (FOSCH) Research Group, Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain; (S.C.); (A.G.-R.); (M.A.M.-C.)
- Department of Agricultural Chemistry and Food Science, Faculty of Science, Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain
- Institute of Food Science Research, CIAL (UAM-CSIC), Universidad Autonoma de Madrid, C/Nicolás Cabrera, 9, 28049 Madrid, Spain
| | - Silvia M. Arribas
- Department of Physiology, Faculty of Medicine, Universidad Autónoma de Madrid, C/Arzobispo Morcillo, 2, 28029 Madrid, Spain; (D.R.-C.); (A.G.-D.); (S.R.)
- Food, Oxidative Stress and Cardiovascular Health (FOSCH) Research Group, Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain; (S.C.); (A.G.-R.); (M.A.M.-C.)
- Correspondence:
| |
Collapse
|
12
|
Wiggins JB, Trotman R, Perks PH, Swanson JR. Enteral Nutrition: The Intricacies of Human Milk from the Immune System to the Microbiome. Clin Perinatol 2022; 49:427-445. [PMID: 35659095 DOI: 10.1016/j.clp.2022.02.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In 2012, the American Academy of Pediatrics stated that all preterm infant diets should consist of human milk (mother's own milk or pasteurized donor human milk). The clinical reasons supporting this policy are many, including reducing infections and retinopathy of prematurity, decreased neonatal intensive care unit length of stay, subsequent readmissions, a decrease in mortality, and improved neurodevelopmental outcomes. This article focuses on human milk, its composition and bioactive factors, and how it affects the gut-brain axis through the microbiome. We examine how differences between mother's own milk and pasteurized donor human milk affect the premature infant.
Collapse
Affiliation(s)
- Jaclyn B Wiggins
- Division of Neonatology, Department of Pediatrics, University of Virginia, Box 800386, Charlottesville, VA 22908, USA.
| | - Rachael Trotman
- Neonatal Intensive Care Unit, PO Box 800673, Nutrition Services, Ground Floor, UVA Main Hospital, 1215 Lee Street, Charlottesville, VA 22908-0673, USA
| | - Patti H Perks
- Neonatal Intensive Care Unit, PO Box 800673, Nutrition Services, Ground Floor, UVA Main Hospital, 1215 Lee Street, Charlottesville, VA 22908-0673, USA
| | - Jonathan R Swanson
- Division of Neonatology, Department of Pediatrics, University of Virginia, Box 800386, Charlottesville, VA 22908, USA
| |
Collapse
|
13
|
Hatmal MM, Al-Hatamleh MAI, Olaimat AN, Alshaer W, Hasan H, Albakri KA, Alkhafaji E, Issa NN, Al-Holy MA, Abderrahman SM, Abdallah AM, Mohamud R. Immunomodulatory Properties of Human Breast Milk: MicroRNA Contents and Potential Epigenetic Effects. Biomedicines 2022; 10:1219. [PMID: 35740242 PMCID: PMC9219990 DOI: 10.3390/biomedicines10061219] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/15/2022] [Accepted: 05/17/2022] [Indexed: 02/07/2023] Open
Abstract
Infants who are exclusively breastfed in the first six months of age receive adequate nutrients, achieving optimal immune protection and growth. In addition to the known nutritional components of human breast milk (HBM), i.e., water, carbohydrates, fats and proteins, it is also a rich source of microRNAs, which impact epigenetic mechanisms. This comprehensive work presents an up-to-date overview of the immunomodulatory constituents of HBM, highlighting its content of circulating microRNAs. The epigenetic effects of HBM are discussed, especially those regulated by miRNAs. HBM contains more than 1400 microRNAs. The majority of these microRNAs originate from the lactating gland and are based on the remodeling of cells in the gland during breastfeeding. These miRNAs can affect epigenetic patterns by several mechanisms, including DNA methylation, histone modifications and RNA regulation, which could ultimately result in alterations in gene expressions. Therefore, the unique microRNA profile of HBM, including exosomal microRNAs, is implicated in the regulation of the genes responsible for a variety of immunological and physiological functions, such as FTO, INS, IGF1, NRF2, GLUT1 and FOXP3 genes. Hence, studying the HBM miRNA composition is important for improving the nutritional approaches for pregnancy and infant's early life and preventing diseases that could occur in the future. Interestingly, the composition of miRNAs in HBM is affected by multiple factors, including diet, environmental and genetic factors.
Collapse
Affiliation(s)
- Ma’mon M. Hatmal
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Mohammad A. I. Al-Hatamleh
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu 16150, Malaysia;
| | - Amin N. Olaimat
- Department of Clinical Nutrition and Dietetics, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan; (A.N.O.); (M.A.A.-H.)
| | - Walhan Alshaer
- Cell Therapy Center (CTC), The University of Jordan, Amman 11942, Jordan;
| | - Hanan Hasan
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman 11942, Jordan;
| | - Khaled A. Albakri
- Faculty of Medicine, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Enas Alkhafaji
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, The University of Jordan, Amman 11942, Jordan;
| | - Nada N. Issa
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Murad A. Al-Holy
- Department of Clinical Nutrition and Dietetics, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan; (A.N.O.); (M.A.A.-H.)
| | - Salim M. Abderrahman
- Department of Biology and Biotechnology, Faculty of Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Atiyeh M. Abdallah
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar;
| | - Rohimah Mohamud
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu 16150, Malaysia;
| |
Collapse
|
14
|
Managlia E, Yan X, De Plaen IG. Intestinal Epithelial Barrier Function and Necrotizing Enterocolitis. NEWBORN 2022; 1:32-43. [PMID: 35846894 PMCID: PMC9286028 DOI: 10.5005/jp-journals-11002-0003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Necrotizing enterocolitis (NEC) is a major cause of morbidity and mortality in premature infants. NEC is characterized by intestinal tissue inflammation and necrosis. The intestinal barrier is altered in NEC, which potentially contributes to its pathogenesis by promoting intestinal bacterial translocation and stimulating the inflammatory response. In premature infants, many components of the intestinal barrier are immature. This article reviews the different components of the intestinal barrier and how their immaturity contributes to intestinal barrier dysfunction and NEC.
Collapse
Affiliation(s)
- Elizabeth Managlia
- Division of Neonatology, Department of Pediatrics, Ann and Robert H Lurie Children’s Hospital of Chicago, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, United States; Center for Intestinal and Liver Inflammation Research, Stanley Manne Children’s Research Institute, Ann and Robert H Lurie Children’s Hospital of Chicago, Northwestern University, Chicago, Illinois, United States
| | - Xiaocai Yan
- Division of Neonatology, Department of Pediatrics, Ann and Robert H Lurie Children’s Hospital of Chicago, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, United States; Center for Intestinal and Liver Inflammation Research, Stanley Manne Children’s Research Institute, Ann and Robert H Lurie Children’s Hospital of Chicago, Northwestern University, Chicago, Illinois, United States
| | - Isabelle G De Plaen
- Division of Neonatology, Department of Pediatrics, Ann and Robert H Lurie Children’s Hospital of Chicago, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, United States; Center for Intestinal and Liver Inflammation Research, Stanley Manne Children’s Research Institute, Ann and Robert H Lurie Children’s Hospital of Chicago, Northwestern University, Chicago, Illinois, United States
| |
Collapse
|
15
|
Newton DA, Baatz JE, Chetta KE, Walker PW, Washington RO, Shary JR, Wagner CL. Maternal Vitamin D Status Correlates to Leukocyte Antigenic Responses in Breastfeeding Infants. Nutrients 2022; 14:1266. [PMID: 35334923 PMCID: PMC8952362 DOI: 10.3390/nu14061266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/10/2022] [Accepted: 03/15/2022] [Indexed: 02/04/2023] Open
Abstract
It is unknown if vitamin D (vitD) sufficiency in breastfeeding mothers can lead to physiological outcomes for their children that are discernible from infant vitD sufficiency per se. In a 3-month, randomized vitD supplementation study of mothers and their exclusively breastfeeding infants, the effects of maternal vitD sufficiency were determined on infant plasma concentrations of 25-hydroxyvitamin D (i.e., vitD status) and 11 cytokines. An inverse correlation was seen between maternal vitD status and infant plasma TNF concentration (r = −0.27; p < 0.05). Infant whole blood was also subjected to in vitro antigenic stimulation. TNF, IFNγ, IL-4, IL-13, and TGFβ1 responses by infant leukocytes were significantly higher if mothers were vitD sufficient but were not as closely correlated to infants’ own vitD status. Conversely, IL-10 and IL-12 responses after antigenic challenge were more correlated to infant vitD status. These data are consistent with vitD-mediated changes in breast milk composition providing immunological signaling to breastfeeding infants and indicate differential physiological effects of direct-infant versus maternal vitD supplementation. Thus, consistent with many previous studies that focused on the importance of vitD sufficiency during pregnancy, maintenance of maternal sufficiency likely continues to affect the health of breastfed infants.
Collapse
Affiliation(s)
- Danforth A. Newton
- Department of Pediatrics/Neonatology, Shawn Jenkins Children’s Hospital, Medical University of South Carolina, Charleston, SC 29425, USA; (J.E.B.); (K.E.C.); (P.W.W.); (R.O.W.); (J.R.S.); (C.L.W.)
| | | | | | | | | | | | | |
Collapse
|
16
|
Yue Q, Cai M, Xiao B, Zhan Q, Zeng C. The Microbiota-Gut-Brain Axis and Epilepsy. Cell Mol Neurobiol 2022; 42:439-453. [PMID: 34279746 PMCID: PMC11441249 DOI: 10.1007/s10571-021-01130-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 07/14/2021] [Indexed: 12/15/2022]
Abstract
Honoured as the second genome in humans, the gut microbiota is involved in a constellation of physiological and pathological processes, including those related to the central nervous system. The communication between the gut microbiota and the brain is realized by a complex bidirectional connection, known as the "microbiota-gut-brain axis", via neuroendocrine, immunological, and direct neural mechanisms. Recent studies indicate that gut dysfunction/dysbiosis is presumably involved in the pathogenesis of and susceptibility to epilepsy. In addition, the reconstruction of the intestinal microbiome through, for example, faecal microbiota transplantation, probiotic intervention, and a ketogenic diet, has exhibited beneficial effects on drug-resistant epilepsy. The purposes of this review are to provide a brief overview of the microbiota-gut-brain axis and to synthesize what is known about the involvement of the gut microbiota in the pathogenesis and treatment of epilepsy, to bring new insight into the pathophysiology of epilepsy and to present a preliminary discussion of novel therapeutic options for epilepsy based on the gut microbiota.
Collapse
Affiliation(s)
- Qiang Yue
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, China
| | - Mingfei Cai
- Department of Neurology, The Second Xiangya Hospital, Central South University, 139 Renmin Road, Changsha, 410011, China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, China
| | - Qiong Zhan
- Department of Neurology, The Second Xiangya Hospital, Central South University, 139 Renmin Road, Changsha, 410011, China.
| | - Chang Zeng
- Health Management Center, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, China.
| |
Collapse
|
17
|
Taylor SN, Fenton TR, Groh-Wargo S, Gura K, Martin CR, Griffin IJ, Rozga M, Moloney L. Exclusive Maternal Milk Compared With Exclusive Formula on Growth and Health Outcomes in Very-Low-Birthweight Preterm Infants: Phase II of the Pre-B Project and an Evidence Analysis Center Systematic Review. Front Pediatr 2022; 9:793311. [PMID: 35280446 PMCID: PMC8913886 DOI: 10.3389/fped.2021.793311] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/27/2021] [Indexed: 11/13/2022] Open
Abstract
As part of the Pre-B Project, a systematic review was conducted to evaluate associations between exclusive maternal milk (≥75%) intake and exclusive formula intake and growth and health outcomes in very-low-birthweight (VLBW) preterm infants. The protocols from the Academy of Nutrition and Dietetics' Evidence Analysis Center and the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) checklist were followed. Thirteen observational studies were included; 11 studies reported data that could be synthesized in a pooled analysis. The evidence is very uncertain (very low quality) about the effect of exclusive maternal milk on all outcomes due to observational study designs and risk of selection, performance, detection, and reporting bias in most of the included studies. Very-low-quality evidence suggested that providing VLBW preterm infants with exclusive maternal milk was not associated with mortality, risk of necrotizing enterocolitis, sepsis, or developing bronchopulmonary dysplasia, as compared with exclusive preterm formula, but exclusive maternal milk was associated with a lower risk of retinopathy of prematurity (very low certainty). Results may change when additional studies are conducted. There was no difference in weight, length, and head circumference gain between infants fed fortified exclusive maternal milk and infants receiving exclusive preterm formula; however, weight and length gain were lower in infants fed non-fortified exclusive maternal milk. Given the observational nature of human milk research, cause-and-effect evidence was lacking for VLBW preterm infants. Systematic Review Registration https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=86829, PROSPERO ID: CRD42018086829.
Collapse
Affiliation(s)
- Sarah N. Taylor
- Division of Neonatology, Department of Pediatrics, Yale School of Medicine, New Haven, CT, United States
| | - Tanis R. Fenton
- Community Health Sciences, Institute of Public Health, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Nutrition Services, Alberta Health Services, Calgary, AB, Canada
- Nutrition Services, Alberta Health Services, Calgary, AB, Canada
| | - Sharon Groh-Wargo
- Departments of Nutrition and Pediatrics, Case Western Reserve University at MetroHealth Medical Center, Cleveland, OH, United States
| | - Kathleen Gura
- Clinical Research Program, Department of Pharmacy, Boston Children's Hospital, Boston, MA, United States
| | - Camilia R. Martin
- Division of Translational Research, Department of Neonatology, Harvard Medical School, Neonatal Intensive Care Unit (NICU), Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Ian J. Griffin
- Biomedical Research Institute of New Jersey, Cedar Knolls, NJ, United States
- Department of Pediatrics, Morristown Medical Center, Morristown, NJ, United States
| | - Mary Rozga
- Academy of Nutrition and Dietetics, Evidence Analysis Center, Chicago, IL, United States
| | - Lisa Moloney
- Academy of Nutrition and Dietetics, Evidence Analysis Center, Chicago, IL, United States
| |
Collapse
|
18
|
Díaz-Díaz LM, Rodríguez-Villafañe A, García-Arrarás JE. The Role of the Microbiota in Regeneration-Associated Processes. Front Cell Dev Biol 2022; 9:768783. [PMID: 35155442 PMCID: PMC8826689 DOI: 10.3389/fcell.2021.768783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/03/2021] [Indexed: 12/12/2022] Open
Abstract
The microbiota, the set of microorganisms associated with a particular environment or host, has acquired a prominent role in the study of many physiological and developmental processes. Among these, is the relationship between the microbiota and regenerative processes in various organisms. Here we introduce the concept of the microbiota and its involvement in regeneration-related cellular events. We then review the role of the microbiota in regenerative models that extend from the repair of tissue layers to the regeneration of complete organs or animals. We highlight the role of the microbiota in the digestive tract, since it accounts for a significant percentage of an animal microbiota, and at the same time provides an outstanding system to study microbiota effects on regeneration. Lastly, while this review serves to highlight echinoderms, primarily holothuroids, as models for regeneration studies, it also provides multiple examples of microbiota-related interactions in other processes in different organisms.
Collapse
Affiliation(s)
- Lymarie M Díaz-Díaz
- Department of Biology, University of Puerto Rico, Río Piedras Campus, San Juan, Puerto Rico
| | | | - José E García-Arrarás
- Department of Biology, University of Puerto Rico, Río Piedras Campus, San Juan, Puerto Rico
| |
Collapse
|
19
|
Bagci S, Katzer D, Altuntas Ö, Alsat EA, Berg C, Rebeggiani L, Bartmann P, Müller A. The fetal gastrointestinal tract is exposed to melatonin and superoxide dismutase rich amniotic fluid throughout prenatal development. J Clin Biochem Nutr 2022; 71:64-68. [PMID: 35903605 PMCID: PMC9309090 DOI: 10.3164/jcbn.21-130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 11/10/2021] [Indexed: 11/22/2022] Open
Abstract
Amniotic fluid (AF) is the first fluid to enter the gastrointestinal tract. Preterm birth is leading to a sudden interruption of AF swallowing. Understanding the composition of amniotic fluid is crucial to implement strategies preventing intestinal injury in preterm infants. We hypothesized that the fetal gastrointestinal tract (GIT) is exposed to melatonin and antioxidant enzymes via amniotic fluid throughout prenatal development. Amniotic fluid samples from 76 pregnant women with a median (range) gestational age of 38.0 (14.3–40.1) weeks have been collected. Immediately after birth blood samples were collected from the umbilical vein (n = 53). Median (Interquartile range) melatonin concentration was 30.5 pg/ml (12.7–118.3) and superoxide dismutase 1 (SOD1) concentration was 84 ng/ml (59–123). Extracellular glutathione peroxidase concentration was either not detectable or exceptionally low. We found a positive correlation between melatonin concentration in amniotic fluid and gestational age (Spearman’s correlation coefficient, r = 0.570, p<0.001), while SOD1 concentration in amniotic fluid was inversely correlated with gestational age (r = −0.246, p = 0.032). Compared to serum samples, melatonin concentration was statistically significantly higher in amniotic fluid (p<0.001). Our results indicate that the fetal gastrointestinal system is continuously exposed to melatonin and SOD1 via the amniotic fluid throughout prenatal development.
Collapse
Affiliation(s)
- Soyhan Bagci
- Neonatology and Pediatric Intensive Care, Children’s Hospital, University of Bonn, Venusberg-Campus-1
| | - David Katzer
- Department of Pediatric Gastroenterology, Children’s Hospital, University of Bonn, Venusberg-Campus-1
| | - Özlem Altuntas
- Neonatology and Pediatric Intensive Care, Children’s Hospital, University of Bonn, Venusberg-Campus-1
| | - Ebru A. Alsat
- Neonatology and Pediatric Intensive Care, Children’s Hospital, University of Bonn, Venusberg-Campus-1
| | - Christoph Berg
- Department of Obstetrics and Prenatal Medicine, University of Bonn, Venusberg-Campus-1
| | | | - Peter Bartmann
- Neonatology and Pediatric Intensive Care, Children’s Hospital, University of Bonn, Venusberg-Campus-1
| | - Andreas Müller
- Neonatology and Pediatric Intensive Care, Children’s Hospital, University of Bonn, Venusberg-Campus-1
| |
Collapse
|
20
|
de Kroon RR, de Baat T, Senger S, van Weissenbruch MM. Amniotic Fluid: A Perspective on Promising Advances in the Prevention and Treatment of Necrotizing Enterocolitis. Front Pediatr 2022; 10:859805. [PMID: 35359891 PMCID: PMC8964040 DOI: 10.3389/fped.2022.859805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/15/2022] [Indexed: 12/09/2022] Open
Abstract
Necrotizing enterocolitis (NEC) is a common and potentially fatal disease that typically affects preterm (PIs) and very low birth weight infants (VLBWIs). Although NEC has been extensively studied, the current therapeutic approaches are unsatisfactory. Due to the similarities in the composition between human amniotic fluid (AF) and human breast milk (BM), which plays a protective role in the development of NEC in PIs and VLBWIs, it has been postulated that AF has similar effects on the outcome of NEC and potential therapeutic implications. AF has been long used for its diagnostic purposes and is often discarded after birth as "biological waste". However, researchers have started to elucidate its therapeutic potential. Experimental studies in animal models have shown that diseases of various organ systems can possibly benefit from AF-based therapy. Hence, we have identified three approaches which show promising results for future clinical application in the prevention and/or treatment of NEC: (1) administration of processed AF (PAF) isolated from donor mothers, (2) administration of AF stem cells (AFSCs), and (3) administration of simulated AF (SAF) formulated to mimic the composition of physiological AF. We have highlighted the most important aspects that should be taken into account to guide further research on the clinical application of AF-based therapy. We hope that this review can provide a framework to identify the challenges of AF-based therapy and help to design future studies to better evaluate AF-based approaches for the treatment and/or prevention of NEC in PIs and VLBWIs.
Collapse
Affiliation(s)
- Rimke Romee de Kroon
- Department of Neonatology, Amsterdam University Medical Center, Amsterdam, Netherlands
| | - Tessa de Baat
- Department of Neonatology, Amsterdam University Medical Center, Amsterdam, Netherlands
| | - Stefania Senger
- Department of Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, Boston, MA, United States
| | | |
Collapse
|
21
|
How far is it from infant formula to human milk? A look at the human milk oligosaccharides. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.09.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
22
|
Rossi L, Lumbreras AEV, Vagni S, Dell’Anno M, Bontempo V. Nutritional and Functional Properties of Colostrum in Puppies and Kittens. Animals (Basel) 2021; 11:ani11113260. [PMID: 34827992 PMCID: PMC8614261 DOI: 10.3390/ani11113260] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 10/29/2021] [Accepted: 11/10/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The post-natal period is a crucial time for all animal species. During the course of their first two weeks of life, puppies and kittens face several risks to their health due to their scarce energy storage and weak immune system. Colostrum is the first production of the mammary glands that plays a pivotal role for puppies and kittens. Colostrum is an important source of immunoglobulins and key nutrients such as lipids and carbohydrates, which are fundamental for the health of newborns. Puppies and kittens must ingest a sufficient amount of colostrum within a few hours of birth to ensure their survival. On the other hand, there are some particular compounds that are not strictly essential, but their presence may play an important role in nutrition and health. As there are no recent studies on companion animals, we have reported published articles describing animal studies in different species to review the nutrition of newborn mammals, with particular emphasis on companion animals. Abstract The present review aims toward a better understanding of the nutrition of newborn puppies and kittens. The post-natal period is very sensitive in dogs and cats, as in other animal species. During the first two weeks of life, puppies and kittens are at high risk of dehydration, hypothermia, and hypoglycemia, as well as infectious diseases as they start to acquire the physiological functions of the adult. Neonatal hepatic glycogen storage is low, and newborns depend on colostrum intake to survive. Colostrum provides immunoglobulins and other important substances such as lipids and carbohydrates. Immunoglobulins are central to the immunological link that occurs when the mother transfers passive immunity. The mechanism of transfer varies among mammalian species, but in this review, we focused our attention on dogs and cats. Furthermore, there are components of colostrum which, although their presence is not absolutely necessary, play an important role in nutrition. These components have received considerable interest because of their presumed safety and potential nutritional and therapeutic effects both in humans and animals; however, unfortunately, there are few recent studies in companion animals. Here, we have gathered the published articles that describe studies involving different species of animals, emphasizing companion animals. In particular, the purpose of this narrative of the nutritional and functional proprieties of queens’ and bitches’ colostrum.
Collapse
|
23
|
Kwon IG, Kang CW, Park JP, Oh JH, Wang EK, Kim TY, Sung JS, Park N, Lee YJ, Sung HJ, Lee EJ, Hyung WJ, Shin SJ, Noh SH, Yun M, Kang WJ, Cho A, Ku CR. Serum glucose excretion after Roux-en-Y gastric bypass: a potential target for diabetes treatment. Gut 2021; 70:1847-1856. [PMID: 33208408 DOI: 10.1136/gutjnl-2020-321402] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The mechanisms underlying type 2 diabetes resolution after Roux-en-Y gastric bypass (RYGB) are unclear. We suspected that glucose excretion may occur in the small bowel based on observations in humans. The aim of this study was to evaluate the mechanisms underlying serum glucose excretion in the small intestine and its contribution to glucose homeostasis after bariatric surgery. DESIGN 2-Deoxy-2-[18F]-fluoro-D-glucose (FDG) was measured in RYGB-operated or sham-operated obese diabetic rats. Altered glucose metabolism was targeted and RNA sequencing was performed in areas of high or low FDG uptake in the ileum or common limb. Intestinal glucose metabolism and excretion were confirmed using 14C-glucose and FDG. Increased glucose metabolism was evaluated in IEC-18 cells and mouse intestinal organoids. Obese or ob/ob mice were treated with amphiregulin (AREG) to correlate intestinal glycolysis changes with changes in serum glucose homeostasis. RESULTS The AREG/EGFR/mTOR/AKT/GLUT1 signal transduction pathway was activated in areas of increased glycolysis and intestinal glucose excretion in RYGB-operated rats. Intraluminal GLUT1 inhibitor administration offset improved glucose homeostasis in RYGB-operated rats. AREG-induced signal transduction pathway was confirmed using IEC-18 cells and mouse organoids, resulting in a greater capacity for glucose uptake via GLUT1 overexpression and sequestration in apical and basolateral membranes. Systemic and local AREG administration increased GLUT1 expression and small intestinal membrane translocation and prevented hyperglycaemic exacerbation. CONCLUSION Bariatric surgery or AREG administration induces apical and basolateral membrane GLUT1 expression in the small intestinal enterocytes, resulting in increased serum glucose excretion in the gut lumen. Our findings suggest a novel, potentially targetable glucose homeostatic mechanism in the small intestine.
Collapse
Affiliation(s)
- In Gyu Kwon
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Chan Woo Kang
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, Republic of Korea
| | - Jong-Pil Park
- Department of Forensic Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ju Hun Oh
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, Republic of Korea.,Endocrinology, Institute of Endocrine Research, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Eun Kyung Wang
- Endocrinology, Institute of Endocrine Research, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Tae Young Kim
- Department of Medical Engineering, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jin Sol Sung
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, Republic of Korea
| | - Namhee Park
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yang Jong Lee
- Endocrinology, Institute of Endocrine Research, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hak-Joon Sung
- Department of Medical Engineering, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Eun Jig Lee
- Endocrinology, Institute of Endocrine Research, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Woo Jin Hyung
- Department of Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Su-Jin Shin
- Department of Pathology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sung Hoon Noh
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Mijin Yun
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Won Jun Kang
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Arthur Cho
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Cheol Ryong Ku
- Endocrinology, Institute of Endocrine Research, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
24
|
Qi M, Cao Z, Shang P, Zhang H, Hussain R, Mehmood K, Chang Z, Wu Q, Dong H. Comparative analysis of fecal microbiota composition diversity in Tibetan piglets suffering from diarrheagenic Escherichia coli (DEC). Microb Pathog 2021; 158:105106. [PMID: 34311015 DOI: 10.1016/j.micpath.2021.105106] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/29/2021] [Accepted: 07/20/2021] [Indexed: 02/06/2023]
Abstract
This study was ascertained to investigate the adverse effects of pathogenic E. coli on gut microbiota of Tibetan piglets with history of yellow and white dysentery. For this purpose, a total of 18 fecal samples were collected from infected and healthy Tibetan piglets for 16S rRNA gene amplification and sequencing of V3-V4 region. Results showed that Firmicutes, Bacteroidia Fusobacteriota, Proteobacteria and Actinobacteriota were the predominant bacteria in Tibetan piglets at the level of phylum classification. Results on classification at family level showed that Lactobacillus, Bacteroidota, Fusobacteriota and Enterobacteriaceae were the dominant bacteria. Results on classification of bacteria at phylum level compared with normal piglets indicated that Bacteroidota, Actinobacteriota, Euryarchaota and Spirochaetota in fecal microbial community in Tibetan piglets showing yellow dysenteric and diarrhea group were significantly decreased (P ≤ 0.05). Compared with the feces of healthy Tibetan piglets, the abundance of Escherichia-Shigella, Lactobacillus and Enterococcus increased significantly in feces of Tibetan piglets having yellow dysentery and white dysentery. Moreover, results exhibited that the Proteobacteria and Fusobacteriota were significantly increased (P ≤ 0.05) suggesting dominant microbial community. Results revealed that E. coli induced different pathological alterations in intestine including damage to intestinal epithelial cells, infiltration of inflammatory cells, presence of red blood cells in spaces of tissues, hemorrhages and necrosis of intestinal villi in piglets with history of yellow dysentery. This study for the first time reported the composition, characteristics, and differences of the fecal microflora diversity of Tibetan piglets with yellow and white dysentery in Qinghai-Tibet Plateau, which can provide a suitable support for effective control of diarrhoeal disease in these animals.
Collapse
Affiliation(s)
- Ming Qi
- Animal Science College, Tibet Agriculture & Animal Husbandry University, Linzhi, China
| | - Zhipeng Cao
- Animal Science College, Tibet Agriculture & Animal Husbandry University, Linzhi, China
| | - Peng Shang
- Animal Science College, Tibet Agriculture & Animal Husbandry University, Linzhi, China
| | - Hui Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Riaz Hussain
- Department of Pathology, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Khalid Mehmood
- Department of Clinical Medicine and Surgery, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Zhenyu Chang
- Animal Science College, Tibet Agriculture & Animal Husbandry University, Linzhi, China
| | - Qingxia Wu
- Animal Science College, Tibet Agriculture & Animal Husbandry University, Linzhi, China
| | - Hailong Dong
- Animal Science College, Tibet Agriculture & Animal Husbandry University, Linzhi, China.
| |
Collapse
|
25
|
|
26
|
Abstract
This review highlights clinical outcomes of human milk from infancy through adulthood. Human milk outcomes of both preterm and term infants, including critically ill term infants (such as infants with congenital heart disease and those requiring therapeutic hypothermia) are summarized. Several human milk diets are identified to reduce the risk of specific diseases. Emerging research of newly discovered components of human milk are also reviewed. Human milk has significant effects on the gut microbiome, somatic growth, and neurocognitive outcomes. Continued research promises to improve donor human milk and donor milk derived products to achieve better outcomes for infants who do not receive their own mother's milk. The promotion of human milk is well-founded on evidence from the previous half century.
Collapse
Affiliation(s)
- Katherine E Chetta
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Medical University of South Carolina, Shawn Jenkins Children's Hospital, 10 McClennan Banks Drive, MSC 915, Charleston, SC 29425, United States.
| | - Elizabeth V Schulz
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Uniformed Services University, United States
| | - Carol L Wagner
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Medical University of South Carolina, Shawn Jenkins Children's Hospital, 10 McClennan Banks Drive, MSC 915, Charleston, SC 29425, United States
| |
Collapse
|
27
|
Cardoso M, Virella D, Macedo I, Silva D, Pereira-da-Silva L. Customized Human Milk Fortification Based on Measured Human Milk Composition to Improve the Quality of Growth in Very Preterm Infants: A Mixed-Cohort Study Protocol. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18020823. [PMID: 33477964 PMCID: PMC7835734 DOI: 10.3390/ijerph18020823] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/16/2021] [Accepted: 01/18/2021] [Indexed: 12/11/2022]
Abstract
Adequate nutrition of very preterm infants comprises fortification of human milk (HM), which helps to improve their nutrition and health. Standard HM fortification involves a fixed dose of a multi-nutrient HM fortifier, regardless of the composition of HM. This fortification method requires regular measurements of HM composition and has been suggested to be a more accurate fortification method. This observational study protocol is designed to assess whether the target HM fortification method (contemporary cohort) improves the energy and macronutrient intakes and the quality of growth of very preterm infants, compared with the previously used standard HM fortification (historical cohorts). In the contemporary cohort, a HM multi-nutrient fortifier and modular supplements of protein and fat are used for HM fortification, and the enteral nutrition recommendations of the European Society for Paediatric Gastroenterology Hepatology and Nutrition for preterm infants will be considered. For both cohorts, the composition of HM is assessed using the Miris Human Milk analyzer (Uppsala, Sweden). The quality of growth will be assessed by in-hospital weight, length, and head circumference growth velocities and a single measurement of adiposity (fat mass percentage and fat mass index) performed just after discharge, using the air displacement plethysmography method (Pea Pod, Cosmed, Italy). ClinicalTrials.gov registration number: NCT04400396.
Collapse
Affiliation(s)
- Manuela Cardoso
- Nutrition Unit, Maternidade Dr. Alfredo da Costa, Centro Hospitalar Universitário de Lisboa Central, 2890-495 Lisbon, Portugal;
| | - Daniel Virella
- Research Unit, Centro Hospitalar Universitário de Lisboa Central, 1169-045 Lisbon, Portugal;
- Neonatal Intensive Care Unit, Hospital Dona Estefânia, Centro Hospitalar Universitário de Lisboa Central, 1169-045 Lisbon, Portugal
| | - Israel Macedo
- Neonatal Intensive Care Unit, Maternidade Dr. Alfredo da Costa, Centro Hospitalar Universitário de Lisboa Central, 2890-495 Lisbon, Portugal;
| | - Diana Silva
- Faculdade de Ciências de Nutrição e da Alimentação, Universidade do Porto, 4150-180 Porto, Portugal;
| | - Luís Pereira-da-Silva
- Neonatal Intensive Care Unit, Hospital Dona Estefânia, Centro Hospitalar Universitário de Lisboa Central, 1169-045 Lisbon, Portugal
- Nutrition Lab., Hospital Dona Estefânia, Centro Hospitalar Universitário de Lisboa Central, 1169-045 Lisbon, Portugal
- Comprehensive Health Research Centre (CHRC), Medicine of Woman, Childhood and Adolescence, NOVA Medical School, Universidade Nova de Lisboa, 1349-008 Lisbon, Portugal
- Correspondence: ; Tel.: +351-917-235-528
| |
Collapse
|
28
|
Diao H, Xiao Y, Yan HL, Yu B, He J, Zheng P, Yu J, Mao XB, Chen DW. Effects of Early Transplantation of the Faecal Microbiota from Tibetan Pigs on the Gut Development of DSS-Challenged Piglets. BIOMED RESEARCH INTERNATIONAL 2021; 2021:9823969. [PMID: 33532501 PMCID: PMC7837763 DOI: 10.1155/2021/9823969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/30/2020] [Accepted: 01/06/2021] [Indexed: 12/20/2022]
Abstract
The present study was conducted to investigate the effects of early transplantation of the faecal microbiota from Tibetan pigs on the gut development of dextran sulphate sodium- (DSS-) challenged piglets. In total, 24 3-day-old DLY piglets were divided into four groups (n = 6 per group); a 2 × 2 factorial arrangement was used, which included faecal microbiota transplantation (FMT) (from Tibetan pigs) and DSS challenge. The whole trial lasted for 55 days. DSS infusion increased the intestinal density, serum diamine oxidase (DAO) activity, and colonic Escherichia coli count (P < 0.05), and decreased the Lactobacillus spp. count and mRNA abundances of epidermal growth factor (EGF), glucagon-like peptide-2 (GLP-2), insulin-like growth factor 1 (IGF-1), occludin, mucin 2 (MUC2), regeneration protein IIIγ (RegIIIγ), and interleukin-10 (IL-10) in the colon (P < 0.05). FMT increased the Lactobacillus spp. count and mRNA abundances of GLP-2, RegIIIγ, and IL-10 in the colon (P < 0.05), and decreased the intestinal density, serum DAO activity, and colonic E. coli number (P < 0.05). In addition, in DSS-challenged piglets, FMT decreased the disease activity index (P < 0.05) and attenuated the effect of DSS challenge on the intestinal density, serum DAO activity, and colonic E. coli number (P < 0.05). These data indicated that the faecal microbiota from Tibetan pigs could attenuate the negative effect of DSS challenge on the gut development of piglets.
Collapse
Affiliation(s)
- H. Diao
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, No. 46 Xinkang Road, Ya'an, Sichuan 625014, China
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Academy of Animal Science, No. 7 Niusha Road, Chengdu, Sichuan 610066, China
| | - Y. Xiao
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, No. 46 Xinkang Road, Ya'an, Sichuan 625014, China
| | - H. L. Yan
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, No. 46 Xinkang Road, Ya'an, Sichuan 625014, China
| | - B. Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, No. 46 Xinkang Road, Ya'an, Sichuan 625014, China
| | - J. He
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, No. 46 Xinkang Road, Ya'an, Sichuan 625014, China
| | - P. Zheng
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, No. 46 Xinkang Road, Ya'an, Sichuan 625014, China
| | - J. Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, No. 46 Xinkang Road, Ya'an, Sichuan 625014, China
| | - X. B. Mao
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, No. 46 Xinkang Road, Ya'an, Sichuan 625014, China
| | - D. W. Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, No. 46 Xinkang Road, Ya'an, Sichuan 625014, China
| |
Collapse
|
29
|
Lin A, Ali S, Arnold BF, Rahman MZ, Alauddin M, Grembi J, Mertens AN, Famida SL, Akther S, Hossen MS, Mutsuddi P, Shoab AK, Hussain Z, Rahman M, Unicomb L, Ashraf S, Naser AM, Parvez SM, Ercumen A, Benjamin-Chung J, Haque R, Ahmed T, Hossain MI, Choudhury N, Jannat K, Alauddin ST, Minchala SG, Cekovic R, Hubbard AE, Stewart CP, Dewey KG, Colford JM, Luby SP. Effects of Water, Sanitation, Handwashing, and Nutritional Interventions on Environmental Enteric Dysfunction in Young Children: A Cluster-randomized, Controlled Trial in Rural Bangladesh. Clin Infect Dis 2021; 70:738-747. [PMID: 30963177 DOI: 10.1093/cid/ciz291] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 04/04/2019] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND We hypothesized that drinking water, sanitation, handwashing (WSH), and nutritional interventions would improve environmental enteric dysfunction (EED), a potential contributor to stunting. METHODS Within a subsample of a cluster-randomized, controlled trial in rural Bangladesh, we enrolled pregnant women in 4 arms: control, WSH, child nutrition counseling plus lipid-based nutrient supplements (N), and nutrition plus WSH (N+WSH). Among the birth cohort, we measured biomarkers of gut inflammation (myeloperoxidase, neopterin), permeability (alpha-1-antitrypsin, lactulose, mannitol), and repair (regenerating gene 1β) at median ages 3, 14, and 28 months. Analysis was intention-to-treat. RESULTS We assessed 1512 children. At age 3 months, compared to controls, neopterin was reduced by nutrition (-0.21 log nmol/L; 95% confidence interval [CI], -.37, -.05) and N+WSH (-0.20 log nmol/L; 95% CI, -.34, -.06) interventions; similar reductions were observed at 14 months. At 3 months, all interventions reduced lactulose and mannitol (-0.60 to -0.69 log mmol/L). At 28 months, myeloperoxidase was elevated in the WSH and nutrition arms (0.23-0.27 log ng/mL) and lactulose was higher in the WSH arm (0.30 log mmol/L; 95% CI, .07, .53). CONCLUSIONS Reductions in permeability and inflammation at ages 3 and 14 months suggest that the interventions promoted healthy intestinal maturation; however, by 28 months, the WSH and nutrition arms showed elevated EED biomarkers. These results underscore the importance of developing a better understanding of EED pathophysiology and targeting interventions early in childhood, when they are likely to have the largest benefit to intestinal health. CLINICAL TRIALS REGISTRATION NCT01590095.
Collapse
Affiliation(s)
- Audrie Lin
- Division of Epidemiology and Biostatistics, School of Public Health, University of California-Berkeley
| | - Shahjahan Ali
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Benjamin F Arnold
- Division of Epidemiology and Biostatistics, School of Public Health, University of California-Berkeley
| | - Md Ziaur Rahman
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | | | - Jessica Grembi
- Division of Infectious Diseases and Geographic Medicine, Stanford University, California
| | - Andrew N Mertens
- Division of Epidemiology and Biostatistics, School of Public Health, University of California-Berkeley
| | - Syeda L Famida
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Salma Akther
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Md Saheen Hossen
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Palash Mutsuddi
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Abul K Shoab
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Zahir Hussain
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Mahbubur Rahman
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Leanne Unicomb
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Sania Ashraf
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Abu Mohd Naser
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Sarker M Parvez
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Ayse Ercumen
- Division of Epidemiology and Biostatistics, School of Public Health, University of California-Berkeley
| | - Jade Benjamin-Chung
- Division of Epidemiology and Biostatistics, School of Public Health, University of California-Berkeley
| | - Rashidul Haque
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Tahmeed Ahmed
- Nutrition and Clinical Services Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Md Iqbal Hossain
- Nutrition and Clinical Services Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Nuzhat Choudhury
- Nutrition and Clinical Services Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Kaniz Jannat
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Sarah T Alauddin
- Department of Chemistry, Wagner College, Staten Island, New York
| | | | - Rabije Cekovic
- Department of Chemistry, Wagner College, Staten Island, New York
| | - Alan E Hubbard
- Division of Epidemiology and Biostatistics, School of Public Health, University of California-Berkeley
| | | | | | - John M Colford
- Division of Epidemiology and Biostatistics, School of Public Health, University of California-Berkeley
| | - Stephen P Luby
- Division of Infectious Diseases and Geographic Medicine, Stanford University, California
| |
Collapse
|
30
|
Günaydın Şahin BS, Keskindemirci G, Özden TA, Durmaz Ö, Gökçay G. Faecal calprotectin levels during the first year of life in healthy children. J Paediatr Child Health 2020; 56:1806-1811. [PMID: 32502317 DOI: 10.1111/jpc.14933] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 04/22/2020] [Accepted: 04/24/2020] [Indexed: 12/01/2022]
Abstract
AIM A high faecal calprotectin (FC) level is a non-invasive marker for inflammatory bowel disease. Nevertheless, healthy infants have elevated levels of FC with large variations. The aim of our study was to determine the levels of FC and associated factors in healthy infants aged 0-12 months. METHODS Infants younger than 1 year of age were in the follow-up programme of the Well Child Unit. Data on the clinical characteristics, including birth, anthropometric measurements and feeding types of infants in the unit, were obtained from their personal health records. One fresh stool sample was collected from each infant. ELISA was used to measure FC. RESULTS We included 84 infants younger than 1 year of age. The median FC value was 313 μg/g. The FC levels were greater in the youngest (0-30 days) group of infants than in the oldest (181-365 days) group (P < 0.001). The FC levels were higher in infants delivered by caesarean section than in those delivered vaginally (P = 0.016). The levels were also higher in infants who were solely breastfed than in those who received mixed feeding (breast milk and formula) during the first 6 months of life (P = 0.030). CONCLUSION The FC levels in this group of infants were high, especially in the first month of life. Several birth and environmental factors influenced the FC values. Further studies with a larger cohort of infants and serial assessment of FC over time are required to better understand the patterns of this biomarker during infancy.
Collapse
Affiliation(s)
| | - Gonca Keskindemirci
- Division of Social Paediatrics, Department of Paediatrics, İstanbul Medical Faculty, İstanbul University, İstanbul, Turkey.,Institute of Health Sciences, and Institute of Child Health, Social Paediatrics PhD Program, İstanbul University, İstanbul, Turkey
| | - Tülin Ayşe Özden
- Division of Paediatric Gastroenterology, Hepatology and Nutrition, Department of Paediatrics, İstanbul Medical Faculty, İstanbul University, İstanbul, Turkey
| | - Özlem Durmaz
- Division of Paediatric Gastroenterology, Hepatology and Nutrition, Department of Paediatrics, İstanbul Medical Faculty, İstanbul University, İstanbul, Turkey
| | - Gülbin Gökçay
- Division of Social Paediatrics, Department of Paediatrics, İstanbul Medical Faculty, İstanbul University, İstanbul, Turkey.,Department of Social Paediatrics, Institute of Child Health, İstanbul University, Fatih, İstanbul, Turkey
| |
Collapse
|
31
|
Turner JM, George P, Lansing M, Slim G, Wizzard PR, Nation P, Brubaker PL, Wales PW. In the Short-term, Milk Fat Globule Epidermal Growth Factor-8 Causes Site-specific Intestinal Growth in Resected Piglets. J Pediatr Gastroenterol Nutr 2020; 71:543-549. [PMID: 32910624 DOI: 10.1097/mpg.0000000000002818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Short bowel syndrome (SBS) remains the leading cause of neonatal intestinal failure. Milk fat globule epidermal growth factor-8 (MFG-E8), present in human milk, has homology with epidermal growth factor (EGF), known to enhance adaptation in SBS. In this pilot study, the role of oral MFG-E8 treatment in SBS was explored in neonatal piglets. METHODS Neonatal piglets underwent 75% intestinal resection, either distal (jejunal-colonic [JC] anastomosis) or mid-intestinal (jejunal-ileal [JI] anastomosis). Piglets were randomized to intragastric treatment with MFG-E8 (5 mg/kg per day) or saline and were maintained on parenteral nutrition and enteral nutrition for 7 days. Adaptation was assessed by intestinal length and weight, histopathology, fecal fat analysis and RT-qPCR analysis of mucosal transcripts, including growth factors. RESULTS JI piglets demonstrated intestinal lengthening (P < 0.001), 2-fold greater in ileum than jejunum (P = 0.02), where lengthening was increased by MFG-E8 treatment (P = 0.02). JC piglets did not exhibit jejunal lengthening, regardless of treatment. Fat absorption was greater for JI piglets (P = 0.02), unaffected by treatment. In JI piglets, expression of Egf was increased in the ileum (P < 0.01) and MFG-E8 treatment increased Egfr (receptor) expression (P = 0.02). CONCLUSIONS MF-EG8 demonstrated site-specific trophic effects, only with JI anatomy. This may limit the utility of this treatment for SBS, except for rare patients with retained ileum. The mechanisms of these site-specific effects, however, and the role of MFG-E8 in neonatal gut growth and in diseases, such as necrotizing enterocolitis that commonly target ileum, warrant further exploration.
Collapse
Affiliation(s)
| | | | | | | | | | - Patrick Nation
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta
| | | | - Paul W Wales
- Department of Pediatrics.,Department of Surgery, University of Toronto.,Group for the Improvement of Intestinal Function and Treatment (GIFT), Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
32
|
Phosphoesterase complex modulates microflora and chronic inflammation in rats with alcoholic fatty liver disease. Life Sci 2020; 262:118509. [PMID: 33010280 DOI: 10.1016/j.lfs.2020.118509] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 09/07/2020] [Accepted: 09/24/2020] [Indexed: 02/08/2023]
Abstract
Phosphoesterase complex (Pho), a major active component of barley malt, has been demonstrated to be clinically effective in relieving alcoholic fatty liver disease (AFLD), and several lines of evidence have suggested that microbial dysbiosis, caused by chronic alcohol overconsumption, plays a key role in the progression of AFLD. The current study aimed to investigate the modulatory effect of Pho on gut microflora. The microbiota diversity, determined via detection of the V4 region of 16S rDNA genes, was analyzed in rats fed the Lieber-Decarli diet. Gut permeability was evaluated via mucus layer staining. Dysbiosis-associated chronic inflammation was investigated by observing the expression of the following inflammatory molecules in the liver: tumor necrosis factor α (TNF-α), monocyte chemotactic protein 1 (MCP-1), chemokine (C-X-C motif) ligand 1 (CXCL-1) and interleukin 1 beta (IL-1β). Pyrosequencing revealed that the gut microbiota in Pho-treated rats was different from that of AFLD rats at both the phylum and genus levels. In addition, Pho significantly alleviated dysbiosis-associated disruption of gut permeability and inflammation, increased mucus layer thickness and downregulated TNF-α, MCP-1, CXCL-1 and IL-1β expression. In summary, the current results revealed that the microflora, gut barrier and chronic inflammation in AFLD may be modulated by Pho.
Collapse
|
33
|
Amniotic fluid and breast milk: a rationale for breast milk stem cell therapy in neonatal diseases. Pediatr Surg Int 2020; 36:999-1007. [PMID: 32671487 DOI: 10.1007/s00383-020-04710-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/30/2020] [Indexed: 12/18/2022]
Abstract
Amniotic fluid and breast milk play important roles in structural development throughout fetal growth and infancy. Given their significance in physical maturation, many studies have investigated the therapeutic and protective roles of amniotic fluid and breast milk in neonatal diseases. Of particular interest to researchers are stem cells found in the two fluids. These stem cells have been investigated due to their ability to self-replicate, differentiate, reduce tissue damage, and their expression of pluripotent markers. While amniotic fluid stem cells have received some attention regarding their ability to treat neonatal diseases, breast milk stem cells have not been investigated to the same extent given the recency of their discovery. The purpose of this review is to compare the functions of amniotic fluid, breast milk, and their stem cells to provide a rationale for the use of breast milk stem cells as a therapy for neonatal diseases. Breast milk stem cells present as an important tool for treating neonatal diseases given their ability to reduce inflammation and tissue damage, as well as their multilineage differentiation potential, easy accessibility, and ability to be used in disease modelling.
Collapse
|
34
|
LeMay-Nedjelski L, Butcher J, Ley SH, Asbury MR, Hanley AJ, Kiss A, Unger S, Copeland JK, Wang PW, Zinman B, Stintzi A, O'Connor DL. Examining the relationship between maternal body size, gestational glucose tolerance status, mode of delivery and ethnicity on human milk microbiota at three months post-partum. BMC Microbiol 2020; 20:219. [PMID: 32689933 PMCID: PMC7372813 DOI: 10.1186/s12866-020-01901-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 07/13/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Few studies have examined how maternal body mass index (BMI), mode of delivery and ethnicity affect the microbial composition of human milk and none have examined associations with maternal metabolic status. Given the high prevalence of maternal adiposity and impaired glucose metabolism, we systematically investigated the associations between these maternal factors in women ≥20 years and milk microbial composition and predicted functionality by V4-16S ribosomal RNA gene sequencing (NCT01405547; https://clinicaltrials.gov/ct2/show/NCT01405547 ). Demographic data, weight, height, and a 3-h oral glucose tolerance test were gathered at 30 (95% CI: 25-33) weeks gestation, and milk samples were collected at 3 months post-partum (n = 113). RESULTS Multivariable linear regression analyses demonstrated no significant associations between maternal characteristics (maternal BMI [pre-pregnancy, 3 months post-partum], glucose tolerance, mode of delivery and ethnicity) and milk microbiota alpha-diversity; however, pre-pregnancy BMI was associated with human milk microbiota beta-diversity (Bray-Curtis R2 = 0.037). Women with a pre-pregnancy BMI > 30 kg/m2 (obese) had a greater incidence of Bacteroidetes (incidence rate ratio [IRR]: 3.70 [95% CI: 1.61-8.48]) and a reduced incidence of Proteobacteria (0.62 [0.43-0.90]) in their milk, compared to women with an overweight BMI (25.0-29.9 kg/m2) as assessed by multivariable Poisson regression. An increased incidence of Gemella was observed among mothers with gestational diabetes who had an overweight BMI versus healthy range BMI (5.96 [1.85-19.21]). An increased incidence of Gemella was also observed among mothers with impaired glucose tolerance with an obese BMI versus mothers with a healthy range BMI (4.04 [1.63-10.01]). An increased incidence of Brevundimonas (16.70 [5.99-46.57]) was found in the milk of women who underwent an unscheduled C-section versus vaginal delivery. Lastly, functional gene inference demonstrated that pre-pregnancy obesity was associated with an increased abundance of genes encoding for the biosynthesis of secondary metabolites pathway in milk (coefficient = 0.0024, PFDR < 0.1). CONCLUSIONS Human milk has a diverse microbiota of which its diversity and differential abundance appear associated with maternal BMI, glucose tolerance status, mode of delivery, and ethnicity. Further research is warranted to determine whether this variability in the milk microbiota impacts colonization of the infant gut.
Collapse
Affiliation(s)
- Lauren LeMay-Nedjelski
- Department of Nutritional Sciences, University of Toronto, Medical Sciences Building, 1 King College Circle, Toronto, ON, M5S 1A8, Canada.,Peter Gilgan Centre for Research and Learning, Translational Medicine, The Hospital for Sick Children, 686 Bay Street, Toronto, ON, M5G 0A4, Canada
| | - James Butcher
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Sylvia H Ley
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, 1440 Canal Street, Suite 2001, Mail Box 8318, New Orleans, LA, 70112, USA
| | - Michelle R Asbury
- Department of Nutritional Sciences, University of Toronto, Medical Sciences Building, 1 King College Circle, Toronto, ON, M5S 1A8, Canada.,Peter Gilgan Centre for Research and Learning, Translational Medicine, The Hospital for Sick Children, 686 Bay Street, Toronto, ON, M5G 0A4, Canada
| | - Anthony J Hanley
- Department of Nutritional Sciences, University of Toronto, Medical Sciences Building, 1 King College Circle, Toronto, ON, M5S 1A8, Canada
| | - Alex Kiss
- Department of Research Design and Biostatistics, Sunnybrook Research Institute, 2075 Bayview Ave, Toronto, ON, M4N 3M5, Canada
| | - Sharon Unger
- Department of Nutritional Sciences, University of Toronto, Medical Sciences Building, 1 King College Circle, Toronto, ON, M5S 1A8, Canada.,Department of Pediatrics, Mount Sinai Hospital, 600 University Ave, Toronto, ON, M5G 1X5, Canada.,Department of Pediatrics, University of Toronto, Medical Sciences Building, 1 King College Cir, Toronto, ON, M5S 1A8, Canada.,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, 600 University Ave, Toronto, ON, M5G 1X5, Canada
| | - Julia K Copeland
- Centre for the Analysis of Genome Evolution and Function, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
| | - Pauline W Wang
- Centre for the Analysis of Genome Evolution and Function, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
| | - Bernard Zinman
- Centre for the Analysis of Genome Evolution and Function, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
| | - Alain Stintzi
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Deborah L O'Connor
- Department of Nutritional Sciences, University of Toronto, Medical Sciences Building, 1 King College Circle, Toronto, ON, M5S 1A8, Canada. .,Peter Gilgan Centre for Research and Learning, Translational Medicine, The Hospital for Sick Children, 686 Bay Street, Toronto, ON, M5G 0A4, Canada. .,Department of Pediatrics, Mount Sinai Hospital, 600 University Ave, Toronto, ON, M5G 1X5, Canada.
| |
Collapse
|
35
|
Weström B, Arévalo Sureda E, Pierzynowska K, Pierzynowski SG, Pérez-Cano FJ. The Immature Gut Barrier and Its Importance in Establishing Immunity in Newborn Mammals. Front Immunol 2020; 11:1153. [PMID: 32582216 PMCID: PMC7296122 DOI: 10.3389/fimmu.2020.01153] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/11/2020] [Indexed: 12/16/2022] Open
Abstract
The gut is an efficient barrier which protects against the passage of pathogenic microorganisms and potential harmful macromolecules into the body, in addition to its primary function of nutrient digestion and absorption. Contrary to the restricted macromolecular passage in adulthood, enhanced transfer takes place across the intestines during early life, due to the high endocytic capacity of the immature intestinal epithelial cells during the fetal and/or neonatal periods. The timing and extent of this enhanced endocytic capacity is dependent on animal species, with a prominent non-selective intestinal macromolecular transfer in newborn ungulates, e.g., pigs, during the first few days of life, and a selective transfer of mainly immunoglobulin G (IgG), mediated by the FcRn receptor, in suckling rodents, e.g., rats and mice. In primates, maternal IgG is transferred during fetal life via the placenta, and intestinal macromolecular transfer is largely restricted in human neonates. The period of intestinal macromolecular transmission provides passive immune protection through the transfer of IgG antibodies from an immune competent mother; and may even have extra-immune beneficial effects on organ maturation in the offspring. Moreover, intestinal transfer during the fetal/neonatal periods results in increased exposure to microbial and food antigens which are then presented to the underlying immune system, which is both naïve and immature. This likely stimulates the maturation of the immune system and shifts the response toward tolerance induction instead of activation or inflammation, as usually seen in adulthood. Ingestion of mother's milk and the dietary transition to complex food at weaning, as well as the transient changes in the gut microbiota during the neonatal period, are also involved in the resulting immune response. Any disturbances in timing and/or balance of these parallel processes, i.e., intestinal epithelial maturation, luminal microbial colonization and mucosal immune maturation due to, e.g., preterm birth, infection, antibiotic use or nutrient changes during the neonatal period, might affect the establishment of the immune system in the infant. This review will focus on how differing developmental processes in the intestinal epithelium affect the macromolecular passage in different species and the possible impact of such passage on the establishment of immunity during the critical perinatal period in young mammals.
Collapse
Affiliation(s)
- Björn Weström
- Department of Biology, Lund University, Lund, Sweden
| | - Ester Arévalo Sureda
- Precision Livestock and Nutrition Unit, TERRA Teaching and Research Centre, Gembloux Agro-Biotech, University of Liège, Gembloux, Belgium
| | - Kateryna Pierzynowska
- Department of Biology, Lund University, Lund, Sweden
- Department of Animal Physiology, Kielanowski Institute of Animal Physiology and Nutrition, Jablonna, Poland
| | - Stefan G. Pierzynowski
- Department of Biology, Lund University, Lund, Sweden
- Department of Medical Biology, Institute of Rural Health, Lublin, Poland
| | - Francisco-José Pérez-Cano
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain
- Research Institute of Nutrition and Food Safety of the University of Barcelona (INSA-UB), Santa Coloma de Gramenet, Spain
| |
Collapse
|
36
|
Eshriqui I, Viljakainen HT, Ferreira SRG, Raju SC, Weiderpass E, Figueiredo RAO. Breastfeeding may have a long-term effect on oral microbiota: results from the Fin-HIT cohort. Int Breastfeed J 2020; 15:42. [PMID: 32414385 PMCID: PMC7227309 DOI: 10.1186/s13006-020-00285-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 04/28/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Breastfeeding contributes to gastrointestinal microbiota colonization in early life, but its long-term impact is inconclusive. We aimed to evaluate whether the type of feeding during the first six months of life was associated with oral microbiota in adolescence. METHODS This is a cross-sectional sub-study using baseline information of 423 adolescents from the Finnish Health in Teens (Fin-HIT) cohort. Type of feeding was recalled by parents and dichotomized as (i) No infant formula; (ii) Infant formula (breastmilk + formula or only formula). Saliva microbiota was analysed using 16S rRNA (V3-V4) sequencing. Alpha diversity and beta diversity were compared between feeding type groups using ANCOVA and PERMANOVA, respectively. Differential bacteria abundance was tested using appropriate general linear models. RESULTS Mean age and body mass index were 11.7 years and 18.0 kg/m2, respectively. The No formula group contained 41% of the participants. Firmicutes (51.0%), Bacteroidetes (19.1%), and Proteobacteria (16.3%) were the most abundant phyla among all participants. Alpha and beta diversity indices did not differ between the two feeding groups. Three Operational Taxonomic Units (OTUs) belonging to Eubacteria and Veillonella genera (phylum Firmicutes) were more abundant in the No formula than in the Infant formula group (log2fold changes/ p - values - 0.920/ < 0.001, - 0.328/ 0.001, - 0.577/ 0.004). CONCLUSION Differences exist in abundances of some OTUs in adolescence according to feeding type during the first six months of life, but our findings do not support diversity and overall oral microbiota composition in adolescents being affected by early feeding type.
Collapse
Affiliation(s)
- Ilana Eshriqui
- Graduation Program in Public Health Nutrition, School of Public Health, University of São Paulo, São Paulo, Brazil
- Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
| | - Heli T Viljakainen
- Folkhälsan Research Center, Topeliuksenkatu 20, FI-00250, Helsinki, Finland.
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland.
| | - Sandra R G Ferreira
- Department of Epidemiology, School of Public Health, University of São Paulo, São Paulo, Brazil
| | - Sajan C Raju
- Folkhälsan Research Center, Topeliuksenkatu 20, FI-00250, Helsinki, Finland
- Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | | | - Rejane A O Figueiredo
- Folkhälsan Research Center, Topeliuksenkatu 20, FI-00250, Helsinki, Finland
- Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
37
|
Cheng L, Akkerman R, Kong C, Walvoort MTC, de Vos P. More than sugar in the milk: human milk oligosaccharides as essential bioactive molecules in breast milk and current insight in beneficial effects. Crit Rev Food Sci Nutr 2020; 61:1184-1200. [PMID: 32329623 DOI: 10.1080/10408398.2020.1754756] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Human milk is the gold standard for newborn infants. Breast milk not only provides nutrients, it also contains bioactive components that guide the development of the infant's intestinal immune system, which can have a lifelong effect. The bioactive molecules in breast milk regulate microbiota development, immune maturation and gut barrier function. Human milk oligosaccharides (hMOs) are the most abundant bioactive molecules in human milk and have multiple beneficial functions such as support of growth of beneficial bacteria, anti-pathogenic effects, immune modulating effects, and stimulation of intestine barrier functions. Here we critically review the current insight into the benefits of bioactive molecules in mother milk that contribute to neonatal development and focus on current knowledge of hMO-functions on microbiota and the gastrointestinal immune barrier. hMOs produced via genetically engineered microorganisms are now applied in infant formulas to mimic the nutritional composition of breast milk as closely as possible, and their prospects and scientific challenges are discussed in depth.
Collapse
Affiliation(s)
- Lianghui Cheng
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Renate Akkerman
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Chunli Kong
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Marthe T C Walvoort
- Stratingh Institute for Chemistry, Faculty of Science and Engineering, University of Groningen, Groningen, Netherlands
| | - Paul de Vos
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
38
|
Liu X, Quan S, Fu Y, Wang W, Zhang W, Wang X, Zhang C, Xiang D, Zhang L, Wang C. Study on amniotic fluid metabolism in the second trimester of Trisomy 21. J Clin Lab Anal 2020; 34:e23089. [PMID: 31709651 PMCID: PMC7083445 DOI: 10.1002/jcla.23089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/10/2019] [Accepted: 10/13/2019] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Trisomy 21 is a common aneuploid condition in humans and accounts for approximately one quarter of all aneuploid live births. To date, early diagnosis of Trisomy 21 remains a challenging task. Metabolomics may prove an innovative tool to study the early pathophysiology of Trisomy 21 at a functional level. METHODS Ultra-performance liquid chromatography coupled with mass spectrometer (UPLC-MS) was used for untargeted metabolomic analysis of amniotic fluid samples from women having normal and trisomy 21 fetuses. RESULTS Many significantly changed metabolites were identified between amniotic fluid samples from Trisomy 21 pregnancies and normal euploid pregnancies, such as generally lower levels of several steroid hormones and their derivatives, higher levels of glutathione catabolites coupled with lower levels of gamma-glutamyl amino acids, and increased levels of phospholipid catabolites, sugars, and dicarboxylic acids. The identification of a human milk oligosaccharide in amniotic fluid may worth further investigation, since confirmation of this observation may have significant implications for regulation of fetal development. CONCLUSIONS The metabolisms in amniotic fluid from Trisomy 21 and normal pregnancies are quite different, and some of the significantly changed metabolites may be considered as candidates of early diagnostic biomarkers for Trisomy 21.
Collapse
Affiliation(s)
- Xiaoting Liu
- Medical School of Chinese PLA & Medical laboratory centerFirst Medical Center of Chinese PLA General HospitalBeijingChina
| | - Sheng Quan
- Hangzhou Calibra Diagnostics, LTD.HangzhouChina
| | - Yurong Fu
- Medical School of Chinese PLA & Medical laboratory centerFirst Medical Center of Chinese PLA General HospitalBeijingChina
| | - Weiwei Wang
- Medical School of Chinese PLA & Medical laboratory centerFirst Medical Center of Chinese PLA General HospitalBeijingChina
| | - Wenling Zhang
- Medical School of Chinese PLA & Medical laboratory centerFirst Medical Center of Chinese PLA General HospitalBeijingChina
| | - Xiaofei Wang
- Medical School of Chinese PLA & Medical laboratory centerFirst Medical Center of Chinese PLA General HospitalBeijingChina
| | - Chenxi Zhang
- Medical School of Chinese PLA & Medical laboratory centerFirst Medical Center of Chinese PLA General HospitalBeijingChina
| | - Daijun Xiang
- Medical School of Chinese PLA & Medical laboratory centerFirst Medical Center of Chinese PLA General HospitalBeijingChina
| | - Liwen Zhang
- Medical School of Chinese PLA & Medical laboratory centerFirst Medical Center of Chinese PLA General HospitalBeijingChina
| | - Chengbin Wang
- Medical School of Chinese PLA & Medical laboratory centerFirst Medical Center of Chinese PLA General HospitalBeijingChina
| |
Collapse
|
39
|
Costa S, Patti ML, Perri A, Cocca C, Pinna G, Tirone C, Tana M, Lio A, Vento G. Effect of Different Milk Diet on the Level of Fecal Calprotectin in Very Preterm Infants. Front Pediatr 2020; 8:552. [PMID: 33042911 PMCID: PMC7524876 DOI: 10.3389/fped.2020.00552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/30/2020] [Indexed: 12/04/2022] Open
Abstract
Objective: To evaluate the course of fecal calprotectin (FC) in very preterm infants over the first 15 days of life in relation to the type of milk diet. Methods: This study was part of a randomized controlled trial comparing two different ways of integrating the own mother's milk (OMM) for the evaluation of feeding tolerance in very preterm infants. In infants with gestational age of ≤ 32 weeks randomized to receive preterm formula (PF group) or pasteurized donor human milk (PDHM group) as a supplement to the OMM insufficient or unavailable, FC level was planned to be measured at the first meconium passage and at days 8 and 15 of life (T0, T1, and T2, respectively). Results: FC data were available for all the 70 infants randomized, 35 in the PF group, and 35 in the PDHM group. The mean FC levels were similar in the two study groups at T0 and T1, whereas they were significantly higher in the PF group than the PDHM group at T2. FC values decreased over the first week of life in both groups and significantly increased over the second week of life only in the PF group. Conclusions: Our study demonstrates a significant increase in FC levels when PF is used as a supplement to the OMM compared to the use of PDHM. Further studies are needed to establish if the higher FC levels in infants receiving PF are the expression of a normal immunological maturation rather than an initial inflammatory process.
Collapse
Affiliation(s)
- Simonetta Costa
- Department of Woman and Child Health and Public Health, Child Health Area, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Maria Letizia Patti
- Department of Woman and Child Health and Public Health, Child Health Area, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Alessandro Perri
- Department of Woman and Child Health and Public Health, Child Health Area, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Carmen Cocca
- Department of Woman and Child Health and Public Health, Child Health Area, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giovanni Pinna
- Department of Woman and Child Health and Public Health, Child Health Area, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Chiara Tirone
- Department of Woman and Child Health and Public Health, Child Health Area, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Milena Tana
- Department of Woman and Child Health and Public Health, Child Health Area, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Alessandra Lio
- Department of Woman and Child Health and Public Health, Child Health Area, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giovanni Vento
- Department of Woman and Child Health and Public Health, Child Health Area, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
40
|
Abstract
Human milk provides not only ideal nutrition for infant development but also immunologic factors to protect from infection and inflammation. For the newborn preterm infant, the natural delivery of milk is not attainable, and instead pumped maternal milk, donor human milk, and human milk fortification are mainstays of clinical care. Current research demonstrates a decreased risk of necrotizing enterocolitis with maternal milk and donor human milk when individually compared to formula and with a complete human milk diet of maternal milk supplemented with donor human milk. The incidence of severe retinopathy of prematurity is decreased with an exclusive human milk diet, and this decrease is more pronounced with human milk-based compared to bovine milk-based human milk fortifier. The incidence of other morbidities such as late-onset sepsis and bronchopulmonary dysplasia is decreased with higher dose of human milk though significant differences are not apparent in exclusive human milk diet studies.
Collapse
Affiliation(s)
- Sarah N Taylor
- Yale School of Medicine, PO Box 208064, New Haven, Connecticut, 06520-8064, USA.
| |
Collapse
|
41
|
A Review of Bioactive Factors in Human Breastmilk: A Focus on Prematurity. Nutrients 2019; 11:nu11061307. [PMID: 31185620 PMCID: PMC6628333 DOI: 10.3390/nu11061307] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/29/2019] [Accepted: 06/04/2019] [Indexed: 12/20/2022] Open
Abstract
Preterm birth is an increasing worldwide problem. Prematurity is the second most common cause of death in children under 5 years of age. It is associated with a higher risk of several pathologies in the perinatal period and adulthood. Maternal milk, a complex fluid with several bioactive factors, is the best option for the newborn. Its dynamic composition is influenced by diverse factors such as maternal age, lactation period, and health status. The aim of the present review is to summarize the current knowledge regarding some bioactive factors present in breastmilk, namely antioxidants, growth factors, adipokines, and cytokines, paying specific attention to prematurity. The revised literature reveals that the highest levels of these bioactive factors are found in the colostrum and they decrease along the lactation period; bioactive factors are found in higher levels in preterm as compared to full-term milk, they are lacking in formula milk, and decreased in donated milk. However, there are still some gaps and inconclusive data, and further research in this field is needed. Given the fact that many preterm mothers are unable to complete breastfeeding, new information could be important to develop infant supplements that best match preterm human milk.
Collapse
|
42
|
Erliana UD, Fly AD. The Function and Alteration of Immunological Properties in Human Milk of Obese Mothers. Nutrients 2019; 11:nu11061284. [PMID: 31174304 PMCID: PMC6627488 DOI: 10.3390/nu11061284] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/28/2019] [Accepted: 06/01/2019] [Indexed: 01/08/2023] Open
Abstract
Maternal obesity is associated with metabolic changes in mothers and higher risk of obesity in the offspring. Obesity in breastfeeding mothers appears to influence human milk production as well as the quality of human milk. Maternal obesity is associated with alteration of immunological factors concentrations in the human milk, such as C-reactive protein (CRP), leptin, IL-6, insulin, TNF-Alpha, ghrelin, adiponectin, and obestatin. Human milk is considered a first choice for infant nutrition due to the complete profile of macro nutrients, micro nutrients, and immunological properties. It is essential to understand how maternal obesity influences immunological properties of human milk because alterations could impact the nutrition status and health of the infant. This review summarizes the literature regarding the impact of maternal obesity on the concentration of particular immunological properties in the human milk.
Collapse
Affiliation(s)
- Ummu D Erliana
- Indiana University Bloomington School of Public Health, Bloomington, IN 47405, USA.
| | - Alyce D Fly
- Indiana University Bloomington School of Public Health, Bloomington, IN 47405, USA.
| |
Collapse
|
43
|
Microbiome of the Skin and Gut in Atopic Dermatitis (AD): Understanding the Pathophysiology and Finding Novel Management Strategies. J Clin Med 2019; 8:jcm8040444. [PMID: 30987008 PMCID: PMC6518061 DOI: 10.3390/jcm8040444] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 03/25/2019] [Accepted: 03/28/2019] [Indexed: 12/14/2022] Open
Abstract
Atopic dermatitis (AD) is a long-standing inflammatory skin disease that is highly prevalent worldwide. Multiple factors contribute to AD, with genetics as well as the environment affecting disease development. Although AD shows signs of skin barrier defect and immunological deviation, the mechanism underlying AD is not well understood, and AD treatment is often very difficult. There is substantial data that AD patients have a disturbed microbial composition and lack microbial diversity in their skin and gut compared to controls, which contributes to disease onset and atopic march. It is not clear whether microbial change in AD is an outcome of barrier defect or the cause of barrier dysfunction and inflammation. However, a cross-talk between commensals and the immune system is now noticed, and their alteration is believed to affect the maturation of innate and adaptive immunity during early life. The novel concept of modifying skin and gut microbiome by applying moisturizers that contain nonpathogenic biomass or probiotic supplementation during early years may be a preventive and therapeutic option in high risk groups, but currently lacks evidence. This review discusses the nature of the skin and gut flora in AD, possible mechanisms of skin-gut interaction, and the therapeutic implications of microbiome correction in AD.
Collapse
|
44
|
Perdijk O, van Baarlen P, Fernandez-Gutierrez MM, van den Brink E, Schuren FHJ, Brugman S, Savelkoul HFJ, Kleerebezem M, van Neerven RJJ. Sialyllactose and Galactooligosaccharides Promote Epithelial Barrier Functioning and Distinctly Modulate Microbiota Composition and Short Chain Fatty Acid Production In Vitro. Front Immunol 2019; 10:94. [PMID: 30809221 PMCID: PMC6380229 DOI: 10.3389/fimmu.2019.00094] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 01/14/2019] [Indexed: 12/20/2022] Open
Abstract
Human milk oligosaccharides (HMO) and prebiotic oligosaccharides are proposed to confer several health benefits to the infant. They shape the microbiota, have anti-inflammatory properties, and support epithelial barrier functioning. However, in order to select the best oligosaccharides for inclusion in infant formulas, there is a need to increase our understanding of the specific effects of HMO and prebiotics on the host immune system. Therefore, we investigated the effects of the HMO sialyllactose (SL), and galactooligosaccharides (GOS) on epithelial barrier functioning, microbiota composition, and SCFA production. The effect of GOS and SL on epithelial barrier functioning and microbiota composition was investigated using in vitro models. Epithelial barrier function was investigated by transcriptome analysis of fully polarized Caco-2 cells exposed for 6 h to SL or GOS. In addition, epithelial cell growth, alkaline phosphatase production, and re-epithelization was studied. Further, we investigated the effect of SL and GOS on microbiota composition and SCFA production using in vitro fecal batch cultures. Transcriptome analysis showed that SL and GOS both induced pathways that regulate cell cycle control. This gene-expression profile translated to a phenotype of halted proliferation and included the induction of alkaline phosphatase activity, a marker of epithelial cell differentiation. SL and GOS also promoted re-epithelialization in an in vitro epithelial wound repair assay. SL and GOS did show distinct modulation of microbiota composition, promoting the outgrowth of Bacteroides and bifidobacteria, respectively, which resulted in distinct changes in SCFA production profiles. Our results show that SL and GOS can both modulate epithelial barrier function by inducing differentiation and epithelial wound repair, but differentially promote the growth of specific genera in the microbiota, which is associated with differential changes in SCFA profiles.
Collapse
Affiliation(s)
- Olaf Perdijk
- Cell Biology and Immunology Group, Wageningen University & Research, Wageningen, Netherlands
| | - Peter van Baarlen
- Host-Microbe Interactomics Group, Wageningen University & Research, Wageningen, Netherlands
| | | | - Erik van den Brink
- Cell Biology and Immunology Group, Wageningen University & Research, Wageningen, Netherlands
| | - Frank H. J. Schuren
- Microbiology and Systems Biology, The Netherlands Organization for Applied Scientific Research, Zeist, Netherlands
| | - Sylvia Brugman
- Cell Biology and Immunology Group, Wageningen University & Research, Wageningen, Netherlands
| | - Huub F. J. Savelkoul
- Cell Biology and Immunology Group, Wageningen University & Research, Wageningen, Netherlands
| | - Michiel Kleerebezem
- Host-Microbe Interactomics Group, Wageningen University & Research, Wageningen, Netherlands
| | - R. J. Joost van Neerven
- Cell Biology and Immunology Group, Wageningen University & Research, Wageningen, Netherlands
- FrieslandCampina, Amersfoort, Netherlands
| |
Collapse
|
45
|
Vass RA, Kemeny A, Dergez T, Ertl T, Reglodi D, Jungling A, Tamas A. Distribution of bioactive factors in human milk samples. Int Breastfeed J 2019; 14:9. [PMID: 30792750 PMCID: PMC6371541 DOI: 10.1186/s13006-019-0203-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 01/29/2019] [Indexed: 01/01/2023] Open
Abstract
Background Breast milk provides nutrition for infants and also contains a variety of bioactive factors that influence the development of the newborn. Human milk is a complex biological fluid that can be separated into different layers (water phase and lipid phase with its component water and lipid fractions). It can affect the developing human body along the whole length of the gastrointestinal tract, and through the circulation, its factors may reach every organ. Methods In the present study, we analyzed milk samples collected monthly for 6 months from 16 mothers from the 4th week postpartum between 2014 and 2016 in Baranya County, Hungary. The 96 samples provided us information about the fluctuation of certain bioactive factors during the first 6 months of lactation. We investigated with Luminex technology the concentrations of several cytokines (CD40, Flt-3L), chemokines (MCP-1, RANTES, GRO, MIP-1ß, MDC, eotaxin, fractalkine), and epidermal growth factor (EGF). Paired t-tests and one-way ANOVA followed by Bonferroni post-hoc tests were used to compare the data. Results We detected the presence of each bioactive factor in every layer of the milk samples during the first 6 months of breastfeeding in widespread concentration ranges. In the case of GRO, MIP-1ß, MDC, Flt-3L, fractalkine, and eotaxin, the concentrations were constant during the first 6 months of lactation. The water phase of human milk contained higher factor concentrations compared to both fractions of the lipid phase for most factors (except eotaxin and MIP-1ß). The concentrations of CD40, EGF, MCP-1, and RANTES in the first 3 months were significantly different compared to the values detected between 4th and 6th months. In the water phase, the level of MCP-1 was significantly decreased, while all of the other factors increased during the 4th through 6th months. We found significantly higher EGF, GRO, and RANTES levels in the water fraction compared to the lipid fraction of the lipid phase. Conclusions The novel findings of this investigation were the presence of Flt-3L and MDC in all layers of breast milk, and nearly all bioactive factors in the lipid phase. Due to their widespread physiological effects these factors may have an essential role in organogenesis.
Collapse
Affiliation(s)
- Reka A Vass
- 1Department of Anatomy, MTA-PTE PACAP Research Group, Centre for Neuroscience, Medical School, University of Pécs, Pécs, Hungary
| | - Agnes Kemeny
- 2Department of Pharmacology and Pharmacotherapy; Medical School, University of Pécs, Pécs, Hungary.,3Department of Medical Biology and Central Electron Microscope Laboratory, Medical School, University of Pécs, Pécs, Hungary
| | - Timea Dergez
- 4Institute of Bioanalysis, Medical School, University of Pécs, Pécs, Hungary
| | - Tibor Ertl
- 5Department of Obstetrics and Gynaecology, Medical School, University of Pécs, Pécs, Hungary
| | - Dora Reglodi
- 1Department of Anatomy, MTA-PTE PACAP Research Group, Centre for Neuroscience, Medical School, University of Pécs, Pécs, Hungary
| | - Adel Jungling
- 1Department of Anatomy, MTA-PTE PACAP Research Group, Centre for Neuroscience, Medical School, University of Pécs, Pécs, Hungary
| | - Andrea Tamas
- 1Department of Anatomy, MTA-PTE PACAP Research Group, Centre for Neuroscience, Medical School, University of Pécs, Pécs, Hungary
| |
Collapse
|
46
|
González-González M, Díaz-Zepeda C, Eyzaguirre-Velásquez J, González-Arancibia C, Bravo JA, Julio-Pieper M. Investigating Gut Permeability in Animal Models of Disease. Front Physiol 2019; 9:1962. [PMID: 30697168 PMCID: PMC6341294 DOI: 10.3389/fphys.2018.01962] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 12/31/2018] [Indexed: 12/12/2022] Open
Abstract
A growing number of investigations report the association between gut permeability and intestinal or extra-intestinal disorders under the basis that translocation of gut luminal contents could affect tissue function, either directly or indirectly. Still, in many cases it is unknown whether disruption of the gut barrier is a causative agent or a consequence of these conditions. Adequate experimental models are therefore required to further understand the pathophysiology of health disorders associated to gut barrier disruption and to develop and test pharmacological treatments. Here, we review the current animal models that display enhanced intestinal permeability, and discuss (1) their suitability to address mechanistic questions, such as the association between gut barrier alterations and disease and (2) their validity to test potential treatments for pathologies that are characterized by enhanced intestinal permeability.
Collapse
Affiliation(s)
- Marianela González-González
- Grupo de NeuroGastroBioquímica, Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Camilo Díaz-Zepeda
- Grupo de NeuroGastroBioquímica, Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Johana Eyzaguirre-Velásquez
- Grupo de NeuroGastroBioquímica, Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Camila González-Arancibia
- Grupo de NeuroGastroBioquímica, Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Javier A Bravo
- Grupo de NeuroGastroBioquímica, Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Marcela Julio-Pieper
- Grupo de NeuroGastroBioquímica, Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| |
Collapse
|
47
|
Knoop KA, Newberry RD. Goblet cells: multifaceted players in immunity at mucosal surfaces. Mucosal Immunol 2018; 11:1551-1557. [PMID: 29867079 PMCID: PMC8767637 DOI: 10.1038/s41385-018-0039-y] [Citation(s) in RCA: 191] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/11/2018] [Accepted: 04/14/2018] [Indexed: 02/07/2023]
Abstract
Goblet cells (GCs) are specialized epithelial cells that line multiple mucosal surfaces and have a well-appreciated role in barrier maintenance through the secretion of mucus. Moreover, GCs secrete anti-microbial proteins, chemokines, and cytokines demonstrating functions in innate immunity beyond barrier maintenance. Recently it was appreciated that GCs can form goblet cell-associated antigen passages (GAPs) and deliver luminal substances to underlying lamina propria (LP) antigen-presenting cells (APCs) in a manner capable of inducing adaptive immune responses. GCs at other mucosal surfaces share characteristics with the GAP forming intestinal GCs, suggesting that GAP formation may not be restricted to the gut, and that GCs may perform this gatekeeper function at other mucosal surfaces. Here we review observations of how GCs contribute to immunity at mucosal surfaces through barrier maintenance, the delivery of luminal substances to APCs, interactions with APCs, and secretion of factors modulating immune responses.
Collapse
Affiliation(s)
- Kathryn A. Knoop
- Department of Internal Medicine, Washington University School of Medicine, St. Louis MO 63123,Send correspondence to: , 314-362-2670, Fax 314-362-2609, Correspondence and requests for materials should be addressed to KAK
| | - Rodney D. Newberry
- Department of Internal Medicine, Washington University School of Medicine, St. Louis MO 63123
| |
Collapse
|
48
|
Haase B, Johnson TS, Wagner CL. Facilitating Colostrum Collection by Hospitalized Women in the Early Postpartum Period for Infant Trophic Feeding and Oral Immune Therapy. J Obstet Gynecol Neonatal Nurs 2018; 47:654-660. [PMID: 30196807 DOI: 10.1016/j.jogn.2018.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2018] [Indexed: 11/15/2022] Open
Abstract
Administration of colostrum for early trophic feedings and colostrum oral immune therapy for neonates in the NICU is essential to enhance gut maturation and lower risk of infections. However, it is often difficult for women to collect early colostrum because of its thick viscosity and low volume. Women may be unable to sit upright during pumping sessions because of postsurgical pain, acute or chronic illness, or birth complications and may need assistance. In this article, we describe specific techniques that providers can use to help women to collect colostrum when they are unable to accomplish collection on their own. Helping women collect and administer colostrum to their neonates in the NICU may engage and motivate them to continue to pump and provide breast milk for their hospitalized neonates.
Collapse
|
49
|
Kahn S, Liao Y, Du X, Xu W, Li J, Lönnerdal B. Exosomal MicroRNAs in Milk from Mothers Delivering Preterm Infants Survive in Vitro Digestion and Are Taken Up by Human Intestinal Cells. Mol Nutr Food Res 2018; 62:e1701050. [PMID: 29644801 DOI: 10.1002/mnfr.201701050] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 03/08/2018] [Indexed: 01/19/2023]
Abstract
SCOPE This study investigates the ability of preterm milk exosomes to survive gastric/pancreatic digestion, internalization by intestinal epithelia, and the microRNAs (miRNAs) contents. METHODS AND RESULTS At average infant age 1 week and 6 days, milk is collected from mothers who delivered preterm and term infants (n = 10). Milk is exposed to conditions simulating infant gut digestion. Exosomes are isolated and lysed, and the exposed miRNAs are sequenced. Preterm milk exosomes survive in vitro digestion, and can be taken up by intestinal epithelia. Three hundred and thirty miRNAs are identified as preterm milk exosome miRNAs, and in vitro digestion does not have a pronounced effect on their expression. The abundant miRNAs in preterm milk exosomes are similar to those from term milk. Twenty-one low abundance miRNAs are specifically expressed in preterm milk exosomes compared to early term milk in the current study and what previously is found in mature term milk. CONCLUSION These results for the first time reveal the survivability of preterm milk exosomes following simulated gastric/pancreatic digestion. The authors demonstrate the richness of the miRNAs content in these exosomes. The results improve the knowledge of preterm milk biology and the molecular basis by which exosome miRNAs may uniquely affect preterm infants during early development.
Collapse
Affiliation(s)
- Sarah Kahn
- Department of Nutrition, University of California, Davis, CA, 95616, USA
| | - Yalin Liao
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA, 6150, Australia
| | - Xiaogu Du
- Department of Nutrition, University of California, Davis, CA, 95616, USA
| | - Wei Xu
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA, 6150, Australia
| | - Jie Li
- Genome Centre, University of California, Davis, CA, 95616, USA
| | - Bo Lönnerdal
- Department of Nutrition, University of California, Davis, CA, 95616, USA
| |
Collapse
|
50
|
Sun X, Fu X, Du M, Zhu MJ. Ex vivo gut culture for studying differentiation and migration of small intestinal epithelial cells. Open Biol 2018; 8:170256. [PMID: 29643147 PMCID: PMC5936714 DOI: 10.1098/rsob.170256] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 03/09/2018] [Indexed: 12/16/2022] Open
Abstract
Epithelial cultures are commonly used for studying gut health. However, due to the absence of mesenchymal cells and gut structure, epithelial culture systems including recently developed three-dimensional organoid culture cannot accurately represent in vivo gut development, which requires intense cross-regulation of the epithelial layer with the underlying mesenchymal tissue. In addition, organoid culture is costly. To overcome this, a new culture system was developed using mouse embryonic small intestine. Cultured intestine showed spontaneous peristalsis, indicating the maintenance of the normal gut physiological structure. During 10 days of ex vivo culture, epithelial cells moved along the gut surface and differentiated into different epithelial cell types, including enterocytes, Paneth cells, goblet cells and enteroendocrine cells. We further used the established ex vivo system to examine the role of AMP-activated protein kinase (AMPK) on gut epithelial health. Tamoxifen-induced AMPKα1 knockout vastly impaired epithelial migration and differentiation of the developing ex vivo gut, showing the crucial regulatory function of AMPK α1 in intestinal health.
Collapse
Affiliation(s)
- Xiaofei Sun
- School of Food Science, Washington State University, Pullman, WA 99164, USA
- School of Food Science, University of Idaho, Moscow, ID 83844, USA
| | - Xing Fu
- Department of Animal Science, Washington State University, Pullman, WA 99164, USA
| | - Min Du
- Department of Animal Science, Washington State University, Pullman, WA 99164, USA
| | - Mei-Jun Zhu
- School of Food Science, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|