1
|
Llontop N, Mancilla C, Ojeda-Provoste P, Torres AK, Godoy A, Tapia-Rojas C, Kerr B. The methyl-CpG-binding protein 2 (Mecp2) regulates the hypothalamic mitochondrial function and white adipose tissue lipid metabolism. Life Sci 2025; 366-367:123478. [PMID: 39983816 DOI: 10.1016/j.lfs.2025.123478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 02/03/2025] [Accepted: 02/16/2025] [Indexed: 02/23/2025]
Abstract
OBJECTIVE The neuroepigenetic factor Mecp2 regulates gene expression and is thought to play a crucial role in energy homeostasis. Body weight is regulated at the hypothalamic level, where mitochondrial energy metabolism is necessary for its proper functioning, allowing the hypothalamus to respond to peripheral signals to maintain energy balance and modulate energy expenditure through the sympathetic nervous system. Since the mechanism by which genetic and environmental factors contribute to regulating energy balance is unclear, this study aims to understand the contribution of gene-environment interaction to maintaining energy balance and how its disruption alters hypothalamic cellular energy production, impacting the control of systemic metabolism. METHODS We used a mouse model of epigenetic disruption (Mecp2-null) to evaluate the impact of Mecp2 deletion on systemic and hypothalamic metabolism using physiological and cellular approaches. RESULTS Our study shows that the previously reported body weight gain in mice lacking the expression of Mecp2 is preceded by a hypothalamic mitochondrial dysfunction that disrupts hypothalamic function, leading to a dysfunctional communication between the hypothalamus and adipose tissue, thus impairing lipid metabolism. Our study has revealed three crucial aspects of the contribution of this critical epigenetic factor pivotal for a proper gene-environment interaction: i) Mecp2 drives a molecular mechanism to maintain cellular energy homeostasis, which is necessary for the proper functioning of the hypothalamus. ii) Mecp2 is necessary to maintain lipid metabolism in adipose tissue. iii) Mecp2 is a molecular bridge linking hypothalamic cellular energy metabolism and adipose tissue lipid metabolism. CONCLUSIONS Our results show that Mecp2 regulates the hypothalamic mitochondrial function and white adipose tissue lipid metabolism and probably alters the communication between these two tissues, which is critical for corporal energy homeostasis maintenance.
Collapse
Affiliation(s)
- Nuria Llontop
- Laboratory of Neuroendocrinology and Metabolism, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Providencia, Santiago 7510157, Chile; Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Providencia, Santiago 7510157, Chile
| | | | | | - Angie K Torres
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Providencia, Santiago 7510157, Chile; Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Huechuraba, 8580702 Santiago, Chile
| | - Alejandro Godoy
- Laboratory of Endocrinology and Tumor Metabolism, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Providencia, Santiago 7510157, Chile; Department of Urology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Cheril Tapia-Rojas
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Providencia, Santiago 7510157, Chile; Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Huechuraba, 8580702 Santiago, Chile.
| | - Bredford Kerr
- Laboratory of Neuroendocrinology and Metabolism, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Providencia, Santiago 7510157, Chile.
| |
Collapse
|
2
|
Frasca A, Miramondi F, Butti E, Indrigo M, Balbontin Arenas M, Postogna FM, Piffer A, Bedogni F, Pizzamiglio L, Cambria C, Borello U, Antonucci F, Martino G, Landsberger N. Neural precursor cells rescue symptoms of Rett syndrome by activation of the Interferon γ pathway. EMBO Mol Med 2024; 16:3218-3246. [PMID: 39304759 PMCID: PMC11628625 DOI: 10.1038/s44321-024-00144-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 08/29/2024] [Accepted: 09/04/2024] [Indexed: 09/22/2024] Open
Abstract
The beneficial effects of Neural Precursor Cell (NPC) transplantation in several neurological disorders are well established and they are generally mediated by the secretion of immunomodulatory and neurotrophic molecules. We therefore investigated whether Rett syndrome (RTT), that represents the first cause of severe intellectual disability in girls, might benefit from NPC-based therapy. Using in vitro co-cultures, we demonstrate that, by sensing the pathological context, NPC-secreted factors induce the recovery of morphological and synaptic defects typical of Mecp2 deficient neurons. In vivo, we prove that intracerebral transplantation of NPCs in RTT mice significantly ameliorates neurological functions. To uncover the molecular mechanisms underpinning the mediated benefic effects, we analyzed the transcriptional profile of the cerebellum of transplanted animals, disclosing the possible involvement of the Interferon γ (IFNγ) pathway. Accordingly, we report the capacity of IFNγ to rescue synaptic defects, as well as motor and cognitive alterations in Mecp2 deficient models, thereby suggesting this molecular pathway as a potential therapeutic target for RTT.
Collapse
Affiliation(s)
- Angelisa Frasca
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Segrate, Milan, I-20054, Italy
| | - Federica Miramondi
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Segrate, Milan, I-20054, Italy
| | - Erica Butti
- Neuroimmunology Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, I-20132, Italy
| | - Marzia Indrigo
- San Raffaele Rett Research Unit, Neuroscience Division, IRCCS San Raffaele Scientific Institute, Milan, I-20132, Italy
| | - Maria Balbontin Arenas
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Segrate, Milan, I-20054, Italy
| | - Francesca M Postogna
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Segrate, Milan, I-20054, Italy
| | - Arianna Piffer
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Segrate, Milan, I-20054, Italy
- Department of Oncology and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Francesco Bedogni
- San Raffaele Rett Research Unit, Neuroscience Division, IRCCS San Raffaele Scientific Institute, Milan, I-20132, Italy
- Neuroscience and Mental Health Innovation Institute (NMHII), Cardiff University School of Medicine, Cardiff, CF24 4HQ, UK
| | - Lara Pizzamiglio
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Segrate, Milan, I-20054, Italy
- Institut de Biologie de l'École Normale Supérieure (IBENS), Ecole Normale Supérieure, Université PSL, CNRS, INSERM, F-75005, Paris, France
| | - Clara Cambria
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Segrate, Milan, I-20054, Italy
| | - Ugo Borello
- Cellular and Developmental Biology Unit, Department of Biology, University of Pisa, I-56127, Pisa, Italy
| | - Flavia Antonucci
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Segrate, Milan, I-20054, Italy
| | - Gianvito Martino
- Neuroimmunology Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, I-20132, Italy
| | - Nicoletta Landsberger
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Segrate, Milan, I-20054, Italy.
- San Raffaele Rett Research Unit, Neuroscience Division, IRCCS San Raffaele Scientific Institute, Milan, I-20132, Italy.
| |
Collapse
|
3
|
Shinohara H, Meguro-Horike M, Inoue T, Shimazu M, Hattori M, Hibino H, Fukasawa K, Sasaki E, Horike SI. Early parental deprivation during primate infancy has a lifelong impact on gene expression in the male marmoset brain. Sci Rep 2024; 14:330. [PMID: 38172165 PMCID: PMC10764730 DOI: 10.1038/s41598-023-51025-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 12/29/2023] [Indexed: 01/05/2024] Open
Abstract
Adverse early life experiences are well-established risk factors for neurological disorders later in life. However, the molecular mechanisms underlying the impact of adverse experiences on neurophysiological systems throughout life remain incompletely understood. Previous studies suggest that social attachment to parents in early development are indispensable for infants to grow into healthy adults. In situations where multiple offspring are born in a single birth in common marmosets, human hand-rearing is employed to ensure the survival of the offspring in captivity. However, hand-reared marmosets often exhibit behavioral abnormalities, including abnormal vocalizations, excessive attachment to the caretaker, and aggressive behavior. In this study, comprehensive transcriptome analyses were conducted on hippocampus tissues, a neuroanatomical region sensitive to social attachment, obtained from human hand-reared (N = 6) and parent-reared male marmosets (N = 5) at distinct developmental stages. Our analyses revealed consistent alterations in a subset of genes, including those related to neurodevelopmental diseases, across different developmental stages, indicating their continuous susceptibility to the effects of early parental deprivation. These findings highlight the dynamic nature of gene expression in response to early life experiences and suggest that the impact of early parental deprivation on gene expression may vary across different stages of development.
Collapse
Affiliation(s)
- Haruka Shinohara
- Department of Marmoset Biology and Medicine, Central Institute for Experimental Animals, Kawasaki, 210-0821, Japan
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Kanazawa, 920-8640, Japan
| | - Makiko Meguro-Horike
- Division of Integrated Omics Research, Research Center for Experimental Modeling of Human Disease, Kanazawa University, Kanazawa, 920-0934, Japan
| | - Takashi Inoue
- Department of Marmoset Biology and Medicine, Central Institute for Experimental Animals, Kawasaki, 210-0821, Japan
| | - Miyuki Shimazu
- Division of Integrated Omics Research, Research Center for Experimental Modeling of Human Disease, Kanazawa University, Kanazawa, 920-0934, Japan
| | - Machiko Hattori
- Yaotsu Breeding Center, CLEA Japan, Inc, Yaotsu-cho, Kamo-gun, Gifu, 505-0307, Japan
| | - Hitoshi Hibino
- Yaotsu Breeding Center, CLEA Japan, Inc, Yaotsu-cho, Kamo-gun, Gifu, 505-0307, Japan
| | - Kazumasa Fukasawa
- Yaotsu Breeding Center, CLEA Japan, Inc, Yaotsu-cho, Kamo-gun, Gifu, 505-0307, Japan
| | - Erika Sasaki
- Department of Marmoset Biology and Medicine, Central Institute for Experimental Animals, Kawasaki, 210-0821, Japan
| | - Shin-Ichi Horike
- Division of Integrated Omics Research, Research Center for Experimental Modeling of Human Disease, Kanazawa University, Kanazawa, 920-0934, Japan.
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Kanazawa, 920-8640, Japan.
| |
Collapse
|
4
|
Palmieri M, Pozzer D, Landsberger N. Advanced genetic therapies for the treatment of Rett syndrome: state of the art and future perspectives. Front Neurosci 2023; 17:1172805. [PMID: 37304036 PMCID: PMC10248472 DOI: 10.3389/fnins.2023.1172805] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/02/2023] [Indexed: 06/13/2023] Open
Abstract
Loss and gain of functions mutations in the X-linked MECP2 (methyl-CpG-binding protein 2) gene are responsible for a set of generally severe neurological disorders that can affect both genders. In particular, Mecp2 deficiency is mainly associated with Rett syndrome (RTT) in girls, while duplication of the MECP2 gene leads, mainly in boys, to the MECP2 duplication syndrome (MDS). No cure is currently available for MECP2 related disorders. However, several studies have reported that by re-expressing the wild-type gene is possible to restore defective phenotypes of Mecp2 null animals. This proof of principle endorsed many laboratories to search for novel therapeutic strategies to cure RTT. Besides pharmacological approaches aimed at modulating MeCP2-downstream pathways, genetic targeting of MECP2 or its transcript have been largely proposed. Remarkably, two studies focused on augmentative gene therapy were recently approved for clinical trials. Both use molecular strategies to well-control gene dosage. Notably, the recent development of genome editing technologies has opened an alternative way to specifically target MECP2 without altering its physiological levels. Other attractive approaches exclusively applicable for nonsense mutations are the translational read-through (TR) and t-RNA suppressor therapy. Reactivation of the MECP2 locus on the silent X chromosome represents another valid choice for the disease. In this article, we intend to review the most recent genetic interventions for the treatment of RTT, describing the current state of the art, and the related advantages and concerns. We will also discuss the possible application of other advanced therapies, based on molecular delivery through nanoparticles, already proposed for other neurological disorders but still not tested in RTT.
Collapse
Affiliation(s)
- Michela Palmieri
- Rett Research Unit, Division of Neuroscience, San Raffaele Hospital (IRCCS), Milan, Italy
| | - Diego Pozzer
- Rett Research Unit, Division of Neuroscience, San Raffaele Hospital (IRCCS), Milan, Italy
| | - Nicoletta Landsberger
- Rett Research Unit, Division of Neuroscience, San Raffaele Hospital (IRCCS), Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, Faculty of Medicine and Surgery, University of Milan, Milan, Italy
| |
Collapse
|
5
|
Unno K, Furushima D, Tanaka Y, Tominaga T, Nakamura H, Yamada H, Taguchi K, Goda T, Nakamura Y. Improvement of Depressed Mood with Green Tea Intake. Nutrients 2022; 14:nu14142949. [PMID: 35889906 PMCID: PMC9319139 DOI: 10.3390/nu14142949] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/18/2022] [Accepted: 07/18/2022] [Indexed: 02/04/2023] Open
Abstract
Being in a prolonged depressed state increases the risk of developing depression. To investigate whether green tea intake is effective in improving depression-like moods, we used an experimental animal model of depression with lipopolysaccharide (LPS) and clarified the effects of green tea on the biological stress response and inflammation in the brain. Regarding the stress reduction effect of green tea, we found that the sum of caffeine (C) and epigallocatechin gallate (E) relative to the sum of theanine (T) and arginine (A), the major components of green tea, or the CE/TA ratio, is important. The results showed that depression-like behavior, adrenal hypertrophy as a typical stress response, and brain inflammation were suppressed in mice fed green tea components with CE/TA ratios of 2 to 8. In addition, the expression of Npas4, which is reduced in anxiety and depression, was maintained at the same level as controls in mice that consumed green tea with a CE/TA ratio of 4. In clinical human trials, the consumption of green tea with CE/TA ratios of 3.9 and 4.7 reduced susceptibility to subjective depression. These results suggest that the daily consumption of green tea with a CE/TA ratio of 4–5 is beneficial to improving depressed mood.
Collapse
Affiliation(s)
- Keiko Unno
- Tea Science Center, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan; (K.T.); (Y.N.)
- Correspondence: ; Tel.: +81-54-264-5822
| | - Daisuke Furushima
- Department of Drug Evaluation & Informatics Graduate School of Pharmaceutical Science, University of Shizuoka, Shizuoka 422-8526, Japan; (D.F.); (Y.T.); (T.T.); (H.N.); (H.Y.)
- Faculty of Medicine School of Health Science, Kagoshima University, Kagoshima 890-8544, Japan
| | - Yuya Tanaka
- Department of Drug Evaluation & Informatics Graduate School of Pharmaceutical Science, University of Shizuoka, Shizuoka 422-8526, Japan; (D.F.); (Y.T.); (T.T.); (H.N.); (H.Y.)
| | - Takeichiro Tominaga
- Department of Drug Evaluation & Informatics Graduate School of Pharmaceutical Science, University of Shizuoka, Shizuoka 422-8526, Japan; (D.F.); (Y.T.); (T.T.); (H.N.); (H.Y.)
| | - Hirotomo Nakamura
- Department of Drug Evaluation & Informatics Graduate School of Pharmaceutical Science, University of Shizuoka, Shizuoka 422-8526, Japan; (D.F.); (Y.T.); (T.T.); (H.N.); (H.Y.)
| | - Hiroshi Yamada
- Department of Drug Evaluation & Informatics Graduate School of Pharmaceutical Science, University of Shizuoka, Shizuoka 422-8526, Japan; (D.F.); (Y.T.); (T.T.); (H.N.); (H.Y.)
| | - Kyoko Taguchi
- Tea Science Center, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan; (K.T.); (Y.N.)
| | - Toshinao Goda
- Faculty of Food and Nutritional Sciences, University of Shizuoka, Shizuoka 422-8526, Japan;
| | - Yoriyuki Nakamura
- Tea Science Center, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan; (K.T.); (Y.N.)
| |
Collapse
|
6
|
Coffee Polyphenol, Chlorogenic Acid, Suppresses Brain Aging and Its Effects Are Enhanced by Milk Fat Globule Membrane Components. Int J Mol Sci 2022; 23:ijms23105832. [PMID: 35628642 PMCID: PMC9145055 DOI: 10.3390/ijms23105832] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 02/04/2023] Open
Abstract
Mice feed with coffee polyphenols (CPP, chlorogenic acid) and milk fat globule membrane (MFGM) has increased survival rates and helps retain long-term memory. In the cerebral cortex of aged mice, CPP intake decreased the expression of the proinflammatory cytokine TNF-α, and lysosomal enzyme cathepsin B. The suppression of inflammation in the brain during aging was thought to result in the suppression of the repressor element 1-silencing transcription factor (REST) and prevention of brain aging. In contrast, CPP increased the expression of REST, cAMP-responsive element binding (CREB) and transforming growth factor β1 (TGF-β1) in the young hippocampus. The increased expression of these factors may contribute to the induction of neuronal differentiation and the suppression of memory decline with aging. Taken together, these results suggest that CPP increases CREB in the young hippocampus and suppresses inflammation in the old brain, resulting in a preventive effect on brain aging. The endotoxin levels were not elevated in the serum of aged mice. Although the mechanism of action of MFGM has not yet been elucidated, the increase in survival rate with both CPP and MFGM intake suggests that adding milk to coffee may improve not only the taste, but also the function.
Collapse
|
7
|
Albizzati E, Florio E, Miramondi F, Sormonta I, Landsberger N, Frasca A. Identification of Region-Specific Cytoskeletal and Molecular Alterations in Astrocytes of Mecp2 Deficient Animals. Front Neurosci 2022; 16:823060. [PMID: 35242007 PMCID: PMC8886113 DOI: 10.3389/fnins.2022.823060] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
Rett syndrome (RTT) is a neurodevelopmental disorder that represents the most common genetic cause of severe intellectual disability in females. Most patients carry mutations in the X-linked MECP2 gene, coding for the methyl-CpG-binding protein 2 (MeCP2), originally isolated as an epigenetic transcriptional factor able to bind methylated DNA and repress transcription. Recent data implicated a role for glia in RTT, showing that astrocytes express Mecp2 and that its deficiency affects their ability to support neuronal maturation by non-cell autonomous mechanisms. To date, some molecular, structural and functional alterations have been attributed to Mecp2 null astrocytes, but how they evolve over time and whether they follow a spatial heterogeneity are two aspects which deserve further investigations. In this study, we assessed cytoskeletal features of astrocytes in Mecp2 deficient brains by analyzing their arbor complexity and processes in reconstructed GFAP+ cells at different ages, corresponding to peculiar stages of the disorder, and in different cerebral regions (motor and somatosensory cortices and CA1 layer of hippocampus). Our findings demonstrate the presence of defects in Mecp2 null astrocytes that worsen along disease progression and strictly depend on the brain area, highlighting motor and somatosensory cortices as the most affected regions. Of relevance, astrocyte cytoskeleton is impaired also in the somatosensory cortex of symptomatic heterozygous animals, with Mecp2 + astrocytes showing slightly more pronounced defects with respect to the Mecp2 null cells, emphasizing the importance of non-cell autonomous effects. We reported a temporal correlation between the progressive thinning of layer I and the atrophy of astrocytes, suggesting that their cytoskeletal dysfunctions might contribute to cortical defects. Considering the reciprocal link between morphology and function in astrocytes, we analyzed the effect of Mecp2 deficiency on the expression of selected astrocyte-enriched genes, which describe typical astrocytic features. qRT-PCR data corroborated our results, reporting an overall decrement of gene expression, which is area and age-dependent. In conclusion, our data show that Mecp2 deficiency causes structural and molecular alterations in astrocytes, which progress along with the severity of symptoms and diversely occur in the different cerebral regions, highlighting the importance of considering heterogeneity when studying astrocytes in RTT.
Collapse
Affiliation(s)
- Elena Albizzati
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Elena Florio
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Federica Miramondi
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Irene Sormonta
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Nicoletta Landsberger
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy.,Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Angelisa Frasca
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| |
Collapse
|
8
|
Potential of Multiscale Astrocyte Imaging for Revealing Mechanisms Underlying Neurodevelopmental Disorders. Int J Mol Sci 2021; 22:ijms221910312. [PMID: 34638653 PMCID: PMC8508625 DOI: 10.3390/ijms221910312] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 01/18/2023] Open
Abstract
Astrocytes provide trophic and metabolic support to neurons and modulate circuit formation during development. In addition, astrocytes help maintain neuronal homeostasis through neurovascular coupling, blood-brain barrier maintenance, clearance of metabolites and nonfunctional proteins via the glymphatic system, extracellular potassium buffering, and regulation of synaptic activity. Thus, astrocyte dysfunction may contribute to a myriad of neurological disorders. Indeed, astrocyte dysfunction during development has been implicated in Rett disease, Alexander's disease, epilepsy, and autism, among other disorders. Numerous disease model mice have been established to investigate these diseases, but important preclinical findings on etiology and pathophysiology have not translated into clinical interventions. A multidisciplinary approach is required to elucidate the mechanism of these diseases because astrocyte dysfunction can result in altered neuronal connectivity, morphology, and activity. Recent progress in neuroimaging techniques has enabled noninvasive investigations of brain structure and function at multiple spatiotemporal scales, and these technologies are expected to facilitate the translation of preclinical findings to clinical studies and ultimately to clinical trials. Here, we review recent progress on astrocyte contributions to neurodevelopmental and neuropsychiatric disorders revealed using novel imaging techniques, from microscopy scale to mesoscopic scale.
Collapse
|
9
|
Marballi K, MacDonald JL. Proteomic and transcriptional changes associated with MeCP2 dysfunction reveal nodes for therapeutic intervention in Rett syndrome. Neurochem Int 2021; 148:105076. [PMID: 34048843 PMCID: PMC8286335 DOI: 10.1016/j.neuint.2021.105076] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 04/13/2021] [Accepted: 05/17/2021] [Indexed: 12/28/2022]
Abstract
Mutations in the methyl-CpG binding protein 2 (MECP2) gene cause Rett syndrome (RTT), an X-linked neurodevelopmental disorder predominantly impacting females. MECP2 is an epigenetic transcriptional regulator acting mainly to repress gene expression, though it plays multiple gene regulatory roles and has distinct molecular targets across different cell types and specific developmental stages. In this review, we summarize MECP2 loss-of-function associated transcriptome and proteome disruptions, delving deeper into the latter which have been comparatively severely understudied. These disruptions converge on multiple biochemical and cellular pathways, including those involved in synaptic function and neurodevelopment, NF-κB signaling and inflammation, and the vitamin D pathway. RTT is a complex neurological disorder characterized by myriad physiological disruptions, in both the central nervous system and peripheral systems. Thus, treating RTT will likely require a combinatorial approach, targeting multiple nodes within the interactomes of these cellular pathways. To this end, we discuss the use of dietary supplements and factors, namely, vitamin D and polyunsaturated fatty acids (PUFAs), as possible partial therapeutic agents given their demonstrated benefit in RTT and their ability to restore homeostasis to multiple disrupted cellular pathways simultaneously. Further unravelling the complex molecular alterations induced by MECP2 loss-of-function, and contextualizing them at the level of proteome homeostasis, will identify new therapeutic avenues for this complex disorder.
Collapse
Affiliation(s)
- Ketan Marballi
- Department of Biology, Program in Neuroscience, Syracuse University, Syracuse, NY, USA
| | - Jessica L MacDonald
- Department of Biology, Program in Neuroscience, Syracuse University, Syracuse, NY, USA.
| |
Collapse
|
10
|
Santos-Terra J, Deckmann I, Fontes-Dutra M, Schwingel GB, Bambini-Junior V, Gottfried C. Transcription factors in neurodevelopmental and associated psychiatric disorders: A potential convergence for genetic and environmental risk factors. Int J Dev Neurosci 2021; 81:545-578. [PMID: 34240460 DOI: 10.1002/jdn.10141] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/23/2021] [Accepted: 07/02/2021] [Indexed: 12/16/2022] Open
Abstract
Neurodevelopmental disorders (NDDs) are a heterogeneous and highly prevalent group of psychiatric conditions marked by impairments in the nervous system. Their onset occurs during gestation, and the alterations are observed throughout the postnatal life. Although many genetic and environmental risk factors have been described in this context, the interactions between them challenge the understanding of the pathways associated with NDDs. Transcription factors (TFs)-a group of over 1,600 proteins that can interact with DNA, regulating gene expression through modulation of RNA synthesis-represent a point of convergence for different risk factors. In addition, TFs organize critical processes like angiogenesis, blood-brain barrier formation, myelination, neuronal migration, immune activation, and many others in a time and location-dependent way. In this review, we summarize important TF alterations in NDD and associated disorders, along with specific impairments observed in animal models, and, finally, establish hypotheses to explain how these proteins may be critical mediators in the context of genome-environment interactions.
Collapse
Affiliation(s)
- Júlio Santos-Terra
- Translational Research Group in Autism Spectrum Disorders (GETTEA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.,School of Pharmacology and Biomedical Sciences, University of Central Lancashire, Autism Wellbeing And Research Development (AWARD) Institute, BR-UK-CA, Preston, UK
| | - Iohanna Deckmann
- Translational Research Group in Autism Spectrum Disorders (GETTEA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.,School of Pharmacology and Biomedical Sciences, University of Central Lancashire, Autism Wellbeing And Research Development (AWARD) Institute, BR-UK-CA, Preston, UK
| | - Mellanie Fontes-Dutra
- Translational Research Group in Autism Spectrum Disorders (GETTEA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.,School of Pharmacology and Biomedical Sciences, University of Central Lancashire, Autism Wellbeing And Research Development (AWARD) Institute, BR-UK-CA, Preston, UK
| | - Gustavo Brum Schwingel
- Translational Research Group in Autism Spectrum Disorders (GETTEA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.,School of Pharmacology and Biomedical Sciences, University of Central Lancashire, Autism Wellbeing And Research Development (AWARD) Institute, BR-UK-CA, Preston, UK
| | - Victorio Bambini-Junior
- Translational Research Group in Autism Spectrum Disorders (GETTEA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.,School of Pharmacology and Biomedical Sciences, University of Central Lancashire, Autism Wellbeing And Research Development (AWARD) Institute, BR-UK-CA, Preston, UK.,School of Pharmacology and Biomedical Sciences, University of Central Lancashire, Preston, UK
| | - Carmem Gottfried
- Translational Research Group in Autism Spectrum Disorders (GETTEA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.,School of Pharmacology and Biomedical Sciences, University of Central Lancashire, Autism Wellbeing And Research Development (AWARD) Institute, BR-UK-CA, Preston, UK
| |
Collapse
|
11
|
Transcriptomic and Epigenomic Landscape in Rett Syndrome. Biomolecules 2021; 11:biom11070967. [PMID: 34209228 PMCID: PMC8301932 DOI: 10.3390/biom11070967] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 06/26/2021] [Accepted: 06/28/2021] [Indexed: 12/13/2022] Open
Abstract
Rett syndrome (RTT) is an extremely invalidating, cureless, developmental disorder, and it is considered one of the leading causes of intellectual disability in female individuals. The vast majority of RTT cases are caused by de novo mutations in the X-linked Methyl-CpG binding protein 2 (MECP2) gene, which encodes a multifunctional reader of methylated DNA. MeCP2 is a master epigenetic modulator of gene expression, with a role in the organization of global chromatin architecture. Based on its interaction with multiple molecular partners and the diverse epigenetic scenario, MeCP2 triggers several downstream mechanisms, also influencing the epigenetic context, and thus leading to transcriptional activation or repression. In this frame, it is conceivable that defects in such a multifaceted factor as MeCP2 lead to large-scale alterations of the epigenome, ranging from an unbalanced deposition of epigenetic modifications to a transcriptional alteration of both protein-coding and non-coding genes, with critical consequences on multiple downstream biological processes. In this review, we provide an overview of the current knowledge concerning the transcriptomic and epigenomic alterations found in RTT patients and animal models.
Collapse
|
12
|
Analysis of Astroglial Secretomic Profile in the Mecp2-Deficient Male Mouse Model of Rett Syndrome. Int J Mol Sci 2021; 22:ijms22094316. [PMID: 33919253 PMCID: PMC8122273 DOI: 10.3390/ijms22094316] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/09/2021] [Accepted: 04/16/2021] [Indexed: 02/08/2023] Open
Abstract
Mutations in the X-linked MECP2 gene are responsible for Rett syndrome (RTT), a severe neurological disorder. MECP2 is a transcriptional modulator that finely regulates the expression of many genes, specifically in the central nervous system. Several studies have functionally linked the loss of MECP2 in astrocytes to the appearance and progression of the RTT phenotype in a non-cell autonomous manner and mechanisms are still unknown. Here, we used primary astroglial cells from Mecp2-deficient (KO) pups to identify deregulated secreted proteins. Using a differential quantitative proteomic analysis, twenty-nine proteins have been identified and four were confirmed by Western blotting with new samples as significantly deregulated. To further verify the functional relevance of these proteins in RTT, we tested their effects on the dendritic morphology of primary cortical neurons from Mecp2 KO mice that are known to display shorter dendritic processes. Using Sholl analysis, we found that incubation with Lcn2 or Lgals3 for 48 h was able to significantly increase the dendritic arborization of Mecp2 KO neurons. To our knowledge, this study, through secretomic analysis, is the first to identify astroglial secreted proteins involved in the neuronal RTT phenotype in vitro, which could open new therapeutic avenues for the treatment of Rett syndrome.
Collapse
|
13
|
D'Mello SR. MECP2 and the Biology of MECP2 Duplication Syndrome. J Neurochem 2021; 159:29-60. [PMID: 33638179 DOI: 10.1111/jnc.15331] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/21/2021] [Accepted: 02/18/2021] [Indexed: 11/27/2022]
Abstract
MECP2 duplication syndrome (MDS), a rare X-linked genomic disorder affecting predominantly males, is caused by duplication of the chromosomal region containing the methyl CpG binding protein-2 (MECP2) gene, which encodes methyl-CpG-binding protein 2 (MECP2), a multi-functional protein required for proper brain development and maintenance of brain function during adulthood. Disease symptoms include severe motor and cognitive impairment, delayed or absent speech development, autistic features, seizures, ataxia, recurrent respiratory infections and shortened lifespan. The cellular and molecular mechanisms by which a relatively modest increase in MECP2 protein causes such severe disease symptoms are poorly understood and consequently there are no treatments available for this fatal disorder. This review summarizes what is known to date about the structure and complex regulation of MECP2 and its many functions in the developing and adult brain. Additionally, recent experimental findings on the cellular and molecular underpinnings of MDS based on cell culture and mouse models of the disorder are reviewed. The emerging picture from these studies is that MDS is a neurodegenerative disorder in which neurons die in specific parts of the central nervous system, including the cortex, hippocampus, cerebellum and spinal cord. Neuronal death likely results from astrocytic dysfunction, including a breakdown of glutamate homeostatic mechanisms. The role of elevations in the expression of glial acidic fibrillary protein (GFAP) in astrocytes and the microtubule-associated protein, Tau, in neurons to the pathogenesis of MDS is discussed. Lastly, potential therapeutic strategies to potentially treat MDS are discussed.
Collapse
|
14
|
Ren B, Dunaevsky A. Modeling Neurodevelopmental and Neuropsychiatric Diseases with Astrocytes Derived from Human-Induced Pluripotent Stem Cells. Int J Mol Sci 2021; 22:1692. [PMID: 33567562 PMCID: PMC7915337 DOI: 10.3390/ijms22041692] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 02/07/2023] Open
Abstract
Accumulating studies demonstrate the morphological and functional diversity of astrocytes, a subtype of glial cells in the central nervous system. Animal models are instrumental in advancing our understanding of the role of astrocytes in brain development and their contribution to neurological disease; however, substantial interspecies differences exist between rodent and human astrocytes, underscoring the importance of studying human astrocytes. Human pluripotent stem cell differentiation approaches allow the study of patient-specific astrocytes in the etiology of neurological disorders. In this review, we summarize the structural and functional properties of astrocytes, including the unique features of human astrocytes; demonstrate the necessity of the stem cell platform; and discuss how this platform has been applied to the research of neurodevelopmental and neuropsychiatric diseases.
Collapse
Affiliation(s)
- Baiyan Ren
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA;
- Department of Neurological Science, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Anna Dunaevsky
- Department of Neurological Science, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
15
|
Chen D, Liu J, Wu Z, Li SH. Role of miR-132/methyl-CpG-binding protein 2 in the regulation of neural stem cell differentiation. Neural Regen Res 2021; 16:345-349. [PMID: 32859795 PMCID: PMC7896221 DOI: 10.4103/1673-5374.290908] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Methyl-CpG-binding protein 2 (MeCP2) is a well-known transcription repressor, and mutations in MECP2 cause serious neurological disorders. Many studies have suggested that MeCP2 is involved in neural maturation only, and have not reported its role in neural stem cell differentiation. In the present study, we investigated this possible role of MeCP2 in neural stem cells. We used two different differentiation methods to explore how MeCP2 influences neural stem cell differentiation. When we transfected MeCP2-overexpressing lentivirus into neural stem cells, astrocytic differentiation was impaired. This impaired astrocytic differentiation occurred even in conditions of 20% fetal bovine serum, which favored astrocytic differentiation. In addition, miR-132 had the largest expression change after differentiation among several central nervous system related miRNAs. A luciferase assay confirmed that miR-132 directly targeted MeCP2, and that miR-132 was able to reduce MeCP2 expression at both the RNA and protein levels. The upregulation of miR-132 by miRNA mimics promoted astrocytic differentiation, which was fully recovered by MeCP2 overexpression. These results indicate that miR-132 regulates cell lineage differentiation by reducing MeCP2. The study was approved by the Ethics Committee of Shanghai Tenth People's Hospital of TongJi University, China (approval No. SHDSYY-2018-4748) on March 10, 2018.
Collapse
Affiliation(s)
- Dong Chen
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Jie Liu
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Zhong Wu
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Shao-Hua Li
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| |
Collapse
|
16
|
Unno K, Takagi Y, Konishi T, Suzuki M, Miyake A, Kurotaki T, Hase T, Meguro S, Shimada A, Hasegawa-Ishii S, Pervin M, Taguchi K, Nakamura Y. Mutation in Sodium-Glucose Cotransporter 2 Results in Down-Regulation of Amyloid Beta (A4) Precursor-Like Protein 1 in Young Age, Which May Lead to Poor Memory Retention in Old Age. Int J Mol Sci 2020; 21:ijms21155579. [PMID: 32759773 PMCID: PMC7432872 DOI: 10.3390/ijms21155579] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/28/2020] [Accepted: 08/01/2020] [Indexed: 02/06/2023] Open
Abstract
Senescence-accelerated mouse prone 10 (SAMP10) exhibits cerebral atrophy and depression-like behavior. A line of SAMP10 with spontaneous mutation in the Slc5a2 gene encoding the sodium-glucose cotransporter (SGLT) 2 was named SAMP10/TaSlc-Slc5a2slc (SAMP10-ΔSglt2) and was identified as a renal diabetes model. In contrast, a line of SAMP10 with no mutation in SGLT2 (SAMP10/TaIdrSlc, SAMP10(+)) was recently established under a specific pathogen-free condition. Here, we examined the mutation effect in SGLT2 on brain function and longevity. No differences were found in the survival curve, depression-like behavior, and age-related brain atrophy between SAMP10-ΔSglt2 and SAMP10(+). However, memory retention was lower in SAMP10-ΔSglt2 mice than SAMP10(+). Amyloid beta (A4) precursor-like protein 1 (Aplp1) expression was significantly lower in the hippocampus of SAMP10-ΔSGLT2 than in SAMP10(+) at 2 months of age, but was similar at 12 months of age. CaM kinase-like vesicle association (Camkv) expression was remarkably lower in SAMP10(+). These genes have been reported to be involved in dendrite function. Amyloid precursor proteins have been reported to involve in maintaining homeostasis of glucose and insulin. These results suggest that mutation in SGLT2 results in down-regulation of Aplp1 in young age, which can lead to poor memory retention in old age.
Collapse
Affiliation(s)
- Keiko Unno
- Tea Science Center, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Yoshiichi Takagi
- Production Center for Experimental Animals, Japan SLC Incorporated, 85 Ohara, Kita-ku, Hamamatsu, Shizuoka 433-8102, Japan
| | - Tomokazu Konishi
- Faculty of Bioresource Sciences, Akita Prefectural University, Shimoshinjo Nakano, Akita 010-0195, Japan
| | - Mitsuhiro Suzuki
- Haruno Branch for Experimental Animals, Japan SLC incorporated, 1478 Haruno-cho Ryoke, Tenryu-ku, Hamamatsu, Shizuoka 437-0626, Japan
| | - Akiyuki Miyake
- Haruno Branch for Experimental Animals, Japan SLC incorporated, 1478 Haruno-cho Ryoke, Tenryu-ku, Hamamatsu, Shizuoka 437-0626, Japan
| | - Takumi Kurotaki
- Haruno Branch for Experimental Animals, Japan SLC incorporated, 1478 Haruno-cho Ryoke, Tenryu-ku, Hamamatsu, Shizuoka 437-0626, Japan
| | - Tadashi Hase
- Research and Development, Kao Corporation, 2-1-3 Bunka, Sumida-ku, Tokyo 131-8501, Japan
| | - Shinichi Meguro
- Biological Science Research, Kao Corporation, Akabane, Ichikai-machi, Haga-gun, Tochigi 321-3497, Japan
| | - Atsuyoshi Shimada
- Faculty of Health Sciences, Kyorin University, 5-4-1 Shimorenjaku, Mitaka, Tokyo 181-8612, Japan
| | - Sanae Hasegawa-Ishii
- Faculty of Health Sciences, Kyorin University, 5-4-1 Shimorenjaku, Mitaka, Tokyo 181-8612, Japan
| | - Monira Pervin
- Tea Science Center, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Kyoko Taguchi
- Tea Science Center, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Yoriyuki Nakamura
- Tea Science Center, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| |
Collapse
|
17
|
Pecorelli A, Cervellati C, Cordone V, Hayek J, Valacchi G. Compromised immune/inflammatory responses in Rett syndrome. Free Radic Biol Med 2020; 152:100-106. [PMID: 32119978 DOI: 10.1016/j.freeradbiomed.2020.02.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 12/20/2022]
Abstract
Mutations in X-linked gene methyl-CpG-binding protein 2 (MECP2), a key transcriptional regulator, account for most cases of Rett syndrome (RTT), a devastating neurodevelopmental disorder with no known cure. Despite extensive research to elucidate MeCP2 functions, the mechanisms underlying RTT pathophysiology are still unclear. In addition to a variety of neurological symptoms, RTT also includes a plethora of additional phenotypical features including altered lipid metabolism, redox imbalance, immune dysfunction and mitochondrial abnormalities that explain its multisystemic nature. Here, we provide an overview of the current knowledge on the potential role of dysregulated inflammatory and immune responses in RTT. The findings show that abnormalities of humoral and cell-mediated immunity together with chronic low-grade inflammation in multiple organs represent not only clinical manifestations of RTT but rather can contribute to its development and deteriorating course. A future research challenge could be to target therapeutically immune dysfunction as a novel means for RTT management.
Collapse
Affiliation(s)
- Alessandra Pecorelli
- Plants for Human Health Institute, Dept. of Animal Science, NC Research Campus, NC State University, Kannapolis, 28081, NC, USA
| | - Carlo Cervellati
- Dept. of Biomedical and Specialist Surgical Sciences, University of Ferrara, 44121, Ferrara, Italy
| | - Valeria Cordone
- Dept. of Biomedical and Specialist Surgical Sciences, University of Ferrara, 44121, Ferrara, Italy
| | - Joussef Hayek
- Child Neuropsychiatry Unit, University General Hospital, Azienda Ospedaliera Universitaria Senese, 53100, Siena, Italy
| | - Giuseppe Valacchi
- Plants for Human Health Institute, Dept. of Animal Science, NC Research Campus, NC State University, Kannapolis, 28081, NC, USA; Dept. of Biomedical and Specialist Surgical Sciences, University of Ferrara, 44121, Ferrara, Italy; Dept. of Food and Nutrition, Kyung Hee University, 02447, Seoul, South Korea.
| |
Collapse
|
18
|
Unno K, Pervin M, Taguchi K, Konishi T, Nakamura Y. Green Tea Catechins Trigger Immediate-Early Genes in the Hippocampus and Prevent Cognitive Decline and Lifespan Shortening. Molecules 2020; 25:molecules25071484. [PMID: 32218277 PMCID: PMC7181211 DOI: 10.3390/molecules25071484] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/21/2020] [Accepted: 03/23/2020] [Indexed: 12/14/2022] Open
Abstract
Senescence-accelerated mouse prone 10 (SAMP10) mice, after ingesting green tea catechins (GT-catechin, 60 mg/kg), were found to have suppressed aging-related decline in brain function. The dose dependence of brain function on GT-catechin indicated that intake of 1 mg/kg or more suppressed cognitive decline and a shortened lifespan. Mice that ingested 1 mg/kg GT-catechin had the longest median survival, but the dose was less effective at suppressing cognitive decline. The optimal dose for improving memory acquisition was 60 mg/kg, and memory retention was higher in mice that ingested 30 mg/kg or more. To elucidate the mechanism by which cognitive decline is suppressed by GT-catechin, changes in gene expression in the hippocampus of SAMP10 mice one month after ingesting GT-catechin were analyzed. The results show that the expression of immediate-early genes such as nuclear receptor subfamily 4 (Nr4a), FBJ osteosarcoma oncogene (Fos), early growth response 1 (Egr1), neuronal PAS domain protein 4 (Npas4), and cysteine-rich protein 61 (Cyr61) was significantly increased. These results suggest that GT-catechin suppresses age-related cognitive decline via increased expression of immediate-early genes that are involved in long-term changes in plasticity of synapses and neuronal circuits.
Collapse
Affiliation(s)
- Keiko Unno
- Tea Science Center, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan; (M.P.); (K.T.); (Y.N.)
- Correspondence: ; Tel.: +81-54-264-5822
| | - Monira Pervin
- Tea Science Center, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan; (M.P.); (K.T.); (Y.N.)
| | - Kyoko Taguchi
- Tea Science Center, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan; (M.P.); (K.T.); (Y.N.)
| | - Tomokazu Konishi
- Faculty of Bioresources Sciences, Akita Prefectural University, Shimoshinjo Nakano, Akita 010-0195, Japan;
| | - Yoriyuki Nakamura
- Tea Science Center, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan; (M.P.); (K.T.); (Y.N.)
| |
Collapse
|
19
|
Unno K, Sumiyoshi A, Konishi T, Hayashi M, Taguchi K, Muguruma Y, Inoue K, Iguchi K, Nonaka H, Kawashima R, Hasegawa-Ishii S, Shimada A, Nakamura Y. Theanine, the Main Amino Acid in Tea, Prevents Stress-Induced Brain Atrophy by Modifying Early Stress Responses. Nutrients 2020; 12:nu12010174. [PMID: 31936294 PMCID: PMC7019546 DOI: 10.3390/nu12010174] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/30/2019] [Accepted: 01/04/2020] [Indexed: 11/16/2022] Open
Abstract
Chronic stress can impair the health of human brains. An important strategy that may prevent the accumulation of stress may be the consumption of functional foods. When senescence-accelerated mice prone 10 (SAMP10), a stress-sensitive strain, were loaded with stress using imposed male mouse territoriality, brain volume decreased. However, in mice that ingested theanine (6 mg/kg), the main amino acid in tea leaves, brain atrophy was suppressed, even under stress. On the other hand, brain atrophy was not clearly observed in a mouse strain that aged normally (Slc:ddY). The expression level of the transcription factor Npas4 (neuronal PAS domain protein 4), which regulates the formation and maintenance of inhibitory synapses in response to excitatory synaptic activity, decreased in the hippocampus and prefrontal cortex of stressed SAMP10 mice, but increased in mice that ingested theanine. Lipocalin 2 (Lcn2), the expression of which increased in response to stress, was significantly high in the hippocampus and prefrontal cortex of stressed SAMP10 mice, but not in mice that ingested theanine. These data suggest that Npas4 and Lcn2 are involved in the brain atrophy and stress vulnerability of SAMP10 mice, which are prevented by the consumption of theanine, causing changes in the expression of these genes.
Collapse
Affiliation(s)
- Keiko Unno
- Tea Science Center, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan; (M.H.); (K.T.); (Y.N.)
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan;
- Correspondence: ; Tel.: +81-54-264-5822
| | - Akira Sumiyoshi
- Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; (A.S.); (H.N.); (R.K.)
- National Institutes for Quantum and Radiological Science and Technology, 4-9-1, Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Tomokazu Konishi
- Faculty of Bioresource Sciences, Akita Prefectural University, Shimoshinjo Nakano, Akita 010-0195, Japan;
| | - Michiko Hayashi
- Tea Science Center, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan; (M.H.); (K.T.); (Y.N.)
| | - Kyoko Taguchi
- Tea Science Center, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan; (M.H.); (K.T.); (Y.N.)
| | - Yoshio Muguruma
- College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan; (Y.M.); (K.I.)
| | - Koichi Inoue
- College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan; (Y.M.); (K.I.)
| | - Kazuaki Iguchi
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan;
| | - Hiroi Nonaka
- Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; (A.S.); (H.N.); (R.K.)
| | - Ryuta Kawashima
- Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; (A.S.); (H.N.); (R.K.)
| | - Sanae Hasegawa-Ishii
- Faculty of Health Sciences, Kyorin University, 5-4-1 Shimorenjaku, Mitaka, Tokyo 181-8612, Japan; (S.H.-I.); (A.S.)
| | - Atsuyoshi Shimada
- Faculty of Health Sciences, Kyorin University, 5-4-1 Shimorenjaku, Mitaka, Tokyo 181-8612, Japan; (S.H.-I.); (A.S.)
| | - Yoriyuki Nakamura
- Tea Science Center, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan; (M.H.); (K.T.); (Y.N.)
| |
Collapse
|
20
|
Krishnaraj R, Haase F, Coorey B, Luca EJ, Wong I, Boyling A, Ellaway C, Christodoulou J, Gold WA. Genome-wide transcriptomic and proteomic studies of Rett syndrome mouse models identify common signaling pathways and cellular functions as potential therapeutic targets. Hum Mutat 2019; 40:2184-2196. [PMID: 31379106 DOI: 10.1002/humu.23887] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 07/27/2019] [Accepted: 07/31/2019] [Indexed: 12/13/2022]
Abstract
The discovery that Rett syndrome is caused by mutations in the MECP2 gene has provided a major breakthrough in our understanding of the disorder. However, despite this, there is still limited understanding of the underlying pathophysiology of the disorder hampering the development of curative treatments. Over the years, a number of animal models have been developed contributing to our knowledge of the role of MECP2 in development and improving our understanding of how subtle expression levels affect brain morphology and function. Transcriptomic and proteomic studies of animal models are useful in identifying perturbations in functional pathways and providing avenues for novel areas of research into disease. This review focuses on published transcriptomic and proteomic studies of mouse models of Rett syndrome with the aim of providing a summary of all the studies, the reported dysregulated genes and functional pathways that are found to be perturbed. The 36 articles identified highlighted a number of dysfunctional pathways as well as perturbed biological networks and cellular functions including synaptic dysfunction and neuronal transmission, inflammation, and mitochondrial dysfunction. These data reveal biological insights that contribute to the disease process which may be targeted to investigate curative treatments.
Collapse
Affiliation(s)
- Rahul Krishnaraj
- Genetic Metabolic Disorders Research Unit, Western Sydney Genetics Program, The Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | - Florencia Haase
- Molecular Neurobiology Research Group, Kids Research, Sydney Children's Hospitals Network, Westmead, Australia
| | - Bronte Coorey
- Molecular Neurobiology Research Group, Kids Research, Sydney Children's Hospitals Network, Westmead, Australia
| | - Edward J Luca
- University Library, The University of Sydney, Sydney, New South Wales, Australia
| | - Ingar Wong
- Molecular Neurobiology Research Group, Kids Research, Sydney Children's Hospitals Network, Westmead, Australia
| | - Alexandra Boyling
- Molecular Neurobiology Research Group, Kids Research, Sydney Children's Hospitals Network, Westmead, Australia
| | - Carolyn Ellaway
- Genetic Metabolic Disorders Research Unit, Western Sydney Genetics Program, The Children's Hospital at Westmead, Sydney, New South Wales, Australia.,Discipline of Child and Adolescent Health, The University of Sydney, Sydney, New South Wales, Australia.,Genetic Medicine, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - John Christodoulou
- Genetic Metabolic Disorders Research Unit, Western Sydney Genetics Program, The Children's Hospital at Westmead, Sydney, New South Wales, Australia.,Discipline of Child and Adolescent Health, The University of Sydney, Sydney, New South Wales, Australia.,Genetic Medicine, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia.,Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, and Department of Paediatrics, Melbourne Medical School, University of Melbourne, Melbourne, Victoria, Australia
| | - Wendy A Gold
- Genetic Metabolic Disorders Research Unit, Western Sydney Genetics Program, The Children's Hospital at Westmead, Sydney, New South Wales, Australia.,Molecular Neurobiology Research Group, Kids Research, Sydney Children's Hospitals Network, Westmead, Australia.,Discipline of Child and Adolescent Health, The University of Sydney, Sydney, New South Wales, Australia.,Kids Neuroscience Centre, The Children's Hospital at Westmead, Kids Research, Westmead, NSW, Australia
| |
Collapse
|
21
|
Kahanovitch U, Patterson KC, Hernandez R, Olsen ML. Glial Dysfunction in MeCP2 Deficiency Models: Implications for Rett Syndrome. Int J Mol Sci 2019; 20:ijms20153813. [PMID: 31387202 PMCID: PMC6696322 DOI: 10.3390/ijms20153813] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/01/2019] [Accepted: 08/02/2019] [Indexed: 02/07/2023] Open
Abstract
Rett syndrome (RTT) is a rare, X-linked neurodevelopmental disorder typically affecting females, resulting in a range of symptoms including autistic features, intellectual impairment, motor deterioration, and autonomic abnormalities. RTT is primarily caused by the genetic mutation of the Mecp2 gene. Initially considered a neuronal disease, recent research shows that glial dysfunction contributes to the RTT disease phenotype. In the following manuscript, we review the evidence regarding glial dysfunction and its effects on disease etiology.
Collapse
Affiliation(s)
- Uri Kahanovitch
- School of Neuroscience, Virginia Polytechnic and State University, Life Sciences I Building Room 212, 970 Washington St. SW, Blacksburg, VA 24061, USA
| | - Kelsey C Patterson
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, 1918 University Blvd., Birmingham, AL 35294, USA
| | - Raymundo Hernandez
- School of Neuroscience, Virginia Polytechnic and State University, Life Sciences I Building Room 212, 970 Washington St. SW, Blacksburg, VA 24061, USA
- Graduate Program in Translational Biology Medicine and Health, Virginia Tech, Roanoke, VL 24014, USA
| | - Michelle L Olsen
- School of Neuroscience, Virginia Polytechnic and State University, Life Sciences I Building Room 212, 970 Washington St. SW, Blacksburg, VA 24061, USA.
| |
Collapse
|
22
|
Cresto N, Pillet LE, Billuart P, Rouach N. Do Astrocytes Play a Role in Intellectual Disabilities? Trends Neurosci 2019; 42:518-527. [PMID: 31300246 DOI: 10.1016/j.tins.2019.05.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/06/2019] [Accepted: 05/31/2019] [Indexed: 11/29/2022]
Abstract
Neurodevelopmental disorders, including those involving intellectual disability, are characterized by abnormalities in formation and functions of synaptic circuits. Traditionally, research on synaptogenesis and synaptic transmission in health and disease focused on neurons, however, a growing number of studies have highlighted the role of astrocytes in this context. Tight structural and functional interactions of astrocytes and synapses indeed play important roles in brain functions, and the repertoire of astroglial regulations of synaptic circuits is large and complex. Recently, genetic studies of intellectual disabilities have underscored potential contributions of astrocytes in the pathophysiology of these disorders. Here we review how alterations of astrocyte functions in disease may interfere with neuronal excitability and the balance of excitatory and inhibitory transmission during development, and contribute to intellectual disabilities.
Collapse
Affiliation(s)
- Noémie Cresto
- Neuroglial Interactions in Cerebral Physiopathology, Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U1050, 75005 Paris, France; Université de Paris, Institut de Psychiatrie et de Neuroscience de Paris, INSERM U1266, Paris, France
| | - Laure-Elise Pillet
- Neuroglial Interactions in Cerebral Physiopathology, Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U1050, 75005 Paris, France; Université de Paris, Institut de Psychiatrie et de Neuroscience de Paris, INSERM U1266, Paris, France; Doctoral School N°562, Paris Descartes University, Paris 75006, France
| | - Pierre Billuart
- Université de Paris, Institut de Psychiatrie et de Neuroscience de Paris, INSERM U1266, Paris, France.
| | - Nathalie Rouach
- Neuroglial Interactions in Cerebral Physiopathology, Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U1050, 75005 Paris, France.
| |
Collapse
|
23
|
Sanfeliu A, Kaufmann WE, Gill M, Guasoni P, Tropea D. Transcriptomic Studies in Mouse Models of Rett Syndrome: A Review. Neuroscience 2019; 413:183-205. [PMID: 31229631 DOI: 10.1016/j.neuroscience.2019.06.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 05/10/2019] [Accepted: 06/10/2019] [Indexed: 12/17/2022]
Abstract
Rett Syndrome (RTT) is a neurological disorder mainly associated with mutations in the X-linked gene coding for the methyl-CpG binding protein 2 (MECP2). To assist in studying MECP2's function, researchers have generated Mecp2 mouse mutants showing that MECP2's product (MeCP2) mostly functions as a transcriptional regulator. During the last two decades, these models have been used to determine the genes that are regulated by MeCP2, slowly dissecting the etiological mechanisms underlying RTT. In the present review, we describe the findings of these transcriptomic studies, and highlight differences between them, and discuss how studies on these genetic models can sharpen our understanding of the human disorder. We conclude that - while there's large variability regarding the number of differentially expressed genes identified - there are overlapping features that inform on the biology of RTT.
Collapse
Affiliation(s)
- Albert Sanfeliu
- Neuropsychiatric Genetics, School of Medicine, Trinity Center for Health Sciences, St James Hospital D8, Dublin, Ireland
| | - Walter E Kaufmann
- Department of Human Genetics, Emory University School of Medicine and Department of Neurology, University of California Davis School of Medicine, Atlanta, GA 30322, USA
| | - Michael Gill
- Neuropsychiatric Genetics, School of Medicine, Trinity Center for Health Sciences, St James Hospital D8, Dublin, Ireland
| | - Paolo Guasoni
- Department of Mathematical Sciences, Dublin City University, Glasnevin, D9, Dublin, Ireland
| | - Daniela Tropea
- Neuropsychiatric Genetics, School of Medicine, Trinity Center for Health Sciences, St James Hospital D8, Dublin, Ireland; Trinity College Institute of Neuroscience, Lloyd Building, D2, Dublin, Ireland.
| |
Collapse
|
24
|
Kielbinski M, Setkowicz Z, Gzielo K, Janeczko K. Profiles of gene expression in the hippocampal formation of rats with experimentally-induced brain dysplasia. Dev Neurobiol 2018; 78:718-735. [DOI: 10.1002/dneu.22595] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 03/28/2018] [Accepted: 04/06/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Michal Kielbinski
- Department of Neuroanatomy; Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9; Krakow 30-387 Poland
| | - Zuzanna Setkowicz
- Department of Neuroanatomy; Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9; Krakow 30-387 Poland
| | - Kinga Gzielo
- Department of Neuroanatomy; Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9; Krakow 30-387 Poland
| | - Krzysztof Janeczko
- Department of Neuroanatomy; Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9; Krakow 30-387 Poland
| |
Collapse
|
25
|
Vogelgesang S, Niebert M, Bischoff AM, Hülsmann S, Manzke T. Persistent Expression of Serotonin Receptor 5b Alters Breathing Behavior in Male MeCP2 Knockout Mice. Front Mol Neurosci 2018. [PMID: 29515365 PMCID: PMC5826236 DOI: 10.3389/fnmol.2018.00028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Mutations in the transcription factor methyl-CpG-binding protein 2 (MeCP2) cause the neurodevelopmental disorder Rett syndrome (RTT). Besides many other neurological problems, RTT patients show irregular breathing with recurrent apneas or breath-holdings. MeCP2-deficient mice, which recapitulate this breathing phenotype, show a dysregulated, persistent expression of G-protein-coupled serotonin receptor 5-ht5b (Htr5b) in the brainstem. To investigate whether the persistence of 5-ht5b expression is contributing to the respiratory phenotype, we crossbred MeCP2-deficient mice with 5-ht5b-deficient mice to generate double knockout mice (Mecp2−/y;Htr5b−/−). To compare respiration between wild type (WT), Mecp2−/y and Mecp2−/y;Htr5b−/− mice, we used unrestrained whole-body plethysmography. While the breathing of MeCP2-deficient male mice (Mecp2−/y) at postnatal day 40 is characterized by a slow breathing rate and the occurrence of prolonged respiratory pauses, we found that in MeCP2-deficient mice, which also lacked the 5-ht5b receptor, the breathing rate and the number of pauses were indistinguishable from WT mice. To test for a potential mechanism, we also analyzed if the known coupling of 5-ht5b receptors to Gi proteins is altering second messenger signaling. Tissue cAMP levels in the medulla of Mecp2−/y mice were decreased as compared to WT mice. In contrast, cAMP levels in Mecp2−/y;Htr5b−/− mice were indistinguishable from WT mice. Taken together, our data points towards a role of 5-ht5b receptors within the complex breathing phenotype of MeCP2-deficient mice.
Collapse
Affiliation(s)
- Steffen Vogelgesang
- DFG-Research Center Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), University of Göttingen, Göttingen, Germany.,Institute of Neuro- and Sensory Physiology, University of Göttingen, Göttingen, Germany
| | - Marcus Niebert
- DFG-Research Center Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), University of Göttingen, Göttingen, Germany.,Institute of Neuro- and Sensory Physiology, University of Göttingen, Göttingen, Germany
| | - Anne M Bischoff
- DFG-Research Center Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), University of Göttingen, Göttingen, Germany.,Clinic for Anesthesiology, University Medical Göttingen, Göttingen, Germany
| | - Swen Hülsmann
- DFG-Research Center Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), University of Göttingen, Göttingen, Germany.,Clinic for Anesthesiology, University Medical Göttingen, Göttingen, Germany
| | - Till Manzke
- DFG-Research Center Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), University of Göttingen, Göttingen, Germany.,Institute of Neuro- and Sensory Physiology, University of Göttingen, Göttingen, Germany
| |
Collapse
|
26
|
Sharma K, Singh J, Frost EE, Pillai PP. MeCP2 in central nervous system glial cells: current updates. Acta Neurobiol Exp (Wars) 2018. [DOI: 10.21307/ane-2018-007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
27
|
Pacheco NL, Heaven MR, Holt LM, Crossman DK, Boggio KJ, Shaffer SA, Flint DL, Olsen ML. RNA sequencing and proteomics approaches reveal novel deficits in the cortex of Mecp2-deficient mice, a model for Rett syndrome. Mol Autism 2017; 8:56. [PMID: 29090078 PMCID: PMC5655833 DOI: 10.1186/s13229-017-0174-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 10/02/2017] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Rett syndrome (RTT) is an X-linked neurodevelopmental disorder caused by mutations in the transcriptional regulator MeCP2. Much of our understanding of MeCP2 function is derived from transcriptomic studies with the general assumption that alterations in the transcriptome correlate with proteomic changes. Advances in mass spectrometry-based proteomics have facilitated recent interest in the examination of global protein expression to better understand the biology between transcriptional and translational regulation. METHODS We therefore performed the first comprehensive transcriptome-proteome comparison in a RTT mouse model to elucidate RTT pathophysiology, identify potential therapeutic targets, and further our understanding of MeCP2 function. The whole cortex of wild-type and symptomatic RTT male littermates (n = 4 per genotype) were analyzed using RNA-sequencing and data-independent acquisition liquid chromatography tandem mass spectrometry. Ingenuity® Pathway Analysis was used to identify significantly affected pathways in the transcriptomic and proteomic data sets. RESULTS Our results indicate these two "omics" data sets supplement one another. In addition to confirming previous works regarding mRNA expression in Mecp2-deficient animals, the current study identified hundreds of novel protein targets. Several selected protein targets were validated by Western blot analysis. These data indicate RNA metabolism, proteostasis, monoamine metabolism, and cholesterol synthesis are disrupted in the RTT proteome. Hits common to both data sets indicate disrupted cellular metabolism, calcium signaling, protein stability, DNA binding, and cytoskeletal cell structure. Finally, in addition to confirming disrupted pathways and identifying novel hits in neuronal structure and synaptic transmission, our data indicate aberrant myelination, inflammation, and vascular disruption. Intriguingly, there is no evidence of reactive gliosis, but instead, gene, protein, and pathway analysis suggest astrocytic maturation and morphological deficits. CONCLUSIONS This comparative omics analysis supports previous works indicating widespread CNS dysfunction and may serve as a valuable resource for those interested in cellular dysfunction in RTT.
Collapse
Affiliation(s)
- Natasha L. Pacheco
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, 1918 University Blvd, Birmingham, AL 35294 USA
| | - Michael R. Heaven
- Vulcan Analytical, LLC, 1500 1st Ave. North, Birmingham, AL 35203 USA
| | - Leanne M. Holt
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, 1918 University Blvd, Birmingham, AL 35294 USA
- School of Neuroscience, Virginia Polytechnic and State University, Life Sciences Building Room 213, 970 Washington St. SW, Blacksburg, VA 24061 USA
| | - David K. Crossman
- UAB Heflin Center for Genomic Science, Department of Genetics, University of Alabama at Birmingham, Kaul 424A, 1720 2nd Ave. South, Birmingham, AL 35294 USA
| | - Kristin J. Boggio
- Proteomics and Mass Spectrometry Facility, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 222 Maple Ave., Fuller Building, Shrewsbury, MA 01545 USA
| | - Scott A. Shaffer
- Proteomics and Mass Spectrometry Facility, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 222 Maple Ave., Fuller Building, Shrewsbury, MA 01545 USA
| | - Daniel L. Flint
- Luxumbra Strategic Research, LLC, 1331 South Eads St, Arlington, VA 22202 USA
| | - Michelle L. Olsen
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, 1918 University Blvd, Birmingham, AL 35294 USA
- School of Neuroscience, Virginia Polytechnic and State University, Life Sciences Building Room 213, 970 Washington St. SW, Blacksburg, VA 24061 USA
| |
Collapse
|
28
|
Jin XR, Chen XS, Xiao L. MeCP2 Deficiency in Neuroglia: New Progress in the Pathogenesis of Rett Syndrome. Front Mol Neurosci 2017; 10:316. [PMID: 29046627 PMCID: PMC5632713 DOI: 10.3389/fnmol.2017.00316] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 09/19/2017] [Indexed: 01/24/2023] Open
Abstract
Rett syndrome (RTT) is an X-linked neurodevelopmental disease predominantly caused by mutations of the methyl-CpG-binding protein 2 (MeCP2) gene. Generally, RTT has been attributed to neuron-centric dysfunction. However, increasing evidence has shown that glial abnormalities are also involved in the pathogenesis of RTT. Mice that are MeCP2-null specifically in glial cells showed similar behavioral and/or neuronal abnormalities as those found in MeCP2-null mice, a mouse model of RTT. MeCP2 deficiency in astrocytes impacts the expression of glial intermediate filament proteins such as fibrillary acidic protein (GFAP) and S100 and induces neuron toxicity by disturbing glutamate metabolism or enhancing microtubule instability. MeCP2 deficiency in oligodendrocytes (OLs) results in down-regulation of myelin gene expression and impacts myelination. While MeCP2-deficient microglia cells fail in response to environmental stimuli, release excessive glutamate, and aggravate impairment of the neuronal circuit. In this review, we mainly focus on the progress in determining the role of MeCP2 in glial cells involved in RTT, which may provide further insight into a therapeutic intervention for RTT.
Collapse
Affiliation(s)
- Xu-Rui Jin
- Department of Histology and Embryology, Faculty of Basic Medicine, Collaborative Program for Brain Research, Third Military Medical University, Chongqing, China.,The Cadet Brigade of Clinic Medicine, Third Military Medical University, Chongqing, China
| | - Xing-Shu Chen
- Department of Histology and Embryology, Faculty of Basic Medicine, Collaborative Program for Brain Research, Third Military Medical University, Chongqing, China
| | - Lan Xiao
- Department of Histology and Embryology, Faculty of Basic Medicine, Collaborative Program for Brain Research, Third Military Medical University, Chongqing, China
| |
Collapse
|
29
|
Niebert S, van Belle GJ, Vogelgesang S, Manzke T, Niebert M. The Serotonin Receptor Subtype 5b Specifically Interacts with Serotonin Receptor Subtype 1A. Front Mol Neurosci 2017; 10:299. [PMID: 28983239 PMCID: PMC5613149 DOI: 10.3389/fnmol.2017.00299] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 09/06/2017] [Indexed: 11/13/2022] Open
Abstract
Previously, we described the dysregulation of serotonin (5-HT) receptor subtype 5b (5-ht5b) in a mouse model of Rett syndrome (RTT). 5-ht5b has not been extensively studied, so we set out to characterize it in more detail. Unlike common cell surface receptors, 5-ht5b displays no membrane expression, while receptor clusters are located in endosomes. This unusual subcellular localization is at least in part controlled by glycosylation of the N-terminus, with 5-ht5b possessing fewer glycosylation sites than related receptors. We analyzed whether the localization to endosomes has any functional relevance and found that 5-ht5b receptors can specifically interact with 5-HT1A receptors and retain them in endosomal compartments. This interaction reduces 5-HT1A surface expression and is mediated by interactions between the fourth and fifth trans-membrane domain (TMD). This possibly represents a mechanism by which 5-ht5b receptors regulate the activity of other 5-HT receptor.
Collapse
Affiliation(s)
- Sabine Niebert
- Department of Maxillofacial Surgery, University Medical CenterGöttingen, Germany
| | - Gijsbert J van Belle
- Institute of Cardiovascular Physiology, University Medical CenterGöttingen, Germany
| | - Steffen Vogelgesang
- Institute of Neuro- and Sensory Physiology, University Medical CenterGöttingen, Germany.,Center Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), University Medical CenterGöttingen, Germany
| | - Till Manzke
- Institute of Neuro- and Sensory Physiology, University Medical CenterGöttingen, Germany.,Center Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), University Medical CenterGöttingen, Germany
| | - Marcus Niebert
- Institute of Neuro- and Sensory Physiology, University Medical CenterGöttingen, Germany.,Center Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), University Medical CenterGöttingen, Germany
| |
Collapse
|