1
|
Palazzo E, Marabese I, Ricciardi F, Guida F, Luongo L, Maione S. The influence of glutamate receptors on insulin release and diabetic neuropathy. Pharmacol Ther 2024; 263:108724. [PMID: 39299577 DOI: 10.1016/j.pharmthera.2024.108724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 09/09/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Diabetes causes macrovascular and microvascular complications such as peripheral neuropathy. Glutamate regulates insulin secretion in pancreatic β-cells, and its increased activity in the central nervous system is associated with peripheral neuropathy in animal models of diabetes. One strategy to modulate glutamatergic activity consists in the pharmacological manipulation of metabotropic glutamate receptors (mGluRs), which, compared to the ionotropic receptors, allow for a fine-tuning of neurotransmission that is compatible with therapeutic interventions. mGluRs are a family of eight G-protein coupled receptors classified into three groups (I-III) based on sequence homology, transduction mechanisms, and pharmacology. Activation of group II and III or inhibition of group I represents a strategy to counteract the glutamatergic hyperactivity associated with diabetic neuropathy. In this review article, we will discuss the role of glutamate receptors in the release of insulin and the development/treatment of diabetic neuropathy, with particular emphasis on their manipulation to prevent the glutamatergic hyperactivity associated with diabetic neuropathy.
Collapse
Affiliation(s)
- Enza Palazzo
- Department of Experimental Medicine, Pharmacology Division, University of Campania "L. Vanvitelli", via Costantinopoli 16, 80138 Naples, Italy.
| | - Ida Marabese
- Department of Experimental Medicine, Pharmacology Division, University of Campania "L. Vanvitelli", via Costantinopoli 16, 80138 Naples, Italy
| | - Federica Ricciardi
- Department of Experimental Medicine, Pharmacology Division, University of Campania "L. Vanvitelli", via Costantinopoli 16, 80138 Naples, Italy
| | - Francesca Guida
- Department of Experimental Medicine, Pharmacology Division, University of Campania "L. Vanvitelli", via Costantinopoli 16, 80138 Naples, Italy
| | - Livio Luongo
- Department of Experimental Medicine, Pharmacology Division, University of Campania "L. Vanvitelli", via Costantinopoli 16, 80138 Naples, Italy
| | - Sabatino Maione
- Department of Experimental Medicine, Pharmacology Division, University of Campania "L. Vanvitelli", via Costantinopoli 16, 80138 Naples, Italy
| |
Collapse
|
2
|
Peng X, Ren H, Yang L, Tong S, Zhou R, Long H, Wu Y, Wang L, Wu Y, Zhang Y, Shen J, Zhang J, Qiu G, Wang J, Han C, Zhang Y, Zhou M, Zhao Y, Xu T, Tang C, Chen Z, Liu H, Chen L. Readily releasable β cells with tight Ca 2+-exocytosis coupling dictate biphasic glucose-stimulated insulin secretion. Nat Metab 2024; 6:238-253. [PMID: 38278946 DOI: 10.1038/s42255-023-00962-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 12/05/2023] [Indexed: 01/28/2024]
Abstract
Biphasic glucose-stimulated insulin secretion (GSIS) is essential for blood glucose regulation, but a mechanistic model incorporating the recently identified islet β cell heterogeneity remains elusive. Here, we show that insulin secretion is spatially and dynamically heterogeneous across the islet. Using a zinc-based fluorophore with spinning-disc confocal microscopy, we reveal that approximately 40% of islet cells, which we call readily releasable β cells (RRβs), are responsible for 80% of insulin exocytosis events. Although glucose up to 18.2 mM fully mobilized RRβs to release insulin synchronously (first phase), even higher glucose concentrations enhanced the sustained secretion from these cells (second phase). Release-incompetent β cells show similarities to RRβs in glucose-evoked Ca2+ transients but exhibit Ca2+-exocytosis coupling deficiency. A decreased number of RRβs and their altered secretory ability are associated with impaired GSIS progression in ob/ob mice. Our data reveal functional heterogeneity at the level of exocytosis among β cells and identify RRβs as a subpopulation of β cells that make a disproportionally large contribution to biphasic GSIS from mouse islets.
Collapse
Affiliation(s)
- Xiaohong Peng
- New Cornerstone Science Laboratory, National Biomedical Imaging Center, State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, School of Future Technology, Center for Life Sciences, Peking University, Beijing, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Bioland Laboratory, Guangzhou, China
| | - Huixia Ren
- New Cornerstone Science Laboratory, National Biomedical Imaging Center, State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, School of Future Technology, Center for Life Sciences, Peking University, Beijing, China
- Center for Quantitative Biology and Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Lu Yang
- New Cornerstone Science Laboratory, National Biomedical Imaging Center, State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, School of Future Technology, Center for Life Sciences, Peking University, Beijing, China
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Shiyan Tong
- New Cornerstone Science Laboratory, National Biomedical Imaging Center, State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, School of Future Technology, Center for Life Sciences, Peking University, Beijing, China
- School of Life Sciences, Peking University, Beijing, China
| | - Renjie Zhou
- New Cornerstone Science Laboratory, National Biomedical Imaging Center, State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, School of Future Technology, Center for Life Sciences, Peking University, Beijing, China
| | - Haochen Long
- School of Software and Microelectronics, Peking University, Beijing, China
| | - Yunxiang Wu
- New Cornerstone Science Laboratory, National Biomedical Imaging Center, State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, School of Future Technology, Center for Life Sciences, Peking University, Beijing, China
| | - Lifen Wang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yi Wu
- New Cornerstone Science Laboratory, National Biomedical Imaging Center, State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, School of Future Technology, Center for Life Sciences, Peking University, Beijing, China
| | - Yongdeng Zhang
- School of Life Sciences, Westlake University, Hangzhou, China
| | - Jiayu Shen
- New Cornerstone Science Laboratory, National Biomedical Imaging Center, State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, School of Future Technology, Center for Life Sciences, Peking University, Beijing, China
| | - Junwei Zhang
- New Cornerstone Science Laboratory, National Biomedical Imaging Center, State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, School of Future Technology, Center for Life Sciences, Peking University, Beijing, China
| | - Guohua Qiu
- New Cornerstone Science Laboratory, National Biomedical Imaging Center, State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, School of Future Technology, Center for Life Sciences, Peking University, Beijing, China
| | - Jianyong Wang
- New Cornerstone Science Laboratory, National Biomedical Imaging Center, State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, School of Future Technology, Center for Life Sciences, Peking University, Beijing, China
| | - Chengsheng Han
- New Cornerstone Science Laboratory, National Biomedical Imaging Center, State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, School of Future Technology, Center for Life Sciences, Peking University, Beijing, China
| | - Yulin Zhang
- New Cornerstone Science Laboratory, National Biomedical Imaging Center, State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, School of Future Technology, Center for Life Sciences, Peking University, Beijing, China
| | - Mengxuan Zhou
- New Cornerstone Science Laboratory, National Biomedical Imaging Center, State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, School of Future Technology, Center for Life Sciences, Peking University, Beijing, China
| | - Yiwen Zhao
- New Cornerstone Science Laboratory, National Biomedical Imaging Center, State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, School of Future Technology, Center for Life Sciences, Peking University, Beijing, China
| | - Tao Xu
- Guangzhou National Laboratory, Guangzhou, China
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, China
| | - Chao Tang
- Center for Quantitative Biology and Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Zhixing Chen
- National Biomedical Imaging Center, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, School of Future Technology, Center for Life Sciences, Peking University, Beijing, China
| | - Huisheng Liu
- Bioland Laboratory, Guangzhou, China.
- Guangzhou National Laboratory, Guangzhou, China.
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, China.
| | - Liangyi Chen
- New Cornerstone Science Laboratory, National Biomedical Imaging Center, State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, School of Future Technology, Center for Life Sciences, Peking University, Beijing, China.
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China.
| |
Collapse
|
3
|
Aldous N, Moin ASM, Abdelalim EM. Pancreatic β-cell heterogeneity in adult human islets and stem cell-derived islets. Cell Mol Life Sci 2023; 80:176. [PMID: 37270452 DOI: 10.1007/s00018-023-04815-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/27/2023] [Accepted: 05/19/2023] [Indexed: 06/05/2023]
Abstract
Recent studies reported that pancreatic β-cells are heterogeneous in terms of their transcriptional profiles and their abilities for insulin secretion. Sub-populations of pancreatic β-cells have been identified based on the functionality and expression of specific surface markers. Under diabetes condition, β-cell identity is altered leading to different β-cell sub-populations. Furthermore, cell-cell contact between β-cells and other endocrine cells within the islet play an important role in regulating insulin secretion. This highlights the significance of generating a cell product derived from stem cells containing β-cells along with other major islet cells for treating patients with diabetes, instead of transplanting a purified population of β-cells. Another key question is how close in terms of heterogeneity are the islet cells derived from stem cells? In this review, we summarize the heterogeneity in islet cells of the adult pancreas and those generated from stem cells. In addition, we highlight the significance of this heterogeneity in health and disease conditions and how this can be used to design a stem cell-derived product for diabetes cell therapy.
Collapse
Affiliation(s)
- Noura Aldous
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation, Education City, Doha, Qatar
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Education City, PO Box 34110, Doha, Qatar
| | - Abu Saleh Md Moin
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Education City, PO Box 34110, Doha, Qatar
- Research Department, Royal College of Surgeons in Ireland Bahrain, Adliya, Kingdom of Bahrain
| | - Essam M Abdelalim
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation, Education City, Doha, Qatar.
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Education City, PO Box 34110, Doha, Qatar.
| |
Collapse
|
4
|
Abstract
Exosomes are a class of extracellular vesicles with a diameter of 50-100 nm secreted by various cells. They are generated through complex intracellular production mechanisms before being secreted to the extracellular environment. Due to their inclusion of proteins, lipids, and nucleic acids, exosomes play an important role in intercellular communication. Pancreatic β-cells play an irreplaceable role in the body's glucose metabolism. Their dysfunction is one of the causes of diabetes. Exosomes of various cells regulate the function of β-cells by regulating autoimmunity, delivering non-coding RNAs, or directly regulating intracellular signal pathways. This communication between β-cells and other cells plays an important role in the pathogenesis and development of diabetes, and has potential for clinical application. This paper reviews the biological sources and functions of exosomes, as well as intercellular crosstalk between β-cells and other cells that is involved in β-cell failure and regeneration.
Collapse
Affiliation(s)
- Yu Wu
- Diabetes Research Center, Medical School, Ningbo University, Ningbo, China
| | - Qin Huang
- Department of Endocrinology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Shizhong Bu
- Diabetes Research Center, Medical School, Ningbo University, Ningbo, China
| |
Collapse
|
5
|
Shimizu-Okabe C, Okada S, Okamoto S, Masuzaki H, Takayama C. Specific Expression of KCC2 in the α Cells of Normal and Type 1 Diabetes Model Mouse Pancreatic Islets. Acta Histochem Cytochem 2022; 55:47-56. [PMID: 35444351 PMCID: PMC8913275 DOI: 10.1267/ahc.21-00078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/22/2021] [Indexed: 01/14/2023] Open
Abstract
Gamma-aminobutyric acid (GABA) is an inhibitory neurotransmitter in the mature brain; however, it acts excitatory during development. This difference in action depends on the intracellular chloride ion concentration, primarily regulated by potassium chloride co-transporter2 (KCC2). Sufficient KCC2 expression results in its inhibitory action. GABA is also abundant in pancreatic islets, where it acts differentially on the islet cells, and is involved in carbohydrate metabolism. However, the mechanisms underlying the differential action remain unknown. We performed immunohistochemistry for glutamic acid decarboxylase (GAD), a synthetic enzyme for GABA, and KCC2 in normal adult islets. GAD was co-localized with insulin in β cells, whereas KCC2 was expressed in glucagon-positive α cells. These results are in line with previous observations that GABA decreases glucagon release but increases insulin release, and suggest that GABA and insulin may work together in reducing blood glucose levels under hyperglycemia. Next, we examined the streptozotocin-induced type1 diabetes mellitus mouse model. GAD and insulin expression levels were markedly decreased. KCC2 was expressed in glucagon-positive cells, whereas insulin- and somatostatin-positive cells were KCC2-negative. These findings suggest that in diabetes model, reduced GABA release may cause disinhibition of glucagon release, resulting in increased blood sugar levels and the maintenance of hyperglycemic state.
Collapse
Affiliation(s)
| | - Shigeki Okada
- Department of Molecular Anatomy, School of Medicine, University of the Ryukyus
| | - Shiki Okamoto
- Division of Endocrinology, Diabetes and Metabolism, Hematology, Rheumatology School of Medicine, University of the Ryukyus
| | - Hiroaki Masuzaki
- Division of Endocrinology, Diabetes and Metabolism, Hematology, Rheumatology School of Medicine, University of the Ryukyus
| | - Chitoshi Takayama
- Department of Molecular Anatomy, School of Medicine, University of the Ryukyus
| |
Collapse
|
6
|
Deepa Maheshvare M, Raha S, Pal D. A Graph-Based Framework for Multiscale Modeling of Physiological Transport. FRONTIERS IN NETWORK PHYSIOLOGY 2022; 1:802881. [PMID: 36925576 PMCID: PMC10013063 DOI: 10.3389/fnetp.2021.802881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 11/30/2021] [Indexed: 11/13/2022]
Abstract
Trillions of chemical reactions occur in the human body every second, where the generated products are not only consumed locally but also transported to various locations in a systematic manner to sustain homeostasis. Current solutions to model these biological phenomena are restricted in computability and scalability due to the use of continuum approaches in which it is practically impossible to encapsulate the complexity of the physiological processes occurring at diverse scales. Here, we present a discrete modeling framework defined on an interacting graph that offers the flexibility to model multiscale systems by translating the physical space into a metamodel. We discretize the graph-based metamodel into functional units composed of well-mixed volumes with vascular and cellular subdomains; the operators defined over these volumes define the transport dynamics. We predict glucose drift governed by advective-dispersive transport in the vascular subdomains of an islet vasculature and cross-validate the flow and concentration fields with finite-element-based COMSOL simulations. Vascular and cellular subdomains are coupled to model the nutrient exchange occurring in response to the gradient arising out of reaction and perfusion dynamics. The application of our framework for modeling biologically relevant test systems shows how our approach can assimilate both multi-omics data from in vitro-in vivo studies and vascular topology from imaging studies for examining the structure-function relationship of complex vasculatures. The framework can advance simulation of whole-body networks at user-defined levels and is expected to find major use in personalized medicine and drug discovery.
Collapse
Affiliation(s)
| | | | - Debnath Pal
- Department of Computational and Data Sciences, Indian Institute of Science, Bangalore, India
| |
Collapse
|
7
|
Abstract
Intra-islet communication via electrical, paracrine and autocrine signals, is highly dependent on the organization of cells within the islets and is key for an adequate response to changes in blood glucose and other stimuli. In spite of the fact that relevant structural differences between mouse and human islet architectures have been described, the functional implications of these differences remain only partially understood. In this work, aiming to contribute to a better understanding of the relationship between structural and functional properties of pancreatic islets, we reconstructed human and mice islets in order to perform a structural comparison based on both morphologic and network-derived metrics. According to our results, human islets constitute a more efficient network from a connectivity viewpoint, mainly due to the higher proportion of heterotypic contacts between islet cells in comparison to mice islets.
Collapse
Affiliation(s)
- Gerardo J. Félix-Martínez
- Cátedras CONACYT, Consejo Nacional de Ciencia y Tecnología, México City, México
- Department of Electrical Engineering, Universidad Autónoma Metropolitana, México City, México
- CONTACT Gerardo J. Félix-Martínez Universidad Autónoma Metropolitana Unidad Iztapalapa. San Rafael Atlixco 186, Col. Vicentina 09340, México City, México
| | - J. R. Godínez-Fernández
- Department of Electrical Engineering, Universidad Autónoma Metropolitana, México City, México
| |
Collapse
|
8
|
Mohan S, Lafferty R, Tanday N, Flatt PR, Moffett RC, Irwin N. Beneficial impact of Ac3IV, an AVP analogue acting specifically at V1a and V1b receptors, on diabetes islet morphology and transdifferentiation of alpha- and beta-cells. PLoS One 2021; 16:e0261608. [PMID: 34929019 PMCID: PMC8687525 DOI: 10.1371/journal.pone.0261608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 12/07/2021] [Indexed: 12/18/2022] Open
Abstract
Ac3IV (Ac-CYIQNCPRG-NH2) is an enzymatically stable vasopressin analogue that selectively activates Avpr1a (V1a) and Avpr1b (V1b) receptors. In the current study we have employed streptozotocin (STZ) diabetic transgenic Ins1Cre/+;Rosa26-eYFP and GluCreERT2;Rosa26-eYFP mice, to evaluate the impact of sustained Ac3IV treatment on pancreatic islet cell morphology and transdifferentiation. Twice-daily administration of Ac3IV (25 nmol/kg bw) to STZ-diabetic Ins1Cre/+;Rosa26-eYFP mice for 12 days increased pancreatic insulin (p<0.01) and significantly reversed the detrimental effects of STZ on pancreatic islet morphology. Such benefits were coupled with increased (p<0.01) beta-cell proliferation and decreased (p<0.05) beta-cell apoptosis. In terms of islet cell lineage tracing, induction of diabetes increased (p<0.001) beta- to alpha-cell differentiation in Ins1Cre/+;Rosa26-eYFP mice, with Ac3IV partially reversing (p<0.05) such transition events. Comparable benefits of Ac3IV on pancreatic islet architecture were observed in STZ-diabetic GluCreERT2;ROSA26-eYFP transgenic mice. In this model, Ac3IV provoked improvements in islet morphology which were linked to increased (p<0.05-p<0.01) transition of alpha- to beta-cells. Ac3IV also increased (p<0.05-p<0.01) CK-19 co-expression with insulin in pancreatic ductal and islet cells. Blood glucose levels were unchanged by Ac3IV in both models, reflecting the severity of diabetes induced. Taken together these data indicate that activation of islet receptors for V1a and V1b positively modulates alpha- and beta-cell turnover and endocrine cell lineage transition events to preserve beta-cell identity and islet architecture.
Collapse
Affiliation(s)
- Shruti Mohan
- SAAD Centre for Pharmacy and Diabetes, Ulster University, Coleraine, Northern Ireland, United Kingdom
| | - Ryan Lafferty
- SAAD Centre for Pharmacy and Diabetes, Ulster University, Coleraine, Northern Ireland, United Kingdom
| | - Neil Tanday
- SAAD Centre for Pharmacy and Diabetes, Ulster University, Coleraine, Northern Ireland, United Kingdom
| | - Peter R. Flatt
- SAAD Centre for Pharmacy and Diabetes, Ulster University, Coleraine, Northern Ireland, United Kingdom
| | - R. Charlotte Moffett
- SAAD Centre for Pharmacy and Diabetes, Ulster University, Coleraine, Northern Ireland, United Kingdom
| | - Nigel Irwin
- SAAD Centre for Pharmacy and Diabetes, Ulster University, Coleraine, Northern Ireland, United Kingdom
| |
Collapse
|
9
|
Watkins JC, Evans RH, Bayés À, Booker SA, Gibb A, Mabb AM, Mayer M, Mellor JR, Molnár E, Niu L, Ortega A, Pankratov Y, Ramos-Vicente D, Rodríguez-Campuzano A, Rodríguez-Moreno A, Wang LY, Wang YT, Wollmuth L, Wyllie DJA, Zhuo M, Frenguelli BG. 21st century excitatory amino acid research: A Q & A with Jeff Watkins and Dick Evans. Neuropharmacology 2021; 198:108743. [PMID: 34363811 DOI: 10.1016/j.neuropharm.2021.108743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In 1981 Jeff Watkins and Dick Evans wrote what was to become a seminal review on excitatory amino acids (EAAs) and their receptors (Watkins and Evans, 1981). Bringing together various lines of evidence dating back over several decades on: the distribution in the nervous system of putative amino acid neurotransmitters; enzymes involved in their production and metabolism; the uptake and release of amino acids; binding of EAAs to membranes; the pharmacological action of endogenous excitatory amino acids and their synthetic analogues, and notably the actions of antagonists for the excitations caused by both nerve stimulation and exogenous agonists, often using pharmacological tools developed by Jeff and his colleagues, they provided a compelling account for EAAs, especially l-glutamate, as a bona fide neurotransmitter in the nervous system. The rest, as they say, is history, but far from being consigned to history, EAA research is in rude health well into the 21st Century as this series of Special Issues of Neuropharmacology exemplifies. With EAAs and their receptors flourishing across a wide range of disciplines and clinical conditions, we enter into a dialogue with two of the most prominent and influential figures in the early days of EAA research: Jeff Watkins and Dick Evans.
Collapse
Affiliation(s)
| | | | - Àlex Bayés
- Molecular Physiology of the Synapse Laboratory, Biomedical Research Institute Sant Pau, Barcelona, Spain and Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Sam A Booker
- Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK
| | - Alasdair Gibb
- Research Department of Neuroscience, Physiology & Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Angela M Mabb
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States
| | - Mark Mayer
- Bldg 35A, Room 3D-904, 35A Convent Drive, NINDS, NIH, Bethesda, MD, 20892, USA
| | - Jack R Mellor
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK
| | - Elek Molnár
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK
| | - Li Niu
- Chemistry Department, University at Albany, SUNY, 1400 Washington Ave, Albany, NY, 12222, USA
| | - Arturo Ortega
- Department of Toxicology, Cinvestav, Mexico City, Mexico
| | - Yuriy Pankratov
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - David Ramos-Vicente
- Molecular Physiology of the Synapse Laboratory, Biomedical Research Institute Sant Pau, Barcelona, Spain and Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | | | - Lu-Yang Wang
- Program in Neurosciences & Mental Health, SickKids Research Institute and Department of Physiology, University of Toronto, 555 University Ave, Toronto, Ontario, M5G 1X8, Canada
| | - Yu Tian Wang
- Department of Medicine, University of British Columbia, Vancouver, BC, V6T 2B5, Canada
| | - Lonnie Wollmuth
- Depts. of Neurobiology & Behavior and Biochemistry & Cell Biology, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY, 11794-5230, USA
| | - David J A Wyllie
- Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK
| | - Min Zhuo
- Institute of Brain Research, Qingdao International Academician Park, Qingdao, 266000, China
| | | |
Collapse
|
10
|
Sun ZY, Yu TY, Jiang FX, Wang W. Functional maturation of immature β cells: A roadblock for stem cell therapy for type 1 diabetes. World J Stem Cells 2021; 13:193-207. [PMID: 33815669 PMCID: PMC8006013 DOI: 10.4252/wjsc.v13.i3.193] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 01/19/2021] [Accepted: 02/25/2021] [Indexed: 02/06/2023] Open
Abstract
Type 1 diabetes mellitus (T1DM) is a chronic autoimmune disease caused by the specific destruction of pancreatic islet β cells and is characterized as the absolute insufficiency of insulin secretion. Current insulin replacement therapy supplies insulin in a non-physiological way and is associated with devastating complications. Experimental islet transplantation therapy has been proven to restore glucose homeostasis in people with severe T1DM. However, it is restricted by many factors such as severe shortage of donor sources, progressive loss of donor cells, high cost, etc. As pluripotent stem cells have the potential to give rise to all cells including islet β cells in the body, stem cell therapy for diabetes has attracted great attention in the academic community and the general public. Transplantation of islet β-like cells differentiated from human pluripotent stem cells (hPSCs) has the potential to be an excellent alternative to islet transplantation. In stem cell therapy, obtaining β cells with complete insulin secretion in vitro is crucial. However, after much research, it has been found that the β-like cells obtained by in vitro differentiation still have many defects, including lack of adult-type glucose stimulated insulin secretion, and multi-hormonal secretion, suggesting that in vitro culture does not allows for obtaining fully mature β-like cells for transplantation. A large number of studies have found that many transcription factors play important roles in the process of transforming immature to mature human islet β cells. Furthermore, PDX1, NKX6.1, SOX9, NGN3, PAX4, etc., are important in inducing hPSC differentiation in vitro. The absent or deficient expression of any of these key factors may lead to the islet development defect in vivo and the failure of stem cells to differentiate into genuine functional β-like cells in vitro. This article reviews β cell maturation in vivo and in vitro and the vital roles of key molecules in this process, in order to explore the current problems in stem cell therapy for diabetes.
Collapse
Affiliation(s)
- Zi-Yi Sun
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361100, Fujian Province, China
| | - Ting-Yan Yu
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361100, Fujian Province, China
| | - Fang-Xu Jiang
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361100, Fujian Province, China
| | - Wei Wang
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361100, Fujian Province, China.
| |
Collapse
|
11
|
Cottet-Dumoulin D, Lavallard V, Lebreton F, Wassmer CH, Bellofatto K, Parnaud G, Berishvili E, Berney T, Bosco D. Biosynthetic Activity Differs Between Islet Cell Types and in Beta Cells Is Modulated by Glucose and Not by Secretion. Endocrinology 2021; 162:6047597. [PMID: 33367617 PMCID: PMC7940959 DOI: 10.1210/endocr/bqaa239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Indexed: 11/19/2022]
Abstract
A correct biosynthetic activity is thought to be essential for the long-term function and survival of islet cells in culture and possibly also after islet transplantation. Compared to the secretory activity, biosynthetic activity has been poorly studied in pancreatic islet cells. Here we aimed to assess biosynthetic activity at the single cell level to investigate if protein synthesis is dependent on secretagogues and increased as a consequence of hormonal secretion. Biosynthetic activity in rat islet cells was studied at the single cell level using O-propargyl-puromycin (OPP) that incorporates into newly translated proteins and chemically ligates to a fluorescent dye by "click" reaction. Heterogeneous biosynthetic activity was observed between the four islet cell types, with delta cells showing the higher relative protein biosynthesis. Beta cells protein biosynthesis was increased in response to glucose while 3-isobutyl-1-methylxanthine and phorbol-12-myristate-13-acetate, 2 drugs known to stimulate insulin secretion, had no similar effect on protein biosynthesis. However, after several hours of secretion, protein biosynthesis remained high even when cells were challenged to basal conditions. These results suggest that mechanisms regulating secretion and biosynthesis in islet cells are different, with glucose directly triggering beta cells protein biosynthesis, independently of insulin secretion. Furthermore, this OPP labeling approach is a promising method to identify newly synthesized proteins under various physiological and pathological conditions.
Collapse
Affiliation(s)
- David Cottet-Dumoulin
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
- Diabetes Center of the Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Correspondence: Domenico Bosco, Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, 1, rue Michel Servet, CH-1211 Genève 4, Switzerland.
| | - Vanessa Lavallard
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
- Diabetes Center of the Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Fanny Lebreton
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
- Diabetes Center of the Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Charles H Wassmer
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
- Diabetes Center of the Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Kevin Bellofatto
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
- Diabetes Center of the Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Géraldine Parnaud
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
- Diabetes Center of the Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Ekaterine Berishvili
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
- Diabetes Center of the Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Thierry Berney
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
- Diabetes Center of the Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Domenico Bosco
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
- Diabetes Center of the Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
12
|
Petrenko V, Stolovich-Rain M, Vandereycken B, Giovannoni L, Storch KF, Dor Y, Chera S, Dibner C. The core clock transcription factor BMAL1 drives circadian β-cell proliferation during compensatory regeneration of the endocrine pancreas. Genes Dev 2020; 34:1650-1665. [PMID: 33184223 PMCID: PMC7706703 DOI: 10.1101/gad.343137.120] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/08/2020] [Indexed: 12/20/2022]
Abstract
Circadian clocks in pancreatic islets participate in the regulation of glucose homeostasis. Here we examined the role of these timekeepers in β-cell regeneration after the massive ablation of β cells by doxycycline-induced expression of diphtheria toxin A (DTA) in Insulin-rtTA/TET-DTA mice. Since we crossed reporter genes expressing α- and β-cell-specific fluorescent proteins into these mice, we could follow the fate of α- and β cells separately. As expected, DTA induction resulted in an acute hyperglycemia, which was accompanied by dramatic changes in gene expression in residual β cells. In contrast, only temporal alterations of gene expression were observed in α cells. Interestingly, β cells entered S phase preferentially during the nocturnal activity phase, indicating that the diurnal rhythm also plays a role in the orchestration of β-cell regeneration. Indeed, in arrhythmic Bmal1-deficient mice, which lack circadian clocks, no compensatory β-cell proliferation was observed, and the β-cell ablation led to aggravated hyperglycemia, hyperglucagonemia, and fatal diabetes.
Collapse
Affiliation(s)
- Volodymyr Petrenko
- Division of Endocrinology, Diabetes, Nutrition, and Patient Education, Department of Medicine, University of Geneva, 1211 Geneva, Switzerland
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
- Diabetes Center, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
- Institute of Genetics and Genomics in Geneva (iGE3), 1211 Geneva, Switzerland
| | - Miri Stolovich-Rain
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Bart Vandereycken
- Section of Mathematics, University of Geneva, 1211 Geneva, Switzerland
| | - Laurianne Giovannoni
- Division of Endocrinology, Diabetes, Nutrition, and Patient Education, Department of Medicine, University of Geneva, 1211 Geneva, Switzerland
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
- Diabetes Center, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
- Institute of Genetics and Genomics in Geneva (iGE3), 1211 Geneva, Switzerland
| | - Kai-Florian Storch
- Department of Psychiatry, McGill University, Montreal, Quebec H4H 1R3, Canada
- Douglas Mental Health University Institute, Montreal, Quebec H4H 1R3, Canada
| | - Yuval Dor
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Simona Chera
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
| | - Charna Dibner
- Division of Endocrinology, Diabetes, Nutrition, and Patient Education, Department of Medicine, University of Geneva, 1211 Geneva, Switzerland
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
- Diabetes Center, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
- Institute of Genetics and Genomics in Geneva (iGE3), 1211 Geneva, Switzerland
| |
Collapse
|
13
|
Félix-Martínez GJ, N. Mata A, Godínez-Fernández JR. Reconstructing human pancreatic islet architectures using computational optimization. Islets 2020; 12:121-133. [PMID: 33090076 PMCID: PMC7751670 DOI: 10.1080/19382014.2020.1823178] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
We outline a general methodology based on computational optimization and experimental data to reconstruct human pancreatic islet architectures. By using the nuclei coordinates of islet cells obtained through DAPI staining, cell types identified by immunostaining, and cell size distributions estimated from capacitance measurements, reconstructed islets composed of non-overlapping spherical cells were obtained through an iterative optimization procedure. In all cases, the reconstructed architectures included >99% of the experimental identified cells, each of them having a radius within the experimentally reported ranges. Given the wide use of mathematical modeling for the study of pancreatic cells, and recently, of cell-cell interactions within the pancreatic islets, the methodology here proposed, also capable of identifying cell-to-cell contacts, is aimed to provide with a framework for modeling and analyzing experimentally-based pancreatic islet architectures.
Collapse
Affiliation(s)
- Gerardo J. Félix-Martínez
- Cátedras CONACYT, Consejo Nacional de Ciencia y Tecnología, Mexico City, México
- Department of Electrical Engineering, Universidad Autónoma Metropolitana, Mexico City, México
- CONTACT Gerardo J. Félix-Martínez Laboratory of Biophysics AT-221, Universidad Autónoma Metropolitana; San Rafael Atlixco 186, Col. Vicentina, 09340, Iztalapapa, CDMX, México
| | - Aurelio N. Mata
- Department of Electrical Engineering, Universidad Autónoma Metropolitana, Mexico City, México
| | | |
Collapse
|
14
|
Wu WC, Song SJ, Zhang Y, Li X. Role of Extracellular Vesicles in Autoimmune Pathogenesis. Front Immunol 2020; 11:579043. [PMID: 33072123 PMCID: PMC7538611 DOI: 10.3389/fimmu.2020.579043] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/24/2020] [Indexed: 12/16/2022] Open
Abstract
Autoimmune diseases are conditions that emerge from abnormal immune responses to natural parts of the body. Extracellular vesicles (EVs) are membranous structures found in almost all types of cells. Because EVs often transport “cargo” between cells, their ability to crosstalk may be an important communication pathway within the body. The pathophysiological role of EVs is increasingly recognized in autoimmune diseases, including multiple sclerosis, rheumatoid arthritis, systemic lupus erythematosus, Sjogren's syndrome, Type 1 diabetes, and autoimmune thyroid disease. EVs are considered as biomarkers of these diseases. This article outlines existing knowledge on the biogenesis of EVs, their role as messegers in cellular communication and the function in T/B cell differentiation and maturation, and focusing on their potential application in autoimmune diseases.
Collapse
Affiliation(s)
- Wen-Cheng Wu
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Sheng-Jiao Song
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yuan Zhang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Xing Li
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
15
|
Barrera M, Hiriart M, Cocho G, Villarreal C. Type 2 diabetes progression: A regulatory network approach. CHAOS (WOODBURY, N.Y.) 2020; 30:093132. [PMID: 33003944 DOI: 10.1063/5.0011125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 08/17/2020] [Indexed: 06/11/2023]
Abstract
In order to elucidate central elements underlying type 2 diabetes, we constructed a regulatory network model involving 37 components (molecules, receptors, processes, etc.) associated to signaling pathways of pancreatic beta-cells. In a first approximation, the network topology was described by Boolean rules whose interacting dynamics predicted stationary patterns broadly classified as health, metabolic syndrome, and diabetes stages. A subsequent approximation based on a continuous logic analysis allowed us to characterize the progression of the disease as transitions between these states associated to alterations of cell homeostasis due to exhaustion or exacerbation of specific regulatory signals. The method allowed the identification of key transcription factors involved in metabolic stress as essential for the progression of the disease. Integration of the present analysis with existent mathematical models designed to yield accurate account of experimental data in human or animal essays leads to reliable predictions for beta-cell mass, insulinemia, glycemia, and glycosylated hemoglobin in diabetic fatty rats.
Collapse
Affiliation(s)
- M Barrera
- Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - M Hiriart
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - G Cocho
- Instituto de Física, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - C Villarreal
- Instituto de Física, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| |
Collapse
|
16
|
Félix-Martínez GJ, González-Vélez V, Godínez-Fernández JR, Gil A. Electrophysiological models of the human pancreatic δ-cell: From single channels to the firing of action potentials. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2020; 36:e3296. [PMID: 31833669 DOI: 10.1002/cnm.3296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 12/05/2019] [Accepted: 12/05/2019] [Indexed: 06/10/2023]
Abstract
Minimal mathematical models were developed to describe the electrophysiological properties of human δ-cells. Markov models of single channels were first developed based on the analysis of electrophysiological data. Monte Carlo simulations of voltage-clamp experiments were performed in an iteratively optimization procedure to estimate the number of channels required to reproduce the main characteristics of the macroscopic currents recorded experimentally. A membrane model of the firing of action potentials was then developed based on the kinetic schemes of single channels and the number of channels estimated. We showed that macroscopic currents of human δ-cells can be reproduced by minimal models of single channels when the appropriate number of channels is considered. In addition, our simulations suggest that human δ-cells are capable of generating action potentials through the interaction of the ionic currents involved. Finally, we determined the relative contribution of the currents underlying the firing of action potentials in human pancreatic δ-cells, which allowed us to propose a qualitative model of an action potential in terms of the underlying ionic currents.
Collapse
Affiliation(s)
- Gerardo J Félix-Martínez
- Cátedras CONACYT, Consejo Nacional de Ciencia y Tecnología, Mexico City, Mexico
- Departamento de Ingeniería Eléctrica, Universidad Autónoma Metropolitana, Mexico City, Mexico
| | | | | | - Amparo Gil
- Departamento de Matemática Aplicada y Ciencias de la Computación, Universidad de Cantabria, Santander, Spain
| |
Collapse
|
17
|
Memon B, Abdelalim EM. Stem Cell Therapy for Diabetes: Beta Cells versus Pancreatic Progenitors. Cells 2020; 9:cells9020283. [PMID: 31979403 PMCID: PMC7072676 DOI: 10.3390/cells9020283] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 01/16/2020] [Accepted: 01/17/2020] [Indexed: 12/16/2022] Open
Abstract
Diabetes mellitus (DM) is one of the most prevalent metabolic disorders. In order to replace the function of the destroyed pancreatic beta cells in diabetes, islet transplantation is the most widely practiced treatment. However, it has several limitations. As an alternative approach, human pluripotent stem cells (hPSCs) can provide an unlimited source of pancreatic cells that have the ability to secrete insulin in response to a high blood glucose level. However, the determination of the appropriate pancreatic lineage candidate for the purpose of cell therapy for the treatment of diabetes is still debated. While hPSC-derived beta cells are perceived as the ultimate candidate, their efficiency needs further improvement in order to obtain a sufficient number of glucose responsive beta cells for transplantation therapy. On the other hand, hPSC-derived pancreatic progenitors can be efficiently generated in vitro and can further mature into glucose responsive beta cells in vivo after transplantation. Herein, we discuss the advantages and predicted challenges associated with the use of each of the two pancreatic lineage products for diabetes cell therapy. Furthermore, we address the co-generation of functionally relevant islet cell subpopulations and structural properties contributing to the glucose responsiveness of beta cells, as well as the available encapsulation technology for these cells.
Collapse
Affiliation(s)
- Bushra Memon
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation, Education City, P.O。 Box 34110 Doha, Qatar;
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), P.O. Box 34110 Doha, Qatar
| | - Essam M. Abdelalim
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation, Education City, P.O。 Box 34110 Doha, Qatar;
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), P.O. Box 34110 Doha, Qatar
- Correspondence: ; Tel.: +97-44-4546-432; Fax: +97-44-4541-770
| |
Collapse
|
18
|
Abstract
Controlling the excess and shortage of energy is a fundamental task for living organisms. Diabetes is a representative metabolic disease caused by the malfunction of energy homeostasis. The islets of Langerhans in the pancreas release long-range messengers, hormones, into the blood to regulate the homeostasis of the primary energy fuel, glucose. The hormone and glucose levels in the blood show rhythmic oscillations with a characteristic period of 5-10 min, and the functional roles of the oscillations are not clear. Each islet has [Formula: see text] and [Formula: see text] cells that secrete glucagon and insulin, respectively. These two counter-regulatory hormones appear sufficient to increase and decrease glucose levels. However, pancreatic islets have a third cell type, [Formula: see text] cells, which secrete somatostatin. The three cell populations have a unique spatial organization in islets, and they interact to perturb their hormone secretions. The mini-organs of islets are scattered throughout the exocrine pancreas. Considering that the human pancreas contains approximately a million islets, the coordination of hormone secretion from the multiple sources of islets and cells within the islets should have a significant effect on human physiology. In this review, we introduce the hierarchical organization of tripartite cell networks, and recent biophysical modeling to systematically understand the oscillations and interactions of [Formula: see text], [Formula: see text], and [Formula: see text] cells. Furthermore, we discuss the functional roles and clinical implications of hormonal oscillations and their phase coordination for the diagnosis of type II diabetes.
Collapse
Affiliation(s)
- Taegeun Song
- Department of Physics, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, Republic of Korea
| | | |
Collapse
|
19
|
Petrenko V, Dibner C. Cell-specific resetting of mouse islet cellular clocks by glucagon, glucagon-like peptide 1 and somatostatin. Acta Physiol (Oxf) 2018; 222:e13021. [PMID: 29271578 DOI: 10.1111/apha.13021] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 12/15/2017] [Accepted: 12/15/2017] [Indexed: 12/24/2022]
Abstract
AIM Molecular clocks, operative in pancreatic islet cells, represent an intrinsic mechanism regulating intracellular metabolism and hormone secretion. Glucagon, somatostatin and glucagon-like peptide 1 (GLP-1) are essential coordinators of islet physiology. Here, we assess the synchronizing capacity of glucagon, somatostatin and GLP-1 on pancreatic α- and β-cell circadian clocks. METHODS Triple transgenic mice, expressing a circadian PER2::luciferase (luc) reporter combined with α- and β-cell-specific fluorescent reporters, were employed. Isolated pancreatic islets and fluorescence-activated cell sorting-separated α- and β-cells were synchronized with glucagon, somatostatin analogue or GLP-1 mimetics, with subsequent real-time PER2::luc bioluminescence recording. Gene expression of Gcgr, Sstr2, Sstr3 and Glp1r in islet cells was assessed by RNA sequencing and RT-qPCR. RESULTS Glucagon and GLP-1 mimetics (liraglutide and exenatide) induced high-amplitude rhythmic expression of the PER2::luc reporter in β-cells, but not in α-cells, while the somatostatin analogue octreotide generated a significant phase shift between α- and β-cells. Enrichment of Gcgr and Glp1r transcripts was detected in β-cells compared to their α-cell counterparts. The synchronizing effect of glucagon was dose-dependent and mediated by the adenylate cyclase signalling cascade, as it was diminished by adenylate cyclase inhibitor. CONCLUSION We conclude that proglucagon-derived peptides and somatostatin exhibit receptor-mediated cell-specific synchronizing effects for mouse α- and β-cell oscillators. Differential islet cell clock modulation by glucagon and somatostatin may represent a physiological mechanism underlying paracrine regulation of rhythmic glucagon and insulin secretion. The reported here strong synchronizing properties of GLP-1 mimetics, widely used for treatment of type 2 diabetes, are of high clinical relevance.
Collapse
Affiliation(s)
- V. Petrenko
- Division of Endocrinology, Diabetes, Hypertension and Nutrition; Department of Internal Medicine Specialties; University Hospital of Geneva; Geneva Switzerland
- Department of Cell Physiology and Metabolism; Faculty of Medicine; University of Geneva; Geneva Switzerland
- Diabetes Center; Faculty of Medicine; University of Geneva; Geneva Switzerland
- Institute of Genetics and Genomics in Geneva (iGE3); Geneva Switzerland
| | - C. Dibner
- Division of Endocrinology, Diabetes, Hypertension and Nutrition; Department of Internal Medicine Specialties; University Hospital of Geneva; Geneva Switzerland
- Department of Cell Physiology and Metabolism; Faculty of Medicine; University of Geneva; Geneva Switzerland
- Diabetes Center; Faculty of Medicine; University of Geneva; Geneva Switzerland
- Institute of Genetics and Genomics in Geneva (iGE3); Geneva Switzerland
| |
Collapse
|
20
|
Morita A, Ouchi M, Terada M, Kon H, Kishimoto S, Satoh K, Otani N, Hayashi K, Fujita T, Inoue KI, Anzai N. Reproducible insulin secretion from isolated rat pancreas preparations using an organ bath. Exp Anim 2018; 67:15-22. [PMID: 28757517 PMCID: PMC5814310 DOI: 10.1538/expanim.17-0059] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 07/06/2017] [Indexed: 01/10/2023] Open
Abstract
Diabetes mellitus is a lifestyle-related disease that is characterized by inappropriate or diminished insulin secretion. Ex vivo pharmacological studies of hypoglycemic agents are often conducted using perfused pancreatic preparations. Pancreas preparations for organ bath experiments do not require cannulation and are therefore less complex than isolated perfused pancreas preparations. However, previous research has generated almost no data on insulin secretion from pancreas preparations using organ bath preparations. The purpose of this study was to investigate the applicability of isolated rat pancreas preparations using the organ bath technique in the quantitative analysis of insulin secretion from β-cells. We found that insulin secretion significantly declined during incubation in the organ bath, whereas it was maintained in the presence of 1 µM GLP-1. Conversely, amylase secretion exhibited a modest increase during incubation and was not altered in the presence of GLP-1. These results demonstrate that the pancreatic organ bath preparation is a sensitive and reproducible method for the ex vivo assessment of the pharmacological properties of hypoglycemic agents.
Collapse
Affiliation(s)
- Asuka Morita
- Department of Pharmacology and Toxicology, Dokkyo Medical University School of Medicine, 880 Kitakobayashi, Mibu, Shimotsuga, Tochigi 321-0293, Japan
| | - Motoshi Ouchi
- Department of Pharmacology and Toxicology, Dokkyo Medical University School of Medicine, 880 Kitakobayashi, Mibu, Shimotsuga, Tochigi 321-0293, Japan
| | - Misao Terada
- Laboratory Animal Research Center, Dokkyo Medical University, 880 Kitakobayashi, Mibu, Shimotsuga, Tochigi 321-0293, Japan
| | - Hiroe Kon
- Laboratory Animal Research Center, Dokkyo Medical University, 880 Kitakobayashi, Mibu, Shimotsuga, Tochigi 321-0293, Japan
| | - Satoko Kishimoto
- Research Support Center, Dokkyo Medical University School of Medicine, 880 Kitakobayashi, Mibu, Shimotsuga, Tochigi 321-0293, Japan
| | - Keitaro Satoh
- Department of Pharmacology, Asahi University School of Dentistry, 1851-1 Hozumi, Mizuho, Gifu 501-0296, Japan
| | - Naoyuki Otani
- Department of Clinical Pharmacology and Therapeutics, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama-machi, Yufu, Oita 879-5593, Japan
| | - Keitaro Hayashi
- Department of Pharmacology and Toxicology, Dokkyo Medical University School of Medicine, 880 Kitakobayashi, Mibu, Shimotsuga, Tochigi 321-0293, Japan
| | - Tomoe Fujita
- Department of Pharmacology and Toxicology, Dokkyo Medical University School of Medicine, 880 Kitakobayashi, Mibu, Shimotsuga, Tochigi 321-0293, Japan
| | - Ken-Ichi Inoue
- Research Support Center, Dokkyo Medical University School of Medicine, 880 Kitakobayashi, Mibu, Shimotsuga, Tochigi 321-0293, Japan
| | - Naohiko Anzai
- Department of Pharmacology, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| |
Collapse
|
21
|
Hastoy B, Clark A, Rorsman P, Lang J. Fusion pore in exocytosis: More than an exit gate? A β-cell perspective. Cell Calcium 2017; 68:45-61. [PMID: 29129207 DOI: 10.1016/j.ceca.2017.10.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 10/17/2017] [Accepted: 10/24/2017] [Indexed: 12/14/2022]
Abstract
Secretory vesicle exocytosis is a fundamental biological event and the process by which hormones (like insulin) are released into the blood. Considerable progress has been made in understanding this precisely orchestrated sequence of events from secretory vesicle docked at the cell membrane, hemifusion, to the opening of a membrane fusion pore. The exact biophysical and physiological regulation of these events implies a close interaction between membrane proteins and lipids in a confined space and constrained geometry to ensure appropriate delivery of cargo. We consider some of the still open questions such as the nature of the initiation of the fusion pore, the structure and the role of the Soluble N-ethylmaleimide-sensitive-factor Attachment protein REceptor (SNARE) transmembrane domains and their influence on the dynamics and regulation of exocytosis. We discuss how the membrane composition and protein-lipid interactions influence the likelihood of the nascent fusion pore forming. We relate these factors to the hypothesis that fusion pore expansion could be affected in type-2 diabetes via changes in disease-related gene transcription and alterations in the circulating lipid profile. Detailed characterisation of the dynamics of the fusion pore in vitro will contribute to understanding the larger issue of insulin secretory defects in diabetes.
Collapse
Affiliation(s)
- Benoit Hastoy
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford OX3 7LE, UK.
| | - Anne Clark
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford OX3 7LE, UK
| | - Patrik Rorsman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford OX3 7LE, UK; Metabolic Research, Institute of Neuroscience and Physiology, University of Goteborg, Medicinaregatan 11, S-41309 Göteborg, Sweden
| | - Jochen Lang
- Laboratoire de Chimie et Biologie des Membranes et Nano-objets (CBMN), CNRS UMR 5248, Université de Bordeaux, Allée de Geoffrey St Hilaire, 33600 Pessac, France.
| |
Collapse
|
22
|
Lee B, Song T, Lee K, Kim J, Berggren PO, Ryu SH, Jo J. Insulin modulates the frequency of Ca2+ oscillations in mouse pancreatic islets. PLoS One 2017; 12:e0183569. [PMID: 28846705 PMCID: PMC5573301 DOI: 10.1371/journal.pone.0183569] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 08/07/2017] [Indexed: 11/20/2022] Open
Abstract
Pancreatic islets can adapt to oscillatory glucose to produce synchronous insulin pulses. Can islets adapt to other oscillatory stimuli, specifically insulin? To answer this question, we stimulated islets with pulses of exogenous insulin and measured their Ca2+ oscillations. We observed that sufficiently high insulin (> 500 nM) with an optimal pulse period (~ 4 min) could make islets to produce synchronous Ca2+ oscillations. Glucose and insulin, which are key stimulatory factors of islets, modulate islet Ca2+ oscillations differently. Glucose increases the active-to-silent ratio of phases, whereas insulin increases the period of the oscillation. To examine the dual modulation, we adopted a phase oscillator model that incorporated the phase and frequency modulations. This mathematical model showed that out-of-phase oscillations of glucose and insulin were more effective at synchronizing islet Ca2+ oscillations than in-phase stimuli. This finding suggests that a phase shift in glucose and insulin oscillations can enhance inter-islet synchronization.
Collapse
Affiliation(s)
- Boah Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, Korea
| | - Taegeun Song
- Asia Pacific Center for Theoretical Physics, Pohang, Gyeongbuk, Korea
| | - Kayoung Lee
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, Gyeongbuk, Korea
| | - Jaeyoon Kim
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, Gyeongbuk, Korea
| | - Per-Olof Berggren
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, Gyeongbuk, Korea
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institute, Stockholm, Sweden
| | - Sung Ho Ryu
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, Korea
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, Gyeongbuk, Korea
| | - Junghyo Jo
- Asia Pacific Center for Theoretical Physics, Pohang, Gyeongbuk, Korea
- Department of Physics, Pohang University of Science and Technology, Pohang, Gyeongbuk, Korea
- * E-mail:
| |
Collapse
|
23
|
Park DH, Song T, Hoang DT, Xu J, Jo J. A Local Counter-Regulatory Motif Modulates the Global Phase of Hormonal Oscillations. Sci Rep 2017; 7:1602. [PMID: 28487511 PMCID: PMC5431656 DOI: 10.1038/s41598-017-01806-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 04/06/2017] [Indexed: 11/18/2022] Open
Abstract
Counter-regulatory elements maintain dynamic equilibrium ubiquitously in living systems. The most prominent example, which is critical to mammalian survival, is that of pancreatic α and β cells producing glucagon and insulin for glucose homeostasis. These cells are not found in a single gland but are dispersed in multiple micro-organs known as the islets of Langerhans. Within an islet, these two reciprocal cell types interact with each other and with an additional cell type: the δ cell. By testing all possible motifs governing the interactions of these three cell types, we found that a unique set of positive/negative intra-islet interactions between different islet cell types functions not only to reduce the superficially wasteful zero-sum action of glucagon and insulin but also to enhance/suppress the synchronization of hormone secretions between islets under high/normal glucose conditions. This anti-symmetric interaction motif confers effective controllability for network (de)synchronization.
Collapse
Affiliation(s)
- Dong-Ho Park
- Asia Pacific Center for Theoretical Physics, Pohang, Gyeongbuk, 37673, Korea
| | - Taegeun Song
- Asia Pacific Center for Theoretical Physics, Pohang, Gyeongbuk, 37673, Korea
| | - Danh-Tai Hoang
- Asia Pacific Center for Theoretical Physics, Pohang, Gyeongbuk, 37673, Korea.,Laboratory of Biological Modeling, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, 20892, United States of America.,Department of Natural Sciences, Quang Binh University, Dong Hoi, Quang Binh, 510000, Vietnam
| | - Jin Xu
- Asia Pacific Center for Theoretical Physics, Pohang, Gyeongbuk, 37673, Korea.,Department of Physics, Pohang University of Science and Technology, Pohang, Gyeongbuk, 37673, Korea
| | - Junghyo Jo
- Asia Pacific Center for Theoretical Physics, Pohang, Gyeongbuk, 37673, Korea. .,Department of Physics, Pohang University of Science and Technology, Pohang, Gyeongbuk, 37673, Korea.
| |
Collapse
|
24
|
An excessive increase in glutamate contributes to glucose-toxicity in β-cells via activation of pancreatic NMDA receptors in rodent diabetes. Sci Rep 2017; 7:44120. [PMID: 28303894 PMCID: PMC5356012 DOI: 10.1038/srep44120] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 02/06/2017] [Indexed: 01/21/2023] Open
Abstract
In the nervous system, excessive activation of NMDA receptors causes neuronal injury. Although activation of NMDARs has been proposed to contribute to the progress of diabetes, little is known about the effect of excessive long-term activation of NMDARs on β-cells, especially under the challenge of hyperglycemia. Here we thoroughly investigated whether endogenous glutamate aggravated β-cell dysfunction under chronic exposure to high-glucose via activation of NMDARs. The glutamate level was increased in plasma of diabetic mice or patients and in the supernatant of β-cell lines after treatment with high-glucose for 72 h. Decomposing the released glutamate improved GSIS of β-cells under chronic high-glucose exposure. Long-term treatment of β-cells with NMDA inhibited cell viability and decreased GSIS. These effects were eliminated by GluN1 knockout. The NMDAR antagonist MK-801 or GluN1 knockout prevented high-glucose-induced dysfunction in β-cells. MK-801 also decreased the expression of pro-inflammatory cytokines, and inhibited I-κB degradation, ROS generation and NLRP3 inflammasome expression in β-cells exposed to high-glucose. Furthermore, another NMDAR antagonist, Memantine, improved β-cells function in diabetic mice. Taken together, these findings indicate that an increase of glutamate may contribute to the development of diabetes through excessive activation of NMDARs in β-cells, accelerating β-cells dysfunction and apoptosis induced by hyperglycemia.
Collapse
|
25
|
Petrenko V, Gosmain Y, Dibner C. High-Resolution Recording of the Circadian Oscillator in Primary Mouse α- and β-Cell Culture. Front Endocrinol (Lausanne) 2017; 8:68. [PMID: 28439257 PMCID: PMC5383706 DOI: 10.3389/fendo.2017.00068] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 03/24/2017] [Indexed: 01/14/2023] Open
Abstract
Circadian clocks have been developed in evolution as an anticipatory mechanism allowing for adaptation to the constantly changing light environment due to rotation of the Earth. This mechanism is functional in all light-sensitive organisms. There is a considerable body of evidence on the tight connection between the circadian clock and most aspects of physiology and metabolism. Clocks, operative in the pancreatic islets, have caught particular attention in the last years due to recent reports on their critical roles in regulation of insulin secretion and etiology of type 2 diabetes. While β-cell clocks have been extensively studied during the last years, α-cell clocks and their role in islet function and orchestration of glucose metabolism stayed unexplored, largely due to the difficulty to isolate α-cells, which represents a considerable technical challenge. Here, we provide a detailed description of an experimental approach for the isolation of separate mouse α- and β-cell population, culture of isolated primary α- and β-cells, and their subsequent long-term high-resolution circadian bioluminescence recording. For this purpose, a triple reporter ProGlucagon-Venus/RIP-Cherry/Per2:Luciferase mouse line was established, carrying specific fluorescent reporters for α- and β-cells, and luciferase reporter for monitoring the molecular clockwork. Flow cytometry fluorescence-activated cell sorting allowed separating pure α- and β-cell populations from isolated islets. Experimental conditions, developed by us for the culture of functional primary mouse α- and β-cells for at least 10 days, will be highlighted. Importantly, temporal analysis of freshly isolated α- and β-cells around-the-clock revealed preserved rhythmicity of core clock genes expression. Finally, we describe the setting to assess circadian rhythm in cultured α- and β-cells synchronized in vitro. The here-described methodology allows to analyze the functional properties of primary α- and β-cells under physiological or pathophysiological conditions and to assess the islet cellular clock properties.
Collapse
Affiliation(s)
- Volodymyr Petrenko
- Endocrinology, Diabetes, Hypertension and Nutrition Division, Department of Specialties of Medicine, University Hospital of Geneva, Geneva, Switzerland
- Faculty of Medicine, Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
- Institute of Genetics and Genomics in Geneva (iGE3), Geneva, Switzerland
- Diabetes Center of the Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Yvan Gosmain
- Diabetes Center of the Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Molecular Diabetes Laboratory, Endocrinology, Diabetes, Hypertension and Nutrition Division, Faculty of Medicine, Department of Specialties of Medicine, University Hospital of Geneva, University of Geneva, Geneva, Switzerland
| | - Charna Dibner
- Endocrinology, Diabetes, Hypertension and Nutrition Division, Department of Specialties of Medicine, University Hospital of Geneva, Geneva, Switzerland
- Faculty of Medicine, Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
- Institute of Genetics and Genomics in Geneva (iGE3), Geneva, Switzerland
- Diabetes Center of the Faculty of Medicine, University of Geneva, Geneva, Switzerland
- *Correspondence: Charna Dibner,
| |
Collapse
|
26
|
Affiliation(s)
- Sebastian Barg
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Alenka Guček
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
27
|
Zhang C, Caldwell TA, Mirbolooki MR, Duong D, Park EJ, Chi NW, Chessler SD. Extracellular CADM1 interactions influence insulin secretion by rat and human islet β-cells and promote clustering of syntaxin-1. Am J Physiol Endocrinol Metab 2016; 310:E874-85. [PMID: 27072493 PMCID: PMC4935136 DOI: 10.1152/ajpendo.00318.2015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 04/08/2016] [Indexed: 11/22/2022]
Abstract
Contact between β-cells is necessary for their normal function. Identification of the proteins mediating the effects of β-cell-to-β-cell contact is a necessary step toward gaining a full understanding of the determinants of β-cell function and insulin secretion. The secretory machinery of the β-cells is nearly identical to that of central nervous system (CNS) synapses, and we hypothesize that the transcellular protein interactions that drive maturation of the two secretory machineries upon contact of one cell (or neural process) with another are also highly similar. Two such transcellular interactions, important for both synaptic and β-cell function, have been identified: EphA/ephrin-A and neuroligin/neurexin. Here, we tested the role of another synaptic cleft protein, CADM1, in insulinoma cells and in rat and human islet β-cells. We found that CADM1 is a predominant CADM isoform in β-cells. In INS-1 cells and primary β-cells, CADM1 constrains insulin secretion, and its expression decreases after prolonged glucose stimulation. Using a coculture model, we found that CADM1 also influences insulin secretion in a transcellular manner. We asked whether extracellular CADM1 interactions exert their influence via the same mechanisms by which they influence neurotransmitter exocytosis. Our results suggest that, as in the CNS, CADM1 interactions drive exocytic site assembly and promote actin network formation. These results support the broader hypothesis that the effects of cell-cell contact on β-cell maturation and function are mediated by the same extracellular protein interactions that drive the formation of the presynaptic exocytic machinery. These interactions may be therapeutic targets for reversing β-cell dysfunction in diabetes.
Collapse
Affiliation(s)
- Charles Zhang
- Department of Medicine, University of California, Irvine, School of Medicine, Irvine, California
| | - Thomas A Caldwell
- Department of Medicine, University of California, Irvine, School of Medicine, Irvine, California
| | - M Reza Mirbolooki
- Department of Medicine, University of California, Irvine, School of Medicine, Irvine, California
| | - Diana Duong
- Pediatric Diabetes Research Center, University of California San Diego, La Jolla, California; and
| | - Eun Jee Park
- Department of Medicine, University of California, Irvine, School of Medicine, Irvine, California
| | - Nai-Wen Chi
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Steven D Chessler
- Department of Medicine, University of California, Irvine, School of Medicine, Irvine, California;
| |
Collapse
|
28
|
Wang Y, Han C, Zhu W, Wu Z, Liu Y, Chen L. An optical method to evaluate both mass and functional competence of pancreatic α- and β-cells. J Cell Sci 2016; 129:2462-71. [PMID: 27173492 DOI: 10.1242/jcs.184523] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 04/28/2016] [Indexed: 01/09/2023] Open
Abstract
Imbalanced glucagon and insulin release leads to the onset of type 2 diabetes. To pinpoint the underlying primary driving force, here we have developed a fast, non-biased optical method to measure ratios of pancreatic α- and β-cell mass and function simultaneously. We firstly label both primary α- and β-cells with the red fluorescent probe ZinRhodaLactam-1 (ZRL1), and then highlight α-cells by selectively quenching the ZRL1 signal from β-cells. Based on the signals before and after quenching, we calculate the ratio of the α-cell to β-cell mass within live islets, which we found matched the results from immunohistochemistry. From the same islets, glucagon and insulin release capability can be concomitantly measured. Thus, we were able to measure the ratio of α-cell to β-cell mass and their function in wild-type and diabetic Lepr(db)/Lepr(db) (denoted db/db) mice at different ages. We find that the initial glucose intolerance that appears in 10-week-old db/db mice is associated with further expansion of α-cell mass prior to deterioration in functional β-cell mass. Our method is extendable to studies of islet mass and function in other type 2 diabetes animal models, which shall benefit mechanistic studies of imbalanced hormone secretion during type 2 diabetes progression.
Collapse
Affiliation(s)
- Yi Wang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - Chengsheng Han
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - Wenzhen Zhu
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - Zhengxing Wu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yanmei Liu
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - Liangyi Chen
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing 100871, China
| |
Collapse
|
29
|
Barbieux C, Parnaud G, Lavallard V, Brioudes E, Meyer J, Alibashe Ahmed M, Berishvili E, Berney T, Bosco D. Asymmetrical distribution of δ and PP cells in human pancreatic islets. J Endocrinol 2016; 229:123-32. [PMID: 26931137 DOI: 10.1530/joe-15-0542] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 03/01/2016] [Indexed: 01/09/2023]
Abstract
The aim of this study was to evaluate the location of PP and δ cells in relation to the vascularization within human pancreatic islets. To this end, pancreas sections were analysed by immunofluorescence using antibodies against endocrine islet and endothelial cells. Staining in different islet areas corresponding to islet cells adjacent or not to peripheral or central vascular channels was quantified by computerized morphometry. As results, α, PP and δ cells were preferentially found adjacent to vessels. In contrast to α cells, which were evenly distributed between islet periphery and intraislet vascular channels, PP and δ cells had asymmetric and opposite distributions: PP staining was higher and somatostatin staining was lower in the islet periphery than in the area around intraislet vascular channels. Additionally, frequencies of PP and δ cells were negatively correlated in the islets. No difference was observed between islets from the head and the tail of the pancreas, and from type 2 diabetic and non-diabetic donors. In conclusion, the distribution of δ cells differs from that of PP cells in human islets, suggesting that vessels at the periphery and at the centre of islets drain different hormonal cocktails.
Collapse
Affiliation(s)
- Charlotte Barbieux
- Department of SurgeryCell Isolation and Transplantation Center, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Géraldine Parnaud
- Department of SurgeryCell Isolation and Transplantation Center, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Vanessa Lavallard
- Department of SurgeryCell Isolation and Transplantation Center, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Estelle Brioudes
- Department of SurgeryCell Isolation and Transplantation Center, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Jérémy Meyer
- Department of SurgeryCell Isolation and Transplantation Center, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Mohamed Alibashe Ahmed
- Department of SurgeryCell Isolation and Transplantation Center, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Ekaterine Berishvili
- Department of SurgeryCell Isolation and Transplantation Center, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Thierry Berney
- Department of SurgeryCell Isolation and Transplantation Center, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Domenico Bosco
- Department of SurgeryCell Isolation and Transplantation Center, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| |
Collapse
|
30
|
Striegel DA, Hara M, Periwal V. Adaptation of pancreatic islet cyto-architecture during development. Phys Biol 2016; 13:025004. [PMID: 27063927 DOI: 10.1088/1478-3975/13/2/025004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Plasma glucose in mammals is regulated by hormones secreted by the islets of Langerhans embedded in the exocrine pancreas. Islets consist of endocrine cells, primarily α, β, and δ cells, which secrete glucagon, insulin, and somatostatin, respectively. β cells form irregular locally connected clusters within islets that act in concert to secrete insulin upon glucose stimulation. Varying demands and available nutrients during development produce changes in the local connectivity of β cells in an islet. We showed in earlier work that graph theory provides a framework for the quantification of the seemingly stochastic cyto-architecture of β cells in an islet. To quantify the dynamics of endocrine connectivity during development requires a framework for characterizing changes in the probability distribution on the space of possible graphs, essentially a Fokker-Planck formalism on graphs. With large-scale imaging data for hundreds of thousands of islets containing millions of cells from human specimens, we show that this dynamics can be determined quantitatively. Requiring that rearrangement and cell addition processes match the observed dynamic developmental changes in quantitative topological graph characteristics strongly constrained possible processes. Our results suggest that there is a transient shift in preferred connectivity for β cells between 1-35 weeks and 12-24 months.
Collapse
|
31
|
Hoang DT, Hara M, Jo J. Design Principles of Pancreatic Islets: Glucose-Dependent Coordination of Hormone Pulses. PLoS One 2016; 11:e0152446. [PMID: 27035570 PMCID: PMC4818077 DOI: 10.1371/journal.pone.0152446] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 03/14/2016] [Indexed: 11/18/2022] Open
Abstract
Pancreatic islets are functional units involved in glucose homeostasis. The multicellular system comprises three main cell types; β and α cells reciprocally decrease and increase blood glucose by producing insulin and glucagon pulses, while the role of δ cells is less clear. Although their spatial organization and the paracrine/autocrine interactions between them have been extensively studied, the functional implications of the design principles are still lacking. In this study, we formulated a mathematical model that integrates the pulsatility of hormone secretion and the interactions and organization of islet cells and examined the effects of different cellular compositions and organizations in mouse and human islets. A common feature of both species was that islet cells produced synchronous hormone pulses under low- and high-glucose conditions, while they produced asynchronous hormone pulses under normal glucose conditions. However, the synchronous coordination of insulin and glucagon pulses at low glucose was more pronounced in human islets that had more α cells. When β cells were selectively removed to mimic diabetic conditions, the anti-synchronicity of insulin and glucagon pulses was deteriorated at high glucose, but it could be partially recovered when the re-aggregation of remaining cells was considered. Finally, the third cell type, δ cells, which introduced additional complexity in the multicellular system, prevented the excessive synchronization of hormone pulses. Our computational study suggests that controllable synchronization is a design principle of pancreatic islets.
Collapse
Affiliation(s)
- Danh-Tai Hoang
- Asia Pacific Center for Theoretical Physics, Pohang, Gyeongbuk 36763, Korea
- Department of Natural Sciences, Quang Binh University, Dong Hoi, Quang Binh 510000, Vietnam
| | - Manami Hara
- Department of Medicine, The University of Chicago, Chicago, IL 60637, United States of America
| | - Junghyo Jo
- Asia Pacific Center for Theoretical Physics, Pohang, Gyeongbuk 36763, Korea
- Department of Physics, Pohang University of Science and Technology, Pohang, Gyeongbuk 36763, Korea
- * E-mail:
| |
Collapse
|
32
|
Adult cell plasticity in vivo: de-differentiation and transdifferentiation are back in style. Nat Rev Mol Cell Biol 2016; 17:413-25. [PMID: 26979497 DOI: 10.1038/nrm.2016.24] [Citation(s) in RCA: 289] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Biologists have long been intrigued by the possibility that cells can change their identity, a phenomenon known as cellular plasticity. The discovery that terminally differentiated cells can be experimentally coaxed to become pluripotent has invigorated the field, and recent studies have demonstrated that changes in cell identity are not limited to the laboratory. Specifically, certain adult cells retain the capacity to de-differentiate or transdifferentiate under physiological conditions, as part of an organ's normal injury response. Recent studies have highlighted the extent to which cell plasticity contributes to tissue homeostasis, findings that have implications for cell-based therapy.
Collapse
|
33
|
Otter S, Lammert E. Exciting Times for Pancreatic Islets: Glutamate Signaling in Endocrine Cells. Trends Endocrinol Metab 2016; 27:177-188. [PMID: 26740469 DOI: 10.1016/j.tem.2015.12.004] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 12/11/2015] [Accepted: 12/14/2015] [Indexed: 01/14/2023]
Abstract
Glutamate represents a key excitatory neurotransmitter in the central nervous system, and also modulates the function and viability of endocrine cells in pancreatic islets. In insulin-secreting beta cells, glutamate acts as an intracellular messenger, and its transport into secretory granules promotes glucose- and incretin-stimulated insulin secretion. Mitochondrial degradation of glutamate also contributes to insulin release when glutamate dehydrogenase is allosterically activated. It also signals extracellularly via glutamate receptors (AMPA and NMDA receptors) to modulate glucagon, insulin and somatostatin secretion, and islet cell survival. Its degradation products, GABA and γ-hydroxybutyrate, are released and also influence islet cell behavior. Thus, islet glutamate receptors, such as the NMDA receptors, might serve as possible drug targets to develop new medications for adjunct treatment of diabetes.
Collapse
Affiliation(s)
- Silke Otter
- Institute of Metabolic Physiology, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany; Institute for Beta Cell Biology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research, and German Center for Diabetes Research (DZD e.V.), Düsseldorf, Germany
| | - Eckhard Lammert
- Institute of Metabolic Physiology, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany; Institute for Beta Cell Biology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research, and German Center for Diabetes Research (DZD e.V.), Düsseldorf, Germany.
| |
Collapse
|
34
|
Dolenšek J, Špelič D, Skelin Klemen M, Žalik B, Gosak M, Slak Rupnik M, Stožer A. Membrane Potential and Calcium Dynamics in Beta Cells from Mouse Pancreas Tissue Slices: Theory, Experimentation, and Analysis. SENSORS 2015; 15:27393-419. [PMID: 26516866 PMCID: PMC4701238 DOI: 10.3390/s151127393] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 10/11/2015] [Accepted: 10/14/2015] [Indexed: 12/17/2022]
Abstract
Beta cells in the pancreatic islets of Langerhans are precise biological sensors for glucose and play a central role in balancing the organism between catabolic and anabolic needs. A hallmark of the beta cell response to glucose are oscillatory changes of membrane potential that are tightly coupled with oscillatory changes in intracellular calcium concentration which, in turn, elicit oscillations of insulin secretion. Both membrane potential and calcium changes spread from one beta cell to the other in a wave-like manner. In order to assess the properties of the abovementioned responses to physiological and pathological stimuli, the main challenge remains how to effectively measure membrane potential and calcium changes at the same time with high spatial and temporal resolution, and also in as many cells as possible. To date, the most wide-spread approach has employed the electrophysiological patch-clamp method to monitor membrane potential changes. Inherently, this technique has many advantages, such as a direct contact with the cell and a high temporal resolution. However, it allows one to assess information from a single cell only. In some instances, this technique has been used in conjunction with CCD camera-based imaging, offering the opportunity to simultaneously monitor membrane potential and calcium changes, but not in the same cells and not with a reliable cellular or subcellular spatial resolution. Recently, a novel family of highly-sensitive membrane potential reporter dyes in combination with high temporal and spatial confocal calcium imaging allows for simultaneously detecting membrane potential and calcium changes in many cells at a time. Since the signals yielded from both types of reporter dyes are inherently noisy, we have developed complex methods of data denoising that permit for visualization and pixel-wise analysis of signals. Combining the experimental approach of high-resolution imaging with the advanced analysis of noisy data enables novel physiological insights and reassessment of current concepts in unprecedented detail.
Collapse
Affiliation(s)
- Jurij Dolenšek
- Institute of Physiology, Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia; E-Mails: (J.D.); (M.S.K.); (M.G.); (M.S.R.)
| | - Denis Špelič
- Faculty of Electrical Engineering and Computer Science, University of Maribor, SI-2000 Maribor, Slovenia; E-Mails: (D.Š.); (B.Ž.)
| | - Maša Skelin Klemen
- Institute of Physiology, Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia; E-Mails: (J.D.); (M.S.K.); (M.G.); (M.S.R.)
| | - Borut Žalik
- Faculty of Electrical Engineering and Computer Science, University of Maribor, SI-2000 Maribor, Slovenia; E-Mails: (D.Š.); (B.Ž.)
- Center for Open Innovation and Research, Core@UM, University of Maribor, SI-2000 Maribor, Slovenia
| | - Marko Gosak
- Institute of Physiology, Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia; E-Mails: (J.D.); (M.S.K.); (M.G.); (M.S.R.)
- Center for Open Innovation and Research, Core@UM, University of Maribor, SI-2000 Maribor, Slovenia
- Department of Physics, Faculty of Natural Sciences and Mathematics, University of Maribor, SI-2000 Maribor, Slovenia
| | - Marjan Slak Rupnik
- Institute of Physiology, Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia; E-Mails: (J.D.); (M.S.K.); (M.G.); (M.S.R.)
- Center for Open Innovation and Research, Core@UM, University of Maribor, SI-2000 Maribor, Slovenia
- Center for Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Andraž Stožer
- Institute of Physiology, Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia; E-Mails: (J.D.); (M.S.K.); (M.G.); (M.S.R.)
- Center for Open Innovation and Research, Core@UM, University of Maribor, SI-2000 Maribor, Slovenia
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +386-2-2345843
| |
Collapse
|
35
|
Di Cairano ES, Moretti S, Marciani P, Sacchi VF, Castagna M, Davalli A, Folli F, Perego C. Neurotransmitters and Neuropeptides: New Players in the Control of Islet of Langerhans' Cell Mass and Function. J Cell Physiol 2015; 231:756-67. [PMID: 26332080 DOI: 10.1002/jcp.25176] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 08/27/2015] [Indexed: 12/19/2022]
Abstract
Islets of Langerhans control whole body glucose homeostasis, as they respond, releasing hormones, to changes in nutrient concentrations in the blood stream. The regulation of hormone secretion has been the focus of attention for a long time because it is related to many metabolic disorders, including diabetes mellitus. Endocrine cells of the islet use a sophisticate system of endocrine, paracrine and autocrine signals to synchronize their activities. These signals provide a fast and accurate control not only for hormone release but also for cell differentiation and survival, key aspects in islet physiology and pathology. Among the different categories of paracrine/autocrine signals, this review highlights the role of neurotransmitters and neuropeptides. In a manner similar to neurons, endocrine cells synthesize, accumulate, release neurotransmitters in the islet milieu, and possess receptors able to decode these signals. In this review, we provide a comprehensive description of neurotransmitter/neuropetide signaling pathways present within the islet. Then, we focus on evidence supporting the concept that neurotransmitters/neuropeptides and their receptors are interesting new targets to preserve β-cell function and mass. A greater understanding of how this network of signals works in physiological and pathological conditions would advance our knowledge of islet biology and physiology and uncover potentially new areas of pharmacological intervention. J. Cell. Physiol. 231: 756-767, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Eliana S Di Cairano
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Laboratory of Molecular and Cellular Physiology, Universit, à, degli Studi di Milano, Milan, Italy
| | - Stefania Moretti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Laboratory of Molecular and Cellular Physiology, Universit, à, degli Studi di Milano, Milan, Italy
| | - Paola Marciani
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Laboratory of Molecular and Cellular Physiology, Universit, à, degli Studi di Milano, Milan, Italy
| | - Vellea Franca Sacchi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Laboratory of Molecular and Cellular Physiology, Universit, à, degli Studi di Milano, Milan, Italy
| | - Michela Castagna
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Laboratory of Molecular and Cellular Physiology, Universit, à, degli Studi di Milano, Milan, Italy
| | - Alberto Davalli
- Department of Internal Medicine, Diabetes and Endocrinology Unit, San Raffaele Scientific Institute, Milan, Italy
| | - Franco Folli
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, Texas.,Department of Internal Medicine, Obesity and Comorbidities Research Center (OCRC), University of Campinas, UNICAMP, Campinas, Sao Paulo State, Brazil
| | - Carla Perego
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Laboratory of Molecular and Cellular Physiology, Universit, à, degli Studi di Milano, Milan, Italy
| |
Collapse
|
36
|
Matsuo T, Miyagawa JI, Kusunoki Y, Miuchi M, Ikawa T, Akagami T, Tokuda M, Katsuno T, Kushida A, Inagaki T, Namba M. Postabsorptive hyperglucagonemia in patients with type 2 diabetes mellitus analyzed with a novel enzyme-linked immunosorbent assay. J Diabetes Investig 2015; 7:324-31. [PMID: 27330717 PMCID: PMC4847885 DOI: 10.1111/jdi.12400] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 06/29/2015] [Accepted: 07/09/2015] [Indexed: 01/11/2023] Open
Abstract
Aims/introduction The aims of the present study were to investigate the performance of a novel sandwich enzyme‐linked immunosorbent assay (ELISA) for measuring glucagon (1–29) with monoclonal antibodies against both the C‐ and N‐terminal regions of glucagon (1–29), and to analyze the differences in plasma levels and responses of glucagon (1–29) to oral glucose loading in normal glucose tolerance (NGT) subjects and patients with type 2 diabetes mellitus. Materials and Methods The cross‐reactivity against proglucagon fragments using the ELISA kit and two types of conventional radioimmunoassay (RIA) kits was evaluated. A 75‐g oral glucose tolerance test was carried out with NGT subjects and patients with type 2 diabetes mellitus, and the glucagon (1–29) concentration was measured using three types of kit. Results The ELISA kit clearly had the lowest cross‐reactivity against miniglucagon (19–29) and glicentin (1–61). The oral glucose tolerance test was carried out with 30 NGT and 17 patients with type 2 diabetes mellitus. The glucagon (1–29) levels measured by the ELISA kit after glucose loading were significantly higher at all time‐points in the type 2 diabetes mellitus group than in the NGT group. However, the glucagon (1–29) levels measured by one RIA kit were significantly higher in the NGT group, and those measured with the other RIA kit were approximately the same among the groups. Conclusions The novel sandwich ELISA accurately determines plasma glucagon (1–29) concentrations with much less cross‐reactivity against other proglucagon fragments than conventional RIA kits.
Collapse
Affiliation(s)
- Toshihiro Matsuo
- Division of Diabetes, Endocrinology and Metabolism Department of Internal Medicine Hyogo College of Medicine Nishinomiya Hyogo Japan
| | - Jun-Ichiro Miyagawa
- Division of Diabetes, Endocrinology and Metabolism Department of Internal Medicine Hyogo College of Medicine Nishinomiya Hyogo Japan
| | - Yoshiki Kusunoki
- Division of Diabetes, Endocrinology and Metabolism Department of Internal Medicine Hyogo College of Medicine Nishinomiya Hyogo Japan
| | - Masayuki Miuchi
- Division of Diabetes, Endocrinology and Metabolism Department of Internal Medicine Hyogo College of Medicine Nishinomiya Hyogo Japan
| | - Takashi Ikawa
- Division of Diabetes, Endocrinology and Metabolism Department of Internal Medicine Hyogo College of Medicine Nishinomiya Hyogo Japan
| | - Takafumi Akagami
- Division of Diabetes, Endocrinology and Metabolism Department of Internal Medicine Hyogo College of Medicine Nishinomiya Hyogo Japan
| | - Masaru Tokuda
- Division of Diabetes, Endocrinology and Metabolism Department of Internal Medicine Hyogo College of Medicine Nishinomiya Hyogo Japan
| | - Tomoyuki Katsuno
- Division of Innovative Diabetes Treatment Hyogo College of Medicine Nishinomiya Hyogo Japan
| | | | | | - Mitsuyoshi Namba
- Division of Diabetes, Endocrinology and Metabolism Department of Internal Medicine Hyogo College of Medicine Nishinomiya Hyogo Japan
| |
Collapse
|
37
|
Elliott AD, Ustione A, Piston DW. Somatostatin and insulin mediate glucose-inhibited glucagon secretion in the pancreatic α-cell by lowering cAMP. Am J Physiol Endocrinol Metab 2015; 308:E130-43. [PMID: 25406263 PMCID: PMC4297778 DOI: 10.1152/ajpendo.00344.2014] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The dysregulation of glucose-inhibited glucagon secretion from the pancreatic islet α-cell is a critical component of diabetes pathology and metabolic disease. We show a previously uncharacterized [Ca(2+)]i-independent mechanism of glucagon suppression in human and murine pancreatic islets whereby cAMP and PKA signaling are decreased. This decrease is driven by the combination of somatostatin, which inhibits adenylyl cyclase production of cAMP via the Gαi subunit of the SSTR2, and insulin, which acts via its receptor to activate phosphodiesterase 3B and degrade cytosolic cAMP. Our data indicate that both somatostatin and insulin signaling are required to suppress cAMP/PKA and glucagon secretion from both human and murine α-cells, and the combination of these two signaling mechanisms is sufficient to reduce glucagon secretion from isolated α-cells as well as islets. Thus, we conclude that somatostatin and insulin together are critical paracrine mediators of glucose-inhibited glucagon secretion and function by lowering cAMP/PKA signaling with increasing glucose.
Collapse
Affiliation(s)
- Amicia D Elliott
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee
| | - Alessandro Ustione
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee
| | - David W Piston
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
38
|
Co-expression of the homologous proteases fibroblast activation protein and dipeptidyl peptidase-IV in the adult human Langerhans islets. Histochem Cell Biol 2014; 143:497-504. [PMID: 25361590 DOI: 10.1007/s00418-014-1292-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2014] [Indexed: 02/05/2023]
Abstract
Fibroblast activation protein (FAP, seprase, EC 3.4.21.B28) and dipeptidyl peptidase-IV (DPP-IV, CD26, EC 3.4.14.5) are homologous serine proteases implicated in the modulation of the bioavailability and thus the function of a number of biologically active peptides. In spite of their generally nonoverlapping expression patterns, DPP-IV and FAP are co-expressed and probably co-regulated in certain cell types suggesting that for some biological processes their functional synergy is essential. By an in situ enzymatic activity assay, we show an abundant DPP-IV-like enzymatic activity sensitive to a highly specific DPP-IV inhibitor sitagliptin and corresponding DPP-IV immunoreactivity in the adult human islets of Langerhans. Moreover, the homologous protease FAP was present in the human endocrine pancreas and was co-expressed with DPP-IV. DPP-IV and FAP were found in the pancreatic alpha cells as determined by the co-localization with glucagon immunoreactivity. In summary, we show abundant enzymatic activity of the canonical DPP-IV (CD26) in Langerhans islets in the natural tissue context and demonstrate for the first time the co-expression of FAP and DPP-IV in pancreatic alpha cells in adult humans. Given their ability to proteolytically modify several biologically active peptides, both proteases have the potential to modulate the paracrine signaling in the human Langerhans islets.
Collapse
|
39
|
Hoang DT, Song J, Jo J. Partial mixing phase of binary cells in finite systems. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 88:062725. [PMID: 24483504 DOI: 10.1103/physreve.88.062725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Indexed: 06/03/2023]
Abstract
We study the self-organization of binary cell mixtures in finite cubic lattices. Depending on the relative attractions between cell types, the binary mixture model generates four distinct cellular associations: complete sorting, shell-core sorting, partial mixing, and complete mixing of heterotypic cells. At the boundaries between these four phases, the cellular associations show large variations, representing phase transitions. We find that the partial mixing phase is highly tolerant to thermal fluctuations. Interestingly, human pancreatic islets, the micro-organs for glucose homeostasis, adapt the partial mixing phase consisting of α and β cells.
Collapse
Affiliation(s)
- Danh-Tai Hoang
- Asia Pacific Center for Theoretical Physics, Pohang, Korea
| | - Juyong Song
- Asia Pacific Center for Theoretical Physics, Pohang, Korea and Department of Physics, POSTECH, Pohang, Korea
| | - Junghyo Jo
- Asia Pacific Center for Theoretical Physics, Pohang, Korea and Department of Physics, POSTECH, Pohang, Korea
| |
Collapse
|
40
|
Hong H, Jo J, Sin SJ. Stable and flexible system for glucose homeostasis. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 88:032711. [PMID: 24125298 DOI: 10.1103/physreve.88.032711] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 07/17/2013] [Indexed: 06/02/2023]
Abstract
Pancreatic islets, controlling glucose homeostasis, consist of α, β, and δ cells. It has been observed that α and β cells generate out-of-phase synchronization in the release of glucagon and insulin, counter-regulatory hormones for increasing and decreasing glucose levels, while β and δ cells produce in-phase synchronization in the release of the insulin and somatostatin. Pieces of interactions between the islet cells have been observed for a long time, although their physiological role as a whole has not been explored yet. We model the synchronized hormone pulses of islets with coupled phase oscillators that incorporate the observed cellular interactions. The integrated model shows that the interaction from β to δ cells, of which sign is a subject of controversy, should be positive to reproduce the in-phase synchronization between β and δ cells. The model also suggests that δ cells help the islet system flexibly respond to changes of glucose environment.
Collapse
Affiliation(s)
- Hyunsuk Hong
- Department of Physics and Research Institute of Physics and Chemistry, Chonbuk National University, Jeonju 561-756, Korea
| | | | | |
Collapse
|
41
|
In intact islets interstitial GABA activates GABA(A) receptors that generate tonic currents in α-cells. PLoS One 2013; 8:e67228. [PMID: 23826240 PMCID: PMC3691163 DOI: 10.1371/journal.pone.0067228] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 05/15/2013] [Indexed: 11/19/2022] Open
Abstract
In the rat islets γ-aminobutyric acid (GABA) is produced by the β-cells and, at least, the α-cells express the GABAA receptors (GABAA channels). In this study, we examined in intact islets if the interstitial GABA activated the GABAA receptors. We used the patch-clamp technique to record whole-cell and single-channel currents and single-cell RT-PCR to identify the cell-type we recorded from, in the intact rat islets. We further identified which GABAA receptor subunits were expressed. We determined the cell-type of 43 cells we recorded from and of these 49%, 28% and 7% were α, β and δ-cells, respectively. In the remaining 16% of the cells, mRNA transcripts of more than one hormone gene were detected. The results show that in rat islets interstitial GABA activates tonic current in the α-cells but not in the β-cells. Seventeen different GABAA receptor subunits are expressed with high expression of α1, α2, α4, α6, β3, γ1, δ, ρ1, ρ2 and ρ3 subunits whereas no expression was detected for α5 or ε subunits. The abundance of the GABAA receptor subunits detected suggests that a number of GABAA receptor subtypes are formed in the islets. The single-channel and tonic currents were enhanced by pentobarbital and inhibited by the GABAA receptor antagonist SR-95531. The single-channel conductance ranged from 24 to 105 pS. Whether the single-channel conductance is related to subtypes of the GABAA receptor or variable interstitial GABA concentrations remains to be determined. Our results reveal that GABA is an extracellular signaling molecule in rat pancreatic islets and reaches concentration levels that activate GABAA receptors on the glucagon-releasing α-cells.
Collapse
|
42
|
Cheng CY, Zhou Z, Nikitin AY. Detection and organ-specific ablation of neuroendocrine cells by synaptophysin locus-based BAC cassette in transgenic mice. PLoS One 2013; 8:e60905. [PMID: 23630575 PMCID: PMC3632533 DOI: 10.1371/journal.pone.0060905] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Accepted: 03/05/2013] [Indexed: 12/24/2022] Open
Abstract
The role of cells of the diffuse neuroendocrine system in development and maintenance of individual organs and tissues remains poorly understood. Here we identify a regulatory region sufficient for accurate in vivo expression of synaptophysin (SYP), a common marker of neuroendocrine differentiation, and report generation of Tg(Syp-EGFP(loxP)-DTA)147(Ayn) (SypELDTA) mice suitable for flexible organ-specific ablation of neuroendocrine cells. These mice express EGFP and diphtheria toxin fragment A (DTA) in SYP positive cells before and after Cre-loxP mediated recombination, respectively. As a proof of principle, we have crossed SypELDTA mice with EIIA-Cre and PB-Cre4 mice. EIIA-Cre mice express Cre recombinase in a broad range of tissues, while PB-Cre4 mice specifically express Cre recombinase in the prostate epithelium. Double transgenic EIIA-Cre; SypELDTA embryos exhibited massive cell death in SYP positive cells. At the same time, PB-Cre4; SypELDTA mice showed a substantial decrease in the number of neuroendocrine cells and associated prostate hypotrophy. As no increase in cell death and/or Cre-loxP mediated recombination was observed in non-neuroendocrine epithelium cells, these results suggest that neuroendocrine cells play an important role in prostate development. High cell type specificity of Syp locus-based cassette and versatility of generated mouse model should assure applicability of these resources to studies of neuroendocrine cell functions in various tissues and organs.
Collapse
Affiliation(s)
- Chieh-Yang Cheng
- Department of Biomedical Sciences, Cornell University, Ithaca, New York, United States of America
| | - Zongxiang Zhou
- Department of Biomedical Sciences, Cornell University, Ithaca, New York, United States of America
| | - Alexander Yu. Nikitin
- Department of Biomedical Sciences, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
43
|
Cuttitta CM, Guariglia SR, Idrissi AE, L’Amoreaux WJ. Taurine’s Effects on the Neuroendocrine Functions of Pancreatic β Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 775:299-310. [DOI: 10.1007/978-1-4614-6130-2_25] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|