1
|
Catakli D, Erzurumlu Y, Asci H, Savran M, Sezer S. Evaluation of cytoprotective effects of cannabidiol on neuroinflammation and neurogenesis process in rat offsprings. Reprod Toxicol 2024; 132:108761. [PMID: 39615608 DOI: 10.1016/j.reprotox.2024.108761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/12/2024]
Abstract
Natural compounds include complex chemical compounds that exist in plants, animals and microbes. Due to their broad spectrum of pharmacological and biochemical actions, they have been widely used to treat multifactorial diseases, including cancer. In addition, their demonstrated neuroprotective properties strongly support their use in the treatment of neurological diseases. The present study investigated the effect of cannabidiol (CBD), which can easily cross the placental barrier and is known to have anti-inflammatory effects, on fetal neuroinflammation and neurogenesis in a systemic inflammation model during pregnancy. Herein, 12 weeks adult pregnant rats (n = 30) were randomly divided into 5 groups with 6 rats in each group as follows: Control, LPS (lipopolysaccharide, i.p.), LPS+CBD 5 mg/kg (i.p.), LPS+CBD10 mg/kg (i.p.) and LPS+CBD30 mg/kg (i.p.). After the injections, blood samples of rats were collected, fetuses and placentas were taken by hysterectomy. Histopathological analysis, immunohistochemical staining, ELISA and immunoblotting analysis were performed to investigate neuroinflammatory and neurogenesis parameters in fetal brain and placenta tissues. Our findings indicated that CBD administration importantly suppressed the inflammatory process in the rat fetal brain by decreasing interleukin-1beta (IL-1β) and tumor necrosis factor-alpha (TNF-α) levels and diminishing nuclear factor kappa B (NF-κB) activation. Moreover, CBD inhibited lipopolysaccharide (LPS)-induced increasing levels of neuroinflammation-associated proteins, including glial fibrillary acidic protein (GFAP), S100B and cAMP-response element binding protein (CREB). These results suggest that CBD usage in pregnancy with inflammation conditions may be an effective therapeutic option for preventing conditions that may cause neuroinflammation in the fetal brain and adversely affect neurogenesis.
Collapse
Affiliation(s)
- Deniz Catakli
- Department of Pharmacology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Yalcin Erzurumlu
- Department of Biochemistry, Faculty of Pharmacy, Suleyman Demirel University, Isparta, Turkey; Department of Drug Research and Development, Institute of Health Sciences, Suleyman Demirel University, Isparta, Turkey.
| | - Halil Asci
- Department of Pharmacology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Mehtap Savran
- Department of Pharmacology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Serdar Sezer
- Department of Pharmacology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey.
| |
Collapse
|
2
|
Tsuboi H, Sakakibara H, Minamida-Urata Y, Tsujiguchi H, Hara A, Suzuki K, Miyagi S, Nakamura M, Takazawa C, Kannon T, Zhao J, Shimizu Y, Shibata A, Ogawa A, Suzuki F, Kambayashi Y, Konoshita T, Tajima A, Nakamura H. Serum TNFα and IL-17A levels may predict increased depressive symptoms: findings from the Shika Study cohort project in Japan. Biopsychosoc Med 2024; 18:20. [PMID: 39358787 PMCID: PMC11446020 DOI: 10.1186/s13030-024-00317-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 09/25/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Low-grade systemic inflammation may be a key player in the immune activation that has been reported for mental health deterioration. We hypothesised that elevated serum levels of inflammatory cytokines increase neuroinflammation and exacerbate depressive symptoms. METHODS The participants were part of a cohort study for whom data was available for both 2015 and 2019. In 2015, blood samples were collected from 232 participants. Their depressive symptoms were assessed both 2015 and 2019 using the Centre for Epidemiologic Studies Depression Scale (CES-D) (n = 33). The multiplex immunoassay system (Luminex® 200) was used to measure the serum concentrations of IL-6, IL-10, IL-12, IL-17A and TNFα. Data were analysed using linear models with the level of significance considered to be p < 0.05. RESULTS After controlling for age, BMI, smoking and alcohol consumption, in 2015 the serum concentrations of IL-17A and TNFα in 2015 were significantly positively associated with the CES-D scores of women (standardised β (B) = .027, p < 0.01 and B = 0.26, p < 0.01, respectively). The serum concentrations of IL-17A and TNFα of men were significantly positively associated with the CES-D scores of 2019 (B = 0.62, p = 0.02 and B = 0.59, p = 0.02, respectively). CONCLUSIONS In this cross-sectional study, we found a significant positive correlation between the depressive symptoms and serum TNFα and IL-17A levels of women. In addition, our longitudinal findings suggest the possibility that TNFα and IL-17A could elevate the depressive symptoms of men.
Collapse
Affiliation(s)
- Hirohito Tsuboi
- Graduate School of Human Sciences, The University of Shiga Prefecture, 2500 Hassaka-Cho, Hikone, 522-8533, Japan.
- Research Group of Psychosomatic Medicine, Faculty of Pharmacy, Pharmaceutical and Health Sciences, Kanazawa University, 1 Kakuma-Machi, Kanazawa, 920-1192, Japan.
- Department of Hygiene and Public Health, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 13-1 Takara-Machi, Kanazawa, 920-8641, Japan.
| | - Hiroyuki Sakakibara
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, 657-8501, Japan
| | - Yuuki Minamida-Urata
- Research Group of Psychosomatic Medicine, Faculty of Pharmacy, Pharmaceutical and Health Sciences, Kanazawa University, 1 Kakuma-Machi, Kanazawa, 920-1192, Japan
| | - Hiromasa Tsujiguchi
- Department of Hygiene and Public Health, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 13-1 Takara-Machi, Kanazawa, 920-8641, Japan
| | - Akinori Hara
- Department of Hygiene and Public Health, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 13-1 Takara-Machi, Kanazawa, 920-8641, Japan
| | - Keita Suzuki
- Department of Hygiene and Public Health, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 13-1 Takara-Machi, Kanazawa, 920-8641, Japan
| | - Sakae Miyagi
- Innovative Clinical Research Center, Kanazawa University, 13-1 Takara-Machi, Kanazawa, Japan
| | - Masaharu Nakamura
- Department of Hygiene and Public Health, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 13-1 Takara-Machi, Kanazawa, 920-8641, Japan
| | - Chie Takazawa
- Department of Hygiene and Public Health, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 13-1 Takara-Machi, Kanazawa, 920-8641, Japan
| | - Takayuki Kannon
- Department of Biomedical Data Science, School of Medicine, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-Cho, Toyoake, 470-1192, Japan
| | - Jiaye Zhao
- Department of Hygiene and Public Health, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 13-1 Takara-Machi, Kanazawa, 920-8641, Japan
| | - Yukari Shimizu
- Department of Nursing, Faculty of Health Sciences, Komatsu University, 10-10 Doihara-Machi, Komatsu, 923-0921, Japan
| | - Aki Shibata
- Department of Hygiene and Public Health, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 13-1 Takara-Machi, Kanazawa, 920-8641, Japan
| | - Aya Ogawa
- Department of Hygiene and Public Health, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 13-1 Takara-Machi, Kanazawa, 920-8641, Japan
| | - Fumihiko Suzuki
- Department of Geriatric Dentistry, Ohu University School of Dentistry, 31-1 Misumido, Koriyama, 963-8611, Japan
| | - Yasuhiro Kambayashi
- Department of Public Health, Faculty of Veterinary Medicine, Okayama University of Science, 1-3 Ikoinooka, Imabari, 794-8555, Japan
| | - Tadashi Konoshita
- Division of Diabetes Endocrinology and Metabolism, Yachiyo Medical Center, Tokyo Women's Medical University, 477-96 Owada-Shinden, Yachiyo, Japan
| | - Atsushi Tajima
- Department of Bioinformatics and Genomics, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, 13-1 Takara-Machi, Kanazawa, 920-8640, Japan
| | - Hiroyuki Nakamura
- Department of Hygiene and Public Health, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 13-1 Takara-Machi, Kanazawa, 920-8641, Japan
| |
Collapse
|
3
|
Mittli D. Inflammatory processes in the prefrontal cortex induced by systemic immune challenge: Focusing on neurons. Brain Behav Immun Health 2023; 34:100703. [PMID: 38033612 PMCID: PMC10682838 DOI: 10.1016/j.bbih.2023.100703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 10/30/2023] [Accepted: 11/04/2023] [Indexed: 12/02/2023] Open
Abstract
Peripheral immune challenge induces neurobiological alterations in the brain and related neuropsychiatric symptoms both in humans and other mammals. One of the best known physiological effects of systemic inflammation is sickness behavior. However, in addition to this depression-like state, there are other cognitive outcomes of peripherally induced neuroinflammation that can be linked to the dysfunction of higher-order cortical areas, such as the prefrontal cortex (PFC). As the physiological activity of the PFC is largely based on the balanced interplay of excitatory pyramidal cells and inhibitory interneurons, it may be hypothesized that neuroinflammatory processes result in a shift of excitatory/inhibitory balance, which is a common hallmark of several neuropsychiatric conditions. Indeed, many data suggest that peripherally induced neuroinflammation is strongly associated with molecular and functional changes in PFC neurons leading to disturbances in their synaptic networks. Different experimental approaches may cause some incongruence in the reviewed data. However, it is commonly agreed that acute systemic inflammation leads to changes in the excitatory/inhibitory balance in the PFC by proinflammatory signaling at the brain borders and in the brain parenchyma. These cellular changes result in altered local and brain-wide network activity inducing disturbances in the top-down control of goal-directed behavior and cognition regulated by the PFC. Lipopolysaccharide (LPS)-treated rodents are the most widely used experimental models of peripherally induced neuroinflammation, so the majority of the reviewed data come from studies utilizing the LPS model. This may limit their general interpretation regarding the neuronal effects of peripheral immune activation. In addition, several biological variables (e.g., sex, age) can influence the PFC effects of systemic immune challenge, not only the nature and severity of immune activation. Therefore, it would be desirable to investigate inflammation-related neuronal changes in the PFC using other models of systemic inflammation as well, and to focus on the targeted fine-tuning of the affected cell types via common molecular mechanisms of the immune and nervous systems.
Collapse
Affiliation(s)
- Dániel Mittli
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
- Laboratory of Proteomics, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
- Department of Physiology and Neurobiology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
- InnoScience Ltd., Mátranovák, Hungary
| |
Collapse
|
4
|
Susmitha G, Kumar R. Role of microbial dysbiosis in the pathogenesis of Alzheimer's disease. Neuropharmacology 2023; 229:109478. [PMID: 36871788 DOI: 10.1016/j.neuropharm.2023.109478] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/08/2023] [Accepted: 02/23/2023] [Indexed: 03/07/2023]
Abstract
Alzheimer's disease (AD) is the leading cause of dementia in the elderly and detected during the advanced stages where the chances of reversal are minimum. The gut-brain axis mediates a bidirectional communication between the gut and brain, which is dependent on bacterial products such as short chain fatty acids (SCFA) and neurotransmitters. Accumulating lines of evidence suggests that AD is associated with significant alteration in the composition of gut microbiota. Furthermore, transfer of gut microbiota from healthy individuals to patients can reshape the gut microbiota structure and thus holds the potential to be exploited for the treatment of various neurodegenerative disease. Moreover, AD-associated gut dysbiosis can be partially reversed by using probiotics, prebiotics, natural compounds and dietary modifications, but need further validations. Reversal of AD associated gut dysbiosis alleviate AD-associated pathological feature and therefore can be explored as a therapeutic approach in the future. The current review article will describe various studies suggesting that AD dysbiosis occurs with AD and highlights the causal role by focussing on the interventions that hold the potential to reverse the gut dysbiosis partially.
Collapse
Affiliation(s)
- Gudimetla Susmitha
- Department of Biotechnology, GITAM Institute of Sciences, GITAM (Deemed to be) University, Vishakhapatnam, India
| | - Rahul Kumar
- Department of Biotechnology, GITAM Institute of Sciences, GITAM (Deemed to be) University, Vishakhapatnam, India.
| |
Collapse
|
5
|
Hassamal S. Chronic stress, neuroinflammation, and depression: an overview of pathophysiological mechanisms and emerging anti-inflammatories. Front Psychiatry 2023; 14:1130989. [PMID: 37252156 PMCID: PMC10213648 DOI: 10.3389/fpsyt.2023.1130989] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 04/21/2023] [Indexed: 05/31/2023] Open
Abstract
In a subset of patients, chronic exposure to stress is an etiological risk factor for neuroinflammation and depression. Neuroinflammation affects up to 27% of patients with MDD and is associated with a more severe, chronic, and treatment-resistant trajectory. Inflammation is not unique to depression and has transdiagnostic effects suggesting a shared etiological risk factor underlying psychopathologies and metabolic disorders. Research supports an association but not necessarily a causation with depression. Putative mechanisms link chronic stress to dysregulation of the HPA axis and immune cell glucocorticoid resistance resulting in hyperactivation of the peripheral immune system. The chronic extracellular release of DAMPs and immune cell DAMP-PRR signaling creates a feed forward loop that accelerates peripheral and central inflammation. Higher plasma levels of inflammatory cytokines, most consistently interleukin IL-1β, IL-6, and TNF-α, are correlated with greater depressive symptomatology. Cytokines sensitize the HPA axis, disrupt the negative feedback loop, and further propagate inflammatory reactions. Peripheral inflammation exacerbates central inflammation (neuroinflammation) through several mechanisms including disruption of the blood-brain barrier, immune cellular trafficking, and activation of glial cells. Activated glial cells release cytokines, chemokines, and reactive oxygen and nitrogen species into the extra-synaptic space dysregulating neurotransmitter systems, imbalancing the excitatory to inhibitory ratio, and disrupting neural circuitry plasticity and adaptation. In particular, microglial activation and toxicity plays a central role in the pathophysiology of neuroinflammation. Magnetic resonance imaging (MRI) studies most consistently show reduced hippocampal volumes. Neural circuitry dysfunction such as hypoactivation between the ventral striatum and the ventromedial prefrontal cortex underlies the melancholic phenotype of depression. Chronic administration of monoamine-based antidepressants counters the inflammatory response, but with a delayed therapeutic onset. Therapeutics targeting cell mediated immunity, generalized and specific inflammatory signaling pathways, and nitro-oxidative stress have enormous potential to advance the treatment landscape. Future clinical trials will need to include immune system perturbations as biomarker outcome measures to facilitate novel antidepressant development. In this overview, we explore the inflammatory correlates of depression and elucidate pathomechanisms to facilitate the development of novel biomarkers and therapeutics.
Collapse
Affiliation(s)
- Sameer Hassamal
- California University of Sciences and Medicine, Colton, CA, United States
- Clinicaltriallink, Los Angeles, CA, United States
- California Neuropsychiatric Institute, Ontario, CA, United States
| |
Collapse
|
6
|
The Association Between Sleep Disturbance and Proinflammatory Markers in Patients With Cancer: A Meta-analysis. Cancer Nurs 2023; 46:E91-E98. [PMID: 35728010 DOI: 10.1097/ncc.0000000000001055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Sleep disturbance is one of the symptoms with high incidence and negative influence in patients with cancer. A better understanding of the biological factors associated with sleep disturbance is critical to predict, treat, and manage this condition. OBJECTIVE The aim of this study was to determine the correlation between sleep disturbance and proinflammatory markers in adult patients with cancer. METHODS A systematic search was conducted in 7 databases from inception to March 1, 2020, for this meta-analysis. Two reviewers independently screened the studies, extracted data, and appraised the quality of the studies. Meta-analyses were conducted using Stata 12.0 software. RESULTS Sixteen studies were included. Results indicated that sleep disturbance was associated with higher levels of the overall proinflammatory markers and that the effect size was small yet significant. Further subgroup analyses suggested that sleep disturbance was significantly associated with interleukin-6 and C-reactive protein, but not with interleukin-1β or tumor necrosis factor-α. Meta-regression results indicated that only the sample source affected the association between sleep disturbance and proinflammatory markers. CONCLUSION There was a positive relationship between sleep disturbance and selected proinflammatory markers in adult patients with cancer. IMPLICATION FOR PRACTICE This review provides empirical support for the association between sleep disturbance and certain proinflammatory markers. Healthcare providers can further explore specific biomarkers to precisely identify the individuals at risk of sleep disturbance and develop targeted strategies for therapeutic and clinical interventions.
Collapse
|
7
|
Kasambala M, Mukaratirwa S, Vengesai A, Mduluza-Jokonya T, Jokonya L, Midzi H, Makota RB, Mutemeri A, Maziti E, Dube-Marimbe B, Chibanda D, Mutapi F, Mduluza T. The association of systemic inflammation and cognitive functions of pre-school aged children residing in a Schistosoma haematobium endemic area in Zimbabwe. Front Immunol 2023; 14:1139912. [PMID: 37143686 PMCID: PMC10151793 DOI: 10.3389/fimmu.2023.1139912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 03/31/2023] [Indexed: 05/06/2023] Open
Abstract
Background Cognitive function is negatively impacted by schistosomiasis and might be caused by systemic inflammation which has been hypothesized to be one of the mechanisms driving cognitive decline, This study explored the association of systemic inflammatory biomarkers; interleukin (IL)-10, IL-6, IL-17, transforming growth factor (TGF-β), tumor necrosis factor (TNF-α), C-reactive protein (CRP) and hematological parameters with cognitive performance of preschool-aged children (PSAC) from an Schistosoma haematobium endemic area. Methods The Griffith III tool was used to measure the cognitive performance of 136 PSAC. Whole blood and sera were collected and used to quantify levels of IL-10, TNF-α, IL-6, TGF-β, IL-17 A and CRP using the enzyme-linked immunosorbent assay and hematological parameters using the hematology analyzer. Spearman correlation analysis was used to determine the relationship between each inflammatory biomarker and cognitive performance. Multivariate logistic regression analysis was used to determine whether systemic inflammation due to S. haematobium infection affected cognitive performance in PSAC. Results Higher levels of TNF-α and IL-6, were correlated with lower performance in the Foundations of Learning domain (r = -0.30; p < 0.001 and r = -0.26; p < 0.001), respectively. Low cognitive performance in the Eye-Hand-Coordination Domain was observed in PSAC with high levels of the following inflammatory biomarkers that showed negative correlations to performance; TNF-α (r = -0.26; p < 0.001), IL-6 (r = -0.29; p < 0.001), IL-10 (r = -0.18; p < 0.04), WBC (r = -0.29; p < 0.001), neutrophils (r = -0.21; p = 0.01) and lymphocytes (r = -0.25; p = 0.003) The General Development Domain correlated with TNF-α (r = -0.28; p < 0.001) and IL-6 (r = -0.30; p < 0.001). TGF-β, L-17A and MXD had no significant correlations to performance in any of the cognitive domains. The overall general development of PSAC was negatively impacted by S. haematobium infections (OR = 7.6; p = 0.008) and (OR = 5.6; p = 0.03) where the PSAC had higher levels of TNF-α and IL-6 respectively. Conclusion Systemic inflammation and S. haematobium infections are negatively associated with cognitive function. We recommend the inclusion of PSAC into mass drug treatment programs.
Collapse
Affiliation(s)
- Maritha Kasambala
- School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
- Department of Biological Sciences and Ecology, University of Zimbabwe, Harare, Zimbabwe
- *Correspondence: Maritha Kasambala,
| | - Samson Mukaratirwa
- School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
- One Health Center for Zoonoses and Tropical Veterinary Medicine, Ross University School of Veterinary Medicine, Basseterre, Saint Kitts and Nevis
| | - Arthur Vengesai
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Midlands State University, Gweru, Zimbabwe
| | - Tariro Mduluza-Jokonya
- Department of Surgery, College of Health Sciences, University of Zimbabwe, Harare, Zimbabwe
| | - Luxwell Jokonya
- Department of Surgery, College of Health Sciences, University of Zimbabwe, Harare, Zimbabwe
| | - Herald Midzi
- School of Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
- Department of Biotechnology and Biochemistry, University of Zimbabwe, Harare, Zimbabwe
| | - Rutendo Birri Makota
- Department of Biological Sciences and Ecology, University of Zimbabwe, Harare, Zimbabwe
| | - Arnold Mutemeri
- Department of Psychiatry, College of Health Sciences, University of Zimbabwe, Harare, Zimbabwe
| | - Emmanuel Maziti
- Department of Psychiatry, College of Health Sciences, University of Zimbabwe, Harare, Zimbabwe
| | - Bazondlile Dube-Marimbe
- Department of Psychiatry, College of Health Sciences, University of Zimbabwe, Harare, Zimbabwe
| | - Dixon Chibanda
- Department of Psychiatry, College of Health Sciences, University of Zimbabwe, Harare, Zimbabwe
| | - Francisca Mutapi
- Ashworth Laboratories, Institute for Immunology and Infection Research and Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Takafira Mduluza
- School of Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
8
|
Butler L, Walker KA. The Role of Chronic Infection in Alzheimer's Disease: Instigators, Co-conspirators, or Bystanders? CURRENT CLINICAL MICROBIOLOGY REPORTS 2021; 8:199-212. [PMID: 35186664 PMCID: PMC8849576 DOI: 10.1007/s40588-021-00168-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2021] [Indexed: 12/29/2022]
Abstract
PURPOSE OF REVIEW Herein, we provide a critical review of the clinical and translational research examining the relationship between viral and bacterial pathogens and Alzheimer's disease. In addition, we provide an overview of the biological pathways through which chronic infection may contribute to Alzheimer's disease. RECENT FINDINGS Dementia due to Alzheimer's disease is a leading cause of disability among older adults in developed countries, yet knowledge of the causative factors that promote Alzheimer's disease pathogenesis remains incomplete. Over the past several decades, numerous studies have demonstrated an association of chronic viral and bacterial infection with Alzheimer's disease. Implicated infectious agents include numerous herpesviruses (HSV-1, HHV-6, HHV-7) and various gastric, enteric, and oral bacterial species, as well as Chlamydia pneumonia and multiple spirochetes. SUMMARY Evidence supports the association between multiple pathogens and Alzheimer's disease risk. Whether these pathogens play a causal role in Alzheimer's pathophysiology remains an open question. We propose that the host immune response to active or latent infection in the periphery or in the brain triggers or accelerates the Alzheimer's disease processes, including the accumulation of amyloid-ß and pathogenic tau, and neuroinflammation. While recent research suggests that such theories are plausible, additional longitudinal studies linking microorganisms to Aß and phospho-tau development, neuroinflammation, and clinically defined Alzheimer's dementia are needed.
Collapse
Affiliation(s)
- Lauren Butler
- National Institutes of Health, National Institute on Aging, Laboratory of Behavioral Neuroscience, Baltimore, MD, United States
| | - Keenan A Walker
- National Institutes of Health, National Institute on Aging, Laboratory of Behavioral Neuroscience, Baltimore, MD, United States
| |
Collapse
|
9
|
Poutoglidou F, Pourzitaki C, Manthou ME, Saitis A, Malliou F, Kouvelas D. Infliximab and tocilizumab reduce anxiety-like behavior, improve cognitive performance and reverse neuropathological alterations in juvenile rats with severe autoimmune arthritis. Int Immunopharmacol 2021; 99:107917. [PMID: 34217991 DOI: 10.1016/j.intimp.2021.107917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 06/08/2021] [Accepted: 06/21/2021] [Indexed: 12/16/2022]
Abstract
Several studies have demonstrated that rheumatic diseases, including Juvenile Idiopathic Arthritis (JIA), are associated with anxiety-like behavior and a cognitive decline. Infliximab, a Tumor Necrosis Factor-alpha (TNF-a) inhibitor, and tocilizumab, an antibody against Interleukin-6 (IL-6) receptor, are commonly used in the treatment of JIA. Here, we aimed to evaluate the effects of infliximab and tocilizumab on anxiety symptoms and cognitive function in a juvenile model of severe autoimmune arthritis. We found that both infliximab and tocilizumab improved anxiety-like behavior in the elevated-plus and elevated-zero maze tests. Tocilizumab, also, improved cognitive performance in the passive avoidance and olfactory social memory tests. Histological examination showed that anti-cytokine treatment reversed the histopathological alterations in the brain induced by arthritis. Further, infliximab and tocilizumab treatment increased Brain-Derived Neurotrophic Factor (BDNF) expression in the hippocampal and amygdaloid area of rat brain. In summary, our findings provide evidence that infliximab and tocilizumab have a beneficial effect on anxiety-like behavior and cognitive function and alleviate neuropathological alterations in a juvenile rat model of severe arthritis, suggesting that inhibition of TNF-a and IL-6 in the periphery, may be associated with a mood and memory enhancement in JIA patients.
Collapse
Affiliation(s)
- Frideriki Poutoglidou
- Department of Clinical Pharmacology, School of Medicine, Aristotle University of Thessaloniki, University Campus 54124 Thessaloniki, Greece.
| | - Chryssa Pourzitaki
- Department of Clinical Pharmacology, School of Medicine, Aristotle University of Thessaloniki, University Campus 54124 Thessaloniki, Greece
| | - Maria Eleni Manthou
- Laboratory of Histology and Embryology, School of Medicine, Aristotle University of Thessaloniki, University Campus 54124 Thessaloniki, Greece
| | - Athanasios Saitis
- Department of Clinical Pharmacology, School of Medicine, Aristotle University of Thessaloniki, University Campus 54124 Thessaloniki, Greece
| | - Foteini Malliou
- Department of Clinical Pharmacology, School of Medicine, Aristotle University of Thessaloniki, University Campus 54124 Thessaloniki, Greece
| | - Dimitrios Kouvelas
- Department of Clinical Pharmacology, School of Medicine, Aristotle University of Thessaloniki, University Campus 54124 Thessaloniki, Greece
| |
Collapse
|
10
|
Poutoglidou F, Pourzitaki C, Manthou ME, Malliou F, Saitis A, Tsimoulas I, Panagiotopoulos S, Kouvelas D. Effects of long-term infliximab and tocilizumab treatment on anxiety-like behavior and cognitive function in naive rats. Pharmacol Rep 2021; 74:84-95. [PMID: 34569017 DOI: 10.1007/s43440-021-00328-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 09/16/2021] [Accepted: 09/16/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Circulating cytokines have been proposed to be implicated in the development of mood disorders and cognitive impairment. This study aims to examine the effect of chronic treatment with infliximab, a tumor necrosis factor-alpha (TNF-alpha) inhibitor, and tocilizumab, an antibody against interleukin-6 (IL-6) receptor on anxiety-like behavior and cognitive function. METHODS Twenty-eight male, Wistar rats were randomly allocated into negative control, vehicle, infliximab and tocilizumab groups. After 8 weeks of intraperitoneal drug administration, rats performed the elevated-plus maze, the elevated-zero maze, the olfactory social memory and the passive avoidance tests. Brain sections at the level of the hippocampus, the amygdala and the prefrontal cortex were histologically examined. Finally, hippocampal and amygdaloid brain-derived neurotrophic factor (BDNF) expression was determined by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). RESULTS Infliximab group exhibited a significantly higher number of entries and time spent into the open arms of the mazes, showing a lower level of anxiety. In the olfactory social memory test, tocilizumab significantly increased the ratio of interaction. Both infliximab- and tocilizumab-treated animals had a significantly lower latency time in the passive avoidance test that suggests an improved memory. Histological examination revealed similar morphology and neuronal density between groups. BDNF expression levels were significantly increased in the groups receiving anti-cytokine treatment. CONCLUSIONS Our findings suggest that long-term peripheral TNF-alpha and IL-6 inhibition improves anxiety and cognitive function in rats and leads to an increased BDNF expression in the brain.
Collapse
Affiliation(s)
- Frideriki Poutoglidou
- Department of Clinical Pharmacology, Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, 54124, Thessaloníki, Greece. .,Department of Clinical Pharmacology, School of Health Sciences, Aristotle University of Thessaloniki, PO Box 1532, 54006, Thessaloníki, Greece.
| | - Chryssa Pourzitaki
- Department of Clinical Pharmacology, Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, 54124, Thessaloníki, Greece
| | - Maria Eleni Manthou
- Laboratory of Histology and Embryology, Medical School, Aristotle University of Thessaloniki, University Campus, 54124, Thessaloníki, Greece
| | - Foteini Malliou
- Department of Clinical Pharmacology, Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, 54124, Thessaloníki, Greece
| | - Athanasios Saitis
- Department of Clinical Pharmacology, Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, 54124, Thessaloníki, Greece
| | - Ioannis Tsimoulas
- Department of Clinical Pharmacology, Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, 54124, Thessaloníki, Greece
| | - Spyridon Panagiotopoulos
- Department of Clinical Pharmacology, Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, 54124, Thessaloníki, Greece
| | - Dimitrios Kouvelas
- Department of Clinical Pharmacology, Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, 54124, Thessaloníki, Greece
| |
Collapse
|
11
|
Poutoglidou F, Pourzitaki C, Manthou ME, Saitis A, Malliou F, Kouvelas D. Infliximab and Tocilizumab Reduce Anxiety-Like Behaviour and Improve Cognitive Performance in a Juvenile Collagen-Induced Arthritis Rat Model. Inflammation 2021; 45:445-459. [PMID: 34515956 DOI: 10.1007/s10753-021-01560-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 09/03/2021] [Indexed: 12/16/2022]
Abstract
Anxiety disorders and cognitive decline are highly prevalent in rheumatic diseases, including Juvenile Idiopathic Arthritis (JIA). In this study, we investigated the effect of long-term treatment with infliximab and tocilizumab on anxiety-like behaviour and cognitive performance in a juvenile collagen-induced arthritis (CIA) rat model. Forty-nine rats with established moderate arthritis were randomly allocated into 7 equal groups: negative control, vehicle, methotrexate, infliximab, tocilizumab, methotrexate + infliximab and methotrexate + tocilizumab groups. Behavioural tests were performed to evaluate anxiety-like behaviour and cognitive function. Neuropathological changes were investigated by histological examination at the level of the hippocampus, the amygdala and the prefrontal cortex. Also, the expression of Brain-Derived Neurotrophic Factor (BDNF), a biomarker associated with neuronal survival and plasticity, was determined in the hippocampus and the amygdala by RT-qPCR. We found that both infliximab and tocilizumab reduced anxiety-like behaviour in the elevated-plus and elevated-zero maze tests. Tocilizumab, also, improved cognitive function in the olfactory social memory and passive avoidance tests. Anti-cytokine treatment reversed the histopathological changes in the brain induced by CIA. BDNF expression was higher in all treatment groups and especially those receiving monoclonal antibodies combined with methotrexate. Our data provide evidence that chronic infliximab and tocilizumab treatment reduces anxiety-like behaviour, improves cognitive function, reverses neuropathological changes and increases central BDNF expression in a juvenile arthritis rat model. These findings may be translated to humans to address behavioural comorbidities associated with JIA.
Collapse
Affiliation(s)
- Frideriki Poutoglidou
- Department of Clinical Pharmacology, School of Health Sciences, Aristotle University of Thessaloniki, University Campus, 54124, Thessaloniki, Greece.
| | - Chryssa Pourzitaki
- Department of Clinical Pharmacology, School of Health Sciences, Aristotle University of Thessaloniki, University Campus, 54124, Thessaloniki, Greece
| | - Maria Eleni Manthou
- Laboratory of Histology and Embryology, Medical School, Aristotle University of Thessaloniki, University Campus, 54124, Thessaloniki, Greece
| | - Athanasios Saitis
- Department of Clinical Pharmacology, School of Health Sciences, Aristotle University of Thessaloniki, University Campus, 54124, Thessaloniki, Greece
| | - Foteini Malliou
- Department of Clinical Pharmacology, School of Health Sciences, Aristotle University of Thessaloniki, University Campus, 54124, Thessaloniki, Greece
| | - Dimitrios Kouvelas
- Department of Clinical Pharmacology, School of Health Sciences, Aristotle University of Thessaloniki, University Campus, 54124, Thessaloniki, Greece
| |
Collapse
|
12
|
Reale M, Costantini E. Cholinergic Modulation of the Immune System in Neuroinflammatory Diseases. Diseases 2021; 9:diseases9020029. [PMID: 33921376 PMCID: PMC8167596 DOI: 10.3390/diseases9020029] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 02/06/2023] Open
Abstract
Frequent diseases of the CNS, such as Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, and psychiatric disorders (e.g., schizophrenia), elicit a neuroinflammatory response that contributes to the neurodegenerative disease process itself. The immune and nervous systems use the same mediators, receptors, and cells to regulate the immune and nervous systems as well as neuro-immune interactions. In various neurodegenerative diseases, peripheral inflammatory mediators and infiltrating immune cells from the periphery cause exacerbation to current injury in the brain. Acetylcholine (ACh) plays a crucial role in the peripheral and central nervous systems, in fact, other than cells of the CNS, the peripheral immune cells also possess a cholinergic system. The findings on peripheral cholinergic signaling, and the activation of the “cholinergic anti-inflammatory pathway” mediated by ACh binding to α7 nAChR as one of the possible mechanisms for controlling inflammation, have restarted interest in cholinergic-mediated pathological processes and in the new potential therapeutic target for neuro-inflammatory-degenerative diseases. Herein, we focus on recent progress in the modulatory mechanisms of the cholinergic anti-inflammatory pathway in neuroinflammatory diseases.
Collapse
Affiliation(s)
- Marcella Reale
- Department of Innovative Technologies in Medicine and Dentistry, University “G.d’Annunzio”, 65122 Chieti-Pescara, Italy
- Correspondence:
| | - Erica Costantini
- Department of Medical, Oral and Biotechnological Science, University “G.d’Annunzio”, 65122 Chieti-Pescara, Italy;
| |
Collapse
|
13
|
Soares MSP, Luduvico KP, Chaves VC, Spohr L, Meine BDM, Lencina CL, Reginatto FH, Spanevello RM, Simões CMO, Stefanello FM. The Protective Action of Rubus sp. Fruit Extract Against Oxidative Damage in Mice Exposed to Lipopolysaccharide. Neurochem Res 2021; 46:1129-1140. [PMID: 33547616 DOI: 10.1007/s11064-021-03248-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/13/2021] [Accepted: 01/19/2021] [Indexed: 11/29/2022]
Abstract
Neuroinflammation is an event that occurs in several pathologies of brain. Rubus sp. (blackberry) is a powerful antioxidant fruit, and its extract has neuroprotective activity. The aim of this study was to investigate the blackberry extract properties on lipopolysaccharide (LPS)-induced neuroinflammation, in relation to oxidative parameters and acetylcholinesterase activity in the brain structures of mice. We also investigated interleukin-10 levels in serum. Mice were submitted to Rubus sp. extract treatment once daily for 14 days. On the fifteenth day, LPS was injected in a single dose. LPS induced oxidative brain damage and the blackberry extract demonstrated preventive effects in LPS-challenged mice. LPS administration increased reactive oxygen species levels in the cerebral cortex and striatum, as well as lipid peroxidation in the cerebral cortex. However, the blackberry extract prevented all these parameters. Furthermore, LPS decreased thiol content in the striatum and hippocampus, while a neuroprotective effect of blackberry extract treatment was observed in relation to this parameter. The blackberry extract also prevented a decrease in catalase activity in all the brain structures and of superoxide dismutase in the striatum. An increase in acetylcholinesterase activity was detected in the cerebral cortex in the LPS group, but this activity was decreased in the Rubus sp. extract group. Serum IL-10 levels were reduced by LPS, and the extract was not able to prevent this change. Finally, we observed an antioxidant effect of blackberry extract in LPS-challenged mice suggesting that this anthocyanin-rich extract could be considered as a potential nutritional therapeutic agent for preventive damage associated with neuroinflammation.
Collapse
Affiliation(s)
- Mayara Sandrielly Pereira Soares
- Programa de Pós-Graduação Em Bioquímica E Bioprospecção, Centro de Ciências Químicas, Farmacêuticas E de Alimentos, Universidade Federal de Pelotas, Campus Universitário s/n, Pelotas, RS, CEP 96010-900, Brazil.
| | - Karina Pereira Luduvico
- Programa de Pós-Graduação Em Bioquímica E Bioprospecção, Centro de Ciências Químicas, Farmacêuticas E de Alimentos, Universidade Federal de Pelotas, Campus Universitário s/n, Pelotas, RS, CEP 96010-900, Brazil
| | - Vitor Clasen Chaves
- Programa de Pós-Graduação Em Biotecnologia E Biociências, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Luiza Spohr
- Programa de Pós-Graduação Em Bioquímica E Bioprospecção, Centro de Ciências Químicas, Farmacêuticas E de Alimentos, Universidade Federal de Pelotas, Campus Universitário s/n, Pelotas, RS, CEP 96010-900, Brazil
| | - Bernardo de Moraes Meine
- Programa de Pós-Graduação Em Bioquímica E Bioprospecção, Centro de Ciências Químicas, Farmacêuticas E de Alimentos, Universidade Federal de Pelotas, Campus Universitário s/n, Pelotas, RS, CEP 96010-900, Brazil
| | - Claiton Leoneti Lencina
- Curso de Farmácia, Centro de Ciências Químicas, Farmacêuticas E de Alimentos, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Flávio Henrique Reginatto
- Programa de Pós-Graduação Em Biotecnologia E Biociências, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Roselia Maria Spanevello
- Programa de Pós-Graduação Em Bioquímica E Bioprospecção, Centro de Ciências Químicas, Farmacêuticas E de Alimentos, Universidade Federal de Pelotas, Campus Universitário s/n, Pelotas, RS, CEP 96010-900, Brazil
| | - Cláudia Maria Oliveira Simões
- Programa de Pós-Graduação Em Biotecnologia E Biociências, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Francieli Moro Stefanello
- Programa de Pós-Graduação Em Bioquímica E Bioprospecção, Centro de Ciências Químicas, Farmacêuticas E de Alimentos, Universidade Federal de Pelotas, Campus Universitário s/n, Pelotas, RS, CEP 96010-900, Brazil
| |
Collapse
|
14
|
Dudek KA, Dion‐Albert L, Kaufmann FN, Tuck E, Lebel M, Menard C. Neurobiology of resilience in depression: immune and vascular insights from human and animal studies. Eur J Neurosci 2021; 53:183-221. [PMID: 31421056 PMCID: PMC7891571 DOI: 10.1111/ejn.14547] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/22/2019] [Accepted: 08/12/2019] [Indexed: 12/12/2022]
Abstract
Major depressive disorder (MDD) is a chronic and recurrent psychiatric condition characterized by depressed mood, social isolation and anhedonia. It will affect 20% of individuals with considerable economic impacts. Unfortunately, 30-50% of depressed individuals are resistant to current antidepressant treatments. MDD is twice as prevalent in women and associated symptoms are different. Depression's main environmental risk factor is chronic stress, and women report higher levels of stress in daily life. However, not every stressed individual becomes depressed, highlighting the need to identify biological determinants of stress vulnerability but also resilience. Based on a reverse translational approach, rodent models of depression were developed to study the mechanisms underlying susceptibility vs resilience. Indeed, a subpopulation of animals can display coping mechanisms and a set of biological alterations leading to stress resilience. The aetiology of MDD is multifactorial and involves several physiological systems. Exacerbation of endocrine and immune responses from both innate and adaptive systems are observed in depressed individuals and mice exhibiting depression-like behaviours. Increasing attention has been given to neurovascular health since higher prevalence of cardiovascular diseases is found in MDD patients and inflammatory conditions are associated with depression, treatment resistance and relapse. Here, we provide an overview of endocrine, immune and vascular changes associated with stress vulnerability vs. resilience in rodents and when available, in humans. Lack of treatment efficacy suggests that neuron-centric treatments do not address important causal biological factors and better understanding of stress-induced adaptations, including sex differences, could contribute to develop novel therapeutic strategies including personalized medicine approaches.
Collapse
Affiliation(s)
- Katarzyna A. Dudek
- Department of Psychiatry and NeuroscienceFaculty of Medicine and CERVO Brain Research CenterUniversité LavalQuebec CityQCCanada
| | - Laurence Dion‐Albert
- Department of Psychiatry and NeuroscienceFaculty of Medicine and CERVO Brain Research CenterUniversité LavalQuebec CityQCCanada
| | - Fernanda Neutzling Kaufmann
- Department of Psychiatry and NeuroscienceFaculty of Medicine and CERVO Brain Research CenterUniversité LavalQuebec CityQCCanada
| | - Ellen Tuck
- Smurfit Institute of GeneticsTrinity CollegeDublinIreland
| | - Manon Lebel
- Department of Psychiatry and NeuroscienceFaculty of Medicine and CERVO Brain Research CenterUniversité LavalQuebec CityQCCanada
| | - Caroline Menard
- Department of Psychiatry and NeuroscienceFaculty of Medicine and CERVO Brain Research CenterUniversité LavalQuebec CityQCCanada
| |
Collapse
|
15
|
Garcia-Gutierrez E, Narbad A, Rodríguez JM. Autism Spectrum Disorder Associated With Gut Microbiota at Immune, Metabolomic, and Neuroactive Level. Front Neurosci 2020; 14:578666. [PMID: 33117122 PMCID: PMC7578228 DOI: 10.3389/fnins.2020.578666] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/16/2020] [Indexed: 12/21/2022] Open
Abstract
There is increasing evidence suggesting a link between the autism spectrum disorder (ASD) and the gastrointestinal (GI) microbiome. Experimental and clinical studies have shown that patients diagnosed with ASD display alterations of the gut microbiota. These alterations do not only extend to the gut microbiota composition but also to the metabolites they produce, as a result of its connections with diet and the bidirectional interaction with the host. Thus, production of metabolites and neurotransmitters stimulate the immune system and influence the central nervous system (CNS) by stimulation of the vagal nerve, as an example of the gut-brain axis pathway. In this review we compose an overview of the interconnectivity of the different GI-related elements that have been associated with the development and severity of the ASD in patients and animal models. We review potential biomarkers to be used in future studies to unlock further connections and interventions in the treatment of ASD.
Collapse
Affiliation(s)
- Enriqueta Garcia-Gutierrez
- Gut Microbes and Health Institute Strategic Program, Quadram Institute Bioscience, Norwich, United Kingdom
| | - Arjan Narbad
- Gut Microbes and Health Institute Strategic Program, Quadram Institute Bioscience, Norwich, United Kingdom
| | - Juan Miguel Rodríguez
- Department of Nutrition and Food Science, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
16
|
Litvin DG, Denstaedt SJ, Borkowski LF, Nichols NL, Dick TE, Smith CB, Jacono FJ. Peripheral-to-central immune communication at the area postrema glial-barrier following bleomycin-induced sterile lung injury in adult rats. Brain Behav Immun 2020; 87:610-633. [PMID: 32097765 PMCID: PMC8895345 DOI: 10.1016/j.bbi.2020.02.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 02/02/2020] [Accepted: 02/13/2020] [Indexed: 02/07/2023] Open
Abstract
The pathways for peripheral-to-central immune communication (P → C I-comm) following sterile lung injury (SLI) are unknown. SLI evokes systemic and central inflammation, which alters central respiratory control and viscerosensory transmission in the nucleus tractus solitarii (nTS). These functional changes coincide with increased interleukin-1 beta (IL-1β) in the area postrema, a sensory circumventricular organ that connects P → C I-comm to brainstem circuits that control homeostasis. We hypothesize that IL-1β and its downstream transcriptional target, cyclooxygenase-2 (COX-2), mediate P → C I-comm in the nTS. In a rodent model of SLI induced by intratracheal bleomycin (Bleo), the sigh frequency and duration of post-sigh apnea increased in Bleo- compared to saline- treated rats one week after injury. This SLI-dependent change in respiratory control occurred concurrently with augmented IL-1β and COX-2 immunoreactivity (IR) in the funiculus separans (FS), a barrier between the AP and the brainstem. At this barrier, increases in IL-1β and COX-2 IR were confined to processes that stained for glial fibrillary acidic protein (GFAP) and that projected basolaterally to the nTS. Further, FS radial-glia did not express TNF-α or IL-6 following SLI. To test our hypothesis, we blocked central COX-1/2 activity by intracerebroventricular (ICV) infusion of Indomethacin (Ind). Continuous ICV Ind treatment prevented Bleo-dependent increases in GFAP + and IL-1β + IR, and restored characteristics of sighs that reset the rhythm. These data indicate that changes in sighs following SLI depend partially on activation of a central COX-dependent P → C I-comm via radial-glia of the FS.
Collapse
Affiliation(s)
- David G Litvin
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States; Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States; Department of Fundamental Neuroscience, University of Lausanne, 1005 Lausanne, Switzerland
| | - Scott J Denstaedt
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States; Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Lauren F Borkowski
- Department of Biomedical Sciences, University of Missouri College of Veterinary Medicine, Columbia, MO 65212, United States
| | - Nicole L Nichols
- Department of Biomedical Sciences, University of Missouri College of Veterinary Medicine, Columbia, MO 65212, United States
| | - Thomas E Dick
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States; Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States
| | - Corey B Smith
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States
| | - Frank J Jacono
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States; Division of Pulmonary, Critical Care and Sleep Medicine, Louis Stokes VA Medical Center, Cleveland, OH 44106, United States.
| |
Collapse
|
17
|
De Caro C, Iannone LF, Citraro R, Striano P, De Sarro G, Constanti A, Cryan JF, Russo E. Can we 'seize' the gut microbiota to treat epilepsy? Neurosci Biobehav Rev 2019; 107:750-764. [PMID: 31626816 DOI: 10.1016/j.neubiorev.2019.10.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/03/2019] [Accepted: 10/04/2019] [Indexed: 02/08/2023]
Abstract
The gut-microbiota, the complex intestinal microbial ecosystem essential to health, is an emerging concept in medicine. Several studies demonstrate a microbiota-gut-brain bidirectional connection via neural, endocrine, metabolic and immune pathways. Accordingly, the gut microbiota has a crucial role in modulating intestinal permeability, to alter local/peripheral immune responses and in production of essential metabolites and neurotransmitters. Its alterations may consequently influence all these pathways that contribute to neuronal hyper-excitability and mirrored neuroinflammation in epilepsy and similarly other neurological conditions. Indeed, pre- and clinical studies support the role of the microbiome in pathogenesis, seizure modulation and responses to treatment in epilepsy. Up to now, researchers have focussed attention above all on the brain to develop antiepileptic treatments, but considering the microbiome, could extend our possibilities for developing novel therapies in the future. We provide here a comprehensive overview of the available data on the potential role of gut microbiota in the physiopathology and therapy of epilepsy and the supposed underlying mechanisms.
Collapse
Affiliation(s)
- Carmen De Caro
- Science of Health Department, School of Medicine, University Magna Graecia, Catanzaro, Italy
| | - Luigi Francesco Iannone
- Science of Health Department, School of Medicine, University Magna Graecia, Catanzaro, Italy
| | - Rita Citraro
- Science of Health Department, School of Medicine, University Magna Graecia, Catanzaro, Italy
| | - Pasquale Striano
- Paediatric Neurology and Muscular Diseases Unit, DINOGMI-Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, IRCCS "G. Gaslini" Institute, Genova, Italy
| | - Giovambattista De Sarro
- Science of Health Department, School of Medicine, University Magna Graecia, Catanzaro, Italy
| | - Andrew Constanti
- Department of Pharmacology, UCL School of Pharmacy, 29/39 Brunswick Square, London, United Kingdom
| | - John F Cryan
- UK.APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Emilio Russo
- Science of Health Department, School of Medicine, University Magna Graecia, Catanzaro, Italy.
| |
Collapse
|
18
|
Waheed A, Dalton B, Wesemann U, Ibrahim MAA, Himmerich H. A Systematic Review of Interleukin-1β in Post-Traumatic Stress Disorder: Evidence from Human and Animal Studies. J Interferon Cytokine Res 2019; 38:1-11. [PMID: 29328883 DOI: 10.1089/jir.2017.0088] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Pro-inflammatory cytokines, such as interleukin (IL)-1β, have been implicated as underlying pathophysiological mechanisms and potential biomarkers of post-traumatic stress disorder (PTSD). This systematic review examines data regarding IL-1β production/concentration in human and animal studies of PTSD. In accordance with PRISMA guidelines, relevant articles from PubMed were reviewed from inception until July 10, 2017. Nineteen studies were eligible for inclusion. Animal studies demonstrated increased hippocampal IL-1β in rodent models of PTSD. Several immunomodulatory drugs were shown to reduce elevated IL-1β levels and anxiety-like behaviors in animals. Human cross-sectional studies showed contradictory results; serum and plasma IL-1β concentrations in PTSD patients were either elevated or did not differ from control groups. In vitro IL-1β production by stimulated cells demonstrated no difference between PTSD and control participants, although spontaneous in vitro production of IL-1β was increased in the PTSD group. The findings from 2 longitudinal studies were inconsistent. Given the conflicting findings, it is premature to consider IL-1β as a biomarker of PTSD. Anti-inflammatory agents may reduce IL-1β, and be a potential basis for future therapeutic agents in PTSD treatment. More longitudinal research is needed to better understand the role of IL-1β in the development and/or maintenance of PTSD.
Collapse
Affiliation(s)
- Aysha Waheed
- 1 Department of Psychological Medicine, King's College London , London, United Kingdom .,2 Faculty of Life Sciences and Medicine, King's College London , London, United Kingdom
| | - Bethan Dalton
- 1 Department of Psychological Medicine, King's College London , London, United Kingdom
| | - Ulrich Wesemann
- 3 Department of Psychiatry, Psychotherapy and Psychotraumatology, Bundeswehr Hospital , Berlin, Germany
| | - Mohammad A A Ibrahim
- 4 Department of Immunological Medicine and Allergy, King's Health Partners, King's College Hospital , London, United Kingdom
| | - Hubertus Himmerich
- 1 Department of Psychological Medicine, King's College London , London, United Kingdom
| |
Collapse
|
19
|
Kobrzycka A, Napora P, Pearson BL, Pierzchała-Koziec K, Szewczyk R, Wieczorek M. Peripheral and central compensatory mechanisms for impaired vagus nerve function during peripheral immune activation. J Neuroinflammation 2019; 16:150. [PMID: 31324250 PMCID: PMC6642550 DOI: 10.1186/s12974-019-1544-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 07/10/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Determining the etiology and possible treatment strategies for numerous diseases requires a comprehensive understanding of compensatory mechanisms in physiological systems. The vagus nerve acts as a key interface between the brain and the peripheral internal organs. We set out to identify mechanisms compensating for a lack of neuronal communication between the immune and the central nervous system (CNS) during infection. METHODS We assessed biochemical and central neurotransmitter changes resulting from subdiaphragmatic vagotomy and whether they are modulated by intraperitoneal infection. We performed a series of subdiaphragmatic vagotomy or sham operations on male Wistar rats. Next, after full, 30-day recovery period, they were randomly assigned to receive an injection of Escherichia coli lipopolysaccharide or saline. Two hours later, animal were euthanized and we measured the plasma concentration of prostaglandin E2 (with HPLC-MS), interleukin-6 (ELISA), and corticosterone (RIA). We also had measured the concentration of monoaminergic neurotransmitters and their metabolites in the amygdala, brainstem, hippocampus, hypothalamus, motor cortex, periaqueductal gray, and prefrontal medial cortex using RP-HPLC-ED. A subset of the animals was evaluated in the elevated plus maze test immediately before euthanization. RESULTS The lack of immunosensory signaling of the vagus nerve stimulated increased activity of discrete inflammatory marker signals, which we confirmed by quantifying biochemical changes in blood plasma. Behavioral results, although preliminary, support the observed biochemical alterations. Many of the neurotransmitter changes observed after vagotomy indicated that the vagus nerve influences the activity of many brain areas involved in control of immune response and sickness behavior. Our studies show that these changes are largely eliminated during experimental infection. CONCLUSIONS Our results suggest that in vagotomized animals with blocked CNS, communication may transmit via a pathway independent of the vagus nerve to permit restoration of CNS activity for peripheral inflammation control.
Collapse
Affiliation(s)
- Anna Kobrzycka
- Department of Neurobiology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Paweł Napora
- Department of Neurobiology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Brandon L. Pearson
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, USA
| | | | - Rafał Szewczyk
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Marek Wieczorek
- Department of Neurobiology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| |
Collapse
|
20
|
Tsyglakova M, McDaniel D, Hodes GE. Immune mechanisms of stress susceptibility and resilience: Lessons from animal models. Front Neuroendocrinol 2019; 54:100771. [PMID: 31325456 DOI: 10.1016/j.yfrne.2019.100771] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/17/2019] [Accepted: 07/09/2019] [Indexed: 12/12/2022]
Abstract
Stress has an impact on the brain and the body. A growing literature demonstrates that feedback between the peripheral immune system and the brain contributes to individual differences in the behavioral response to stress. Here we examine preclinical literature to demonstrate a holistic vision of risk and resilience to stress. We identify a variety of cellular, cytokine and molecular mechanisms in adult animals that act in concert to produce a stress susceptible individual response. We discuss how cross talk between immune cells in the brain and in the periphery act together to increase permeability across the blood brain barrier or block it, resulting in susceptible or stress resilient phenotype. These preclinical studies have importance for understanding how individual differences in the immune response to stress may be contributing to mood related disorders such as depression, anxiety and posttraumatic stress disorders.
Collapse
Affiliation(s)
- Mariya Tsyglakova
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA; Graduate Program in Translational Biology, Medicine and Health, Virginia Tech, Blacksburg, VA, USA
| | - Dylan McDaniel
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Georgia E Hodes
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
| |
Collapse
|
21
|
Walker WH, Borniger JC. Molecular Mechanisms of Cancer-Induced Sleep Disruption. Int J Mol Sci 2019; 20:E2780. [PMID: 31174326 PMCID: PMC6600154 DOI: 10.3390/ijms20112780] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 02/07/2023] Open
Abstract
Sleep is essential for health. Indeed, poor sleep is consistently linked to the development of systemic disease, including depression, metabolic syndrome, and cognitive impairments. Further evidence has accumulated suggesting the role of sleep in cancer initiation and progression (primarily breast cancer). Indeed, patients with cancer and cancer survivors frequently experience poor sleep, manifesting as insomnia, circadian misalignment, hypersomnia, somnolence syndrome, hot flushes, and nightmares. These problems are associated with a reduction in the patients' quality of life and increased mortality. Due to the heterogeneity among cancers, treatment regimens, patient populations and lifestyle factors, the etiology of cancer-induced sleep disruption is largely unknown. Here, we discuss recent advances in understanding the pathways linking cancer and the brain and how this leads to altered sleep patterns. We describe a conceptual framework where tumors disrupt normal homeostatic processes, resulting in aberrant changes in physiology and behavior that are detrimental to health. Finally, we discuss how this knowledge can be leveraged to develop novel therapeutic approaches for cancer-associated sleep disruption, with special emphasis on host-tumor interactions.
Collapse
Affiliation(s)
- William H Walker
- Department of Neuroscience, West Virginia University, Morgantown, WV 26506, USA.
| | - Jeremy C Borniger
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
22
|
Gust J, Finney OC, Li D, Brakke HM, Hicks RM, Futrell RB, Gamble DN, Rawlings-Rhea SD, Khalatbari HK, Ishak GE, Duncan VE, Hevner RF, Jensen MC, Park JR, Gardner RA. Glial injury in neurotoxicity after pediatric CD19-directed chimeric antigen receptor T cell therapy. Ann Neurol 2019; 86:42-54. [PMID: 31074527 DOI: 10.1002/ana.25502] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 05/06/2019] [Accepted: 05/06/2019] [Indexed: 12/21/2022]
Abstract
OBJECTIVE To test whether systemic cytokine release is associated with central nervous system inflammatory responses and glial injury in immune effector cell-associated neurotoxicity syndrome (ICANS) after chimeric antigen receptor (CAR)-T cell therapy in children and young adults. METHODS We performed a prospective cohort study of clinical manifestations as well as imaging, pathology, CSF, and blood biomarkers on 43 subjects ages 1 to 25 who received CD19-directed CAR/T cells for acute lymphoblastic leukemia (ALL). RESULTS Neurotoxicity occurred in 19 of 43 (44%) subjects. Nine subjects (21%) had CTCAE grade 3 or 4 neurological symptoms, with no neurotoxicity-related deaths. Reversible delirium, headache, decreased level of consciousness, tremor, and seizures were most commonly observed. Cornell Assessment of Pediatric Delirium (CAPD) scores ≥9 had 94% sensitivity and 33% specificity for grade ≥3 neurotoxicity, and 91% sensitivity and 72% specificity for grade ≥2 neurotoxicity. Neurotoxicity correlated with severity of cytokine release syndrome, abnormal past brain magnetic resonance imaging (MRI), and higher peak CAR-T cell numbers in blood, but not cerebrospinal fluid (CSF). CSF levels of S100 calcium-binding protein B and glial fibrillary acidic protein increased during neurotoxicity, indicating astrocyte injury. There were concomitant increases in CSF white blood cells, protein, interferon-γ (IFNγ), interleukin (IL)-6, IL-10, and granzyme B (GzB), with concurrent elevation of serum IFNγ IL-10, GzB, granulocyte macrophage colony-stimulating factor, macrophage inflammatory protein 1 alpha, and tumor necrosis factor alpha, but not IL-6. We did not find direct evidence of endothelial activation. INTERPRETATION Our data are most consistent with ICANS as a syndrome of systemic inflammation, which affects the brain through compromise of the neurovascular unit and astrocyte injury. ANN NEUROL 2019.
Collapse
Affiliation(s)
- Juliane Gust
- Seattle Children's Division of Pediatric Neurology, Department of Neurology, University of Washington, Seattle, WA.,Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA
| | - Olivia C Finney
- Seattle Children's Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA
| | | | - Hannah M Brakke
- Seattle Children's Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA
| | - Roxana M Hicks
- Seattle Children's Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA
| | - Robert B Futrell
- Seattle Children's Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA
| | - Danielle N Gamble
- Seattle Children's Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA
| | - Stephanie D Rawlings-Rhea
- Seattle Children's Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA
| | | | | | | | - Robert F Hevner
- Department of Pathology, University of California San Diego, San Diego, CA
| | - Michael C Jensen
- Seattle Children's Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA.,Seattle Children's Division of Hematology-Oncology, Seattle, WA
| | - Julie R Park
- Seattle Children's Division of Hematology-Oncology, Seattle, WA
| | - Rebecca A Gardner
- Seattle Children's Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA.,Seattle Children's Division of Hematology-Oncology, Seattle, WA
| |
Collapse
|
23
|
Gomes GF, Peixoto RDDF, Maciel BG, Santos KFD, Bayma LR, Feitoza Neto PA, Fernandes TN, de Abreu CC, Casseb SMM, de Lima CM, de Oliveira MA, Diniz DG, Vasconcelos PFDC, Sosthenes MCK, Diniz CWP. Differential Microglial Morphological Response, TNFα, and Viral Load in Sedentary-like and Active Murine Models After Systemic Non-neurotropic Dengue Virus Infection. J Histochem Cytochem 2019; 67:419-439. [PMID: 30924711 DOI: 10.1369/0022155419835218] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Peripheral inflammatory stimuli increase proinflammatory cytokines in the bloodstream and central nervous system and activate microglial cells. Here we tested the hypothesis that contrasting environments mimicking sedentary and active lives would be associated with differential microglial morphological responses, inflammatory cytokines concentration, and virus load in the peripheral blood. For this, mice were maintained either in standard (standard environment) or enriched cages (enriched environment) and then subjected to a single (DENV1) serotype infection. Blood samples from infected animals showed higher viral loads and higher tumor necrosis factor-α (TNFα) mRNA concentrations than control subjects. Using an unbiased stereological sampling approach, we selected 544 microglia from lateral septum for microscopic 3D reconstruction. Morphological complexity contributed most to cluster formation. Infected groups exhibited significant increase in the microglia morphological complexity and number, despite the absence of dengue virus antigens in the brain. Two microglial phenotypes (type I with lower and type II with higher morphological complexity) were found in both infected and control groups. However, microglia from infected mice maintained in enriched environment showed only one morphological phenotype. Two-way ANOVA revealed that environmental changes and infection influenced type-I and II microglial morphologies and number. Environmental enrichment and infection interactions may contribute to microglial morphological change to a point that type-I and II morphological phenotypes could no longer be distinguished in infected mice from enriched environment. Significant linear correlation was found between morphological complexity and TNFα peripheral blood. Our findings demonstrated that sedentary-like and active murine models exhibited differential microglial responses and peripheral inflammation to systemic non-neurotropic infections with DENV1 virus.
Collapse
Affiliation(s)
- Giovanni Freitas Gomes
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brasil
| | - Railana Deise da Fonseca Peixoto
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brasil
| | - Brenda Gonçalves Maciel
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brasil
| | - Kedma Farias Dos Santos
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brasil
| | - Lohrane Rosa Bayma
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brasil
| | - Pedro Alves Feitoza Neto
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brasil
| | - Taiany Nogueira Fernandes
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brasil
| | - Cintya Castro de Abreu
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brasil
| | | | - Camila Mendes de Lima
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brasil
| | - Marcus Augusto de Oliveira
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brasil
| | - Daniel Guerreiro Diniz
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brasil
| | | | - Marcia Consentino Kronka Sosthenes
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brasil
| | - Cristovam Wanderley Picanço Diniz
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brasil
| |
Collapse
|
24
|
Liu X, Nemeth DP, McKim DB, Zhu L, DiSabato DJ, Berdysz O, Gorantla G, Oliver B, Witcher KG, Wang Y, Negray CE, Vegesna RS, Sheridan JF, Godbout JP, Robson MJ, Blakely RD, Popovich PG, Bilbo SD, Quan N. Cell-Type-Specific Interleukin 1 Receptor 1 Signaling in the Brain Regulates Distinct Neuroimmune Activities. Immunity 2019; 50:317-333.e6. [PMID: 30683620 DOI: 10.1016/j.immuni.2018.12.012] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 09/21/2018] [Accepted: 12/10/2018] [Indexed: 01/13/2023]
Abstract
Interleukin-1 (IL-1) signaling is important for multiple potentially pathogenic processes in the central nervous system (CNS), but the cell-type-specific roles of IL-1 signaling are unclear. We used a genetic knockin reporter system in mice to track and reciprocally delete or express IL-1 receptor 1 (IL-1R1) in specific cell types, including endothelial cells, ventricular cells, peripheral myeloid cells, microglia, astrocytes, and neurons. We found that endothelial IL-1R1 was necessary and sufficient for mediating sickness behavior and drove leukocyte recruitment to the CNS and impaired neurogenesis, whereas ventricular IL-1R1 was critical for monocyte recruitment to the CNS. Although microglia did not express IL-1R1, IL-1 stimulation of endothelial cells led to the induction of IL-1 in microglia. Together, these findings describe the structure and functions of the brain's IL-1R1-expressing system and lay a foundation for the dissection and identification of IL-1R1 signaling pathways in the pathogenesis of CNS diseases.
Collapse
Affiliation(s)
- Xiaoyu Liu
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Daniel P Nemeth
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH 43210, USA; Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH 43210, USA
| | - Daniel B McKim
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH 43210, USA; Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA; Department of Animal Science, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Ling Zhu
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Damon J DiSabato
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH 43210, USA; Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH 43210, USA; Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA
| | - Olimpia Berdysz
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Gowthami Gorantla
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Braedan Oliver
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Kristina G Witcher
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH 43210, USA; Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA
| | - Yufen Wang
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH 43210, USA; Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH 43210, USA
| | - Christina E Negray
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Rekha S Vegesna
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - John F Sheridan
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH 43210, USA; Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH 43210, USA; Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA
| | - Jonathan P Godbout
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH 43210, USA; Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA; Center for Brain and Spinal Cord Repair, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Matthew J Robson
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Randy D Blakely
- Department of Biomedical Science, Charles E. Schmidt College of Medicine and Brain Institute, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Phillip G Popovich
- Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA; Center for Brain and Spinal Cord Repair, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Staci D Bilbo
- Pediatrics and Neuroscience, Harvard Medical School, Lurie Center for Autism, Massachusetts General Hospital for Children, Boston, MA 02126, USA
| | - Ning Quan
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH 43210, USA; Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
25
|
Garner KM, Amin R, Johnson RW, Scarlett EJ, Burton MD. Microglia priming by interleukin-6 signaling is enhanced in aged mice. J Neuroimmunol 2018; 324:90-99. [PMID: 30261355 PMCID: PMC6699492 DOI: 10.1016/j.jneuroim.2018.09.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 08/17/2018] [Accepted: 09/10/2018] [Indexed: 01/20/2023]
Abstract
During peripheral infection, excessive production of pro-inflammatory cytokines in the aged brain from primed microglia induces exaggerated behavioral pathologies. While the pro-inflammatory cytokine IL-6 increases in the brain with age, its role in microglia priming is not known. This study examined the functional role of IL-6 signaling on microglia priming. Our hypothesis is that IL-6 signaling mediates primed states of microglia in the aged. An initial study assessed age-related alteration in IL-6 signaling molecules; sIL-6R and sgp130 were measured in cerebrospinal fluid of young and aged wild-type animals. Subsequent studies of isolated microglia from C57BL6/J (IL-6+/+) and IL-6 knock-out (IL-6-/-) mice showed significantly less MHC-II expression in aged IL-6-/- compared to IL-6+/+ counterparts. Additionally, adult and aged IL-6+/+ and IL-6-/- animals were administered lipopolysaccharide (LPS) to simulate a peripheral infection; sickness behaviors and hippocampal cytokine gene expression were measured over a 24 h period. Aged IL-6-/- animals were resilient to LPS-induced sickness behaviors and recovered more quickly than IL-6+/+ animals. The age-associated baseline increase of IL-1β gene expression was ablated in aged IL-6-/- mice, suggesting IL-6 is a key driver of cytokine activity from primed microglia in the aged brain. We employed in vitro studies to understand molecular mechanisms in priming factors. MHC-II and pro-inflammatory gene expression (IL-1β, IL-10, IL-6) were measured after treating BV.2 microglia with sIL-6R and IL-6 or IL-6 alone. sIL-6R enhanced expression of both pro-inflammatory genes and MHC-II. Taken together, these data suggest IL-6 expression throughout life is involved in microglia priming and increased amounts of IL-6 following peripheral LPS challenge are involved in exaggerated sickness behaviors in the aged.
Collapse
Affiliation(s)
- Katherine M Garner
- Laboratory of Neuroimmunolgy and Behavior, School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX 75080, United States
| | - Ravi Amin
- Laboratory of Integrative Immunology and Behavior, Animal Science Department, University of Illinois at Urbana-Champaign, 7 Animal Sciences Lab 1207 W. Gregory Dr., Urbana, IL 61801, USA
| | - Rodney W Johnson
- Laboratory of Neuroimmunolgy and Behavior, School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX 75080, United States; Laboratory of Integrative Immunology and Behavior, Animal Science Department, University of Illinois at Urbana-Champaign, 7 Animal Sciences Lab 1207 W. Gregory Dr., Urbana, IL 61801, USA
| | - Emily J Scarlett
- Laboratory of Neuroimmunolgy and Behavior, School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX 75080, United States
| | - Michael D Burton
- Laboratory of Neuroimmunolgy and Behavior, School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX 75080, United States.
| |
Collapse
|
26
|
Ahn KC, Learman CR, Dunbar GL, Maiti P, Jang WC, Cha HC, Song MS. Characterization of Impaired Cerebrovascular Structure in APP/PS1 Mouse Brains. Neuroscience 2018; 385:246-254. [PMID: 29777753 DOI: 10.1016/j.neuroscience.2018.05.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 04/27/2018] [Accepted: 05/02/2018] [Indexed: 01/01/2023]
Abstract
Alzheimer's disease (AD) is defined by senile plaques, tauopathy and neuronal cell death in specific area of the brain. Recent studies suggest that neurovascular dysfunction may be an integral part of AD pathogenesis, contributing to the onset and development of AD pathologies such as neuronal death, inflammatory response, and breakdown of blood-brain barrier (BBB). In addition, vascular complications caused by age-related metabolic diseases such as diabetes and high blood pressure have high incidence in development of dementia and AD. We previously reported that astrocytes, essential components of BBB, were chronically activated and some deteriorated in the brain of 5xFAD, an amyloid precursor protein/presenilin1 (APP/PS1) transgenic mouse model. Thus, it is rational to investigate if any vascular dysfunction is associated with considerable activation of astrocytes in APP/PS1 mouse model. In this study, we observed that cerebrovascular pathology was associated with large scale of reactive astrocytes and neurodegeneration in an Aβ plague-generating mouse model. Using 5xFAD mouse brains, we demonstrate damaged brain vessels and reduced expression of glucose transporter 1 (GLUT1), the main glucose transporter, and a tight junction protein zonula occludens-1 (ZO-1) of cerebrovascular endothelial cells. This vascular pathology was closely associated with astrocytic deterioration and neuronal loss due to buildup of Aβ plaques in 5xFAD mouse brains.
Collapse
Affiliation(s)
- Kee-Chan Ahn
- University of British Columbia, Vancouver, BC, Canada; EnviroBrain, Edmonton, AB, Canada
| | - Cameron R Learman
- Field Neurosciences Institute, St. Mary's of Michigan, Saginaw, MI, USA; Neuroscience Program, Central Michigan University, Mt Pleasant, MI, USA
| | - Gary L Dunbar
- Field Neurosciences Institute, St. Mary's of Michigan, Saginaw, MI, USA; Neuroscience Program, Central Michigan University, Mt Pleasant, MI, USA
| | - Panchanan Maiti
- Field Neurosciences Institute, St. Mary's of Michigan, Saginaw, MI, USA; Neuroscience Program, Central Michigan University, Mt Pleasant, MI, USA
| | | | - Hyeon-Cheol Cha
- Department of Biological Sciences, Dankook University, Cheonan, Chungnam, South Korea
| | - Mee-Sook Song
- Department of Biological Sciences, Dankook University, Cheonan, Chungnam, South Korea.
| |
Collapse
|
27
|
Xiao JY, Xiong BR, Zhang W, Zhou WC, Yang H, Gao F, Xiang HB, Manyande A, Tian XB, Tian YK. PGE2-EP3 signaling exacerbates hippocampus-dependent cognitive impairment after laparotomy by reducing expression levels of hippocampal synaptic plasticity-related proteins in aged mice. CNS Neurosci Ther 2018; 24:917-929. [PMID: 29488342 DOI: 10.1111/cns.12832] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 01/31/2018] [Accepted: 02/01/2018] [Indexed: 12/24/2022] Open
Abstract
AIM Multifactors contribute to the development of postoperative cognitive dysfunction (POCD), of which the most important mechanism is neuroinflammation. Prostaglandin E2 (PGE2) is a key neuroinflammatory molecule and could modulate hippocampal synaptic transmission and plasticity. This study was designed to investigate whether PGE2 and its receptors signaling pathway were involved in the pathophysiology of POCD. METHODS Sixteen-month old male C57BL/6J mice were exposed to laparotomy. Cognitive function was evaluated by fear conditioning test. The levels of PGE2 and its 4 distinct receptors (EP1-4) were assessed by biochemical analysis. Pharmacological or genetic methods were further applied to investigate the role of the specific PGE2 receptors. RESULTS Here, we found that the transcription and translation level of the EP3 receptor in hippocampus increased remarkably, but not EP1, EP2, or EP4. Immunofluorescence results showed EP3 positive cells in the hippocampal CA1 region were mainly neurons. Furthermore, pharmacological blocking or genetic suppression of EP3 could alleviate surgery-induced hippocampus-dependent memory deficits and rescued the expression of plasticity-related proteins, including cAMP response element-binding protein (CREB), activity-regulated cytoskeletal-associated protein (Arc), and brain-derived neurotrophic factor (BDNF) in hippocampus. CONCLUSION This study showed that PGE2-EP3 signaling pathway was involved in the progression of POCD and identified EP3 receptor as a promising treatment target.
Collapse
Affiliation(s)
- Jing-Yu Xiao
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Bing-Rui Xiong
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wen Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wen-Chang Zhou
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hui Yang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Feng Gao
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hong-Bing Xiang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Anne Manyande
- School of Human and Social Sciences, University of West London, London, UK
| | - Xue-Bi Tian
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yu-Ke Tian
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
28
|
Khemakhem AM, Frye RE, El-Ansary A, Al-Ayadhi L, Bacha AB. Novel biomarkers of metabolic dysfunction is autism spectrum disorder: potential for biological diagnostic markers. Metab Brain Dis 2017; 32:1983-1997. [PMID: 28831647 DOI: 10.1007/s11011-017-0085-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 08/01/2017] [Indexed: 12/21/2022]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder that is behaviorally defined by social and communication impairments and restricted interests and repetitive behaviors. There is currently no biomarkers that can help in the diagnosis. Several studies suggest that mitochondrial dysfunction is commonly involved in ASD pathophysiology, but standard mitochondrial biomarkers are thought to be very variable. In the present study we examine a wide variety of plasma biomarkers of mitochondrial metabolism and the related abnormalities of oxidative stress and apoptosis in 41 ASD patients assessed for ASD severity using the Childhood Autism Rating Scales and 41 non-related age and sex matched healthy controls. Our findings confirm previous studies indicating abnormal mitochondrial and related biomarkers in children with ASD including pyruvate, creatine kinase, Complex 1, Glutathione S-Transferase, glutathione and Caspase 7. As a novel finding, we report that lactate dehydrogenase is abnormal in children with ASD. We also identified that only the most severe children demonstrated abnormalities in Complex 1 activity and Glutathione S-Transferase. Additionally, we find that several biomarkers could be candidates for differentiating children with ASD and typically developing children, including Caspase 7, gluthatione and Glutathione S-Transferase by themselves and lactate dehydrogenase and Complex I when added to other biomarkers in combination. Caspase 7 was the most discriminating biomarker between ASD patients and healthy controls suggesting its potential use as diagnostic marker for the early recognition of ASD pathophysiology. This study confirms that several mitochondrial biomarkers are abnormal in children with ASD and suggest that certain mitochondrial biomarkers can differentiate between ASD and typically developing children, making them possibly useful as a tool to diagnosis ASD and identify ASD subgroups.
Collapse
Affiliation(s)
- Asma M Khemakhem
- Laboratory of Plant Biotechnology Applied to Crop Improvement, Faculty of Science of Sfax, University of Sfax, 3038, Sfax, Tunisia
| | - Richard E Frye
- Arkansas Children's Research Institute, Slot 512-41B, Room R4041, 13 Children's Way, Little Rock, AR, 72202, USA.
| | - Afaf El-Ansary
- Autism Research and Treatment Center, King Saud University, P O Box 2925, Riyadh, 11461, Saudi Arabia
- Shaik AL-Amodi Autism Research Chair, King Saud University, P O Box 2925, Riyadh, 11461, Saudi Arabia
- Central Laboratory, King Saud University, P.O Box 22452, Zip code, Riyadh, 11495, Saudi Arabia
| | - Laila Al-Ayadhi
- Autism Research and Treatment Center, King Saud University, P O Box 2925, Riyadh, 11461, Saudi Arabia
- Shaik AL-Amodi Autism Research Chair, King Saud University, P O Box 2925, Riyadh, 11461, Saudi Arabia
- Department of Physiology, Faculty of Medicine, King Saud University, P O Box 2925, Riyadh, 11461, Saudi Arabia
| | - Abir Ben Bacha
- Laboratory of Plant Biotechnology Applied to Crop Improvement, Faculty of Science of Sfax, University of Sfax, 3038, Sfax, Tunisia
- Biochemistry Department, Science College, King Saud University, P.O Box 22452, Zip code, Riyadh, 11495, Saudi Arabia
| |
Collapse
|
29
|
Cell-penetrating interactomic inhibition of nuclear factor-kappa B in a mouse model of postoperative cognitive dysfunction. Sci Rep 2017; 7:13482. [PMID: 29044209 PMCID: PMC5647420 DOI: 10.1038/s41598-017-14027-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 10/05/2017] [Indexed: 12/18/2022] Open
Abstract
Some patients experience impaired cognitive functioning after surgery, a phenomenon referred to as postoperative cognitive dysfunction (POCD). Signs of POCD are closely associated with the development of systemic or hippocampal inflammation. However, the precise pathophysiological mechanisms of prevention/treatment options for POCD still remain unclear. After injury, the transcriptional factor nuclear factor-kappa B (NF-κB) is thought to regulate or stimulate inflammation amplification. Therefore, we designed a cell-penetrating fusion protein called nt-p65-TMD, which inhibits NF-κB p65 activation by translocating into the nucleus. In the present study, we discovered that nt-p65-TMD exerted effects on surgery-induced cognitive impairment in mice. Specifically, nt-p65-TMD exhibited strong immunoregulatory properties that were able to reduce surgery-induced elevations in cerebrovascular integrity impairment, subsequent peripheral immune-cell recruitment, and inflammation amplification, which ultimately lead to cognitive decline. The nt-p65-TMD has the unique ability to regulate and reduce systemic inflammation and inflammation amplification, suggesting a new strategy for preventing development of cognitive decline that occurs in POCD.
Collapse
|
30
|
Walker Ii WH, Borniger JC, Surbhi, Zalenski AA, Muscarella SL, Fitzgerald JA, Zhang N, Gaudier-Diaz MM, DeVries AC. Mammary Tumors Induce Central Pro-inflammatory Cytokine Expression, but Not Behavioral Deficits in Balb/C Mice. Sci Rep 2017; 7:8152. [PMID: 28811490 PMCID: PMC5557981 DOI: 10.1038/s41598-017-07596-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 06/29/2017] [Indexed: 11/08/2022] Open
Abstract
Breast cancer survivors are more likely to develop mood disorders and cognitive deficits than women in the general population. Previous studies suggest that peripheral tumors elicit central pro-inflammatory cytokine production, in turn leading to depression and cognitive deficits. In the current study, two cohorts of female Balb/C mice received bilateral orthotopic injections of syngeneic 67NR, 4T07, or 4T1cells (1 × 105 cells per injection) to induce mammary tumors. Approximately three weeks later, learned fear (via fear conditioning) or depressive-like behavior (via tail suspension and forced swim test) was assessed. Proinflammatory cytokine levels were increased in the serum (IL-1β, TNFα, IFNγ) and livers (IL-1β, IL-6, TNFα) of mice with 4T07 or 4T1 tumors compared to 67NR tumors and the vehicle control. IL-1β was increased in both the hippocampus and cortex of mice injected with 4T07 or 4T1 cell lines relative to the other treatment groups. However, mammary tumors had no effect on hippocampal doublecortin + and did not alter depressive-like behavior or learned fear. These data demonstrate that similarly sized tumors can produce differential immune responses and that tumor-induced central pro-inflammatory cytokine production can exist in the absence of depressive-like behavior or cognitive deficits.
Collapse
Affiliation(s)
- William H Walker Ii
- Department of Neuroscience, The Ohio State University Wexner Medical Center, 460W 12th Ave., Columbus, OH, 43210, USA.
- Neuroscience Research Institute, The Ohio State University Wexner Medical Center, 460W 12th Ave., Columbus, OH, 43210, USA.
- Behavioral Neuroendocrinology Group, The Ohio State University Wexner Medical Center, 460W 12th Ave., Columbus, OH, 43210, USA.
| | - Jeremy C Borniger
- Department of Neuroscience, The Ohio State University Wexner Medical Center, 460W 12th Ave., Columbus, OH, 43210, USA
- Neuroscience Research Institute, The Ohio State University Wexner Medical Center, 460W 12th Ave., Columbus, OH, 43210, USA
- Behavioral Neuroendocrinology Group, The Ohio State University Wexner Medical Center, 460W 12th Ave., Columbus, OH, 43210, USA
| | - Surbhi
- Department of Neuroscience, The Ohio State University Wexner Medical Center, 460W 12th Ave., Columbus, OH, 43210, USA
- Neuroscience Research Institute, The Ohio State University Wexner Medical Center, 460W 12th Ave., Columbus, OH, 43210, USA
- Behavioral Neuroendocrinology Group, The Ohio State University Wexner Medical Center, 460W 12th Ave., Columbus, OH, 43210, USA
| | - Abigail A Zalenski
- Department of Neuroscience, The Ohio State University Wexner Medical Center, 460W 12th Ave., Columbus, OH, 43210, USA
- Neuroscience Research Institute, The Ohio State University Wexner Medical Center, 460W 12th Ave., Columbus, OH, 43210, USA
- Behavioral Neuroendocrinology Group, The Ohio State University Wexner Medical Center, 460W 12th Ave., Columbus, OH, 43210, USA
| | - Stevie L Muscarella
- Department of Neuroscience, The Ohio State University Wexner Medical Center, 460W 12th Ave., Columbus, OH, 43210, USA
- Neuroscience Research Institute, The Ohio State University Wexner Medical Center, 460W 12th Ave., Columbus, OH, 43210, USA
- Behavioral Neuroendocrinology Group, The Ohio State University Wexner Medical Center, 460W 12th Ave., Columbus, OH, 43210, USA
| | - Julie A Fitzgerald
- Department of Neuroscience, The Ohio State University Wexner Medical Center, 460W 12th Ave., Columbus, OH, 43210, USA
- Neuroscience Research Institute, The Ohio State University Wexner Medical Center, 460W 12th Ave., Columbus, OH, 43210, USA
- Behavioral Neuroendocrinology Group, The Ohio State University Wexner Medical Center, 460W 12th Ave., Columbus, OH, 43210, USA
| | - Ning Zhang
- Department of Neuroscience, The Ohio State University Wexner Medical Center, 460W 12th Ave., Columbus, OH, 43210, USA
- Neuroscience Research Institute, The Ohio State University Wexner Medical Center, 460W 12th Ave., Columbus, OH, 43210, USA
- Behavioral Neuroendocrinology Group, The Ohio State University Wexner Medical Center, 460W 12th Ave., Columbus, OH, 43210, USA
| | - Monica M Gaudier-Diaz
- Department of Neuroscience, The Ohio State University Wexner Medical Center, 460W 12th Ave., Columbus, OH, 43210, USA
- Neuroscience Research Institute, The Ohio State University Wexner Medical Center, 460W 12th Ave., Columbus, OH, 43210, USA
- Behavioral Neuroendocrinology Group, The Ohio State University Wexner Medical Center, 460W 12th Ave., Columbus, OH, 43210, USA
| | - A Courtney DeVries
- Department of Neuroscience, The Ohio State University Wexner Medical Center, 460W 12th Ave., Columbus, OH, 43210, USA
- Neuroscience Research Institute, The Ohio State University Wexner Medical Center, 460W 12th Ave., Columbus, OH, 43210, USA
- Behavioral Neuroendocrinology Group, The Ohio State University Wexner Medical Center, 460W 12th Ave., Columbus, OH, 43210, USA
| |
Collapse
|
31
|
Cheon SY, Kim EJ, Kim JM, Kam EH, Ko BW, Koo BN. Regulation of Microglia and Macrophage Polarization via Apoptosis Signal-Regulating Kinase 1 Silencing after Ischemic/Hypoxic Injury. Front Mol Neurosci 2017; 10:261. [PMID: 28855861 PMCID: PMC5557792 DOI: 10.3389/fnmol.2017.00261] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 07/31/2017] [Indexed: 12/28/2022] Open
Abstract
Inflammation is implicated in ischemic stroke and is involved in abnormal homeostasis. Activation of the immune system leads to breakdown of the blood-brain barrier and, thereby, infiltration of immune cells into the brain. Upon cerebral ischemia, infiltrated macrophages and microglia (resident CNS immune cell) are activated, change their phenotype to M1 or M2 based on the microenvironment, migrate toward damaged tissue, and are involved in repair or damage. Those of M1 phenotype release pro-inflammatory mediators, which are associated with tissue damage, while those of M2 phenotype release anti-inflammatory mediators, which are related to tissue recovery. Moreover, late inflammation continually stimulates immune cell infiltration and leads to brain infarction. Therefore, regulation of M1/M2 phenotypes under persistent inflammatory conditions after cerebral ischemia is important for brain repair. Herein, we focus on apoptosis signal-regulating kinase 1 (ASK1), which is involved in apoptotic cell death, brain infarction, and production of inflammatory mediators after cerebral ischemia. We hypothesized that ASK1 is involved in the polarization of M1/M2 phenotype and the function of microglia and macrophage during the late stage of ischemia/hypoxia. We investigated the effects of ASK1 in mice subjected to middle cerebral artery occlusion and on BV2 microglia and RAW264.7 macrophage cell lines subjected to oxygen-glucose deprivation. Our results showed that ASK1 silencing effectively reduced Iba-1 or CD11b-positive cells in ischemic areas, suppressed pro-inflammatory cytokines, and increased anti-inflammatory mediator levels at 7 days after cerebral ischemia. In cultured microglia and macrophages, ASK1 inhibition, induced by NQDI-1 drug, decreased the expression and release of M1-associated factors and increased those of M2-associated factors after hypoxia/reperfusion (H/R). At the gene level, ASK1 inhibition suppressed M1-associated genes and augmented M2-associated genes. In gap closure assay, ASK1 inhibition reduced the migration rate of microglia and macrophages after H/R. Taken together, our results provide new information that suggests ASK1 controls the polarization of M1/M2 and the function of microglia and macrophage under sustained-inflammatory conditions. Regulation of persistent inflammation via M1/M2 polarization by ASK1 is a novel strategy for repair after ischemic stroke.
Collapse
Affiliation(s)
- So Yeong Cheon
- Department of Anesthesiology and Pain Medicine, Yonsei University College of MedicineSeoul, South Korea.,Anesthesia and Pain Research Institute, Yonsei University College of MedicineSeoul, South Korea
| | - Eun Jung Kim
- Department of Anesthesiology and Pain Medicine, Yonsei University College of MedicineSeoul, South Korea.,Anesthesia and Pain Research Institute, Yonsei University College of MedicineSeoul, South Korea
| | - Jeong Min Kim
- Department of Anesthesiology and Pain Medicine, Yonsei University College of MedicineSeoul, South Korea.,Anesthesia and Pain Research Institute, Yonsei University College of MedicineSeoul, South Korea
| | - Eun Hee Kam
- Department of Anesthesiology and Pain Medicine, Yonsei University College of MedicineSeoul, South Korea.,Anesthesia and Pain Research Institute, Yonsei University College of MedicineSeoul, South Korea
| | - Byung Woong Ko
- Department of Anesthesiology and Pain Medicine, Yonsei University College of MedicineSeoul, South Korea
| | - Bon-Nyeo Koo
- Department of Anesthesiology and Pain Medicine, Yonsei University College of MedicineSeoul, South Korea.,Anesthesia and Pain Research Institute, Yonsei University College of MedicineSeoul, South Korea
| |
Collapse
|
32
|
Sun YY, Zhang WJ, Dong CL, Zhang XF, Ji J, Wang X, Wang L, Hu WL, Du WJ, Cui CL, Zhang CF, Li F, Wang CZ, Yuan CS. Baicalin Alleviates Nitroglycerin-induced Migraine in Rats via the Trigeminovascular System. Phytother Res 2017; 31:899-905. [DOI: 10.1002/ptr.5811] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 03/07/2017] [Accepted: 03/16/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Yu-Yao Sun
- State Key Laboratory of Natural Medicines; China Pharmaceutical University; Nanjing JS 210009 China
| | - Wen-Jun Zhang
- State Key Laboratory of Natural Medicines; China Pharmaceutical University; Nanjing JS 210009 China
| | - Cui-Lan Dong
- The People's Hospital of Zhangqiu; Zhangqiu 250200 China
| | - Xiao-Fan Zhang
- State Key Laboratory of Natural Medicines; China Pharmaceutical University; Nanjing JS 210009 China
| | - Jun Ji
- State Key Laboratory of Natural Medicines; China Pharmaceutical University; Nanjing JS 210009 China
| | - Xue Wang
- State Key Laboratory of Natural Medicines; China Pharmaceutical University; Nanjing JS 210009 China
| | - Ling Wang
- State Key Laboratory of Natural Medicines; China Pharmaceutical University; Nanjing JS 210009 China
| | - Wan-Li Hu
- State Key Laboratory of Natural Medicines; China Pharmaceutical University; Nanjing JS 210009 China
| | - Wen-Juan Du
- State Key Laboratory of Natural Medicines; China Pharmaceutical University; Nanjing JS 210009 China
| | - Cheng-Long Cui
- State Key Laboratory of Natural Medicines; China Pharmaceutical University; Nanjing JS 210009 China
| | - Chun-Feng Zhang
- State Key Laboratory of Natural Medicines; China Pharmaceutical University; Nanjing JS 210009 China
- Tang Center of Herbal Medicine Research and Department of Anesthesia & Critical Care; The University of Chicago; Chicago IL 60637 USA
| | - Fei Li
- State Key Laboratory of Natural Medicines; China Pharmaceutical University; Nanjing JS 210009 China
| | - Chong-Zhi Wang
- Tang Center of Herbal Medicine Research and Department of Anesthesia & Critical Care; The University of Chicago; Chicago IL 60637 USA
| | - Chun-Su Yuan
- Tang Center of Herbal Medicine Research and Department of Anesthesia & Critical Care; The University of Chicago; Chicago IL 60637 USA
| |
Collapse
|
33
|
Stranahan AM, Hao S, Dey A, Yu X, Baban B. Blood-brain barrier breakdown promotes macrophage infiltration and cognitive impairment in leptin receptor-deficient mice. J Cereb Blood Flow Metab 2016; 36:2108-2121. [PMID: 27034250 PMCID: PMC5363667 DOI: 10.1177/0271678x16642233] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 03/02/2016] [Accepted: 03/07/2016] [Indexed: 01/03/2023]
Abstract
Accumulating evidence indicates that obesity accelerates the onset of cognitive decline. While mechanisms are still being identified, obesity promotes peripheral inflammation and increases blood-brain barrier (BBB) permeability. However, no studies have manipulated vascular permeability in obesity to determine whether BBB breakdown underlies memory deficits. Protein kinase Cβ (PKCβ) activation destabilizes the BBB, and we used a PKCβ inhibitor (Enzastaurin) to block BBB leakiness in leptin receptor-deficient (db/db) mice. Enzastaurin reversed BBB breakdown in db/db mice and normalized hippocampal function without affecting obesity or metabolism. Flow cytometric analysis of forebrain mononuclear cells (FMCs) from db/db mice revealed macrophage infiltration and induction of the activation marker MHCII in microglia and macrophages. Enzastaurin eliminated macrophage infiltration and MHCII induction, and protein array profiling revealed parallel reductions in IL1β, IL6, MCP1, and TNFα. To investigate whether these signals attract peripheral monocytes, FMCs from Wt and db/db mice were plated below migration inserts containing peritoneal macrophages. Peritoneal macrophages from db/db mice exhibit increases in transmigration that were blocked by recombinant IL1RA. These studies indicate that BBB breakdown impairs cognition in obesity and diabetes by allowing macrophage infiltration, with a potential role for IL1β in trafficking of peripheral monocytes into the brain.
Collapse
Affiliation(s)
- Alexis M Stranahan
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Georgia Regents University, Augusta, GA, USA
| | - Shuai Hao
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Georgia Regents University, Augusta, GA, USA
| | - Aditi Dey
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Georgia Regents University, Augusta, GA, USA
| | - Xiaolin Yu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Georgia Regents University, Augusta, GA, USA
| | - Babak Baban
- Department of Oral Biology, Medical College of Georgia, Georgia Regents University Augusta, GA, USA
- Plastic Surgery Section, Department of Surgery Medical College of Georgia, Georgia Regents University, Augusta, GA, USA
| |
Collapse
|
34
|
Dadsetan S, Balzano T, Forteza J, Agusti A, Cabrera-Pastor A, Taoro-Gonzalez L, Hernandez-Rabaza V, Gomez-Gimenez B, ElMlili N, Llansola M, Felipo V. Infliximab reduces peripheral inflammation, neuroinflammation, and extracellular GABA in the cerebellum and improves learning and motor coordination in rats with hepatic encephalopathy. J Neuroinflammation 2016; 13:245. [PMID: 27623772 PMCID: PMC5022234 DOI: 10.1186/s12974-016-0710-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 09/06/2016] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Peripheral inflammation contributes to the neurological alterations in hepatic encephalopathy (HE). Neuroinflammation and altered GABAergic neurotransmission mediate cognitive and motor alterations in rats with HE. It remains unclear (a) if neuroinflammation and neurological impairment in HE are a consequence of peripheral inflammation and (b) how neuroinflammation impairs GABAergic neurotransmission. The aims were to assess in rats with HE whether reducing peripheral inflammation with anti-TNF-α (1) prevents cognitive impairment and motor in-coordination, (2) normalizes neuroinflammation and extracellular GABA in the cerebellum and also (3) advances the understanding of mechanisms linking neuroinflammation and increased extracellular GABA. METHODS Rats with HE due to portacaval shunt (PCS) were treated with infliximab. Astrocytes and microglia activation and TNF-α and IL-1β were analyzed by immunohistochemistry. Membrane expression of the GABA transporters GAT-3 and GAT-1 was analyzed by cross-linking with BS3. Extracellular GABA was analyzed by microdialysis. Motor coordination was tested using the beam walking and learning ability using the Y maze task. RESULTS PCS rats show peripheral inflammation, activated astrocytes, and microglia and increased levels of TNF-α and IL-1β. Membrane expression of GAT-3 and extracellular GABA are increased, leading to impaired motor coordination and learning ability. Infliximab reduces peripheral inflammation, microglia, and astrocyte activation and neuroinflammation and normalizes GABAergic neurotransmission, motor coordination, and learning ability. CONCLUSIONS Neuroinflammation is associated with altered GABAergic neurotransmission and increased GAT-3 membrane expression and extracellular GABA (a); peripheral inflammation is a main contributor to the impairment of motor coordination and of the ability to learn the Y maze task in PCS rats (b); and reducing peripheral inflammation using safe procedures could be a new therapeutic approach to improve cognitive and motor function in patients with HE
Collapse
Affiliation(s)
- Sherry Dadsetan
- Laboratorio de Neurobiología, Centro Investigación Príncipe Felipe de Valencia, Eduardo Primo Yufera, 3, 46012 Valencia, Spain
| | - Tiziano Balzano
- Laboratorio de Neurobiología, Centro Investigación Príncipe Felipe de Valencia, Eduardo Primo Yufera, 3, 46012 Valencia, Spain
| | - Jerónimo Forteza
- Instituto Valenciano de Patología, Unidad Mixta de Patología Molecular, Centro de Investigación Príncipe Felipe/Universidad Católica de Valencia, Valencia, Spain
| | - Ana Agusti
- Laboratorio de Neurobiología, Centro Investigación Príncipe Felipe de Valencia, Eduardo Primo Yufera, 3, 46012 Valencia, Spain
| | - Andrea Cabrera-Pastor
- Laboratorio de Neurobiología, Centro Investigación Príncipe Felipe de Valencia, Eduardo Primo Yufera, 3, 46012 Valencia, Spain
| | - Lucas Taoro-Gonzalez
- Laboratorio de Neurobiología, Centro Investigación Príncipe Felipe de Valencia, Eduardo Primo Yufera, 3, 46012 Valencia, Spain
| | - Vicente Hernandez-Rabaza
- Laboratorio de Neurobiología, Centro Investigación Príncipe Felipe de Valencia, Eduardo Primo Yufera, 3, 46012 Valencia, Spain
| | - Belen Gomez-Gimenez
- Laboratorio de Neurobiología, Centro Investigación Príncipe Felipe de Valencia, Eduardo Primo Yufera, 3, 46012 Valencia, Spain
| | - Nisrin ElMlili
- Laboratorio de Neurobiología, Centro Investigación Príncipe Felipe de Valencia, Eduardo Primo Yufera, 3, 46012 Valencia, Spain
| | - Marta Llansola
- Laboratorio de Neurobiología, Centro Investigación Príncipe Felipe de Valencia, Eduardo Primo Yufera, 3, 46012 Valencia, Spain
| | - Vicente Felipo
- Laboratorio de Neurobiología, Centro Investigación Príncipe Felipe de Valencia, Eduardo Primo Yufera, 3, 46012 Valencia, Spain
| |
Collapse
|
35
|
Wohleb ES, Franklin T, Iwata M, Duman RS. Integrating neuroimmune systems in the neurobiology of depression. Nat Rev Neurosci 2016; 17:497-511. [PMID: 27277867 DOI: 10.1038/nrn.2016.69] [Citation(s) in RCA: 419] [Impact Index Per Article: 46.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Data from clinical and preclinical studies indicate that immune dysregulation, specifically of inflammatory processes, is associated with symptoms of major depressive disorder (MDD). In particular, increased levels of circulating pro-inflammatory cytokines and concomitant activation of brain-resident microglia can lead to depressive behavioural symptoms. Repeated exposure to psychological stress has a profound impact on peripheral immune responses and perturbs the function of brain microglia, which may contribute to neurobiological changes underlying MDD. Here, we review these findings and discuss ongoing studies examining neuroimmune mechanisms that influence neuronal activity as well as synaptic plasticity. Interventions targeting immune-related cellular and molecular pathways may benefit subsets of MDD patients with immune dysregulation.
Collapse
Affiliation(s)
- Eric S Wohleb
- Departments of Psychiatry and Neurobiology, Yale University School of Medicine, New Haven, Connecticut 06519, USA
| | - Tina Franklin
- Departments of Psychiatry and Neurobiology, Yale University School of Medicine, New Haven, Connecticut 06519, USA
| | - Masaaki Iwata
- Division of Neuropsychiatry, Department of Brain and Neurosciences, Tottori University Faculty of Medicine, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan
| | - Ronald S Duman
- Departments of Psychiatry and Neurobiology, Yale University School of Medicine, New Haven, Connecticut 06519, USA
| |
Collapse
|
36
|
Rummel C, Bredehöft J, Damm J, Schweighöfer H, Peek V, Harden LM. Obesity Impacts Fever and Sickness Behavior During Acute Systemic Inflammation. Physiology (Bethesda) 2016; 31:117-30. [PMID: 26889017 DOI: 10.1152/physiol.00049.2015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Obesity is reaching dramatic proportions in humans and is associated with a higher risk for cardiovascular disease, diabetes, and cognitive alterations, and a higher mortality during infection and inflammation. The focus of the present review is on the influence of obesity on the presentation of fever, sickness behavior, and inflammatory responses during acute systemic inflammation.
Collapse
Affiliation(s)
- Christoph Rummel
- Department of Veterinary-Physiology and Biochemistry, Justus-Liebig-University Giessen, Giessen, Germany; and
| | - Janne Bredehöft
- Department of Veterinary-Physiology and Biochemistry, Justus-Liebig-University Giessen, Giessen, Germany; and
| | - Jelena Damm
- Department of Veterinary-Physiology and Biochemistry, Justus-Liebig-University Giessen, Giessen, Germany; and
| | - Hanna Schweighöfer
- Department of Veterinary-Physiology and Biochemistry, Justus-Liebig-University Giessen, Giessen, Germany; and
| | - Verena Peek
- Department of Veterinary-Physiology and Biochemistry, Justus-Liebig-University Giessen, Giessen, Germany; and
| | - Lois M Harden
- Brain Function Research Group, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
37
|
Roth J, Blatteis CM. Mechanisms of fever production and lysis: lessons from experimental LPS fever. Compr Physiol 2015; 4:1563-604. [PMID: 25428854 DOI: 10.1002/cphy.c130033] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Fever is a cardinal symptom of infectious or inflammatory insults, but it can also arise from noninfectious causes. The fever-inducing agent that has been used most frequently in experimental studies designed to characterize the physiological, immunological and neuroendocrine processes and to identify the neuronal circuits that underlie the manifestation of the febrile response is lipopolysaccharide (LPS). Our knowledge of the mechanisms of fever production and lysis is largely based on this model. Fever is usually initiated in the periphery of the challenged host by the immediate activation of the innate immune system by LPS, specifically of the complement (C) cascade and Toll-like receptors. The first results in the immediate generation of the C component C5a and the subsequent rapid production of prostaglandin E2 (PGE2). The second, occurring after some delay, induces the further production of PGE2 by induction of its synthesizing enzymes and transcription and translation of proinflammatory cytokines. The Kupffer cells (Kc) of the liver seem to be essential for these initial processes. The subsequent transfer of the pyrogenic message from the periphery to the brain is achieved by neuronal and humoral mechanisms. These pathways subserve the genesis of early (neuronal signals) and late (humoral signals) phases of the characteristically biphasic febrile response to LPS. During the course of fever, counterinflammatory factors, "endogenous antipyretics," are elaborated peripherally and centrally to limit fever in strength and duration. The multiple interacting pro- and antipyretic signals and their mechanistic effects that underlie endotoxic fever are the subjects of this review.
Collapse
Affiliation(s)
- Joachim Roth
- Department of Veterinary Physiology and Biochemistry, Justus-Liebig-University, Giessen, Germany; Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee
| | | |
Collapse
|
38
|
Abstract
The present review assesses the current state of literature defining integrative autonomic-immune physiological processing, focusing on studies that have employed electrophysiological, pharmacological, molecular biological, and central nervous system experimental approaches. Central autonomic neural networks are informed of peripheral immune status via numerous communicating pathways, including neural and non-neural. Cytokines and other immune factors affect the level of activity and responsivity of discharges in sympathetic and parasympathetic nerves innervating diverse targets. Multiple levels of the neuraxis contribute to cytokine-induced changes in efferent parasympathetic and sympathetic nerve outflows, leading to modulation of peripheral immune responses. The functionality of local sympathoimmune interactions depends on the microenvironment created by diverse signaling mechanisms involving integration between sympathetic nervous system neurotransmitters and neuromodulators; specific adrenergic receptors; and the presence or absence of immune cells, cytokines, and bacteria. Functional mechanisms contributing to the cholinergic anti-inflammatory pathway likely involve novel cholinergic-adrenergic interactions at peripheral sites, including autonomic ganglion and lymphoid targets. Immune cells express adrenergic and nicotinic receptors. Neurotransmitters released by sympathetic and parasympathetic nerve endings bind to their respective receptors located on the surface of immune cells and initiate immune-modulatory responses. Both sympathetic and parasympathetic arms of the autonomic nervous system are instrumental in orchestrating neuroimmune processes, although additional studies are required to understand dynamic and complex adrenergic-cholinergic interactions. Further understanding of regulatory mechanisms linking the sympathetic nervous, parasympathetic nervous, and immune systems is critical for understanding relationships between chronic disease development and immune-associated changes in autonomic nervous system function.
Collapse
Affiliation(s)
- M J Kenney
- Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas
| | | |
Collapse
|
39
|
Feeding the beast: can microglia in the senescent brain be regulated by diet? Brain Behav Immun 2015; 43:1-8. [PMID: 25451610 PMCID: PMC4258457 DOI: 10.1016/j.bbi.2014.09.022] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Revised: 09/30/2014] [Accepted: 09/30/2014] [Indexed: 12/13/2022] Open
Abstract
Microglial cells, resident macrophages in the central nervous system (CNS), are relatively quiescent but can respond to signals from the peripheral immune system and induce neuroinflammation. In aging, microglia tend to transition to the M1 pro-inflammatory state and become hypersensitive to messages emerging from immune-to-brain signaling pathways. Thus, whereas in younger individuals where microglia respond to signals from the peripheral immune system and induce a well-controlled neuroinflammatory response that is adaptive (e.g., when well controlled, fever and sickness behavior facilitate recovery from infection), in older individuals with an infection, microglia overreact and produce excessive levels of inflammatory cytokines causing behavioral pathology including cognitive dysfunction. Importantly, recent studies indicate a number of naturally occurring bioactive compounds present in certain foods have anti-inflammatory properties and are capable of mitigating brain microglial cells. These include, e.g., flavonoid and non-flavonoid compounds in fruits and vegetables, and n-3 polyunsaturated fatty acids (PUFA) in oily fish. Thus, dietary bioactives have potential to restore the population of microglial cells in the senescent brain to a more quiescent state. The pragmatic concept to constrain microglia through dietary intervention is significant because neuroinflammation and cognitive deficits are co-morbid factors in many chronic inflammatory diseases. Controlling microglial cell reactivity has important consequences for preserving adult neurogenesis, neuronal structure and function, and cognition.
Collapse
|
40
|
Abstract
Viable new treatments for depression and anxiety have been slow to emerge, likely owing to the complex and incompletely understood etiology of these disorders. A budding area of research with great therapeutic promise involves the study of resilience, the adaptive maintenance of normal physiology and behavior despite exposure to marked psychological stress. This phenomenon, documented in both humans and animal models, involves coordinated biological mechanisms in numerous bodily systems, both peripheral and central. In this review, we provide an overview of resilience mechanisms throughout the body, discussing current research in animal models investigating the roles of the neuroendocrine, immune, and central nervous systems in behavioral resilience to stress.
Collapse
Affiliation(s)
- Madeline L Pfau
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY, USA, 10029 ; Graduate Program in Neuroscience, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY, USA, 10029
| | - Scott J Russo
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY, USA, 10029 ; Graduate Program in Neuroscience, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY, USA, 10029
| |
Collapse
|
41
|
Murta V, Farías MI, Pitossi FJ, Ferrari CC. Chronic systemic IL-1β exacerbates central neuroinflammation independently of the blood-brain barrier integrity. J Neuroimmunol 2014; 278:30-43. [PMID: 25595250 DOI: 10.1016/j.jneuroim.2014.11.023] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Revised: 11/24/2014] [Accepted: 11/27/2014] [Indexed: 12/13/2022]
Abstract
Peripheral circulating cytokines are involved in immune to brain communication and systemic inflammation is considered a risk factor for flaring up the symptoms in most neurodegenerative diseases. We induced both central inflammatory demyelinating lesion, and systemic inflammation with an interleukin-1β expressing adenovector. The peripheral pro-inflammatory stimulus aggravated the ongoing central lesion independently of the blood-brain barrier (BBB) integrity. This model allows studying the role of specific molecules and cells (neutrophils) from the innate immune system, in the relationship between central and peripheral communication, and on relapsing episodes of demyelinating lesions, along with the role of BBB integrity.
Collapse
Affiliation(s)
- Verónica Murta
- Laboratorio de Terapias Regenerativas y Protectoras del Sistema Nervioso, Leloir Institute Foundation, Institute for Biochemical Investigations, CONICET, Buenos Aires, Argentina.
| | - María Isabel Farías
- Laboratorio de Terapias Regenerativas y Protectoras del Sistema Nervioso, Leloir Institute Foundation, Institute for Biochemical Investigations, CONICET, Buenos Aires, Argentina.
| | - Fernando Juan Pitossi
- Laboratorio de Terapias Regenerativas y Protectoras del Sistema Nervioso, Leloir Institute Foundation, Institute for Biochemical Investigations, CONICET, Buenos Aires, Argentina.
| | - Carina Cintia Ferrari
- Laboratorio de Terapias Regenerativas y Protectoras del Sistema Nervioso, Leloir Institute Foundation, Institute for Biochemical Investigations, CONICET, Buenos Aires, Argentina.
| |
Collapse
|
42
|
Falsaperla R, Pavone P, Miceli Sopo S, Mahmood F, Scalia F, Corsello G, Lubrano R, Vitaliti G. Epileptic seizures as a manifestation of cow's milk allergy: a studied relationship and description of our pediatric experience. Expert Rev Clin Immunol 2014; 10:1597-609. [PMID: 25394911 DOI: 10.1586/1744666x.2014.977259] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Adverse reactions after ingestion of cow's milk proteins can occur at any age, from birth and even amongst exclusively breast-fed infants, although not all of these are hypersensitivity reactions. The most common presentations related to cow's milk protein allergy are skin reactions, failure to thrive, anaphylaxis as well as gastrointestinal and respiratory disorders. In addition, several cases of cow's milk protein allergy in the literature have documented neurological involvement, manifesting with convulsive seizures in children. This may be due to CNS spread of a peripheral inflammatory response. Furthermore, there is evidence that pro-inflammatory cytokines are responsible for disrupting the blood-brain barrier, causing focal CNS inflammation thereby triggering seizures, although further studies are needed to clarify the pathogenic relationship between atopy and its neurological manifestations. This review aims to analyze current published data on the link between cow's milk protein allergy and epileptic events, highlighting scientific evidence for any potential pathogenic mechanism and describing our clinical experience in pediatrics.
Collapse
Affiliation(s)
- Raffaele Falsaperla
- Paediatric Acute and Emergency Department and Operative Unit, Policlinico-Vittorio Emanuele University Hospital, University of Catania, Via Plebiscito n. 628, 95100, Catania, Italy
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Bachstetter AD, Xing B, Van Eldik LJ. The p38alpha mitogen-activated protein kinase limits the CNS proinflammatory cytokine response to systemic lipopolysaccharide, potentially through an IL-10 dependent mechanism. J Neuroinflammation 2014; 11:175. [PMID: 25297465 PMCID: PMC4193976 DOI: 10.1186/s12974-014-0175-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Accepted: 09/29/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The p38α mitogen-activated protein kinase (MAPK) is a well-characterized intracellular kinase involved in the overproduction of proinflammatory cytokines from glia. As such, p38α appears to be a promising therapeutic target for neurodegenerative diseases associated with neuroinflammation. However, the in vivo role of p38α in cytokine production in the CNS is poorly defined, and prior work suggests that p38α may be affecting a yet to be identified negative feedback mechanism that limits the acute, injury-induced proinflammatory cytokine surge in the CNS. METHODS To attempt to define this negative feedback mechanism, we used two in vitro and two in vivo models of neuroinflammation in a mouse where p38α is deficient in cells of the myeloid lineage. RESULTS We found that p38α in myeloid cells has an important role in limiting amplitude of the acute proinflammatory cytokine response to a systemic inflammatory challenge. Moreover, we identified IL-10 as a potential negative feedback mechanism regulated by p38α. CONCLUSIONS Our data suggest that p38α regulates a proper balance between the pro- and anti-inflammatory cytokine responses to systemic inflammation, and that if circulating IL-10 levels are not elevated to counter-balance the increased systemic proinflammatory responses, the spread of the inflammatory response from the periphery to the CNS is exaggerated.
Collapse
Affiliation(s)
| | | | - Linda J Van Eldik
- Sanders-Brown Center on Aging, University of Kentucky, 800 S, Limestone Street, Lexington 40536, KY, USA.
| |
Collapse
|
44
|
Activation of adult rat CNS endothelial cells by opioid-induced toll-like receptor 4 (TLR4) signaling induces proinflammatory, biochemical, morphological, and behavioral sequelae. Neuroscience 2014; 280:299-317. [PMID: 25241065 DOI: 10.1016/j.neuroscience.2014.09.020] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 09/05/2014] [Accepted: 09/10/2014] [Indexed: 12/21/2022]
Abstract
CNS immune signaling contributes to deleterious opioid effects including hyperalgesia, tolerance, reward, and dependence/withdrawal. Such effects are mediated by opioid signaling at toll-like receptor 4 (TLR4), presumptively of glial origin. Whether CNS endothelial cells express TLR4 is controversial. If so, they would be well positioned for activation by blood-borne opioids, contributing to opioid-induced pro-inflammatory responses. These studies examined adult primary rat CNS endothelial cell responses to (-)-morphine or its mu opioid receptor (MOR)-inactive metabolite morphine-3-glucuronide (M3G), both known TLR4 agonists. We demonstrate that adult rat CNS endothelial cells express functional TLR4. M3G activated nuclear factor kappaB (NF-κB), increased tumor necrosis factor-α (TNFα) and cyclooxygenase-2 (COX2) mRNAs, and released prostaglandin E2 (PGE2) from these cells. (-)-Morphine-induced upregulation of TNFα mRNA and PGE2 release were unmasked by pre-treatment with nalmefene, a MOR antagonist without TLR4 activity (unlike CTAP, shown to have both MOR- and TLR4-activity), suggestive of an interplay between MOR and TLR4 co-activation by (-)-morphine. In support, MOR-dependent Protein Kinase A (PKA) opposed TLR4 signaling, as PKA inhibition (H-89) also unmasked (-)-morphine-induced TNFα and COX2 mRNA upregulation. Intrathecal injection of CNS endothelial cells, stimulated in vitro with M3G, produced TLR4-dependent tactile allodynia. Further, cortical suffusion with M3G in vivo induced TLR4-dependent vasodilation. Finally, endothelial cell TLR4 activation by lipopolysaccharide and/or M3G was blocked by the glial inhibitors AV1013 and propentofylline, demonstrating endothelial cells as a new target of such drugs. These data indicate that (-)-morphine and M3G can activate CNS endothelial cells via TLR4, inducing proinflammatory, biochemical, morphological, and behavioral sequelae. CNS endothelial cells may have previously unanticipated roles in opioid-induced effects, in phenomena blocked by presumptive glial inhibitors, as well as TLR4-mediated phenomena more broadly.
Collapse
|
45
|
Walker AK, Kavelaars A, Heijnen CJ, Dantzer R. Neuroinflammation and comorbidity of pain and depression. Pharmacol Rev 2013; 66:80-101. [PMID: 24335193 DOI: 10.1124/pr.113.008144] [Citation(s) in RCA: 315] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Comorbid depression and chronic pain are highly prevalent in individuals suffering from physical illness. Here, we critically examine the possibility that inflammation is the common mediator of this comorbidity, and we explore the implications of this hypothesis. Inflammation signals the brain to induce sickness responses that include increased pain and negative affect. This is a typical and adaptive response to acute inflammation. However, chronic inflammation induces a transition from these typical sickness behaviors into depression and chronic pain. Several mechanisms can account for the high comorbidity of pain and depression that stem from the precipitating inflammation in physically ill patients. These mechanisms include direct effects of cytokines on the neuronal environment or indirect effects via downregulation of G protein-coupled receptor kinase 2, activation of the tryptophan-degrading enzyme indoleamine 2,3-dioxygenase that generates neurotropic kynurenine metabolites, increased brain extracellular glutamate, and the switch of GABAergic neurotransmission from inhibition to excitation. Despite the existence of many neuroimmune candidate mechanisms for the co-occurrence of depression and chronic pain, little work has been devoted so far to critically assess their mediating role in these comorbid symptoms. Understanding neuroimmune mechanisms that underlie depression and pain comorbidity may yield effective pharmaceutical targets that can treat both conditions simultaneously beyond traditional antidepressants and analgesics.
Collapse
Affiliation(s)
- A K Walker
- Department of Symptom Research Laboratory of Neuroimmunology of Cancer-Related Symptoms at the Institute of Biosciences and Technology, Texas A&M Health Sciences Center, 2121 W. Holcombe Boulevard, Room 1025, Houston, TX 77030.
| | | | | | | |
Collapse
|
46
|
The neuroimmune basis of fatigue. Trends Neurosci 2013; 37:39-46. [PMID: 24239063 DOI: 10.1016/j.tins.2013.10.003] [Citation(s) in RCA: 237] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 10/15/2013] [Accepted: 10/18/2013] [Indexed: 12/11/2022]
Abstract
The exact nature and pathophysiology of fatigue remain largely elusive despite its high prevalence in physically ill patients. Studies on the relationship between the immune system and the central nervous system provide a new perspective on the mechanisms of fatigue. Inflammatory mediators that are released by activated innate immune cells at the periphery and in the central nervous system alter the metabolism and activity of neurotransmitters, generate neurotoxic compounds, decrease neurotrophic factors, and profoundly disturb the neuronal environment. The resulting alterations in fronto-striatal networks together with the activation of insula by inflammatory interoceptive stimuli underlie the many dimensions of fatigue including reduced incentive motivation, decreased behavioral flexibility, uncertainty about usefulness of actions, and awareness of fatigue.
Collapse
|
47
|
Jangula A, Murphy EJ. Lipopolysaccharide-induced blood brain barrier permeability is enhanced by alpha-synuclein expression. Neurosci Lett 2013; 551:23-7. [PMID: 23876253 DOI: 10.1016/j.neulet.2013.06.058] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 06/20/2013] [Accepted: 06/24/2013] [Indexed: 01/01/2023]
Abstract
Because α-synuclein (Snca) is involved in neuroinflammatory response, we determined if its expression altered blood-brain barrier (BBB) permeability. To induce increased BBB permeability, Snca gene-ablated (KO) and wild-type (WT) mice were injected (i.p.) with lipopolysaccharide (LPS). To assess changes in BBB permeability, Evans blue was injected (i.p.) and extravasation into the brain assessed using fluorescence spectroscopy. WT mice had a significant increase in BBB permeability at 1, 3, and 6h post-injection of LPS relative to untreated mice. Contrary to WT mice, LPS did not induce a time-dependent change in BBB permeability in KO mice. Although brain edema is associated with increased BBB permeability, no significant difference in edema was found between groups. These results show that Snca expression is associated with increased reactive opening of the BBB in response to LPS.
Collapse
Affiliation(s)
- Adam Jangula
- Department of Pharmacology, Physiology, and Therapeutics, University of North Dakota, School of Medicine and Health Sciences, Grand Forks, ND 58202-9037, United States
| | | |
Collapse
|
48
|
Karson A, Demirtaş T, Bayramgürler D, Balci F, Utkan T. Chronic administration of infliximab (TNF-α inhibitor) decreases depression and anxiety-like behaviour in rat model of chronic mild stress. Basic Clin Pharmacol Toxicol 2013; 112:335-40. [PMID: 23167806 DOI: 10.1111/bcpt.12037] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 11/12/2012] [Indexed: 12/11/2022]
Abstract
Pro-inflammatory cytokines have been proposed to be associated with the pathogenesis of depression. Consistent with this notion, several clinical observations have suggested the antidepressant efficacy of TNF-α inhibitors in patients with chronic inflammatory diseases. In this study, we evaluated the antidepressant and anxiolytic effects of chronic TNF-α inhibitor (infliximab, 5 mg/kg, i.p., weekly) administration in the chronic mild stress (CMS) model of depression. Rats were divided into three groups: saline-control (no stress), saline-CMS, and infliximab-CMS. Rats in the latter two groups were exposed to CMS for 8 weeks. Saline (former two groups) or infliximab was injected weekly during this period. After CMS, total locomotor activity, anxiety-like behaviour and depression-like behaviours were evaluated using automated locomotor activity cage, elevated plus maze (EPM), and sucrose preference (SPT) and forced swimming (FS) tests, respectively. As expected, the saline-CMS group exhibited higher depression-like behaviours in FS and SPT tests compared with the saline-control group. There were no differences between these two groups in terms of the anxiety-like behaviour or total locomotor activity. Infliximab reduced the depression-like behaviour of CMS rats compared with saline-CMS group, and anxiety-like behaviour of CMS rats compared with saline-CMS and saline-control groups. Our findings suggest that chronic and systemic TNF-α inhibition reduced depression and anxiety-like behaviour in the CMS model of depression in rats.
Collapse
Affiliation(s)
- Ayşe Karson
- Department of Physiology, Medical School, Kocaeli University, Kocaeli, Turkey.
| | | | | | | | | |
Collapse
|
49
|
Peripheral innate immune challenge exaggerated microglia activation, increased the number of inflammatory CNS macrophages, and prolonged social withdrawal in socially defeated mice. Psychoneuroendocrinology 2012; 37:1491-505. [PMID: 22386198 PMCID: PMC3368999 DOI: 10.1016/j.psyneuen.2012.02.003] [Citation(s) in RCA: 217] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 01/06/2012] [Accepted: 02/05/2012] [Indexed: 12/24/2022]
Abstract
Repeated social defeat (RSD) activates neuroendocrine pathways that have a significant influence on immunity and behavior. Previous studies from our lab indicate that RSD enhances the inflammatory capacity of CD11b⁺ cells in the brain and promotes anxiety-like behavior in an interleukin (IL)-1 and β-adrenergic receptor-dependent manner. The purpose of this study was to determine the degree to which mice subjected to RSD were more responsive to a secondary immune challenge. Therefore, RSD or control (HCC) mice were injected with saline or lipopolysaccharide (LPS) and activation of brain CD11b⁺ cells and behavioral responses were determined. Peripheral LPS (0.5 mg/kg) injection caused an extended sickness response with exaggerated weight loss and prolonged social withdrawal in socially defeated mice. LPS injection also amplified mRNA expression of IL-1β, tumor necrosis factor (TNF)-α, inducible nitric oxide synthase (iNOS), and CD14 in enriched CD11b⁺ cells isolated from socially defeated mice. In addition, IL-1β mRNA levels in enriched CD11b⁺ cells remained elevated in socially defeated mice 24 h and 72 h after LPS. Moreover, microglia and CNS macrophages isolated from socially defeated mice had the highest CD14 expression after LPS injection. Both social defeat and LPS injection increased the percentage of CD11b⁺/CD45(high) macrophages in the brain and the number of inflammatory macrophages (CD11b⁺/CD45(high)/CCR2⁺) was highest in RSD-LPS mice. Anxiety-like behavior was increased by social defeat, but was not exacerbated by the LPS challenge. Nonetheless, reduced locomotor activity and increased social withdrawal were still present in socially defeated mice 72 h after LPS. Last, LPS-induced microglia activation was most evident in the hippocampus of socially defeated mice. Taken together, these findings demonstrate that repeated social defeat enhanced the neuroinflammatory response and caused prolonged sickness following innate immune challenge.
Collapse
|
50
|
Central nervous system inflammation in disease related conditions: Mechanistic prospects. Brain Res 2012; 1446:144-55. [DOI: 10.1016/j.brainres.2012.01.061] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 01/24/2012] [Accepted: 01/24/2012] [Indexed: 12/24/2022]
|