1
|
Kesheh MM, Bayat M, Kobravi S, Lotfalizadeh MH, Heydari A, Memar MY, Baghi HB, Kermanshahi AZ, Ravaei F, Taghavi SP, Zarepour F, Nahand JS, Hashemian SMR, Mirzaei H. MicroRNAs and human viral diseases: A focus on the role of microRNA-29. Biochim Biophys Acta Mol Basis Dis 2024; 1871:167500. [PMID: 39260679 DOI: 10.1016/j.bbadis.2024.167500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 06/01/2024] [Accepted: 08/01/2024] [Indexed: 09/13/2024]
Abstract
The viral replication can impress through cellular miRNAs. Indeed, either the antiviral responses or the viral infection changes through cellular miRNAs resulting in affecting many regulatory signaling pathways. One of the microRNA families that is effective in human cancers, diseases, and viral infections is the miR-29 family. Members of miR-29 family are effective in different viral infections as their roles have appeared in regulation of immunity pathways either in innate immunity including interferon and inflammatory pathways or in adaptive immunity including activation of T-cells and antibodies production. Although miR-29a affects viral replication by suppressing antiviral responses, it can inhibit the expression of viral mRNAs via binding to their 3'UTR. In the present work, we discuss the evidence related to miR-29a and viral infection through host immunity regulation. We also review roles of other miR-29 family members by focusing on their role as biomarkers for diagnosing and targets for viral diseases management.
Collapse
Affiliation(s)
- Mina Mobini Kesheh
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mobina Bayat
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepehr Kobravi
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Tehran Azad University, Tehran, Iran
| | | | - Azhdar Heydari
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran; Department of Physiology, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Yousef Memar
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Bannazadeh Baghi
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Atefeh Zamani Kermanshahi
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Ravaei
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Pouya Taghavi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Zarepour
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Javid Sadri Nahand
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Seyed Mohammad Reza Hashemian
- Chronic Respiratory Diseases Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
2
|
Kumar M, Sahoo GC, Das VNR, Singh K, Pandey K. A Review of miRNA Regulation in Japanese Encephalitis (JEV) Virus Infection. Curr Pharm Biotechnol 2024; 25:521-533. [PMID: 37888811 DOI: 10.2174/0113892010241606231003102047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 08/10/2023] [Accepted: 08/25/2023] [Indexed: 10/28/2023]
Abstract
Japanese encephalitis (JE) is a mosquito-borne disease that causes neuronal damage and inflammation of microglia, and in severe cases, it can be fatal. JE infection can resist cellular immune responses and survive in host cells. Japanese encephalitis virus (JEV) infects macrophages and peripheral blood lymphocytes. In addition to regulating biological signaling pathways, microRNAs in cells also influence virus-host interactions. Under certain circumstances, viruses can change microRNA production. These changes affect the replication and spread of the virus. Host miRNAs can contain viral pathogenicity by downregulating the antiviral immune response pathways. Simultaneous profiling of miRNA and messenger RNA (mRNA) could help us detect pathogenic factors, and dual RNA detection is possible. This work highlights important miRNAs involved in human JE infection. In this study, we have shown the important miRNAs that play significant roles in JEV infection. We found that during JEV infection, miRNA-155, miRNA-29b, miRNA-15b, miRNA-146a, miRNA-125b-5p, miRNA-30la, miRNA-19b-3p, and miRNA-124, cause upregulation of human genes whereas miRNA-432, miRNA-370, miRNA- 33a-5p, and miRNA-466d-3p are responsible for downregulation of human genes respectively. Further, these miRNAs are also responsible for the inflammatory effects. Although several other miRNAs critical to the JEV life cycle are yet unknown, there is currently no evidence for the role of miRNAs in persistence.
Collapse
Affiliation(s)
- Maneesh Kumar
- Department of Virology, ICMR-Rajendra Memorial Research Institute of Medical Sciences, Patna, 800007, Bihar, India
| | - Ganesh Chandra Sahoo
- Department of Virology, ICMR-Rajendra Memorial Research Institute of Medical Sciences, Patna, 800007, Bihar, India
| | - Vidya Nand Rabi Das
- Department of Clinical Medicine, ICMR-Rajendra Memorial Research Institute of Medical Sciences, Patna, 800007, Bihar, India
| | - Kamal Singh
- Department of Virology, ICMR-Rajendra Memorial Research Institute of Medical Sciences, Patna, 800007, Bihar, India
| | - Krishna Pandey
- Department of Clinical Medicine, ICMR-Rajendra Memorial Research Institute of Medical Sciences, Patna, 800007, Bihar, India
| |
Collapse
|
3
|
Palmer JM, Huentelman M, Ryan L. More than just risk for Alzheimer's disease: APOE ε4's impact on the aging brain. Trends Neurosci 2023; 46:750-763. [PMID: 37460334 DOI: 10.1016/j.tins.2023.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/16/2023] [Accepted: 06/12/2023] [Indexed: 08/18/2023]
Abstract
The apolipoprotein ε4 (APOE ε4) allele is most commonly associated with increased risk for late-onset Alzheimer's disease (AD). However, recent longitudinal studies suggest that these risks are overestimated; most ε4 carriers will not develop dementia in their lifetime. In this article, we review new evidence regarding the impact of APOE ε4 on cognition among healthy older adults. We discuss emerging work from animal models suggesting that ε4 impacts brain structure and function in multiple ways that may lead to age-related cognitive impairment, independent from AD pathology. We discuss the importance of taking an individualized approach in future studies by incorporating biomarkers and neuroimaging methods that may better disentangle the phenotypic influences of APOE ε4 on the aging brain from prodromal AD pathology.
Collapse
Affiliation(s)
- Justin M Palmer
- The University of Arizona, Tucson, AZ, USA; Arizona Alzheimer's Consortium, Phoenix, AZ, USA.
| | - Matthew Huentelman
- Translational Genomics Research Institute, Phoenix, AZ, USA; Arizona Alzheimer's Consortium, Phoenix, AZ, USA
| | - Lee Ryan
- The University of Arizona, Tucson, AZ, USA; Arizona Alzheimer's Consortium, Phoenix, AZ, USA.
| |
Collapse
|
4
|
Khan Z, Gupta GD, Mehan S. Cellular and Molecular Evidence of Multiple Sclerosis Diagnosis and Treatment Challenges. J Clin Med 2023; 12:4274. [PMID: 37445309 DOI: 10.3390/jcm12134274] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disease that impacts the central nervous system and can result in disability. Although the prevalence of MS has increased in India, diagnosis and treatment continue to be difficult due to several factors. The present study examines the difficulties in detecting and treating multiple sclerosis in India. A lack of MS knowledge among healthcare professionals and the general public, which delays diagnosis and treatment, is one of the significant issues. Inadequate numbers of neurologists and professionals with knowledge of MS management also exacerbate the situation. In addition, MS medications are expensive and not covered by insurance, making them inaccessible to most patients. Due to the absence of established treatment protocols and standards for MS care, India's treatment techniques vary. In addition, India's population diversity poses unique challenges regarding genetic variations, cellular and molecular abnormalities, and the potential for differing treatment responses. MS is more difficult to accurately diagnose and monitor due to a lack of specialized medical supplies and diagnostic instruments. Improved awareness and education among healthcare professionals and the general public, as well as the development of standardized treatment regimens and increased investment in MS research and infrastructure, are required to address these issues. By addressing these issues, it is anticipated that MS diagnosis and treatment in India will improve, leading to better outcomes for those affected by this chronic condition.
Collapse
Affiliation(s)
- Zuber Khan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, IK Gujral Punjab Technical University, Jalandhar 144603, India
| | - Ghanshyam Das Gupta
- Department of Pharmaceutics, ISF College of Pharmacy, IK Gujral Punjab Technical University, Jalandhar 144603, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, IK Gujral Punjab Technical University, Jalandhar 144603, India
| |
Collapse
|
5
|
Ma X, Li Q, Chen G, Xie J, Wu M, Meng F, Liu J, Liu Y, Zhao D, Wang W, Wang D, Liu C, Dai J, Li C, Cui M. Role of Hippocampal miR-132-3p in Modifying the Function of Protein Phosphatase Mg2+/Mn2+-dependent 1 F in Depression. Neurochem Res 2023:10.1007/s11064-023-03926-8. [PMID: 37036545 DOI: 10.1007/s11064-023-03926-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 03/15/2023] [Accepted: 03/28/2023] [Indexed: 04/11/2023]
Abstract
Depression is a common, severe, and debilitating psychiatric disorder of unclear etiology. Our previous study has shown that protein phosphatase Mg2+/Mn2+-dependent 1F (PPM1F) in the hippocampal dentate gyrus (DG) displays significant regulatory effects in depression-related behaviors. miR-132-3p plays a potential role in the etiology of depression. This study explored the effect of miR-132-3p on the onset of depression and the possible underlying mechanism for modulating PPM1F expression during the pathology of depression. We found that miR-132-3p levels in the hippocampus of depressed mice subjected to chronic unpredictable stress (CUS) were dramatically reduced, which were correlated with depression-related behaviors. Knockdown of miR-132-3p in hippocampal DG resulted in depression-related phenotypes and increased susceptibility to stress. miR-132-3p overexpression in hippocampal DG alleviated CUS-induced depression-related performance. We then screened out the potential target genes of miR-132-3p, and we found that the expression profiles of sterol regulatory element-binding transcription factor 1 (Srebf1) and forkhead box protein O3a (FOXO3a) were positively correlated with PPM1F under the condition of miR-132-3p knockdown. Finally, as anticipated, we revealed that the activities of Ca2+/calmodulin-dependent protein kinase II (CAMKII) and adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) were reduced, which underlies the target signaling pathway of PPM1F. In conclusion, our study suggests that miR-132-3p was designed to regulate depression-related behaviors by indirectly regulating PPM1F and targeting Srebf1 and FOXO3a, which have been linked to the pathogenesis and treatment of depression.
Collapse
Affiliation(s)
- Xiangxian Ma
- Department of Psychology, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China
- Medical research center, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Qiongyu Li
- Medical research center, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
- Department of Gastroenterology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Guanhong Chen
- Medical research center, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
- The first clinical medical college, Binzhou Medical University, Yantai, Shandong, China
| | - Junjie Xie
- Medical research center, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
- The first clinical medical college, Binzhou Medical University, Yantai, Shandong, China
| | - Min Wu
- Medical research center, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
- Department of Neurosurgery, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Fantao Meng
- Department of Psychology, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China
- Medical research center, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Jing Liu
- Department of Psychology, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China
- Medical research center, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Yong Liu
- Medical research center, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
- Department of Physiology, Binzhou Medical University, Shandong, China
| | - Di Zhao
- Department of Psychology, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China
- Medical research center, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Wentao Wang
- Department of Psychology, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China
- Medical research center, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Dan Wang
- Department of Psychology, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China
- Medical research center, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Cuilan Liu
- Department of Psychology, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China
- Medical research center, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Juanjuan Dai
- Department of Psychology, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China
- Medical research center, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Chen Li
- Department of Psychology, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China.
- Medical research center, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China.
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China.
| | - Minghu Cui
- Department of Psychology, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China.
- Medical research center, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China.
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China.
| |
Collapse
|
6
|
Review of Technological Challenges in Personalised Medicine and Early Diagnosis of Neurodegenerative Disorders. Int J Mol Sci 2023; 24:ijms24043321. [PMID: 36834733 PMCID: PMC9968142 DOI: 10.3390/ijms24043321] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
Neurodegenerative disorders are characterised by progressive neuron loss in specific brain areas. The most common are Alzheimer's disease and Parkinson's disease; in both cases, diagnosis is based on clinical tests with limited capability to discriminate between similar neurodegenerative disorders and detect the early stages of the disease. It is common that by the time a patient is diagnosed with the disease, the level of neurodegeneration is already severe. Thus, it is critical to find new diagnostic methods that allow earlier and more accurate disease detection. This study reviews the methods available for the clinical diagnosis of neurodegenerative diseases and potentially interesting new technologies. Neuroimaging techniques are the most widely used in clinical practice, and new techniques such as magnetic resonance imaging (MRI) and positron emission tomography (PET) have significantly improved the diagnosis quality. Identifying biomarkers in peripheral samples such as blood or cerebrospinal fluid is a major focus of the current research on neurodegenerative diseases. The discovery of good markers could allow preventive screening to identify early or asymptomatic stages of the neurodegenerative process. These methods, in combination with artificial intelligence, could contribute to the generation of predictive models that will help clinicians in the early diagnosis, stratification, and prognostic assessment of patients, leading to improvements in patient treatment and quality of life.
Collapse
|
7
|
Alvarez M, Trent E, Goncalves BDS, Pereira DG, Puri R, Frazier NA, Sodhi K, Pillai SS. Cognitive dysfunction associated with COVID-19: Prognostic role of circulating biomarkers and microRNAs. Front Aging Neurosci 2022; 14:1020092. [PMID: 36268187 PMCID: PMC9577202 DOI: 10.3389/fnagi.2022.1020092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/13/2022] [Indexed: 01/08/2023] Open
Abstract
COVID-19 is renowned as a multi-organ disease having subacute and long-term effects with a broad spectrum of clinical manifestations. The evolving scientific and clinical evidence demonstrates that the frequency of cognitive impairment after COVID-19 is high and it is crucial to explore more clinical research and implement proper diagnostic and treatment strategies. Several central nervous system complications have been reported as comorbidities of COVID-19. The changes in cognitive function associated with neurodegenerative diseases develop slowly over time and are only diagnosed at an already advanced stage of molecular pathology. Hence, understanding the common links between COVID-19 and neurodegenerative diseases will broaden our knowledge and help in strategizing prognostic and therapeutic approaches. The present review focuses on the diverse neurodegenerative changes associated with COVID-19 and will highlight the importance of major circulating biomarkers and microRNAs (miRNAs) associated with the disease progression and severity. The literature analysis showed that major proteins associated with central nervous system function, such as Glial fibrillary acidic protein, neurofilament light chain, p-tau 181, Ubiquitin C-terminal hydrolase L1, S100 calcium-binding protein B, Neuron-specific enolase and various inflammatory cytokines, were significantly altered in COVID-19 patients. Furthermore, among various miRNAs that are having pivotal roles in various neurodegenerative diseases, miR-146a, miR-155, Let-7b, miR-31, miR-16 and miR-21 have shown significant dysregulation in COVID-19 patients. Thus the review consolidates the important findings from the numerous studies to unravel the underlying mechanism of neurological sequelae in COVID-19 and the possible association of circulatory biomarkers, which may serve as prognostic predictors and therapeutic targets in future research.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Sneha S. Pillai
- Department of Surgery, Biomedical Sciences and Medicine, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| |
Collapse
|
8
|
Khan I, Preeti K, Fernandes V, Khatri DK, Singh SB. Role of MicroRNAs, Aptamers in Neuroinflammation and Neurodegenerative Disorders. Cell Mol Neurobiol 2022; 42:2075-2095. [PMID: 33934227 DOI: 10.1007/s10571-021-01093-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 04/19/2021] [Indexed: 02/07/2023]
Abstract
Exploring the microRNAs and aptamers for their therapeutic role as biological drugs has expanded the horizon of its applicability against various human diseases, explicitly targeting the genetic materials. RNA-based therapeutics are widely being explored for the treatment and diagnosis of multiple diseases, including neurodegenerative disorders (NDD). Latter includes microRNA, aptamers, ribozymes, and small interfering RNAs (siRNAs), which control the gene expression mainly at the transcriptional strata. One RNA transcript translates into different protein types; hence, therapies targeted at the transcriptional sphere may have prominent and more extensive effects than alternative therapeutics. Unlike conventional gene therapy, RNAs, upon delivery, can either altogether abolish or alter the synthesis of the protein of interest, therefore, regulating their activities in a controlled and diverse manner. NDDs like Alzheimer's disease, Parkinson's disease, Huntington's disease, multiple sclerosis, Prion disease, and others are characterized by deposition of misfolded protein such as amyloid-ß, tau, α-synuclein, huntingtin and prion proteins. Neuroinflammation, one of the perquisites for neurodegeneration, is induced during neurodegenerative pathogenesis. In this review, we discuss microRNAs and aptamers' role as two different RNA-based approaches for their unique ability to regulate protein production at the transcription level, hence offering many advantages over other biologicals. The microRNA acts either by alleviating the malfunctioning RNA expression or by working as a replacement to lost microRNA. On the contrary, aptamer act as a chemical antibody and forms an aptamer-target complex.
Collapse
Affiliation(s)
- Islauddin Khan
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Balanagar, Hyderabad, Telangana, 500037, India
| | - Kumari Preeti
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Balanagar, Hyderabad, Telangana, 500037, India
| | - Valencia Fernandes
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Balanagar, Hyderabad, Telangana, 500037, India
| | - Dharmendra Kumar Khatri
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Balanagar, Hyderabad, Telangana, 500037, India.
| | - Shashi Bala Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Balanagar, Hyderabad, Telangana, 500037, India.
| |
Collapse
|
9
|
MiRNAs as Promising Translational Strategies for Neuronal Repair and Regeneration in Spinal Cord Injury. Cells 2022; 11:cells11142177. [PMID: 35883621 PMCID: PMC9318426 DOI: 10.3390/cells11142177] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/08/2022] [Accepted: 07/10/2022] [Indexed: 12/10/2022] Open
Abstract
Spinal cord injury (SCI) represents a devastating injury to the central nervous system (CNS) that is responsible for impaired mobility and sensory function in SCI patients. The hallmarks of SCI include neuroinflammation, axonal degeneration, neuronal loss, and reactive gliosis. Current strategies, including stem cell transplantation, have not led to successful clinical therapy. MiRNAs are crucial for the differentiation of neural cell types during CNS development, as well as for pathological processes after neural injury including SCI. This makes them ideal candidates for therapy in this condition. Indeed, several studies have demonstrated the involvement of miRNAs that are expressed differently in CNS injury. In this context, the purpose of the review is to provide an overview of the pre-clinical evidence evaluating the use of miRNA therapy in SCI. Specifically, we have focused our attention on miRNAs that are widely associated with neuronal and axon regeneration. “MiRNA replacement therapy” aims to transfer miRNAs to diseased cells and improve targeting efficacy in the cells, and this new therapeutic tool could provide a promising technique to promote SCI repair and reduce functional deficits.
Collapse
|
10
|
Song J, He K, Yang L, Shen J. Sevoflurane protects mice from cerebral ischemic injury by regulating microRNA-203-3p/HDAC4/Bcl-2 axis. Eur J Neurosci 2022; 55:1695-1708. [PMID: 35141965 DOI: 10.1111/ejn.15622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 11/29/2022]
Abstract
Sevoflurane (Sevo) is neuroprotective in ischemic injury, but its specific mechanism in the disease from microRNA-203-3p/histone deacetylases 4/B-cell lymphoma 2 (miR-203-3p/HDAC4/Bcl-2) axis asks for a comprehensive explanation. A middle cerebral artery occlusion (MCAO) mouse model was established by nylon suture method. miR-203-3p and HDAC4 expression was measured in mouse brain tissues. The MCAO mice were exposed to Sevo or injected with miR-203-3p- or HDAC4-related plasmids. In response to Sevo treatment or plasmid interference, neurological function, brain pathology, neuronal apoptosis and inflammation were determined. The interactions of miR-203-3p and HDAC4, and HDAC4 and Bcl-2 were verified. MCAO mice presented down-regulated miR-203-3p and up-regulated HDAC4. Sevo improved neurological function, brain pathological damage and reduced neuronal apoptosis and inflammation in MCAO mice, while overexpressing miR-203-3p further enhanced those effects. HDAC4 overexpression antagonized the impacts of miR-203-3p up-regulation on MCAO mice. The targeting relation existed between miR-203-3p and HDAC4, as well as between HDAC4 and Bcl-2. It is clearly elucidated that miR-203-3p enhances the protective effects of Sevo on MCAO mice through elevating Bcl-2 and down-regulating HDAC4, potentially and clinically offering an effective treatment method with Sevo for cerebral ischemic injury.
Collapse
Affiliation(s)
- Jie Song
- Department of Anesthesiology, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
| | - Ke He
- Department of Anesthesiology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi, Hubei, China
| | - Longqiu Yang
- Department of Anesthesiology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi, Hubei, China.,Medical College, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Jun Shen
- Department of Anesthesiology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi, Hubei, China.,Medical College, Wuhan University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
11
|
Zingale VD, Gugliandolo A, Mazzon E. MiR-155: An Important Regulator of Neuroinflammation. Int J Mol Sci 2021; 23:90. [PMID: 35008513 PMCID: PMC8745074 DOI: 10.3390/ijms23010090] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/18/2021] [Accepted: 12/20/2021] [Indexed: 12/18/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNA molecules that regulate gene expression at the post-transcriptional level and that play an important role in many cellular processes, including modulation of inflammation. MiRNAs are present in high concentrations in the central nervous system (CNS) and are spatially and temporally expressed in a specific way. Therefore, an imbalance in the expression pattern of these small molecules can be involved in the development of neurological diseases. Generally, CNS responds to damage or disease through the activation of an inflammatory response, but many neurological disorders are characterized by uncontrolled neuroinflammation. Many studies support the involvement of miRNAs in the activation or inhibition of inflammatory signaling and in the promotion of uncontrolled neuroinflammation with pathological consequences. MiR-155 is a pro-inflammatory mediator of the CNS and plays an important regulatory role. The purpose of this review is to summarize how miR-155 is regulated and the pathological consequences of its deregulation during neuroinflammatory disorders, including multiple sclerosis, Alzheimer's disease and other neuroinflammatory disorders. Modulation of miRNAs' expression could be used as a therapeutic strategy in the treatment of pathological neuroinflammation.
Collapse
Affiliation(s)
| | - Agnese Gugliandolo
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy; (V.D.Z.); (E.M.)
| | | |
Collapse
|
12
|
Carini G, Musazzi L, Bolzetta F, Cester A, Fiorentini C, Ieraci A, Maggi S, Popoli M, Veronese N, Barbon A. The Potential Role of miRNAs in Cognitive Frailty. Front Aging Neurosci 2021; 13:763110. [PMID: 34867290 PMCID: PMC8632944 DOI: 10.3389/fnagi.2021.763110] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/19/2021] [Indexed: 12/30/2022] Open
Abstract
Frailty is an aging related condition, which has been defined as a state of enhanced vulnerability to stressors, leading to a limited capacity to meet homeostatic demands. Cognitive impairment is also frequent in older people, often accompanying frailty. Age is the main independent risk factor for both frailty and cognitive impairment, and compelling evidence suggests that similar age-associated mechanisms could underlie both clinical conditions. Accordingly, it has been suggested that frailty and cognitive impairment share common pathways, and some authors proposed "cognitive frailty" as a single complex phenotype. Nevertheless, so far, no clear common underlying pathways have been discovered for both conditions. microRNAs (miRNAs) have emerged as key fine-tuning regulators in most physiological processes, as well as pathological conditions. Importantly, miRNAs have been proposed as both peripheral biomarkers and potential molecular factors involved in physiological and pathological aging. In this review, we discuss the evidence linking changes of selected miRNAs expression with frailty and cognitive impairment. Overall, miR-92a-5p and miR-532-5p, as well as other miRNAs implicated in pathological aging, should be investigated as potential biomarkers (and putative molecular effectors) of cognitive frailty.
Collapse
Affiliation(s)
- Giulia Carini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Laura Musazzi
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Francesco Bolzetta
- Medical Department, Geriatric Unit, Azienda ULSS (Unità Locale Socio Sanitaria) 3 "Serenissima," Venice, Italy
| | - Alberto Cester
- Medical Department, Geriatric Unit, Azienda ULSS (Unità Locale Socio Sanitaria) 3 "Serenissima," Venice, Italy
| | - Chiara Fiorentini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Alessandro Ieraci
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Stefania Maggi
- Aging Branch, Neuroscience Institute, National Research Council, Padua, Italy
| | - Maurizio Popoli
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Nicola Veronese
- Medical Department, Geriatric Unit, Azienda ULSS (Unità Locale Socio Sanitaria) 3 "Serenissima," Venice, Italy.,Geriatrics Section, Department of Medicine, University of Palermo, Palermo, Italy
| | - Alessandro Barbon
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|
13
|
Ebrahimi R, Golestani A. The emerging role of noncoding RNAs in neuroinflammation: Implications in pathogenesis and therapeutic approaches. J Cell Physiol 2021; 237:1206-1224. [PMID: 34724212 DOI: 10.1002/jcp.30624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/28/2021] [Accepted: 10/22/2021] [Indexed: 12/11/2022]
Abstract
Noncoding RNAs (ncRNAs) are important regulators of gene expression in different cell processes. Due to their ability in monitoring neural development genes, these transcripts confer neurons with the potential to exert broad control over the expression of genes for performing neurobiological functions. Although the change of ncRNA expression in different neurodegenerative diseases has been reviewed elsewhere, only recent evidence drove our attention to unravel the involvement of these molecules in neuroinflammation within these devastating disorders. Remarkably, the interactions between ncRNAs and inflammatory pathways are not fully recognized. Therefore, this review has focused on the interplay between diverse inflammatory pathways and the related ncRNAs, including microRNAs, long noncoding RNAs, and competing endogenous RNAs in Alzheimer's disease, Parkinson's diseases, amyotrophic lateral sclerosis, epilepsy, multiple sclerosis, Huntington's disease, and prion diseases. Providing novel insights in the field of combining biomarkers is a critical step for using them as diagnostic tools and therapeutic targets in clinical settings.
Collapse
Affiliation(s)
- Reyhane Ebrahimi
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Abolfazl Golestani
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Laboratory biomarkers of Multiple Sclerosis (MS). Clin Biochem 2021; 99:1-8. [PMID: 34673037 DOI: 10.1016/j.clinbiochem.2021.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 11/22/2022]
Abstract
Multiple Sclerosis (MS) is a neurological disease that affects the central nervous system (CNS). The diagnosis of the disease is quite challenging due to its variation among patients. As a result, the need to enhance diagnostic procedures, evaluate objective prognostic markers and promote effective monitoring of patients' responses to treatment has prompted the identification of many biomarkers. To present up-to-date knowledge on potential biomarkers for MS used to assess disease activity, progression, and therapeutic responses. The search for articles was conducted in various databases, namely, PubMed, Cochrane Library, and CINAHL, using an identical search strategy and terms that included "Multiple Sclerosis," "MS," "biomarkers," "potential," "magnetic resonance spectroscopy," "progress," "marker," "predict," "disability," "indicator," and "mass spectrometry." Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines were followed when scrutinizing the articles for inclusion in the study. The search process identified 75 articles that were used in this systematic review. MS biomarkers consisted of laboratory biomarkers, imaging biomarkers, and genetic and immunogenetic biomarkers. The efficacy, which leads to their potential classification, relies on numerous factors, such as sensitivity, specificity, clinical rationale, predictability, practicality, biological rationale, reproducibility, and correlations with prognosis and disability. Oligoclonal bands (OCBs) and magnetic resonance imaging (MRI) features are the most established biomarkers so far, although kappa free light chains (kFLCs), the measles-rubella-zoster (MRZ) reaction, and neurofilament light chains (NfLs) might show potential in the near future after more studies are conducted.
Collapse
|
15
|
Wadhawan A, Reynolds MA, Makkar H, Scott AJ, Potocki E, Hoisington AJ, Brenner LA, Dagdag A, Lowry CA, Dwivedi Y, Postolache TT. Periodontal Pathogens and Neuropsychiatric Health. Curr Top Med Chem 2021; 20:1353-1397. [PMID: 31924157 DOI: 10.2174/1568026620666200110161105] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 12/04/2019] [Accepted: 12/04/2019] [Indexed: 02/08/2023]
Abstract
Increasing evidence incriminates low-grade inflammation in cardiovascular, metabolic diseases, and neuropsychiatric clinical conditions, all important causes of morbidity and mortality. One of the upstream and modifiable precipitants and perpetrators of inflammation is chronic periodontitis, a polymicrobial infection with Porphyromonas gingivalis (P. gingivalis) playing a central role in the disease pathogenesis. We review the association between P. gingivalis and cardiovascular, metabolic, and neuropsychiatric illness, and the molecular mechanisms potentially implicated in immune upregulation as well as downregulation induced by the pathogen. In addition to inflammation, translocation of the pathogens to the coronary and peripheral arteries, including brain vasculature, and gut and liver vasculature has important pathophysiological consequences. Distant effects via translocation rely on virulence factors of P. gingivalis such as gingipains, on its synergistic interactions with other pathogens, and on its capability to manipulate the immune system via several mechanisms, including its capacity to induce production of immune-downregulating micro-RNAs. Possible targets for intervention and drug development to manage distal consequences of infection with P. gingivalis are also reviewed.
Collapse
Affiliation(s)
- Abhishek Wadhawan
- Mood and Anxiety Program, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, United States.,Department of Psychiatry, Saint Elizabeths Hospital, Washington, D.C. 20032, United States
| | - Mark A Reynolds
- Department of Advanced Oral Sciences & Therapeutics, University of Maryland School of Dentistry, Baltimore 21201, United States
| | - Hina Makkar
- Mood and Anxiety Program, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, United States
| | - Alison J Scott
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, United States
| | - Eileen Potocki
- VA Maryland Healthcare System, Baltimore VA Medical Center, Baltimore, United States
| | - Andrew J Hoisington
- Air Force Institute of Technology, Wright-Patterson Air Force Base, United States
| | - Lisa A Brenner
- Departments of Psychiatry, Neurology, and Physical Medicine & Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, United States.,Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 19, Aurora, United States.,Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, United States
| | - Aline Dagdag
- Mood and Anxiety Program, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, United States
| | - Christopher A Lowry
- Departments of Psychiatry, Neurology, and Physical Medicine & Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, United States.,Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 19, Aurora, United States.,Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, United States.,Department of Integrative Physiology, Center for Neuroscience and Center for Microbial Exploration, University of Colorado Boulder, Boulder, United States.,Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Rocky Mountain Regional Veterans Affairs Medical Center (RMRVAMC), Aurora, United States
| | - Yogesh Dwivedi
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Alabama, United States
| | - Teodor T Postolache
- Mood and Anxiety Program, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, United States.,Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 19, Aurora, United States.,Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, United States.,Mental Illness Research, Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 5, VA Capitol Health Care Network, Baltimore, United States
| |
Collapse
|
16
|
Welcome MO, Mastorakis NE. The taste of neuroinflammation: Molecular mechanisms linking taste sensing to neuroinflammatory responses. Pharmacol Res 2021; 167:105557. [PMID: 33737243 DOI: 10.1016/j.phrs.2021.105557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 03/10/2021] [Accepted: 03/10/2021] [Indexed: 02/07/2023]
Abstract
Evidence indicates a critical role of neuroinflammatory response as an underlying pathophysiological process in several central nervous system disorders, including neurodegenerative diseases. However, the molecular mechanisms that trigger neuroinflammatory processes are not fully known. The discovery of bitter taste receptors in regions other than the oral cavity substantially increased research interests on their functional roles in extra-oral tissues. It is now widely accepted that bitter taste receptors, for instance, in the respiratory, intestinal, reproductive and urinary tracts, are crucial not only for sensing poisonous substances, but also, act as immune sentinels, mobilizing defense mechanisms against pathogenic aggression. The relatively recent discovery of bitter taste receptors in the brain has intensified research investigation on the functional implication of cerebral bitter taste receptor expression. Very recent data suggest that responses of bitter taste receptors to neurotoxins and microbial molecules, under normal condition, are necessary to prevent neuroinflammatory reactions. Furthermore, emerging data have revealed that downregulation of key components of the taste receptor signaling cascade leads to increased oxidative stress and inflammasome signaling in neurons that ultimately culminate in neuroinflammation. Nevertheless, the mechanisms that link taste receptor mediated surveillance of the extracellular milieu to neuroinflammatory responses are not completely understood. This review integrates new data on the molecular mechanisms that link bitter taste receptor sensing to neuroinflammatory responses. The role of bitter taste receptor-mediated sensing of toxigenic substances in brain disorders is also discussed. The therapeutic significance of targeting these receptors for potential treatment of neurodegenerative diseases is also highlighted.
Collapse
Affiliation(s)
- Menizibeya O Welcome
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Nile University of Nigeria, Abuja, Nigeria.
| | | |
Collapse
|
17
|
Zhong H, Chen H, Gu C. Sevoflurane Post-treatment Upregulated miR-203 Expression to Attenuate Cerebral Ischemia-Reperfusion-Induced Neuroinflammation by Targeting MyD88. Inflammation 2021; 43:651-663. [PMID: 31897915 DOI: 10.1007/s10753-019-01147-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
To investigate the expression of miR-203 by sevoflurane treatment and its effect on neuroinflammation induced by cerebral ischemia-reperfusion. Rats were randomly divided into sham operation group (C), cerebral ischemia-reperfusion group (I/R), and sevoflurane treatment group (S). The neurological function score was evaluated. The area of cerebral infarction was evaluated by TTC staining. The expression of inflammatory factor in brain tissue was detected by ELISA. The apoptosis of neurons was detected by TUNEL. A miR-203 agonist and inhibitor treated the cerebral ischemia-reperfusion model. The luciferase assay verified whether miR-203 targeted MyD88. To further verify the relationship between miR-203 and MyD88, the I/R group was treated with MyD88 activator and inhibitor, and the mRNA expressions of miR-203 and MyD88 in brain tissue were detected by RT-PCR. Western blot was used to detect the expression of MyD88 protein in brain tissue, and the above experiment was repeated. Compared with the I/R group, miR-203 mRNA was significantly increased in brain tissue and the neurological function score, the area of cerebral infarction, the expression of inflammatory factor, and MyD88 mRNA were decreased in the S group (P < 0.05). After treatment of miR-203 agonist and inhibitor in the I/R group, overexpression of miR-203 could alleviate cerebral ischemia-reperfusion injury, and miR-203 inhibitor could aggravate cerebral ischemia-reperfusion injury. The miR-203 agonist could enhance the action of sevoflurane, and the miR-203 inhibitor could reverse the action of sevoflurane. miR-203 agonist treatment could inhibit the expression of MyD88 gene and protein and reduce the neuroinflammation induced by cerebral ischemia-reperfusion. The treatment of sevoflurane upregulated miR-203 expression, which targeted MyD88 and attenuate neuroinflammation induced by cerebral ischemia-reperfusion.
Collapse
Affiliation(s)
- Huagen Zhong
- Department of Anesthesiology, Taizhou Hospital of Traditional Chinese Medicine, Taizhou City, 225300, Jiangsu Province, China
| | - Hui Chen
- Department of Neurology, Affilicated Jinan Third Hospital of Jining Medical University, Jinan City, 250132, Shandong Province, China
| | - Changwei Gu
- Emergency Department, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157, Xiwu Road, Xincheng District, Xi'an City, 710004, Shaanxi Province, China.
| |
Collapse
|
18
|
Gullett JM, Chen Z, O'Shea A, Akbar M, Bian J, Rani A, Porges EC, Foster TC, Woods AJ, Modave F, Cohen RA. MicroRNA predicts cognitive performance in healthy older adults. Neurobiol Aging 2020; 95:186-194. [PMID: 32846274 PMCID: PMC7606424 DOI: 10.1016/j.neurobiolaging.2020.07.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 07/01/2020] [Accepted: 07/25/2020] [Indexed: 12/11/2022]
Abstract
The expression of microRNA (miRNA) is influenced by ongoing biological processes, including aging, and has begun to play a role in the measurement of neurodegenerative processes in central nervous system. The purpose of this study is to utilize machine learning approaches to determine whether miRNA can be utilized as a blood-based biomarker of cognitive aging. A random forest regression combining miRNA with biological (brain volume), clinical (comorbid conditions), and demographic variables in 115 typically aging older adults explained the greatest level of variance in cognitive performance compared to the other machine learning models explored. Three miRNA (miR-140-5p, miR-197-3p, and miR-501-3p) were top-ranked predictors of multiple cognitive outcomes (Fluid, Crystallized, and Overall Cognition) and past studies of these miRNA link them to cellular senescence, inflammatory signals for atherosclerotic formation, and potential development of neurodegenerative disorders (e.g., Alzheimer's disease). Several novel miRNAs were also linked to age and multiple cognitive functions, findings which together warrant further exploration linking these miRNAs to brain-derived metrics of neurodegeneration in typically aging older adults.
Collapse
Affiliation(s)
- Joseph M Gullett
- Center for Cognitive Aging and Memory, Department of Clinical & Health Psychology, University of Florida, Gainesville, FL, USA.
| | - Zhaoyi Chen
- Department of Health Outcomes & Biomedical Informatics, University of Florida, Gainesville, FL, USA
| | - Andrew O'Shea
- Center for Cognitive Aging and Memory, Department of Clinical & Health Psychology, University of Florida, Gainesville, FL, USA
| | - Maisha Akbar
- Center for Cognitive Aging and Memory, Department of Clinical & Health Psychology, University of Florida, Gainesville, FL, USA
| | - Jiang Bian
- Department of Health Outcomes & Biomedical Informatics, University of Florida, Gainesville, FL, USA
| | - Asha Rani
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Eric C Porges
- Center for Cognitive Aging and Memory, Department of Clinical & Health Psychology, University of Florida, Gainesville, FL, USA
| | - Thomas C Foster
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Adam J Woods
- Center for Cognitive Aging and Memory, Department of Clinical & Health Psychology, University of Florida, Gainesville, FL, USA; Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Francois Modave
- Department of Health Outcomes & Biomedical Informatics, University of Florida, Gainesville, FL, USA
| | - Ronald A Cohen
- Center for Cognitive Aging and Memory, Department of Clinical & Health Psychology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
19
|
Zhou X, Zhang J, Liu J, Guo J, Wei Y, Li J, He P, Lan T, Peng L, Li H. MicroRNA miR-155-5p knockdown attenuates Angiostrongylus cantonensis-induced eosinophilic meningitis by downregulating MMP9 and TSLP proteins. Int J Parasitol 2020; 51:13-22. [PMID: 32966836 DOI: 10.1016/j.ijpara.2020.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/07/2020] [Accepted: 07/14/2020] [Indexed: 10/23/2022]
Abstract
Angiostrongylus cantonensis infection is a major cause of eosinophilic meningitis (EM). Severe cases or cases that involve infants and children present poor prognoses. MicroRNAs (miRNAs), which are important regulators of gene expression in many biological processes, were recently found to be regulators of the host response to infection by parasites; however, their roles in brain inflammation caused by A. cantonensis are still unclear. The current study confirmed that miR-155-5p peaked at 21 days after A. cantonensis infection, and its expression was positively correlated with the concentration of excretory and secretory products (ESPs). We found that miR-155-5p knockdown lentivirus successfully ameliorated brain injury and downregulated the expression of major basic protein (MBP) in vivo, and the number of eosinophils in CSF (and the percentage of eosinophils in peripheral blood were also decreased in the miR-155-5p knockdown group. Moreover, the expression of several eosinophilic inflammation cytokines such as CCL6/C10, ICAM-1, and MMP9, declined after the miR-155-5p knockdown. SOCS1 protein, which is an important negative regulator of inflammation activation, was identified as a direct miR-155-5p target. We further detected the effect of miR-155-5p knockdown on phosphorylated-STAT3 and phosphorylated-p65 proteins, which were found to be negatively regulated by SOCS1 and play an important role in regulating the inflammatory response. We found that miR-155-5p knockdown decreased the activity of p-STAT3 and p-p65, thereby leading to lower expression of MMP9 and TSLP proteins, which were closely related to the chemotaxis and infiltration of eosinophils. Interestingly, the inhibition of p-STAT3 or p-p65 was found to induce the downregulation of miR-155-5p in an opposite manner. These observations suggest that a positive feedback loop was formed between miR-155-5p, STAT3, and NF-κB in A. cantonensis infection and that miR-155-5p inhibition might provide a novel strategy to attenuate eosinophilic meningitis.
Collapse
Affiliation(s)
- Xumin Zhou
- Department of Pathogen Biology and Experimental Teaching Center of Preventive Medicine, Guangdong Provincial Key Laboratory of Tropical Disease, School of Public Health, Southern Medical University, Guangzhou 510515, PR China; Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, PR China
| | - Jinming Zhang
- Department of Respiration, Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China
| | - Jumei Liu
- Department of Pathogen Biology and Experimental Teaching Center of Preventive Medicine, Guangdong Provincial Key Laboratory of Tropical Disease, School of Public Health, Southern Medical University, Guangzhou 510515, PR China
| | - Jianyu Guo
- Department of Pathogen Biology and Experimental Teaching Center of Preventive Medicine, Guangdong Provincial Key Laboratory of Tropical Disease, School of Public Health, Southern Medical University, Guangzhou 510515, PR China
| | - Yong Wei
- Department of Pathogen Biology and Experimental Teaching Center of Preventive Medicine, Guangdong Provincial Key Laboratory of Tropical Disease, School of Public Health, Southern Medical University, Guangzhou 510515, PR China
| | - Jun Li
- Department of Pathogen Biology and Experimental Teaching Center of Preventive Medicine, Guangdong Provincial Key Laboratory of Tropical Disease, School of Public Health, Southern Medical University, Guangzhou 510515, PR China
| | - Peiqing He
- Department of Pathogen Biology and Experimental Teaching Center of Preventive Medicine, Guangdong Provincial Key Laboratory of Tropical Disease, School of Public Health, Southern Medical University, Guangzhou 510515, PR China
| | - Tian Lan
- Department of Pathogen Biology and Experimental Teaching Center of Preventive Medicine, Guangdong Provincial Key Laboratory of Tropical Disease, School of Public Health, Southern Medical University, Guangzhou 510515, PR China
| | - Lilan Peng
- Department of Pathogen Biology and Experimental Teaching Center of Preventive Medicine, Guangdong Provincial Key Laboratory of Tropical Disease, School of Public Health, Southern Medical University, Guangzhou 510515, PR China
| | - Hua Li
- Department of Pathogen Biology and Experimental Teaching Center of Preventive Medicine, Guangdong Provincial Key Laboratory of Tropical Disease, School of Public Health, Southern Medical University, Guangzhou 510515, PR China.
| |
Collapse
|
20
|
Thangavelu B, Wilfred BS, Johnson D, Gilsdorf JS, Shear DA, Boutté AM. Penetrating Ballistic-Like Brain Injury Leads to MicroRNA Dysregulation, BACE1 Upregulation, and Amyloid Precursor Protein Loss in Lesioned Rat Brain Tissues. Front Neurosci 2020; 14:915. [PMID: 33071724 PMCID: PMC7530327 DOI: 10.3389/fnins.2020.00915] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 08/07/2020] [Indexed: 12/22/2022] Open
Abstract
Severe traumatic brain injury (TBI) is a risk factor for neurodegenerative diseases. Yet, the molecular events involving dysregulated miRNAs that may be associated with protein degradation in the brain remains elusive. Quantitation of more than 800 miRNAs was conducted using rat ipsilateral coronal brain tissues collected 1, 3, or 7 days after penetrating ballistic-like brain injury (PBBI). As a control for each time-point, Sham-operated animals received craniotomy alone. Microarray and systems biology analysis indicated that the amplitude and complexity of miRNAs affected were greatest 7 day after PBBI. Arrays and Q-PCR inferred that dysregulation of miR-135a, miR-328, miR-29c, and miR-21 were associated with altered levels of beta-site amyloid precursor protein cleaving enzyme 1 (BACE1), PSEN1, PSEN2, and amyloid precursor protein (APP) genes. These events were followed by increased levels of mature BACE1 protein and concomitant loss of full length APP within 3–7 days, then elevation of amyloid beta (Aβ)-40 7 days after PBBI. This study indicates that miRNA arrays, coupled with systems biology, may be used to guide study design prior validation of miRNA dysregulation. Associative analysis of miRNAs, mRNAs, and proteins within a proposed pathway are poised for further validation as biomarkers and therapeutic targets relevant to TBI-induced APP loss and subsequent Aβ peptide generation during neurodegeneration.
Collapse
Affiliation(s)
- Bharani Thangavelu
- Brain Trauma Neuroprotection Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Bernard S Wilfred
- Brain Trauma Neuroprotection Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - David Johnson
- Department of Pathology and Area Laboratory Services, Landstuhl Regional Medical Center, Landstuhl, Germany
| | - Janice S Gilsdorf
- Brain Trauma Neuroprotection Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Deborah A Shear
- Brain Trauma Neuroprotection Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Angela M Boutté
- Brain Trauma Neuroprotection Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| |
Collapse
|
21
|
Sanchez B, Zhou X, Gardiner AS, Herbert G, Lucas S, Morishita M, Wagner JG, Lewandowski R, Harkema JR, Shuey C, Campen MJ, Zychowski KE. Serum-borne factors alter cerebrovascular endothelial microRNA expression following particulate matter exposure near an abandoned uranium mine on the Navajo Nation. Part Fibre Toxicol 2020; 17:29. [PMID: 32611356 PMCID: PMC7329534 DOI: 10.1186/s12989-020-00361-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 06/22/2020] [Indexed: 12/19/2022] Open
Abstract
Background Commercial uranium mining on the Navajo Nation has subjected communities on tribal lands in the Southwestern United States to exposures from residual environmental contamination. Vascular health effects from these ongoing exposures are an active area of study. There is an association between residential mine-site proximity and circulating biomarkers in residents, however, the contribution of mine-site derived wind-blown dusts on vascular and other health outcomes is unknown. To assess neurovascular effects of mine-site derived dusts, we exposed mice using a novel exposure paradigm, the AirCARE1 mobile inhalation laboratory, located 2 km from an abandoned uranium mine, Claim 28 in Blue Gap Tachee, AZ. Mice were exposed to filtered air (FA) (n = 6) or concentrated ambient particulate matter (CAPs) (n = 5) for 2 wks for 4 h per day. Results To assess miRNA differential expression in cultured mouse cerebrovascular cells following particulate matter (PM) exposure (average: 96.6 ± 60.4 μg/m3 for all 4 h exposures), the serum cumulative inflammatory potential (SCIP) assay was employed. MiRNA sequencing was then performed in cultured mouse cerebrovascular endothelial cells (mCECs) to evaluate transcriptional changes. Results indicated 27 highly differentially expressed (p < 0.01) murine miRNAs, as measured in the SCIP assay. Gene ontology (GO) pathway analysis revealed notable alterations in GO enrichment related to the cytoplasm, protein binding and the cytosol, while significant KEGG pathways involved pathways in cancer, axon guidance and Wnt signaling. Expression of these 27 identified, differentially expressed murine miRNAs were then evaluated in the serum. Nine of these miRNAs (~ 30%) were significantly altered in the serum and 8 of those miRNAs demonstrated the same directional change (either upregulation or downregulation) as cellular miRNAs, as measured in the SCIP assay. Significantly upregulated miRNAs in the CAPs exposure group included miRNAs in the let-7a family. Overexpression of mmu-let-7a via transfection experiments, suggested that this miRNA may mediate mCEC barrier integrity following dust exposure. Conclusions Our data suggest that mCEC miRNAs as measured in the SCIP assay show similarity to serum-borne miRNAs, as approximately 30% of highly differentially expressed cellular miRNAs in the SCIP assay were also found in the serum. While translocation of miRNAs via exosomes or an alternative mechanism is certainly possible, other yet-to-be-identified factors in the serum may be responsible for significant miRNA differential expression in endothelium following inhaled exposures. Additionally, the most highly upregulated murine miRNAs in the CAPs exposure group were in the let-7a family. These miRNAs play a prominent role in cell growth and differentiation and based on our transfection experiments, mmu-let-7a may contribute to cerebrovascular mCEC alterations following inhaled dust exposure.
Collapse
Affiliation(s)
- Bethany Sanchez
- Department of Pharmaceutical Sciences, University of New Mexico-Health Sciences Center, Albuquerque, NM, 87131, USA
| | - Xixi Zhou
- Department of Pharmaceutical Sciences, University of New Mexico-Health Sciences Center, Albuquerque, NM, 87131, USA
| | - Amy S Gardiner
- Department of Cell Biology and Physiology, University of New Mexico-Health Sciences Center, Albuquerque, NM, 87131, USA
| | - Guy Herbert
- Department of Pharmaceutical Sciences, University of New Mexico-Health Sciences Center, Albuquerque, NM, 87131, USA
| | - Selita Lucas
- Department of Pharmaceutical Sciences, University of New Mexico-Health Sciences Center, Albuquerque, NM, 87131, USA
| | - Masako Morishita
- Department of Family Medicine, College of Human Medicine, Michigan State University, East Lansing, MI, USA
| | - James G Wagner
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | - Ryan Lewandowski
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | - Jack R Harkema
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | - Chris Shuey
- Southwest Research and Information Center, Albuquerque, NM, USA
| | - Matthew J Campen
- Department of Pharmaceutical Sciences, University of New Mexico-Health Sciences Center, Albuquerque, NM, 87131, USA
| | - Katherine E Zychowski
- College of Nursing, MSC09 53601 University of New Mexico-Health Sciences Center, Albuquerque, NM, 87131, USA.
| |
Collapse
|
22
|
Martyniuk CJ, Martínez R, Kostyniuk DJ, Mennigen JA, Zubcevic J. Genetic ablation of bone marrow beta-adrenergic receptors in mice modulates miRNA-transcriptome networks of neuroinflammation in the paraventricular nucleus. Physiol Genomics 2020; 52:169-177. [PMID: 32089076 PMCID: PMC7191424 DOI: 10.1152/physiolgenomics.00001.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 02/07/2020] [Accepted: 02/16/2020] [Indexed: 12/21/2022] Open
Abstract
Elucidating molecular pathways regulating neuroimmune communication is critical for therapeutic interventions in conditions characterized by overactive immune responses and dysfunctional autonomic nervous system. We generated a bone marrow-specific adrenergic beta 1 and beta 2 knockout mouse chimera (AdrB1.B2 KO) to determine how sympathetic drive to the bone affects transcripts and miRNAs in the hypothalamic paraventricular nucleus (PVN). This model has previously exhibited a dampened systemic immune response and decreased blood pressure compared with control animals. Reduced sympathetic responsiveness of the bone marrow hematopoietic cells of AdrB1.B2 KO chimera led to suppression of transcriptional networks that included leukocyte cell adhesion and migration and T cell-activation and recruitment. Transcriptome responses related to IL-17a signaling and the renin-angiotensin system were also suppressed in the PVN. Based on the transcriptome response, we next computationally predicted miRNAs in the PVN that may underscore the reduced sympathetic responsiveness of the bone marrow cells. These included miR-27b-3p, miR-150, miR-223-3p, and miR-326. Using real-time PCR, we measured a downregulation in the expression of miR-150-5p, miR-205-5p, miR-223-3p, miR-375-5p, miR-499a-5p, miR-27b-3p, let-7a-5p, and miR-21a-5p in the PVN of AdrB1.B2 KO chimera, confirming computational predictions that these miRNAs are associated with reduced neuro-immune responses and the loss of sympathetic responsiveness in the bone marrow. Intriguingly, directional responses of the miRNA corresponded to mRNAs, suggesting complex temporal or circuit-dependent posttranscriptional control of gene expression in the PVN. This study identifies molecular pathways involved in neural-immune interactions that may act as targets of therapeutic intervention for a dysfunctional autonomic nervous system.
Collapse
Affiliation(s)
- Christopher J Martyniuk
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida
| | - Ruben Martínez
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Jordi Girona, Barcelona, Spain
- Department of Cellular Biology, Physiology and Immunology, Universidad de Barcelona (UB), Barcelona, Spain
| | | | - Jan A Mennigen
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Jasenka Zubcevic
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida
| |
Collapse
|
23
|
Roitbak T. MicroRNAs and Regeneration in Animal Models of CNS Disorders. Neurochem Res 2019; 45:188-203. [PMID: 30877519 DOI: 10.1007/s11064-019-02777-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 03/10/2019] [Accepted: 03/11/2019] [Indexed: 12/20/2022]
Abstract
microRNAs (miRNAs) are recently identified small RNA molecules that regulate gene expression and significantly influence the essential cellular processes associated with CNS repair after trauma and neuropathological conditions including stroke and neurodegenerative disorders. A number of specific miRNAs are implicated in regulating the development and propagation of CNS injury, as well as its subsequent regeneration. The review focuses on the functions of the miRNAs and their role in brain recovery following CNS damage. The article introduces a brief description of miRNA biogenesis and mechanisms of miRNA-induced gene suppression, followed by an overview of miRNAs involved in the processes associated with CNS repair, including neuroprotection, neuronal plasticity and axonal regeneration, vascular reorganization, neuroinflammation, and endogenous stem cell activation. Specific emphasis is placed on the role of multifunctional miRNA miR-155, as it appears to be involved in multiple neurorestorative processes during different CNS pathologies. In association with our own studies on miR-155, I introduce a new and unexplored approach to cerebral regeneration: regulation of brain tissue repair through a direct modulation of specific miRNA activity. The review concludes with discussion on the challenges and the future potential of miRNA-based therapeutic approaches to CNS repair.
Collapse
Affiliation(s)
- Tamara Roitbak
- Department of Neurosurgery, University of New Mexico Health Sciences Center, 1101 Yale Blvd, Albuquerque, NM, 87106-3834, USA.
| |
Collapse
|
24
|
Li P, Wang G, Zhang XL, He GL, Luo X, Yang J, Luo Z, Shen TT, Yang XS. MicroRNA-155 Promotes Heat Stress-Induced Inflammation via Targeting Liver X Receptor α in Microglia. Front Cell Neurosci 2019; 13:12. [PMID: 30778287 PMCID: PMC6369214 DOI: 10.3389/fncel.2019.00012] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 01/14/2019] [Indexed: 12/12/2022] Open
Abstract
Background: The neuroinflammatory responses of microglial cells play an important role in the process of brain dysfunction caused by heat stroke. MicroRNAs are reportedly involved in a complex signaling network and have been identified as neuroinflammatory regulators. In this study, we determined the biological roles of microRNA-155 in the inflammatory responses in heat-stressed microglia and explored the underlying mechanisms. Methods: MicroRNA-155 mimic and inhibitor were used to separately upregulate or downregulate microRNA-155 expression. The activation state of BV-2 microglial cells (BV-2 cells) was assessed via immunoreactions using the microglial marker CD11b and CD68. Levels of induced interleukin-1β (IL-1β), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) were measured using real-time reverse transcription polymerase chain reaction (RT-PCR) and enzyme linked immunosorbent assays (ELISAs). The activation of nuclear factor kappa B (NF-κB) signaling proteins was evaluated by Western blotting for inhibitory kappa B alpha (IκBα) and NF-κB p65 phosphorylation and indirect immunofluorescence analysis using a p65 phosphorylation antibody. A luciferase reporter assay was used to verify liver X receptor α (LXRα) as a target gene of microRNA-155. Results: Heat stress significantly induced IL-1β, IL-6, and TNF-α release and increased the expression of CD11b and CD68. In addition, IκBα and NF-κB p65 phosphorylation were dramatically increased by heat stress, and microRNA-155 expression was also elevated. High expression of microRNA-155 in heat-stressed microglial cells was inversely correlated with LXRα expression. We then determined the role of microRNA-155 in the heat stress-induced inflammatory responses. The results revealed that by targeting LXRα, microRNA-155 enhanced NF-κB signaling activation and facilitated immune inflammation in heat stress-treated BV-2 cells. Conclusion: MicroRNA-155 promotes heat stress-induced inflammatory responses in microglia. The underlying mechanisms may include facilitating inflammatory factors expression by increasing NF-κB pathway activation via targeting LXRα.
Collapse
Affiliation(s)
- Ping Li
- Laboratory of Extreme Environmental Medicine, Department of Tropical Medicine, Army Medical University, Chongqing, China
| | - Gong Wang
- Laboratory of Extreme Environmental Medicine, Department of Tropical Medicine, Army Medical University, Chongqing, China.,Department of Neurology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Xiao-Liang Zhang
- Laboratory of Extreme Environmental Medicine, Department of Tropical Medicine, Army Medical University, Chongqing, China.,Department of Cardiology, Kunming General Hospital of Chengdu Military Command, Yunnan, China
| | - Gen-Lin He
- Laboratory of Extreme Environmental Medicine, Department of Tropical Medicine, Army Medical University, Chongqing, China
| | - Xue Luo
- Laboratory of Extreme Environmental Medicine, Department of Tropical Medicine, Army Medical University, Chongqing, China
| | - Ju Yang
- Laboratory of Extreme Environmental Medicine, Department of Tropical Medicine, Army Medical University, Chongqing, China
| | - Zhen Luo
- Laboratory of Extreme Environmental Medicine, Department of Tropical Medicine, Army Medical University, Chongqing, China
| | - Ting-Ting Shen
- Laboratory of Extreme Environmental Medicine, Department of Tropical Medicine, Army Medical University, Chongqing, China
| | - Xue-Sen Yang
- Laboratory of Extreme Environmental Medicine, Department of Tropical Medicine, Army Medical University, Chongqing, China
| |
Collapse
|
25
|
Baluni M, Ghildiyal S, Singh D, Himanshu Reddy D, Kumar R, Dhole TN. Increased serum microRNA-29b expression and bad recovery in Japanese encephalitis virus infected patients; A new component to improve the disease recovery. J Neuroimmunol 2018; 323:56-61. [PMID: 30196835 DOI: 10.1016/j.jneuroim.2018.07.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/25/2018] [Accepted: 07/25/2018] [Indexed: 12/25/2022]
Abstract
BACKGROUND Japanese encephalitis virus (JEV) is a neurotropic mosquito-borne Flavivirus, mainly prevalent in Asia. It is the most important causative agent of acute viral encephalitis in humans. Recently, micro RNAs are discovered as a key regulator of inflammatory and immune responses in various diseases including neurological and viral infections. Thus, this study was proposed to check whether changes in cellular miRNA expression due to JE virus infection, can be detected in circulation which would be helpful in diagnosis and treatment. METHODS miRNAs (miR-29b and miR-146a) were analyzed in the serum of JEV infected patients using quantitative reverse transcription polymerase chain reaction (RT-qPCR). RESULTS miR-146a was found significantly decreased (p = 0.0008) in JEV infected patients as compared to healthy controls whereas miR-29b was significantly increased (p = 0.001) in JEV patients recovered with neurological sequelae when compared to those recovered without sequelae. CONCLUSION In conclusion, miRNA can be measured in serum. Studying microRNAs will provide novel information and help us to identify the components that can serve as biomarkers and can lead to new discovery in controlling disease recovery.
Collapse
Affiliation(s)
- Manjari Baluni
- Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow 226014, Uttar Pradesh, India
| | - Sneha Ghildiyal
- Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow 226014, Uttar Pradesh, India
| | - Dharamveer Singh
- Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow 226014, Uttar Pradesh, India
| | - D Himanshu Reddy
- King George Medical University, Lucknow 226003, Uttar Pradesh, India
| | - Rashmi Kumar
- King George Medical University, Lucknow 226003, Uttar Pradesh, India
| | - Tapan N Dhole
- Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow 226014, Uttar Pradesh, India.
| |
Collapse
|
26
|
Ghadiri N, Emamnia N, Ganjalikhani-Hakemi M, Ghaedi K, Etemadifar M, Salehi M, Shirzad H, Nasr-Esfahani MH. Analysis of the expression of mir-34a, mir-199a, mir-30c and mir-19a in peripheral blood CD4+T lymphocytes of relapsing-remitting multiple sclerosis patients. Gene 2018; 659:109-117. [PMID: 29551498 DOI: 10.1016/j.gene.2018.03.035] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 01/13/2018] [Accepted: 03/14/2018] [Indexed: 02/08/2023]
Abstract
BACKGROUND Multiple sclerosis is an immune-mediated inflammatory disease of central nervous system. MicroRNAs play important roles in autoimmune diseases such as MS. OBJECTIVES The aim was to evaluate the expression pattern of miR-34a, miR-199a, miR-30c and miR-19a in peripheral blood derived CD4+ T lymphocytes of both relapsing and remitting phases of MS. METHODS Blood samples from 40 RRMS patients (20 in relapsing and 20 in remitting phase) and 20 healthy volunteers were taken. CD4+ T cells were isolated. The expression level of miR-34a, miR-199a, miR-30c and miR-19a, and the percentage of Th17 and Treg cells were measured. Expression of master transcription factors of Th17 and Treg cells and several targets of these miRNAs were also evaluated. RESULTS Data indicated an increased expression of miR-34a, miR-30c and miR-19a in relapsing phase and decreased expression of miR-199a in remitting phase. ROC curve data add other prestigious information of miR-34a, miR-199a, miR-30c and miR-19a by defining relapsing and remitting phase and also healthy cases with high specificity and sensitivity at a proposed optimum cut-off point. CONCLUSION Collectively, we showed a correlation between the four miRNAs with different phases of MS and their possible involvement in differentiation pathways of Th17 cells, as the most important players in MS.
Collapse
Affiliation(s)
- Nooshin Ghadiri
- Immunology Department, School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran; Department of Cellular Biotechnology at Cell Science research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Negaralsadat Emamnia
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-affiliation communicable disease, Isfahan University of Medical Sciences, Isfahan, Iran; Department of Biology, Nour-e Danesh Institute of Higher Education, Meimeh, Iran; Department of Cellular Biotechnology at Cell Science research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | | | - Kamran Ghaedi
- Division of Cellular and Molecular Biology, Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran; Department of Cellular Biotechnology at Cell Science research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| | - Masoud Etemadifar
- Department of Neurosciences, Al-Zahra Hospital, Isfahan University of Medical Science, Isfahan, Iran
| | - Mansoor Salehi
- Department of Genetics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hedayatollah Shirzad
- Immunology Department, School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mohammad Hossein Nasr-Esfahani
- Department of Cellular Biotechnology at Cell Science research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| |
Collapse
|
27
|
Paeschke N, von Haefen C, Endesfelder S, Sifringer M, Spies CD. Dexmedetomidine Prevents Lipopolysaccharide-Induced MicroRNA Expression in the Adult Rat Brain. Int J Mol Sci 2017; 18:ijms18091830. [PMID: 28832497 PMCID: PMC5618479 DOI: 10.3390/ijms18091830] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 08/14/2017] [Accepted: 08/18/2017] [Indexed: 12/17/2022] Open
Abstract
During surgery or infection, peripheral inflammation can lead to neuroinflammation, which is associated with cognitive impairment, neurodegeneration, and several neurodegenerative diseases. Dexmedetomidine, an α-2-adrenoceptor agonist, is known to exert anti-inflammatory and neuroprotective properties and reduces the incidence of postoperative cognitive impairments. However, on the whole the molecular mechanisms are poorly understood. This study aims to explore whether dexmedetomidine influences microRNAs (miRNAs) in a rat model of lipopolysaccharide (LPS)-induced neuroinflammation. Adult Wistar rats were injected with 1 mg/kg LPS intraperitoneal (i.p.) in the presence or absence of 5 µg/kg dexmedetomidine. After 6 h, 24 h, and 7 days, gene expressions of interleukin 1-β (IL1-β), tumor necrosis factor-α (TNF-α), and microRNA expressions of miR 124, 132, 134, and 155 were measured in the hippocampus, cortex, and plasma. Dexmedetomidine decreased the LPS-induced neuroinflammation in the hippocampus and cortex via significant reduction of the IL1-β and TNF-α gene expressions after 24 h. Moreover, the LPS-mediated increased expressions of miR 124, 132, 134, and 155 were significantly decreased after dexmedetomidine treatment in both brain regions. In plasma, dexmedetomidine significantly reduced LPS-induced miR 155 after 6 h. Furthermore, there is evidence that miR 132 and 134 may be suitable as potential biomarkers for the detection of neuroinflammation.
Collapse
Affiliation(s)
- Nadine Paeschke
- Department of Anesthesiology and Operative Intensive Care Medicine (CCM, CVK), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany.
| | - Clarissa von Haefen
- Department of Anesthesiology and Operative Intensive Care Medicine (CCM, CVK), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany.
| | - Stefanie Endesfelder
- Department of Neonatology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353 Berlin, Germany.
| | - Marco Sifringer
- Department of Anesthesiology and Operative Intensive Care Medicine (CCM, CVK), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany.
| | - Claudia D Spies
- Department of Anesthesiology and Operative Intensive Care Medicine (CCM, CVK), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany.
| |
Collapse
|
28
|
Harrison EB, Emanuel K, Lamberty BG, Morsey BM, Li M, Kelso ML, Yelamanchili SV, Fox HS. Induction of miR-155 after Brain Injury Promotes Type 1 Interferon and has a Neuroprotective Effect. Front Mol Neurosci 2017; 10:228. [PMID: 28804446 PMCID: PMC5532436 DOI: 10.3389/fnmol.2017.00228] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 07/04/2017] [Indexed: 01/19/2023] Open
Abstract
Traumatic brain injury (TBI) produces profound and lasting neuroinflammation that has both beneficial and detrimental effects. Recent evidence has implicated microRNAs (miRNAs) in the regulation of inflammation both in the periphery and the CNS. We examined the expression of inflammation associated miRNAs in the context of TBI using a mouse controlled cortical impact (CCI) model and found increased levels of miR-21, miR-223 and miR-155 in the hippocampus after CCI. The expression of miR-155 was elevated 9-fold after CCI, an increase confirmed by in situ hybridization (ISH). Interestingly, expression of miR-155 was largely found in neuronal nuclei as evidenced by co-localization with DAPI in MAP2 positive neurons. In miR-155 knock out (KO) mice expression of type I interferons IFNα and IFNβ, as well as IFN regulatory factor 1 and IFN-induced chemokine CXCL10 was decreased after TBI relative to wild type (WT) mice. Unexpectedly, miR-155 KO mice had increased levels of microglial marker Iba1 and increased neuronal degeneration as measured by fluoro-jade C (FJC) staining, suggesting a neuroprotective role for miR-155 in the context of TBI. This work demonstrates a role for miR-155 in regulation of the IFN response and neurodegeneration in the aftermath of TBI. While the presence of neuronal nuclear miRNAs has been described previously, their importance in disease states is relatively unknown. Here, we show evidence of dynamic regulation and pathological function of a nuclear miRNA in TBI.
Collapse
Affiliation(s)
- Emily B Harrison
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical CenterOmaha, NE, United States
| | - Katy Emanuel
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical CenterOmaha, NE, United States
| | - Benjamin G Lamberty
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical CenterOmaha, NE, United States
| | - Brenda M Morsey
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical CenterOmaha, NE, United States
| | - Min Li
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical CenterOmaha, NE, United States
| | - Matthew L Kelso
- Department of Pharmacy Practice, College of Pharmacy, University of Nebraska Medical CenterOmaha, NE, United States
| | - Sowmya V Yelamanchili
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical CenterOmaha, NE, United States
| | - Howard S Fox
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical CenterOmaha, NE, United States
| |
Collapse
|
29
|
Crews FT, Walter TJ, Coleman LG, Vetreno RP. Toll-like receptor signaling and stages of addiction. Psychopharmacology (Berl) 2017; 234:1483-1498. [PMID: 28210782 PMCID: PMC5420377 DOI: 10.1007/s00213-017-4560-6] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 02/03/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND Athina Markou and her colleagues discovered persistent changes in adult behavior following adolescent exposure to ethanol or nicotine consistent with increased risk for developing addiction. Building on Dr. Markou's important work and that of others in the field, researchers at the Bowles Center for Alcohol Studies have found that persistent changes in behavior following adolescent stress or alcohol exposure may be linked to induction of immune signaling in brain. AIM This study aims to illuminate the critical interrelationship of the innate immune system (e.g., toll-like receptors [TLRs], high-mobility group box 1 [HMGB1]) in the neurobiology of addiction. METHOD This study reviews the relevant research regarding the relationship between the innate immune system and addiction. CONCLUSION Emerging evidence indicates that TLRs in brain, particularly those on microglia, respond to endogenous innate immune agonists such as HMGB1 and microRNAs (miRNAs). Multiple TLRs, HMGB1, and miRNAs are induced in the brain by stress, alcohol, and other drugs of abuse and are increased in the postmortem human alcoholic brain. Enhanced TLR-innate immune signaling in brain leads to epigenetic modifications, alterations in synaptic plasticity, and loss of neuronal cell populations, which contribute to cognitive and emotive dysfunctions. Addiction involves progressive stages of drug binges and intoxication, withdrawal-negative affect, and ultimately compulsive drug use and abuse. Toll-like receptor signaling within cortical-limbic circuits is modified by alcohol and stress in a manner consistent with promoting progression through the stages of addiction.
Collapse
Affiliation(s)
- Fulton T Crews
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| | - T Jordan Walter
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Leon G Coleman
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Ryan P Vetreno
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| |
Collapse
|
30
|
Paskulin JTA, Drehmer M, Olinto MT, Hoffmann JF, Pinheiro AP, Schmidt MI, Nunes MA. Association between dietary patterns and mental disorders in pregnant women in Southern Brazil. ACTA ACUST UNITED AC 2017; 39:208-215. [PMID: 28355346 PMCID: PMC7111387 DOI: 10.1590/1516-4446-2016-2016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 12/19/2016] [Indexed: 11/22/2022]
Abstract
Objective: To evaluate the association between dietary patterns and mental disorders among pregnant women in southern Brazil. Methods: Cross-sectional study with 712 pregnant women recruited from the Study of Food Intake and Eating Behaviors in Pregnancy (ECCAGe). Food intake assessment was performed using the Food Frequency Questionnaire. Dietary patterns were identified by cluster analysis. The Primary Care Evaluation of Mental Disorders (PRIME-MD) was used to evaluate participants’ mental health. Poisson regression models with robust variance were fitted to estimate prevalence ratios (PR). Results: In the adjusted models, there was a high prevalence of major depressive disorder among women with low fruit intake (43%, PR 1.43, 95%CI 1.04-1.95) and high sweets and sugars intake (91%, PR 1.91, 95%CI 1.19-3.07). Women with a common-Brazilian dietary pattern had higher prevalence of major depressive disorder compared to those with a varied consumption pattern (PR 1.43, 95%CI 1.01-2.02). Low intake of beans was significantly associated with generalized anxiety disorder (PR 1.40, 95%CI 1.01-1.93). Conclusions: Low consumption of fruits and beans and intake of the common-Brazilian dietary pattern during pregnancy were associated with higher prevalence of mental disorders. These results reinforce the importance of an adequate dietary intake to ensure better mental health in pregnancy.
Collapse
Affiliation(s)
- Jéssica T A Paskulin
- Programa de Pós-Graduação em Epidemiologia, Departamento de Medicina Social, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Michele Drehmer
- Programa de Pós-Graduação em Epidemiologia, Departamento de Medicina Social, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,Departamento de Nutrição, Faculdade de Medicina, UFRGS, Porto Alegre, RS, Brazil
| | - Maria T Olinto
- Programa de Pós-Graduação em Saúde Coletiva, Universidade do Vale do Rio dos Sinos (UNISINOS), São Leopoldo, RS, Brazil.,Departamento de Nutrição, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Juliana F Hoffmann
- Programa de Pós-Graduação em Epidemiologia, Departamento de Medicina Social, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Andréa P Pinheiro
- Programa de Pós-Graduação em Epidemiologia, Departamento de Medicina Social, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Maria I Schmidt
- Programa de Pós-Graduação em Epidemiologia, Departamento de Medicina Social, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Maria A Nunes
- Programa de Pós-Graduação em Epidemiologia, Departamento de Medicina Social, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| |
Collapse
|
31
|
Obora K, Onodera Y, Takehara T, Frampton J, Hasei J, Ozaki T, Teramura T, Fukuda K. Inflammation-induced miRNA-155 inhibits self-renewal of neural stem cells via suppression of CCAAT/enhancer binding protein β (C/EBPβ) expression. Sci Rep 2017; 7:43604. [PMID: 28240738 PMCID: PMC5378916 DOI: 10.1038/srep43604] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 01/24/2017] [Indexed: 01/04/2023] Open
Abstract
Intracerebral inflammation resulting from injury or disease is implicated in disruption of neural regeneration and may lead to irreversible neuronal dysfunction. Analysis of inflammation-related microRNA profiles in various tissues, including the brain, has identified miR-155 among the most prominent miRNAs linked to inflammation. Here, we hypothesize that miR-155 mediates inflammation-induced suppression of neural stem cell (NSC) self-renewal. Using primary mouse NSCs and human NSCs derived from induced pluripotent stem (iPS) cells, we demonstrate that three important genes involved in NSC self-renewal (Msi1, Hes1 and Bmi1) are suppressed by miR-155. We also demonstrate that suppression of self-renewal genes is mediated by the common transcription factor C/EBPβ, which is a direct target of miR-155. Our study describes an axis linking inflammation and miR-155 to expression of genes related to NSC self-renewal, suggesting that regulation of miR-155 may hold potential as a novel therapeutic strategy for treating neuroinflammatory diseases.
Collapse
Affiliation(s)
- Kayoko Obora
- Department of Rehabilitation Medicine, Kindai University Faculty of Medicine, Osaka, Japan
| | - Yuta Onodera
- Division of Cell Biology for Regenerative Medicine, Institute of Advanced Clinical Medicine, Kindai University Faculty of Medicine, Osaka, Japan
| | - Toshiyuki Takehara
- Division of Cell Biology for Regenerative Medicine, Institute of Advanced Clinical Medicine, Kindai University Faculty of Medicine, Osaka, Japan
| | - John Frampton
- School of Biomedical Engineering, Dalhousie University. Halifax, Nova Scotia, Canada
| | - Joe Hasei
- Science of Functional Recovery and Reconstruction, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Toshifumi Ozaki
- Science of Functional Recovery and Reconstruction, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Takeshi Teramura
- Division of Cell Biology for Regenerative Medicine, Institute of Advanced Clinical Medicine, Kindai University Faculty of Medicine, Osaka, Japan
| | - Kanji Fukuda
- Department of Rehabilitation Medicine, Kindai University Faculty of Medicine, Osaka, Japan.,Division of Cell Biology for Regenerative Medicine, Institute of Advanced Clinical Medicine, Kindai University Faculty of Medicine, Osaka, Japan
| |
Collapse
|
32
|
The role of neuroimmune signaling in alcoholism. Neuropharmacology 2017; 122:56-73. [PMID: 28159648 DOI: 10.1016/j.neuropharm.2017.01.031] [Citation(s) in RCA: 211] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 01/24/2017] [Accepted: 01/29/2017] [Indexed: 02/07/2023]
Abstract
Alcohol consumption and stress increase brain levels of known innate immune signaling molecules. Microglia, the innate immune cells of the brain, and neurons respond to alcohol, signaling through Toll-like receptors (TLRs), high-mobility group box 1 (HMGB1), miRNAs, pro-inflammatory cytokines and their associated receptors involved in signaling between microglia, other glia and neurons. Repeated cycles of alcohol and stress cause a progressive, persistent induction of HMGB1, miRNA and TLR receptors in brain that appear to underlie the progressive and persistent loss of behavioral control, increased impulsivity and anxiety, as well as craving, coupled with increasing ventral striatal responses that promote reward seeking behavior and increase risk of developing alcohol use disorders. Studies employing anti-oxidant, anti-inflammatory, anti-depressant, and innate immune antagonists further link innate immune gene expression to addiction-like behaviors. Innate immune molecules are novel targets for addiction and affective disorders therapies. This article is part of the Special Issue entitled "Alcoholism".
Collapse
|
33
|
Wang B, Gan Z, Wang Z, Yu D, Lin Z, Lu Y, Wu Z, Jian J. Integrated analysis neurimmiRs of tilapia (Oreochromis niloticus) involved in immune response to Streptococcus agalactiae, a pathogen causing meningoencephalitis in teleosts. FISH & SHELLFISH IMMUNOLOGY 2017; 61:44-60. [PMID: 27956091 DOI: 10.1016/j.fsi.2016.12.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 11/30/2016] [Accepted: 12/07/2016] [Indexed: 06/06/2023]
Abstract
MicroRNAs (miRNAs) are a class of noncoding RNA molecules and play important roles in a wide spectrum of biological processes, including in immune response. Recent years have witnessed considerable amount of research interest in studies on miRNA-mediated modulation gene function during neuroinflammation. Here, we evaluated Streptococcus agalactiae infected tilapia (Oreochromis niloticus) brain for the expression profile of miRNAs, potential functions and their correlation with genes involved in inflammatory pathways. A total of 1981 miRNAs were identified, including in 486 miRNAs which have homologues in the currently available databases and 1945 novel miRNAs. The expression levels of 547 miRNAs were significantly altered at 6 h-48 h post-bacterial infection, and these miRNAs were therefore classified as differentially expressed tilapia miRNAs. Real-time PCR were implemented for 14 miRNAs co-expressed in five samples, and agreement was confirmed between the high-throughput sequencing and real-time PCR data. For the 486 differentially expressed miRNAs target 41,820 genes. GO and KEGG enrichment analysis revealed that some target genes of miRNAs were grouped mainly into the categories of apoptotic, signal pathwayand immune response. This is the first report of comprehensive identification of teleost miRNAs being differentially regulated in brain in normal conditions relating to bacterial infection.
Collapse
Affiliation(s)
- Bei Wang
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, 524025, China
| | - Zhen Gan
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, 524025, China; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Zhongliang Wang
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, 524025, China
| | - Dapeng Yu
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, 524025, China
| | - Ziwei Lin
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, 524025, China
| | - Yishan Lu
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, 524025, China
| | - Zaohe Wu
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, 524025, China
| | - Jichang Jian
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, 524025, China.
| |
Collapse
|
34
|
Harris VK, Tuddenham JF, Sadiq SA. Biomarkers of multiple sclerosis: current findings. Degener Neurol Neuromuscul Dis 2017; 7:19-29. [PMID: 30050375 PMCID: PMC6053099 DOI: 10.2147/dnnd.s98936] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disease affecting the brain and spinal cord that is associated with chronic inflammation leading to demyelination and neurodegeneration. With the recent increase in the number of available therapies for MS, optimal treatment will be based on a personalized approach determined by an individual patient's prognosis and treatment risks. An integral part of such therapeutic decisions will be the use of molecular biomarkers to predict disability progression, monitor ongoing disease activity, and assess treatment response. This review describes current published findings within the past 3 years in biomarker research in MS, specifically highlighting recent advances in the validation of cerebrospinal fluid biomarkers such as neurofilaments (light and heavy chains), chitinases and chitinase 3-like proteins, soluble surface markers of innate immunity, and oligoclonal immunoglobulin M antibodies. Current research in circulating miRNAs as biomarkers of MS is also discussed. Continued validation and testing will be required before MS biomarkers are routinely applied in a clinical setting.
Collapse
Affiliation(s)
- Violaine K Harris
- Tisch Multiple Sclerosis Research Center of New York, New York, NY, USA,
| | - John F Tuddenham
- Tisch Multiple Sclerosis Research Center of New York, New York, NY, USA,
| | - Saud A Sadiq
- Tisch Multiple Sclerosis Research Center of New York, New York, NY, USA,
| |
Collapse
|
35
|
Traffic-Related Air Pollution and Neurodegenerative Diseases: Epidemiological and Experimental Evidence, and Potential Underlying Mechanisms. ADVANCES IN NEUROTOXICOLOGY 2017. [DOI: 10.1016/bs.ant.2017.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
36
|
Rey C, Nadjar A, Buaud B, Vaysse C, Aubert A, Pallet V, Layé S, Joffre C. Resolvin D1 and E1 promote resolution of inflammation in microglial cells in vitro. Brain Behav Immun 2016; 55:249-259. [PMID: 26718448 DOI: 10.1016/j.bbi.2015.12.013] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 12/17/2015] [Accepted: 12/19/2015] [Indexed: 02/07/2023] Open
Abstract
Sustained inflammation in the brain together with microglia activation can lead to neuronal damage. Hence limiting brain inflammation and activation of microglia is a real therapeutic strategy for inflammatory disease. Resolvin D1 (RvD1) and resolvin E1 (RvE1) derived from n-3 long chain polyunsaturated fatty acids are promising therapeutic compounds since they actively turn off the systemic inflammatory response. We thus evaluated the anti-inflammatory activities of RvD1 and RvE1 in microglia cells in vitro. BV2 cells were pre-incubated with RvD1 or RvE1 before lipopolysaccharide (LPS) treatment. RvD1 and RvE1 both decreased LPS-induced proinflammatory cytokines (TNF-α, IL-6 and IL-1β) gene expression, suggesting their proresolutive activity in microglia. However, the mechanisms involved are distinct as RvE1 regulates NFκB signaling pathway and RvD1 regulates miRNAs expression. Overall, our findings support that pro-resolving lipids are involved in the resolution of brain inflammation and can be considered as promising therapeutic agents for brain inflammation.
Collapse
Affiliation(s)
- C Rey
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France; Univ. Bordeaux, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France; ITERG, Institut des corps gras, 33600 Pessac, France
| | - A Nadjar
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France; Univ. Bordeaux, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France
| | - B Buaud
- ITERG, Institut des corps gras, 33600 Pessac, France
| | - C Vaysse
- ITERG, Institut des corps gras, 33600 Pessac, France
| | - A Aubert
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France; Univ. Bordeaux, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France
| | - V Pallet
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France; Univ. Bordeaux, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France
| | - S Layé
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France; Univ. Bordeaux, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France
| | - C Joffre
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France; Univ. Bordeaux, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France.
| |
Collapse
|
37
|
D’Amico E, Zanghì A, Patti F. Personalized therapy in multiple sclerosis: state of art and future perspectives. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2016. [DOI: 10.1080/23808993.2016.1199950] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Emanuele D’Amico
- Multiple Sclerosis Center, Policlinico G. Rodolico, Catania, Italy
| | - Aurora Zanghì
- Multiple Sclerosis Center, Policlinico G. Rodolico, Catania, Italy
| | - Francesco Patti
- Multiple Sclerosis Center, Policlinico G. Rodolico, Catania, Italy
| |
Collapse
|
38
|
Xu J, Liu Y, Guo S, Ma S, Xiao L, Wei N, Xue R. Expression Profile of MiR-128 in the Astrocytoma Patients and Cell Lines. Mol Neurobiol 2015; 53:4631-7. [PMID: 26307612 DOI: 10.1007/s12035-015-9401-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 08/17/2015] [Indexed: 10/23/2022]
Abstract
Malignant astrocytomas are the most common primary brain tumors. The critical characterizes of astrocyomas are their aggressive and infiltrative in the brain, which leads to uncontrollable by conventional forms of therapy. MicroRNAs are small RNAs that had been found to regulate their targets by specific binding to the 3'-untranslated region (3'UTR) of mRNA. Recent advances in understanding the molecular biology of these tumors have revealed that microRNA (miRNA) disruption may play important roles in the pathogenesis of astrocytomas. And some of the miRNA alterations were found in the serum of astrocytoma patients. In this study, we studied the expression profile of miR-128, in the different stages of astrocytoma tissues and two human astrocytoma cell lines, A172 and T98G cells. We found that the levels of miR-128 are decreased in the A172 and T98G cells when compared to normal human astrocyte (NHA). Furthermore, the levels of miR-128 decreased gradually to the pathological stages of astrocytomas. We also identified that TROVE2 is a novel target of miR-128 by the luciferase reporter system. Furthermore, the expression levels of TROVE2 are dramatically increased with the pathological stages increasing. Finally, the levels of TROVE2 are negatively correlated with miR-128 in astrocytoma tissues. Our data provided novel evidence for the miR-128 and TROVE2 in the development of human astrocytomas.
Collapse
Affiliation(s)
- Jingjing Xu
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuqiong Liu
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Si Guo
- Clinical Laboratory, Henan Provincial People's Hospital, 7 Wei Wu Road, Zhengzhou, 450000, China
| | - Shengli Ma
- Emergency Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lin Xiao
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Na Wei
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Rui Xue
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jian She Dong Avenue, Zhengzhou, 450002, People's Republic of China.
| |
Collapse
|
39
|
Shadfar S, Hwang CJ, Lim MS, Choi DY, Hong JT. Involvement of inflammation in Alzheimer’s disease pathogenesis and therapeutic potential of anti-inflammatory agents. Arch Pharm Res 2015; 38:2106-19. [DOI: 10.1007/s12272-015-0648-x] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 08/08/2015] [Indexed: 02/06/2023]
|
40
|
Chu YY, Ko CY, Wang WJ, Wang SM, Gean PW, Kuo YM, Wang JM. Astrocytic CCAAT/Enhancer Binding Protein δ Regulates Neuronal Viability and Spatial Learning Ability via miR-135a. Mol Neurobiol 2015. [PMID: 26208701 PMCID: PMC4937099 DOI: 10.1007/s12035-015-9359-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The progression of Alzheimer’s disease (AD) has been associated with astrocytes-induced neuroinflammation. However, the detailed mechanism of astrocytes associated with learning impairments and neuronal loss in AD is poorly defined. Here, we provide novel evidences that astrocytic miR-135a is critical for neuronal viability and spatial learning ability in vivo. The AppTg/Cebpd−/− mice showed a spatial learning improvement compared with the APPswe/PS1/E9 bigenic (AppTg) mice. miR-135a was found to be a CCAAT/enhancer binding protein δ (CEBPD) responsive miRNA and can repress the transcription of thrombospondin 1 (THBS1) / Thbs1 (mouse) via its 3′-untranslated region (3′UTR). We used different experimental approaches to attenuate the expression of CEBPD/Cebpd (mouse) or miR-135a in astrocytes and found the following results: increase in THBS1/Thbs1 expression, decrease in neuronal apoptosis, and increase in growth of neurites. Importantly, injection of miR-135a antagonist (AM135a) into the brain of AppTg mice was found to prevent neuronal apoptosis and improved the spatial learning ability. Together, our findings demonstrate a critical function for the astrocytic CEBPD, and point to miR-135a antagonist as an attractive therapeutic target for the treatment of Alzheimer’s disease.
Collapse
Affiliation(s)
- Yu-Yi Chu
- Institute of Bioinformatics and Biosignal Transduction, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 701, Taiwan
| | - Chiung-Yuan Ko
- Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, 110, Taiwan.,Center for Neurotrauma and Neuroregeneration, Taipei Medical University, Taipei, 110, Taiwan
| | - Wei-Jan Wang
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, 701, Taiwan
| | - Shao-Ming Wang
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, 701, Taiwan
| | - Po-Wu Gean
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, 701, Taiwan.,Department of Pharmacology, National Cheng Kung University, Tainan, 701, Taiwan
| | - Yu-Min Kuo
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, 701, Taiwan.,Department of Cell Biology and Anatomy, National Cheng Kung University, Tainan, 701, Taiwan
| | - Ju-Ming Wang
- Institute of Bioinformatics and Biosignal Transduction, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 701, Taiwan. .,Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, 701, Taiwan. .,Department of Cell Biology and Anatomy, National Cheng Kung University, Tainan, 701, Taiwan. .,Infectious Disease and Signaling Research Center, National Cheng Kung University, Tainan, 701, Taiwan. .,Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan.
| |
Collapse
|
41
|
Innate immune interactions within the central nervous system modulate pathogenesis of viral infections. Curr Opin Immunol 2015; 36:47-53. [PMID: 26163762 DOI: 10.1016/j.coi.2015.06.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 06/22/2015] [Accepted: 06/23/2015] [Indexed: 11/23/2022]
Abstract
The innate immune system mediates protection against neurotropic viruses that replicate in the central nervous system (CNS). Virus infection within specific cells of the CNS triggers activation of several families of pattern recognition receptors including Toll-like receptors, retinoic acid-inducible gene I like receptors, nucleotide-binding oligomerization domain-like receptors, and cytosolic DNA sensors. In this review, we highlight recent advances in our understanding of how cell-intrinsic host defenses within the CNS modulate infection of different DNA and RNA viruses.
Collapse
|
42
|
Quesada MP, Jones J, Rodríguez-Lozano FJ, Moraleda JM, Martinez S. Novel aberrant genetic and epigenetic events in Friedreich's ataxia. Exp Cell Res 2015; 335:51-61. [PMID: 25929520 DOI: 10.1016/j.yexcr.2015.04.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 04/16/2015] [Accepted: 04/18/2015] [Indexed: 12/21/2022]
Abstract
It is generally accepted that Friedreich's ataxia (FRDA) is caused by a deficiency in frataxin expression, a mitochondrial protein involved in iron homeostasis, which mainly affects the brain, dorsal root ganglia of the spinal cord, heart and in certain cases the pancreas. However, there is little knowledge as to other possible genes that may be affected in this disorder, and which can contribute to its complexity. In the current study we compared human periodontal ligament cells gene expression of healthy individuals and FRDA patients. The expression of active-caspase 3, as well as other apoptosis-related genes, was increased in the FRDA cells. Furthermore, iron-sulphur cluster genes, as well as oxidative stress-related genes were overexpressed in FRDA. Moreover, brain-derived neurotrophic factor, neuregulin 1 and miR-132 were all upregulated. These three genes are capable of regulating the expression of each other. Interestingly, when the cells from FRDA patients were co-cultured in the presence of idebenone and deferiprone, caspase expression decreased while antioxidant gene expression, as well as frataxin expression, increased. Regarding epigenetic mechanisms, the frataxin gene was hypermethylated, compared to the healthy counterparts, in the upstream GAA repetitive region. Of the three DNA methyltransferases, DNMT1 but not DNMT3׳s gene expression was higher in FRDA cells. In conclusion, our data show that FRDA cells present altered expression of genes related to cell cycle, oxidative stress and iron homeostasis which may be implicated in the increased apoptotic levels. Also, the altered expression is in a certain degree normalized in the presence of idebenone and deferiprone.
Collapse
Affiliation(s)
- Mari Paz Quesada
- Neuroscience Institute, Miguel Hernandez University (UMH-CSIC), San Juan, Alicante, Spain; IMIB-Arrixaca and Centro de Investigación Biomédica en Red en el Área de Salud Mental (CIBERSAM), University of Murcia, Murcia, Spain
| | - Jonathan Jones
- Neuroscience Institute, Miguel Hernandez University (UMH-CSIC), San Juan, Alicante, Spain
| | | | - Jose M Moraleda
- Hematology Department, Hematopoietic Transplant and Cellular Therapy Unit, Virgen de la Arrixaca Clinical University Hospital, IMIB-Arrixaca, University of Murcia, Spain
| | - Salvador Martinez
- Neuroscience Institute, Miguel Hernandez University (UMH-CSIC), San Juan, Alicante, Spain; IMIB-Arrixaca and Centro de Investigación Biomédica en Red en el Área de Salud Mental (CIBERSAM), University of Murcia, Murcia, Spain.
| |
Collapse
|
43
|
Kocerha J, Dwivedi Y, Brennand KJ. Noncoding RNAs and neurobehavioral mechanisms in psychiatric disease. Mol Psychiatry 2015; 20:677-684. [PMID: 25824307 PMCID: PMC4440836 DOI: 10.1038/mp.2015.30] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 01/20/2015] [Accepted: 01/26/2015] [Indexed: 01/04/2023]
Abstract
The human genome project has revolutionized our understanding of the underlying mechanisms in psychiatric disease. It is now abundantly clear that neurobehavioral phenotypes are epigenetically controlled by noncoding RNAs (ncRNAs). The microRNA (miRNA) class of ncRNAs are ubiquitously expressed throughout the brain and govern all major neuronal pathways. The attractive therapeutic potential of miRNAs is underscored by their pleiotropic capacities, putatively targeting multiple pathways within a single neuron. Many psychiatric diseases stem from a multifactorial origin, thus conventional drug targeting of single proteins may not prove most effective. In this exciting post-genome sequencing era, many new epigenetic targets are emerging for therapeutic investigation. Here we review the reported roles of miRNAs, as well as other ncRNA classes, in the pathology of psychiatric disorders; there are both common and unique ncRNA mechanisms that influence the various diagnoses. Collectively, these potent epigenetic regulators may clarify the disrupted signaling networks in psychiatric phenotypes.
Collapse
Affiliation(s)
- Jannet Kocerha
- Department of Chemistry, Georgia Southern University, PO Box 8064, Statesboro, GA 30460, USA
| | - Yogesh Dwivedi
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, 1720 2nd Avenue South, Birmingham, AL 35294-0017
| | - Kristen J Brennand
- Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, 9-20B New York, NY 10029, USA
| |
Collapse
|
44
|
Ouyang YB, Stary CM, White RE, Giffard RG. The use of microRNAs to modulate redox and immune response to stroke. Antioxid Redox Signal 2015; 22:187-202. [PMID: 24359188 PMCID: PMC4281877 DOI: 10.1089/ars.2013.5757] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
SIGNIFICANCE Cerebral ischemia is a major cause of death and disability throughout the world, yet therapeutic options remain limited. The interplay between the cellular redox state and the immune response plays a critical role in determining the extent of neural cell injury after ischemia and reperfusion. Excessive amounts of reactive oxygen species (ROS) generated by mitochondria and other sources act both as triggers and effectors of inflammation. This review will focus on the interplay between these two mechanisms. RECENT ADVANCES MicroRNAs (miRNAs) are important post-transcriptional regulators that interact with multiple target messenger RNAs coordinately regulating target genes, including those involved in controlling mitochondrial function, redox state, and inflammatory pathways. This review will focus on the regulation of mitochondria, ROS, and inflammation by miRNAs in the chain of deleterious intra- and intercellular events that lead to brain cell death after cerebral ischemia. CRITICAL ISSUES Although pretreatment using miRNAs was effective in cerebral ischemia in rodents, testing treatment after the onset of ischemia is an essential next step in the development of acute stroke treatment. In addition, miRNA formulation and delivery into the CNS remain a challenge in the clinical translation of miRNA therapy. FUTURE DIRECTIONS Future research should focus on post-treatment and potential clinical use of miRNAs.
Collapse
Affiliation(s)
- Yi-Bing Ouyang
- Department of Anesthesia, Stanford University School of Medicine , Stanford, California
| | | | | | | |
Collapse
|
45
|
Ko CY, Chu YY, Narumiya S, Chi JY, Furuyashiki T, Aoki T, Wang SM, Chang WC, Wang JM. CCAAT/enhancer-binding protein delta/miR135a/thrombospondin 1 axis mediates PGE2-induced angiogenesis in Alzheimer's disease. Neurobiol Aging 2014; 36:1356-68. [PMID: 25554493 DOI: 10.1016/j.neurobiolaging.2014.11.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 09/30/2014] [Accepted: 11/25/2014] [Indexed: 12/24/2022]
Abstract
In Alzheimer's disease (AD), large populations of endothelial cells undergo angiogenesis due to brain hypoxia and inflammation. Substantial evidence from epidemiologic, pathologic, and clinical reports suggests that vascular factors are critical for the pathogenesis of AD. However, the precise mechanistic correlation between inflammation and angiogenesis in AD has not been well elucidated. Prostaglandin E2 (PGE2), a key factor of the inflammatory response, has been known to promote angiogenesis. In this study, we demonstrated that PGE2 acts through EP4 receptor and protein kinase A to modulate CCAAT/enhancer-binding protein delta (CEBPD) abundance in astrocytes. Attenuated vessel formation was observed in the brains of AppTg/Cebpd(-/-) mice. We showed that miR135a was responsive to the induction of CEBPD and further negatively regulated thrombospondin 1 (THBS1) transcription by directly targeting its 3'-untranslated region (3'UTR) in astrocytes. Furthermore, conditioned media from astrocytes expressing miR135a promoted Human umbilical vein endothelial cells (HUVECs) tube-like formation, which correlated with the effects of PGE2 on angiogenesis. Our results indicated that CEBPD contributes to the repression of THBS1 transcription by activating the expression of miR135a in astrocytes following PGE2 treatment. We provided new evidence that astrocytic CEBPD increases angiogenesis during AD pathogenesis. This discovery supports the negative influence of CEBPD activation in astrocytes with respect to AD pathogenesis and implies that the CEBPD/miR135a/THBS1 axis could be a therapeutic target of AD.
Collapse
Affiliation(s)
- Chiung-Yuan Ko
- Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Center for Neurotrauma and Neuroregeneration, Taipei Medical University, Taipei, Taiwan
| | - Yu-Yi Chu
- Institute of Bioinformatics and Biosignal Transduction, National Cheng Kung University, Tainan, Taiwan
| | - Shuh Narumiya
- Core Research for Evolutional Science and Technology (CREST), Kyoto, Japan
| | - Jhih-Ying Chi
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan
| | | | - Tomohiro Aoki
- Core Research for Evolutional Science and Technology (CREST), Kyoto, Japan
| | - Shao-Ming Wang
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan
| | - Wen-Chang Chang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ju-Ming Wang
- Institute of Bioinformatics and Biosignal Transduction, National Cheng Kung University, Tainan, Taiwan; Institute of Basic Medical Sciences, National Cheng Kung University, Tainan; Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan; Infectious Disease and Signaling Research Center, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
46
|
Dombkowski AA, Batista CE, Cukovic D, Carruthers NJ, Ranganathan R, Shukla U, Stemmer PM, Chugani HT, Chugani DC. Cortical Tubers: Windows into Dysregulation of Epilepsy Risk and Synaptic Signaling Genes by MicroRNAs. Cereb Cortex 2014; 26:1059-71. [PMID: 25452577 DOI: 10.1093/cercor/bhu276] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Tuberous sclerosis complex (TSC) is a multisystem genetic disorder caused by mutations in the TSC1 and TSC2 genes. Over 80% of TSC patients are affected by epilepsy, but the molecular events contributing to seizures in TSC are not well understood. Recent reports have demonstrated that the brain is enriched with microRNA activity, and they are critical in neural development and function. However, little is known about the role of microRNAs in TSC. Here, we report the characterization of aberrant microRNA activity in cortical tubers resected from 5 TSC patients surgically treated for medically intractable epilepsy. By comparing epileptogenic tubers with adjacent nontuber tissue, we identified a set of 4 coordinately overexpressed microRNAs (miRs 23a, 34a, 34b*, 532-5p). We used quantitative liquid chromatography-tandem mass spectrometry (LC-MS/MS) proteomic profiling to investigate the combined effect of the 4 microRNAs on target proteins. The proportion of repressed proteins among the predicted targets was significantly greater than in the overall proteome and was highly enriched for proteins involved in synaptic signal transmission. Among the combinatorial targets were TSC1, coding for the protein hamartin, and several epilepsy risk genes. We found decreased levels of hamartin in epileptogenic tubers and confirmed targeting of the TSC1 3' UTR by miRs-23a and 34a.
Collapse
Affiliation(s)
| | | | | | - Nicholas J Carruthers
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, USA
| | | | | | - Paul M Stemmer
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, USA
| | - Harry T Chugani
- Carman and Ann Adams Department of Pediatrics Department of Neurology, Wayne State University School of Medicine, Children's Hospital of Michigan, Detroit Medical Center, Detroit, MI, USA
| | | |
Collapse
|
47
|
Abstract
Multiple sclerosis (MS) is an autoimmune disease of unknown cause, in which chronic inflammation drives multifocal demyelination of axons in both white and gray matter in the CNS. The pathological course of the disease is heterogeneous and involves an early, predominantly inflammatory demyelinating disease phase of relapsing-remitting MS (RRMS), which, over a variable period of time, evolves into a progressively degenerative stage associated with axonal loss and scar formation, causing physical and cognitive disability. For patients with RRMS, there is a growing arsenal of disease-modifying agents (DMAs), with varying degrees of efficacy, as defined by reduced relapse rates, improved magnetic resonance imaging outcomes, and preservation of neurological function. Establishment of personalized treatment plans remains one of the biggest challenges in therapeutic decision-making in MS because the disease prognosis and individual therapeutic outcomes are extremely difficult to predict. Current research is aimed at discovery and validation of biomarkers that reliably measure disease progression and effective therapeutic intervention. Individual biomarker candidates with evident clinical utility are highlighted in this review and include neutralizing autoantibodies against DMAs, fetuin-A, osteopontin, isoprostanes, chemokine (C-X-C motif) ligand 13 (CXCL13), neurofilament light and heavy, and chitinase 3-like protein. In addition, application of more advanced screening technologies has opened up new categories of biomarkers that move beyond detection of individual soluble proteins, including gene expression and autoantibody arrays, microRNAs, and circulating microvesicles/exosomes. Development of clinically useful biomarkers in MS will not only shape the practice of personalized medicine but will also serve as surrogate markers to enable investigation of innovative treatments within clinical trials that are less costly, are of shorter duration, and have more certainty of outcomes.
Collapse
Affiliation(s)
- Violaine K. Harris
- Tisch Multiple Sclerosis Research Center of New York, 521 West 57th Street, New York, NY 10019 USA
| | - Saud A. Sadiq
- Tisch Multiple Sclerosis Research Center of New York, 521 West 57th Street, New York, NY 10019 USA
| |
Collapse
|
48
|
Karlík M, Valkovič P, Hančinová V, Krížová L, Tóthová Ľ, Celec P. Markers of oxidative stress in plasma and saliva in patients with multiple sclerosis. Clin Biochem 2014; 48:24-8. [PMID: 25304914 DOI: 10.1016/j.clinbiochem.2014.09.023] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 09/04/2014] [Accepted: 09/30/2014] [Indexed: 12/01/2022]
Abstract
BACKROUND Oxidative stress plays a role in multiple sclerosis. Saliva can be potentially used to study the disease progression or treatment, because of its non-invasiveness and easy collection. But studies on saliva and multiple sclerosis are missing. The aim of this study was to compare the concentrations of salivary oxidative stress markers in patients and healthy controls. OBJECTIVE Whole saliva and blood samples were collected from 29 patients and 29 healthy controls. Samples were collected during relapse, after corticosteroid therapy, and after three months. Markers of oxidative, carbonyl stress and antioxidant status were measured. RESULTS In plasma, thiobarbituric acid reacting substances, advanced oxidation protein products and fructosamine were significantly higher in patients compared to controls (by 271%, 46% and 24%, respectively; p<0.01). Total antioxidant capacity in plasma was lower by 20% (p<0.01) in patients versus controls. In saliva, higher levels of thiobarbituric acid reacting substances and advanced glycation end-products were observed in patients when compared to controls (by 51% and 49% respectively; p<0.01). Ferric reducing ability was reduced by 38% (p<0.05) in patients with multiple sclerosis. CONCLUSION According to our knowledge, this is the first report showing higher markers of oxidative stress and lower antioxidant status in patients with multiple sclerosis in saliva.
Collapse
Affiliation(s)
- Martin Karlík
- 2nd Department of Neurology, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Peter Valkovič
- 2nd Department of Neurology, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Viera Hančinová
- Department of Neurology, Slovak Medical University, Bratislava, Slovakia
| | - Lucia Krížová
- Department of Neurology, Slovak Medical University, Bratislava, Slovakia
| | - Ľubomíra Tóthová
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia; Center for Molecular Medicine, Slovak Academy of Sciences, Bratislava, Slovakia.
| | - Peter Celec
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia; Center for Molecular Medicine, Slovak Academy of Sciences, Bratislava, Slovakia; Institute of Pathophysiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia; Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| |
Collapse
|
49
|
Zhang Y, Wei G, Di Z, Zhao Q. miR-339-5p inhibits alcohol-induced brain inflammation through regulating NF-κB pathway. Biochem Biophys Res Commun 2014; 452:450-6. [DOI: 10.1016/j.bbrc.2014.08.092] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 08/19/2014] [Indexed: 01/10/2023]
|
50
|
Green HF, Nolan YM. Inflammation and the developing brain: Consequences for hippocampal neurogenesis and behavior. Neurosci Biobehav Rev 2014; 40:20-34. [DOI: 10.1016/j.neubiorev.2014.01.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 01/12/2014] [Accepted: 01/13/2014] [Indexed: 02/06/2023]
|