1
|
Oh Y, Kim J, Park YJ, Kim Y. Male-Specific Effects of β-Carotene Supplementation on Lipid Metabolism in the Liver and Gonadal Adipose Tissue of Healthy Mice. Molecules 2025; 30:909. [PMID: 40005219 PMCID: PMC11858425 DOI: 10.3390/molecules30040909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/04/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Biological sex is a fundamental determinant of physiological differences, including metabolic processes and disease susceptibility. β-carotene (BC), a provitamin A carotenoid, is known for its health benefits, but its sex-specific effects on its metabolism remain largely unexplored. This study investigated male and female BALB/c mice receiving BC or vehicle control via oral gavage for 11 weeks. Hepatic and circulating lipid levels, serum retinol, and the expression of BC cleavage enzymes (Bco1 and Bco2) and estrogen receptors (Esr1 and Esr2) in the liver and gonadal fat were analyzed. BC supplementation increased the hepatic Bco1 and Bco2 expression in males, accompanied by higher serum retinol, while downregulating expressions of these enzymes in male gonadal fat. Additionally, BC supplementation significantly reduced gonadal fat mass and adipogenic gene expression in males, with Cebpa and Esr1/Esr2 positively correlated, suggesting a role for estrogen receptor signaling in adipogenesis. These findings demonstrate that BC exerts sex- and tissue-specific effects on lipid metabolism, with strong regulatory interactions between BC metabolism, lipid homeostasis, and sex hormone signaling in males. The results provide novel insights into the mechanisms underlying sex-dependent differences in lipid metabolism following BC supplementation, with potential implications for metabolic health and disease prevention.
Collapse
Affiliation(s)
- Yeonsoo Oh
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Republic of Korea; (Y.O.); (J.K.); (Y.J.P.)
- Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Jinsol Kim
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Republic of Korea; (Y.O.); (J.K.); (Y.J.P.)
- Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Yoon Jung Park
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Republic of Korea; (Y.O.); (J.K.); (Y.J.P.)
- Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Yuri Kim
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Republic of Korea; (Y.O.); (J.K.); (Y.J.P.)
- Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
2
|
Goldman DM, Warbeck CB, Barbaro R, Khambatta C, Nagra M. Assessing the Roles of Retinol, Vitamin K2, Carnitine, and Creatine in Plant-Based Diets: A Narrative Review of Nutritional Adequacy and Health Implications. Nutrients 2025; 17:525. [PMID: 39940383 PMCID: PMC11820685 DOI: 10.3390/nu17030525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 01/29/2025] [Accepted: 01/29/2025] [Indexed: 02/16/2025] Open
Abstract
Plant-based diets are associated with numerous health benefits, including reduced risks of chronic diseases. However, questions persist regarding the implications of lower dietary intakes of certain non-essential nutrients, such as retinol, vitamin K2, carnitine, and creatine, which are primarily found in animal-derived foods. This narrative review evaluates the roles of these nutrients in human physiology and examines whether their absence in plant-based diets is likely to impact health outcomes. Retinol requirements can be met through the consumption of provitamin A carotenoids in plant foods, even in individuals with reduced conversion efficiency. Endogenous synthesis adequately supports physiological needs for vitamin K2, and currently available evidence does not consistently demonstrate that dietary vitamin K2 provides additional benefits for bone or cardiovascular health. Carnitine and creatine levels may differ between individuals following omnivorous and plant-based diets, but these differences do not result in compromised muscle function, cognitive health, or metabolic outcomes. Current evidence does not indicate that the absence of these non-essential nutrients in plant-based diets adversely affects health or confers disadvantages compared to omnivorous diets.
Collapse
Affiliation(s)
- David M. Goldman
- Department of Public Health, University of Helsinki, 00014 Helsinki, Finland
- Department of Research and Development, Metabite Inc., New York, NY 10036, USA
| | - Cassandra B. Warbeck
- Department of Family Medicine, University of Alberta, Edmonton, AB T6G 2R3, Canada;
| | - Robby Barbaro
- Mastering Diabetes, Santa Monica, CA 90405, USA;
- Amla Green, St. Petersburg, FL 33705, USA;
| | | | - Matthew Nagra
- Department of Family Practice, University of British Columbia, Vancouver, BC V6T 1Z3, Canada;
| |
Collapse
|
3
|
Zumaraga MP, Desmarchelier C, Gleize B, Nowicki M, Ould-Ali D, Landrier JF, Borel P. Identification of Genetic Polymorphisms Associated with Interindividual Variability of Vitamin A Concentration in Adipose Tissue of Healthy Male Adults. J Nutr 2024; 154:3693-3703. [PMID: 39442757 DOI: 10.1016/j.tjnut.2024.10.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/18/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Adipose tissue vitamin A (VA), that is, mainly retinol (RET) and its esters, comes from preformed VA and proVA carotenoids present in our food. Adipose tissue VA acts as hormonal cue maintaining essential aspects of adipocyte biology, which includes fat mobilization and catabolism, energy balance, and glucose homeostasis, and it is thus of particular interest to study its determinants, including genetic ones. OBJECTIVES This study aimed to identify genetic variations associated with adipose tissue VA concentration. METHODS Forty-two healthy male adults received, in a randomized crossover design, 3 test meals. Periumbilical adipose tissue samples were collected on 6 occasions, that is, at fast and 8 h after consumption of each meal. RET concentration was measured in both plasma and the adipose tissue following saponification. Participants were genotyped using whole-genome microarrays. A total of 1305 single nucleotide polymorphism (SNPs) in or near 27 candidate genes were included for univariate analysis. Partial least squares (PLS) regression was carried out to find the best combination of SNPs associated with the interindividual variability in adipose tissue RET concentration. RESULTS Adipose tissue RET concentration was not associated with plasma RET concentrations (r = -0.184, P = 0.28). Interindividual variability of adipose tissue RET concentration was high (coefficient of variation = 62%). Twenty-nine SNPs were significantly (P < 0.05) associated with adipose tissue RET concentration and a PLS regression model identified 16 SNPs as explanatory variables of this concentration. The SNPs were in or near peroxisome proliferator activated receptor gamma, retinoid X receptor alpha, signaling receptor and transporter of retinol, cluster of differentiation 36, free fatty acid receptor 4, aldehyde dehydrogenase 1 family member A1, monoglyceride lipase, diacylglycerol O-acyltransferase 2, and polycystic kidney disease 1-like 2. CONCLUSIONS A combination of 16 SNPs has been associated with the interindividual of adipose tissue VA concentration in humans. This trial was registered at clinicaltrials.gov as NCT02100774.
Collapse
Affiliation(s)
- Mark Pretzel Zumaraga
- C2VN, Aix Marseille Univ, INRAE, INSERM, Marseille, France; Department of Science and Technology-Food and Nutrition Research Institute, Bicutan, Taguig City, Philippines
| | - Charles Desmarchelier
- C2VN, Aix Marseille Univ, INRAE, INSERM, Marseille, France; Direction générale de la recherche et de l'innovation, Paris, France
| | | | - Marion Nowicki
- C2VN, Aix Marseille Univ, INRAE, INSERM, Marseille, France
| | - Djaffar Ould-Ali
- Plastic & Anesthetic Surgery Department, Clinique Internationale du Parc Monceau, Paris, France
| | | | - Patrick Borel
- C2VN, Aix Marseille Univ, INRAE, INSERM, Marseille, France.
| |
Collapse
|
4
|
Magalhães D, Gonçalves R, Rodrigues CV, Rocha HR, Pintado M, Coelho MC. Natural Pigments Recovery from Food By-Products: Health Benefits towards the Food Industry. Foods 2024; 13:2276. [PMID: 39063360 PMCID: PMC11276186 DOI: 10.3390/foods13142276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/11/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
Given the health risks associated with synthetic colorants, natural pigments have emerged as a promising alternative. These renewable choices not only provide health benefits but also offer valuable technical and sensory properties to food systems. The effective application of natural colorants, however, requires the optimization of processing conditions, exploration of new sources, and development of novel formulations to ensure stability and maintain their inherent qualities. Several natural pigment sources have been explored to achieve the broad color range desired by consumers. The purpose of this review is to explore the current advances in the obtention and utilization of natural pigments derived from by-products, which possess health-enhancing properties and are extracted through environmentally friendly methods. Moreover, this review provides new insights into the extraction processes, applications, and bioactivities of different types of pigments.
Collapse
Affiliation(s)
| | | | | | | | | | - Marta C. Coelho
- CBQF—Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (D.M.); (R.G.); (C.V.R.); (H.R.R.); (M.P.)
| |
Collapse
|
5
|
Breniere T, Bournot L, Sicard F, Astier J, Fanciullino AL, Riva C, Borel P, Bertin N, Landrier JF. Tomato genotype but not crop water deficit matters for tomato health benefits in diet-induced obesity of C57BL/6JRj male mice. Food Res Int 2024; 188:114512. [PMID: 38823883 DOI: 10.1016/j.foodres.2024.114512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/02/2024] [Accepted: 05/07/2024] [Indexed: 06/03/2024]
Abstract
Several studies have linked the intake of lycopene and/or tomato products with improved metabolic health under obesogenic regime. The aim was to evaluate the differential impact of supplementations with several tomato genotypes differing in carotenoid content and subjected to different irrigation levels on obesity-associated disorders in mice. In this study, 80 male C57BL/6JRj mice were assigned into 8 groups to receive: control diet, high fat diet, high fat diet supplemented at 5 % w/w with 4 tomato powders originating from different tomato genotypes cultivated under control irrigation: H1311, M82, IL6-2, IL12-4. Among the 4 genotypes, 2 were also cultivated under deficit irrigation, reducing the irrigation water supply by 50 % from anthesis to fruit harvest. In controlled irrigation treatment, all genotypes significantly improved fasting glycemia and three of them significantly lowered liver lipids content after 12 weeks of supplementation. In addition, IL6-2 genotype, rich in β-carotene, significantly limited animal adiposity, body weight gain and improved glucose homeostasis as highlighted in glucose and insulin tolerance tests. No consistent beneficial or detrimental impact of deficit irrigation to tomato promoting health benefits was found. These findings imply that the choice of tomato genotype can significantly alter the composition of fruit carotenoids and phytochemicals, thereby influencing the anti-obesogenic effects of the fruit. In contrast, deficit irrigation appears to have an overall insignificant impact on enhancing the health benefits of tomato powder in this context, particularly when compared to the genotype-related variations in carotenoid content.
Collapse
Affiliation(s)
- Thomas Breniere
- Plantes et Systèmes de cultures Horticoles (UR 1115, PSH), INRAE, F-84000 Avignon, France; Aix-Marseille Université, C2VN, INRAE, INSERM, 13000 Marseille, France; Avignon Université, UPR4278 LaPEC, Avignon, France
| | - Lorrine Bournot
- Aix-Marseille Université, C2VN, INRAE, INSERM, 13000 Marseille, France
| | | | - Julien Astier
- Aix-Marseille Université, C2VN, INRAE, INSERM, 13000 Marseille, France
| | | | | | - Patrick Borel
- Aix-Marseille Université, C2VN, INRAE, INSERM, 13000 Marseille, France
| | - Nadia Bertin
- Plantes et Systèmes de cultures Horticoles (UR 1115, PSH), INRAE, F-84000 Avignon, France
| | - Jean-François Landrier
- Aix-Marseille Université, C2VN, INRAE, INSERM, 13000 Marseille, France; PhenoMARS, CriBiom, Marseille, France.
| |
Collapse
|
6
|
Zhang Y, Usman S, Li Q, Li F, Zhang X, Nussio LG, Guo X. Effects of antioxidant-rich Lactiplantibacillus plantarum inoculated alfalfa silage on rumen fermentation, antioxidant and immunity status, and mammary gland gene expression in dairy goats. J Anim Sci Biotechnol 2024; 15:9. [PMID: 38247012 PMCID: PMC10802014 DOI: 10.1186/s40104-023-00977-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 12/12/2023] [Indexed: 01/23/2024] Open
Abstract
BACKGROUND Milk synthesis in lactating animals demands high energy metabolism, which results in an increased production of reactive oxygen metabolites (ROM) causing an imbalance between oxidants and antioxidants thereby inducing oxidative stress (OS) on the animals. To mitigate OS and postpartum disorders in dairy goats and gain insight into the impact of dietary choices on redox status during lactation, a feeding trial was conducted using alfalfa silage inoculated with a high-antioxidant strain of Lactiplantibacillus plantarum. METHODS Twenty-four Guanzhong dairy goats (38.1 ± 1.20 kg) were randomly assigned to two dietary treatments: one containing silage inoculated with L. plantarum MTD/1 (RSMTD-1), and the other containing silage inoculated with high antioxidant activity L. plantarum 24-7 (ES24-7). RESULTS ES24-7-inoculated silage exhibited better fermentation quality and antioxidant activity compared to RSMTD-1. The ES24-7 diet elevated the total antioxidant capacity (T-AOC), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase (CAT) activities in milk, serum, and feces of lactating goats (with the exception of T-AOC in milk). Additionally, the diet containing ES24-7 inoculated silage enhanced casein yield, milk free fatty acid (FFA) content, and vitamin A level in the goats' milk. Furthermore, an increase of immunoglobulin (Ig)A, IgG, IgM, interleukin (IL)-4, and IL-10 concentrations were observed, coupled with a reduction in IL-1β, IL-2, IL-6, interferon (IFN)-γ, and tumor necrosis factor (TNF)-α concentrations in the serum of lactating goats fed ES24-7. Higher concentrations of total volatile fatty acid (VFA), acetate, and propionate were observed in the rumen fluid of dairy goats fed ES24-7 inoculated silage. Moreover, the diet containing ES24-7 inoculated silage significantly upregulated the expression of nuclear factor erythroid 2 like 2 (NFE2L2), beta-carotene oxygenase 1 (BCO1), SOD1, SOD2, SOD3, GPX2, CAT, glutathione-disulfide reductase (GSR), and heme oxygenase 1 (HMOX1) genes in the mammary gland, while decreased the levels of NADPH oxidase 4 (NOX4), TNF, and interferon gamma (IFNG). CONCLUSIONS These findings indicated that feeding L. plantarum 24-7 inoculated alfalfa silage not only improved rumen fermentation and milk quality in lactating dairy goats but also boosted their immunity and antioxidant status by modulating the expression of several genes related to antioxidant and inflammation in the mammary gland.
Collapse
Affiliation(s)
- Yixin Zhang
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, 730000, PR China
- Probiotics and Life Health Institute, Lanzhou University, Lanzhou, 730000, PR China
- Probiotics and Biological Feed Research Centre, Lanzhou University, Lanzhou, 730000, PR China
| | - Samaila Usman
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, 730000, PR China
- Probiotics and Life Health Institute, Lanzhou University, Lanzhou, 730000, PR China
- Probiotics and Biological Feed Research Centre, Lanzhou University, Lanzhou, 730000, PR China
| | - Qiang Li
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, 730000, PR China
- Probiotics and Life Health Institute, Lanzhou University, Lanzhou, 730000, PR China
- Probiotics and Biological Feed Research Centre, Lanzhou University, Lanzhou, 730000, PR China
| | - Fuhou Li
- Probiotics and Life Health Institute, Lanzhou University, Lanzhou, 730000, PR China
- Probiotics and Biological Feed Research Centre, Lanzhou University, Lanzhou, 730000, PR China
| | - Xia Zhang
- Probiotics and Life Health Institute, Lanzhou University, Lanzhou, 730000, PR China
- Probiotics and Biological Feed Research Centre, Lanzhou University, Lanzhou, 730000, PR China
| | - Luiz Gustavo Nussio
- Department of Animal Science, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, 13418-900, Brazil
| | - Xusheng Guo
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, 730000, PR China.
- Probiotics and Life Health Institute, Lanzhou University, Lanzhou, 730000, PR China.
- Probiotics and Biological Feed Research Centre, Lanzhou University, Lanzhou, 730000, PR China.
| |
Collapse
|
7
|
Karkeni E, Payet T, Astier J, Sicard F, Mounien L, Landrier JF. Proposal of a bioinformatics approach to predict molecular mechanisms involved in inflammatory response: case of ATRA and 1,25(OH) 2D in adipocytes. Epigenetics 2023; 18:2201516. [PMID: 37071788 PMCID: PMC10116923 DOI: 10.1080/15592294.2023.2201516] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023] Open
Abstract
Several inflammatory markers such as cytokines, chemokines, and microRNAs (miRNAs) are well known to be induced during obesity and are strongly linked to their comorbidities. Among many others factors, the micronutrient status is suspected to reduce obesity-associated inflammation via blunting inflammatory signalling pathways. This is notably the case for active forms of vitamin A (all-trans retinoic acid ATRA) and vitamin D (1,25(OH)2D) as previously shown. In the present study, we aimed to implement a new bioinformatics approach to unveil commonly regulated signalling pathways through a combination of gene and miRNA expression sets impacted by ATRA and 1,25(OH)2D in adipocytes. In a first set of experiments, we focused only our attention on ATRA and demonstrated that it reduced LPS-mediated miRNA expression (miR-146a, miR-150, and miR-155) in mouse adipose tissue, in adipocyte cultures, and in adipocyte-derived vesicles. This result was confirmed in TNFα-induced miRNA in human adipocytes. Then, bioinformatic analysis highlighted that both ATRA and 1,25(OH)2D-regulated genes and miRNA converge to the canonical 'nuclear factor Kappa B (NF-κB) signalling pathway.' Altogether, these results showed that ATRA has anti-inflammatory effects on miRNA expression. In addition, the proposed bioinformatic model converges to NF-κB signalling pathway that has been previously demonstrated to be regulated by ATRA and 1,25(OH)2D, thus confirming the interest of such approach.
Collapse
Affiliation(s)
- Esma Karkeni
- Aix-Marseille Université, C2VN, INRAE, INSERM, Marseille, France
| | - Thomas Payet
- Aix-Marseille Université, C2VN, INRAE, INSERM, Marseille, France
| | - Julien Astier
- Aix-Marseille Université, C2VN, INRAE, INSERM, Marseille, France
| | - Flavie Sicard
- Aix-Marseille Université, C2VN, INRAE, INSERM, Marseille, France
- PhenoMars, C2VN, INRAE, INSERM, CriBiom, Marseille, France
| | - Lourdes Mounien
- Aix-Marseille Université, C2VN, INRAE, INSERM, Marseille, France
- PhenoMars, C2VN, INRAE, INSERM, CriBiom, Marseille, France
| | - Jean-François Landrier
- Aix-Marseille Université, C2VN, INRAE, INSERM, Marseille, France
- PhenoMars, C2VN, INRAE, INSERM, CriBiom, Marseille, France
| |
Collapse
|
8
|
Choi M, Yun JW. β-Carotene induces UCP1-independent thermogenesis via ATP-consuming futile cycles in 3T3-L1 white adipocytes. Arch Biochem Biophys 2023; 739:109581. [PMID: 36948352 DOI: 10.1016/j.abb.2023.109581] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/17/2023] [Accepted: 03/19/2023] [Indexed: 03/24/2023]
Abstract
The activation of brown fat and induction of beige adipocytes, so-called non-shivering thermogenesis, is emerging as a promising target for therapeutic intervention in obesity management. Our previous report demonstrated that β-carotene (BC) induces beige adipocytes to increase UCP1-dependent thermogenic activity. However, the UCP1-independent thermogenic effect of BC on adipose tissues remains unexplored. In this study, we examined the effects of BC on UCP1-independent thermogenic activity with a focus on the ATP-consuming futile cycles in 3T3-L1 adipocytes. BC increased intracellular calcium levels and stimulated the expression of calcium cycling-related proteins, including sarcoendoplasmic reticulum Ca2+-ATPase (SERCA) 2b, ryanodine receptor 2 (RyR2), voltage-dependent anion channel (VDAC), mitochondrial calcium uniporter (MCU), and Ca2+/calmodulin-dependent protein kinase 2 (CaMK2) in 3T3-L1 white adipocytes. In addition, BC stimulated thermogenesis by activating the creatine metabolism-related thermogenic pathway. Moreover, BC activated β-carotene oxygenase 1 (BCO1), which efficiently cleaved BC to retinal and consequently converted to its transcriptionally active form retinoic acid. These BC conversion products also exhibited thermogenic effects comparable to a similar level of BC. The mechanistic study revealed that retinal exhibited thermogenic activity independently of retinoic acid and retinoic acid-mediated thermogenesis was resulted partly from conversion of retinal. Moreover, BC activated α1-AR and UCP1-independent thermogenic effectors independently of UCP1 expression. In conclusion, the thermogenic response to BC and its conversion products in 3T3-L1 white adipocytes involves two interacting pathways, one mediated via β3-adrenergic receptors (β3-AR) and cyclic adenosine monophosphate (cAMP) and the other via α1-AR and increases in cytosolic Ca2+ levels activated by calcium regulatory proteins.
Collapse
Affiliation(s)
- Minji Choi
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk, 38453, Republic of Korea
| | - Jong Won Yun
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk, 38453, Republic of Korea.
| |
Collapse
|
9
|
Coronel J, Yu J, Pilli N, Kane MA, Amengual J. The conversion of β-carotene to vitamin A in adipocytes drives the anti-obesogenic effects of β-carotene in mice. Mol Metab 2022; 66:101640. [PMID: 36400405 PMCID: PMC9707038 DOI: 10.1016/j.molmet.2022.101640] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/30/2022] [Accepted: 11/09/2022] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE The β-carotene oxygenase 1 (BCO1) is the enzyme responsible for the cleavage of β-carotene to retinal, the first intermediate in vitamin A formation. Preclinical studies suggest that BCO1 expression is required for dietary β-carotene to affect lipid metabolism. The goal of this study was to generate a gene therapy strategy that over-expresses BCO1 in the adipose tissue and utilizes the β-carotene stored in adipocytes to produce vitamin A and reduce obesity. METHODS We generated a novel adipose-tissue-specific, adeno-associated vector to over-express BCO1 (AT-AAV-BCO1) in murine adipocytes. We tested this vector using a unique model to achieve β-carotene accumulation in the adipose tissue, in which Bco1-/- mice were fed β-carotene. An AT-AAV over-expressing green fluorescent protein was utilized as control. We evaluated the adequate delivery route and optimized cellular and organ specificity, dosage, and exposure of our vectors. We also employed morphometric analyses to evaluate the effect of BCO1 expression in adiposity, as well as HPLC and mass spectrometry to quantify β-carotene and retinoids in tissues, including retinoic acid. RESULTS AT-AAV-BCO1 infusions in the adipose tissue of the mice resulted in the production of retinoic acid, a vitamin A metabolite with strong effects on gene regulation. AT-AAV-BCO1 treatment also reduced adipose tissue size and adipocyte area by 35% and 30%, respectively. These effects were sex-specific, highlighting the complexity of vitamin A metabolism in mammals. CONCLUSIONS The over-expression of BCO1 through delivery of an AT-AAV-BCO1 leads to the conversion of β-carotene to vitamin A in adipocytes, which subsequently results in reduction of adiposity. These studies highlight for the first time the potential of adipose tissue β-carotene as a target for BCO1 over-expression in the reduction of obesity.
Collapse
Affiliation(s)
- Johana Coronel
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jianshi Yu
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, MD, USA
| | - Nageswara Pilli
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, MD, USA
| | - Maureen A. Kane
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, MD, USA
| | - Jaume Amengual
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA,Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA,Corresponding author. Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
10
|
Zheng M, Guo Y, Li W, Wu M, Xu M, Shao M, He G, Liu Y. Medium Chain Triglycerides Promote the Uptake of β-Carotene in O/W Emulsions via Intestinal Transporter SR-B1 in Caco-2 Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:9377-9387. [PMID: 35861437 DOI: 10.1021/acs.jafc.2c02660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This study aimed to elucidate the impacts of carrier oil types (long chain triglycerides (LCT), medium chain triglycerides (MCT), and orange oil (indigestible oil)) on the micellization and cellular uptake of β-carotene (BC) formulated in O/W emulsions, with an emphasis on the role of intestinal transporters. The micellization and cellular uptake of BC in the gastrointestinal tract were evaluated via an in vitro digestion model and a Caco-2 cell monolayer. And the interactions between lipids and intestinal transporters were monitored by nontargeted lipidomics, RT-PCR, and Western blot. The BC micellization rates followed a decreasing trend in emulsions: corn oil (69.47 ± 4.19%) > MCT (22.22 ± 0.89%) > orange oil (11.01 ± 2.86%), whereas the cellular uptake rate of BC was significantly higher in MCT emulsion (56.30 ± 20.13%) than in corn oil emulsion (14.01 ± 1.04%, p < 0.05). The knockdown of SR-B1 led to a 31.63% loss of BC cellular uptake from MCT micelles but had no effect on corn oil micelles. Lipidomics and transporter analysis revealed that TG (10:0/10:0/12:0) and TG (10:0/12:0/12:0) might be the fingerprint lipids that promoted the cellular absorption of BC-MCT micelles via stimulating the mRNA expression of SR-B1.
Collapse
Affiliation(s)
- Mengman Zheng
- School of Public Health, Fudan University/Key Laboratory of Public Health Safety, Ministry of Education, Shanghai 200032, China
- Department of Nutriology, Affiliated Hospital of Shaoxing University (Shaoxing Municipal Hospital), Shaoxing, Zhejiang 312000, China
| | - Yi Guo
- School of Public Health, Fudan University/Key Laboratory of Public Health Safety, Ministry of Education, Shanghai 200032, China
| | - Wenyun Li
- School of Public Health, Fudan University/Key Laboratory of Public Health Safety, Ministry of Education, Shanghai 200032, China
| | - Min Wu
- School of Public Health, Fudan University/Key Laboratory of Public Health Safety, Ministry of Education, Shanghai 200032, China
| | - Mingjing Xu
- School of Public Health, Fudan University/Key Laboratory of Public Health Safety, Ministry of Education, Shanghai 200032, China
| | - Manman Shao
- School of Public Health, Fudan University/Key Laboratory of Public Health Safety, Ministry of Education, Shanghai 200032, China
| | - Gengsheng He
- School of Public Health, Fudan University/Key Laboratory of Public Health Safety, Ministry of Education, Shanghai 200032, China
| | - Yuwei Liu
- School of Public Health, Fudan University/Key Laboratory of Public Health Safety, Ministry of Education, Shanghai 200032, China
| |
Collapse
|
11
|
Carrillo C, Nieto G, Martínez-Zamora L, Ros G, Kamiloglu S, Munekata PES, Pateiro M, Lorenzo JM, Fernández-López J, Viuda-Martos M, Pérez-Álvarez JÁ, Barba FJ. Novel Approaches for the Recovery of Natural Pigments with Potential Health Effects. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:6864-6883. [PMID: 35040324 PMCID: PMC9204822 DOI: 10.1021/acs.jafc.1c07208] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/30/2021] [Accepted: 01/06/2022] [Indexed: 05/27/2023]
Abstract
The current increased industrial food production has led to a significant rise in the amount of food waste generated. These food wastes, especially fruit and vegetable byproducts, are good sources of natural pigments, such as anthocyanins, betalains, carotenoids, and chlorophylls, with both coloring and health-related properties. Therefore, recovery of natural pigments from food wastes is important for both economic and environmental reasons. Conventional methods that are used to extract natural pigments from food wastes are time-consuming, expensive, and unsustainable. In addition, natural pigments are sensitive to high temperatures and prolonged processing times that are applied during conventional treatments. In this sense, the present review provides an elucidation of the latest research on the extraction of pigments from the agri-food industry and how their consumption may improve human health.
Collapse
Affiliation(s)
- Celia Carrillo
- Nutrición
y Bromatología, Facultad de Ciencias, Universidad de Burgos, E-09001 Burgos, Spain
| | - Gema Nieto
- Department
of Food Technology, Nutrition and Food Science, Veterinary Faculty, University of Murcia, 30100 Murcia, Spain
| | - Lorena Martínez-Zamora
- Department
of Food Technology, Nutrition and Food Science, Veterinary Faculty, University of Murcia, 30100 Murcia, Spain
| | - Gaspar Ros
- Department
of Food Technology, Nutrition and Food Science, Veterinary Faculty, University of Murcia, 30100 Murcia, Spain
| | - Senem Kamiloglu
- Department
of Food Engineering, Faculty of Agriculture, Bursa Uludag University, 16059 Gorukle, Bursa, Turkey
- Science
and Technology Application and Research Center (BITUAM), Bursa Uludag University, 16059 Gorukle, Bursa, Turkey
| | - Paulo E. S. Munekata
- Centro
Tecnológico de la Carne de Galicia, Avenida Galicia No. 4, Parque Tecnológico
de Galicia, San Cibrao das Viñas 32900, Ourense, Spain
| | - Mirian Pateiro
- Centro
Tecnológico de la Carne de Galicia, Avenida Galicia No. 4, Parque Tecnológico
de Galicia, San Cibrao das Viñas 32900, Ourense, Spain
| | - José M. Lorenzo
- Centro
Tecnológico de la Carne de Galicia, Avenida Galicia No. 4, Parque Tecnológico
de Galicia, San Cibrao das Viñas 32900, Ourense, Spain
- Área
de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain
| | - Juana Fernández-López
- IPOA
Research Group, Agro-Food Technology Department, Centro de Investigación
e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Miguel Hernández University, 03312 Alicante, Spain
| | - Manuel Viuda-Martos
- IPOA
Research Group, Agro-Food Technology Department, Centro de Investigación
e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Miguel Hernández University, 03312 Alicante, Spain
| | - José Ángel Pérez-Álvarez
- IPOA
Research Group, Agro-Food Technology Department, Centro de Investigación
e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Miguel Hernández University, 03312 Alicante, Spain
| | - Francisco J. Barba
- Nutrition
and Food Science Area, Preventive Medicine and Public Health, Food
Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, València, Spain
| |
Collapse
|
12
|
Effects of Vitamin A on Yanbian Yellow Cattle and Their Preadipocytes by Activating AKT/mTOR Signaling Pathway and Intestinal Microflora. Animals (Basel) 2022; 12:ani12121477. [PMID: 35739812 PMCID: PMC9219514 DOI: 10.3390/ani12121477] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/02/2022] [Accepted: 06/03/2022] [Indexed: 11/25/2022] Open
Abstract
Simple Summary Vitamin A is a fat-soluble vitamin that not only plays a role in vision, growth, and development, but also in fat production and metabolism in animals. To improve the production of high-grade beef, it is necessary to explore the molecular mechanism of intramuscular fat deposition in beef cattle through molecular biology techniques. In this study, we selected Yanbian yellow cattle, one of the five major cattle breeds in China, to investigate the effects of vitamin A and its metabolite, all-trans retinoic acid (ATRA), on the proliferation and differentiation of preadipocytes and changes in intestinal microorganisms. It was found that ATRA inhibited adipogenic differentiation of preadipocytes in Yanbian yellow cattle via the AKT/mTOR signaling pathway. This study provides insight into nutritional management and reveals the role of vitamin A in lipid metabolism in Yanbian yellow cattle. Abstract In this study, the effects of vitamin A and its metabolite, all-trans retinoic acid (ATRA), on the proliferation and differentiation of preadipocytes and the intestinal microbiome in Yanbian yellow cattle were investigated. Preadipocytes collected from Yanbian yellow cattle treated with different concentrations of ATRA remained in the G1/G0 phase, as determined by flow cytometry. Quantitative reverse-transcription polymerase chain reaction and western blotting analyses showed that the mRNA and protein expression levels of key adipogenic factors, peroxisome proliferator- activated receptor gamma (PPARγ), CCAAT enhancer-binding protein α (C/EBPα), and extracellular signal-regulated kinase 2 (ERK2), decreased. ATRA was found to regulate the mTOR signaling pathway, which is involved in lipid metabolism, by inhibiting the expression of AKT2 and the adipogenic transcription factors SREBP1, ACC, and FAS; the protein and mRNA expression levels showed consistent trends. In addition, 16S rRNA sequencing results showed that a low concentration of vitamin A promoted the growth of intestinal microflora beneficial to lipid metabolism and maintained intestinal health. The results indicated that ATRA inhibited the adipogenic differentiation of preadipocytes from Yanbian yellow cattle through the AKT/mTOR signaling pathway, and that low concentrations of vitamin A may help maintain the intestinal microbes involved in lipid metabolism in cattle.
Collapse
|
13
|
Crusan AC, Reicks M, Demmer RT, Raatz SK. Serum β-carotene concentrations are associated with self-reported fatty acid intake in United States adults from the National Health and Examination Surveys. Lipids 2022; 57:163-171. [PMID: 35258100 PMCID: PMC9310765 DOI: 10.1002/lipd.12340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/04/2022] [Accepted: 02/23/2022] [Indexed: 11/10/2022]
Abstract
Bioavailability of dietary β‐carotene (BC) is dependent on dose, quantity, dispersion, and presence of fat in the diet. Fats are comprised of a variety of fatty acids, which may impact the bioavailability of carotenoids. However, there is a gap in research on whether specific fatty acid classes affect serum BC concentrations in population samples. The primary objective of this study was to assess the association between reported fat and fatty acid intake and serum BC concentrations utilizing data from the National Health and Nutrition Examination Surveys (NHANES) 2003–2006. Data from 3278 NHANES participants 20–85 years old were analyzed to estimate the relationships between serum BC concentrations and reported saturated (SFA), monounsaturated (MUFA), and polyunsaturated (PUFA) fatty acid intakes. Multiple linear regression estimated ln(serum BC) based on reported fatty acid intakes adjusted for age, sex, race/ethnicity, and reported dietary BC intakes. Mean and standard error (SE) for serum BC concentrations were 14.31 ± 0.05 μg/dl. Means and SE for total fat, SFA, MUFA, and PUFA were 85.7 ± 1.3, 26.9 ± 0.4, 31.1 ± 0.5, and 17.8 ± 0.4 g, respectively. There was a significant trend for association between serum BC and reported total fat intakes (r = −0.002, p < 0.0001), but the association was not strong. Multiple linear regression showed positive associations between serum BC concentrations and higher reported dietary PUFA consumption. PUFA alpha‐linolenic acid intakes are positively associated with serum BC concentrations, while MUFA palmitoleic acid and SFA stearic acid were inversely associated with serum BC. The inverse association between MUFA and SFA suggests there may be multiple post‐digestion factors affecting serum carotenoid concentrations.
Collapse
Affiliation(s)
- Ambria C Crusan
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, Minnesota, USA.,Department of Nutrition and Dietetics, St. Catherine University, St. Paul, Minnesota, USA
| | - Marla Reicks
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, Minnesota, USA
| | - Ryan T Demmer
- Division of Epidemiology, School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA
| | - Susan K Raatz
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, Minnesota, USA
| |
Collapse
|
14
|
Kabir MT, Rahman MH, Shah M, Jamiruddin MR, Basak D, Al-Harrasi A, Bhatia S, Ashraf GM, Najda A, El-Kott AF, Mohamed HRH, Al-Malky HS, Germoush MO, Altyar AE, Alwafai EB, Ghaboura N, Abdel-Daim MM. Therapeutic promise of carotenoids as antioxidants and anti-inflammatory agents in neurodegenerative disorders. Biomed Pharmacother 2022; 146:112610. [PMID: 35062074 DOI: 10.1016/j.biopha.2021.112610] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/26/2021] [Accepted: 12/26/2021] [Indexed: 11/17/2022] Open
Abstract
Neurodegenerative disorders (NDs) including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, Huntington's disease, and multiple sclerosis have various disease-specific causal factors and pathological features. A very common characteristic of NDs is oxidative stress (OS), which takes place due to the elevated generation of reactive oxygen species during the progression of NDs. Furthermore, the pathological condition of NDs including an increased level of protein aggregates can further lead to chronic inflammation because of the microglial activation. Carotenoids (CTs) are naturally occurring pigments that play a significant role in averting brain disorders. More than 750 CTs are present in nature, and they are widely available in plants, microorganisms, and animals. CTs are accountable for the red, yellow, and orange pigments in several animals and plants, and these colors usually indicate various types of CTs. CTs exert various bioactive properties because of its characteristic structure, including anti-inflammatory and antioxidant properties. Due to the protective properties of CTs, levels of CTs in the human body have been markedly linked with the prevention and treatment of multiple diseases including NDs. In this review, we have summarized the relationship between OS, neuroinflammation, and NDs. In addition, we have also particularly focused on the antioxidants and anti-inflammatory properties of CTs in the management of NDs.
Collapse
Affiliation(s)
- Md Tanvir Kabir
- Department of Pharmacy, Brac University, 66 Mohakhali, Dhaka 1212, Bangladesh
| | - Md Habibur Rahman
- Department of Pharmacy, Southeast University, Banani, Dhaka 1213, Bangladesh; Department of Global Medical Science, Yonsei University Wonju College of Medicine, Yonsei University, Wonju 26426, Gangwon-do, South Korea.
| | - Muddaser Shah
- Department of Botany, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | | | - Debasish Basak
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin University, Miami, FL 33169, United States
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Center, University of Nizwa, P.O. Box 33, 616 Birkat Al Mauz, Nizwa, Oman
| | - Saurabh Bhatia
- Natural & Medical Sciences Research Center, University of Nizwa, P.O. Box 33, 616 Birkat Al Mauz, Nizwa, Oman; School of Health Science, University of Petroleum and Energy Studies, Prem Nagar, Dehradun, Uttarakhand, 248007, India
| | - Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Agnieszka Najda
- Department of Vegetable and Herbal Crops, University of Life Sciences in Lublin, 50A Doświadczalna Street, 20-280 Lublin, Poland.
| | - Attalla F El-Kott
- Biology Department, Faculty of Science, King Khalid University, Abha 61421, Saudi Arabia; Zoology Department, College of Science, Damanhour University, Damanhour 22511, Egypt
| | - Hanan R H Mohamed
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Hamdan S Al-Malky
- Regional Drug Information Center, Ministry of Health, Jeddah, Saudi Arabia
| | - Mousa O Germoush
- Biology Department, College of Science, Jouf University, P.O. Box: 2014, Sakaka, Saudi Arabia
| | - Ahmed E Altyar
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, P.O. Box 80260, Jeddah 21589, Saudi Arabia
| | - Esraa B Alwafai
- Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Nehmat Ghaboura
- Department of Pharmacy Practice, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Mohamed M Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia; Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt.
| |
Collapse
|
15
|
Mukherjee S, Yun JW. β-Carotene stimulates browning of 3T3-L1 white adipocytes by enhancing thermogenesis via the β3-AR/p38 MAPK/SIRT signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 96:153857. [PMID: 34840022 DOI: 10.1016/j.phymed.2021.153857] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/04/2021] [Accepted: 11/12/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Natural compounds with medicinal properties are part of a strategic trend in the treatment of obesity. The vitamin A agent, β-carotene, is a well-known carotenoid, and its numerous functions in metabolism have been widely studied. The activation of thermogenesis by stimulating white fat browning (beiging) has been identified as a treatment for obese individuals. PURPOSE The current study was undertaken to unveil the browning activity of β-carotene in 3T3-L1 white adipocytes. METHODS The effects of β-carotene were evaluated in 3T3-L1 white adipocytes, and gene/protein expressions were determined by performing quantitative real-time PCR, immunoblot analysis, immunofluorescence assessment, and molecular docking techniques. RESULTS β-carotene strikingly increased the expression levels of brown-fat-specific marker proteins (UCP1, PRDM16, and PGC-1α) and beige-fat-specific genes (Cd137, Cidea, Cited1, andTbx1) in 3T3-L1 cells. Exposure to β-carotene also elevated the expressions of key adipogenic transcription factors C/EBPα and PPARγ in white adipocytes but decreased the expressions of lipogenic marker proteins ACC and FAS. Moreover, lipolysis and fat oxidation were regulated by β-carotene via upregulation of ATGL, pHSL, ACOX, and CPT1. In addition, molecular docking studies revealed β-carotene activation of the adenosine A2A receptor and β3-AR. β-Carotene increased the expressions of mitochondrial biogenic markers, stimulated the β3-AR and p38 MAPK signaling pathways and its downstream signaling molecules (SIRTs and ATF2), thereby inducing browning. CONCLUSIONS Taken together, our results indicate the potential of β-carotene as a natural-source therapeutic anti-obesity agent.
Collapse
Affiliation(s)
- Sulagna Mukherjee
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk 38453, Republic of Korea
| | - Jong Won Yun
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk 38453, Republic of Korea.
| |
Collapse
|
16
|
D’Amico E, Grosso G, Nieves JW, Zanghì A, Factor-Litvak P, Mitsumoto H. Metabolic Abnormalities, Dietary Risk Factors and Nutritional Management in Amyotrophic Lateral Sclerosis. Nutrients 2021; 13:nu13072273. [PMID: 34209133 PMCID: PMC8308334 DOI: 10.3390/nu13072273] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 02/07/2023] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a devastating progressive neurodegenerative disease that affects motor neurons, leading to a relentless paralysis of skeletal muscles and eventual respiratory failure. Although a small percentage of patients may have a longer survival time (up to 10 years), in most cases, the median survival time is from 20 to 48 months. The pathogenesis and risk factors for ALS are still unclear: among the various aspects taken into consideration, metabolic abnormalities and nutritional factors have been the focus of recent interests. Although there are no consistent findings regarding prior type-2 diabetes, hypercholesterolemia and ALS incidence, abnormalities in lipid and glucose metabolism may be linked to disease progression, leading to a relatively longer survival (probably as a result of counteract malnutrition and cachexia in the advanced stages of the disease). Among potential dietary risk factors, a higher risk of ALS has been associated with an increased intake of glutamate, while the consumption of antioxidant and anti-inflammatory compounds, such as vitamin E, n-3 polyunsaturated fatty acids, and carotenoids, has been related to lower incidence. Poor nutritional status and weight loss in ALS resulting from poor oral intake, progressive muscle atrophy, and the potential hypermetabolic state have been associated with rapid disease progression. It seems important to routinely perform a nutritional assessment of ALS patients at the earliest referral: weight maintenance (if adequate) or gain (if underweight) is suggested from the scientific literature; evidence of improved diet quality (in terms of nutrients and limits for pro-inflammatory dietary factors) and glucose and lipid control is yet to be confirmed, but it is advised. Further research is warranted to better understand the role of nutrition and the underlying metabolic abnormalities in ALS, and their contribution to the pathogenic mechanisms leading to ALS initiation and progression.
Collapse
Affiliation(s)
- Emanuele D’Amico
- Department G.F. Ingrassia, University of Catania, 95123 Catania, Italy; (E.D.); (A.Z.)
| | - Giuseppe Grosso
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
- Correspondence: ; Tel.: +39-0954-781-187
| | - Jeri W. Nieves
- Mailman School of Public Health and Institute of Human Nutrition, Columbia University, New York, NY 10032, USA; (J.W.N.); (P.F.-L.)
| | - Aurora Zanghì
- Department G.F. Ingrassia, University of Catania, 95123 Catania, Italy; (E.D.); (A.Z.)
| | - Pam Factor-Litvak
- Mailman School of Public Health and Institute of Human Nutrition, Columbia University, New York, NY 10032, USA; (J.W.N.); (P.F.-L.)
| | - Hiroshi Mitsumoto
- Eleanor and Lou Gehrig ALS Center, The Neurological Institute of New York Columbia University Medical Center, New York, NY 10032, USA;
| |
Collapse
|
17
|
Abstract
Dietary intake and tissue levels of carotenoids have been associated with a reduced risk of several chronic diseases, including cardiovascular diseases, type 2 diabetes, obesity, brain-related diseases and some types of cancer. However, intervention trials with isolated carotenoid supplements have mostly failed to confirm the postulated health benefits. It has thereby been speculated that dosing, matrix and synergistic effects, as well as underlying health and the individual nutritional status plus genetic background do play a role. It appears that our knowledge on carotenoid-mediated health benefits may still be incomplete, as the underlying mechanisms of action are poorly understood in relation to human relevance. Antioxidant mechanisms - direct or via transcription factors such as NRF2 and NF-κB - and activation of nuclear hormone receptor pathways such as of RAR, RXR or also PPARs, via carotenoid metabolites, are the basic principles which we try to connect with carotenoid-transmitted health benefits as exemplified with described common diseases including obesity/diabetes and cancer. Depending on the targeted diseases, single or multiple mechanisms of actions may play a role. In this review and position paper, we try to highlight our present knowledge on carotenoid metabolism and mechanisms translatable into health benefits related to several chronic diseases.
Collapse
|
18
|
Petrosino JM, Longenecker JZ, Ramkumar S, Xu X, Dorn LE, Bratasz A, Yu L, Maurya S, Tolstikov V, Bussberg V, Janssen PM, Periasamy M, Kiebish MA, Duester G, von Lintig J, Ziouzenkova O, Accornero F. Paracardial fat remodeling affects systemic metabolism through alcohol dehydrogenase 1. J Clin Invest 2021; 131:141799. [PMID: 33586683 PMCID: PMC7880313 DOI: 10.1172/jci141799] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 12/10/2020] [Indexed: 11/17/2022] Open
Abstract
The relationship between adiposity and metabolic health is well established. However, very little is known about the fat depot, known as paracardial fat (pCF), located superior to and surrounding the heart. Here, we show that pCF remodels with aging and a high-fat diet and that the size and function of this depot are controlled by alcohol dehydrogenase 1 (ADH1), an enzyme that oxidizes retinol into retinaldehyde. Elderly individuals and individuals with obesity have low ADH1 expression in pCF, and in mice, genetic ablation of Adh1 is sufficient to drive pCF accumulation, dysfunction, and global impairments in metabolic flexibility. Metabolomics analysis revealed that pCF controlled the levels of circulating metabolites affecting fatty acid biosynthesis. Also, surgical removal of the pCF depot was sufficient to rescue the impairments in cardiometabolic flexibility and fitness observed in Adh1-deficient mice. Furthermore, treatment with retinaldehyde prevented pCF remodeling in these animals. Mechanistically, we found that the ADH1/retinaldehyde pathway works by driving PGC-1α nuclear translocation and promoting mitochondrial fusion and biogenesis in the pCF depot. Together, these data demonstrate that pCF is a critical regulator of cardiometabolic fitness and that retinaldehyde and its generating enzyme ADH1 act as critical regulators of adipocyte remodeling in the pCF depot.
Collapse
Affiliation(s)
- Jennifer M. Petrosino
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Jacob Z. Longenecker
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
| | | | - Xianyao Xu
- Department of Biomedical Engineering, Dorothy M. Davis Heart and Lung Research Institute
| | - Lisa E. Dorn
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
| | | | - Lianbo Yu
- Center for Biostatistics, Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio, USA
| | - Santosh Maurya
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
| | | | - Valerie Bussberg
- BERG, Precision Medicine Department, Framingham, Massachusetts, USA
| | - Paul M.L. Janssen
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Muthu Periasamy
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
- Department of Internal Medicine, University of Central Florida, Orlando, Florida, USA
| | | | - Gregg Duester
- Development, Aging, and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Johannes von Lintig
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Ouliana Ziouzenkova
- Department of Human Sciences, College of Education and Human Ecology, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Federica Accornero
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
19
|
Majka Z, Czamara K, Wegrzyn P, Litwinowicz R, Janus J, Chlopicki S, Kaczor A. A new approach to study human perivascular adipose tissue of the internal mammary artery by fiber-optic Raman spectroscopy supported by spectral modelling. Analyst 2021; 146:270-276. [PMID: 33118570 DOI: 10.1039/d0an01868f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Perivascular adipose tissue (PVAT) regulates vascular function and represents a novel therapeutic target in vascular diseases. In this work, a new approach based on fiber-optic Raman spectroscopy and spectral modelling was used to characterize the chemical content of the PVAT of the internal mammary artery (IMA) of patients with advanced coronary atherosclerosis (n = 10) undergoing coronary bypass surgery. Our results showed a high degree of lipid unsaturation and low carotenoid content in the PVAT of the IMA of patients with more advanced coronary artery disease. Moreover, the spectral modelling of the IMA's PVAT composition indicated that glyceryl trioleate was a major PVAT lipid and for patients with relatively low levels of β-carotene, it was accompanied by arachidonic acid and glyceryl trilinolenate. In summary, our proof-of-concept study suggests that carotenoid content and lipid unsaturation degree may reflect the PVAT functional status and a Raman-based assessment of the PVAT of the IMA could prove useful as a novel diagnostic tool to rapidly define the PVAT phenotype in a grafted artery in patients undergoing coronary bypass.
Collapse
Affiliation(s)
- Zuzanna Majka
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348 Krakow, Poland.
| | | | | | | | | | | | | |
Collapse
|
20
|
Canas JA. Mixed carotenoid supplementation and dysmetabolic obesity: gaps in knowledge. Int J Food Sci Nutr 2020; 72:653-659. [PMID: 33345665 DOI: 10.1080/09637486.2020.1852193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Dysmetabolic obesity during childhood and adolescence currently represents one of the greatest therapeutic challenge for healthcare systems worldwide. The global rates of obesity have more than doubled in the last 30 years. Recent meta-analysis from national surveys and food composition studies suggest an inverse association between lower carotenoid levels and the prevalence of Metabolic Syndrome in the general population, independent of serum retinol (vitamin A) levels. In children, two double-blind randomised placebo-controlled studies describing the effects of diet vs. mixed carotenoid supplementation on insulin resistance, adipokines and the rate of accrual of subcutaneous abdominal fat, implicate supplementation of these compounds to achieve targetable levels may be useful in the management of obesity accrual in this population. We will discuss the role of carotenoids and their conversion products (retinoids) in adipogenesis, lipolysis, insulin resistance and the pathophysiology of the metabolic syndrome and review the animal studies, which help support these findings.
Collapse
Affiliation(s)
- Jose Atilio Canas
- Pediatric Endocrinology and Diabetes, Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA
| |
Collapse
|
21
|
Liang Y, Alharthi AS, Bucktrout R, Elolimy AA, Lopreiato V, Martinez-Cortés I, Xu C, Fernandez C, Trevisi E, Loor JJ. Body condition alters glutathione and nuclear factor erythroid 2-like 2 (NFE2L2)-related antioxidant network abundance in subcutaneous adipose tissue of periparturient Holstein cows. J Dairy Sci 2020; 103:6439-6453. [PMID: 32359988 DOI: 10.3168/jds.2019-17813] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 02/29/2020] [Indexed: 12/11/2022]
Abstract
Dairy cows with high body condition score (BCS) in late prepartum are more susceptible to oxidative stress (OS). Nuclear factor erythroid 2-like 2 (NFE2L2) is a major antioxidant transcription factor. We investigated the effect of precalving BCS on blood biomarkers associated with OS, inflammation, and liver function, along with mRNA and protein abundance of targets related to NFE2L2 and glutathione (GSH) metabolism in s.c. adipose tissue (SAT) of periparturient dairy cows. Twenty-two multiparous Holstein cows were retrospectively classified into a high BCS (HBCS; n = 11, BCS ≥3.5) or normal BCS (NBCS; n = 11, BCS ≤3.17) on d 28 before parturition. Cows were fed a corn silage- and wheat straw-based total mixed ration during late prepartum, and a corn silage- and alfalfa hay-based total mixed ration postpartum. Blood samples obtained at -10, 7, 15, and 30 d relative to parturition were used for analyses of biomarkers associated with inflammation, including albumin, ceruloplasmin, haptoglobin, and myeloperoxidase, as well as OS, including ferric reducing ability of plasma (FRAP), reactive oxygen species (ROS), and β-carotene. Adipose biopsies harvested at -15, 7, and 30 d relative to parturition were analyzed for mRNA (real-time quantitative PCR) and protein abundance (Western blotting) of targets associated with the antioxidant transcription regulator nuclear factor, NFE2L2, and GSH metabolism pathway. In addition, concentrations of GSH, ROS and malondialdehyde were measured. High BCS cows had lower prepartum dry matter intake expressed as a percentage of body weight along with greater BCS loss between -4 and 4 wk relative to parturition. Plasma concentrations of ROS and FRAP increased after parturition regardless of treatment. Compared with NBCS, HBCS cows had greater concentrations of FRAP at d 7 postpartum, which coincided with peak values in those cows. In addition, NBCS cows experienced a marked decrease in plasma ROS after d 7 postpartum, while HBCS cows maintained a constant concentration by d 30 postpartum. Overall, ROS concentrations in SAT were greater in HBCS cows. However, overall mRNA abundance of NFE2L2 was lower and cullin 3 (CUL3), a negative regulator of NFE2L2, was greater in HBCS cows. Although HBCS cows had greater overall total protein abundance of NFE2L2 in SAT, ratio of phosphorylated NFE2L2 to total NFE2L2 was lower, suggesting a decrease in the activity of this antioxidant system. Overall, mRNA abundance of the GSH metabolism-related genes glutathione reductase (GSR), glutathione peroxidase 1 (GPX1), and transaldolase 1 (TALDO1), along with protein abundance of glutathione S-transferase mu 1 (GSTM1), were greater in HBCS cows. Data suggest that HBCS cows might experience greater systemic OS after parturition, while increased abundance of mRNA and protein components of the GSH metabolism pathway in SAT might help alleviate tissue oxidant status. Data underscored the importance of antioxidant mechanisms at the tissue level. Thus, targeting these pathways in SAT during the periparturient period via nutrition might help control tissue remodeling while allowing optimal performance.
Collapse
Affiliation(s)
- Y Liang
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - A S Alharthi
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - R Bucktrout
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - A A Elolimy
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock 72205; Arkansas Children's Nutrition Center, Little Rock 72205; Department of Animal Production, National Research Centre, Giza 12611, Egypt
| | - V Lopreiato
- Department of Animal Sciences, Food and Nutrition, Faculty of Agriculture, Food and Environmental Science, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - I Martinez-Cortés
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801; Agricultural and Animal Production Department, UAM-Xochimilco, Mexico City 04960, Mexico
| | - C Xu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Xinyang Rd. 5, Daqing, 163319, Heilongjiang, China
| | - C Fernandez
- Animal Science Department, Universitàt Politècnica de Valencia, 46022 Valencia, Spain
| | - E Trevisi
- Department of Animal Sciences, Food and Nutrition, Faculty of Agriculture, Food and Environmental Science, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - J J Loor
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801.
| |
Collapse
|
22
|
Wei C, Tan X, Liu G, Wan F, Zhao H, Zhang C, You W, Liu X, Zhang X, Jin Q. β-carotene as a dietary factor affecting expression of genes connected with carotenoid, vitamin A and lipid metabolism in the subcutaneous and omental adipose tissue of beef cattle. JOURNAL OF ANIMAL AND FEED SCIENCES 2020. [DOI: 10.22358/jafs/117866/2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
23
|
Bonet ML, Ribot J, Galmés S, Serra F, Palou A. Carotenoids and carotenoid conversion products in adipose tissue biology and obesity: Pre-clinical and human studies. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158676. [PMID: 32120014 DOI: 10.1016/j.bbalip.2020.158676] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 02/07/2023]
Abstract
Antiobesity activities of carotenoids and carotenoid conversion products (CCPs) have been demonstrated in pre-clinical studies, and mechanisms behind have begun to be unveiled, thus suggesting these compounds may help obesity prevention and management. The antiobesity action of carotenoids and CCPs can be traced to effects in multiple tissues, notably the adipose tissues. Key aspects of the biology of adipose tissues appear to be affected by carotenoid and CCPs, including adipogenesis, metabolic capacities for energy storage, release and inefficient oxidation, secretory function, and modulation of oxidative stress and inflammatory pathways. Here, we review the connections of carotenoids and CCPs with adipose tissue biology and obesity as revealed by cell and animal intervention studies, studies addressing the role of endogenous retinoid metabolism, and human epidemiological and intervention studies. We also consider human genetic variability influencing carotenoid and vitamin A metabolism, particularly in adipose tissues, as a potentially relevant aspect towards personalization of dietary recommendations to prevent or manage obesity and optimize metabolic health. This article is part of a Special Issue entitled Carotenoids recent advances in cell and molecular biology edited by Johannes von Lintig and Loredana Quadro.
Collapse
Affiliation(s)
- M Luisa Bonet
- Grup de Recerca Nutrigenòmica i Obesitat, Laboratori de Biologia Molecular, Nutrició i Biotecnologia (LBNB), Universitat de les Illes Balears, Palma de Mallorca, Spain; Institut d'Investigació Sanitària Illes Balears (IdISBa), Spain; CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Spain.
| | - Joan Ribot
- Grup de Recerca Nutrigenòmica i Obesitat, Laboratori de Biologia Molecular, Nutrició i Biotecnologia (LBNB), Universitat de les Illes Balears, Palma de Mallorca, Spain; Institut d'Investigació Sanitària Illes Balears (IdISBa), Spain; CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Spain
| | | | - Francisca Serra
- Grup de Recerca Nutrigenòmica i Obesitat, Laboratori de Biologia Molecular, Nutrició i Biotecnologia (LBNB), Universitat de les Illes Balears, Palma de Mallorca, Spain; Institut d'Investigació Sanitària Illes Balears (IdISBa), Spain; CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Spain
| | - Andreu Palou
- Grup de Recerca Nutrigenòmica i Obesitat, Laboratori de Biologia Molecular, Nutrició i Biotecnologia (LBNB), Universitat de les Illes Balears, Palma de Mallorca, Spain; Institut d'Investigació Sanitària Illes Balears (IdISBa), Spain; CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Spain
| |
Collapse
|
24
|
Mounien L, Tourniaire F, Landrier JF. Anti-Obesity Effect of Carotenoids: Direct Impact on Adipose Tissue and Adipose Tissue-Driven Indirect Effects. Nutrients 2019; 11:nu11071562. [PMID: 31373317 PMCID: PMC6683027 DOI: 10.3390/nu11071562] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/05/2019] [Accepted: 07/07/2019] [Indexed: 02/07/2023] Open
Abstract
This review summarizes current knowledge on the biological relevance of carotenoids and some of their metabolites in obesity management. The relationship between carotenoids and obesity is considered in clinical studies and in preclinical studies. Adipose tissue is a key organ in obesity etiology and the main storage site for carotenoids. We thus first describe carotenoid metabolism in adipocyte and adipose tissue and the effects of carotenoids on biological processes in adipose tissue that may be linked to obesity management in in vitro and preclinical studies. It is also now well established that the brain is strongly involved in obesity processes. A section is accordingly devoted to the potential effect of carotenoids on obesity via their direct and/or adipose tissue-driven indirect biological effects on the brain.
Collapse
Affiliation(s)
- Lourdes Mounien
- Aix Marseille Univ, INSERM, INRA, C2VN, 13385 Marseille, France
| | - Franck Tourniaire
- Aix Marseille Univ, INSERM, INRA, C2VN, 13385 Marseille, France
- CriBioM, criblage biologique Marseille, faculté de Médecine de la Timone, 13256 Marseille, France
| | - Jean-Francois Landrier
- Aix Marseille Univ, INSERM, INRA, C2VN, 13385 Marseille, France.
- CriBioM, criblage biologique Marseille, faculté de Médecine de la Timone, 13256 Marseille, France.
| |
Collapse
|
25
|
Xu Q, Jia H, Ma L, Liu G, Xu C, Li Y, Li X, Li X. All-trans retinoic acid inhibits lipopolysaccharide-induced inflammatory responses in bovine adipocytes via TGFβ1/Smad3 signaling pathway. BMC Vet Res 2019; 15:48. [PMID: 30709353 PMCID: PMC6359792 DOI: 10.1186/s12917-019-1791-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 01/21/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Dairy cows with metabolic disorder in peripartal period display high inflammatory levels. Adipose tissue is a major endocrine organ, which is closely related to systemic inflammation. Retinoic acid (RA), an active metabolite of vitamin A, has shown potential therapeutic immunomodulatory properties. The objective of the study was to examine the effect of all-trans-RA (ATRA), the biologically most active metabolite of vitamin A, on lipopolysaccharide (LPS)-induced bovine adipocytes inflammatory responses and elucidate the underlying mechanisms. Primary cultured bovine adipocytes were treated with ATRA in the presence or absence of LPS. The treated cells were examined for the inflammatory responses and the activity of transforming growth factor beta 1 (TGFβ1) /Smad3 signaling pathway. RESULTS LPS treatment significantly decreased the expression levels of TGFβ1/Smad3 components and increased the content of pro-inflammatory cytokines. Treatment with ATRA could over-activate TGFβ1/Smad3 signaling pathway in bovine adipocytes and reversed the over-production of pro-inflammatory cytokines and inhibition of anti-inflammatory cytokines induced by LPS. Importantly, inhibition of TGFβ1/Smad3 signaling diminished the effects of ATRA on suppressing the proinflammatory responses induced by LPS. Furthermore, activation of TGFβ1/Smad3 signaling further extended the effects of ATRA on suppressing the proinflammatory responses on LPS stimulation. CONCLUSION In conclusion, ATRA stimulates TGFβ1/Smad3 signaling pathway and further suppresses bovine adipocytes inflammatory responses induced by LPS.
Collapse
Affiliation(s)
- Qiushi Xu
- Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Hongdou Jia
- Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Li Ma
- Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Guowen Liu
- Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Chuang Xu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Ying Li
- Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Xinwei Li
- Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China.
| | - Xiaobing Li
- Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China.
| |
Collapse
|
26
|
All-trans-retinoic acid represses chemokine expression in adipocytes and adipose tissue by inhibiting NF-κB signaling. J Nutr Biochem 2017; 42:101-107. [PMID: 28157617 DOI: 10.1016/j.jnutbio.2017.01.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 01/16/2017] [Accepted: 01/16/2017] [Indexed: 11/22/2022]
Abstract
An effect of the Vitamin A metabolite all-trans-retinoic acid (ATRA) on body weight regulation and adiposity has been described, but little is known about its impact on obesity-associated inflammation. Our objective was to evaluate the overall impact of this metabolite on inflammatory response in human and mouse adipocytes, using high-throughput methods, and to confirm its effects in a mouse model. ATRA (2 μM for 24 h) down-regulated the mRNA expression of 17 chemokines in human adipocytes, and limited macrophage migration in a TNFα-conditioned 3 T3-L1 adipocyte medium (73.7%, P<.05). These effects were confirmed in mice (n=6-9 per group) subjected to oral gavage of ATRA (5 mg/kg of body weight) and subsequently injected intraperitoneally with lipopolysaccharide. In this model, both systemic and adipose levels of inflammatory markers were reduced. The antiinflammatory effect of ATRA was associated with a reduction in the phosphorylation levels of IκB and p65 (~50%, P<.05), two subunits of the NF-κB pathway, probably mediated by PGC1α, in 3 T3-L1 adipocytes. Taken together, these results show a significant overall antiinflammatory effect of ATRA on proinflammatory cytokine and chemokine production in adipocyte and adipose tissue and suggest that ATRA supplementation may represent a strategy of preventive nutrition to fight against obesity and its complications.
Collapse
|
27
|
Jin Q, Zhao HB, Liu XM, Wan FC, Liu YF, Cheng HJ, You W, Liu GF, Tan XW. Effect of β-carotene supplementation on the expression of lipid metabolism-related genes and the deposition of back fat in beef cattle. ANIMAL PRODUCTION SCIENCE 2017. [DOI: 10.1071/an15434] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
To evaluate the effects of β-carotene (βC) supplementation on lipid metabolism in the back fat of beef cattle, 120 continental crossbred (Simmental × local Luxi yellow cattle) steers were selected randomly from feedlots and allotted to four groups. Each steer was supplemented with 0, 600, 1200, or 1800 mg/day of βC for 90 days, and then received no βC for 60 days (depletion period). The βC levels significantly increased in steers supplemented with βC (P < 0.01), and then decreased to the control level by Day 150. Back fat thickness decreased slightly with increasing βC supplementation, and significantly differed among groups after supplementation ceased (P < 0.01 on Day 120, P < 0.05 on Day 150). Significant regression relationships between βC supplement level and both βC content in back fat tissue on Day 90 and back fat thickness on Days 90, 120, and 150 were established (P < 0.01). No significant differences in the dry matter intake or average daily gain were detected, but higher net meat percentages were observed in the 1200 and 1800 mg/day βC-supplemented groups compared with the control (P < 0.05). The mRNA expression of two fat synthesis-related genes, acetyl-CoA carboxylase and fatty acid synthase, were downregulated during the supplementation period, but upregulated during the next 60 days when the steers received no βC supplementation. In contrast, the expression of two fat hydrolysis-related genes, hormone-sensitive lipase and adipose triglyceride lipase, were upregulated during the supplementation period and downregulated in the subsequent 60 days. The results showed that βC supplementation suppresses back fat deposition in beef cattle by inhibiting fat synthesis and enhancing fat hydrolysis.
Collapse
|
28
|
Cappai MG, Lunesu MGA, Accioni F, Liscia M, Pusceddu M, Burrai L, Nieddu M, Dimauro C, Boatto G, Pinna W. Blood serum retinol levels in Asinara white donkeys reflect albinism-induced metabolic adaptation to photoperiod at Mediterranean latitudes. Ecol Evol 2016; 7:390-398. [PMID: 28070301 PMCID: PMC5216663 DOI: 10.1002/ece3.2613] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 09/23/2016] [Accepted: 10/21/2016] [Indexed: 12/12/2022] Open
Abstract
Previous works on albinism form of Asinara white donkeys (Equus asinus) identified the mutation leading to the peculiar phenotype spread to all specimens of the breed. Inbreeding naturally occurred under geographic isolation, on Asinara Island, in the Mediterranean Sea. Albino individuals can be more susceptible to develop health problems when exposed to natural sun radiation. Alternative metabolic pathways involved in photoprotection were explored in this trial. Nutrition‐related metabolites are believed to contribute to the conservation of Asinara donkeys, in which melanin, guaranteeing photoprotection, is lacking. Biochemical profiles with particular focus on blood serum β‐carotene and retinol levels were monitored. Identical natural grazing conditions for both Asinara (albino) and Sardo (pigmented) donkey breeds were assured on same natural pastures throughout the experimental period. A comparative metabolic screening, with emphasis on circulating retinol and nutrient‐related metabolites between the two breeds, was carried out over one year. Potential intra‐ and interspecimen fluctuations of metabolites involved in photoprotection were monitored, both during negative and positive photoperiods. Differences (p = .064) between blood serum concentrations of retinol from Asinara versus Sardo breed donkeys (0.630 vs. 0.490 μg/ml, respectively) were found. Retinol levels of blood serum turned out to be similar in the two groups (0.523 vs. 0.493 μg/ml, respectively, p = .051) during the negative photoperiod, but markedly differed during the positive one (0.738 vs. 0.486, respectively, p = .016). Blood serum β‐carotene levels displayed to be constantly around the limit of sensitivity in all animals of both breeds. Variations in blood serum concentrations of retinol in Asinara white donkeys can reflect the need to cope with seasonal exposure to daylight at Mediterranean latitudes, as an alternative to the lack of melanin. These results may suggest that a pulsed mobilization of retinol from body stores occurs to increase circulating levels during positive photoperiod.
Collapse
Affiliation(s)
| | | | - Francesca Accioni
- Department of Chemistry and Pharmacy University of Sassari Sassari Italy
| | | | | | - Lucia Burrai
- Department of Chemistry and Pharmacy University of Sassari Sassari Italy
| | - Maria Nieddu
- Department of Chemistry and Pharmacy University of Sassari Sassari Italy
| | - Corrado Dimauro
- Department of Agricultural Sciences University of Sassari Sassari Italy
| | - Gianpiero Boatto
- Department of Chemistry and Pharmacy University of Sassari Sassari Italy
| | - Walter Pinna
- Department of Agricultural Sciences University of Sassari Sassari Italy
| |
Collapse
|
29
|
Ishida T, Noda K, Jomane FN, Tokunaga T. Polymorphisms of RDH16 and VEGFR1 influence M. trapezius steatosis in Japanese Black carcass. Anim Sci J 2016; 88:1037-1041. [PMID: 27878895 DOI: 10.1111/asj.12746] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 09/21/2016] [Accepted: 09/29/2016] [Indexed: 11/30/2022]
Abstract
The exact cause of steatosis, one of defects in Japanese beef carcasses, has not been elucidated to date, because it is very difficult to diagnose cyclopedically with certain reproducibility due to the bias in the outbreak. Therefore, the objective of this study was to assess the influence of polymorphisms in retinol dehydrogenase 16 (RDH16), myoferlin (MYOF) and vascular endothelial growth factor receptors 1 and 2 (VEGFR1, VEGFR2) on carcass-graded Musculus trapezius steatosis. For logistic regression analysis, 646 carcasses shipped from 29 farms in Miyazaki, Japan, were used. The GG genotype in RDH16 showed significant odds ratios against AA and AG. In VEGFR1, CT had a significant odds ratio against CC. After evaluating for interaction, highly significant odds ratios were observed in the combinations that included the GG risk genotype in RDH16. It is noteworthy that there was no steatosis in the combination GG (RDH16) and CC (VEGFR1). It may be concluded that there is a possibility that steatosis can be suppressed by the CC genotype in VEGFR1. The current study revealed the influence of genetic polymorphisms on M. trapezius steatosis that had not been reported until now, and may help elucidate the cause of steatosis.
Collapse
Affiliation(s)
- Takafumi Ishida
- Department of Animal and Grassland Sciences, University of Miyazaki, Miyazaki, Japan
| | - Kosuke Noda
- Department of Animal and Grassland Sciences, University of Miyazaki, Miyazaki, Japan
| | - Fortune Ntengwa Jomane
- Interdisciplinary Graduate School of Agriculture and Engineering, University of Miyazaki, Miyazaki, Japan
| | - Tadaaki Tokunaga
- Department of Animal and Grassland Sciences, University of Miyazaki, Miyazaki, Japan
| |
Collapse
|
30
|
Gao YY, Ji J, Jin L, Sun BL, Xu LH, Wang CK, Bi YZ. Xanthophyll supplementation regulates carotenoid and retinoid metabolism in hens and chicks. Poult Sci 2016; 95:541-9. [DOI: 10.3382/ps/pev335] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 09/03/2015] [Indexed: 01/19/2023] Open
|
31
|
Eritja N, Arjó G, Santacana M, Gatius S, Ramírez-Núñez O, Arcal L, Serrano JCE, Pamplona R, Dolcet X, Piñol C, Christou P, Matias-Guiu X, Portero-Otin M. Oral intake of genetically engineered high-carotenoid corn ameliorates hepatomegaly and hepatic steatosis in PTEN haploinsufficient mice. Biochim Biophys Acta Mol Basis Dis 2016; 1862:526-535. [PMID: 26820774 DOI: 10.1016/j.bbadis.2016.01.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 01/19/2016] [Accepted: 01/24/2016] [Indexed: 01/11/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common form of chronic liver disease. Here we show that a mouse model of haploinsufficiency in the lipid and protein phosphatase and tensin homolog protein (PTEN(+/-)) exhibits hepatomegaly, increased liver lipogenic gene expression (SREBP-1C and PPARγ) and hepatic lesions analogous to human NAFLD. The livers of PTEN(+/-) mice also contained lower levels of retinoic acid (RA) than normal, similarly to human NAFLD patients. The RA signaling pathway thus offers a novel therapeutic target for the treatment of NAFLD although the impact of nutrition in this context is unclear. We therefore fed PTEN(+/-) mice for 36weeks a diet containing genetically engineered high-carotenoid corn (HCAR) to investigate its potential beneficial effects on the hepatic symptoms of NAFLD. The HCAR diet reduced hepatomegaly and promoted the repartitioning of fatty acids in the liver, away from triacylglycerol storage. At the molecular level, the HCAR diet clearly reduced lipogenic gene expression, boosted catabolism, and increased hepatic RA levels. These results set the stage for human trials to evaluate the use of high-carotenoid foods for the reduction or prevention of steatosis in NAFLD.
Collapse
Affiliation(s)
- Nuria Eritja
- Oncologic Pathology Group, Dept. de Ciències Mèdiques Bàsiques, Universitat de Lleida, Hospital Universitari Arnau de Vilanova, Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Spain.
| | - Gemma Arjó
- Departament de Medicina, Universitat de Lleida-Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Spain
| | - Maria Santacana
- Oncologic Pathology Group, Dept. de Ciències Mèdiques Bàsiques, Universitat de Lleida, Hospital Universitari Arnau de Vilanova, Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Spain
| | - Sònia Gatius
- Oncologic Pathology Group, Dept. de Ciències Mèdiques Bàsiques, Universitat de Lleida, Hospital Universitari Arnau de Vilanova, Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Spain
| | - Omar Ramírez-Núñez
- Department of Experimental Medicine, Faculty of Medicine, University of Lleida-IRBLleida, Av. Rovira Roure 80, 25198 Lleida, Spain
| | - Laura Arcal
- Departament de Medicina, Universitat de Lleida-Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Spain
| | - José C E Serrano
- Department of Experimental Medicine, Faculty of Medicine, University of Lleida-IRBLleida, Av. Rovira Roure 80, 25198 Lleida, Spain
| | - Reinald Pamplona
- Department of Experimental Medicine, Faculty of Medicine, University of Lleida-IRBLleida, Av. Rovira Roure 80, 25198 Lleida, Spain
| | - Xavi Dolcet
- Oncologic Pathology Group, Dept. de Ciències Mèdiques Bàsiques, Universitat de Lleida, Hospital Universitari Arnau de Vilanova, Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Spain
| | - Carme Piñol
- Departament de Medicina, Universitat de Lleida-Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Spain
| | - Paul Christou
- Department of Plant Production and Forestry Science, School of Agrifood and Forestry Science and Engineering (ETSEA), University of Lleida-Agrotecnio Center, Lleida, Spain; Institució Catalana de Reserca i Estudis Avanc¸ats, Passeig Lluís Companys 23, 08010 Barcelona, Spain
| | - Xavier Matias-Guiu
- Oncologic Pathology Group, Dept. de Ciències Mèdiques Bàsiques, Universitat de Lleida, Hospital Universitari Arnau de Vilanova, Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Spain
| | - Manuel Portero-Otin
- Department of Experimental Medicine, Faculty of Medicine, University of Lleida-IRBLleida, Av. Rovira Roure 80, 25198 Lleida, Spain.
| |
Collapse
|
32
|
Abstract
Cell, animal and human studies dealing with carotenoids and carotenoid derivatives as nutritional regulators of adipose tissue biology with implications for the etiology and management of obesity and obesity-related metabolic diseases are reviewed. Most studied carotenoids in this context are β-carotene, cryptoxanthin, astaxanthin and fucoxanthin, together with β-carotene-derived retinoids and some other apocarotenoids. Studies indicate an impact of these compounds on essential aspects of adipose tissue biology including the control of adipocyte differentiation (adipogenesis), adipocyte metabolism, oxidative stress and the production of adipose tissue-derived regulatory signals and inflammatory mediators. Specific carotenoids and carotenoid derivatives restrain adipogenesis and adipocyte hypertrophy while enhancing fat oxidation and energy dissipation in brown and white adipocytes, and counteract obesity in animal models. Intake, blood levels and adipocyte content of carotenoids are reduced in human obesity. Specifically designed human intervention studies in the field, though still sparse, indicate a beneficial effect of carotenoid supplementation in the accrual of abdominal adiposity. In summary, studies support a role of specific carotenoids and carotenoid derivatives in the prevention of excess adiposity, and suggest that carotenoid requirements may be dependent on body composition.
Collapse
Affiliation(s)
- M Luisa Bonet
- Group of Nutrigenomics and Obesity, Laboratory of Molecular Biology, Nutrition and Biotechnology, Universitat de les Illes Balears, Cra. Valldemossa Km 7.5. 07122, Palma de Mallorca, Spain.
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Palma de Mallorca, Spain.
| | - Jose A Canas
- Metabolism and Diabetes, Nemours Children's Clinic, Jacksonville, FL, 32207, USA
| | - Joan Ribot
- Group of Nutrigenomics and Obesity, Laboratory of Molecular Biology, Nutrition and Biotechnology, Universitat de les Illes Balears, Cra. Valldemossa Km 7.5. 07122, Palma de Mallorca, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Palma de Mallorca, Spain
| | - Andreu Palou
- Group of Nutrigenomics and Obesity, Laboratory of Molecular Biology, Nutrition and Biotechnology, Universitat de les Illes Balears, Cra. Valldemossa Km 7.5. 07122, Palma de Mallorca, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Palma de Mallorca, Spain
| |
Collapse
|
33
|
Rühl R, Landrier JF. Dietary regulation of adiponectin by direct and indirect lipid activators of nuclear hormone receptors. Mol Nutr Food Res 2015; 60:175-84. [PMID: 26610729 DOI: 10.1002/mnfr.201500619] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 11/04/2015] [Accepted: 11/16/2015] [Indexed: 12/22/2022]
Abstract
Adiponectin is an adipokine mainly secreted by adipocytes that presents antidiabetic, anti-inflammatory, and antiatherogenic functions. Therefore, modulation of adiponectin expression represents a promising target for prevention or treatment of several diseases including insulin resistance and type II diabetes. Pharmacological agents such as the nuclear hormone receptor synthetic agonists like peroxisome proliferator activated receptor γ agonists are of particular interest in therapeutic strategies due to their ability to increase the plasma adiponectin concentration. Nutritional approaches are also of particular interest, especially in primary prevention, since some active compounds of our diet (notably vitamins, carotenoids, or other essential nutrients) are direct or indirect lipid-activators of nuclear hormone receptors and are modifiers of adiponectin expression and secretion. The aim of the present review is to summarize current knowledge about the nutritional regulation of adiponectin by derivatives of active compounds naturally present in the diet acting as indirect or direct activators of nuclear hormone receptors.
Collapse
Affiliation(s)
- R Rühl
- Paprika Bioanalytics BT, Debrecen, Hungary.,MTA-DE Public Health Research Group of the Hungarian Academy of Sciences, Faculty of Public Health, University of Debrecen, Debrecen, Hungary
| | - J F Landrier
- INRA, Marseille, France.,INSERM, Nutrition, Obésité et Risque Thrombotique, Marseille, France.,Faculté de Médecine, Aix-Marseille Université, Marseille, France
| |
Collapse
|
34
|
Al-Ghannami SS, Sedlak E, Hussein IS, Min Y, Al-Shmmkhi SM, Al-Oufi HS, Al-Mazroui A, Ghebremeskel K. Lipid-soluble nutrient status of healthy Omani school children before and after intervention with oily fish meal or re-esterified triacylglycerol fish oil. Nutrition 2015; 32:73-8. [PMID: 26481332 DOI: 10.1016/j.nut.2015.07.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 06/25/2015] [Accepted: 07/28/2015] [Indexed: 11/27/2022]
Abstract
OBJECTIVES Over the past two decades, the Omani diet has changed considerably to resemble a high calorie and a low nutrient density Western diet. We investigated the fat soluble nutrient status of children before and after intervention with fish diet or fish oil. METHODS Children ages 9 and 10 y (n = 314) were recruited from three randomly selected schools. The schools were assigned to a fish, fish oil, or control group and the children were given a lightly grilled oily fish, a re-esterified triacylglycerol fish oil capsule, or no fish for 12 wk. RESULTS Plasma vitamin A, beta carotene, vitamin E concentrations, and vitamin E/total lipid ratio at baseline were 2.7 ± 0.85 μmol/L, 0.68 ± 0.48 μmol/L, 21.1 ± 4.8 μmol/L, and 5.0 ± 0.81 μmol/mmol, respectively, and none of the children were deficient. They were severely deficient (<27.5 nmol/L; 10.5% boys and 28.5% girls), deficient (27.5-44.9 nmol/L; 47.6% boys and 49.4% girls) or insufficient (50-74.9 nmol/L; 34.6% boys and 21.5% girls) in vitamin D; only 7.3% boys and 0.6% girls had optimal status (≥75 nmol/L). Parathyroid hormone (5.0 ± 1.7 versus 5.8 ± 2.1 pmol/L; P < 0.0001) and alkaline phosphatase (225.2 ± 66.6 versus 247.8 ± 73.7 U/L; P < 0.01) levels were lower in boys. Postintervention, the fish oil (54.1 ± 17.5 nmol/L; P < 0.001) and fish (49.2 ± 17.4 nmol/L; P < 0.05) groups had elevated levels of vitamin D compared with the controls (42.3 ± 17.5 nmol/L). CONCLUSIONS Vitamin D deficiency is prevalent in Omani school children, but it can be mitigated with omega-3 fatty acid supplementation. Vitamin D plays a crucial role in skeletal and extraskeletal systems. Hence, there is a need for a child-focused program of food fortification and outdoor activities to alleviate the problem.
Collapse
Affiliation(s)
- Samia S Al-Ghannami
- Lipidomics and Nutrition Research Centre, Faculty of Life Sciences and Computing, London Metropolitan University, London, UK; Ministry of Health, Muscat, Sultanate of Oman
| | - Eva Sedlak
- Lipidomics and Nutrition Research Centre, Faculty of Life Sciences and Computing, London Metropolitan University, London, UK
| | - Izzeldin S Hussein
- Lipidomics and Nutrition Research Centre, Faculty of Life Sciences and Computing, London Metropolitan University, London, UK
| | - Yoeju Min
- Lipidomics and Nutrition Research Centre, Faculty of Life Sciences and Computing, London Metropolitan University, London, UK
| | | | - Hamed S Al-Oufi
- Ministry of Agriculture and Fisheries Wealth, Muscat, Sultanate of Oman
| | - Ahmed Al-Mazroui
- Ministry of Agriculture and Fisheries Wealth, Muscat, Sultanate of Oman
| | - Kebreab Ghebremeskel
- Lipidomics and Nutrition Research Centre, Faculty of Life Sciences and Computing, London Metropolitan University, London, UK.
| |
Collapse
|
35
|
Jin Q, Cheng H, Wan F, Bi Y, Liu G, Liu X, Zhao H, You W, Liu Y, Tan X. Effects of feeding β-carotene on levels of β-carotene and vitamin A in blood and tissues of beef cattle and the effects on beef quality. Meat Sci 2015; 110:293-301. [PMID: 26319310 DOI: 10.1016/j.meatsci.2015.07.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 07/22/2015] [Accepted: 07/23/2015] [Indexed: 11/18/2022]
Abstract
The effects of feeding β-carotene (βC) on levels of βC and vitamin A (retinol) in blood and tissues, and on beef quality, were evaluated in 120 steers. Each steer received supplementary βC (at concentrations of 0, 600, 1200, or 1800 mg/day) for 90 days and then received no supplementary βC for 60 days. βC significantly increased in blood serum, liver, and subcutaneous and omental fat; linearly increased in the intestine and muscle; and remained unchanged in perirenal fat during supplementation. Differences between treatment groups were eliminated in subcutaneous and omental fat and in the liver by days 120 and 150, respectively, but remained significant at day 150 in blood. Retinol increased significantly in the liver and intestine during supplementation. Intramuscular fat content, meat color, and retinol in blood, muscle, or adipose tissues were not affected. Backfat thickness decreased slightly with increasing βC supplementation and significantly differed between groups during depletion.
Collapse
Affiliation(s)
- Qing Jin
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, No. 8, Sangyuan Road, Ji'nan City, Shandong Province 250100, China; Shandong Key Lab of Animal Disease Control and Breeding, No. 8, Sangyuan Road, Ji'nan City, Shandong Province 250100, China
| | - Haijian Cheng
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, No. 8, Sangyuan Road, Ji'nan City, Shandong Province 250100, China; Shandong Key Lab of Animal Disease Control and Breeding, No. 8, Sangyuan Road, Ji'nan City, Shandong Province 250100, China
| | - Fachun Wan
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, No. 8, Sangyuan Road, Ji'nan City, Shandong Province 250100, China; Shandong Key Lab of Animal Disease Control and Breeding, No. 8, Sangyuan Road, Ji'nan City, Shandong Province 250100, China.
| | - Yulin Bi
- College of Animal Science and Technology, Shandong Agricultural University, No. 61, Daizong Street, Tai'an City, Shandong Province 271018, China
| | - Guifen Liu
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, No. 8, Sangyuan Road, Ji'nan City, Shandong Province 250100, China; Shandong Key Lab of Animal Disease Control and Breeding, No. 8, Sangyuan Road, Ji'nan City, Shandong Province 250100, China
| | - Xiaomu Liu
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, No. 8, Sangyuan Road, Ji'nan City, Shandong Province 250100, China; Shandong Key Lab of Animal Disease Control and Breeding, No. 8, Sangyuan Road, Ji'nan City, Shandong Province 250100, China
| | - Hongbo Zhao
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, No. 8, Sangyuan Road, Ji'nan City, Shandong Province 250100, China; Shandong Key Lab of Animal Disease Control and Breeding, No. 8, Sangyuan Road, Ji'nan City, Shandong Province 250100, China
| | - Wei You
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, No. 8, Sangyuan Road, Ji'nan City, Shandong Province 250100, China; Shandong Key Lab of Animal Disease Control and Breeding, No. 8, Sangyuan Road, Ji'nan City, Shandong Province 250100, China
| | - Yifan Liu
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, No. 8, Sangyuan Road, Ji'nan City, Shandong Province 250100, China; Shandong Key Lab of Animal Disease Control and Breeding, No. 8, Sangyuan Road, Ji'nan City, Shandong Province 250100, China
| | - Xiuwen Tan
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, No. 8, Sangyuan Road, Ji'nan City, Shandong Province 250100, China; Shandong Key Lab of Animal Disease Control and Breeding, No. 8, Sangyuan Road, Ji'nan City, Shandong Province 250100, China
| |
Collapse
|
36
|
Tourniaire F, Musinovic H, Gouranton E, Astier J, Marcotorchino J, Arreguin A, Bernot D, Palou A, Bonet ML, Ribot J, Landrier JF. All-trans retinoic acid induces oxidative phosphorylation and mitochondria biogenesis in adipocytes. J Lipid Res 2015; 56:1100-9. [PMID: 25914170 DOI: 10.1194/jlr.m053652] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Indexed: 12/23/2022] Open
Abstract
A positive effect of all-trans retinoic acid (ATRA) on white adipose tissue (WAT) oxidative and thermogenic capacity has been described and linked to an in vivo fat-lowering effect of ATRA in mice. However, little is known about the effects of ATRA on mitochondria in white fat. Our objective has been to characterize the effect of ATRA on mitochondria biogenesis and oxidative phosphorylation (OXPHOS) capacity in mature white adipocytes. Transcriptome analysis, oxygraphy, analysis of mitochondrial DNA (mtDNA), and flow cytometry-based analysis of mitochondria density were performed in mature 3T3-L1 adipocytes after 24 h incubation with ATRA (2 µM) or vehicle. Selected genes linked to mitochondria biogenesis and function and mitochondria immunostaining were analyzed in WAT tissues of ATRA-treated as compared with vehicle-treated mice. ATRA upregulated the expression of a large set of genes linked to mtDNA replication and transcription, mitochondrial biogenesis, and OXPHOS in adipocytes, as indicated by transcriptome analysis. Oxygen consumption rate, mtDNA content, and staining of mitochondria were increased in the ATRA-treated adipocytes. Similar results were obtained in WAT depots of ATRA-treated mice. We conclude that ATRA impacts mitochondria in adipocytes, leading to increased OXPHOS capacity and mitochondrial content in these cells.
Collapse
Affiliation(s)
- Franck Tourniaire
- INRA, UMR 1260, F-13385, Marseille, France INSERM, UMR 1062, "Nutrition, Obésité et Risque Thrombotique," F-13385, Marseille, France Aix-Marseille Université, Faculté de Médecine, F-13385, Marseille, France
| | - Hana Musinovic
- Laboratory of Molecular Biology, Nutrition and Biotechnology/Nutrigenomics-group, Universitat de les Illes Balears, and CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Palma de Mallorca, Spain
| | - Erwan Gouranton
- INRA, UMR 1260, F-13385, Marseille, France INSERM, UMR 1062, "Nutrition, Obésité et Risque Thrombotique," F-13385, Marseille, France Aix-Marseille Université, Faculté de Médecine, F-13385, Marseille, France
| | - Julien Astier
- INRA, UMR 1260, F-13385, Marseille, France INSERM, UMR 1062, "Nutrition, Obésité et Risque Thrombotique," F-13385, Marseille, France Aix-Marseille Université, Faculté de Médecine, F-13385, Marseille, France
| | - Julie Marcotorchino
- INRA, UMR 1260, F-13385, Marseille, France INSERM, UMR 1062, "Nutrition, Obésité et Risque Thrombotique," F-13385, Marseille, France Aix-Marseille Université, Faculté de Médecine, F-13385, Marseille, France
| | - Andrea Arreguin
- Laboratory of Molecular Biology, Nutrition and Biotechnology/Nutrigenomics-group, Universitat de les Illes Balears, and CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Palma de Mallorca, Spain
| | - Denis Bernot
- Assistance Publique - Hôpitaux de Marseille, CHU La Timone, F-13385, Marseille, France
| | - Andreu Palou
- Laboratory of Molecular Biology, Nutrition and Biotechnology/Nutrigenomics-group, Universitat de les Illes Balears, and CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Palma de Mallorca, Spain
| | - M Luisa Bonet
- Laboratory of Molecular Biology, Nutrition and Biotechnology/Nutrigenomics-group, Universitat de les Illes Balears, and CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Palma de Mallorca, Spain
| | - Joan Ribot
- Laboratory of Molecular Biology, Nutrition and Biotechnology/Nutrigenomics-group, Universitat de les Illes Balears, and CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Palma de Mallorca, Spain
| | - Jean-François Landrier
- INRA, UMR 1260, F-13385, Marseille, France INSERM, UMR 1062, "Nutrition, Obésité et Risque Thrombotique," F-13385, Marseille, France Aix-Marseille Université, Faculté de Médecine, F-13385, Marseille, France
| |
Collapse
|
37
|
Kim YK, Zuccaro MV, Costabile BK, Rodas R, Quadro L. Tissue- and sex-specific effects of β-carotene 15,15' oxygenase (BCO1) on retinoid and lipid metabolism in adult and developing mice. Arch Biochem Biophys 2015; 572:11-18. [PMID: 25602705 PMCID: PMC4402122 DOI: 10.1016/j.abb.2015.01.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 12/30/2014] [Accepted: 01/02/2015] [Indexed: 12/20/2022]
Abstract
In mammals, β-carotene-15,15'-oxygenase (BCO1) is the main enzyme that cleaves β-carotene, the most abundant vitamin A precursor, to generate retinoids (vitamin A derivatives), both in adult and developing tissues. We previously reported that, in addition to this function, BCO1 can also influence the synthesis of retinyl esters, the storage form of retinoids, in the mouse embryo at mid-gestation. Indeed, lack of embryonic BCO1 impaired both lecithin-dependent and acyl CoA-dependent retinol esterification, mediated by lecithin:retinol acyltransferase (LRAT) and acyl CoA:retinol acyltransferase (ARAT), respectively. Furthermore, embryonic BCO1 also influenced the ester pools of cholesterol and diacylglycerol. In this report, we gained novel insights into this alternative function of BCO1 by investigating whether BCO1 influenced embryonic retinoid and lipid metabolism in a tissue-dependent manner. To this end, livers and brains from wild-type and BCO1-/- embryos at mid-gestation were analyzed for retinoid and lipid content, as well as gene expression levels. We also asked whether or not the role of BCO1 as a regulator of lecithin- and acyl CoA-dependent retinol esterification was exclusively restricted to the developing tissues. Thus, a survey of retinol and retinyl ester levels in adult tissues of wild-type, BCO1-/-, LRAT-/- and LRAT-/-BCO1-/- mice was performed. We showed that the absence of BCO1 affects embryonic retinoid and lipid homeostasis in a tissue-specific manner and that retinyl ester formation is also influenced by BCO1 in a few adult tissues (pancreas, lung, heart and adipose) in a sex-dependent manner.
Collapse
Affiliation(s)
- Youn-Kyung Kim
- Department of Food Science and Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ 08091, USA
| | - Michael V Zuccaro
- Department of Food Science and Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ 08091, USA
| | - Brianna K Costabile
- Department of Food Science and Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ 08091, USA
| | - Rebeka Rodas
- Department of Food Science and Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ 08091, USA
| | - Loredana Quadro
- Department of Food Science and Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ 08091, USA.
| |
Collapse
|
38
|
Luisa Bonet M, Canas JA, Ribot J, Palou A. Carotenoids and their conversion products in the control of adipocyte function, adiposity and obesity. Arch Biochem Biophys 2015; 572:112-125. [DOI: 10.1016/j.abb.2015.02.022] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 02/10/2015] [Accepted: 02/17/2015] [Indexed: 12/22/2022]
|
39
|
Mušinović H, Bonet ML, Granados N, Amengual J, von Lintig J, Ribot J, Palou A. β-Carotene during the suckling period is absorbed intact and induces retinoic acid dependent responses similar to preformed vitamin A in intestine and liver, but not adipose tissue of young rats. Mol Nutr Food Res 2014; 58:2157-65. [DOI: 10.1002/mnfr.201400457] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 07/31/2014] [Accepted: 08/12/2014] [Indexed: 01/20/2023]
Affiliation(s)
- Hana Mušinović
- Laboratory of Molecular Biology; Nutrition and Biotechnology; Nutrigenomics-group; Universitat de les Illes Balears, and CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn); Palma de Mallorca Spain
- Department of Pharmacology; School of Medicine; Case Western Reserve University; Cleveland OH USA
| | - M. Luisa Bonet
- Laboratory of Molecular Biology; Nutrition and Biotechnology; Nutrigenomics-group; Universitat de les Illes Balears, and CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn); Palma de Mallorca Spain
| | - Nuria Granados
- Laboratory of Molecular Biology; Nutrition and Biotechnology; Nutrigenomics-group; Universitat de les Illes Balears, and CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn); Palma de Mallorca Spain
| | - Jaume Amengual
- Department of Pharmacology; School of Medicine; Case Western Reserve University; Cleveland OH USA
- The Leon H. Charney Division of Cardiology; New York University School of Medicine; New York NY USA
| | - Johannes von Lintig
- Department of Pharmacology; School of Medicine; Case Western Reserve University; Cleveland OH USA
| | - Joan Ribot
- Laboratory of Molecular Biology; Nutrition and Biotechnology; Nutrigenomics-group; Universitat de les Illes Balears, and CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn); Palma de Mallorca Spain
| | - Andreu Palou
- Laboratory of Molecular Biology; Nutrition and Biotechnology; Nutrigenomics-group; Universitat de les Illes Balears, and CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn); Palma de Mallorca Spain
| |
Collapse
|
40
|
Ben Amara N, Tourniaire F, Maraninchi M, Attia N, Amiot-Carlin MJ, Raccah D, Valéro R, Landrier JF, Darmon P. Independent positive association of plasma β-carotene concentrations with adiponectin among non-diabetic obese subjects. Eur J Nutr 2014; 54:447-54. [PMID: 24906472 DOI: 10.1007/s00394-014-0728-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 05/27/2014] [Indexed: 01/24/2023]
Abstract
PURPOSE Many epidemiological studies find an inverse correlation between carotenoids intake or carotenoids plasma concentrations and body mass index (BMI), insulin resistance or metabolic syndrome in the general population. However, it is not clear whether these relationships occur in obese population. METHODS We conducted a cross-sectional study in 108 obese non-diabetic patients. RESULTS There was an inverse correlation between plasma levels of pro-vitamin A carotenoids (α-carotene, β-carotene and β-cryptoxanthin) and both BMI and insulin resistance (estimated by the HOMA-IR). No correlation between plasma concentrations of lycopene or lutein/zeaxanthin and BMI or insulin resistance was found. The inverse association between the three pro-vitamin A carotenoids and HOMA-IR disappeared after adjustment for BMI and waist circumference. Interestingly, we identified a positive association between concentrations of β-carotene and adiponectin in plasma that was independent of sex, age, smoking status, BMI and waist circumference. To our knowledge, such association has never been described in obese patients. CONCLUSION These results suggest the existence of a favourable effect of β-carotene on insulin sensitivity in obese individuals that could involve a positive regulation of adiponectin, either directly or via its pro-vitamin A activity. The demonstration of the potential benefits of β-carotene towards insulin sensitivity would open the way to dietary strategies to prevent metabolic syndrome.
Collapse
Affiliation(s)
- N Ben Amara
- UMR 1260, INRA, Université d'Aix-Marseille, 27 Bd Jean Moulin, 13385, Marseille Cedex 05, France
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Multivitamin restriction increases adiposity and disrupts glucose homeostasis in mice. GENES AND NUTRITION 2014; 9:410. [PMID: 24858304 DOI: 10.1007/s12263-014-0410-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 05/14/2014] [Indexed: 01/04/2023]
Abstract
A strong association between obesity and low plasma concentrations of vitamins has been widely reported; however, the causality of this relationship is still not established. Our goal was to evaluate the impact of a multivitamin restriction diet (MRD) on body weight, adiposity and glucose homeostasis in mice. The mice were given a standard diet or a diet containing 50 % of the recommended vitamin intake (MRD) for 12 weeks. At the end of the experiment, total body weight was 6 % higher in MRD animals than in the control group, and the adiposity of the MRD animals more than doubled. The HOMA-IR index of the MRD animals was significantly increased. The adipose tissue of MRD animals had lower expression of mRNA encoding adiponectin and Pnpla2 (47 and 32 %, respectively) and 43 % higher leptin mRNA levels. In the liver, the mRNA levels of Pparα and Pgc1α were reduced (29 and 69 %, respectively) in MRD mice. Finally, the level of β-hydroxybutyrate, a ketonic body reflecting fatty acid oxidation, was decreased by 45 % in MRD mice. Our results suggest that MRD promotes adiposity, possibly by decreasing adipose tissue lipolysis and hepatic β-oxidation. These results could highlight a possible role of vitamin deficiency in the etiology of obesity and associated disorders.
Collapse
|
42
|
Shete V, Quadro L. Mammalian metabolism of β-carotene: gaps in knowledge. Nutrients 2013; 5:4849-68. [PMID: 24288025 PMCID: PMC3875911 DOI: 10.3390/nu5124849] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 11/14/2013] [Accepted: 11/15/2013] [Indexed: 02/03/2023] Open
Abstract
β-carotene is the most abundant provitamin A carotenoid in human diet and tissues. It exerts a number of beneficial functions in mammals, including humans, owing to its ability to generate vitamin A as well as to emerging crucial signaling functions of its metabolites. Even though β-carotene is generally considered a safer form of vitamin A due to its highly regulated intestinal absorption, detrimental effects have also been ascribed to its intake, at least under specific circumstances. A better understanding of the metabolism of β-carotene is still needed to unequivocally discriminate the conditions under which it may exert beneficial or detrimental effects on human health and thus to enable the formulation of dietary recommendations adequate for different groups of individuals and populations worldwide. Here we provide a general overview of the metabolism of this vitamin A precursor in mammals with the aim of identifying the gaps in knowledge that call for immediate attention. We highlight the main questions that remain to be answered in regards to the cleavage, uptake, extracellular and intracellular transport of β-carotene as well as the interactions between the metabolism of β-carotene and that of other macronutrients such as lipids.
Collapse
Affiliation(s)
- Varsha Shete
- Department of Food Science and Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ 08901, USA.
| | | |
Collapse
|
43
|
Resnyk CW, Carré W, Wang X, Porter TE, Simon J, Le Bihan-Duval E, Duclos MJ, Aggrey SE, Cogburn LA. Transcriptional analysis of abdominal fat in genetically fat and lean chickens reveals adipokines, lipogenic genes and a link between hemostasis and leanness. BMC Genomics 2013; 14:557. [PMID: 23947536 PMCID: PMC3765218 DOI: 10.1186/1471-2164-14-557] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 08/12/2013] [Indexed: 12/15/2022] Open
Abstract
Background This descriptive study of the abdominal fat transcriptome takes advantage of two experimental lines of meat-type chickens (Gallus domesticus), which were selected over seven generations for a large difference in abdominal (visceral) fatness. At the age of selection (9 wk), the fat line (FL) and lean line (LL) chickens exhibit a 2.5-fold difference in abdominal fat weight, while their feed intake and body weight are similar. These unique avian models were originally created to unravel genetic and endocrine regulation of adiposity and lipogenesis in meat-type chickens. The Del-Mar 14K Chicken Integrated Systems microarray was used for a time-course analysis of gene expression in abdominal fat of FL and LL chickens during juvenile development (1–11 weeks of age). Results Microarray analysis of abdominal fat in FL and LL chickens revealed 131 differentially expressed (DE) genes (FDR≤0.05) as the main effect of genotype, 254 DE genes as an interaction of age and genotype and 3,195 DE genes (FDR≤0.01) as the main effect of age. The most notable discoveries in the abdominal fat transcriptome were higher expression of many genes involved in blood coagulation in the LL and up-regulation of numerous adipogenic and lipogenic genes in FL chickens. Many of these DE genes belong to pathways controlling the synthesis, metabolism and transport of lipids or endocrine signaling pathways activated by adipokines, retinoid and thyroid hormones. Conclusions The present study provides a dynamic view of differential gene transcription in abdominal fat of chickens genetically selected for fatness (FL) or leanness (LL). Remarkably, the LL chickens over-express a large number of hemostatic genes that could be involved in proteolytic processing of adipokines and endocrine factors, which contribute to their higher lipolysis and export of stored lipids. Some of these changes are already present at 1 week of age before the divergence in fatness. In contrast, the FL chickens have enhanced expression of numerous lipogenic genes mainly after onset of divergence, presumably directed by multiple transcription factors. This transcriptional analysis shows that abdominal fat of the chicken serves a dual function as both an endocrine organ and an active metabolic tissue, which could play a more significant role in lipogenesis than previously thought.
Collapse
Affiliation(s)
- Christopher W Resnyk
- Department of Animal and Food Sciences, University of Delaware, Newark, DE 19716, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Ford NA, Elsen AC, Erdman JW. Genetic ablation of carotene oxygenases and consumption of lycopene or tomato powder diets modulate carotenoid and lipid metabolism in mice. Nutr Res 2013; 33:733-42. [PMID: 24034573 DOI: 10.1016/j.nutres.2013.07.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 07/05/2013] [Accepted: 07/08/2013] [Indexed: 11/27/2022]
Abstract
Carotene-15,15'-monooxygenase (CMO-I) cleaves β-carotene to form vitamin A, whereas carotene-9',10'-monooxygenase (CMO-II) preferentially cleaves non-provitamin A carotenoids. Recent reports indicate that β-carotene metabolites regulate dietary lipid uptake, whereas lycopene regulates peroxisome proliferator-activated receptor expression. To determine the physiologic consequences of carotenoids and their interactions with CMO-I and CMO-II, we characterized mammalian carotenoid metabolism, metabolic perturbations, and lipid metabolism in female CMO-I(-/-) and CMO-II(-/-) mice fed lycopene or tomato-containing diets for 30 days. We hypothesized that there would be significant interactions between diet and genotype on carotenoid accumulation and lipid parameters. CMO-I(-/-) mice had higher levels of leptin, insulin, and hepatic lipidosis but lower levels of serum cholesterol. CMO-II(-/-) mice had increased tissue lycopene and phytofluene accumulation, reduced insulin-like growth factor 1 levels and cholesterol levels, but elevated liver lipids and cholesterol compared with wild-type mice. The diets did not modulate these genotypic perturbations, but lycopene and tomato powder significantly decreased serum insulin-like growth factor 1. Tomato powder also increased hepatic peroxisome proliferator-activated receptor expression, independent of genotype. These data point to the pleiotropic actions of CMO-I and CMO-II supporting a strong role of these proteins in regulating tissue carotenoid accumulation and the lipid metabolic phenotype as well as tomato carotenoid-independent regulation of lipid metabolism.
Collapse
Affiliation(s)
- Nikki A Ford
- Department of Nutritional Sciences, University of Texas at Austin, Austin TX 78723, USA
| | | | | |
Collapse
|
45
|
Vähämiko S, Isolauri E, Poussa T, Laitinen K. The impact of dietary counselling during pregnancy on vitamin intake and status of women and their children. Int J Food Sci Nutr 2013; 64:551-60. [PMID: 23373762 DOI: 10.3109/09637486.2013.766153] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We aimed here to assess the impact of dietary counselling during pregnancy on dietary intake of vitamins and the vitamin status of women and their children. At the first trimester of pregnancy, 89 women from allergic families were randomized to a control group (n = 45) or to receive individual dietary counselling (n = 44). Women's vitamin intakes and serum concentrations were analyzed during and after pregnancy. Further, vitamin concentrations were measured from breast milk and infant serum at one month of age. The study is registered as clinical study (NCT00167000; section 3, http://www.clinicaltrials.gov ). Dietary counselling resulted in a higher intake of beta-carotene and vitamin E compared to controls. Further, in women lower serum beta-carotene and higher colostrum vitamin A concentrations were found in the intervention group compared to controls. Dietary counselling during pregnancy improves women's vitamin intakes but does not provide unambiguous effects on vitamin status of women or children.
Collapse
Affiliation(s)
- Sanna Vähämiko
- Functional Foods Forum, University of Turku, FI 20014, Turku, Finland.
| | | | | | | |
Collapse
|
46
|
Abstract
Lipophilic micronutrients (LM) constitute a large family of molecules including several vitamins (A, D, E, K) and carotenoids. Their ability to regulate gene expression is becoming increasingly clear and constitutes an important part of nutrigenomics. Interestingly, adipose tissue is not only a main storage site for these molecules within the body, but it is also subjected to the regulatory effects of LM. Indeed, several gene regulations have been described in adipose tissue that could strongly impact its biology with respect to the modulation of adipogenesis, inflammatory status, or energy homeostasis and metabolism, among others. The repercussions in terms of health effects of such regulations in the context of obesity and associated pathologies represent an exciting and emerging field of research. The present review will focus on the regulatory effects of vitamin A, D, E and K as well as carotenoids on adipose tissue biology and physiology, notably in the context of obesity and associated disorders.
Collapse
Affiliation(s)
- Jean-François Landrier
- Institut National de Recherche Agronomique (INRA), UMR 1260, F-13385, Marseille, France; (J.M.); (F.T.)
- Institut National de la Santé et de la Recherche Médicale (INSERM), Nutrition, Obésité et Risque Thrombotique, UMR 1062, F-13385, Marseille, France
- School of Medicine, Aix-Marseille University, F-13385, Marseille, France
- Author to whom correspondence should be addressed; ; Tel.: +33-491-294-117; Fax: +33-491-078-2101
| | - Julie Marcotorchino
- Institut National de Recherche Agronomique (INRA), UMR 1260, F-13385, Marseille, France; (J.M.); (F.T.)
- Institut National de la Santé et de la Recherche Médicale (INSERM), Nutrition, Obésité et Risque Thrombotique, UMR 1062, F-13385, Marseille, France
- School of Medicine, Aix-Marseille University, F-13385, Marseille, France
| | - Franck Tourniaire
- Institut National de Recherche Agronomique (INRA), UMR 1260, F-13385, Marseille, France; (J.M.); (F.T.)
- Institut National de la Santé et de la Recherche Médicale (INSERM), Nutrition, Obésité et Risque Thrombotique, UMR 1062, F-13385, Marseille, France
- School of Medicine, Aix-Marseille University, F-13385, Marseille, France
| |
Collapse
|
47
|
Marcotorchino J, Romier B, Gouranton E, Riollet C, Gleize B, Malezet-Desmoulins C, Landrier JF. Lycopene attenuates LPS-induced TNF-α secretion in macrophages and inflammatory markers in adipocytes exposed to macrophage-conditioned media. Mol Nutr Food Res 2012; 56:725-32. [DOI: 10.1002/mnfr.201100623] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
| | | | | | | | | | | | - Jean-François Landrier
- INRA, UMR1260 « Nutriments lipidiques et prévention des maladies métaboliques », Marseille, France; Université de la Méditerranée Aix-Marseille 1 et 2, Faculté de Médecine; Marseille France
| |
Collapse
|
48
|
Rossi C, Guantario B, Ferruzza S, Guguen-Guillouzo C, Sambuy Y, Scarino ML, Bellovino D. Co-cultures of enterocytes and hepatocytes for retinoid transport and metabolism. Toxicol In Vitro 2012; 26:1256-64. [PMID: 22542753 DOI: 10.1016/j.tiv.2012.04.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 04/04/2012] [Accepted: 04/10/2012] [Indexed: 02/03/2023]
Abstract
Dietary retinoid bioavailability involves the interplay of the intestine (transport and metabolism) and the liver (secondary metabolism). To reproduce these processes in vitro, differentiated human intestinal Caco-2/TC7 cells were co-cultured with two hepatocyte cell lines. Murine 3A cells and the more highly differentiated human HepaRG hepatocytes were both shown to respond to β-carotene (BC) and retinol (ROH) treatment by secreting Retinol Binding Protein 4 (RBP4). In co-culture experiments, Caco-2/TC7 were differentiated on filter inserts and transferred for the time of the experiment to culture wells containing confluent 3A or differentiated HepaRG cells. Functionality of the co-cultures was assayed using as endpoints the retinol-dependent secretion of RBP4 and the retinoic acid-dependent induction of CYP26A1 in hepatocytes. BC and ROH added to intestinal Caco-2/TC7 induced a reduction in intracellular RBP4 levels in the underlying hepatocytes and its secretion into the medium. HepaRG hepatocytes were also shown to up-regulate the expression of CYP26A1 mRNA in response to retinoid treatment. This in vitro model represents a useful tool to analyze the absorption and metabolism of retinoids and could be further developed to investigate other dietary compounds and molecules of pharmacological interest.
Collapse
Affiliation(s)
- Carlotta Rossi
- National Research Institute on Food and Nutrition (INRAN), Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
49
|
Gouranton E, Aydemir G, Reynaud E, Marcotorchino J, Malezet C, Caris-Veyrat C, Blomhoff R, Landrier JF, Rühl R. Apo-10'-lycopenoic acid impacts adipose tissue biology via the retinoic acid receptors. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1811:1105-14. [PMID: 21963687 DOI: 10.1016/j.bbalip.2011.09.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 08/23/2011] [Accepted: 09/09/2011] [Indexed: 10/17/2022]
Abstract
Apo-10'-lycopenoic acid (apo-10-lycac), a metabolite of lycopene, has been shown to possess potent biological activities, notably via the retinoic acid receptors (RAR). In the current study, its impact on adipose tissue and adipocytes was studied. In microarray experiments, the set of genes regulated by apo-10-lycac treatments was compared to the set of genes regulated by all-trans retinoic acid (ATRA), the natural ligand of RAR, in adipocytes. Approximately 27.5% of the genes regulated by apo-10-lycac treatments were also regulated by ATRA, suggesting a common ability in terms of gene expression modulation, possibly via RAR transactivation. The physiological impact of apo-10-lycac on adipose tissue biology was evaluated. If it had no effect on adipogenesis in the 3T3-L1 cell model, this metabolite may have a preventative effect against inflammation, by preventing the increase in the inflammatory markers, interleukin 6 and interleukin 1β in various dedicated models. The ability of apo-10-lycac to transactivate the RAR and to modulate the transcription of RAR target gene was brought in vivo in adipose tissue. While apo-10-lycac was not detected in adipose tissue, a metabolite with a molecular weight with 2Da larger mass was detected, suggesting that a dihydro-apo-10'-lycopenoic acid, may be present in adipose tissue and that this compound could active or may lead to further active RAR-activating apo-10-lycac metabolites. Since apo-10-lycac treatments induce anti-inflammatory effects in adipose tissue but do not inhibit adipogenesis, we propose that apo-10-lycac treatments and its potential active metabolites in WAT may be considered for prevention strategies relevant for obesity-associated pathologies.
Collapse
Affiliation(s)
- E Gouranton
- Nutriments Lipidiques et Prévention des Maladies Métaboliques, Marseille, France
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Lim D, Kim NK, Park HS, Lee SH, Cho YM, Oh SJ, Kim TH, Kim H. Identification of candidate genes related to bovine marbling using protein-protein interaction networks. Int J Biol Sci 2011; 7:992-1002. [PMID: 21912507 PMCID: PMC3164149 DOI: 10.7150/ijbs.7.992] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 08/08/2011] [Indexed: 11/05/2022] Open
Abstract
Complex traits are determined by the combined effects of many loci and are affected by gene networks or biological pathways. Systems biology approaches have an important role in the identification of candidate genes related to complex diseases or traits at the system level. The present study systemically analyzed genes associated with bovine marbling score and identified their relationships. The candidate nodes were obtained using MedScan text-mining tools and linked by protein-protein interaction (PPI) from the Human Protein Reference Database (HPRD). To determine key node of marbling, the degree and betweenness centrality (BC) were used. The hub nodes and biological pathways of our network are consistent with the previous reports about marbling traits, and also suggest unknown candidate genes associated with intramuscular fat. Five nodes were identified as hub genes, which was consistent with the network analysis using quantitative reverse-transcription PCR (qRT-PCR). Key nodes of the PPI network have positive roles (PPARγ, C/EBPα, and RUNX1T1) and negative roles (RXRA, CAMK2A) in the development of intramuscular fat by several adipogenesis-related pathways. This study provides genetic information for identifying candidate genes for the marbling trait in bovine.
Collapse
Affiliation(s)
- Dajeong Lim
- Division of Animal Genomics and Bioinformatics, National Institute of Animal Science, Rural Development Administration, Suwon, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|