1
|
Numan AT, Jawad NK, Fawzi HA. Biochemical study of the effect of lead exposure in nonobese gasoline station workers and risk of hyperglycemia: A retrospective case-control study. Medicine (Baltimore) 2024; 103:e39152. [PMID: 39121307 PMCID: PMC11315521 DOI: 10.1097/md.0000000000039152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 07/10/2024] [Indexed: 08/11/2024] Open
Abstract
Evaluate the relationship between blood lead (Pb) levels and other biomedical markers and the risk of diabetes in gasoline station workers. The participants were separated into 2 groups: group A consisted of 26 workers from gasoline filling stations, while group B comprised 26 healthy individuals. Serum levels of malondialdehyde, IL-1β, visfatin, insulin, fasting blood sugar, and vitamin D were assessed. Mean Pb level was significantly higher in group A compared to group B (almost 2.9 times higher levels) (14.43 ± 1.01 vs 5.01 ± 1.41, µg/dL). The levels of visfatin (23.19 ± 0.96 vs 3.88 ± 0.58, ng/mL), insulin (22.14 ± 1.31 vs 11.26 ± 0.75, mU/L), fasting blood sugar (118.4 ± 26.1 vs 82.7 ± 9.2, gm/dL), malondialdehyde (6.40 ± 0.27 vs 1.62 ± 0.21, nmol/mL), and IL-1β (330.25 ± 10.34 vs 12.35 ± 1.43, pg/mL) were significantly higher in group A, meanwhile; vitamin D (11.99 ± 1.55 vs 35.41 ± 3.16, ng/mL) were significantly lower in group A. A positive association exists between blood Pb levels and increased inflammatory markers. Lead exposure increases serum insulin and fasting blood sugar, which suggests that it is diabetogenic and that increased inflammation is a possible cause.
Collapse
Affiliation(s)
- Ahmad Tarik Numan
- Department of Pharmacy, Al-Mustafa University College, Baghdad, Iraq
| | - Nada Kadum Jawad
- Department of Pharmacy, Al-Mustafa University College, Baghdad, Iraq
| | | |
Collapse
|
2
|
Fisher M, Weiler HA, Kuiper JR, Borghese M, Buckley JP, Shutt R, Ashley-Martin J, Subramanian A, Arbuckle TE, Potter BK, Little J, Morisset AS, Jukic AM. Vitamin D and Toxic Metals in Pregnancy - a Biological Perspective. CURR EPIDEMIOL REP 2024; 11:153-163. [PMID: 39156920 PMCID: PMC11329583 DOI: 10.1007/s40471-024-00348-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2024] [Indexed: 08/20/2024]
Abstract
Purpose of Review To discuss the potential biological mechanisms between vitamin D and toxic metals and summarize epidemiological studies examining this association in pregnant women. Recent Findings We identified four plausible mechanisms whereby vitamin D and toxic metals may interact: nephrotoxicity, intestinal absorption of metals, endocrine disruption, and oxidative stress. Few studies have examined the association between vitamin D and toxic metals in pregnant women. North American studies suggest that higher vitamin D status early in pregnancy are associated with lower blood metals later in pregnancy. However, a trial of vitamin D supplementation in a pregnant population, with higher metal exposures and lower overall nutritional status, does not corroborate these findings. Summary Given ubiquitous exposure to many toxic metals, nutritional intervention could be a means for prevention of adverse outcomes. Future prospective studies are needed to establish a causal relationship and clarify the directionality of vitamin D and metals. Supplementary Information The online version contains supplementary material available at 10.1007/s40471-024-00348-0.
Collapse
Affiliation(s)
- Mandy Fisher
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON Canada
| | - Hope A. Weiler
- Nutrition Research Division, Health Products and Food Branch, Health Canada, Ottawa, ON Canada
| | - Jordan R. Kuiper
- Milken Institute School of Public Health, The George Washington University, Washington, DC USA
| | - Michael Borghese
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON Canada
| | - Jessie P. Buckley
- Department of Epidemiology, University of North Carolina at Chapel Hill, Gillings School of Global Public Health Sciences, Chapel Hill, North Carolina USA
| | - Robin Shutt
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON Canada
| | | | - Anita Subramanian
- National Institute of Environmental Health Sciences (NIEHS), Duram, North Carolina USA
| | - Tye E. Arbuckle
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON Canada
| | - Beth K. Potter
- School of Epidemiology and Public Health (SEPH), University of Ottawa, Ottawa, ON Canada
| | - Julian Little
- School of Epidemiology and Public Health (SEPH), University of Ottawa, Ottawa, ON Canada
| | | | - Anne Marie Jukic
- National Institute of Environmental Health Sciences (NIEHS), Duram, North Carolina USA
| |
Collapse
|
3
|
Balachandar R, Viramgami A, Singh D, Sivaperumal P, Upadhyay K. Unraveling the interaction between lead and calcium in occupationally exposed males: an exploratory observation study. Int Arch Occup Environ Health 2023; 96:1393-1399. [PMID: 37889332 DOI: 10.1007/s00420-023-02018-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/09/2023] [Indexed: 10/28/2023]
Abstract
OBJECTIVE The systemic illnesses associated with chronic lead exposure are partially explained by the interaction between lead and calcium metabolism. Lead exposure is posited to alter calcium levels either by altering calcium homeostasis markers or altering bone remodeling. The present study investigated the interaction between blood lead levels and calcium homeostasis markers and bone remodeling markers among lead-smelting plant workers. METHOD Adult male workers employed at the lead-smelting plant were clinically investigated as part of their regular occupational health assessment program. Additionally, control participants without occupational lead exposure, employed in administrative and white-collar jobs were invited to participate in the study. Sociodemographic and occupational details were collected by pre-standardized semi-structured questionnaires from all consenting participants, followed by clinical examination and blood collection. Blood lead levels were estimated using microwave-assisted acid digestion and the inductively coupled plasma mass spectrometry technique. Serum calcium and total protein and alkaline phosphatase levels were estimated as per standard biochemical techniques. 25-hydroxy vitamin-D3, calcitriol, and osteocalcin were estimated using the enzyme-linked immunosorbent assay. In addition to comparative analysis for comparing the two groups, independent linear regression models were explored to investigate the associations between serum calcium and blood lead and osteocalcin levels. RESULT A total of 189 lead-exposed men employed at the lead-smelting plant and 25 male control participants consented to participate. The two groups were similar in age, diet, and body mass index. Occupationally exposed individuals exhibited significantly lower serum calcium and higher bone remodeling markers (osteocalcin and alkaline phosphatase) as compared to controls. However, the serum 25-hydroxy vitamin-D3 and calcitriol levels were not significantly different between the two groups. Lastly, the serum lead and osteocalcin were weakly but significantly associated with serum calcium levels after controlling for variations in total protein, diet, 25-hydroxy vitamin-D3, calcitriol, and alkaline phosphatase in the study participants. CONCLUSION Current observations reinforce the adverse role of lead exposure on calcium metabolism. Although lead exposure is posited to affect calcium metabolism by multiple pathways, current study observations favor the bone remodeling pathway. The observations recommend periodic screening for calcium and bone health among lead-exposed adults.
Collapse
Affiliation(s)
- Rakesh Balachandar
- ICMR-National Institute of Occupational Health, Ahmedabad, 380016, Gujarat, India
| | - Ankit Viramgami
- ICMR-National Institute of Occupational Health, Ahmedabad, 380016, Gujarat, India
| | | | - P Sivaperumal
- ICMR-National Institute of Occupational Health, Ahmedabad, 380016, Gujarat, India
| | - Kuldip Upadhyay
- ICMR-National Institute of Occupational Health, Near Raksha Shakti University, Meghaninagar, Ahmedabad, 380016, Gujarat, India.
| |
Collapse
|
4
|
Jalali SM, Razi Jalali M, Nikvand AA, Yazdkhasti M, Rahij Torfi H. A Study of Heavy Metal Status and its Relationship with Hematologic and Biochemical Indices in River Buffaloes in Southwest Iran. ARCHIVES OF RAZI INSTITUTE 2023; 78:1225-1237. [PMID: 38226382 PMCID: PMC10787930 DOI: 10.32592/ari.2023.78.4.1225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 03/20/2023] [Indexed: 01/17/2024]
Abstract
Heavy metals are among the most important environmental pollutants which accumulate in various organs and are associated with several toxic effects. This study was performed to determine the status of heavy metals in river buffaloes in Khuzestan province, Iran, and its relationship with hematologic and serum biochemical parameters. A total of 103 apparently healthy buffaloes were sampled from the region. The concentration of heavy metals, including lead (Pb), mercury (Hg), and cadmium (Cd), was determined in serum samples by atomic spectroscopy. In addition, complete blood counts and serum biochemical profiles were assessed. The serum concentration of Cd, Pb, and Hg in the sampled buffaloes, as mean±standard error, were 0.55±0.01, 6.51±0.10, and 6.28±0.09 µg/l, respectively, which are within the permissible serum levels in the livestock. Serum Cd and Hg levels showed no significant relationship with hematologic or biochemical analytes. However, there were significant negative correlations between Pb levels and phosphorus, magnesium, sodium, as well as potassium concentrations, while serum iron was positively correlated with lead (P<0.05). In addition, there was a significant positive correlation between Hg level and serum aspartate aminotransferase activity (P<0.05). Despite the fact that river buffaloes in Khuzestan spend a long time daily in the Karun River with high industrial pollution, no serum evidence of heavy metal toxicity was found in these animals. It can be suggested that river buffaloes in Khuzestan seem to be resistant to the environmental pollution caused by heavy metals. However, further studies are required to confirm this issue and identify its possible explanations.
Collapse
Affiliation(s)
- S M Jalali
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - M Razi Jalali
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - A A Nikvand
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - M Yazdkhasti
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - H Rahij Torfi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
5
|
Zhang J, Xu C, Guo Y, Jin X, Cheng Z, Tao Q, Liu L, Zhan R, Yu X, Cao H, Tao F, Sheng J, Wang S. Increased hypertension risk for the elderly with high blood levels of strontium and lead. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:1877-1888. [PMID: 35727389 DOI: 10.1007/s10653-022-01317-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 05/28/2022] [Indexed: 06/15/2023]
Abstract
Hypertension has long been recognized as the global health burden. Heavy metal pollution may be one of the environmental risk factors of hypertension. However, the association remains unclear. We studied the levels of aluminum (Al), vanadium (V), manganese (Mn), arsenic (As), selenium (Se), strontium (Sr), barium (Ba), titanium (Ti), lead (Pb) and cobalt (Co) in whole blood, and the relationship between trace element exposure and hypertension in the elderly community-based Chinese population. A total of 1013 participants from the west of Anhui Province in China were consecutively enrolled in this study in 2016. The general sociodemographic characteristics, lifestyles, disease history and physical examination information were collected by face-to-face survey and physical examination. The levels of ten trace elements were determined by inductively coupled plasma mass spectrometry (ICP-MS). Multivariable logistic regression model was used to assess the association of trace element exposure with the risk of hypertension. Results showed that the odds ratio of hypertension in the highest quartile was 1.811 (95% CI 1.175-2.790, P trend = 0.005) and 1.772 (95% CI 1.121-2.800, P trend = 0.022), respectively, after adjusting for potential confounders, as compared with the lowest quartile of blood Pb and Sr levels.
Collapse
Affiliation(s)
- Jiebao Zhang
- School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Population Health Across Life Cycle, Ministry of Education of the People's Republic of China, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, Anhui, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics/Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, Anhui, China
| | - Chunfang Xu
- School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Yan Guo
- School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Xingyi Jin
- School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Zi Cheng
- School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Qi Tao
- School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Lin Liu
- School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Rui Zhan
- School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Xuemin Yu
- School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Hongjuan Cao
- Lu'an Center of Disease Control and Prevention, Lu'an, Anhui, China
| | - Fangbiao Tao
- School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Population Health Across Life Cycle, Ministry of Education of the People's Republic of China, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, Anhui, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics/Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, Anhui, China
| | - Jie Sheng
- School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Population Health Across Life Cycle, Ministry of Education of the People's Republic of China, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, Anhui, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics/Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, Anhui, China
| | - Sufang Wang
- School of Public Health, Anhui Medical University, Hefei, Anhui, China.
- Key Laboratory of Population Health Across Life Cycle, Ministry of Education of the People's Republic of China, Hefei, Anhui, China.
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, Anhui, China.
- Anhui Provincial Key Laboratory of Population Health and Aristogenics/Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, Anhui, China.
| |
Collapse
|
6
|
El Youssfi M, Sifou A, Ben Aakame R, Mahnine N, Arsalane S, Halim M, Laghzizil A, Zinedine A. Trace elements in Foodstuffs from the Mediterranean Basin-Occurrence, Risk Assessment, Regulations, and Prevention strategies: A review. Biol Trace Elem Res 2023; 201:2597-2626. [PMID: 35754061 DOI: 10.1007/s12011-022-03334-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/14/2022] [Indexed: 11/24/2022]
Abstract
Trace elements (TEs) are chemical compounds that naturally occur in the earth's crust and in living organisms at low concentrations. Anthropogenic activities can significantly increase the level of TEs in the environment and finally enter the food chain. Toxic TEs like cadmium, lead, arsenic, and mercury have no positive role in a biological system and can cause harmful effects on human health. Ingestion of contaminated food is a typical route of TEs intake by humans. Recent data about the occurrence of TEs in food available in the Mediterranean countries are considered in this review. Analytical methods are also discussed. Furthermore, a discussion of existing international agency regulations will be given. The risk associated with the dietary intake of TEs was estimated by considering consumer exposure and threshold values such as Benchmark dose lower confidence limit and provisional tolerable weekly intake established by the European Food Safety Authority and the Joint FAO/WHO Expert Committee on Food Additives, respectively. Finally, several remediation approaches to minimize TE contamination in foodstuffs were discussed including chemical, biological, biotechnological, and nanotechnological methods. The results of this study proved the occurrence of TEs contamination at high levels in vegetables and fish from some Mediterranean countries. Lead and cadmium are more abundant in foodstuffs than other toxic trace elements. Geographical variations in TE contamination of food crops clearly appear, with a greater risk in developing countries. There is still a need for the regular monitoring of these toxic element levels in food items to ensure consumer protection.
Collapse
Affiliation(s)
- Mourad El Youssfi
- Laboratory of Applied Chemistry of Materials, Mohammed V University in Rabat, Faculty of Sciences, Avenue Ibn Battouta BP.1014 Agdal, Rabat, Morocco
- Laboratory of Nanomaterials, Nanotechnologies and Environment, Center of Materials, Mohammed V University in Rabat, Faculty of Sciences, Avenue Ibn Battouta, BP.1014, 10000, Rabat, Morocco
| | - Aicha Sifou
- Laboratory of Nanomaterials, Nanotechnologies and Environment, Center of Materials, Mohammed V University in Rabat, Faculty of Sciences, Avenue Ibn Battouta, BP.1014, 10000, Rabat, Morocco
| | - Rachid Ben Aakame
- Laboratory of Food Toxicology, National Institute of Hygiene (INH), BP 769 Agdal, 27, Avenue Ibn Batouta, Rabat, Morocco
| | - Naima Mahnine
- Laboratory of Food Toxicology, National Institute of Hygiene (INH), BP 769 Agdal, 27, Avenue Ibn Batouta, Rabat, Morocco
| | - Said Arsalane
- Laboratory of Nanomaterials, Nanotechnologies and Environment, Center of Materials, Mohammed V University in Rabat, Faculty of Sciences, Avenue Ibn Battouta, BP.1014, 10000, Rabat, Morocco
| | - Mohammed Halim
- Laboratory of Nanomaterials, Nanotechnologies and Environment, Center of Materials, Mohammed V University in Rabat, Faculty of Sciences, Avenue Ibn Battouta, BP.1014, 10000, Rabat, Morocco
| | - Abdelaziz Laghzizil
- Laboratory of Applied Chemistry of Materials, Mohammed V University in Rabat, Faculty of Sciences, Avenue Ibn Battouta BP.1014 Agdal, Rabat, Morocco
| | - Abdellah Zinedine
- BIOMARE Laboratory, Chouaib Doukkali University, Faculty of Sciences, Route Ben Maachou, PO Box 20, 24000, El Jadida, Morocco.
| |
Collapse
|
7
|
Caetano ÉLA, Pedron T, Freire BM, Lange CN, Batista BL, Grotto D. Influence of Agaricus bisporus Mushroom on Pb Toxicokinetic in Pregnant Rats. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3114. [PMID: 36833809 PMCID: PMC9965185 DOI: 10.3390/ijerph20043114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/03/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
(Pb) is a toxic metal, responsible for several damages to human health. Agaricus bisporus (Ab) is a mushroom with promising antioxidant properties to be used as an alternative chelator in Pb intoxication. The aim was to understand the Pb toxicokinetic and the potential of Ab as a protective agent. A total of 20 female Wistar rats were distributed into 4 groups (n = 5/group): Control (receiving water); Group Ab 100 mg/kg (gavage); Group Pb 100 mg/L in water; and Group Ab + Pb-100 mg/kg + 100 mg/L (gavage and water). Pb administration occurred daily until the 19th day of pregnancy. On day 19 of gestation, the rats were euthanized, and the blood and tissues were collected for Pb measurement, using an inductively coupled plasma mass spectrometer. The results showed that the levels of Pb in the blood, placenta, and liver of the mothers, and in the brain of the fetuses increased significantly in the Pb group. On the other hand, the combined exposure to Pb + Ab showed a significant decrease in the metal concentration in relation to the Pb group, returning to normal levels. Kidney and bone lead levels also increased significantly in the Pb group. However, in the combined exposure group, levels did not return to the control amounts; there was protection, but the Pb concentration was still significantly higher than in the control. In the brain, no significant differences were observed. In conclusion, we suggest A. bisporus is a natural chelator, because the co-administration of the mushroom was able to interact with Pb ions, minimizing the Pb absorption and distribution. These effects are suggested since A. bisporus have antioxidants and beta glucan that interact with Pb, chelating it and, thus, reducing its toxic effects.
Collapse
Affiliation(s)
- Érika Leão Ajala Caetano
- Toxicological Research Laboratory–Lapetox, University of Sorocaba, Sorocaba 18023-000, SP, Brazil
| | - Tatiana Pedron
- Center for Natural and Human Sciences, Federal University of ABC, Santo André 09210-580, SP, Brazil
- CIQ-UP Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4099-002 Porto, Portugal
| | - Bruna Moreira Freire
- Center for Natural and Human Sciences, Federal University of ABC, Santo André 09210-580, SP, Brazil
| | - Camila Neves Lange
- Center for Natural and Human Sciences, Federal University of ABC, Santo André 09210-580, SP, Brazil
| | - Bruno Lemos Batista
- Center for Natural and Human Sciences, Federal University of ABC, Santo André 09210-580, SP, Brazil
| | - Denise Grotto
- Center for Natural and Human Sciences, Federal University of ABC, Santo André 09210-580, SP, Brazil
| |
Collapse
|
8
|
Filipoiu DC, Bungau SG, Endres L, Negru PA, Bungau AF, Pasca B, Radu AF, Tarce AG, Bogdan MA, Behl T, Nechifor AC, Hassan SSU, Tit DM. Characterization of the Toxicological Impact of Heavy Metals on Human Health in Conjunction with Modern Analytical Methods. TOXICS 2022; 10:toxics10120716. [PMID: 36548549 PMCID: PMC9785207 DOI: 10.3390/toxics10120716] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/12/2022] [Accepted: 11/21/2022] [Indexed: 05/13/2023]
Abstract
Increased environmental pollution, urbanization, and a wide variety of anthropogenic activities have led to the release of toxic pollutants into the environment, including heavy metals (HMs). It has been found that increasing concentrations of HMs lead to toxicity, mineral imbalances, and serious diseases, which are occurring more and more frequently. Therefore, testing has become imperative to detect these deficiencies in a timely manner. The detection of traces of HMs, especially toxic ones, in human tissues, various biological fluids, or hair is a complex, high-precision analysis that enables early diagnosis, addressing people under constant stress or exposed to a toxic environment; the test also targets people who have died in suspicious circumstances. Tissue mineral analysis (TMA) determines the concentration of toxic minerals/metals at the intracellular level and can therefore determine correlations between measured concentrations and imbalances in the body. Framing the already-published information on the topic, this review aimed to explore the toxicity of HMs to human health, the harmful effects of their accumulation, the advantages vs. the disadvantages of choosing different biological fluids/tissues/organs necessary for the quantitative measurement of HM in the human body, as well as the choice of the optimal method, correlated with the purpose of the analysis.
Collapse
Affiliation(s)
- Dana Claudia Filipoiu
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410073 Oradea, Romania
| | - Simona Gabriela Bungau
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410073 Oradea, Romania
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
- Correspondence: (S.G.B.); (L.E.)
| | - Laura Endres
- Department of Psycho-neurosciences and Recovery, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
- Correspondence: (S.G.B.); (L.E.)
| | - Paul Andrei Negru
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410073 Oradea, Romania
| | - Alexa Florina Bungau
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410073 Oradea, Romania
| | - Bianca Pasca
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
| | - Andrei-Flavius Radu
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410073 Oradea, Romania
| | - Alexandra Georgiana Tarce
- Medicine Program of Study, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| | - Mihaela Alexandra Bogdan
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
| | - Tapan Behl
- Department of Pharmacology, School of Health Sciences & Technology (SoHST), University of Petroleum and Energy Studies, Bidholi 248007, India
| | - Aurelia Cristina Nechifor
- Analytical Chemistry and Environmental Engineering Department, Polytechnic University of Bucharest, 011061 Bucharest, Romania
| | - Syed Shams ul Hassan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Delia Mirela Tit
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410073 Oradea, Romania
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
| |
Collapse
|
9
|
Wąsik M, Miśkiewicz-Orczyk K, Słota M, Lisowska G, Kasperczyk A, Bellanti F, Dobrakowski M, Błaszczyk U, Bułdak RJ, Kasperczyk S. Relationship between Postural Stability, Lead Content, and Selected Parameters of Oxidative Stress. Int J Mol Sci 2022; 23:12768. [PMID: 36361558 PMCID: PMC9655670 DOI: 10.3390/ijms232112768] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/16/2022] [Accepted: 10/21/2022] [Indexed: 11/08/2024] Open
Abstract
This study attempts to determine whether the increased blood lead concentration affects the posturographic test and to determine the relationship between the parameters of posture stability and selected parameters of oxidative stress. The study population consisted of 268 male employees and was divided into two equal subgroups, depending on the lead content in the blood. A posturographic examination was performed. Concentrations of lead, cadmium, zinc protoporphyrin, selected essential elements, and selected markers of oxidative stress in the blood were tested. Higher blood lead concentrations positively affected the values of the sway results: the field and the mean velocity of the center of the feet pressure in posturography. The absolute value of the proprioception ratio was similar in both subgroups. The content of malondialdehyde shows a statistically significantly higher value in a subgroup with high blood lead concentration and exhibits significant correlations only with some of the posturography parameters. The lipofuscin content in erythrocytes correlates with the results of the posturography test. Zinc protoporphyrin, total oxidant status, total antioxidant capacity, selected minerals, and metals did not correlate with the results of the posturography test. In conclusion, posturographic results correlate only with selected markers of oxidative stress, so it can be assumed that the effect on the body balance is only partial.
Collapse
Affiliation(s)
- Marta Wąsik
- Department of Clinical Biochemistry and Laboratory Diagnostics, Institute of Medicine, Opole University, Oleska 48, 45-052 Opole, Poland
| | - Katarzyna Miśkiewicz-Orczyk
- Department of Otorhinolaryngology and Laryngological Oncology, Medical University of Silesia in Katowice, Skłodowskiej-Curie 10, 41-840 Zabrze, Poland
| | - Michał Słota
- ARKOP Sp. z o.o., Kolejowa 34a, 32-332 Bukowno, Poland
| | - Grażyna Lisowska
- Department of Otorhinolaryngology and Laryngological Oncology, Medical University of Silesia in Katowice, Skłodowskiej-Curie 10, 41-840 Zabrze, Poland
| | - Aleksandra Kasperczyk
- Department of Biochemistry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Jordana 19, 41-808 Zabrze, Poland
| | - Francesco Bellanti
- Department of Medical and Surgical Sciences, University of Foggia, Viale Pinto 1, 71122 Foggia, Italy
| | - Michał Dobrakowski
- Department of Biochemistry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Jordana 19, 41-808 Zabrze, Poland
| | - Urszula Błaszczyk
- Department of Biochemistry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Jordana 19, 41-808 Zabrze, Poland
| | - Rafał Jakub Bułdak
- Department of Clinical Biochemistry and Laboratory Diagnostics, Institute of Medicine, Opole University, Oleska 48, 45-052 Opole, Poland
| | - Sławomir Kasperczyk
- Department of Biochemistry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Jordana 19, 41-808 Zabrze, Poland
| |
Collapse
|
10
|
Teschke R. Aluminum, Arsenic, Beryllium, Cadmium, Chromium, Cobalt, Copper, Iron, Lead, Mercury, Molybdenum, Nickel, Platinum, Thallium, Titanium, Vanadium, and Zinc: Molecular Aspects in Experimental Liver Injury. Int J Mol Sci 2022; 23:12213. [PMID: 36293069 PMCID: PMC9602583 DOI: 10.3390/ijms232012213] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 09/30/2022] [Accepted: 10/11/2022] [Indexed: 11/25/2022] Open
Abstract
Experimental liver injury with hepatocelluar necrosis and abnormal liver tests is caused by exposure to heavy metals (HMs) like aluminum, arsenic, beryllium, cadmium, chromium, cobalt, copper, iron, lead, mercury, molybdenum, nickel, platinum, thallium, titanium, vanadium, and zinc. As pollutants, HMs disturb the ecosystem, and as these substances are toxic, they may affect the health of humans and animals. HMs are not biodegradable and may be deposited preferentially in the liver. The use of animal models can help identify molecular and mechanistic steps leading to the injury. HMs commonly initiate hepatocellular overproduction of ROS (reactive oxygen species) due to oxidative stress, resulting in covalent binding of radicals to macromolecular proteins or lipids existing in membranes of subcellular organelles. Liver injury is facilitated by iron via the Fenton reaction, providing ROS, and is triggered if protective antioxidant systems are exhausted. Ferroptosis syn pyroptosis was recently introduced as mechanistic concept in explanations of nickel (Ni) liver injury. NiCl2 causes increased iron deposition in the liver, upregulation of cyclooxygenase 2 (COX-2) protein and mRNA expression levels, downregulation of glutathione eroxidase 4 (GPX4), ferritin heavy chain 1 (FTH1), nuclear receptor coactivator 4 (NCOA4) protein, and mRNA expression levels. Nickel may cause hepatic injury through mitochondrial damage and ferroptosis, defined as mechanism of iron-dependent cell death, similar to glutamate-induced excitotoxicity but likely distinct from apoptosis, necrosis, and autophagy. Under discussion were additional mechanistic concepts of hepatocellular uptake and biliary excretion of mercury in exposed animals. For instance, the organic anion transporter 3 (Oat3) and the multidrug resistance-associated protein 2 (Mrp2) were involved in the hepatic handling of mercury. Mercury treatment modified the expression of Mrp2 and Oat3 as assessed by immunoblotting, partially explaining its impaired biliary excretion. Concomitantly, a decrease in Oat3 abundance in the hepatocyte plasma membranes was observed that limits the hepatic uptake of mercury ions. Most importantly and shown for the first time in liver injury caused by HMs, titanium changed the diversity of gut microbiota and modified their metabolic functions, leading to increased generation of lipopolysaccharides (LPS). As endotoxins, LPS may trigger and perpetuate the liver injury at the level of gut-liver. In sum, mechanistic and molecular steps of experimental liver injury due to HM administration are complex, with ROS as the key promotional compound. However, additional concepts such as iron used in the Fenton reaction, ferroptosis, modification of transporter systems, and endotoxins derived from diversity of intestinal bacteria at the gut-liver level merit further consideration.
Collapse
Affiliation(s)
- Rolf Teschke
- Department of Internal Medicine II, Division of Gastroenterology and Hepatology, Klinikum Hanau, Academic Teaching Hospital of the Medical Faculty, Goethe University Frankfurt, 63450 Hanau, Germany
| |
Collapse
|
11
|
Fisher M, Potter B, Little J, Oulhote Y, Weiler HA, Fraser W, Morisset AS, Braun J, Ashley-Martin J, Borghese MM, Shutt R, Kumarathasan P, Lanphear B, Walker M, Arbuckle TE. Blood metals and vitamin D status in a pregnancy cohort: A bidirectional biomarker analysis. ENVIRONMENTAL RESEARCH 2022; 211:113034. [PMID: 35240110 DOI: 10.1016/j.envres.2022.113034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
Low 25-hydroxyvitamin D (25OHD), a biomarker of vitamin D status, is associated with reduced immune function and adverse pregnancy outcomes, such as preterm birth. Observational studies indicate that long-term, high level exposure to metals such as cadmium (Cd) and lead (Pb) can impact a person's vitamin D status. However, the directionality of the association is uncertain, particularly for low-level exposures. We used three distinct longitudinal data analysis methods to investigate cross-sectional, longitudinal and bidirectional relationships of Cd and Pb biomarkers with 25-hydroxyvitamin D (25OHD) in a Canadian pregnancy cohort. Maternal whole blood Cd and Pb and plasma 25OHD concentrations were measured in the 1st (n = 1905) and 3rd (n = 1649) trimester and at delivery (25OHD only, n = 1542). Our multivariable linear regression analysis showed weak inverse associations between Cd and 25OHD concentrations cross-sectionally and longitudinally while the latent growth curve models showed weak associations with Pb on the 25OHD intercept. In the bidirectional analysis, using cross lagged panel models, we found no association between 1st trimester metals and 3rd trimester 25OHD. Instead, 1st trimester 25OHD was associated with 9% (-15%, -3%) lower 3rd trimester Cd and 3% (-7, 0.1%) lower Pb. These findings suggest the 25OHD may modify metal concentrations in pregnancy and demonstrates the value of controlling for contemporaneous effects and the persistence of a biomarker over time, in order to rule out reverse causation.
Collapse
Affiliation(s)
- Mandy Fisher
- Environmental Health Science and Research Bureau, Health, Canada; University of Ottawa, School of Epidemiology and Public Health (SEPH), Canada.
| | - Beth Potter
- University of Ottawa, School of Epidemiology and Public Health (SEPH), Canada
| | - Julian Little
- University of Ottawa, School of Epidemiology and Public Health (SEPH), Canada
| | - Youssef Oulhote
- Department of Epidemiology and Biostatistics, School of Public Health and Health Sciences, University of Massachusetts, USA
| | - Hope A Weiler
- Nutrition Research Division, Health Products and Food Branch, Health, Canada
| | | | | | - Joseph Braun
- Department of Epidemiology, Brown University, USA
| | | | | | - Robin Shutt
- Environmental Health Science and Research Bureau, Health, Canada
| | | | | | - Mark Walker
- The Ottawa Hospital Research Institute, Canada
| | - Tye E Arbuckle
- Environmental Health Science and Research Bureau, Health, Canada
| |
Collapse
|
12
|
Yadav SK, Patil GP, Virmagami A, Bijalwan V, Devi K, Chauhan A, Gupta SK, Fathima S, Naorem CD, Yadav S, Singh G, Mishra S, Bishnoi M, Sarkar K, Singh DP. Occupational lead exposure is an independent modulator of hypertension and poor pulmonary functions: A cross-sectional comparative study in lead-acid battery recycling workers. Toxicol Ind Health 2022; 38:139-150. [PMID: 35230206 DOI: 10.1177/07482337221076248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Blood lead level (BLL) is the primary biomarker for lead-exposure monitoring in occupationally exposed workers. We evaluated occupational lead-exposure (OE) impact on cardiopulmonary functions in lead-acid battery recycling unit workers. Seventy-six OE cases and 30 control subjects were enrolled for questionnaire-based socio-demographic, dietary, tobacco usage, and medical history data. Anthropometric measurements, systolic and diastolic blood pressure (SBP and DBP), and pulmonary function tests were performed. Venous blood was collected for BLL, hematological analysis, and biochemical analysis. OE caused a significant increase in BLL, SBP, DBP, and small airways obstruction in lung function tests. It also impaired platelet indices, affected renal and liver biochemical measurements, and promoted oxidative stress and DNA damage. Multilinear regression analysis suggested that BLL affected SBP (β = 0.314, p = .034) and increased small airways obstruction (FEV1/FVC, β = -0.37, p = .05; FEV25-75%, β = -0.351, p = .016). Higher BLL appears to be an independent modulator of hypertension and poor pulmonary function upon occupational lead exposure in lead-acid battery recyclers.
Collapse
Affiliation(s)
- Shiv K Yadav
- 28993ICMR-National Institute of Occupational Health, Ahmedabad, GJ, India
| | - Gajanan P Patil
- 28993ICMR-National Institute of Occupational Health, Ahmedabad, GJ, India
| | - Ankit Virmagami
- 28993ICMR-National Institute of Occupational Health, Ahmedabad, GJ, India
| | - Vandana Bijalwan
- 28993ICMR-National Institute of Occupational Health, Ahmedabad, GJ, India
| | - Kirti Devi
- 127373National Agri-food Biotechnology Institute, Mohali, PB, India
| | - Aakriti Chauhan
- 127373National Agri-food Biotechnology Institute, Mohali, PB, India
| | - Sanjeev K Gupta
- 28993ICMR-National Institute of Occupational Health, Ahmedabad, GJ, India
- Nutrition Division, ICMR Headquarters, ICMR Campus II (CNRT), New Delhi, India
| | - Shabarin Fathima
- 28993ICMR-National Institute of Occupational Health, Ahmedabad, GJ, India
| | - Chaoba D Naorem
- 28993ICMR-National Institute of Occupational Health, Ahmedabad, GJ, India
| | - Suresh Yadav
- 28993ICMR-National Institute of Occupational Health, Ahmedabad, GJ, India
- ICMR-National Institute for Implementation Research on Non-communicable Disease, Jodhpur, RJ, India
| | - Gyanendra Singh
- 28993ICMR-National Institute of Occupational Health, Ahmedabad, GJ, India
| | - SukhDev Mishra
- 28993ICMR-National Institute of Occupational Health, Ahmedabad, GJ, India
| | - Mahendra Bishnoi
- 127373National Agri-food Biotechnology Institute, Mohali, PB, India
| | - Kamalesh Sarkar
- 28993ICMR-National Institute of Occupational Health, Ahmedabad, GJ, India
| | - Dhirendra P Singh
- 28993ICMR-National Institute of Occupational Health, Ahmedabad, GJ, India
| |
Collapse
|
13
|
Upadhyay K, Viramgami A, Bagepally BS, Balachandar R. Association between blood lead levels and markers of calcium homeostasis: a systematic review and meta-analysis. Sci Rep 2022; 12:1850. [PMID: 35115666 PMCID: PMC8814138 DOI: 10.1038/s41598-022-05976-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/14/2022] [Indexed: 12/29/2022] Open
Abstract
Chronic Pb exposure associated systemic illness are partly posited to involve calcium homeostasis. Present systematic review aims to comprehensively evaluate the association between chronic lead exposure and markers of calcium homeostasis. Observational studies documenting the changes in calcium homeostasis markers (i.e. serum calcium, parathyroid hormone, vitamin D & calcitonin) between occupationally Pb exposed group and control group were systematically searched from pubmed-Medline, Scopus, and Embase digital databases since inception to September 24, 2021. The protocol was earlier registered at PROSPERO (ID: CRD42020199503) and executed adhering to PRISMA 2020 guidelines. Mean differences of calcium homeostasis markers between the groups were analysed using random-effects model. Conventional I2 statistics was employed to assess heterogeneity, while the risk for various biases were assessed using Newcastle Ottawa Scale. Sub-group, sensitivity and meta-regression analyses were performed where data permitted. Eleven studies including 837 Pb exposed and 739 controls were part of the present study. Pb exposed group exhibited higher mean blood lead level [i.e. 36.13 (with 95% CI 25.88-46.38) µg/dl] significantly lower serum calcium (i.e. - 0.72 mg/dl with 95% CI - 0.36 to - 1.07) and trend of higher parathyroid levels and lower vitamin D levels than controls. Heterogeneity was high (I2 > 90%) among the studies. Considering the cardinal role of calcium in multiple biological functions, present observations emphasis the need for periodic evaluation of calcium levels and its markers among those with known cumulative Pb exposure.
Collapse
Affiliation(s)
- Kuldip Upadhyay
- ICMR - National Institute of Occupational Health, Ahmedabad, India
| | - Ankit Viramgami
- ICMR - National Institute of Occupational Health, Ahmedabad, India
| | | | | |
Collapse
|
14
|
Davis LL, Aragão WAB, de Oliveira Lopes G, Eiró LG, Freire AR, Prado FB, Rossi AC, da Silva Cruz A, das Graças Fernandes Dantas K, Albuquerque ARL, Paz SPA, Angélica RS, Lima RR. Chronic exposure to lead acetate promotes changes in the alveolar bone of rats: microstructural and physical-chemical characterization. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:13930-13940. [PMID: 34599710 DOI: 10.1007/s11356-021-16723-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
There are a few data relating to the effects of lead (Pb) exposure on the alveolar bone, which has very distinct morphophysiological characteristics and is of great importance in the oral cavity. In this context, the aim of this study was to investigate the changes promoted after long-term exposure to Pb in the microstructure of the alveolar bone of rats. Twenty adult Wistar rats were exposed to 50 mg/kg/day of lead acetate for 55 days. These animals were euthanized and had their mandible removed. Each mandible was divided into hemimandibles, and the alveolar bone was used for bone lead quantification, crystallinity analysis, microstructure evaluation by the percentage of bone volume (BV/TV), number of trabeculae (Tb.N), thickness of the trabecular (Tb.Th), and trabecular space (Tb.Sp). Morphometric analysis of the exposed root area was also performed. Long-term exposure to Pb resulted in high levels of Pb in the alveolar bone but showed no changes in the organization of crystallinity. The microstructural analyses showed a reduction of BV/TV, Tb.Th, and Tb.N and increase of Tb.Sp parameters, resulting in an increase in the exposed root area and an alveolar bone loss in height. The findings of this study reveal the ability of Pb to alter the alveolar bone microstructure after long-term exposure to the metal, possibly due to changes in tissue homeostasis, contributing to the reduction of bone quality.
Collapse
Affiliation(s)
- Lodinikki Lemoy Davis
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Augusto Corrêa street, N. 1. Campus do Guamá. - CEP, Belém, PA, 66075-110, Brazil
| | - Walessa Alana Bragança Aragão
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Augusto Corrêa street, N. 1. Campus do Guamá. - CEP, Belém, PA, 66075-110, Brazil
| | - Géssica de Oliveira Lopes
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Augusto Corrêa street, N. 1. Campus do Guamá. - CEP, Belém, PA, 66075-110, Brazil
| | - Luciana Guimaraes Eiró
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Augusto Corrêa street, N. 1. Campus do Guamá. - CEP, Belém, PA, 66075-110, Brazil
| | - Alexandre Rodrigues Freire
- Laboratory of research in Mechanobiology, Piracicaba Dental School, University of Campinas - UNICAMP, Piracicaba, Brazil
| | - Felippe Bevilacqua Prado
- Laboratory of research in Mechanobiology, Piracicaba Dental School, University of Campinas - UNICAMP, Piracicaba, Brazil
| | - Ana Cláudia Rossi
- Laboratory of research in Mechanobiology, Piracicaba Dental School, University of Campinas - UNICAMP, Piracicaba, Brazil
| | - Allan da Silva Cruz
- Group of Applied Analytical Spectrometry, Institute of Natural and Exact Sciences, Federal University of Pará, Belém, PA, Brazil
| | | | - Alan Rodrigo Leal Albuquerque
- Group of Applied Analytical Spectrometry, Institute of Natural and Exact Sciences, Federal University of Pará, Belém, PA, Brazil
| | - Simone Patricia Aranha Paz
- Group of Applied Analytical Spectrometry, Institute of Natural and Exact Sciences, Federal University of Pará, Belém, PA, Brazil
| | - Rômulo Simões Angélica
- Laboratory of Mineral Characterization, Institute of Geology and Geochemistry, Federal University of Pará, Belém, PA, Brazil
| | - Rafael Rodrigues Lima
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Augusto Corrêa street, N. 1. Campus do Guamá. - CEP, Belém, PA, 66075-110, Brazil.
| |
Collapse
|
15
|
Nwobi NL, Nwobi JC, Adejumo EN, Usiobeigbe OS, Adetunji OA, Atulomah NO, Anetor JI. Blood lead levels, calcium metabolism and bone-turnover among automobile technicians in Sagamu, Nigeria: Implications for elevated risk of susceptibility to bone diseases. Toxicol Ind Health 2021; 37:705-713. [PMID: 34645326 DOI: 10.1177/07482337211048963] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Lead is an occupational toxicant and a recognised health threat particularly in developing countries. Hence, this study explored the interaction of blood lead level (BLL), a conventional marker of lead exposure, with indices of calcium metabolism and biomarkers of bone-turnover in 120 adult male automobile technicians (AT) with ≥ 1 year duration in professional practice. The AT as well as the control group, which comprised 120 age, body-size and socio-economically matched male administrative workers, were recruited from Sagamu, South West Nigeria. Levels of blood lead, serum indices of calcium metabolism [total calcium (tCa), ionised calcium (iCa), phosphate, albumin, magnesium (Mg) and 25-Hydroxycholecalceferol (25-OHCC)], biomarkers of bone formation [bone alkaline phosphatase (BALP) and osteocalcin (OC)] and biomarkers of bone resorption [tartarate-resistant acid phosphatase-5b (TACRP-5b) and urinary hydroxyproline (UHYP)] were determined in all participants. The BLL, 25-OHCC, TRACP-5b and UHYP significantly increased while tCa and iCa significantly reduced in AT compared to control. However, no significant difference was observed in phosphate, albumin, Mg, BALP and OC in AT compared to control. Interestingly, BLL demonstrated a significant negative association with tCa and iCa but a significant positive association with 25-OHCC, TRACP-5b and UHYP. However, BLL did not show significant association with phosphate, albumin, Mg, BALP and OC. Increased lead exposure as well as altered calcium metabolism and bone-turnover demonstrated by the automobile technicians may be suggestive of lead-induced accelerated bone demineralisation. These workers may be predisposed to high risk of increased susceptibility to bone diseases if this sub-clinical picture is sustained.
Collapse
Affiliation(s)
- Nnenna L Nwobi
- Department of Chemical Pathology, BenCarson School of Medicine, 122637Babcock University, Ilishan Remo, Nigeria
| | - Joseph C Nwobi
- Department of Biochemistry, BenCarson School of Medicine, 122637Babcock University, Ilishan Remo, Nigeria
| | - Esther N Adejumo
- Department of Medical Laboratory Science, 122637Babcock University, Ilishan-Remo, Nigeria
| | - Osahon S Usiobeigbe
- Department of Medical Laboratory Science, 122637Babcock University, Ilishan-Remo, Nigeria
| | - Opeyemi A Adetunji
- Department of Anatomy, BenCarson School of Medicine, 122637Babcock University, Ilishan Remo, Nigeria
| | - Nnodimele O Atulomah
- Department of Public Health, School of Public and Allied Health, 122637Babcock University, Ilishan Remo, Nigeria
| | - John I Anetor
- Department of Chemical Pathology, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
16
|
Fang X, Qu J, Huan S, Sun X, Li J, Liu Q, Jin S, Xia W, Xu S, Wu Y, Li J, Zheng T, Li Y. Associations of urine metals and metal mixtures during pregnancy with cord serum vitamin D Levels: A prospective cohort study with repeated measurements of maternal urinary metal concentrations. ENVIRONMENT INTERNATIONAL 2021; 155:106660. [PMID: 34052726 DOI: 10.1016/j.envint.2021.106660] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/16/2021] [Accepted: 05/19/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Vitamin D deficiency has been associated with the increased risk of many diseases, especially during early life. Exposure to some toxic metals may decrease vitamin D levels in adults and children in previous studies. However, less is known about the associations of maternal metals exposure during pregnancy with newborns' vitamin D status. OBJECTIVE We conducted a prospective cohort study to investigate the relationships between urine metals and metal mixtures during pregnancy and newborns' vitamin D status. METHODS Urine samples of 598 pregnant women were collected in each trimester and cord blood samples of newborns were collected at delivery. The concentrations of 20 metals in urine and 25-hydroxyvitamin D [25(OH)D] in cord serum were quantified. Generalized linear models were used to estimate the associations between individual metals and cord serum total 25(OH)D. We applied Bayesian Kernel Machine Regression (BKMR) to evaluate the mixture and interaction effects of urine metals. RESULTS In individual metals analyses, we reported that a double increase in urine vanadium (V), cobalt (Co), and thallium (Tl) throughout pregnancy was associated with a 9.91% [95% confidence interval (CI): -18.58%, -0.30%], 11.42% (95% CI: -17.73%, -4.63%), and 12.64% (95% CI: -21.44%, -2.86%) decrease in cord serum total 25(OH)D, respectively. Exposures to the three metals during the whole pregnancy were also correlated to increased odds for newborns' vitamin D deficiency (<20 ng/mL) [odds ratio (95% CI): 1.80 (1.05, 3.10) for V, 1.88 (1.25, 2.82) for Co, and 1.90 (1.07, 3.38) for Tl]. BKMR analyses revealed a negative influence of metal mixtures (V+Co+Tl) on neonatal vitamin D status, as well as potential synergism between V and Co and between V and Tl. CONCLUSIONS Our study provides evidence of negative impacts of maternal exposure to V, Co, and Tl during pregnancy on cord serum vitamin D levels at delivery. Potential synergism between V and Co and between V and Tl existed in their associations with cord serum total 25(OH)D.
Collapse
Affiliation(s)
- Xingjie Fang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jingyu Qu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shu Huan
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaojie Sun
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Juxiao Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qi Liu
- Department of Maternal and Child Health and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shuna Jin
- College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Wei Xia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yongning Wu
- NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Jingguang Li
- NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Tongzhang Zheng
- Department of Epidemiology, School of Public Health, Brown University, Providence, RI 02912, United States
| | - Yuanyuan Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
17
|
Shawky SM, Hamid RAAA, Khedr LE. The correlation between uremic pruritus and blood lead levels in prevalent hemodialysis patients and its relation to the severity of pruritus using visual analog score. THE EGYPTIAN JOURNAL OF INTERNAL MEDICINE 2021. [DOI: 10.1186/s43162-021-00045-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Pruritus is a common and often distressing symptom in patients with chronic kidney disease. Though the pathogenesis of uremic pruritus remains poorly understood, systemic inflammation has presented itself as one of the possible explanations. High blood lead levels (BLLs) have been noted to be associated with inflammation and poor nutritional status in hemodialysis patients. Our aim is to study the relation between blood lead levels and uremic pruritus. This is a cross-sectional study that enrolled 50 patients; all were on regular hemodialysis 3 times per week for at least 6 months. Patients were divided into 2 groups, group 1 (n =10) with no pruritus and group 2 (n=40) with varying degrees of pruritus. Group 2 was further divided according to intensity of pruritus by visual analog score (VAS) into mild (n=10), moderate (n=20), and severe pruritus (n=10).
Results
There was a significant difference in serum lead levels and ferritin levels between groups 1 and 2 (p value < 0.01 and < 0.05, respectively). There was a statistically significant difference in serum lead levels in the groups with varying intensity of pruritus, having higher serum lead levels in patients who exhibited severe pruritus (p value < 0.005) Moreover, a statistically significant relation between elevated blood lead levels and the duration of dialysis was observed in this study.
Conclusion
Uremic pruritus is a multi-factorial phenomenon, and our study showed that blood lead levels in hemodialysis patients might be associated with increased intensity of pruritus.
Collapse
|
18
|
Association of blood lead level with vitamin D binding protein, total and free 25-hydroxyvitamin D levels in middle-school children. Br J Nutr 2021; 127:982-992. [PMID: 34078483 PMCID: PMC8924493 DOI: 10.1017/s0007114521001823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A negative association between blood Pb level (BPbL) and vitamin D metabolites in occupationally exposed populations has been reported, but data from the general population are scarce. Furthermore, the association between BPbL and vitamin D binding protein (DBP) and free 25-hydroxyvitamin D (25(OH)D) has not been reported. We investigated the association of BPbL with DBP, total and free 25(OH)D in healthy adolescents (n 1347; age range 11-16 years) cross-sectionally selected from all Governorates of Kuwait, utilising multi-stage cluster random sampling. Pb in whole blood was analysed by inductively coupled plasma MS, and DBP with ELISA. Plasma 25(OH)D was analysed by LC-MS/MS, and free 25(OH)D was calculated utilising the levels and binding affinities of DBP and albumin for 25(OH)D. DBP was positively associated with BPbL (β = 0·81; 95 % CI 0·14, 0·22; P < 0·001). A negative association between BPbL and total 25(OH)D was non-significant (P = 0·24) when BPbL was used as a continuous variable but was significant when used as quartiles (P = 0·02). The negative association between BPbL and free 25(OH)D was significant whether BPbL was used as continuous, as quartiles or as cut-off point of <5 µg/dl (0·24 µmol/l). In multinomial logistic regression, the odds of vitamin D insufficiency and deficiency were more than two-fold higher in the upper quartiles of BPbL compared with the lowest quartile. The negative correlation of BPbL with free 25(OH)D was more robust than its correlation with total 25(OH)D. Future studies must consider the levels of DBP when assessing the association between Pb and vitamin D metabolites.
Collapse
|
19
|
Suljević D, Handžić N, Fočak M, Lasić I, Sipović F, Sulejmanović J, Begić S, Alijagic A. Lead Exposure Influences Serum Biomarkers, Hepatocyte Survival, Bone Marrow Hematopoiesis, and the Reproductive Cycle in Japanese Quails. Biol Trace Elem Res 2021; 199:1574-1583. [PMID: 32602051 DOI: 10.1007/s12011-020-02272-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 06/23/2020] [Indexed: 12/27/2022]
Abstract
Lead toxicity has been a hallmark issue of toxicology over the last decades. However, predictive and non-robust models did not provide complete data on low-dose lead interaction with the organism at different functional levels (e.g., blood-serum-liver-bone marrow-bursa fabricii-reproductive system axis). Japanese quails are an animal model with a strong immune system, making them suitable for the thorough assessment of in vivo chronic lead toxicity. In this study, we have exposed Japanese quails via water ingestion to 0.25 and 0.5 μg/mL lead(II) chloride (PbCl2) for 20 days and assessed blood cells, serum biomarkers, hepatocyte survival, bone marrow hematopoiesis, bursa fabricii, and lead accumulation in eggs. Blood cells passed through morphological alterations (loss and inversion of the erythrocyte nucleus, multiple erythrocyte and thrombocyte aggregation, lymphocyte degradation, and blast cell infiltration). In the serum, PbCl2 increased the activity of creatine kinase (CK) and lactate dehydrogenase (LDH); increased the level of cholesterol, sodium, creatinine, and urea; and reduced the level of proteins, triglycerides, chloride, potassium, calcium, and alkaline phosphatase (ALP) activity (P < 0.05). Liver tissue of the exposed animals exhibited apparent death of hepatocytes. In the bone marrow, macrophages and heterophils contained a vast number of the infiltrated/uptaken granules upon PbCl2 exposure. Ultimately, PbCl2 exposure elicited a series of events observed first in the blood and serum parameters and later translated to the hematopoietic centers.
Collapse
Affiliation(s)
- Damir Suljević
- Department of Biology, Faculty of Science, University of Sarajevo, Zmaja od Bosne 33-35, 71000, Sarajevo, Bosnia and Herzegovina.
| | - Nejira Handžić
- Department of Biology, Faculty of Science, University of Sarajevo, Zmaja od Bosne 33-35, 71000, Sarajevo, Bosnia and Herzegovina
| | - Muhamed Fočak
- Department of Biology, Faculty of Science, University of Sarajevo, Zmaja od Bosne 33-35, 71000, Sarajevo, Bosnia and Herzegovina
| | - Ivan Lasić
- Department of Biology, Faculty of Science, University of Sarajevo, Zmaja od Bosne 33-35, 71000, Sarajevo, Bosnia and Herzegovina
| | - Faris Sipović
- Department of Biology, Faculty of Science, University of Sarajevo, Zmaja od Bosne 33-35, 71000, Sarajevo, Bosnia and Herzegovina
| | - Jasmina Sulejmanović
- Department of Chemistry, Faculty of Science, University of Sarajevo, Zmaja od Bosne 33-35, 71000, Sarajevo, Bosnia and Herzegovina
| | - Sabina Begić
- Department of Chemistry, Faculty of Science, University of Sarajevo, Zmaja od Bosne 33-35, 71000, Sarajevo, Bosnia and Herzegovina
| | - Andi Alijagic
- Department of Biology, Faculty of Science, University of Sarajevo, Zmaja od Bosne 33-35, 71000, Sarajevo, Bosnia and Herzegovina
| |
Collapse
|
20
|
Hoseinrad H, Shahrestanaki JK, Moosazadeh Moghaddam M, Mousazadeh A, Yadegari P, Afsharzadeh N. Protective Effect of Vitamin D3 Against Pb-Induced Neurotoxicity by Regulating the Nrf2 and NF-κB Pathways. Neurotox Res 2021; 39:687-696. [PMID: 33400182 DOI: 10.1007/s12640-020-00322-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/03/2020] [Accepted: 12/06/2020] [Indexed: 12/12/2022]
Abstract
Lead (Pb) is a known toxic heavy metal which accumulates in different tissues and causes oxidative stress (OS) and inflammation. The brain tissue is considered as one of the most vulnerable organs to the Pb-induced toxicity. The aim of this study was to investigate the therapeutic effects of vitamin D3 (VD) supplementation against the damages caused by chronic Pb toxicity in the cerebral cortex. Forty Wistar rats were divided into four equal groups and were treated as follows: control group received no treatment, VD group received 1000 IU/kg of VD by intramuscular injection every other day, Pb group received 1000 mg/L of Pb in drinking water, and Pb + VD group received VD and Pb simultaneously. The experiment lasted for 4 weeks and the analyses were conducted 24 h after the last administrations. The obtained results demonstrated that Pb significantly increased cortical lipid peroxidation and reactive oxygen species (ROS) levels. At the same time, there was a significant reduction in glutathione (GSH) content, catalase (CAT), and superoxide dismutase (SOD) activities, as well as a significant increase in the tissue level of inflammatory cytokines. Furthermore, Pb increased the messenger RNA (mRNA) expression level of nuclear factor erythroid 2-related factor 2 (Nrf2) and nuclear factor-kappa B (NF-κB). Anyhow, VD administration during the period of Pb exposure suppressed the OS and inflammation by increasing the antioxidant molecules and decreasing the inflammatory cytokines and consequently repaired Pb-induced cortical tissue damages. Remarkably, these responses were concomitant with the alterations in Nrf2 and NF-κB gene expressions. In conclusion, the present study discloses the potential protective effects for VD against Pb-induced neurotoxicity via anti-inflammatory and antioxidative mechanisms.
Collapse
Affiliation(s)
- Hosein Hoseinrad
- Department of Cell Biology and Anatomical Science, Faculty of Medicine, Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | | | - Pouya Yadegari
- Student Research Committee, School of Public Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
21
|
Mehrpour O, Modi M, Mansouri B, Azadi NA, Nakhaee S, Amirabadi A, Anaei-Sarab G, Shirazi FM, Weiss ST. Comparison of Vitamin B12, Vitamin D, and Folic Acid Blood Levels in Plumbism Patients and Controls in Eastern Iran. Biol Trace Elem Res 2021; 199:9-17. [PMID: 32207029 DOI: 10.1007/s12011-020-02119-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 02/25/2020] [Indexed: 10/24/2022]
Abstract
The aim of this study was to evaluate the blood levels of folic acid, vitamin B12, and 25-hydroxyvitamin D (25-OHD) in patients with lead poisoning compared with control subjects in Eastern Iran. This analytical case-control study was conducted on 40 lead-poisoned patients who were referred to Imam Reza Hospital in Birjand from 2018 to 2019. Blood samples were collected from an additional 40 individuals without lead poisoning as a control group. The results indicated that the mean vitamin B12, vitamin D, and folic acid levels for the case group were 356.5 ± 200.1 pg/ml, 24.38 ± 9.5 ng/ml, and 7.4 ± 3.7 ng/ml, respectively. Mean folic acid level in the case group was significantly lower than control group (7.4 ng/ml vs. 12.70 pg/ml, P = 0.001), whereas the mean of the vitamin D levels at the case group was significantly higher than that of the control group (24.3 ng/ml vs. 20.1 ng/ml, P = 0.03). Moreover, mean vitamin B12 levels were significantly lower in the case group in comparison with the control group (356.5 pg/ml vs. 500.8 pg/ml) (P < 0.001). In the control group, 3 patients had folic acid below normal level (< 6 ng/mL) while 12 cases had folic acid below normal (P < 0.05). Also, none of the control group had low vitamin B12 concentrations (< 180 pg/ml), while 7 cases had vitamin b12 below normal (P < 0.05). Our results suggest that lead may induce folate and vitamin B12 dysregulation. Although we found that vitamin D levels were insufficient in both case and control groups, they were significantly higher in the case group. The interpretation of this result is unclear given inconsistent literature reports on this relationship.
Collapse
Affiliation(s)
- Omid Mehrpour
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences, Birjand, Iran
- Rocky Mountain Poison and Drug Safety, Denver Health & Hospital Authority, Denver, CO, USA
| | - Marzieh Modi
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Borhan Mansouri
- Substance Abuse Prevention Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Nemam Ali Azadi
- Biostatistics Department, Faculty of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Samaneh Nakhaee
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences, Birjand, Iran
| | - Alireza Amirabadi
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences, Birjand, Iran
| | - Gholamreza Anaei-Sarab
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences, Birjand, Iran
| | - Farshad M Shirazi
- Arizona Poison and Drug Information Center, University of Arizona, Tucson, AZ, USA
| | - Stephanie T Weiss
- Wake Forest School of Medicine Addiction Medicine Program, Winston-Salem, NC, USA
| |
Collapse
|
22
|
Hsueh YM, Huang YL, Chen HH, Shiue HS, Lin YC, Hsieh RL. Alcohol Consumption Moderated the Association Between Levels of High Blood Lead or Total Urinary Arsenic and Bone Loss. Front Endocrinol (Lausanne) 2021; 12:782174. [PMID: 34925242 PMCID: PMC8678633 DOI: 10.3389/fendo.2021.782174] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/17/2021] [Indexed: 12/17/2022] Open
Abstract
Metal exposure and lifestyle are important risk factors for osteoporosis. Our study aimed to investigate the association between red blood cell lead and cadmium, total urinary arsenic, and plasma selenium levels and bone mineral density (BMD). In addition, we explored whether alcohol and coffee consumption modified the association between BMD and metals and metalloids. In total, 437 participants who underwent adult or senile physical examinations were recruited. Bone loss was defined as a calcaneus BMD T-score of <-1. Blood cadmium and lead and plasma selenium levels were measured using inductively coupled plasma mass spectrometry. Levels of urinary arsenic species were determined using high-performance liquid chromatography-hydride generator-atomic absorption spectrometry. The total urinary arsenic level was defined as the sum of the levels of urinary arsenic species. The BMD T-scores decreased significantly with increasing blood lead levels. The BMD T-scores also showed a downward trend with increasing total urinary arsenic levels. The odds ratio (OR) and 95% confidence interval (CI) for bone loss in patients with blood lead levels >57.58 versus 35.74 μg/dL were 1.98 and 1.17-3.34. In addition, the greater the lead or arsenic exposure and alcohol intake was the higher the OR for bone loss with multivariate ORs of 2.57 (95% CI 1.45-4.56) and 2.96 (95% CI 1.67-5.22), respectively. To the best of our knowledge, this study is the first to demonstrate that high total urinary arsenic or blood lead levels and frequent or occasional alcohol consumption had a significant multiplicative interaction for increasing the OR for bone loss.
Collapse
Affiliation(s)
- Yu-Mei Hsueh
- Department of Family Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ya-Li Huang
- Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hsi-Hsien Chen
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Nephrology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - Horng-Sheng Shiue
- Department of Chinese Medicine, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Ying-Chin Lin
- Department of Family Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Department of Family Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Geriatric Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ru-Lan Hsieh
- Department of Physical Medicine and Rehabilitation, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
- Department of Physical Medicine and Rehabilitation, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- *Correspondence: Ru-Lan Hsieh,
| |
Collapse
|
23
|
Kašuba V, Milić M, Želježić D, Mladinić M, Pizent A, Kljaković-Gašpić Z, Balija M, Jukić I. Biomonitoring findings for occupational lead exposure in battery and ceramic tile workers using biochemical markers, alkaline comet assay, and micronucleus test coupled with fluorescence in situ hybridisation. Arh Hig Rada Toksikol 2020; 71:339-352. [PMID: 33410779 PMCID: PMC7968510 DOI: 10.2478/aiht-2020-71-3427] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/01/2020] [Accepted: 11/01/2020] [Indexed: 01/19/2023] Open
Abstract
Manufacture of lead-containing products has long been associated with various health risks. To get an insight into the related genotoxic risks, we conducted a biomonitoring study in 50 exposed workers and 48 matched controls using a battery of endpoints that sensitively detect the extent of genome instability in peripheral blood lymphocytes. The levels of primary DNA damage were estimated with the alkaline comet assay, while cytogenetic abnormalities were determined with the cytokinesis-block micronucleus (CBMN) cytome assay. Additionally, CBMN slides of 20 exposed and 16 control participants were subjected to fluorescence in situ hybridisation (FISH), coupled with pancentromeric probes to establish the incidence of centromere-positive micronuclei, nuclear buds, and nucleoplasmic bridges. Blood lead levels (B-Pb) were measured with atomic absorption spectrometry. To further characterise cumulative effects of occupational exposure, we measured erythrocyte protoporphyrin (EP) concentrations and delta-aminolevulinic acid dehydratase (ALAD) activity in blood. We also assessed the influence of serum folate (S-folate) and vitamin B12 (S-B12) on genome stability. Compared to controls, occupationally exposed workers demonstrated significantly higher B-Pb (298.36±162.07 vs 41.58±23.02), MN frequency (18.71±11.06 vs 8.98±7.50), centromere positive MN (C+ MN) (8.15±1.8 vs 3.69±0.47), and centromere negative MN (C- MN) (14.55±1.80 vs 4.56±0.89). Exposed women had significantly higher comet tail intensity (TI) and length (TL) than control women. Furthermore, workers showed a positive correlation between age and nuclear buds and MN, between MN and years of exposure, and between S-B12 levels and TI and ALAD activity, while a negative correlation was found between TI and B-Pb. These findings suggest that occupational settings in the manufacture of lead-containing products pose significant genotoxic risks, which calls for developing more effective work safety programmes, including periodical monitoring of B-Pb and genetic endpoints.
Collapse
Affiliation(s)
- Vilena Kašuba
- Institute for Medical Research and Occupational Health, Mutagenesis Unit, Zagreb, Croatia
| | - Mirta Milić
- Institute for Medical Research and Occupational Health, Mutagenesis Unit, Zagreb, Croatia
| | - Davor Želježić
- Institute for Medical Research and Occupational Health, Mutagenesis Unit, Zagreb, Croatia
| | | | - Alica Pizent
- Institute for Medical Research and Occupational Health, Analytical Toxicology and Mineral Metabolism Unit, Zagreb, Croatia
| | - Zorana Kljaković-Gašpić
- Institute for Medical Research and Occupational Health, Analytical Toxicology and Mineral Metabolism Unit, Zagreb, Croatia
| | - Melita Balija
- Croatian Institute for Transfusion Medicine, Zagreb, Croatia
| | - Irena Jukić
- Croatian Institute for Transfusion Medicine, Zagreb, Croatia
| |
Collapse
|
24
|
El Kutry MS, El-Sahar ESG. Evaluated the lead levels at boiling water in clay pots and impact of the lead contaminated diet on nutritional, biochemical status of male rats. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2020. [DOI: 10.1186/s43088-020-00043-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
For centuries, people have been using clay or earthen pots for cooking. Also, many studies indicated a contrariety from safety or danger of it. Our study aims to assess the lead concentration in boiling water in clay pots. Contaminated the diet with lead acetate and evaluated the nutritional, biochemical statues, and histological studies for male albino rats.
Step A: Ten samples of the distilled water and/or tap water were boiled in the clay pots (glaze and/or unglazed). Then, it was left to cool for either 2 or 4 h.
Step B: Thirty male albino rats divided three groups as follows: group 1: fed on basal diet (negative control), group2: fed on basal diet+466.5 mg/kg body wt of lead acetate (L1), group 3: fed on the basal diet+933 mg/kg body wt of lead acetate (L2).
Results
Lead concentrations in distilled water samples boiled in glazed clay pots were significantly higher than the negative control. Tap water samples boiled in glazed clay pots showed lead concentrations that were significantly higher than that of the positive control. Whereas, lead concentrations in distilled water boiled in the unglazed clay pots and left to cool for either 2 h or 4 h showed no significant differences compared to the negative control. Besides, rats fed L1 and L2 of lead acetate had a significant decrease in BWG and food intake compared with the negative control group. Also, rats were given lead acetate at the two levels (L1 and L2) had significantly lower levels of hemoglobin, RBCs, and WBCs compared with rats fed basic diet only (negative control). Data illustrated that the rats of groups 2 and 3 have increased significantly in GOT concentration of serum, a significant increase in cholesterol and triglycerides levels, and increased significantly in creatinine, urea, and lead concentration in serum compared with the (negative control).
Conclusion
Bring the clay pots for cooking would be unglazed and natural forming, even if glazed may be having certified a lead free.
Collapse
|
25
|
Kalahasthi R, Barman T, Bagepally BS. Assessment of Bone Turnover Biomarkers in Lead-Battery Workers with Long-Term Exposure to Lead. THE INTERNATIONAL JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL MEDICINE 2020; 11:140-147. [PMID: 32683426 PMCID: PMC7426737 DOI: 10.34172/ijoem.2020.1951] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 05/04/2020] [Indexed: 01/03/2023]
Abstract
BACKGROUND The major portion of lead in the body resides in skeletal system. The bone turnover affects the release of lead into the circulation from bones. The bone turnover biomarkers (BTM) in lead-battery workers with long-term exposure to lead have not been explored yet. OBJECTIVE To evaluate the BTM (formation and resorption) in lead-battery workers with long-term exposure to lead in lead-battery manufacturing plant. METHODS 176 male lead-exposed workers and 80 matched comparison group were studied. All participants were examined for blood lead levels (BLLs), bone formation biomarkers- serum osteocalcin (OC), alkaline phosphatase (ALP), bone-specific alkaline phosphatase (BALP)-and bone resorption biomarkers-serum pyridinoline (PYD), deoxypyridinoline (DPYD), tartarate-resistant acid phosphatase-5b (TRACP-5b), and urinary hydroxyproline (UHYP). RESULTS We found a significantly higher bone formation biomarkers such as BALP (p=0.007) and bone resorption biomarkers, eg, PYD (p=0.048), TRCAP-5b (p=0.001), and UHYP (p=0.001) in lead-exposed workers. A significant (p=0.041) negative correlation (ρ ‑0.128) was noted between BLLs and OC. A significant positive correlation was noted between BLLs and TRACP-5b (ρ 0.176, p=0.005) and UHYP (ρ 0.258, p=0.004). Serum OC (p=0.040) and UHYP (p=0.015) levels changed significantly with BLL level. Bone resorption biomarkers levels- PYD, TRACP-5b, and BALP-were higher among those with higher BLLs levels. The duration of exposure was significantly associated with BALP (p=0.037), DPYD (p=0.016), TRACP-5b (p=0.001), and UHYP (p=0.002) levels. CONCLUSION Long-term lead exposure affects the bone turnover.
Collapse
Affiliation(s)
- Ravibabu Kalahasthi
- Department of Biochemistry, Regional Occupational Health Centre (Southern), Indian Council of Medical Research, ICMR Complex, Karnataka, India.
| | - Tapu Barman
- Department of Bacteriology, National Institute of Cholera and Enteric Diseases, Kolkata, West Bengal, India
| | | |
Collapse
|
26
|
Mani MS, Nayak DG, Dsouza HS. Challenges in diagnosing lead poisoning: A review of occupationally and nonoccupationally exposed cases reported in India. Toxicol Ind Health 2020; 36:346-355. [PMID: 32496147 DOI: 10.1177/0748233720928170] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Lead is a nonessential metal which enters the body through various means and is considered as one of the most common health toxins. Several cases of lead poisoning are reported as a result of inhalation or ingestion of lead in employees working as painters, smelters, electric accumulator manufacturers, compositors, auto mechanics, and miners. In addition to occupational lead exposure, several cases of lead poisoning are reported in the general population through various sources and pathways. Innumerable signs and symptoms of lead poisoning observed are subtle and depend on the extent and duration of exposure. The objective of this review article is to discuss occupationally and nonoccupationally exposed lead poisoning cases reported in India and the associated symptoms, mode of therapy, and environmental intervention used in managing these cases. Lead poisoning cases cannot be identified at an early stage as the symptoms are very general and mimic that of other disorders, and patients might receive only symptomatic treatment. Knowledge about the various symptoms and potential sources is of utmost importance. Medical practitioners when confronted with patients experiencing signs and symptoms as discussed in this article can speculate the possibility of lead poisoning, which could lead to early diagnosis and its management.
Collapse
Affiliation(s)
- Monica Shirley Mani
- Department of Radiation Biology and Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Divyani Gurudas Nayak
- Department of Radiation Biology and Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Herman Sunil Dsouza
- Department of Radiation Biology and Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
27
|
Prada D, López G, Solleiro-Villavicencio H, Garcia-Cuellar C, Baccarelli AA. Molecular and cellular mechanisms linking air pollution and bone damage. ENVIRONMENTAL RESEARCH 2020; 185:109465. [PMID: 32305664 PMCID: PMC7430176 DOI: 10.1016/j.envres.2020.109465] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/10/2020] [Accepted: 03/29/2020] [Indexed: 05/04/2023]
Abstract
Air pollution is the second most important risk factor associated with noncommunicable diseases after smoking. The effects of pollution on health are commonly attributable to particulate matter (PM), a complex mixture of particles suspended in the air. PM can penetrate the lower respiratory tract and has harmful direct and indirect effects on different organs and tissues. Direct effects are caused by the ability of PM components to cross the respiratory membrane and enter the bloodstream; indirect effects are systemic consequences of the local airway response. Recent work suggests that PM is an independent risk factor for low bone mineral density and osteoporosis-related fractures. Osteoporosis is a common age-related disease closely linked to bone fractures, with severe clinical consequences affecting quality of life, morbidity, and mortality. In this review, we discuss potential mechanisms behind the association between outdoor air pollution, especially PM, and bone damage. The discussion features four main mechanisms: 1) several different atmospheric pollutants can induce low-grade systemic inflammation, which affects bone metabolism through a specific effect of cytokines such as TNFα, IL-1β, IL-6, and IL-17 on osteoblast and osteoclast differentiation and function; 2) some pollutants, particularly certain gas and metal compounds, can cause oxidative damage in the airway and bone cells; 3) different groups of pollutants can act as endocrine disruptors when binding to the receptors in bone cells, changing their functioning; and 4) air pollution can directly and indirectly cause vitamin D deficiency. Characterizing these mechanisms will better define the physiopathology of bone damage, and recognizing air pollution as a modifiable risk factor for osteoporosis will inform environmental policies. Such knowledge will also guide the prevention of fractures due to fragility and help reduce health-related costs.
Collapse
Affiliation(s)
- Diddier Prada
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, 10032, USA; Unit for Biomedical Research in Cancer, Instituto Nacional de Cancerología - Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, 14080, Mexico; Department of Biomedical Informatics, Faculty of Medicine, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico.
| | - Gerard López
- Program of Support and Promotion of Research (AFINES), School of Medicine, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico; Department of Physiology, Universidad Nacional Autónoma de México, Mexico City, 14080, Mexico.
| | - Helena Solleiro-Villavicencio
- Program of Support and Promotion of Research (AFINES), School of Medicine, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico.
| | - Claudia Garcia-Cuellar
- Unit for Biomedical Research in Cancer, Instituto Nacional de Cancerología - Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, 14080, Mexico.
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, 10032, USA.
| |
Collapse
|
28
|
Batra J, Thakur A, Meena SK, Singh L, Kumar J, Juyal D. Blood lead levels among the occupationally exposed workers and its effect on calcium and vitamin D metabolism: A case-control study. J Family Med Prim Care 2020; 9:2388-2393. [PMID: 32754507 PMCID: PMC7380760 DOI: 10.4103/jfmpc.jfmpc_271_20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/13/2020] [Accepted: 03/30/2020] [Indexed: 01/20/2023] Open
Abstract
INTRODUCTION Lead (Pb) is one of the major occupational pollutants present in the developed and developing countries including India. In humans, Pb can cause a wide range of biological effects depending upon the level and duration of exposure. The goal of this study was to evaluate the blood lead levels (BLLs) and its associated effects on vitamin D and calcium metabolism, among the workers occupationally exposed to Pb. MATERIALS AND METHODS This cross-sectional, case-control study was conducted for a period of 18 months (January 2017 to July 2018). A total of 160 subjects were included in the study (80 in each, Pb-exposed group and control group). The blood Pb levels were quantified by using an inductively coupled plasma mass spectrometry with triple quadrupole technology (iCAP™ TQ ICP-MS). Other biochemical parameters were estimated using fully automatic analyzer by RANDOX, RX-imola, Crumlin, UK and Johnson and Johnson, VITROS® ECiQ, Immunodiagnostic system, Ortho Clinical Diagnostics, New Jersey, USA. RESULTS Upon analysis it was observed that serum calcium, phosphorous, and vitamin D levels were significantly decreased (8.35 ± 0.42 mg/dl, 3.07 ± 0.34 mg/dl, and 28.82 ± 10.81 ng/ml respectively; P < 0.001), whereas the BLL and serum iPTH levels were significantly increased (38.02 ± 19.92 μg/dl and 116.78 ± 19.93 pg/ml respectively; P < 0.001) in Pb exposed subjects as compared to control subjects. CONCLUSION Our study results demonstrated that high BLL significantly alter vitamin D and calcium metabolism. The data extrapolated from our study emphasizes the necessity of surveillance in exposed workers. As the associated deleterious effects of Pb-exposure can be serious, we propose that a routine-periodical screening of the workers exposed to lead should be conducted.
Collapse
Affiliation(s)
- Jyoti Batra
- Department of Biochemistry, Santosh Medical College, Ghaziabad, Uttar Pradesh, India
| | - Ajit Thakur
- Department of Biochemistry, Santosh Medical College, Ghaziabad, Uttar Pradesh, India
| | - Shrawan Kumar Meena
- Department of Biochemistry, Pandit Deendayal Upadhyaya Medical College, Churu, Rajasthan, India
| | - Lakbir Singh
- Department of Biochemistry, Jaipur National University Institute of Medical Sciences and Research, Jaipur, Rajasthan, India
| | - Jainendra Kumar
- Department of Medicine, Govt. Doon Medical College, Dehrakhas, Patel Nagar, Dehradun, Uttarakhand, India
| | - Deepak Juyal
- Department of Microbiology, Govt. Doon Medical College, Dehrakhas, Patel Nagar, Dehradun, Uttarakhand, India
| |
Collapse
|
29
|
Rani S, Bandyopadhyay-Ghosh S, Ghosh SB, Liu G. Advances in Sensing Technologies for Monitoring of Bone Health. BIOSENSORS-BASEL 2020; 10:bios10040042. [PMID: 32326229 PMCID: PMC7235906 DOI: 10.3390/bios10040042] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/11/2020] [Accepted: 04/13/2020] [Indexed: 02/02/2023]
Abstract
: Changing lifestyle and food habits are responsible for health problems, especially those related to bone in an aging population. Poor bone health has now become a serious matter of concern for many of us. In order to avoid serious consequences, the early prediction of symptoms and diagnosis of bone diseases have become the need of the hour. From this inspiration, the evolution of different bone health monitoring techniques and measurement methods practiced by researchers and healthcare companies has been discussed. This paper focuses on various types of bone diseases along with the modeling and remodeling phenomena of bones. The evolution of various diagnosis tests for bone health monitoring has been also discussed. Various types of bone turnover markers, their assessment techniques, and recent developments for the monitoring of biochemical markers to diagnose the bone conditions are highlighted. Then, the paper focuses on the potential assessment of the recent sensing techniques (physical sensors and biosensors) that are currently available for bone health monitoring. Considering the importance of electrochemical biosensors in terms of high sensitivity and reliability, specific attention has been given to the recent development of electrochemical biosensors and significance in real-time monitoring of bone health.
Collapse
Affiliation(s)
- Seema Rani
- Engineered Biomedical Materials Research and Innovation Centre (EnBioMatRIC), School of Automobile, Mechanical and Mechatronics Engineering (SAMM), Manipal University Jaipur, Rajasthan 303007, India
| | - Sanchita Bandyopadhyay-Ghosh
- Engineered Biomedical Materials Research and Innovation Centre (EnBioMatRIC), School of Automobile, Mechanical and Mechatronics Engineering (SAMM), Manipal University Jaipur, Rajasthan 303007, India
- Correspondence:
| | - Subrata Bandhu Ghosh
- Engineered Biomedical Materials Research and Innovation Centre (EnBioMatRIC), School of Automobile, Mechanical and Mechatronics Engineering (SAMM), Manipal University Jaipur, Rajasthan 303007, India
| | - Guozhen Liu
- Graduate School of Biomedical Engineering, Faculty of Engineering, The University of New South Wales, Sydney NSW 2052, Australia
| |
Collapse
|
30
|
Mumtaz S, Ali S, Khan R, Shakir HA, Tahir HM, Mumtaz S, Andleeb S. Therapeutic role of garlic and vitamins C and E against toxicity induced by lead on various organs. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:8953-8964. [PMID: 32036533 DOI: 10.1007/s11356-020-07654-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 01/07/2020] [Indexed: 06/10/2023]
Abstract
Due to industrial and urban sewage, the metal contaminations in aquatic and terrestrial environments are increasing day by day, especially in developing countries. Despite the study of several years, we are inert far away from an actual medication for prolonged toxicity of heavy metals such as mercury, lead, cadmium etc. Lead is one of the most common heavy metals that possess toxicological effects on numerous tissues of animals as well as humans. Several toxic effects of lead on reproductive organs, renal system, central nervous system, liver, lungs, blood parameters, and bones have been reported. On the other hand, several reports depicted that garlic is operative in declining the absorption of lead in bones as well as soft tissues. A combination of vitamin C and vitamin E enhances the biological recovery induced by lead and mobilize the heavy metal such as lead from intra-cellular positions. This review provides therapeutic approaches such as vitamin C, vitamin E, and extract of garlic to treat the detrimental effects caused after the exposure of lead. These therapeutic strategies are beneficial for both the prevention and alleviation of lead noxiousness.
Collapse
Affiliation(s)
- Shumaila Mumtaz
- Applied Entomolgy and Medical Toxicology Laboratory, Department of Zoology, Government College University Lahore, Lahore, 54000, Pakistan
| | - Shaukat Ali
- Applied Entomolgy and Medical Toxicology Laboratory, Department of Zoology, Government College University Lahore, Lahore, 54000, Pakistan.
| | - Rida Khan
- Microbial Biotechnology and Medical Toxicology Laboratory, Department of Zoology, University of Azad Jammu and Kashmir, Muzaffarabad, Pakistan
| | | | - Hafiz Muhammad Tahir
- Applied Entomolgy and Medical Toxicology Laboratory, Department of Zoology, Government College University Lahore, Lahore, 54000, Pakistan
| | - Samiara Mumtaz
- Applied Entomolgy and Medical Toxicology Laboratory, Department of Zoology, Government College University Lahore, Lahore, 54000, Pakistan
| | - Saiqa Andleeb
- Microbial Biotechnology and Medical Toxicology Laboratory, Department of Zoology, University of Azad Jammu and Kashmir, Muzaffarabad, Pakistan
| |
Collapse
|
31
|
López-Vanegas NC, Hernández G, Maldonado-Vega M, Calderón-Salinas JV. Leukocyte apoptosis, TNF-α concentration and oxidative damage in lead-exposed workers. Toxicol Appl Pharmacol 2020; 391:114901. [PMID: 32004562 DOI: 10.1016/j.taap.2020.114901] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/24/2020] [Accepted: 01/27/2020] [Indexed: 12/31/2022]
Abstract
Lead intoxication can generate pro-inflammatory conditions that have been proposed to be associated with cell injuries and oxidative stress. The pro-inflammatory state can participate in the pathophysiology of this toxicity to generate immune response dysfunctions, which could condition the presence of clinical manifestations and susceptibility to infections already described in lead-exposed patients. In the present work, we study workers of a battery recycler factory (n = 24) who are chronically exposed to lead and compared them with non-lead exposed workers (n = 17). Lead-exposed workers had high lead concentrations in blood (med 69.8 vs. 1.7 μg/dL), low δ-ALAD activity (med 149 vs. 1100 nmol PBG/h/mL), high lipid peroxidation (med 0.86 vs. 0.69 nmol/mL) and high erythrocytes apoptosis (med 0.81 vs. 0.50% PS externalization) in relation to non-lead exposed workers. Also, lead-exposed workers had a high incidence of signs and symptoms related to lead intoxication and a higher frequency of infections. The higher leukocyte apoptosis (med 18.3 vs. 8.2% PS externalization) and lower basal TNF-α concentration (med 0.38 vs. 0.94 pg/mL) in lead-exposed workers imply an immune response dysfunction; however, there was no difference in the TNF-α concentration when leukocytes were stimulated with lipopolysaccharide in whole blood (med 44 vs. 70 pg/mL), suggesting that lead-exposed workers might develop adaptation mechanisms to reduce basal TNF-α release through downregulation processes proposed for this cytokine.
Collapse
Affiliation(s)
| | - Gerardo Hernández
- Section Methodology of Science, Centro de Investigación y Estudios Avanzados-IPN, Ciudad de México, Mexico
| | - María Maldonado-Vega
- Planning, Teaching and Research Department, Hospital Regional de Alta Especialidad del Bajío, Blvd. Milenio 130, San Carlos La Roncha, León, Guanajuato, Mexico
| | | |
Collapse
|
32
|
Himani, Kumar R, Ansari JA, Mahdi AA, Sharma D, Karunanand B, Datta SK. Blood Lead Levels in Occupationally Exposed Workers Involved in Battery Factories of Delhi-NCR Region: Effect on Vitamin D and Calcium Metabolism. Indian J Clin Biochem 2020; 35:80-87. [PMID: 32071499 PMCID: PMC6995464 DOI: 10.1007/s12291-018-0797-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 10/17/2018] [Indexed: 12/17/2022]
Abstract
Workers involved in battery manufacturing or recycling factories are occupationally exposed to high concentrations of lead. In humans, lead can cause a wide range of biological effects depending upon the level and duration of exposure. The purpose of this study was to find out the blood lead levels (BLL) in occupationally exposed workers involved in battery industry in Delhi NCR region and to study whether lead affected the vitamin D (vit D) and calcium metabolism. For this study 100 occupationally lead-exposed battery workers (LEBW) and 100 non-lead exposed controls (NLEC) were recruited. BLL were measured using inductively coupled plasma optical emission spectrometer (ICP-OES) technique while ELISA was performed to quantify the serum vit D levels in the study subjects. Routine biochemical parameters were measured by chemistry autoanalyzers. Statistical analysis was done using appropriate statistical tools. Results showed that BLL were significantly higher in LEBW as compared to NLEC (p < 0.0001). Serum vitamin D, calcium and phosphorus levels were significantly decreased in battery workers as compared to controls (p < 0.005). Spearman's rank correlation analysis showed significant negative correlation of BLL with serum Vitamin D and calcium levels. Significant positive correlation was observed between BLL and duration of lead exposure. Weak negative correlation was also observed between BLL and vit D even after adjusting for smoking status. In conclusion, this study demonstrated that higher BLL significantly alters the vit D and calcium metabolism.
Collapse
Affiliation(s)
- Himani
- Department of Biochemistry, SGT Medical College & Research Institute, Gurugram, Haryana India
| | - Raman Kumar
- Department of Biochemistry, Dr. Baba Saheb Ambedkar Medical College & Hospital, New Delhi, India
| | - Jamal Akhtar Ansari
- Department of Biochemistry, King George’s Medical University, Lucknow, India
| | - Abbas Ali Mahdi
- Department of Biochemistry, King George’s Medical University, Lucknow, India
| | - Dilutpal Sharma
- Department of Biochemistry, King George’s Medical University, Lucknow, India
| | - Busi Karunanand
- Department of Biochemistry, SGT Medical College & Research Institute, Gurugram, Haryana India
| | - Sudip Kumar Datta
- Department of Laboratory Medicine, All India Institute of Medical Sciences, Room No. – 09, New Delhi, India
| |
Collapse
|
33
|
Ravibabu K, Bagepally BS, Barman T. Association of Musculoskeletal Disorders and Inflammation Markers in Workers Exposed to Lead (Pb) from Pb-battery Manufacturing plant. Indian J Occup Environ Med 2019; 23:68-72. [PMID: 31619878 PMCID: PMC6783524 DOI: 10.4103/ijoem.ijoem_192_18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 03/18/2019] [Indexed: 11/23/2022] Open
Abstract
Background: Lead (Pb) deposits in the skeletal system on chronic exposure and releases to circulation over a period. The musculoskeletal disorders (MSDs) are associated with enhanced expression of inflammation. The combination of Pb-exposure and MSDs induced inflammation was not attempted. Objective: This study was conducted to examine the association between MSDs and inflammatory markers in workers exposed to Pb from Pb-battery plant. Material and Methods: In a case-control study design, the study enrolled 176 male Pb-exposed workers as study subjects and 80 healthy workers with no occupational exposure to Pb as control subjects. The Nordic musculoskeletal questionnaire was used to assess the MSDs. From the blood sample, blood lead level (BLL) and High Sensitivity C-reactive protein (Hs-CRP) were estimated as markers of Pb-exposure and Inflammatory marker respectively. The BLL was estimated by flame atomic absorption spectrometric method and the Hs-CRP by using a diagnostic kit method. Results: Significantly high proportions of MSDs were noted in study subjects as compared to controls. The MSDs identified in the study subjects were at low back (33%) followed by knee (26%), shoulders (16%), neck (14%), ankle/foot (11%), wrist/hand (10%), elbows (8%), upper back (7%), and hips/thighs (5%). The significant association between Pb-exposure and MSDs among study subjects was mainly noted in low back and ankle/foot. Also, significantly high serum Hs-CRP levels were noted among study subjects with ankle/foot MSDs. Conclusion: Pb-exposure and inflammatory markers were significantly associated with lower limbs of MSDs.
Collapse
Affiliation(s)
- Kalahasthi Ravibabu
- Department of Biochemistry, Regional Occupational Health Centre (Southern) Bengaluru, ICMR Complex, Poojanahalli Road, Kannamangala Post, Devanahalli, Bengaluru, Karnataka, India
| | - Bhavani Shankara Bagepally
- Department of NCD, National Institute of Epidemiology (ICMR), Second Main Road, Tamil Nadu Housing Board, Ayapakkam, Near Ambattur, Chennai, Tamil Nadu, India
| | - Tapu Barman
- Department of Bacteriology, National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme XM, Beleghata, Kolkata, West Bengal, India
| |
Collapse
|
34
|
Hernández G, Villanueva-Ibarra CA, Maldonado-Vega M, López-Vanegas NC, Ruiz-Cascante CE, Calderón-Salinas JV. Participation of phospholipase-A 2 and sphingomyelinase in the molecular pathways to eryptosis induced by oxidative stress in lead-exposed workers. Toxicol Appl Pharmacol 2019; 371:12-19. [PMID: 30928402 DOI: 10.1016/j.taap.2019.03.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 03/08/2019] [Accepted: 03/26/2019] [Indexed: 12/19/2022]
Abstract
The increment of eryptosis in lead-exposed workers has been associated with oxidative stress, having as the main mediator [Ca2+]i. However, other molecules could participate as signals, such as PLA2 and SMase, which have been proposed to increase PGE2 and ceramides, both involved in the increment of PS externalization due to osmotic stress. To study the role of these enzymes in lead intoxication, we studied 30 lead exposed workers and 27 non-lead exposed individuals. We found, compared to non-exposed subjects, lead intoxication characterized by high blood lead concentration (median = 39.1 μg/dL), and low δ-ALAD activity (median = 348 nmol of porphobilinogen/h/mL); oxidative stress with high lipid peroxidation (median = 1.31 nmol of malondialdehyde/mL) and low TAC (median = 370 mM Trolox equivalents); a higher enzymatic activity of PLA2 (median = 518 AFU/mg) and SMase (median = 706 AFU/mg) and higher eryptosis (median = 0.92% PS externalization). Correlation and conditional probability analyses permit to associate oxidative stress and eryptosis with high PLA2 activity. However, high SMase activity was only associated with PLA2 activity. The role of these enzymes in the signal path to eryptosis induced by oxidative stress in lead-exposed workers is discussed.
Collapse
Affiliation(s)
- Gerardo Hernández
- Section Methodology of Science, Centro de Investigación y Estudios Avanzados-IPN (Cinvestav), Ciudad de México, Mexico
| | | | - María Maldonado-Vega
- Planning, Teaching and Research Department, Hospital Regional de Alta Especialidad del Bajío. León, Guanajuato, Mexico
| | | | - Claudia-Estefania Ruiz-Cascante
- Programa de Maestría y Doctorado en Ciencias Médicas, Odontológicas y de la Salud, Salud en el Trabajo, UNAM, Ciudad de México, Mexico
| | - José-Víctor Calderón-Salinas
- Biochemistry Department, Centro de Investigación y Estudios Avanzados-IPN (Cinvestav), Ciudad de México, Mexico.
| |
Collapse
|
35
|
Qi S, Zheng H, Chen C, Jiang H. Du-Zhong (Eucommia ulmoides Oliv.) Cortex Extract Alleviates Lead Acetate-Induced Bone Loss in Rats. Biol Trace Elem Res 2019; 187:172-180. [PMID: 29740803 DOI: 10.1007/s12011-018-1362-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 04/23/2018] [Indexed: 12/13/2022]
Abstract
The purpose of this study was to evaluate the protective effect of Du-Zhong cortex extract (DZCE) on lead acetate-induced bone loss in rats. Forty female Sprague-Dawley rats were randomly divided into four groups: group I (control) was provided with distilled water. Group II (PbAc) received 500 ppm lead acetate in drinking water for 60 days. Group III (PbAc+DZCE) received 500 ppm lead acetate in drinking water, and given intragastric DZCE (100 mg/kg body weight) for 60 days. Group IV (DZCE) was given intragastric DZCE (100 mg/kg body weight) for 60 days. The bone mineral density, serum biochemical markers, bone histomorphology, and bone marrow adipocyte parameters were analyzed using dual-energy X-ray absorptiometry, biochemistry, histomorphometry, and histopathology, respectively. The results showed that the lumbar spine and femur bone mineral density was significantly decreased in PbAc group compared with the control (P < 0.05); however, this decrease was inhibited by the intake of Du-Zhong cortex extract (P < 0.05, vs. PbAc group; P > 0.05, vs. control and DZCE group). Serum calcium and serum phosphorus in the PbAc+DZCE group were greater than that in the PbAc group (P < 0.05). The PbAc group had higher ALP, osteocalcin, and RANKL than the control group (P < 0.01), and they were significantly lower in the PbAc+DZCE group compared with the PbAc group. There were no significant differences of ALP, osteocalcin, and RANKL among the PbAc+DZCE, control, and DZCE groups (P > 0.05). Serum OPG and OPG/RANKL ration were significantly higher in the PbAc+DZCE group than that in the PbAc group (P < 0.05). The bone histomorphometric analyses showed that bone volume and trabecular thickness in the femoral trabecular bone were significantly lower in the PbAc group than that in the control group, but those were restored in the PbAc+DZCE groups. The bone marrow adipocyte number, percent adipocyte volume per tissue volume (AV/TV), and mean adipocyte diameter were significantly increased in the PbAc group compared to the control (P < 0.01), and those were restored in the PbAc+DZCE group. The differences of those parameters between PbAc+DZCE, DZCE, and the control group were not significant. The results above indicate that the Du-Zhong cortex extract has protective effects on both stimulation of bone formation and suppression of bone resorption in lead-exposed rats, therefore, Du-Zhong cortex extract has the potential to prevent or treat osteoporosis resulting from lead expose.
Collapse
Affiliation(s)
- Shanshan Qi
- Vitamin D Research Institute, Shaanxi University of Technology, Hanzhong, 723000, Shaanxi, China
| | - Hongxing Zheng
- College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, 723000, Shaanxi, China.
| | - Chen Chen
- College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, 723000, Shaanxi, China.
- Chinese-German Joint Laboratory for Natural Product Research, Shaanxi University of Technology, Hanzhong, 723000, China.
| | - Hai Jiang
- College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, 723000, Shaanxi, China
| |
Collapse
|
36
|
Mousavi SE, Amini H, Heydarpour P, Amini Chermahini F, Godderis L. Air pollution, environmental chemicals, and smoking may trigger vitamin D deficiency: Evidence and potential mechanisms. ENVIRONMENT INTERNATIONAL 2019; 122:67-90. [PMID: 30509511 DOI: 10.1016/j.envint.2018.11.052] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/20/2018] [Accepted: 11/21/2018] [Indexed: 06/09/2023]
Abstract
Beyond vitamin D (VD) effect on bone homeostasis, numerous physiological functions in human health have been described for this versatile prohormone. In 2016, 95% of the world's population lived in areas where annual mean ambient particulate matter (<2.5 μm) levels exceeded the World Health Organization guideline value (Shaddick et al., 2018). On the other hand, industries disperse thousands of chemicals continually into the environment. Further, considerable fraction of populations are exposed to tobacco smoke. All of these may disrupt biochemical pathways and cause detrimental consequences, such as VD deficiency (VDD). In spite of the remarkable number of studies conducted on the role of some of the above mentioned exposures on VDD, the literature suffers from two main shortcomings: (1) an overview of the impacts of environmental exposures on the levels of main VD metabolites, and (2) credible engaged mechanisms in VDD because of those exposures. To summarize explanations for these unclear topics, we conducted the present review, using relevant keywords in the PubMed database, to investigate the adverse effects of exposure to air pollution, some environmental chemicals, and smoking on the VD metabolism, and incorporate relevant potential pathways disrupting VD endocrine system (VDES) leading to VDD. Air pollution may lead to the reduction of VD cutaneous production either directly by blocking ultraviolet B photons or indirectly by decreasing outdoor activity. Heavy metals may reduce VD serum levels by increasing renal tubular dysfunction, as well as downregulating the transcription of cytochrome P450 mixed-function oxidases (CYPs). Endocrine-disrupting chemicals (EDCs) may inhibit the activity and expression of CYPs, and indirectly cause VDD through weight gain and dysregulation of thyroid hormone, parathyroid hormone, and calcium homeostasis. Smoking through several pathways decreases serum 25(OH)D and 1,25(OH)2D levels, VD intake from diet, and the cutaneous production of VD through skin aging. In summary, disturbance in the cutaneous production of cholecalciferol, decreased intestinal intake of VD, the modulation of genes involved in VD homeostasis, and decreased local production of calcitriol in target tissues are the most likely mechanisms that involve in decreasing the serum VD levels.
Collapse
Affiliation(s)
- Sayed Esmaeil Mousavi
- Department of Water and Wastewater Treatment, Water and Wastewater Consulting Engineers (Design & Research), Isfahan, Iran; Social Health Determinants Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| | - Heresh Amini
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA, United States; Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Pouria Heydarpour
- MS Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Amini Chermahini
- Cellular and Molecular Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Lode Godderis
- Centre for Environment and Health, Department of Public Health and Primary Care, University of Leuven (KU, Leuven), Belgium; IDEWE, External Service for Prevention at Protection at Work, Heverlee, Belgium
| |
Collapse
|
37
|
A Review of Metal Exposure and Its Effects on Bone Health. J Toxicol 2018; 2018:4854152. [PMID: 30675155 PMCID: PMC6323513 DOI: 10.1155/2018/4854152] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 09/28/2018] [Accepted: 11/20/2018] [Indexed: 12/21/2022] Open
Abstract
The presence of metals in the environment is a matter of concern, since human activities are the major cause of pollution and metals can enter the food chain and bioaccumulate in hard and soft tissues/organs, which results in a long half-life of the metal in the body. Metal intoxication has a negative impact on human health and can alter different systems depending on metal type and concentration and duration of metal exposure. The present review focuses on the most common metals found in contaminated areas (cadmium, zinc, copper, nickel, mercury, chromium, lead, aluminum, titanium, and iron, as well as metalloid arsenic) and their effects on bone tissue. Both the lack and excess of these metals in the body can alter bone dynamics. Long term exposure and short exposure to high concentrations induce an imbalance in the bone remodeling process, altering both formation and resorption and leading to the development of different bone pathologies.
Collapse
|
38
|
Han L, Wang X, Han R, Xu M, Zhao Y, Gao Q, Shen H, Zhang H. Association between blood lead level and blood pressure: An occupational population-based study in Jiangsu province, China. PLoS One 2018; 13:e0200289. [PMID: 29979755 PMCID: PMC6034884 DOI: 10.1371/journal.pone.0200289] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 06/22/2018] [Indexed: 12/24/2022] Open
Abstract
Studies about the association between lead exposure and the elevation of blood pressure and risk of hypertension are varied, while available data on blood lead levels (BLL) in workers with lead-exposure are scarce. This research aimed to evaluate associations between BLL and blood pressure in an occupational population-based study in Jiangsu province, China. We enrolled 21,688 workers in this study. Information on socioeconomic and occupational background was obtained with face-to-face interviews. BLL, systolic blood pressure (SBP) and diastolic blood pressure (DBP) were measured, and hypertension status was confirmed. We found that workers in mini-factories had the highest average BLL (20.3 μg/dL; 95% CI, 19.0-21.6 μg/dL) for overall participants. The employees in private factories had higher BLL (9.6 μg/dL; 95% CI, 9.5-9.8 μg/dL). However, BLL was much lower (4.0 μg/dL; 95%CI, 3.7-4.2 μg/dL) in state-owned factories. Participants working in the electrical machinery and equipment manufacturing industry had higher BLL (9.1 μg/dL; 95% CI, 9.0-9.3μg/dL). Compared to those workers with ≤ 4.6 μg/dL BLL, workers with > 17.5 μg/dL BLL presented 1.34 mmHg and 0.70 mmHg average difference in SBP and DBP, respectively. The adjusted OR for hypertension was 1.11 (95%CI, 1.08-1.15) compared to the workers with > 17.5 μg/dL BLL and to those with ≤ 4.6 μg/dL BLL. In summary, we found that BLL was positively associated with SBP and DBP and with the morbidity of hypertension in occupational populations with a high concentration of lead exposure. It is important to formulate new standards of blood lead levels to screen for elevated lead exposure. In addition, a series of new systems of risk assessment should be established to further reduce and prevent lead exposure.
Collapse
Affiliation(s)
- Lei Han
- Institute of Occupational Disease Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Xiuxia Wang
- The Affiliated Guangji Hospital of Soochow University, Suzhou, China
| | - Ruhui Han
- Department of Infection Management, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ming Xu
- Institute of Occupational Disease Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Yuan Zhao
- Institute of Occupational Disease Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Qianqian Gao
- Institute of Occupational Disease Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Huanxi Shen
- Kunshan Municipal Centre for Disease Prevention and Control, Kunshan, China
| | - Hengdong Zhang
- Institute of Occupational Disease Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| |
Collapse
|
39
|
Hanna DA, Hu R, Kim H, Martinez-Guzman O, Torres MP, Reddi AR. Heme bioavailability and signaling in response to stress in yeast cells. J Biol Chem 2018; 293:12378-12393. [PMID: 29921585 DOI: 10.1074/jbc.ra118.002125] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 06/15/2018] [Indexed: 12/28/2022] Open
Abstract
Protoheme (hereafter referred to as heme) is an essential cellular cofactor and signaling molecule that is also potentially cytotoxic. To mitigate heme toxicity, heme synthesis and degradation are tightly coupled to heme utilization in order to limit the intracellular concentration of "free" heme. Such a model, however, would suggest that a readily accessible steady-state, bioavailable labile heme (LH) pool is not required for supporting heme-dependent processes. Using the yeast Saccharomyces cerevisiae as a model and fluorescent heme sensors, site-specific heme chelators, and molecular genetic approaches, we found here that 1) yeast cells preferentially use LH in heme-depleted conditions; 2) sequestration of cytosolic LH suppresses heme signaling; and 3) lead (Pb2+) stress contributes to a decrease in total heme, but an increase in LH, which correlates with increased heme signaling. We also observed that the proteasome is involved in the regulation of the LH pool and that loss of proteasomal activity sensitizes cells to Pb2+ effects on heme homeostasis. Overall, these findings suggest an important role for LH in supporting heme-dependent functions in yeast physiology.
Collapse
Affiliation(s)
| | - Rebecca Hu
- From the School of Chemistry and Biochemistry
| | - Hyojung Kim
- From the School of Chemistry and Biochemistry.,School of Biological Sciences, and
| | | | - Matthew P Torres
- School of Biological Sciences, and.,Parker Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332
| | - Amit R Reddi
- From the School of Chemistry and Biochemistry, .,Parker Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332
| |
Collapse
|
40
|
Kalahasthi R, Barman T. Assessment of Lead Exposure and Urinary-δ-aminolevulinic Acid Levels in Male Lead Acid Battery Workers in Tamil Nadu, India. J Health Pollut 2018; 8:6-13. [PMID: 30524844 PMCID: PMC6221436 DOI: 10.5696/2156-9614-8.17.6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Accepted: 12/22/2017] [Indexed: 06/09/2023]
Abstract
BACKGROUND Exposure to lead (Pb) affects multiple health outcomes and physiological systems. In adults, even small increases in blood Pb levels have been associated with decreased glomerular filtration rate, increased risk of hypertension and increased incidence of essential tremor. To date, there have been few Pb-exposure assessments using the United States Occupational Health and Safety Administration (OSHA) regulations. OBJECTIVE The aim of the present study was to assess Pb-exposure in terms of elevated blood lead levels (BLL) and urinary-δ-aminolevulinic acid (U-δ-ALA) levels of workers exposed to Pb in the lead acid battery industry in Tamil Nadu, India based on Pb exposure regulations set by the American Conference of Governmental Industrial Hygienists (ACGIH) and OSHA. MATERIALS AND METHODS BLLs and U-δ-ALA were estimated in 449 male workers exposed to Pb across ten different job categories in a lead acid battery factory. Worker BLLs were estimated using atomic absorption spectrophotometry and U-δ-ALA was estimated using spectrophotometry. RESULTS The Biological Exposure Index of the American Conference of Governmental Industrial Hygienists (BEI-ACGIH) were used to assess Pb exposure. BLLs <30 μg/dL were found in 63.5% of workers, and 36.5% of workers had BLLs>30 μg/dL. The present study also assessed Pb exposure using OSHA regulations and found that 83.3% of workers had BLLs <40 μg/dL and 16.7% of workers had BLLs>40 μg/dL. Among these workers, 0.7% of workers had BLLs >60 μg/dL. An excessive excretion of U-δ-ALA (20-40 mg/L) was noted in pasting area workers (2.6%) followed by executives (2.2%) and assembly workers (0.9%). CONCLUSIONS Workers in the job categories of pasting and assembly, as well as executives, are at high risk of Pb exposure compared to other job categories. We recommend placing humidifiers on the roof and keeping a water bath closer the to plate cutting area to reduce fugitive Pb dust emissions. We recommended workers with BLLs >60 μg/dL be removed from jobs involving Pb exposure and return to work only when their BLLs are <40 μg/dL. PARTICIPANT CONSENT Obtained. ETHICS APPROVAL The study was approved by the ethics committee of the Regional Occupational Health Centre (Southern) Bengaluru, part of the National Institute of Occupational Health of India. COMPETING INTERESTS The authors declare no competing financial interests.
Collapse
Affiliation(s)
| | - Tapu Barman
- Regional Occupational Health Centre, (Southern) Bengaluru, Karnataka, India
| |
Collapse
|
41
|
Lead Affects Vitamin D Metabolism in Rats. Nutrients 2018; 10:nu10030264. [PMID: 29495376 PMCID: PMC5872682 DOI: 10.3390/nu10030264] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 02/19/2018] [Accepted: 02/22/2018] [Indexed: 12/23/2022] Open
Abstract
A negative association between blood lead and vitamin D concentrations has been reported, however, experimental data on the effect of lead (Pb) on vitamin D metabolism is scarce. We investigated the effects of Pb on serum vitamin D metabolites, vitamin D activating enzymes and vitamin D receptor (VDR) in rats. Newborn Wistar rat pups were exposed to 0.2% Pb-acetate via their dams’ drinking water from post-natal day (PND) 1 to 21 and directly in drinking water until PND30. Serum 25-hydroxyvitamin D was analyzed with LC-MS/MS and 1,25-dihydroxyvitamin D with an immunoassay. Tissue expression of vitamin D activating enzymes and VDR were measured by Western blot and immunohistochemistry. Serum 25-hydroxyvitamin D was significantly decreased at both PND21 and PND30, whereas 1,25-dihydroxyvitamin D was decreased (p < 0.05) only at PND21 in the Pb-exposed rats. Expression of renal 1-α-hydroxylase was decreased by Pb only at PND21 (p < 0.05) but the brain 1-α-hydroxylase was not affected. Hepatic 25-hydroxylase expression was significantly decreased at PND21 but significantly increased at PND30 by Pb exposure. VDR expression in the brain was increased at both PND21 and PND30 (p < 0.05). These results suggest that Pb interferes with vitamin D metabolism by affecting the expression of its metabolizing enzymes.
Collapse
|
42
|
The Effect of a Short-Term Exposure to Lead on the Levels of Essential Metal Ions, Selected Proteins Related to Them, and Oxidative Stress Parameters in Humans. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:8763793. [PMID: 29387295 PMCID: PMC5745737 DOI: 10.1155/2017/8763793] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 10/07/2017] [Accepted: 11/13/2017] [Indexed: 01/01/2023]
Abstract
The present study was designed to explore the possible influence of subacute exposure to lead on the levels of selected essential metals, selected proteins related to them, and oxidative stress parameters in occupationally exposed workers. The study population included 36 males occupationally exposed to lead for 36 to 44 days. Their blood lead level at the beginning of the study was 10.7 ± 7.67 μg/dl and increased to the level of 49.1 ± 14.1 μg/dl at the end of the study. The levels of calcium, magnesium, and zinc increased significantly after lead exposure compared to baseline by 3%, 3%, and 8%, respectively, while the level of copper decreased significantly by 7%. The malondialdehyde (MDA) level and the activities of catalase (CAT) and superoxide dismutase (SOD) did not change due to lead exposure. However, the level of lipid hydroperoxides (LPH) in serum increased significantly by 46%, while the level of erythrocyte lipofuscin (LPS) decreased by 13%. The serum levels of essential metals are modified by a short-term exposure to lead in occupationally exposed workers. A short-term exposure to lead induces oxidative stress associated with elevated levels of LPH but not MDA.
Collapse
|
43
|
Alvarez-Ortega N, Caballero-Gallardo K, Olivero-Verbel J. Low blood lead levels impair intellectual and hematological function in children from Cartagena, Caribbean coast of Colombia. J Trace Elem Med Biol 2017; 44:233-240. [PMID: 28965581 DOI: 10.1016/j.jtemb.2017.08.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 07/25/2017] [Accepted: 08/07/2017] [Indexed: 02/08/2023]
Abstract
Lead produces numerous biochemical and physiological changes in humans, including hematological disorders, toxic effects on the central nervous system and in the function of several organs. The aim of this study was to determine blood lead levels (BLL) in children from Cartagena, Colombia, associating those with hematological and liver damage markers, the intelligence quotient (IQ), as well as with gene expression of the aminolevulinate dehydratase (ALAD), superoxide dismutase 1 (SOD1), gamma interferon (INF-γ), tumor necrosis factor (TNF) and tumor protein (p53). To achieve this purpose, 118 blood samples were collected from children 5-16 years old, with their respective informed consent from their parents. BLL was measured by atomic absorption; hematological parameters were obtained with automated systems; plasma was utilized to analyze hepatic toxicity markers, alanine aminotransferase (ALT), gamma-glutamyltransferase (γ-GT) and alkaline phosphatase (ALP); the Kaufman Brief Intelligence Test (K-BIT) was administered to measure the IQ; and gene expression was quantified from blood RNA. The mean BLL was 1.7±0.3μg/dL. A low proportion of the children (3.4%) had BLL above the CDC recommended limit (5μg/dL). BLL were correlated weakly, but negatively with child age, weight, height, body mass index, platelets wide distribution, mean platelet volume, γ-GT and IQ. There were not significant changes in the expression of evaluated genes. These results support the hypothesis that BLL below 5μg/dL may still be a detrimental factor on children's cognitive abilities, development and hematology, in line with recent concerns that there is no safe level of pediatric lead exposure.
Collapse
Affiliation(s)
- Neda Alvarez-Ortega
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena 130015, Colombia
| | - Karina Caballero-Gallardo
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena 130015, Colombia
| | - Jesus Olivero-Verbel
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena 130015, Colombia.
| |
Collapse
|
44
|
Gomes WR, Devóz PP, Araújo ML, Batista BL, Barbosa F, Barcelos GRM. Milk and Dairy Products Intake Is Associated with Low Levels of Lead (Pb) in Workers highly Exposed to the Metal. Biol Trace Elem Res 2017; 178:29-35. [PMID: 27988825 DOI: 10.1007/s12011-016-0913-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 12/07/2016] [Indexed: 02/07/2023]
Abstract
Lead (Pb) is a toxic metal, frequently associated with occupational exposure, due to its widespread use in industry and several studies have shown high Pb levels in workers occupationally exposed to the metal. The aim of this study was to evaluate the influence of milk and dairy products (MDP) on Pb levels in blood (B-Pb), plasma (P-Pb), and urine (U-Pb), in workers from automotive battery industries in Brazil. The study included 237 male workers; information concerning diet and lifestyle were gathered through a questionnaire, and B-Pb, P-Pb, and U-Pb were determined by ICP-MS. Mean B-Pb, P-Pb, and U-Pb were 21 ± 12, 0.62 ± 0.73 μg/dL, and 39 ± 47 μg/g creatinine, respectively. Forty three percent of participants declared consuming ≤3 portions/week of MDP (classified as low-MDP intake), while 57% of individuals had >3portions/week of MDP (high-MDP intake). B-Pb and P-Pb were correlated with working time (r s = 0.21; r s = 0.20; p < 0.010). Multivariable linear regressions showed a significant influence of MDP intake on B-Pb (β = -0.10; p = 0.012) and P-Pb (β = -0.16; p < 0.010), while no significance was seen on U-Pb. Our results suggest that MDP consumption may modulate Pb levels in individuals highly exposed to the metal; these findings may be due to the Pb-Ca interactions, since the adverse effects of Pb are partially based on its interference with Ca metabolism and proper Ca supplementation may help to reduce the adverse health effects induced by Pb exposure.
Collapse
Affiliation(s)
- Willian Robert Gomes
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café s/n°, CEP, Ribeirão Preto, 14040-903, Brazil
| | - Paula Pícoli Devóz
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café s/n°, CEP, Ribeirão Preto, 14040-903, Brazil
| | - Marília Ladeira Araújo
- Department of Dermatology, School of Medicine, University of São Paulo, Avenida Dr. Eneas de Carvalho Aguiar 470, São Paulo, Brazil
| | - Bruno Lemos Batista
- Center of Natural and Human Sciences, Federal University of ABC, Avenida dos Estados, 5001, Santo André, CEP 09210-580, Brazil
| | - Fernando Barbosa
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café s/n°, CEP, Ribeirão Preto, 14040-903, Brazil
| | - Gustavo Rafael Mazzaron Barcelos
- Department of Biosciences, Institute of Health and Society, Federal University of São Paulo, Rua Silva Jardim, 136, Santos, CEP: 11015-020, Brazil.
| |
Collapse
|
45
|
Weng CH, Hsu CW, Hu CC, Yen TH, Chan MJ, Huang WH. Blood lead level is a positive predictor of uremic pruritus in patients undergoing hemodialysis. Ther Clin Risk Manag 2017; 13:717-723. [PMID: 28652758 PMCID: PMC5476754 DOI: 10.2147/tcrm.s135470] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Although uremic pruritus (UP) is a common and annoying symptom for end-stage renal disease patients on hemodialysis (HD) and peritoneal dialysis, its pathogenesis is poorly understood. However, systemic inflammation is one of the possible pathogenesis of UP, and blood lead level (BLL) has been noted to be associated with inflammation and nutritional status in long-term HD patients. There might be an interaction or association, therefore, between BLL and UP through systemic inflammation. We analyzed cross-sectional data among 866 participants. All of the 866 patients in this study were stratified into groups with low-normal (<10 μg/dL), high-normal (10-20 μg/dL), and abnormal BLLs (>20 μg/dL). The associations between UP and BLL and the clinical data were analyzed. Multivariate logistic regression demonstrated that HD duration, non-anuria, log ferritin, serum low-density lipoprotein, log BLL, high-normal BLL, and high BLL were associated with UP. In conclusion, BLL was positively associated with UP.
Collapse
Affiliation(s)
- Cheng-Hao Weng
- Department of Nephrology and Division of Clinical Toxicology, Chang Gung Memorial Hospital, Linkou Medical Center.,Department of Medicine, Chang Gung University College of Medicine, Taoyuan
| | - Ching-Wei Hsu
- Department of Nephrology and Division of Clinical Toxicology, Chang Gung Memorial Hospital, Linkou Medical Center.,Department of Medicine, Chang Gung University College of Medicine, Taoyuan
| | - Ching-Chih Hu
- Department of Medicine, Chang Gung University College of Medicine, Taoyuan.,Department of Hepatogastroenterology and Liver Research Unit, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Tzung-Hai Yen
- Department of Nephrology and Division of Clinical Toxicology, Chang Gung Memorial Hospital, Linkou Medical Center.,Department of Medicine, Chang Gung University College of Medicine, Taoyuan
| | - Ming-Jen Chan
- Department of Nephrology and Division of Clinical Toxicology, Chang Gung Memorial Hospital, Linkou Medical Center.,Department of Medicine, Chang Gung University College of Medicine, Taoyuan
| | - Wen-Hung Huang
- Department of Nephrology and Division of Clinical Toxicology, Chang Gung Memorial Hospital, Linkou Medical Center.,Department of Medicine, Chang Gung University College of Medicine, Taoyuan
| |
Collapse
|
46
|
Kalahasthi R, Barman T. Effect of Lead Exposure on the Status of Reticulocyte Count Indices among Workers from Lead Battery Manufacturing Plant. Toxicol Res 2016; 32:281-287. [PMID: 27818730 PMCID: PMC5080849 DOI: 10.5487/tr.2016.32.4.281] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 05/18/2016] [Accepted: 06/01/2016] [Indexed: 11/20/2022] Open
Abstract
Earlier studies conducted on lead-exposed workers have determined the reticulocyte count (RC) (%), but the parameters of Absolute Reticulocyte Count (ARC), Reticulocyte Index (RI), and Reticulocyte Production Index (RPI) were not reported. This study assessed the effect of lead (Pb) exposure on the status of reticulocyte count indices in workers occupied in lead battery plants. The present cross-sectional study was carried out on 391 male lead battery workers. The blood lead levels (BLL) were determined by using an Atomic Absorption Spectrophotometer. The RC (%) was estimated by using the supravital staining method. The parameters, such as ARC, RI, and RPI, were calculated by using the RC (%) with the red cell indices (RBC count and hematocrit). The levels of RBC count and hematocrit were determined by using an ABX Micros ES-60 hematology analyzer. The levels of reticulocyte count indices - RC (%), ARC, RI, and RPI significantly increased with elevated BLL. The association between BLL and reticulocyte count indices was positive and significant. The results of linear multiple regression analysis showed that the reticulocyte count (β = 0.212, P < 0.001), ARC (β = 0.217, P < 0.001), RI (β = 0.194, P < 0.001), and RPI (β = 0.208, P < 0.001) were positively associated with BLL. The variable, smoking habits, showed a significant positive association with reticulocyte count indices: RC (%) (β = 0.188, P < 0.001), ARC (β = 0.174, P < 0.001), RI (β = 0.200, P < 0.001), and RPI (β = 0.151, P < 0.005). The study results revealed that lead exposure may cause reticulocytosis with an increase of reticulocyte count indices.
Collapse
Affiliation(s)
- Ravibabu Kalahasthi
- Regional Occupational Health Centre (Southern), ICMR Complex, Pojanahalli Road, Devanahalli, Bangalore,
India
| | - Tapu Barman
- Regional Occupational Health Centre (Southern), ICMR Complex, Pojanahalli Road, Devanahalli, Bangalore,
India
| |
Collapse
|
47
|
Yuan G, Dai S, Yin Z, Lu H, Jia R, Xu J, Song X, Li L, Shu Y, Zhao X. Toxicological assessment of combined lead and cadmium: acute and sub-chronic toxicity study in rats. Food Chem Toxicol 2014; 65:260-8. [PMID: 24394482 DOI: 10.1016/j.fct.2013.12.041] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 11/30/2013] [Accepted: 12/13/2013] [Indexed: 01/18/2023]
Abstract
The exposure to chemical mixtures is a common and important determinant of toxicity and receives concern for their introduction by inhalation and ingestion. However, few in vivo mixture studies have been conducted to understand the health effects of chemical mixtures compared with single chemicals. In this study, the acute and 90day sub-chronic toxicity tests of combined Pb and Cd were conducted. In the acute toxicity test, the LD50 value of Pb(NO3)2 and CdCl2 mixture by the oral route was 2696.54mg/kg by Bliss method. The sub-chronic treatment revealed that the low-dose combination of Pb and Cd exposures can significantly change the physiological and biochemical parameters of the blood of Sprague-Dawley (SD) rats with dose-response relationship and causes microcytic hypochromic anemia and the damages of liver and kidney of the SD rats to various degrees. Histopathological exams showed that the target organs of Pb and Cd were testicle, liver, and kidneys. These observations suggest that Pb and Cd are practically additive-toxic for the SD rats in oral acute toxicity studies. The lowest observed adverse-effect level in rats may be lower than a dose of 29.96mg/(kgbwday) when administered orally for 90 consecutive days.
Collapse
Affiliation(s)
- Guiping Yuan
- Analytical & Testing Center, Sichuan University, Chengdu 610065, China
| | - Shujun Dai
- Analytical & Testing Center, Sichuan University, Chengdu 610065, China; College of Veterinary Medicine, Sichuan Agricultural University, Ya'an 625014, China
| | - Zhongqiong Yin
- College of Veterinary Medicine, Sichuan Agricultural University, Ya'an 625014, China.
| | - Hongke Lu
- College of Veterinary Medicine, Sichuan Agricultural University, Ya'an 625014, China
| | - Renyong Jia
- College of Veterinary Medicine, Sichuan Agricultural University, Ya'an 625014, China
| | - Jiao Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Ya'an 625014, China
| | - Xu Song
- College of Veterinary Medicine, Sichuan Agricultural University, Ya'an 625014, China
| | - Li Li
- College of Veterinary Medicine, Sichuan Agricultural University, Ya'an 625014, China
| | - Yang Shu
- College of Veterinary Medicine, Sichuan Agricultural University, Ya'an 625014, China
| | - Xinghong Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, Ya'an 625014, China
| |
Collapse
|