1
|
Reilly J, Shain C, Borghesani V, Kuhnke P, Vigliocco G, Peelle JE, Mahon BZ, Buxbaum LJ, Majid A, Brysbaert M, Borghi AM, De Deyne S, Dove G, Papeo L, Pexman PM, Poeppel D, Lupyan G, Boggio P, Hickok G, Gwilliams L, Fernandino L, Mirman D, Chrysikou EG, Sandberg CW, Crutch SJ, Pylkkänen L, Yee E, Jackson RL, Rodd JM, Bedny M, Connell L, Kiefer M, Kemmerer D, de Zubicaray G, Jefferies E, Lynott D, Siew CSQ, Desai RH, McRae K, Diaz MT, Bolognesi M, Fedorenko E, Kiran S, Montefinese M, Binder JR, Yap MJ, Hartwigsen G, Cantlon J, Bi Y, Hoffman P, Garcea FE, Vinson D. What we mean when we say semantic: Toward a multidisciplinary semantic glossary. Psychon Bull Rev 2025; 32:243-280. [PMID: 39231896 DOI: 10.3758/s13423-024-02556-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2024] [Indexed: 09/06/2024]
Abstract
Tulving characterized semantic memory as a vast repository of meaning that underlies language and many other cognitive processes. This perspective on lexical and conceptual knowledge galvanized a new era of research undertaken by numerous fields, each with their own idiosyncratic methods and terminology. For example, "concept" has different meanings in philosophy, linguistics, and psychology. As such, many fundamental constructs used to delineate semantic theories remain underspecified and/or opaque. Weak construct specificity is among the leading causes of the replication crisis now facing psychology and related fields. Term ambiguity hinders cross-disciplinary communication, falsifiability, and incremental theory-building. Numerous cognitive subdisciplines (e.g., vision, affective neuroscience) have recently addressed these limitations via the development of consensus-based guidelines and definitions. The project to follow represents our effort to produce a multidisciplinary semantic glossary consisting of succinct definitions, background, principled dissenting views, ratings of agreement, and subjective confidence for 17 target constructs (e.g., abstractness, abstraction, concreteness, concept, embodied cognition, event semantics, lexical-semantic, modality, representation, semantic control, semantic feature, simulation, semantic distance, semantic dimension). We discuss potential benefits and pitfalls (e.g., implicit bias, prescriptiveness) of these efforts to specify a common nomenclature that other researchers might index in specifying their own theoretical perspectives (e.g., They said X, but I mean Y).
Collapse
Affiliation(s)
| | - Cory Shain
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Philipp Kuhnke
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Leipzig University, Leipzig, Germany
| | | | | | | | - Laurel J Buxbaum
- Thomas Jefferson University, Moss Rehabilitation Research Institute, Elkins Park, PA, USA
| | | | | | | | | | - Guy Dove
- University of Louisville, Louisville, KY, USA
| | - Liuba Papeo
- Centre National de La Recherche Scientifique (CNRS), University Claude-Bernard Lyon, Lyon, France
| | | | | | | | - Paulo Boggio
- Universidade Presbiteriana Mackenzie, São Paulo, Brazil
| | | | | | | | | | | | | | | | | | - Eiling Yee
- University of Connecticut, Storrs, CT, USA
| | | | | | | | | | | | | | | | | | | | | | | | - Ken McRae
- Western University, London, ON, Canada
| | | | | | | | | | | | | | - Melvin J Yap
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- National University of Singapore, Singapore, Singapore
| | - Gesa Hartwigsen
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Leipzig University, Leipzig, Germany
| | | | - Yanchao Bi
- University of Edinburgh, Edinburgh, UK
- Beijing Normal University, Beijing, China
| | | | | | | |
Collapse
|
2
|
Stilling J, Kim JH, Cust S, Keser Z, Murter JL, Tippet DC, Hillis AE, Sebastian R. Cerebello-Cerebral Resting-State Functional Connectivity in Poststroke Aphasia. Brain Connect 2024. [PMID: 39531223 DOI: 10.1089/brain.2023.0087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
Introduction: The influence of the cerebellum in poststroke aphasia recovery is poorly understood. Despite the right cerebellum being identified as a critical region involved in both language and cognitive functions, little is known about functional connections between the cerebellum and bilateral cortical hemispheres following stroke. This study investigated the relationship between chronic poststroke naming deficits and cerebello-cerebral resting-state functional connectivity (FC). Methods: Twenty-five cognitively normal participants and 42 participants with chronic poststroke aphasia underwent resting-state functional magnetic resonance imaging. Participants with aphasia also underwent language assessment. We conducted regions of interest (ROI)-to-ROI analyses to investigate the FC between the right cerebellar Crus I/II (seed ROI; Cereb1r/Cereb2r) and bilateral cortical language regions and compared these results to cognitively normal controls. Single-subject connectivity parameters were extracted and used as independent variables in a stepwise multiple linear regression model associating Boston Naming Test (BNT) score with FC measures. Results: FC analyses demonstrated correlations between the right cerebellar Crus I/II and both left and right cortical regions for both cognitively normal controls and stroke participants. Additionally, aphasia severity and lesion load had an effect on the cerebello-cerebral network connectivity in participants with aphasia. In a stepwise multiple linear regression, controlling for aphasia severity, time poststroke and lesion load, FC between the right Cereb2-left Cereb1 (standardized beta [std B]= -0.255, p < 0.004), right Cereb2-right anterior MTG (std B = 0.259, p < 0.004), and the right Cereb2-left anterior STG (std B = -0.208, p < 0.018) were significant predictors of BNT score. The overall model fit was R2 = 0.786 (p = 0.001). Conclusion: Functional connections between the right cerebellum and residual bilateral cerebral hemisphere regions may play a role in predicting naming ability in poststroke aphasia.
Collapse
Affiliation(s)
- Joan Stilling
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Rehabilitation Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Ji Hyun Kim
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sarah Cust
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Zafer Keser
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Jamie L Murter
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Donna C Tippet
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Otolaryngology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Argye E Hillis
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Cognitive Science, Johns Hopkins University, Baltimore, Maryland, USA
| | - Rajani Sebastian
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
3
|
Fan T, Decker W, Schneider J. The Domain-Specific Neural Basis of Auditory Statistical Learning in 5-7-Year-Old Children. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2024; 5:981-1007. [PMID: 39483699 PMCID: PMC11527419 DOI: 10.1162/nol_a_00156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 08/17/2024] [Indexed: 11/03/2024]
Abstract
Statistical learning (SL) is the ability to rapidly track statistical regularities and learn patterns in the environment. Recent studies show that SL is constrained by domain-specific features, rather than being a uniform learning mechanism across domains and modalities. This domain-specificity has been reflected at the neural level, as SL occurs in regions primarily involved in processing of specific modalities or domains of input. However, our understanding of how SL is constrained by domain-specific features in the developing brain is severely lacking. The present study aims to identify the functional neural profiles of auditory SL of linguistic and nonlinguistic regularities among children. Thirty children between 5 and 7 years old completed an auditory fMRI SL task containing interwoven sequences of structured and random syllable/tone sequences. Using traditional group univariate analyses and a group-constrained subject-specific analysis, frontal and temporal cortices showed significant activation when processing structured versus random sequences across both linguistic and nonlinguistic domains. However, conjunction analyses failed to identify overlapping neural indices across domains. These findings are the first to compare brain regions supporting SL of linguistic and nonlinguistic regularities in the developing brain and indicate that auditory SL among developing children may be constrained by domain-specific features.
Collapse
Affiliation(s)
- Tengwen Fan
- Department of Communications Sciences and Disorders, Louisiana State University, Baton Rouge, LA, USA
| | - Will Decker
- Department of Communications Sciences and Disorders, Louisiana State University, Baton Rouge, LA, USA
- Department of Psychology, Georgia Tech University, Atlanta, GA, USA
| | - Julie Schneider
- Department of Communications Sciences and Disorders, Louisiana State University, Baton Rouge, LA, USA
- School of Education and Information Studies, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
4
|
Gracia-Tabuenca Z, Barbeau EB, Kousaie S, Chen JK, Chai X, Klein D. Enhanced efficiency in the bilingual brain through the inter-hemispheric cortico-cerebellar pathway in early second language acquisition. Commun Biol 2024; 7:1298. [PMID: 39390147 PMCID: PMC11467263 DOI: 10.1038/s42003-024-06965-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 09/25/2024] [Indexed: 10/12/2024] Open
Abstract
Bilingualism has a profound impact on the structure and function of the brain, but it is not yet well understood how this experience influences brain functional organization. We examine a large sample (151 participants) of monolinguals and bilinguals with varied age of second language acquisition, who underwent resting-state functional magnetic brain imaging. Whole-brain network analyses reveal higher global efficiency in bilingual individuals than monolinguals, indicating enhanced functional integration in the bilingual brain. Moreover, the age at which the second language was acquired correlated with this increased efficiency, suggesting that earlier exposure to a second language has lasting positive effects on brain functional organization. Further investigation using the network-based statistics approach indicates that this effect is primarily driven by heightened functional connectivity between association networks and the cerebellum. These findings show that the timing of bilingual learning experience alters the brain functional organization at both global and local levels.
Collapse
Affiliation(s)
- Zeus Gracia-Tabuenca
- Department of Statistical Methods, University of Zaragoza, Zaragoza, Aragón, Spain.
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.
| | - Elise B Barbeau
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Shanna Kousaie
- School of Psychology, University of Ottawa, Ottawa, ON, Canada
| | - Jen-Kai Chen
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Xiaoqian Chai
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Denise Klein
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.
| |
Collapse
|
5
|
Jobson KR, Hoffman LJ, Metoki A, Popal H, Dick AS, Reilly J, Olson IR. Language and the Cerebellum: Structural Connectivity to the Eloquent Brain. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2024; 5:652-675. [PMID: 39175788 PMCID: PMC11338303 DOI: 10.1162/nol_a_00085] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 10/10/2022] [Indexed: 08/24/2024]
Abstract
Neurobiological models of receptive language have focused on the left-hemisphere perisylvian cortex with the assumption that the cerebellum supports peri-linguistic cognitive processes such as verbal working memory. The goal of this study was to identify language-sensitive regions of the cerebellum then map the structural connectivity profile of these regions. Functional imaging data and diffusion-weighted imaging data from the Human Connectome Project (HCP) were analyzed. We found that (a) working memory, motor activity, and language comprehension activated partially overlapping but mostly unique subregions of the cerebellum; (b) the linguistic portion of the cerebello-thalamo-cortical circuit was more extensive than the linguistic portion of the cortico-ponto-cerebellar tract; (c) there was a frontal-lobe bias in the connectivity from the cerebellum to the cerebrum; (d) there was some degree of specificity; and (e) for some cerebellar tracts, individual differences in picture identification ability covaried with fractional anisotropy metrics. These findings yield insights into the structural connectivity of the cerebellum as relates to the uniquely human process of language comprehension.
Collapse
Affiliation(s)
- Katie R. Jobson
- Department of Psychology, Temple University, Philadelphia, Pennsylvania, USA
| | - Linda J. Hoffman
- Department of Psychology, Temple University, Philadelphia, Pennsylvania, USA
| | - Athanasia Metoki
- Department of Neurology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Haroon Popal
- Department of Psychology, Temple University, Philadelphia, Pennsylvania, USA
| | - Anthony S. Dick
- Department of Psychology, Florida International University, Miami, Florida, USA
| | - Jamie Reilly
- Department of Psychology, Temple University, Philadelphia, Pennsylvania, USA
- Department of Speech and Language Sciences, Temple University, Philadelphia, Pennsylvania, USA
| | - Ingrid R. Olson
- Department of Psychology, Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
6
|
Fiez JA, Stoodley CJ. Small but Mighty: Ten Myths and Misunderstandings About the Cerebellum. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2024; 5:628-634. [PMID: 39175784 PMCID: PMC11338294 DOI: 10.1162/nol_e_00152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Affiliation(s)
- Julie A. Fiez
- Departments of Psychology, Neuroscience, and Communication Science and Disorders, Learning Research and Development Center, Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
| | - Catherine J. Stoodley
- Developing Brain Institute and Center for Prenatal, Neonatal and Maternal Health Research, Children’s National Hospital, Washington DC, USA
- Departments of Neuroscience and Pediatrics, The George Washington School of Medicine and Health Sciences, Washington, DC, USA
| |
Collapse
|
7
|
Mechtenberg H, Heffner CC, Myers EB, Guediche S. The Cerebellum Is Sensitive to the Lexical Properties of Words During Spoken Language Comprehension. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2024; 5:757-773. [PMID: 39175786 PMCID: PMC11338305 DOI: 10.1162/nol_a_00126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 10/30/2023] [Indexed: 08/24/2024]
Abstract
Over the past few decades, research into the function of the cerebellum has expanded far beyond the motor domain. A growing number of studies are probing the role of specific cerebellar subregions, such as Crus I and Crus II, in higher-order cognitive functions including receptive language processing. In the current fMRI study, we show evidence for the cerebellum's sensitivity to variation in two well-studied psycholinguistic properties of words-lexical frequency and phonological neighborhood density-during passive, continuous listening of a podcast. To determine whether, and how, activity in the cerebellum correlates with these lexical properties, we modeled each word separately using an amplitude-modulated regressor, time-locked to the onset of each word. At the group level, significant effects of both lexical properties landed in expected cerebellar subregions: Crus I and Crus II. The BOLD signal correlated with variation in each lexical property, consistent with both language-specific and domain-general mechanisms. Activation patterns at the individual level also showed that effects of phonological neighborhood and lexical frequency landed in Crus I and Crus II as the most probable sites, though there was activation seen in other lobules (especially for frequency). Although the exact cerebellar mechanisms used during speech and language processing are not yet evident, these findings highlight the cerebellum's role in word-level processing during continuous listening.
Collapse
Affiliation(s)
- Hannah Mechtenberg
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, USA
| | - Christopher C. Heffner
- Department of Communicative Sciences and Disorders, University at Buffalo, Buffalo, NY, USA
| | - Emily B. Myers
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, USA
- Department of Speech, Language and Hearing Sciences, University of Connecticut, Storrs, CT, USA
| | - Sara Guediche
- College of Science and Mathematics, Augusta University, Augusta, GA, USA
| |
Collapse
|
8
|
Parker Jones O, Geva S, Prejawa S, Hope TMH, Oberhuber M, Seghier ML, Green DW, Price CJ. Dissociating Cerebellar Regions Involved in Formulating and Articulating Words and Sentences. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2024; 5:795-817. [PMID: 39175783 PMCID: PMC11338308 DOI: 10.1162/nol_a_00148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 06/03/2024] [Indexed: 08/24/2024]
Abstract
We investigated which parts of the cerebellum are involved in formulating and articulating sentences using (i) a sentence production task that involved describing simple events in pictures; (ii) an auditory sentence repetition task involving the same sentence articulation but not sentence formulation; and (iii) an auditory sentence-to-picture matching task that involved the same pictorial events and no overt articulation. Activation for each of these tasks was compared to the equivalent word processing tasks: noun production, verb production, auditory noun repetition, and auditory noun-to-picture matching. We associate activation in bilateral cerebellum lobule VIIb with sequencing words into sentences because it increased for sentence production compared to all other conditions and was also activated by word production compared to word matching. We associate a paravermal part of right cerebellar lobule VIIIb with overt motor execution of speech, because activation was higher during (i) production and repetition of sentences compared to the corresponding noun conditions and (ii) noun and verb production compared to all matching tasks, with no activation relative to fixation during any silent (nonspeaking) matching task. We associate activation within right cerebellar Crus II with covert articulatory activity because it activated for (i) all speech production more than matching tasks and (ii) sentences compared to nouns during silent (nonspeaking) matching as well as sentence production and sentence repetition. Our study serendipitously segregated, for the first time, three distinct functional roles for the cerebellum in generic speech production, and it demonstrated how sentence production enhanced the demands on these cerebellar regions.
Collapse
Affiliation(s)
- Oiwi Parker Jones
- Wellcome Centre for Human Neuroimaging, University College London, London, UK
- Department of Engineering Science, University of Oxford, Oxford, UK
- Jesus College, University of Oxford, Oxford, UK
| | - Sharon Geva
- Wellcome Centre for Human Neuroimaging, University College London, London, UK
- Centre for Mind and Behaviour, Anglia Ruskin University, Cambridge, UK
| | - Susan Prejawa
- Wellcome Centre for Human Neuroimaging, University College London, London, UK
| | - Thomas M. H. Hope
- Wellcome Centre for Human Neuroimaging, University College London, London, UK
| | - Marion Oberhuber
- Wellcome Centre for Human Neuroimaging, University College London, London, UK
| | - Mohamed L. Seghier
- Healthcare Engineering Innovation Center (HEIC), Biomedical Engineering Department, Khalifa University of Science and Technology, Abu Dhabi, UAE
| | - David W. Green
- Experimental Psychology, University College London, London, UK
| | - Cathy J. Price
- Wellcome Centre for Human Neuroimaging, University College London, London, UK
| |
Collapse
|
9
|
Berlijn AM, Huvermann DM, Schneider S, Bellebaum C, Timmann D, Minnerop M, Peterburs J. The Role of the Human Cerebellum for Learning from and Processing of External Feedback in Non-Motor Learning: A Systematic Review. CEREBELLUM (LONDON, ENGLAND) 2024; 23:1532-1551. [PMID: 38379034 PMCID: PMC11269477 DOI: 10.1007/s12311-024-01669-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/07/2024] [Indexed: 02/22/2024]
Abstract
This review aimed to systematically identify and comprehensively review the role of the cerebellum in performance monitoring, focusing on learning from and on processing of external feedback in non-motor learning. While 1078 articles were screened for eligibility, ultimately 36 studies were included in which external feedback was delivered in cognitive tasks and which referenced the cerebellum. These included studies in patient populations with cerebellar damage and studies in healthy subjects applying neuroimaging. Learning performance in patients with different cerebellar diseases was heterogeneous, with only about half of all patients showing alterations. One patient study using EEG demonstrated that damage to the cerebellum was associated with altered neural processing of external feedback. Studies assessing brain activity with task-based fMRI or PET and one resting-state functional imaging study that investigated connectivity changes following feedback-based learning in healthy participants revealed involvement particularly of lateral and posterior cerebellar regions in processing of and learning from external feedback. Cerebellar involvement was found at different stages, e.g., during feedback anticipation and following the onset of the feedback stimuli, substantiating the cerebellum's relevance for different aspects of performance monitoring such as feedback prediction. Future research will need to further elucidate precisely how, where, and when the cerebellum modulates the prediction and processing of external feedback information, which cerebellar subregions are particularly relevant, and to what extent cerebellar diseases alter these processes.
Collapse
Affiliation(s)
- Adam M Berlijn
- Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty & University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany.
| | - Dana M Huvermann
- Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Department of Neurology and Center for Translational and Behavioral Neurosciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Sandra Schneider
- Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Christian Bellebaum
- Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Dagmar Timmann
- Department of Neurology and Center for Translational and Behavioral Neurosciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Martina Minnerop
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty & University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Department of Neurology, Center for Movement Disorders and Neuromodulation, Medical Faculty & Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Jutta Peterburs
- Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Systems Medicine and Department of Human Medicine, MSH Medical School Hamburg, Hamburg, Germany
| |
Collapse
|
10
|
Satoer D, Koudstaal PJ, Visch-Brink E, van der Giessen RS. Cerebellar-Induced Aphasia After Stroke: Evidence for the "Linguistic Cerebellum". CEREBELLUM (LONDON, ENGLAND) 2024; 23:1457-1465. [PMID: 38244134 PMCID: PMC11269354 DOI: 10.1007/s12311-024-01658-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/13/2024] [Indexed: 01/22/2024]
Abstract
The cerebellum is traditionally known to subserve motor functions. However, for several decades, the concept of the "cerebellar cognitive affective syndrome" has evolved. Studies in healthy participants and patients have confirmed the cerebellar role in language. The exact involvement of the cerebellum regarding cerebellar aphasia remains uncertain. We included 43 cerebellar stroke patients who were tested at 3 months post-onset with the Boston Naming Test (BNT), the Token Test (TT), and the Diagnostic Instrument for Mild Aphasia (DIMA). Lesion side (left/right) and volume (cm3) were investigated. Patients significantly deviated on the following: BNT (p<0.001), TT (p<0.05), DIMA subtests: sentences repetition (p=0.001), semantic odd-picture-out (p<0.05), sentence completion (p<0.05) without an effect of lesion location (left/right) or volume (cm3) (p>0.05). Our clinical study confirms a non-lateralized cerebellar aphasia post-stroke, characterized by impairments in word retrieval, phonology, semantics, and syntax resembling cerebral-induced aphasia. The integral cerebellum appears to interact with eloquent cortico-subcortical language areas.
Collapse
Affiliation(s)
- Djaina Satoer
- Department of Neurosurgery, Erasmus MC University Medical Center, Dr. Molewaterplein 40, room Na-2106, 3015, GD, Rotterdam, The Netherlands.
| | - Peter J Koudstaal
- Department of Neurology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Evy Visch-Brink
- Department of Neurosurgery, Erasmus MC University Medical Center, Dr. Molewaterplein 40, room Na-2106, 3015, GD, Rotterdam, The Netherlands
- Department of Neurology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | | |
Collapse
|
11
|
Nandakumar R, Shi X, Gu H, Kim Y, Raskind WH, Peter B, Dinu V. Joint exome and metabolome analysis in individuals with dyslexia: Evidence for associated dysregulations of olfactory perception and autoimmune functions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.27.600448. [PMID: 39005457 PMCID: PMC11244894 DOI: 10.1101/2024.06.27.600448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Dyslexia is a learning disability that negatively affects reading, writing, and spelling development at the word level in 5%-9% of children. The phenotype is variable and complex, involving several potential cognitive and physical concomitants such as sensory dysregulation and immunodeficiencies. The biological pathogenesis is not well-understood. Toward a better understanding of the biological drivers of dyslexia, we conducted the first joint exome and metabolome investigation in a pilot sample of 30 participants with dyslexia and 13 controls. In this analysis, eight metabolites of interest emerged (pyridoxine, kynurenic acid, citraconic acid, phosphocreatine, hippuric acid, xylitol, 2-deoxyuridine, and acetylcysteine). A metabolite-metabolite interaction analysis identified Krebs cycle intermediates that may be implicated in the development of dyslexia. Gene ontology analysis based on exome variants resulted in several pathways of interest, including the sensory perception of smell (olfactory) and immune system-related responses. In the joint exome and metabolite analysis, the olfactory transduction pathway emerged as the primary pathway of interest. Although the olfactory transduction and Krebs cycle pathways have not previously been described in dyslexia literature, these pathways have been implicated in other neurodevelopmental disorders including autism spectrum disorder and obsessive-compulsive disorder, suggesting the possibility of these pathways playing a role in dyslexia as well. Immune system response pathways, on the other hand, have been implicated in both dyslexia and other neurodevelopmental disorders.
Collapse
|
12
|
Coolen T, Mihai Dumitrescu A, Wens V, Bourguignon M, Rovai A, Sadeghi N, Urbain C, Goldman S, De Tiège X. Spectrotemporal cortical dynamics and semantic control during sentence completion. Clin Neurophysiol 2024; 163:90-101. [PMID: 38714152 DOI: 10.1016/j.clinph.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/27/2024] [Accepted: 04/14/2024] [Indexed: 05/09/2024]
Abstract
OBJECTIVE To investigate cortical oscillations during a sentence completion task (SC) using magnetoencephalography (MEG), focusing on the semantic control network (SCN), its leftward asymmetry, and the effects of semantic control load. METHODS Twenty right-handed adults underwent MEG while performing SC, consisting of low cloze (LC: multiple responses) and high cloze (HC: single response) stimuli. Spectrotemporal power modulations as event-related synchronizations (ERS) and desynchronizations (ERD) were analyzed: first, at the whole-brain level; second, in key SCN regions, posterior middle/inferior temporal gyri (pMTG/ITG) and inferior frontal gyri (IFG), under different semantic control loads. RESULTS Three cortical response patterns emerged: early (0-200 ms) theta-band occipital ERS; intermediate (200-700 ms) semantic network alpha/beta-band ERD; late (700-3000 ms) dorsal language stream alpha/beta/gamma-band ERD. Under high semantic control load (LC), pMTG/ITG showed prolonged left-sided engagement (ERD) and right-sided inhibition (ERS). Left IFG exhibited heightened late (2500-2550 ms) beta-band ERD with increased semantic control load (LC vs. HC). CONCLUSIONS SC involves distinct cortical responses and depends on the left IFG and asymmetric engagement of the pMTG/ITG for semantic control. SIGNIFICANCE Future use of SC in neuromagnetic preoperative language mapping and for understanding the pathophysiology of language disorders in neurological conditions.
Collapse
Affiliation(s)
- Tim Coolen
- Université Libre de Bruxelles (ULB), ULB Neuroscience Institute (UNI), Laboratoire de Neuroanatomie et Neuroimagerie Translationnelles (LN(2)T), Brussels, Belgium; Université Libre de Bruxelles, Hôpital Universitaire de Bruxelles (HUB), CUB Hôpital Erasme, Department of Radiology, Brussels, Belgium.
| | - Alexandru Mihai Dumitrescu
- Université Libre de Bruxelles (ULB), ULB Neuroscience Institute (UNI), Laboratoire de Neuroanatomie et Neuroimagerie Translationnelles (LN(2)T), Brussels, Belgium
| | - Vincent Wens
- Université Libre de Bruxelles (ULB), ULB Neuroscience Institute (UNI), Laboratoire de Neuroanatomie et Neuroimagerie Translationnelles (LN(2)T), Brussels, Belgium
| | - Mathieu Bourguignon
- Université Libre de Bruxelles (ULB), ULB Neuroscience Institute (UNI), Laboratoire de Neuroanatomie et Neuroimagerie Translationnelles (LN(2)T), Brussels, Belgium; Université Libre de Bruxelles (ULB), ULB Neuroscience Institute (UNI), Laboratory of Neurophysiology and Movement Biomechanics, Brussels, Belgium
| | - Antonin Rovai
- Université Libre de Bruxelles (ULB), ULB Neuroscience Institute (UNI), Laboratoire de Neuroanatomie et Neuroimagerie Translationnelles (LN(2)T), Brussels, Belgium
| | - Niloufar Sadeghi
- Université Libre de Bruxelles, Hôpital Universitaire de Bruxelles (HUB), CUB Hôpital Erasme, Department of Radiology, Brussels, Belgium
| | - Charline Urbain
- Université Libre de Bruxelles (ULB), ULB Neuroscience Institute (UNI), Laboratoire de Neuroanatomie et Neuroimagerie Translationnelles (LN(2)T), Brussels, Belgium; Université Libre de Bruxelles (ULB), ULB Neuroscience Institute (UNI), Centre for Research in Cognition and Neurosciences (CRCN), Neuropsychology and Functional Neuroimaging Research Unit (UR2NF), Brussels, Belgium
| | - Serge Goldman
- Université Libre de Bruxelles (ULB), ULB Neuroscience Institute (UNI), Laboratoire de Neuroanatomie et Neuroimagerie Translationnelles (LN(2)T), Brussels, Belgium
| | - Xavier De Tiège
- Université Libre de Bruxelles (ULB), ULB Neuroscience Institute (UNI), Laboratoire de Neuroanatomie et Neuroimagerie Translationnelles (LN(2)T), Brussels, Belgium
| |
Collapse
|
13
|
Yang M, Zhang Y, Zhang T, Zhou H, Ren J, Zhou D, Yang T. Altered dynamic functional connectivity of motor cerebellum with sensorimotor network and default mode network in juvenile myoclonic epilepsy. Front Neurol 2024; 15:1373125. [PMID: 38903166 PMCID: PMC11187336 DOI: 10.3389/fneur.2024.1373125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/21/2024] [Indexed: 06/22/2024] Open
Abstract
Objective To investigate whether changes occur in the dynamic functional connectivity (dFC) of motor cerebellum with cerebral cortex in juvenile myoclonic epilepsy (JME). Methods We adopted resting-state electroencephalography-functional magnetic resonance imaging (EEG-fMRI) and a sliding-window approach to explore the dFC of motor cerebellum with cortex in 36 JME patients compared with 30 and age-matched health controls (HCs). The motor cerebellum was divided into five lobules (I-V, VI, VIIb, VIIIa, and VIIIb). Additionally, correlation analyses were conducted between the variability of dFC and clinical variables in the Juvenile Myoclonic Epilepsy (JME) group, such as disease duration, age at disease onset, and frequency score of myoclonic seizures. Results Compared to HCs, the JME group presented increased dFC between the motor cerebellum with SMN and DMN. Specifically, connectivity between lobule VIIb and left precentral gyrus and right inferior parietal lobule (IPL); between lobule VIIIa and right inferior frontal gyrus (IFG) and left IPL; and between lobule VIIIb and left middle frontal gyrus (MFG), bilateral superior parietal gyrus (SPG), and left precuneus. In addition, within the JME group, the strength of dFC between lobule VIIIb and left precuneus was negatively (r = -0.424, p = 0.025, Bonferroni correction) related with the frequency score of myoclonic seizures. Conclusion In patients with JME, there is a functional dysregulation between the motor cerebellum with DMN and SMN, and the variability of dynamic functional connectivity may be closely associated with the occurrence of motor symptoms in JME.
Collapse
Affiliation(s)
- Menghan Yang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yingying Zhang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Tianyu Zhang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Huanyu Zhou
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jiechuan Ren
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Dong Zhou
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Tianhua Yang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
14
|
Magondo N, Meintjes EM, Warton FL, Little F, van der Kouwe AJW, Laughton B, Jankiewicz M, Holmes MJ. Distinct alterations in white matter properties and organization related to maternal treatment initiation in neonates exposed to HIV but uninfected. Sci Rep 2024; 14:8822. [PMID: 38627570 PMCID: PMC11021525 DOI: 10.1038/s41598-024-58339-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 03/27/2024] [Indexed: 04/19/2024] Open
Abstract
HIV exposed-uninfected (HEU) infants and children are at risk of developmental delays as compared to HIV uninfected unexposed (HUU) populations. The effects of exposure to in utero HIV and ART regimens on the HEU the developing brain are not well understood. In a cohort of 2-week-old newborns, we used diffusion tensor imaging (DTI) tractography and graph theory to examine the influence of HIV and ART exposure in utero on neonate white matter integrity and organisation. The cohort included HEU infants born to mothers who started ART before conception (HEUpre) and after conception (HEUpost), as well as HUU infants from the same community. We investigated HIV exposure and ART duration group differences in DTI metrics (fractional anisotropy (FA) and mean diffusivity (MD)) and graph measures across white matter. We found increased MD in white matter connections involving the thalamus and limbic system in the HEUpre group compared to HUU. We further identified reduced nodal efficiency in the basal ganglia. Within the HEUpost group, we observed reduced FA in cortical-subcortical and cerebellar connections as well as decreased transitivity in the hindbrain area compared to HUU. Overall, our analysis demonstrated distinct alterations in white matter integrity related to the timing of maternal ART initiation that influence regional brain network properties.
Collapse
Affiliation(s)
- Ndivhuwo Magondo
- Division of Biomedical Engineering, Department of Human Biology, Faculty of Health Sciences, Biomedical Engineering Research Centre, University of Cape Town, Cape Town, South Africa.
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa.
| | - Ernesta M Meintjes
- Division of Biomedical Engineering, Department of Human Biology, Faculty of Health Sciences, Biomedical Engineering Research Centre, University of Cape Town, Cape Town, South Africa.
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa.
- Cape Universities Body Imaging Centre, University of Cape Town, Cape Town, South Africa.
| | - Fleur L Warton
- Division of Biomedical Engineering, Department of Human Biology, Faculty of Health Sciences, Biomedical Engineering Research Centre, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Francesca Little
- Department of Statistical Sciences, University of Cape Town, Cape Town, South Africa
| | - Andre J W van der Kouwe
- Division of Biomedical Engineering, Department of Human Biology, Faculty of Health Sciences, Biomedical Engineering Research Centre, University of Cape Town, Cape Town, South Africa
- A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MI, USA
| | - Barbara Laughton
- Department of Paediatrics and Child Health and Tygerberg Children's Hospital, Faculty of Medicine and Health Sciences, Family Centre for Research with Ubuntu, Stellenbosch University, Stellenbosch, South Africa
| | - Marcin Jankiewicz
- Division of Biomedical Engineering, Department of Human Biology, Faculty of Health Sciences, Biomedical Engineering Research Centre, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Cape Universities Body Imaging Centre, University of Cape Town, Cape Town, South Africa
- ImageTech, Simon Fraser University, Surrey, BC, Canada
| | - Martha J Holmes
- Division of Biomedical Engineering, Department of Human Biology, Faculty of Health Sciences, Biomedical Engineering Research Centre, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
- ImageTech, Simon Fraser University, Surrey, BC, Canada
| |
Collapse
|
15
|
Radic R, Lukacova K, Baciak L, Hodova V, Kubikova L. The role of cerebellum in learned vocal communication in adult songbirds. Sci Rep 2024; 14:8168. [PMID: 38589482 PMCID: PMC11001874 DOI: 10.1038/s41598-024-58569-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 04/01/2024] [Indexed: 04/10/2024] Open
Abstract
Injury, tumors, ischemia, and lesions in the cerebellum show the involvement of this region in human speech. The association of the cerebellum with learned birdsong has only been identified recently. Cerebellar dysfunction in young songbirds causes learning disabilities, but its role in adult songbirds has not been established. The aim of this study was to investigate the role of the deep cerebellar nuclei (DCN) in adult birdsong. We created bilateral excitotoxic lesions in the DCN of adult male zebra finches (Taeniopygia guttata) and recorded their songs for up to 4 months. Using magnetic resonance imaging (MRI) and immunohistochemistry, we validated the lesion efficacy. We found that the song duration significantly increased from 14 weeks post-op; the increase in duration was caused by a greater number of introductory notes as well as a greater number of syllables sung after the introductory notes. On the other hand, the motif duration decreased from 8 weeks after DCN lesions were induced, which was due to faster singing of syllables, not changes in inter-syllable interval length. DCN lesions also caused a decrease in the fundamental frequency of syllables. In summary, we showed that DCN lesions influence the temporal and acoustic features of birdsong. These results suggest that the cerebellum influences singing in adult songbirds.
Collapse
Affiliation(s)
- Rebecca Radic
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, 840 05, Bratislava, Slovakia
| | - Kristina Lukacova
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, 840 05, Bratislava, Slovakia
| | - Ladislav Baciak
- Central Laboratories, Faculty of Chemical and Food Technology, Slovak University of Technology, 812 37, Bratislava, Slovakia
| | - Vladimira Hodova
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, 840 05, Bratislava, Slovakia
| | - Lubica Kubikova
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, 840 05, Bratislava, Slovakia.
| |
Collapse
|
16
|
Sendhilnathan N, Bostan AC, Strick PL, Goldberg ME. A cerebro-cerebellar network for learning visuomotor associations. Nat Commun 2024; 15:2519. [PMID: 38514616 PMCID: PMC10957870 DOI: 10.1038/s41467-024-46281-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/16/2024] [Indexed: 03/23/2024] Open
Abstract
Consensus is rapidly building to support a role for the cerebellum beyond motor function, but its contributions to non-motor learning remain poorly understood. Here, we provide behavioral, anatomical and computational evidence to demonstrate a causal role for the primate posterior lateral cerebellum in learning new visuomotor associations. Reversible inactivation of the posterior lateral cerebellum of male monkeys impeded the learning of new visuomotor associations, but had no effect on movement parameters, or on well-practiced performance of the same task. Using retrograde transneuronal transport of rabies virus, we identified a distinct cerebro-cerebellar network linking Purkinje cells in the posterior lateral cerebellum with a region of the prefrontal cortex that is critical in learning visuomotor associations. Together, these results demonstrate a causal role for the primate posterior lateral cerebellum in non-motor, reinforcement learning.
Collapse
Affiliation(s)
- Naveen Sendhilnathan
- Doctoral program in Neurobiology and Behavior, Columbia University, New York, NY, USA.
- Dept. of Neuroscience, Mahoney Center for Brain and Behavior Research, Zuckerman Mind, Brain, and Behavior Institute, Columbia University, New York, NY, USA.
| | - Andreea C Bostan
- Department of Neurobiology, Systems Neuroscience Center, and Brain Institute, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Peter L Strick
- Department of Neurobiology, Systems Neuroscience Center, and Brain Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michael E Goldberg
- Dept. of Neuroscience, Mahoney Center for Brain and Behavior Research, Zuckerman Mind, Brain, and Behavior Institute, Columbia University, New York, NY, USA
- Kavli Institute for Brain Science, Columbia University, New York, NY, USA
- Dept. of Neurology, Psychiatry, and Ophthalmology, Columbia University College of Physicians and Surgeons, New York, NY, USA
| |
Collapse
|
17
|
Morkovina O, Manukyan P, Sharapkova A. Picture naming test through the prism of cognitive neuroscience and linguistics: adapting the test for cerebellar tumor survivors-or pouring new wine in old sacks? Front Psychol 2024; 15:1332391. [PMID: 38566942 PMCID: PMC10985186 DOI: 10.3389/fpsyg.2024.1332391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/20/2024] [Indexed: 04/04/2024] Open
Abstract
A picture naming test (PNT) has long been regarded as an integral part of neuropsychological assessment. In current research and clinical practice, it serves a variety of purposes. PNTs are used to assess the severity of speech impairment in aphasia, monitor possible cognitive decline in aging patients with or without age-related neurodegenerative disorders, track language development in children and map eloquent brain areas to be spared during surgery. In research settings, picture naming tests provide an insight into the process of lexical retrieval in monolingual and bilingual speakers. However, while numerous advances have occurred in linguistics and neuroscience since the classic, most widespread PNTs were developed, few of them have found their way into test design. Consequently, despite the popularity of PNTs in clinical and research practice, their relevance and objectivity remain questionable. The present study provides an overview of literature where relevant criticisms and concerns have been expressed over the recent decades. It aims to determine whether there is a significant gap between conventional test design and the current understanding of the mechanisms underlying lexical retrieval by focusing on the parameters that have been experimentally proven to influence picture naming. We discuss here the implications of these findings for improving and facilitating test design within the picture naming paradigm. Subsequently, we highlight the importance of designing specialized tests with a particular target group in mind, so that test variables could be selected for cerebellar tumor survivors.
Collapse
Affiliation(s)
- Olga Morkovina
- Laboratory of Diagnostics and Advancing Cognitive Functions, Research Institute for Brain Development and Peak Performance, RUDN University, Moscow, Russia
- Department of English, Faculty of Computational Mathematics and Cybernetics, Lomonosov Moscow State University, Moscow, Russia
| | - Piruza Manukyan
- Laboratory of Diagnostics and Advancing Cognitive Functions, Research Institute for Brain Development and Peak Performance, RUDN University, Moscow, Russia
| | - Anastasia Sharapkova
- Laboratory of Diagnostics and Advancing Cognitive Functions, Research Institute for Brain Development and Peak Performance, RUDN University, Moscow, Russia
- Department of English Linguistics, Faculty of Philology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
18
|
Campbell T, Diuguid C, Vasaya S, Janda P, Vickers A. Mixed Aphasia Caused by Bilateral Cerebellar Infarcts: a Case Report. CEREBELLUM (LONDON, ENGLAND) 2024; 23:255-259. [PMID: 36690828 DOI: 10.1007/s12311-023-01521-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/16/2023] [Indexed: 01/25/2023]
Abstract
Although neuroanatomical and physiological understanding of the cerebellum has evolved over recent decades and continues to develop, there is much that remains to be expounded upon, especially with regard to nonmotor roles. Neurocognitive and language processing is one area where involvement of the cerebellum is no longer in question, but the extent and mechanism of this relationship have yet to be defined. For example, which of the cerebellar hemispheres is involved continues to be debated. We present a case wherein a thrombus in the basilar artery led to bihemispheric cerebellar strokes with profound mixed effects on the patient's language and cognition. To the authors' knowledge, this is the first reported case of bilateral cerebellar strokes resulting in a mixed aphasia reported in scientific literature. This demonstrates the importance of continued research into a model for cerebellar function and the clinical impact of lesions to various cerebellar regions.
Collapse
Affiliation(s)
- Taylor Campbell
- Valley Hospital Medical Center, Las Vegas, USA.
- Las Vegas Neurology Center, 2020 Wellness Way Ste. 300, Las Vegas, NV, 89106, USA.
| | - Christy Diuguid
- Kirk Kerkorian School of Medicine at University of Nevada Las Vegas, 1650 W Charleston Blvd, NV, 89016, Las Vegas, USA
| | - Sannah Vasaya
- Valley Hospital Medical Center, Las Vegas, USA
- Las Vegas Neurology Center, 2020 Wellness Way Ste. 300, Las Vegas, NV, 89106, USA
| | - Paul Janda
- Valley Hospital Medical Center, Las Vegas, USA
- Las Vegas Neurology Center, 2020 Wellness Way Ste. 300, Las Vegas, NV, 89106, USA
- Neurology, Touro University Nevada, Henderson, USA
| | - Aroucha Vickers
- Valley Hospital Medical Center, Las Vegas, USA
- Las Vegas Neurology Center, 2020 Wellness Way Ste. 300, Las Vegas, NV, 89106, USA
- Neurology and Neuro-Ophthalmology, Touro University Nevada, Henderson, USA
- Neuro-Ophthalmology Department, Las Vegas Neurology Center, Las Vegas, USA
| |
Collapse
|
19
|
Ohmae K, Ohmae S. Emergence of syntax and word prediction in an artificial neural circuit of the cerebellum. Nat Commun 2024; 15:927. [PMID: 38296954 PMCID: PMC10831061 DOI: 10.1038/s41467-024-44801-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 01/03/2024] [Indexed: 02/02/2024] Open
Abstract
The cerebellum, interconnected with the cerebral neocortex, plays a vital role in human-characteristic cognition such as language processing, however, knowledge about the underlying circuit computation of the cerebellum remains very limited. To gain a better understanding of the computation underlying cerebellar language processing, we developed a biologically constrained cerebellar artificial neural network (cANN) model, which implements the recently identified cerebello-cerebellar recurrent pathway. We found that while cANN acquires prediction of future words, another function of syntactic recognition emerges in the middle layer of the prediction circuit. The recurrent pathway of the cANN was essential for the two language functions, whereas cANN variants with further biological constraints preserved these functions. Considering the uniform structure of cerebellar circuitry across all functional domains, the single-circuit computation, which is the common basis of the two language functions, can be generalized to fundamental cerebellar functions of prediction and grammar-like rule extraction from sequences, that underpin a wide range of cerebellar motor and cognitive functions. This is a pioneering study to understand the circuit computation of human-characteristic cognition using biologically-constrained ANNs.
Collapse
Affiliation(s)
- Keiko Ohmae
- Neuroscience Department, Baylor College of Medicine, Houston, TX, USA
- Chinese Institute for Brain Research (CIBR), Beijing, China
| | - Shogo Ohmae
- Neuroscience Department, Baylor College of Medicine, Houston, TX, USA.
- Chinese Institute for Brain Research (CIBR), Beijing, China.
| |
Collapse
|
20
|
Magondo N, Meintjes EM, Warton FL, Little F, van der Kouwe AJ, Laughton B, Jankiewicz M, Holmes MJ. Distinct alterations in white matter properties and organization related to maternal treatment initiation in neonates exposed to HIV but uninfected. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.11.575169. [PMID: 38260347 PMCID: PMC10802593 DOI: 10.1101/2024.01.11.575169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
HIV exposed-uninfected (HEU) infants and children are at risk of developmental delays as compared to uninfected unexposed (HUU) populations. The effects of exposure to in utero HIV and ART regimens on the HEU the developing brain are not well understood. In a cohort of 2-week-old newborns, we used diffusion tensor imaging (DTI) tractography and graph theory to examine the influence of HIV and ART exposure in utero on neonate white matter integrity and organisation. The cohort included HEU infants born to mothers who started ART before conception (HEUpre) and after conception (HEUpost), as well as HUU infants from the same community. We investigated HIV exposure and ART duration group differences in DTI metrics (fractional anisotropy (FA) and mean diffusivity (MD)) and graph measures across white matter. We found increased MD in white matter connections involving the thalamus and limbic system in the HEUpre group compared to HUU. We further identified reduced nodal efficiency in the basal ganglia. Within the HEUpost group, we observed reduced FA in cortical-subcortical and cerebellar connections as well as decreased transitivity in the hindbrain area compared to HUU. Overall, our analysis demonstrated distinct alterations in white matter integrity related to the timing of maternal ART initiation that influence regional brain network properties.
Collapse
Affiliation(s)
- Ndivhuwo Magondo
- Biomedical Engineering Research Centre, Division of Biomedical Engineering, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Ernesta M. Meintjes
- Biomedical Engineering Research Centre, Division of Biomedical Engineering, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Cape Universities Body Imaging Centre, University of Cape Town, Cape Town, South Africa
| | - Fleur L. Warton
- Biomedical Engineering Research Centre, Division of Biomedical Engineering, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Francesca Little
- Department of Statistical Sciences, University of Cape Town, Cape Town, South Africa
| | - Andre J.W. van der Kouwe
- Biomedical Engineering Research Centre, Division of Biomedical Engineering, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA,USA
- Department of Radiology, Harvard Medical School, Boston, MI, USA
| | - Barbara Laughton
- Family Centre for Research with Ubuntu, Department of Paediatrics and Child Health and Tygerberg Children’s Hospital, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch,South Africa
| | - Marcin Jankiewicz
- Biomedical Engineering Research Centre, Division of Biomedical Engineering, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Cape Universities Body Imaging Centre, University of Cape Town, Cape Town, South Africa
- ImageTech, Simon Fraser University, Surrey, BC, Canada
| | - Martha J. Holmes
- Biomedical Engineering Research Centre, Division of Biomedical Engineering, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
- ImageTech, Simon Fraser University, Surrey, BC, Canada
| |
Collapse
|
21
|
Sepp M, Leiss K, Murat F, Okonechnikov K, Joshi P, Leushkin E, Spänig L, Mbengue N, Schneider C, Schmidt J, Trost N, Schauer M, Khaitovich P, Lisgo S, Palkovits M, Giere P, Kutscher LM, Anders S, Cardoso-Moreira M, Sarropoulos I, Pfister SM, Kaessmann H. Cellular development and evolution of the mammalian cerebellum. Nature 2024; 625:788-796. [PMID: 38029793 PMCID: PMC10808058 DOI: 10.1038/s41586-023-06884-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 11/21/2023] [Indexed: 12/01/2023]
Abstract
The expansion of the neocortex, a hallmark of mammalian evolution1,2, was accompanied by an increase in cerebellar neuron numbers3. However, little is known about the evolution of the cellular programmes underlying the development of the cerebellum in mammals. In this study we generated single-nucleus RNA-sequencing data for around 400,000 cells to trace the development of the cerebellum from early neurogenesis to adulthood in human, mouse and the marsupial opossum. We established a consensus classification of the cellular diversity in the developing mammalian cerebellum and validated it by spatial mapping in the fetal human cerebellum. Our cross-species analyses revealed largely conserved developmental dynamics of cell-type generation, except for Purkinje cells, for which we observed an expansion of early-born subtypes in the human lineage. Global transcriptome profiles, conserved cell-state markers and gene-expression trajectories across neuronal differentiation show that cerebellar cell-type-defining programmes have been overall preserved for at least 160 million years. However, we also identified many orthologous genes that gained or lost expression in cerebellar neural cell types in one of the species or evolved new expression trajectories during neuronal differentiation, indicating widespread gene repurposing at the cell-type level. In sum, our study unveils shared and lineage-specific gene-expression programmes governing the development of cerebellar cells and expands our understanding of mammalian brain evolution.
Collapse
Affiliation(s)
- Mari Sepp
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany.
| | - Kevin Leiss
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany.
| | - Florent Murat
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
- INRAE, LPGP, Rennes, France
| | - Konstantin Okonechnikov
- Hopp-Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Piyush Joshi
- Hopp-Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Developmental Origins of Pediatric Cancer Junior Group, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Evgeny Leushkin
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Lisa Spänig
- Hopp-Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Developmental Origins of Pediatric Cancer Junior Group, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Noe Mbengue
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Céline Schneider
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Julia Schmidt
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Nils Trost
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Maria Schauer
- Museum für Naturkunde Berlin, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
| | - Philipp Khaitovich
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Steven Lisgo
- Biosciences Institute, Newcastle University, Newcastle, UK
| | - Miklós Palkovits
- Human Brain Tissue Bank, Semmelweis University, Budapest, Hungary
| | - Peter Giere
- Museum für Naturkunde Berlin, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
| | - Lena M Kutscher
- Hopp-Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Developmental Origins of Pediatric Cancer Junior Group, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Simon Anders
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
- BioQuant, Heidelberg University, Heidelberg, Germany
| | | | - Ioannis Sarropoulos
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany.
- Wellcome Sanger Institute, Cambridge, UK.
| | - Stefan M Pfister
- Hopp-Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany.
- Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany.
- National Center for Tumor Diseases (NCT), Heidelberg, Germany.
| | - Henrik Kaessmann
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany.
| |
Collapse
|
22
|
Persson K, Boeg Thomsen D, Fyrberg Å, Castor C, Aasved Hjort M, Andreozzi B, Grillner P, Kjær Grønbæk J, Jakus J, Juhler M, Mallucci C, Mathiasen R, Molinari E, Pizer B, Sehested A, Troks-Berzinskiene A, van Baarsen K, Tiberg I. Preoperative word-finding difficulties in children with posterior fossa tumours: a European cross-sectional study. Childs Nerv Syst 2024; 40:87-97. [PMID: 37682305 PMCID: PMC10761395 DOI: 10.1007/s00381-023-06119-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/04/2023] [Indexed: 09/09/2023]
Abstract
PURPOSE Posterior fossa tumour surgery in children entails a high risk for severe speech and language impairments, but few studies have investigated the effect of the tumour on language prior to surgery. The current crosslinguistic study addresses this gap. We investigated the prevalence of preoperative word-finding difficulties, examined associations with medical and demographic characteristics, and analysed lexical errors. METHODS We included 148 children aged 5-17 years with a posterior fossa tumour. Word-finding ability was assessed by means of a picture-naming test, Wordrace, and difficulties in accuracy and speed were identified by cut-off values. A norm-based subanalysis evaluated performance in a Swedish subsample. We compared the demographic and medical characteristics of children with slow, inaccurate, or combined slow and inaccurate word finding to the characteristics of children without word-finding difficulties and conducted a lexical error analysis. RESULTS Thirty-seven percent (n = 55) presented with slow word finding, 24% (n = 35) with inaccurate word finding, and 16% (n = 23) with both slow and inaccurate word finding. Children with posterior fossa tumours were twice as slow as children in the norming sample. Right-hemisphere and brainstem location posed a higher risk for preoperative word-finding difficulties, relative to left-hemisphere location, and difficulties were more prevalent in boys than in girls. The most frequent errors were lack of response and semantically related sideordinated words. CONCLUSION Word-finding difficulties are frequent in children with posterior fossa tumours, especially in boys and in children with right-hemisphere and brainstem tumours. Errors resemble those observed in typical development and children with word-finding difficulties.
Collapse
Affiliation(s)
- K Persson
- Department of Health Sciences, Lund University, Box 117, 221 00, Lund, Sweden.
| | - D Boeg Thomsen
- Department of Nordic Studies and Linguistics, University of Copenhagen, Emil Holms Kanal 2, 2300, Copenhagen, Denmark
- Department of Neurosurgery, Copenhagen University Hospital Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen E, Denmark
| | - Å Fyrberg
- Department of Speech and Language Pathology, University of Gothenburg, Medicinaregatan 11, 405 30, Gothenburg, Sweden
| | - C Castor
- Department of Health Sciences, Lund University, Box 117, 221 00, Lund, Sweden
| | - M Aasved Hjort
- Department of Pediatric Hematology and Oncology, St Olavs Hospital, Postboks 3250 Torgarden, 7006, Trondheim, Norway
| | - B Andreozzi
- Department of Hematology/Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - P Grillner
- Pediatric Oncology Unit, Astrid Lindgren's Children's Hospital, Karolinskavägen 6, 171 76, Stockholm, Sweden
| | - J Kjær Grønbæk
- Department of Neurosurgery, Copenhagen University Hospital Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen E, Denmark
- Department of Paediatrics and Adolescent Medicine, Copenhagen University Hospital Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen E, Denmark
| | - J Jakus
- WOW Speech Studio, Üllői út 189, Budapest, 1091, Hungary
| | - M Juhler
- Department of Neurosurgery, Copenhagen University Hospital Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen E, Denmark
- Department of Neurosurgery, Aarhus University Hospital, Palle Juul-Jensens, Boulevard 99, 8200, Aarhus, Denmark
| | - C Mallucci
- Department of Neurosurgery, Alder Hey Children's NHS Foundation Trust, E. Prescot Road, Liverpool, L14 5AB, UK
| | - R Mathiasen
- Department of Paediatrics and Adolescent Medicine, Copenhagen University Hospital Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen E, Denmark
| | - E Molinari
- University of Edinburgh, Old College, South Bridge, Edinburgh, EH8 9YL, UK
- Department of Neurology, The Queen Elizabeth University Hospital, University of Glasgow, University Avenue, Glasgow, G12 8QQ, UK
| | - B Pizer
- University of Liverpool, Brownlow Hill, Liverpool, L69 3BX, UK
| | - A Sehested
- Department of Paediatrics and Adolescent Medicine, Copenhagen University Hospital Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen E, Denmark
| | - A Troks-Berzinskiene
- Department of Pediatrics, Lithuanian, University of Health Science, Mickeviciaus 9, 44307, Kaunas, Lithuania
| | - K van Baarsen
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands
| | - I Tiberg
- Department of Health Sciences, Lund University, Box 117, 221 00, Lund, Sweden
| |
Collapse
|
23
|
Vlasova RM, Panikratova YR, Pechenkova EV. Systematic Review and Meta-analysis of Language Symptoms due to Cerebellar Injury. CEREBELLUM (LONDON, ENGLAND) 2023; 22:1274-1286. [PMID: 36205825 DOI: 10.1007/s12311-022-01482-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
To date, cerebellar contribution to language is well established via clinical and neuroimaging studies. However, the particular functional role of the cerebellum in language remains to be clarified. In this study, we present the first systematic review of the diverse language symptoms in spoken language after cerebellar lesion that were reported in case studies for the last 30 years (18 clinical cases from 13 papers), and meta-analysis using cluster analysis with bootstrap and symptom co-occurrence analysis. Seven clusters of patients with similar language symptoms after cerebellar lesions were found. Co-occurrence analysis revealed pairs of symptoms that tend to be comorbid. Our results imply that the "linguistic cerebellum" has a multiform contribution to language function. The most possible mechanism of such contribution is the cerebellar reciprocal connectivity with supratentorial brain regions, where the cerebellar level of the language network has a general modulation function and the supratentorial level is more functionally specified. Based on cerebellar connectivity with supratentorial components of the language network, the "linguistic cerebellum" might be further functionally segregated.
Collapse
Affiliation(s)
- Roza M Vlasova
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA.
| | - Yana R Panikratova
- Laboratory of Neuroimaging and Multimodal Analysis, Mental Health Research Center, Moscow, Russia
| | | |
Collapse
|
24
|
Petríková D, Marko M, Rovný R, Riečanský I. Electrical stimulation of the cerebellum facilitates automatic but not controlled word retrieval. Brain Struct Funct 2023; 228:2137-2146. [PMID: 37783862 PMCID: PMC10587269 DOI: 10.1007/s00429-023-02712-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/10/2023] [Indexed: 10/04/2023]
Abstract
Recent research has indicated that the cerebellum is engaged in language functions, yet the role of the cerebellum in lexical-semantic memory is poorly understood. In a double-blind randomized controlled experiment, we therefore targeted the cerebellum by transcranial direct current stimulation (tDCS) to assess and compare the contribution of the cerebellar processing to automatic and controlled retrieval of words in healthy adults (n = 136). Anodal cerebellar tDCS facilitated retrieval of semantically related words in free-associative chains, which was not due to a non-specific acceleration of processing speed. The stimulation had no influence on controlled word retrieval that employed inhibition or switching. The effect of cathodal tDCS was opposite to the anodal stimulation, but statistically non-significant. Our data show that the cerebellum is engaged extracting associative information from the system of semantic representations, established and strengthened/automated by learning, and indicates a domain-general role of this structure in automation of behavior, cognition and language.
Collapse
Affiliation(s)
- Dominika Petríková
- Department of Behavioural Neuroscience, Centre of Experimental Medicine, Slovak Academy of Sciences, Sienkiewiczova 1, 81371, Bratislava, Slovakia
| | - Martin Marko
- Department of Behavioural Neuroscience, Centre of Experimental Medicine, Slovak Academy of Sciences, Sienkiewiczova 1, 81371, Bratislava, Slovakia
- Department of Applied Informatics, Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, Bratislava, Slovakia
| | - Rastislav Rovný
- Department of Behavioural Neuroscience, Centre of Experimental Medicine, Slovak Academy of Sciences, Sienkiewiczova 1, 81371, Bratislava, Slovakia
| | - Igor Riečanský
- Department of Behavioural Neuroscience, Centre of Experimental Medicine, Slovak Academy of Sciences, Sienkiewiczova 1, 81371, Bratislava, Slovakia.
- Department of Psychiatry, Faculty of Medicine, Slovak Medical University in Bratislava, Bratislava, Slovakia.
| |
Collapse
|
25
|
Magielse N, Toro R, Steigauf V, Abbaspour M, Eickhoff SB, Heuer K, Valk SL. Phylogenetic comparative analysis of the cerebello-cerebral system in 34 species highlights primate-general expansion of cerebellar crura I-II. Commun Biol 2023; 6:1188. [PMID: 37993596 PMCID: PMC10665558 DOI: 10.1038/s42003-023-05553-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 11/07/2023] [Indexed: 11/24/2023] Open
Abstract
The reciprocal connections between the cerebellum and the cerebrum have been suggested to simultaneously play a role in brain size increase and to support a broad array of brain functions in primates. The cerebello-cerebral system has undergone marked functionally relevant reorganization. In particular, the lateral cerebellar lobules crura I-II (the ansiform) have been suggested to be expanded in hominoids. Here, we manually segmented 63 cerebella (34 primate species; 9 infraorders) and 30 ansiforms (13 species; 8 infraorders) to understand how their volumes have evolved over the primate lineage. Together, our analyses support proportional cerebellar-cerebral scaling, whereas ansiforms have expanded faster than the cerebellum and cerebrum. We did not find different scaling between strepsirrhines and haplorhines, nor between apes and non-apes. In sum, our study shows primate-general structural reorganization of the ansiform, relative to the cerebello-cerebral system, which is relevant for specialized brain functions in an evolutionary context.
Collapse
Grants
- RT and KH are supported by the French Agence Nationale de la Recherche, projects NeuroWebLab (ANR-19-DATA-0025) and DMOBE (ANR-21-CE45-0016). KH received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement No101033485 (Individual Fellowship). Last, this work was funded in part by Helmholtz Association’s Initiative and Networking Fund under the Helmholtz International Lab grant agreement InterLabs-0015, and the Canada First Research Excellence Fund (CFREF Competition 2, 2015–2016), awarded to the Healthy Brains, Healthy Lives initiative at McGill University, through the Helmholtz International BigBrain Analytics and Learning Laboratory (HIBALL), including NM, SBE, and SLV.
Collapse
Affiliation(s)
- Neville Magielse
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Center Jülich, Wilhelm-Johnen-Straße, 52428, Jülich, Germany.
- Otto Hahn Cognitive Neurogenetics Group, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1A, 04103, Leipzig, Germany.
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany.
| | - Roberto Toro
- Institut Pasteur, Unité de Neuroanatomie Appliquée et Théorique, Université Paris Cité, 25 rue du Dr. Roux, 75724, Paris, France
| | - Vanessa Steigauf
- Department of Biology, Northern Michigan University, 1401 Presque Isle Ave, MI, 49855, Marquette, USA
| | - Mahta Abbaspour
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Luisenstraße 56, Haus 1, 10117, Berlin, Germany
- Department of Neurology, Charité - Universitätsmedizin Berlin, Bonhoefferweg 3, 10117, Berlin, Germany
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Center Jülich, Wilhelm-Johnen-Straße, 52428, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Katja Heuer
- Institut Pasteur, Unité de Neuroanatomie Appliquée et Théorique, Université Paris Cité, 25 rue du Dr. Roux, 75724, Paris, France
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1A, 04103, Leipzig, Germany
| | - Sofie L Valk
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Center Jülich, Wilhelm-Johnen-Straße, 52428, Jülich, Germany.
- Otto Hahn Cognitive Neurogenetics Group, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1A, 04103, Leipzig, Germany.
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany.
| |
Collapse
|
26
|
Nogami C, Kobayashi R, Yokoi K, Ohba M, Hashimoto R, Sakamoto K, Inoue K, Otani K, Hirayama K. Syntactic Impairment Associated with Hypoperfusion in the Left Middle and Inferior Frontal Gyri after Right Cerebellar Hemorrhage. Intern Med 2023; 62:3405-3412. [PMID: 37062736 DOI: 10.2169/internalmedicine.0023-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/18/2023] Open
Abstract
Cerebellar injuries can cause syntax impairments. Cortical dysfunction due to cerebello-cerebral diaschisis is assumed to play a role in this phenomenon. Functional magnetic resonance imaging studies have repeatedly shown the activation of Broca's area in response to syntactic tasks. However, there have been no reports of selective syntax impairment and hypoperfusion restricted to this area after cerebellar injury. We herein report a patient with right cerebellar hemorrhage that led to marked syntax impairment along with severe hypoperfusion confined to the Brodmann area (BA) 45 (anterior part of Broca's area) and BA46.
Collapse
Affiliation(s)
- Chihiro Nogami
- Department of Rehabilitation, Hitachi General Hospital, Japan
| | - Ryota Kobayashi
- Department of Psychiatry, Yamagata University School of Medicine, Japan
| | - Kayoko Yokoi
- Department of Occupational Therapy, Yamagata Prefectural University of Health Science, Japan
| | - Makoto Ohba
- Department of Radiology, Yamagata University Hospital, Japan
| | - Ryusaku Hashimoto
- Department of Communication Disorders, School of Rehabilitation Sciences, Health Sciences University of Hokkaido, Japan
| | - Kazutaka Sakamoto
- Department of Neuropsychiatry, Aizu Medical Center, Fukushima Medical University, Japan
| | - Kaori Inoue
- Department of Occupational Therapy, Yamagata Prefectural University of Health Science, Japan
| | - Koichi Otani
- Department of Psychiatry, Yamagata University School of Medicine, Japan
| | - Kazumi Hirayama
- Department of Occupational Therapy, Yamagata Prefectural University of Health Science, Japan
| |
Collapse
|
27
|
Rudolph S, Badura A, Lutzu S, Pathak SS, Thieme A, Verpeut JL, Wagner MJ, Yang YM, Fioravante D. Cognitive-Affective Functions of the Cerebellum. J Neurosci 2023; 43:7554-7564. [PMID: 37940582 PMCID: PMC10634583 DOI: 10.1523/jneurosci.1451-23.2023] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 11/10/2023] Open
Abstract
The cerebellum, traditionally associated with motor coordination and balance, also plays a crucial role in various aspects of higher-order function and dysfunction. Emerging research has shed light on the cerebellum's broader contributions to cognitive, emotional, and reward processes. The cerebellum's influence on autonomic function further highlights its significance in regulating motivational and emotional states. Perturbations in cerebellar development and function have been implicated in various neurodevelopmental disorders, including autism spectrum disorder and attention deficit hyperactivity disorder. An increasing appreciation for neuropsychiatric symptoms that arise from cerebellar dysfunction underscores the importance of elucidating the circuit mechanisms that underlie complex interactions between the cerebellum and other brain regions for a comprehensive understanding of complex behavior. By briefly discussing new advances in mapping cerebellar function in affective, cognitive, autonomic, and social processing and reviewing the role of the cerebellum in neuropathology beyond the motor domain, this Mini-Symposium review aims to provide a broad perspective of cerebellar intersections with the limbic brain in health and disease.
Collapse
Affiliation(s)
- Stephanie Rudolph
- Department of Neuroscience, Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, New York, New York 10461
| | - Aleksandra Badura
- Department of Neuroscience, Erasmus MC Rotterdam, Rotterdam, 3015 GD, The Netherlands
| | - Stefano Lutzu
- Department of Neuroscience, Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, New York, New York 10461
| | - Salil Saurav Pathak
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, Minnesota 55812
| | - Andreas Thieme
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, Essen, D-45147, Germany
| | - Jessica L Verpeut
- Department of Psychology, Arizona State University, Tempe, Arizona 85287
| | - Mark J Wagner
- National Institute of Neurological Disorders & Stroke, National Institutes of Health, Bethesda, Maryland 20814
| | - Yi-Mei Yang
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, Minnesota 55812
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455
| | - Diasynou Fioravante
- Center for Neuroscience, University of California-Davis, Davis, California 95618
- Department of Neurobiology, Physiology and Behavior, University of California-Davis, Davis, California 95618
| |
Collapse
|
28
|
Schmahmann JD. Ferdinando Rossi Lecture: the Cerebellar Cognitive Affective Syndrome-Implications and Future Directions. CEREBELLUM (LONDON, ENGLAND) 2023; 22:947-953. [PMID: 35948744 DOI: 10.1007/s12311-022-01456-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
The notion that the cerebellum is devoted exclusively to motor control has been replaced by a more sophisticated understanding of its role in neurological function, one that includes cognition and emotion. Early clinical reports, as well as physiological and behavioral studies in animal models, raised the possibility of a nonmotor role for the cerebellum. Anatomical studies demonstrate cerebellar connectivity with the distributed neural circuits linked with autonomic, sensorimotor, vestibular, associative and limbic/paralimbic brain areas. Identification of the cerebellar cognitive affective syndrome in adults and children underscored the clinical relevance of the role of the cerebellum in cognition and emotion. It opened new avenues of investigation into higher order deficits that accompany the ataxias and other cerebellar diseases, as well as the contribution of cerebellar dysfunction to neuropsychiatric and neurocognitive disorders. Brain imaging studies demonstrate the complexity of cerebellar functional topography, revealing a double representation of the sensorimotor cerebellum in the anterior lobe and lobule VIII and a triple cognitive representation in the cerebellar posterior lobe, as well as representation in the cerebellum of the intrinsic connectivity networks identified in the cerebral hemispheres. This paradigm shift in thinking about the cerebellum has been advanced by the theories of dysmetria of thought and the universal cerebellar transform, harmonizing the dual anatomic realities of homogeneously repeating cerebellar cortical microcircuitry set against the heterogeneous and topographically arranged cerebellar connections with extracerebellar structures. This new appreciation of the cerebellar incorporation into circuits that subserve cognition and emotion enables deeper understanding and improved care of our patients with cerebellar ataxias and novel cerebellar-based approaches to therapy in neuropsychiatry.
Collapse
Affiliation(s)
- Jeremy D Schmahmann
- Ataxia Center, Cognitive Behavioral Neurology Unit, Laboratory for Neuroanatomy and Cerebellar Neurobiology, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 100 Cambridge Street, Suite 2000, Boston, MA, 02114, USA.
| |
Collapse
|
29
|
Zhu X, Dai G, Wang M, Tan M, Li Y, Xu Z, Lei D, Chen L, Chen X, Liu H. Continuous theta burst stimulation over right cerebellum for speech impairment in Parkinson's disease: study protocol for a randomized, sham-controlled, clinical trial. Front Aging Neurosci 2023; 15:1215330. [PMID: 37655339 PMCID: PMC10465698 DOI: 10.3389/fnagi.2023.1215330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 08/03/2023] [Indexed: 09/02/2023] Open
Abstract
Background Speech impairment is a common symptom of Parkinson's disease (PD) that worsens with disease progression and affects communication and quality of life. Current pharmacological and surgical treatments for PD have inconsistent effects on speech impairment. The cerebellum is an essential part of sensorimotor network that regulates speech production and becomes dysfunctional in PD. Continuous theta-burst stimulation (cTBS) is a non-invasive brain stimulation technique that can modulate the cerebellum and its connections with other brain regions. Objective To investigate whether cTBS over the right cerebellum coupled with speech-language therapy (SLT) can improve speech impairment in PD. Methods In this randomized controlled trial (RCT), 40 patients with PD will be recruited and assigned to either an experimental group (EG) or a control group (CG). Both groups will receive 10 sessions of standard SLT. The EG will receive real cTBS over the right cerebellum, while the CG will receive sham stimulation. Blinded assessors will evaluate the treatment outcome at three time points: pre-intervention, post-intervention, and at a 12-week follow-up. The primary outcome measures are voice/speech quality and neurobehavioral parameters of auditory-vocal integration. The secondary outcome measures are cognitive function, quality of life, and functional connectivity determined by resting-state functional magnetic resonance imaging (fMRI). Significance This trial will provide evidence for the efficacy and safety of cerebellar cTBS for the treatment of speech impairment in PD and shed light on the neural mechanism of this intervention. It will also have implications for other speech impairment attributed to cerebellar dysfunctions. Clinical trial registration www.chictr.org.cn, identifier ChiCTR2100050543.
Collapse
Affiliation(s)
- Xiaoxia Zhu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Guangyan Dai
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Meng Wang
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Mingdan Tan
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yongxue Li
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhiqin Xu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Di Lei
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ling Chen
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xi Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hanjun Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
30
|
Zhang P, Duan L, Ou Y, Ling Q, Cao L, Qian H, Zhang J, Wang J, Yuan X. The cerebellum and cognitive neural networks. Front Hum Neurosci 2023; 17:1197459. [PMID: 37576472 PMCID: PMC10416251 DOI: 10.3389/fnhum.2023.1197459] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/11/2023] [Indexed: 08/15/2023] Open
Abstract
Cognitive function represents a complex neurophysiological capacity of the human brain, encompassing a higher level of neural processing and integration. It is widely acknowledged that the cerebrum plays a commanding role in the regulation of cognitive functions. However, the specific role of the cerebellum in cognitive processes has become a subject of considerable scholarly intrigue. In 1998, Schmahmann first proposed the concept of "cognitive affective syndrome (CCAS)," linking cerebellar damage to cognitive and emotional impairments. Since then, a substantial body of literature has emerged, exploring the role of the cerebellum in cognitive neurological function. The cerebellum's adjacency to the cerebral cortex, brainstem, and spinal cord suggests that the cerebral-cerebellar network loops play a crucial role in the cerebellum's participation in cognitive neurological functions. In this review, we comprehensively examine the recent literature on the involvement of the cerebellum in cognitive functions from three perspectives: the cytological basis of the cerebellum and its anatomical functions, the cerebellum and cognitive functions, and Crossed cerebellar diaschisis. Our aim is to shed light on the role and mechanisms of the cerebellum in cognitive neurobrain networks.
Collapse
Affiliation(s)
- Pingshu Zhang
- Department of Neurology, Kailuan General Hospital, North China University of Technology, Tangshan, Hebei, China
- Key Laboratory of Neurobiological Function in Hebei Province, Tangshan, Hebei, China
| | - Liqin Duan
- Department of Neurology, Kailuan General Hospital, North China University of Technology, Tangshan, Hebei, China
- Key Laboratory of Neurobiological Function in Hebei Province, Tangshan, Hebei, China
| | - Ya Ou
- Department of Neurology, Kailuan General Hospital, North China University of Technology, Tangshan, Hebei, China
- Key Laboratory of Neurobiological Function in Hebei Province, Tangshan, Hebei, China
| | - Qirong Ling
- Key Laboratory of Neurobiological Function in Hebei Province, Tangshan, Hebei, China
| | - Lingyun Cao
- Key Laboratory of Neurobiological Function in Hebei Province, Tangshan, Hebei, China
| | - Hongchun Qian
- Key Laboratory of Neurobiological Function in Hebei Province, Tangshan, Hebei, China
| | - Jian Zhang
- Key Laboratory of Neurobiological Function in Hebei Province, Tangshan, Hebei, China
| | - Jing Wang
- Key Laboratory of Neurobiological Function in Hebei Province, Tangshan, Hebei, China
| | - Xiaodong Yuan
- Department of Neurology, Kailuan General Hospital, North China University of Technology, Tangshan, Hebei, China
- Key Laboratory of Neurobiological Function in Hebei Province, Tangshan, Hebei, China
| |
Collapse
|
31
|
Coemans S, Struys E, Tsapkini K, Paquier P, Vandenborre D, Keulen S. Case report: the effects of cerebellar tDCS in bilingual post-stroke aphasia. Front Hum Neurosci 2023; 17:1173178. [PMID: 37545596 PMCID: PMC10398340 DOI: 10.3389/fnhum.2023.1173178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 06/15/2023] [Indexed: 08/08/2023] Open
Abstract
Transcranial Direct Current Stimulation may be a useful neuromodulation tool for enhancing the effects of speech and language therapy in people with aphasia, but research so far has focused on monolinguals. We present the effects of 9 sessions of anodal cerebellar tDCS (ctDCS) coupled with language therapy in a bilingual patient with chronic post-stroke aphasia caused by left frontal ischemia, in a double-blind, sham-controlled within-subject design. Language therapy was provided in his second language (L2). Both sham and anodal treatment improved trained picture naming in the treated language (L2), while anodal ctDCS in addition improved picture naming of untrained items in L2 and his first language, L1. Picture description improved in L2 and L1 after anodal ctDCS, but not after sham.
Collapse
Affiliation(s)
- Silke Coemans
- Brussels Centre for Language Studies (BCLS), Vrije Universiteit Brussels, Brussels, Belgium
| | - Esli Struys
- Brussels Centre for Language Studies (BCLS), Vrije Universiteit Brussels, Brussels, Belgium
- Center for Neurosciences (C4N), Vrije Universiteit Brussels, Brussels, Belgium
| | - Kyrana Tsapkini
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Department of Cognitive Science, Johns Hopkins University, Baltimore, MD, United States
| | - Philippe Paquier
- Brussels Centre for Language Studies (BCLS), Vrije Universiteit Brussels, Brussels, Belgium
- Center for Research in Cognition and Neurosciences (CRCN), Université Libre de Bruxelles, Brussels, Belgium
- Department of Translational Neurosciences (TNW), Universiteit Antwerpen (UA), Antwerp, Belgium
| | - Dorien Vandenborre
- Health and Wellbeing Research Unit, Thomas More University of Applied Sciences, Antwerp, Belgium
| | - Stefanie Keulen
- Brussels Centre for Language Studies (BCLS), Vrije Universiteit Brussels, Brussels, Belgium
| |
Collapse
|
32
|
Keser Z, Meier EL, Stockbridge MD, Breining BL, Hillis AE, Sebastian R. Corticocerebellar White Matter Integrity Is Related to Naming Outcome in Post-Stroke Aphasia. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2023; 4:404-419. [PMID: 37588128 PMCID: PMC10426388 DOI: 10.1162/nol_a_00107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 04/03/2023] [Indexed: 08/18/2023]
Abstract
Studies have shown that the integrity of white matter tracts connecting different regions in the left cerebral hemisphere is important for aphasia recovery after stroke. However, the impact of the underlying structural connection between the cortex and the cerebellum in post-stroke aphasia is poorly understood. We studied the microstructural integrity of the cerebellum and the corticocerebellar connections and their role in picture naming. Fifty-six patients with left cerebral infarcts (sparing the cerebellum) underwent diffusion tensor imaging (DTI) and Boston Naming Test. We compared the fractional anisotropy (FA) and mean diffusivity (MD) values of the right and the left cerebellum (lobular gray and white matter structures) and cerebellocortical connections. Recursive feature elimination and Spearman correlation analyses were performed to evaluate the relationship between naming performance and the corticocerebellar connections. We found that the right, relative to left, cerebellar structures and their connections with the left cerebrum showed lower FA and higher MD values, both reflecting lower microstructural integrity. This trend was not observed in the healthy controls. Higher MD values of the right major cerebellar outflow tract were associated with poorer picture naming performance. Our study provides the first DTI data demonstrating the critical importance of ascending and descending corticocerebellar connections for naming outcomes after stroke.
Collapse
Affiliation(s)
- Zafer Keser
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Erin L. Meier
- Department of Communication Sciences and Disorders, Northeastern University, Boston, MA, USA
| | - Melissa D. Stockbridge
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Bonnie L. Breining
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Argye E. Hillis
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Cognitive Science, Johns Hopkins University, Baltimore, MD, USA
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Rajani Sebastian
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
33
|
Cundari M, Vestberg S, Gustafsson P, Gorcenco S, Rasmussen A. Neurocognitive and cerebellar function in ADHD, autism and spinocerebellar ataxia. Front Syst Neurosci 2023; 17:1168666. [PMID: 37415926 PMCID: PMC10321758 DOI: 10.3389/fnsys.2023.1168666] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/06/2023] [Indexed: 07/08/2023] Open
Abstract
The cerebellum plays a major role in balance, motor control and sensorimotor integration, but also in cognition, language, and emotional regulation. Several neuropsychiatric disorders such as attention deficit-hyperactivity disorder (ADHD), autism spectrum disorder (ASD), as well as neurological diseases such as spinocerebellar ataxia type 3 (SCA3) are associated with differences in cerebellar function. Morphological abnormalities in different cerebellar subregions produce distinct behavioral symptoms related to the functional disruption of specific cerebro-cerebellar circuits. The specific contribution of the cerebellum to typical development may therefore involve the optimization of the structure and function of cerebro-cerebellar circuits underlying skill acquisition in multiple domains. Here, we review cerebellar structural and functional differences between healthy and patients with ADHD, ASD, and SCA3, and explore how disruption of cerebellar networks affects the neurocognitive functions in these conditions. We discuss how cerebellar computations contribute to performance on cognitive and motor tasks and how cerebellar signals are interfaced with signals from other brain regions during normal and dysfunctional behavior. We conclude that the cerebellum plays a role in many cognitive functions. Still, more clinical studies with the support of neuroimaging are needed to clarify the cerebellum's role in normal and dysfunctional behavior and cognitive functioning.
Collapse
Affiliation(s)
- Maurizio Cundari
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden
- Unit of Neuropsychiatry, Hospital of Helsingborg, Helsingborg, Sweden
- Unit of Neurology, Hospital of Helsingborg, Helsingborg, Sweden
| | - Susanna Vestberg
- Department of Psychology, Faculty of Social Science, Lund University, Lund, Sweden
| | - Peik Gustafsson
- Child and Adolescent Psychiatry, Department of Clinical Sciences Lund, Medical Faculty, Lund University, Lund, Sweden
| | - Sorina Gorcenco
- Department for Clinical Sciences Lund, Neurology, Lund University, Skåne University Hospital, Lund, Sweden
| | - Anders Rasmussen
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden
| |
Collapse
|
34
|
Ciapponi C, Li Y, Osorio Becerra DA, Rodarie D, Casellato C, Mapelli L, D’Angelo E. Variations on the theme: focus on cerebellum and emotional processing. Front Syst Neurosci 2023; 17:1185752. [PMID: 37234065 PMCID: PMC10206087 DOI: 10.3389/fnsys.2023.1185752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/18/2023] [Indexed: 05/27/2023] Open
Abstract
The cerebellum operates exploiting a complex modular organization and a unified computational algorithm adapted to different behavioral contexts. Recent observations suggest that the cerebellum is involved not just in motor but also in emotional and cognitive processing. It is therefore critical to identify the specific regional connectivity and microcircuit properties of the emotional cerebellum. Recent studies are highlighting the differential regional localization of genes, molecules, and synaptic mechanisms and microcircuit wiring. However, the impact of these regional differences is not fully understood and will require experimental investigation and computational modeling. This review focuses on the cellular and circuit underpinnings of the cerebellar role in emotion. And since emotion involves an integration of cognitive, somatomotor, and autonomic activity, we elaborate on the tradeoff between segregation and distribution of these three main functions in the cerebellum.
Collapse
Affiliation(s)
- Camilla Ciapponi
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Yuhe Li
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | | | - Dimitri Rodarie
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Centro Ricerche Enrico Fermi, Rome, Italy
| | - Claudia Casellato
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Lisa Mapelli
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Egidio D’Angelo
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Brain Connectivity Center, IRCCS Mondino Foundation, Pavia, Italy
| |
Collapse
|
35
|
Xin J, Huang K, Yi A, Feng Z, Liu H, Liu X, Liang L, Huang Q, Xiao Y. Absence of associations with prefrontal cortex and cerebellum may link to early language and social deficits in preschool children with ASD. Front Psychiatry 2023; 14:1144993. [PMID: 37215652 PMCID: PMC10192852 DOI: 10.3389/fpsyt.2023.1144993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 04/17/2023] [Indexed: 05/24/2023] Open
Abstract
Introduction Autism spectrum disorder (ASD) is a complex developmental disorder, characterized by language and social deficits that begin to appear in the first years of life. Research in preschool children with ASD has consistently reported increased global brain volume and abnormal cortical patterns, and the brain structure abnormalities have also been found to be clinically and behaviorally relevant. However, little is known regarding the associations between brain structure abnormalities and early language and social deficits in preschool children with ASD. Methods In this study, we collected magnetic resonance imaging (MRI) data from a cohort of Chinese preschool children with and without ASD (24 ASD/20 non-ASD) aged 12-52 months, explored group differences in brain gray matter (GM) volume, and examined associations between regional GM volume and early language and social abilities in these two groups, separately. Results We observed significantly greater global GM volume in children with ASD as compared to those without ASD, but there were no regional GM volume differences between these two groups. For children without ASD, GM volume in bilateral prefrontal cortex and cerebellum was significantly correlated with language scores; GM volume in bilateral prefrontal cortex was significantly correlated with social scores. No significant correlations were found in children with ASD. Discussion Our data demonstrate correlations of regional GM volume with early language and social abilities in preschool children without ASD, and the absence of these associations appear to underlie language and social deficits in children with ASD. These findings provide novel evidence for the neuroanatomical basis associated with language and social abilities in preschool children with and without ASD, which promotes a better understanding of early deficits in language and social functions in ASD.
Collapse
Affiliation(s)
- Jing Xin
- Foshan Clinical Medical School, Guangzhou University of Chinese Medicine, Foshan, China
| | - Kaiyu Huang
- Center for Language and Brain, Shenzhen Institute of Neuroscience, Shenzhen, China
| | - Aiwen Yi
- Foshan Clinical Medical School, Guangzhou University of Chinese Medicine, Foshan, China
| | - Ziyu Feng
- Foshan Clinical Medical School, Guangzhou University of Chinese Medicine, Foshan, China
| | - Heng Liu
- Department of Radiology, Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi, China
| | - Xiaoqing Liu
- Department of Radiology, Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi, China
| | - Lili Liang
- Foshan Clinical Medical School, Guangzhou University of Chinese Medicine, Foshan, China
| | - Qingshan Huang
- Foshan Clinical Medical School, Guangzhou University of Chinese Medicine, Foshan, China
| | - Yaqiong Xiao
- Center for Language and Brain, Shenzhen Institute of Neuroscience, Shenzhen, China
| |
Collapse
|
36
|
Zheng J, Yang Q, Makris N, Huang K, Liang J, Ye C, Yu X, Tian M, Ma T, Mou T, Guo W, Kikinis R, Gao Y. Three-Dimensional Digital Reconstruction of the Cerebellar Cortex: Lobule Thickness, Surface Area Measurements, and Layer Architecture. CEREBELLUM (LONDON, ENGLAND) 2023; 22:249-260. [PMID: 35286708 PMCID: PMC9470778 DOI: 10.1007/s12311-022-01390-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 02/28/2022] [Indexed: 11/28/2022]
Abstract
The cerebellum is ontogenetically one of the first structures to develop in the central nervous system; nevertheless, it has been only recently reconsidered for its significant neurobiological, functional, and clinical relevance in humans. Thus, it has been a relatively under-studied compared to the cerebrum. Currently, non-invasive imaging modalities can barely reach the necessary resolution to unfold its entire, convoluted surface, while only histological analyses can reveal local information at the micrometer scale. Herein, we used the BigBrain dataset to generate area and point-wise thickness measurements for all layers of the cerebellar cortex and for each lobule in particular. We found that the overall surface area of the cerebellar granular layer (including Purkinje cells) was 1,732 cm2 and the molecular layer was 1,945 cm2. The average thickness of the granular layer is 0.88 mm (± 0.83) and that of the molecular layer is 0.32 mm (± 0.08). The cerebellum (both granular and molecular layers) is thicker at the depth of the sulci and thinner at the crowns of the gyri. Globally, the granular layer is thicker in the lateral-posterior-inferior region than the medial-superior regions. The characterization of individual layers in the cerebellum achieved herein represents a stepping-stone for investigations interrelating structural and functional connectivity with cerebellar architectonics using neuroimaging, which is a matter of considerable relevance in basic and clinical neuroscience. Furthermore, these data provide templates for the construction of cerebellar topographic maps and the precise localization of structural and functional alterations in diseases affecting the cerebellum.
Collapse
Affiliation(s)
- Junxiao Zheng
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, China
| | - Qinzhu Yang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, China
| | - Nikos Makris
- Center for Morphometric Analysis, Departments of Psychiatry, Neurology, A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Departments of Psychiatry and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
- Department of Anatomy and Neurobiology, Boston University Medical School, Boston, USA
| | - Kaibin Huang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, China
| | - Jianwen Liang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, China
| | - Chenfei Ye
- Pengcheng Lab, Shenzhen, Guangdong, China
| | - Xiaxia Yu
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, China
| | - Mu Tian
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, China
| | - Ting Ma
- Pengcheng Lab, Shenzhen, Guangdong, China
- Department of Electronic and Information Engineering, Harbin Institute of Technology Campus, Shenzhen, Guangdong, China
| | - Tian Mou
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, China
| | - Wenlong Guo
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Ron Kikinis
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Yi Gao
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, China.
- Pengcheng Lab, Shenzhen, Guangdong, China.
- Marshall Laboratory of Biomedical Engineering, Shenzhen, Guangdong, China.
- Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Shenzhen, Guangdong, China.
| |
Collapse
|
37
|
Beckinghausen J, Donofrio SG, Lin T, Miterko LN, White JJ, Lackey EP, Sillitoe RV. Deep Brain Stimulation of the Interposed Cerebellar Nuclei in a Conditional Genetic Mouse Model with Dystonia. ADVANCES IN NEUROBIOLOGY 2023; 31:93-117. [PMID: 37338698 DOI: 10.1007/978-3-031-26220-3_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Dystonia is a neurological disease that is currently ranked as the third most common motor disorder. Patients exhibit repetitive and sometimes sustained muscle contractions that cause limb and body twisting and abnormal postures that impair movement. Deep brain stimulation (DBS) of the basal ganglia and thalamus can be used to improve motor function when other treatment options fail. Recently, the cerebellum has garnered interest as a DBS target for treating dystonia and other motor disorders. Here, we describe a procedure for targeting DBS electrodes to the interposed cerebellar nuclei to correct motor dysfunction in a mouse model with dystonia. Targeting cerebellar outflow pathways with neuromodulation opens new possibilities for using the expansive connectivity of the cerebellum to treat motor and non-motor diseases.
Collapse
Affiliation(s)
- Jaclyn Beckinghausen
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, Houston, TX, USA
| | - Sarah G Donofrio
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, Houston, TX, USA
| | - Tao Lin
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, Houston, TX, USA
| | - Lauren N Miterko
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, Houston, TX, USA
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA
| | - Joshua J White
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, Houston, TX, USA
| | - Elizabeth P Lackey
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, Houston, TX, USA
| | - Roy V Sillitoe
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA.
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.
- Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, Houston, TX, USA.
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA.
- Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX, USA.
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
38
|
Siciliano L, Olivito G, Lupo M, Urbini N, Gragnani A, Saettoni M, Delle Chiaie R, Leggio M. The role of the cerebellum in sequencing and predicting social and non-social events in patients with bipolar disorder. Front Cell Neurosci 2023; 17:1095157. [PMID: 36874211 PMCID: PMC9974833 DOI: 10.3389/fncel.2023.1095157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/31/2023] [Indexed: 02/17/2023] Open
Abstract
Introduction Advances in the operational mode of the cerebellum indicate a role in sequencing and predicting non-social and social events, crucial for individuals to optimize high-order functions, such as Theory of Mind (ToM). ToM deficits have been described in patients with remitted bipolar disorders (BD). The literature on BD patients' pathophysiology reports cerebellar alterations; however, sequential abilities have never been investigated and no study has previously focused on prediction abilities, which are needed to properly interpret events and to adapt to changes. Methods To address this gap, we compared the performance of BD patients in the euthymic phase with healthy controls using two tests that require predictive processing: a ToM test that require implicit sequential processing and a test that explicitly assesses sequential abilities in non-ToM functions. Additionally, patterns of cerebellar gray matter (GM) alterations were compared between BD patients and controls using voxel-based morphometry. Results Impaired ToM and sequential skills were detected in BD patients, specifically when tasks required a greater predictive load. Behavioral performances might be consistent with patterns of GM reduction in cerebellar lobules Crus I-II, which are involved in advanced human functions. Discussion These results highlight the importance of deepening the cerebellar role in sequential and prediction abilities in patients with BD.
Collapse
Affiliation(s)
- Libera Siciliano
- Department of Psychology, Sapienza University of Rome, Rome, Italy.,Ataxia Laboratory, Fondazione Santa Lucia IRCCS, Rome, Italy
| | - Giusy Olivito
- Department of Psychology, Sapienza University of Rome, Rome, Italy.,Ataxia Laboratory, Fondazione Santa Lucia IRCCS, Rome, Italy
| | - Michela Lupo
- Servizio di Tutela della Salute Mentale e Riabilitazione dell'Età Evolutiva ASL, Rome, Italy
| | - Nicole Urbini
- Department of Psychology, Sapienza University of Rome, Rome, Italy.,Ataxia Laboratory, Fondazione Santa Lucia IRCCS, Rome, Italy
| | - Andrea Gragnani
- Scuola di Psicoterapia Cognitiva SPC, Grosseto, Italy.,Associazione Psicologia Cognitiva (APC)/Scuola di Psicoterapia Cognitiva (SPC), Rome, Italy
| | - Marco Saettoni
- Scuola di Psicoterapia Cognitiva SPC, Grosseto, Italy.,Unità Funzionale Salute Mentale Adulti ASL Toscana Nord-Ovest Valle del Serchio, Pisa, Italy
| | - Roberto Delle Chiaie
- Department of Neuroscience and Mental Health-Policlinico Umberto I Hospital, Sapienza University of Rome, Rome, Italy
| | - Maria Leggio
- Department of Psychology, Sapienza University of Rome, Rome, Italy.,Ataxia Laboratory, Fondazione Santa Lucia IRCCS, Rome, Italy
| |
Collapse
|
39
|
dos Santos VB, Ayres A, Kieling MLM, Miglorini EC, Jardim LB, Schumacher-Schuh AF, Rieder CRDM, de Castilhos RM, Spencer K, Rothe-Neves R, Olchik MR. Differences in spontaneous speech fluency between Parkinson's disease and spinocerebellar ataxia type 3. Front Neurol 2023; 14:1179287. [PMID: 37213898 PMCID: PMC10196352 DOI: 10.3389/fneur.2023.1179287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/10/2023] [Indexed: 05/23/2023] Open
Abstract
Background The basal ganglia and cerebellum both have a role in speech production although the effect of isolated involvement of these structures on speech fluency remains unclear. Objective The study aimed to assess the differences in the articulatory pattern in patients with cerebellar vs. basal ganglia disorders. Methods A total of 20 individuals with Parkinson's disease (PD), 20 with spinocerebellar ataxia type 3 (SCA3), and 40 controls (control group, CG) were included. Diadochokinesis (DDK) and monolog tasks were collected. Results The only variable that distinguished SCA3 carriers from the CG was the number of syllables in the monolog, with SCA3 patients of a significantly lower number. For patients with PD, the number of syllables, phonation time, DDK, and monolog were significantly lower than for CG. Patients with PD were significantly worse compared to patients with SCA3 in the number of syllables and phonation time in DDK, and phonation time in monolog. Additionally, there was a significant correlation between the number of syllables in the monolog and the MDS-UPDRS III for participants with PD, and the Friedreich Ataxia Rating Scale for participants with SCA3 suggesting a relationship between speech and general motor functioning. Conclusion The monolog task is better at discriminating individuals with cerebellar vs. Parkinson's diseases as well as differentiating healthy control and was related to the severity of the disease.
Collapse
Affiliation(s)
- Vanessa Brzoskowski dos Santos
- Post-graduate Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Neurology Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Annelise Ayres
- Neurology Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Maiara Laís Mallmann Kieling
- Post-graduate Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Neurology Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Elaine Cristina Miglorini
- Post-graduate Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Laura Bannach Jardim
- Post-graduate Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Neurology Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
- Post-graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
- Department of Internal Medicine, University of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Artur Francisco Schumacher-Schuh
- Post-graduate Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Department of Pharmacology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Carlos Roberto de Mello Rieder
- Post-Graduate Program in Rehabilitation Sciences, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Raphael Machado de Castilhos
- Post-graduate Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Department of Pharmacology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Kristie Spencer
- Department of Speech and Hearing Sciences, University of Washington, Seattle, WA, United States
| | - Rui Rothe-Neves
- Phonetics Laboratory of the Faculty of Letters, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Maira Rozenfeld Olchik
- Post-graduate Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Neurology Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
- Department of Surgery and Orthopedics, Faculdade de Odontologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- *Correspondence: Maira Rozenfeld Olchik
| |
Collapse
|
40
|
Grønbæk JK, Boeg Thomsen D, Persson K, Mathiasen R, Juhler M. The Cerebellar Mutism Syndrome: Risk Assessment, Prevention and Treatment. Adv Tech Stand Neurosurg 2023; 46:65-94. [PMID: 37318570 DOI: 10.1007/978-3-031-28202-7_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Cerebellar mutism syndrome (CMS) has received increasing attention over the last decades as a complication of posterior fossa tumour surgery in children. Risk factors, aetiological aspects, and treatment measures of the syndrome have been investigated, yet the incidence of CMS remains unchanged. Overall, we are currently able to identify patients at risk, but we are unable to prevent it from occurring.Once CMS sets in, several symptomatic pharmacological treatments have been suggested, but only in smaller case series and not in randomized controlled trials, and it is not clear whether the treatment or time itself had a helpful effect.Within weeks to months, most patients regain their ability to speak after a phase with mutism or severely reduced speech; however, many patients continue to have speech and language deficits. At this point, anti-cancer treatment with chemotherapy and radiotherapy may be of focus more than the prognosis of CMS; however, many patients continue to have speech and language problems for months and years to come, and they are at high risk of other neurocognitive sequelae as well.Without reliable measures to prevent or treat the syndrome, we may look towards improving the prognosis of speech and neurocognitive functioning in these patients. As speech and language impairment is the cardinal symptom and late effect of CMS, the effect of intense and early-onset speech and language therapy as a standard of care in these patients should be investigated in relation to its effect on regaining speech capacity.
Collapse
Affiliation(s)
- Jonathan Kjær Grønbæk
- Department of Neurosurgery, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark.
- Department of Paediatrics and Adolescent Medicine, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark.
| | - Ditte Boeg Thomsen
- Department of Cross-Cultural and Regional Studies, University of Copenhagen, Copenhagen, Denmark
| | - Karin Persson
- Department of Health Sciences, Lund University, Lund, Sweden
- Child and Youth Rehabilitation Services, Lund, Sweden
| | - René Mathiasen
- Department of Paediatrics and Adolescent Medicine, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Marianne Juhler
- Department of Neurosurgery, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Neurosurgery, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
41
|
Baizer JS, Witelson SF. Comparative analysis of four nuclei in the human brainstem: Individual differences, left-right asymmetry, species differences. Front Neuroanat 2023; 17:1069210. [PMID: 36874056 PMCID: PMC9978016 DOI: 10.3389/fnana.2023.1069210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 01/24/2023] [Indexed: 02/18/2023] Open
Abstract
Introduction It is commonly thought that while the organization of the cerebral cortex changes dramatically over evolution, the organization of the brainstem is conserved across species. It is further assumed that, as in other species, brainstem organization is similar from one human to the next. We will review our data on four human brainstem nuclei that suggest that both ideas may need modification. Methods We have studied the neuroanatomical and neurochemical organization of the nucleus paramedianus dorsalis (PMD), the principal nucleus of the inferior olive (IOpr), the arcuate nucleus of the medulla (Arc) and the dorsal cochlear nucleus (DC). We compared these human brainstem nuclei to nuclei in other mammals including chimpanzees, monkeys, cats and rodents. We studied human cases from the Witelson Normal Brain collection using Nissl and immunostained sections, and examined archival Nissl and immunostained sections from other species. Results We found significant individual variability in the size and shape of brainstem structures among humans. There is left-right asymmetry in the size and appearance of nuclei, dramatically so in the IOpr and Arc. In humans there are nuclei, e.g., the PMD and the Arc, not seen in several other species. In addition, there are brainstem structures that are conserved across species but show major expansion in humans, e.g., the IOpr. Finally, there are nuclei, e.g. the DC, that show major differences in structure among species. Discussion Overall, the results suggest several principles of human brainstem organization that distinguish humans from other species. Studying the functional correlates of, and the genetic contributions to, these brainstem characteristics are important future research directions.
Collapse
Affiliation(s)
- Joan S Baizer
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| | - Sandra F Witelson
- Department of Psychiatry and Behavioural Neurosciences, Michael G. DeGroote School of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
42
|
Liu D, Chen M, Lin Q, Li T, Chen X, Dai G, Wu X, Li J, Liu H, Liu P. Theta burst stimulation over left cerebellum does not modulate auditory feedback control of vocal production. Front Neurosci 2022; 16:1051629. [PMID: 36620446 PMCID: PMC9814006 DOI: 10.3389/fnins.2022.1051629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
Background Accumulating evidence has shown significant contributions of the right cerebellum to auditory-motor integration for vocal production. Whether the left cerebellum is likewise involved in vocal motor control, however, remains unclear. Methods By applying neuronavigated continuous and intermittent theta burst stimulation (cTBS/iTBS) over the left cerebellar lobule VII (Crus I), the present event-related potential (ERP) study investigated whether the left cerebellum exerts causal effects in modulating auditory feedback control of vocal pitch production. After receiving cTBS, iTBS, or sham stimulation over the left cerebellum, a group of fifteen young adults produced sustained vowels while hearing their voice unexpectedly shifted in pitch upwards or downwards by 200 cents. The effects of cerebellar stimulation were assessed by measuring the vocal and ERP (N1/P2) responses to pitch perturbations across the conditions. Results When compared to sham stimulation, cTBS or iTBS over the left cerebellar lobule VII (Crus I) led to no systematic changes in vocal compensations for pitch perturbations in auditory feedback. Also, the cortical N1/P2 responses did not vary significantly across the three stimulation sessions. Conclusion These findings present the first neurobehavioral evidence suggesting that the left cerebellum is not causally associated with auditory feedback control of vocal production. Together with previously reported causal effects of the right cerebellum in modulating vocal pitch regulation, the present study lends support to the hypothesis that there is a functional lateralization of the cerebellum in vocal motor control though auditory feedback.
Collapse
Affiliation(s)
- Dongxu Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Mingyun Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qing Lin
- Department of Rehabilitation Medicine, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, China
| | - Tingni Li
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xi Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Guangyan Dai
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiuqin Wu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jingting Li
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hanjun Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China,Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China,*Correspondence: Hanjun Liu,
| | - Peng Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China,Peng Liu,
| |
Collapse
|
43
|
Bruce L, Peter B. Three children with different de novo BCL11A variants and diverse developmental phenotypes, but shared global motor discoordination and apraxic speech: Evidence for a functional gene network influencing the developing cerebellum and motor and auditory cortices. Am J Med Genet A 2022; 188:3401-3415. [PMID: 35856171 DOI: 10.1002/ajmg.a.62904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 06/28/2022] [Accepted: 07/04/2022] [Indexed: 01/31/2023]
Abstract
BCL11A is implicated in BCL11A-Related Intellectual Development Disorder (BCL11A-IDD). Previously reported cases had various types of BCL11A variants (copy-number variations [CNVs], singlenucleotide variants [SNVs]). Phenotypes included global, cognitive, and motor delays, autism spectrum disorder (ASD), craniofacial dysmorphology, and speech and language delays described generally, with only two reports specifying childhood apraxia of speech (CAS). Here, we present three additional children with CAS and de novo BCL11A variants, a p.Ala182Thr nonconservative missense and a p.GLu611.Ter nonsense variant, both in exon 4, and a 106 kb deletion harboring exons 1 and 2. All three children have fine and gross motor discoordination, feeding difficulties, and visual motor disorders. Intellectual and learning disabilities and disordered language skills were seen only in the child with the missense variant and the child with the deletion. These findings align with, and expand, previous findings in that BCL11A variants have significant and highly penetrant apraxic effects across motor systems, consistent with cerebellar involvement. The deletion of exons 1 and 2 is the smallest BCL11A CNV with the full phenotypic expression reported to date. The present results support previous findings in that BCL11A-IDD can result from BCL11A variants regardless of type (deletion, SNVs). A gene expression study shows that BCL11 is expressed highly in the early developing cerebellum and primary motor and auditory cortices. Significant co-expression rates in these regions with genes previously implicated in disorders of spoken language and in ASD support the phenotypic overlaps in children with BCL11A-IDD, CAS, and ASD.
Collapse
Affiliation(s)
- Laurel Bruce
- College of Health Solutions, Arizona State University, Tempe, Arizona, USA
| | - Beate Peter
- College of Health Solutions, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
44
|
Coppola P, Allanson J, Naci L, Adapa R, Finoia P, Williams GB, Pickard JD, Owen AM, Menon DK, Stamatakis EA. The complexity of the stream of consciousness. Commun Biol 2022; 5:1173. [PMID: 36329176 PMCID: PMC9633704 DOI: 10.1038/s42003-022-04109-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 10/10/2022] [Indexed: 11/06/2022] Open
Abstract
Typical consciousness can be defined as an individual-specific stream of experiences. Modern consciousness research on dynamic functional connectivity uses clustering techniques to create common bases on which to compare different individuals. We propose an alternative approach by combining modern theories of consciousness and insights arising from phenomenology and dynamical systems theory. This approach enables a representation of an individual's connectivity dynamics in an intrinsically-defined, individual-specific landscape. Given the wealth of evidence relating functional connectivity to experiential states, we assume this landscape is a proxy measure of an individual's stream of consciousness. By investigating the properties of this landscape in individuals in different states of consciousness, we show that consciousness is associated with short term transitions that are less predictable, quicker, but, on average, more constant. We also show that temporally-specific connectivity states are less easily describable by network patterns that are distant in time, suggesting a richer space of possible states. We show that the cortex, cerebellum and subcortex all display consciousness-relevant dynamics and discuss the implication of our results in forming a point of contact between dynamical systems interpretations and phenomenology.
Collapse
Affiliation(s)
- Peter Coppola
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Judith Allanson
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
- Department of Neurosciences, Cambridge University Hospitals NHS Foundation, Addenbrooke's Hospital, Cambridge, UK
| | - Lorina Naci
- Trinity College Institute of Neuroscience, School of Psychology, Lloyd Building, Trinity College Dublin, Dublin, Ireland
| | - Ram Adapa
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Paola Finoia
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
- Division of Neurosurgery, School of Clinical Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Guy B Williams
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
- Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, UK
| | - John D Pickard
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
- Division of Neurosurgery, School of Clinical Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
- Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, UK
| | - Adrian M Owen
- The Brain and Mind Institute, Western Interdisciplinary Research Building, N6A 5B7 University of Western Ontario, London, ON, Canada
| | - David K Menon
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
- Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, UK
| | - Emmanuel A Stamatakis
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK.
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK.
| |
Collapse
|
45
|
Forkel SJ, Labache L, Nachev P, Thiebaut de Schotten M, Hesling I. Stroke disconnectome decodes reading networks. Brain Struct Funct 2022; 227:2897-2908. [PMID: 36192557 DOI: 10.1007/s00429-022-02575-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 09/19/2022] [Indexed: 12/31/2022]
Abstract
Cognitive functional neuroimaging has been around for over 30 years and has shed light on the brain areas relevant for reading. However, new methodological developments enable mapping the interaction between functional imaging and the underlying white matter networks. In this study, we used such a novel method, called the disconnectome, to decode the reading circuitry in the brain. We used the resulting disconnection patterns to predict a typical lesion that would lead to reading deficits after brain damage. Our results suggest that white matter connections critical for reading include fronto-parietal U-shaped fibres and the vertical occipital fasciculus (VOF). The lesion most predictive of a reading deficit would impinge on the left temporal, occipital, and inferior parietal gyri. This novel framework can systematically be applied to bridge the gap between the neuropathology of language and cognitive neuroscience.
Collapse
Affiliation(s)
- Stephanie J Forkel
- Brain Connectivity and Behaviour Laboratory, Sorbonne Universities, Paris, France. .,Donders Centre for Cognition, Radboud University, Thomas van Aquinostraat 4, 6525 GD, Nijmegen, The Netherlands. .,Department of Neuroimaging, Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK. .,Department of Neurosurgery, Technical University of Munich School of Medicine, Munich, Germany.
| | - Loïc Labache
- Department of Psychology, Yale University, New Haven, CT, 06511, USA
| | - Parashkev Nachev
- UCL Queen Square Institute of Neurology, University College London, Queen Square, London, WC1N 3GB, UK
| | - Michel Thiebaut de Schotten
- Brain Connectivity and Behaviour Laboratory, Sorbonne Universities, Paris, France.,Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives-UMR 5293, CNRS, CEA University of Bordeaux, Bordeaux, France
| | - Isabelle Hesling
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives-UMR 5293, CNRS, CEA University of Bordeaux, Bordeaux, France
| |
Collapse
|
46
|
Pu M, Ma Q, Heleven E, Delplanque J, Baetens K, Haihambo N, Baeken C, Deroost N, Van Overwalle F. This is not who you are: The posterior cerebellum and stereotype-inconsistent action sequences. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2022; 22:1090-1107. [PMID: 35411417 DOI: 10.3758/s13415-022-01005-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
Recent research has indicated that the posterior cerebellum plays a crucial role in social cognition by encoding sequences of social actions. This study investigates its role in learning sequences of stereotype-implying actions by group members. We presented a set of five sentences that each described a group member who performed either stereotype-consistent or inconsistent actions. Participants were instructed to memorize the temporal order of the sentences and infer a common stereotype of the group. As a comparison, we included control conditions where participants had to memorize sequences of nonsocial consistent events or simply read stereotype-consistent sentences without memorizing their order. The results showed that the posterior cerebellum was strongly activated when participants were memorizing the order of the social actions, as opposed to simply reading these social actions. More importantly, when the social actions were inconsistent as opposed to consistent with the stereotype of the group, the posterior cerebellum was activated more strongly. This activation occurred together with cortical recruitment of the mentalizing network involving the dorsomedial prefrontal cortex (dmPFC) during social actions, and additionally the conflict monitoring network involving the lateral prefrontal cortex (PFC) and posterior medial frontal cortex (pmFC) during stereotype-inconsistent actions. These findings suggest that the cerebellum supports not only learning of low-level action sequences, but also of their high-level social implications.
Collapse
Affiliation(s)
- Min Pu
- Faculty of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium.
| | - Qianying Ma
- Faculty of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Elien Heleven
- Faculty of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Jeroen Delplanque
- Faculty of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Kris Baetens
- Faculty of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Naem Haihambo
- Faculty of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Chris Baeken
- Faculty of Medicine and Health Sciences, Department of Head and Skin, Ghent Experimental Psychiatry (GHEP) lab, Ghent University, Ghent, Belgium
- Department of Psychiatry, University Hospital (UZBrussel), Brussels, Belgium
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Natacha Deroost
- Faculty of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Frank Van Overwalle
- Faculty of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| |
Collapse
|
47
|
Does Executive Function Training Impact on Communication? A Randomized Controlled tDCS Study on Post-Stroke Aphasia. Brain Sci 2022; 12:brainsci12091265. [PMID: 36139001 PMCID: PMC9497246 DOI: 10.3390/brainsci12091265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/15/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
New approaches in aphasia rehabilitation have recently identified the crucial role of executive functions (EFs) in language recovery, especially for people with severe aphasia (PWSA). Indeed, EFs include high-order cognitive abilities such as planning and problem solving, which enable humans to adapt to novel situations and are essential for everyday functional communication. In a randomized double-blind crossover design, twenty chronic Italian PWSA underwent ten days of transcranial direct current stimulation (tDCS) (20 min, 2 mA) over the right dorsolateral prefrontal cortex (DLPFC). Two conditions were considered, i.e., anodal and sham, while performing four types of cognitive training (alertness, selective attention, visuo-spatial working memory, and planning), all of which were related to executive functions. After anodal tDCS, a greater improvement in selective attention, visuospatial working memory and planning abilities was found compared to the sham condition; this improvement persisted one month after the intervention. Importantly, a significant improvement was also observed in functional communication, as measured through the Communication Activities of Daily Living Scale, in noun and verb naming, in auditory and written language comprehension tasks and in executive function abilities. This evidence emphasizes, for the first time, that tDCS over the right DLPFC combined with executive training enhances functional communication in severe aphasia.
Collapse
|
48
|
Okada NJ, Liu J, Tsang T, Nosco E, McDonald N, Cummings KK, Jung J, Patterson G, Bookheimer SY, Green SA, Jeste SS, Dapretto M. Atypical cerebellar functional connectivity at 9 months of age predicts delayed socio-communicative profiles in infants at high and low risk for autism. J Child Psychol Psychiatry 2022; 63:1002-1016. [PMID: 34882790 PMCID: PMC9177892 DOI: 10.1111/jcpp.13555] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/02/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND While the cerebellum is traditionally known for its role in sensorimotor control, emerging research shows that particular subregions, such as right Crus I (RCrusI), support language and social processing. Indeed, cerebellar atypicalities are commonly reported in autism spectrum disorder (ASD), a neurodevelopmental disorder characterized by socio-communicative impairments. However, the cerebellum's contribution to early socio-communicative development remains virtually unknown. METHODS Here, we characterized functional connectivity within cerebro-cerebellar networks implicated in language/social functions in 9-month-old infants who exhibit distinct 3-year socio-communicative developmental profiles. We employed a data-driven clustering approach to stratify our sample of infants at high (n = 82) and low (n = 37) familial risk for ASD into three cohorts-Delayed, Late-Blooming, and Typical-who showed unique socio-communicative trajectories. We then compared the cohorts on indices of language and social development. Seed-based functional connectivity analyses with RCrusI were conducted on infants with fMRI data (n = 66). Cohorts were compared on connectivity estimates from a-priori regions, selected on the basis of reported coactivation with RCrusI during language/social tasks. RESULTS The three trajectory-based cohorts broadly differed in social communication development, as evidenced by robust differences on numerous indices of language and social skills. Importantly, at 9 months, the cohorts showed striking differences in cerebro-cerebellar circuits implicated in language/social functions. For all regions examined, the Delayed cohort exhibited significantly weaker RCrusI connectivity compared to both the Late-Blooming and Typical cohorts, with no significant differences between the latter cohorts. CONCLUSIONS We show that hypoconnectivity within distinct cerebro-cerebellar networks in infancy predicts altered socio-communicative development before delays overtly manifest, which may be relevant for early detection and intervention. As the cerebellum is implicated in prediction, our findings point to probabilistic learning as a potential intermediary mechanism that may be disrupted in infancy, cascading into alterations in social communication.
Collapse
Affiliation(s)
- Nana J. Okada
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles
| | - Janelle Liu
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles
| | - Tawny Tsang
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles
| | - Erin Nosco
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles
| | - Nicole McDonald
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles
| | - Kaitlin K. Cummings
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles
| | - Jiwon Jung
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles
| | - Genevieve Patterson
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles
| | - Susan Y. Bookheimer
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles
| | - Shulamite A. Green
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles
| | - Shafali S. Jeste
- Children’s Hospital Los Angeles, USC Keck School of Medicine, Los Angeles
| | - Mirella Dapretto
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles
| |
Collapse
|
49
|
Guinamard A, Clément S, Goemaere S, Mary A, Riquet A, Dellacherie D. Musical abilities in children with developmental cerebellar anomalies. Front Syst Neurosci 2022; 16:886427. [PMID: 36061946 PMCID: PMC9436271 DOI: 10.3389/fnsys.2022.886427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/15/2022] [Indexed: 11/13/2022] Open
Abstract
Developmental Cerebellar Anomalies (DCA) are rare diseases (e.g., Joubert syndrome) that affect various motor and non-motor functions during childhood. The present study examined whether music perception and production are affected in children with DCA. Sixteen children with DCA and 37 healthy matched control children were tested with the Montreal Battery for Evaluation of Musical Abilities (MBEMA) to assess musical perception. Musical production was assessed using two singing tasks: a pitch-matching task and a melodic reproduction task. Mixed model analyses showed that children with DCA were impaired on the MBEMA rhythm perception subtest, whereas there was no difference between the two groups on the melodic perception subtest. Children with DCA were also impaired in the melodic reproduction task. In both groups, singing performance was positively correlated with rhythmic and melodic perception scores, and a strong correlation was found between singing ability and oro-bucco-facial praxis in children with DCA. Overall, children with DCA showed impairments in both music perception and production, although heterogeneity in cerebellar patient’s profiles was highlighted by individual analyses. These results confirm the role of the cerebellum in rhythm processing as well as in the vocal sensorimotor loop in a developmental perspective. Rhythmic deficits in cerebellar patients are discussed in light of recent work on predictive timing networks including the cerebellum. Our results open innovative remediation perspectives aiming at improving perceptual and/or production musical abilities while considering the heterogeneity of patients’ clinical profiles to design music-based therapies.
Collapse
Affiliation(s)
- Antoine Guinamard
- Univ. Lille, ULR 4072 – PSITEC – Psychologie: Interactions, Temps, Émotions, Cognition, Lille, France
- CHU Lille, Centre de Référence Malformations et Maladies Congénitales du Cervelet, Lille, France
- *Correspondence: Antoine Guinamard,
| | - Sylvain Clément
- Univ. Lille, ULR 4072 – PSITEC – Psychologie: Interactions, Temps, Émotions, Cognition, Lille, France
| | - Sophie Goemaere
- CHU Lille, Centre de Référence Malformations et Maladies Congénitales du Cervelet, Lille, France
- CHU Lille, Centre Régional de Diagnostic des Troubles d’Apprentissage, Lille, France
| | - Alice Mary
- CHU Lille, Centre de Référence Malformations et Maladies Congénitales du Cervelet, Lille, France
| | - Audrey Riquet
- CHU Lille, Centre de Référence Malformations et Maladies Congénitales du Cervelet, Lille, France
| | - Delphine Dellacherie
- Univ. Lille, ULR 4072 – PSITEC – Psychologie: Interactions, Temps, Émotions, Cognition, Lille, France
- CHU Lille, Centre de Référence Malformations et Maladies Congénitales du Cervelet, Lille, France
- Delphine Dellacherie,
| |
Collapse
|
50
|
Bylemans T, Heleven E, Baetens K, Deroost N, Baeken C, Van Overwalle F. A narrative sequencing and mentalizing training for adults with autism: A pilot study. Front Behav Neurosci 2022; 16:941272. [PMID: 36062258 PMCID: PMC9433774 DOI: 10.3389/fnbeh.2022.941272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/01/2022] [Indexed: 12/24/2022] Open
Abstract
Adults diagnosed with autism experience difficulties with understanding the mental states of others, or themselves (mentalizing) and with adequately sequencing personal stories (narrative coherence). Given that the posterior cerebellum is implicated in both skills, as well as in the etiology of autism, we developed a narrative sequencing and mentalizing training for autistic adults. Participants with an official autism diagnosis were randomly assigned to a Training group (n = 17) or a waiting-list Control group (n = 15). The Training group took part in six weekly sessions in groups of three participants lasting each about 60 min. During training, participants had to (re)tell stories from the perspective of the original storyteller and answer questions that required mentalizing. We found significant improvements in mentalizing about others’ beliefs and in narrative coherence for the Training group compared to the Control group immediately after the training compared to before the training. Almost all participants from the Training group expressed beneficial effects of the training on their mood and half of the participants reported positive effects on their self-confidence in social situations. All participants recommended the current training to others. Results are discussed in light of cerebellar theories on sequencing of social actions during mentalizing. Further improvements to the program are suggested. Our results highlight the potential clinical utility of adopting a neuroscience-informed approach to developing novel therapeutic interventions for autistic populations.
Collapse
Affiliation(s)
- Tom Bylemans
- Brain Body and Cognition, Department of Psychology, Center for Neuroscience, Vrije Universiteit Brussels, Brussels, Belgium
- *Correspondence: Tom Bylemans,
| | - Elien Heleven
- Brain Body and Cognition, Department of Psychology, Center for Neuroscience, Vrije Universiteit Brussels, Brussels, Belgium
| | - Kris Baetens
- Brain Body and Cognition, Department of Psychology, Center for Neuroscience, Vrije Universiteit Brussels, Brussels, Belgium
| | - Natacha Deroost
- Brain Body and Cognition, Department of Psychology, Center for Neuroscience, Vrije Universiteit Brussels, Brussels, Belgium
| | - Chris Baeken
- Ghent Experimental Psychiatry (GHEP) Lab, Department of Head and Skin (UZGent), Ghent University, Ghent, Belgium
- Department of Psychiatry, University Hospital (UZ Brussel), Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Frank Van Overwalle
- Brain Body and Cognition, Department of Psychology, Center for Neuroscience, Vrije Universiteit Brussels, Brussels, Belgium
| |
Collapse
|