1
|
Chiang PT, Tsai LK, Tsai HH. New targets in spontaneous intracerebral hemorrhage. Curr Opin Neurol 2025; 38:10-17. [PMID: 39325041 PMCID: PMC11706352 DOI: 10.1097/wco.0000000000001325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
PURPOSE OF REVIEW Intracerebral hemorrhage (ICH) is a devastating stroke with limited medical treatments; thus, timely exploration of emerging therapeutic targets is essential. This review focuses on the latest strategies to mitigate secondary brain injury post-ICH other than targeting surgery or hemostasis, addressing a significant gap in clinical practice and highlighting potential improvements in patient outcomes. RECENT FINDINGS Promising therapeutic targets to reduce secondary brain injury following ICH have recently been identified, including attenuation of iron toxicity and inhibition of ferroptosis, enhancement of endogenous resorption of hematoma, and modulation of perihematomal inflammatory responses and edema. Additionally, novel insights suggest the lymphatic system of the brain may potentially play a role in hematoma clearance and edema management. Various experimental and early-phase clinical trials have demonstrated these approaches may potentially offer clinical benefits, though most research remains in the preliminary stages. SUMMARY Continued research is essential to identify multifaceted treatment strategies for ICH. Clinical translation of these emerging targets could significantly enhance the efficacy of therapeutic interventions and potentially reduce secondary brain damage and improve neurological recovery. Future efforts should focus on large-scale clinical trials to validate these approaches, to pave the way for more effective treatment protocols for spontaneous ICH.
Collapse
Affiliation(s)
- Pu-Tien Chiang
- Department of Neurology, National Taiwan University Hospital
- Department of Neurology, National Taiwan University Hospital Bei-Hu Branch, Taipei, Taiwan
| | - Li-Kai Tsai
- Department of Neurology, National Taiwan University Hospital
| | - Hsin-Hsi Tsai
- Department of Neurology, National Taiwan University Hospital
| |
Collapse
|
2
|
Gall LG, Stains CM, Freitas-Andrade M, Jia BZ, Patel N, Megason SG, Lacoste B, O’Brown NM. Zebrafish glial-vascular interactions progressively expand over the course of brain development. iScience 2025; 28:111549. [PMID: 39811646 PMCID: PMC11731618 DOI: 10.1016/j.isci.2024.111549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/06/2024] [Accepted: 12/04/2024] [Indexed: 01/16/2025] Open
Abstract
Glial-vascular interactions are critical for the formation and maintenance of brain blood vessels and the blood-brain barrier (BBB) in mammals, but their role in the zebrafish BBB remains unclear. Using three glial gene promoters-gfap, glast, and glastini (a truncated glast)-we explored glial-vascular development in zebrafish. Sparse labeling showed fewer glial-vascular interactions at early stages, with glial coverage and contact area increasing with age. Stable transgenic lines for glast and glastini revealed similar developmental increases, starting at ∼30% coverage at 3 days post-fertilization (dpf) and peaking at ∼60% by 10 dpf, and consistently higher glial coverage in the forebrain and midbrain than in the hindbrain. Electron microscopy analyses showed similar progressive increases in glial-vascular interactions, with maximal coverage of ∼70% in adults-significantly lower than the ∼100% seen in mammals. These findings define the temporal and regional maturation of glial-vascular interactions in zebrafish and highlight differences from mammalian systems.
Collapse
Affiliation(s)
- Lewis G. Gall
- Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ 08854, USA
| | - Courtney M. Stains
- Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ 08854, USA
| | | | - Bill Z. Jia
- Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | - Nishi Patel
- Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ 08854, USA
| | - Sean G. Megason
- Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | - Baptiste Lacoste
- Neuroscience Program, The Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular & Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
| | - Natasha M. O’Brown
- Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ 08854, USA
| |
Collapse
|
3
|
Feng M, An Y, Qin Q, Fong IH, Zhang K, Wang F, Song D, Li M, Yu M, Yeh CT, Chang J, Guo F. Sphk1/S1P pathway promotes blood-brain barrier breakdown after intracerebral hemorrhage through inducing Nlrp3-mediated endothelial cell pyroptosis. Cell Death Dis 2024; 15:926. [PMID: 39715736 DOI: 10.1038/s41419-024-07310-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 12/07/2024] [Accepted: 12/13/2024] [Indexed: 12/25/2024]
Abstract
Intracerebral hemorrhage (ICH) is a severe stroke subtype with high mortality and limited therapeutic options. The blood-brain barrier (BBB) breakdown post-ICH exacerbates secondary brain injury, highlighting the need for targeted therapies to preserve the BBB integrity. We aim to investigate the role of the Sphk1/S1P pathway in BBB breakdown following ICH and to evaluate the therapeutic potential of Sphk1 inhibition in mitigating this breakdown. Using a combination of human patient samples, mouse models of ICH, and in vitro cellular assays, we assessed the expression levels of Sphk1/S1P after ICH and changes of the BBB after ICH. The Sphk1 inhibitor PF543 and siRNAs were utilized to explore the pathway's impact on BBB integrity and the underlying mechanisms. The results indicate significant upregulation of Sphk1/S1P in the peri-hematomal brain tissue after ICH, which correlates with increased BBB leakage. Pharmacological inhibition of Sphk1 with PF543 attenuates BBB leakage, reduces hematoma volume, and improves neurological outcomes in mice. At the molecular and ultrastructural level, Sphk1 inhibition protects the BBB integrity by preserving tight junction proteins and suppressing endothelial transcytosis. Furthermore, mechanistic studies reveal that Sphk1 promotes Nlrp3-mediated pyroptosis of brain endothelial cells through the ERK1/2 signaling pathway. Taken together, the Sphk1/S1P pathway plays a critical role in ICH-induced BBB breakdown, and its inhibition represents a promising therapeutic strategy for ICH management.
Collapse
Affiliation(s)
- Mengzhao Feng
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450000, China
- Key Laboratory of Biomedical Imaging Science and System of Chinese Academy of Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, 518055, China
| | - Yuan An
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450000, China
- Key Laboratory of Biomedical Imaging Science and System of Chinese Academy of Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, 518055, China
| | - Qi Qin
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450000, China
- Key Laboratory of Biomedical Imaging Science and System of Chinese Academy of Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, 518055, China
| | - Iat-Hang Fong
- Department of Medical Research & Education, Taipei Medical University - Shuang Ho Hospital, New Taipei City, 23561, Taiwan
| | - Kaiyuan Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450000, China
- Key Laboratory of Biomedical Imaging Science and System of Chinese Academy of Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, 518055, China
| | - Fang Wang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450000, China
| | - Dengpan Song
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450000, China
| | - Mengyuan Li
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450000, China
| | - Min Yu
- Key Laboratory of Biomedical Imaging Science and System of Chinese Academy of Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, 518055, China.
| | - Chi-Tai Yeh
- Department of Medical Research & Education, Taipei Medical University - Shuang Ho Hospital, New Taipei City, 23561, Taiwan.
- Continuing Education Program of Food Biotechnology Applications, College of Science and Engineering, National Taitung University, Taitung, 95092, Taiwan.
| | - Junlei Chang
- Key Laboratory of Biomedical Imaging Science and System of Chinese Academy of Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, 518055, China.
| | - Fuyou Guo
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450000, China.
| |
Collapse
|
4
|
Yu Z, Yang XY, Cai YQ, Hu E, Li T, Zhu WX, Wu Y, Yan QJ, Li ZL, Chen Q, Pei Z, Zheng F, Wang Y, Tang T. Panax Notoginseng Saponins promotes the meningeal lymphatic system-mediated hematoma absorption in intracerebral hemorrhage. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156149. [PMID: 39427524 DOI: 10.1016/j.phymed.2024.156149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 08/23/2024] [Accepted: 10/10/2024] [Indexed: 10/22/2024]
Abstract
BACKGROUND Hematoma clearance is crucial for treating intracerebral hemorrhage (ICH). Currently, there is a lack of pharmacological therapy aimed at promoting hematoma absorption. Meningeal lymphatic system, as a drain of brain, is a potential therapeutic approach in ICH. Panax Notoginseng Saponins (PNS), proven to promote lymphangiogenesis in periphery, effectively reduces hematoma in ICH patients. However, the potential pharmacological effect of PNS on meningeal lymphatic vessels (MLVs) remains unknown. PURPOSE In this study, we aimed to investigate the impact of PNS on the meningeal lymphatic system and ICH. METHODS The collagenase-ICH model was conducted to investigate the effect of PNS. Behavioral tests, including modified neurological severity score (mNSS) and foot-fault test, and hematoma volume were used to estimate the neurological function and curative effect. The structure and drainage function of MLVs was detected by immunohistochemical staining. Visudyne intracisternal magna injection combined with red laser photoconversion was performed to ablate MLVs. RNA-sequencing was used to obtain mRNA profiles for mechanistic investigation. RESULTS The meningeal lymphatic drainage function was enhanced after ICH on day 14 without obvious lymphangiogenesis. Additionally, PNS further facilitated the process of drain with simultaneously inducing lymphangiogenesis. Moreover, ablation of MLVs by photoconverting of visudyne significantly blocked the benefits of neurological deficits improvement and hematoma absorption conducted by PNS. Furthermore, RNA-sequencing revealed that PNS regulated axonogenesis and inflammation, relying on the intact MLVs. In which, solute carrier family 17 member 7 (Slc17a7) and tumor necrosis factor (Tnf) were identified as bottleneck and hub nodes of the protein-protein interaction network of target genes, respectively. CONCLUSION PNS might be effective for ICH treatment by enhancing lymphangiogenesis and the meningeal lymphatic drainage function, thereby attenuating inflammation and promoting neurological recovery. The role of PNS in regulation of MLVs was investigated for the first time. This study provides a novel insight for PNS in the medical therapy of ICH.
Collapse
Affiliation(s)
- Zhe Yu
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, PR China; Hunan Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China
| | - Xi-Ya Yang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, PR China; Hunan Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China
| | - Yi-Qing Cai
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, PR China; Hunan Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China
| | - En Hu
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, PR China; Hunan Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China; Neurology Department of TCM, Xiangya Hospital, Central South University, Jiangxi 330004, PR China
| | - Teng Li
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, PR China; Hunan Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China; Neurology Department of TCM, Xiangya Hospital, Central South University, Jiangxi 330004, PR China
| | - Wen-Xin Zhu
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, PR China; Hunan Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China
| | - Yao Wu
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, PR China; Hunan Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China
| | - Qiu-Ju Yan
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, PR China; Hunan Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China
| | - Zhi-Lin Li
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, PR China; Hunan Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China
| | - Quan Chen
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, PR China; Hunan Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China
| | - Zhuan Pei
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, PR China; Hunan Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China
| | - Fei Zheng
- The College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, PR China
| | - Yang Wang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, PR China; Hunan Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China; Neurology Department of TCM, Xiangya Hospital, Central South University, Jiangxi 330004, PR China.
| | - Tao Tang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, PR China; Hunan Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China; Neurology Department of TCM, Xiangya Hospital, Central South University, Jiangxi 330004, PR China.
| |
Collapse
|
5
|
Pham C, Komaki Y, Deàs-Just A, Le Gac B, Mouffle C, Franco C, Chaperon A, Vialou V, Tsurugizawa T, Cauli B, Li D. Astrocyte aquaporin mediates a tonic water efflux maintaining brain homeostasis. eLife 2024; 13:RP95873. [PMID: 39508543 PMCID: PMC11542920 DOI: 10.7554/elife.95873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024] Open
Abstract
Brain water homeostasis not only provides a physical protection, but also determines the diffusion of chemical molecules key for information processing and metabolic stability. As a major type of glia in brain parenchyma, astrocytes are the dominant cell type expressing aquaporin water channel. How astrocyte aquaporin contributes to brain water homeostasis in basal physiology remains to be understood. We report that astrocyte aquaporin 4 (AQP4) mediates a tonic water efflux in basal conditions. Acute inhibition of astrocyte AQP4 leads to intracellular water accumulation as optically resolved by fluorescence-translated imaging in acute brain slices, and in vivo by fiber photometry in mobile mice. We then show that aquaporin-mediated constant water efflux maintains astrocyte volume and osmotic equilibrium, astrocyte and neuron Ca2+ signaling, and extracellular space remodeling during optogenetically induced cortical spreading depression. Using diffusion-weighted magnetic resonance imaging (DW-MRI), we observed that in vivo inhibition of AQP4 water efflux heterogeneously disturbs brain water homeostasis in a region-dependent manner. Our data suggest that astrocyte aquaporin, though bidirectional in nature, mediates a tonic water outflow to sustain cellular and environmental equilibrium in brain parenchyma.
Collapse
Affiliation(s)
- Cuong Pham
- Sorbonne Université - CNRS - INSERM, Institut de Biologie Paris Seine, Neuroscience Paris SeineParisFrance
| | - Yuji Komaki
- Central Institute for Experimental Medicine and Life ScienceKawasakiJapan
| | - Anna Deàs-Just
- Sorbonne Université - CNRS - INSERM, Institut de Biologie Paris Seine, Neuroscience Paris SeineParisFrance
| | - Benjamin Le Gac
- Sorbonne Université - CNRS - INSERM, Institut de Biologie Paris Seine, Neuroscience Paris SeineParisFrance
| | - Christine Mouffle
- Sorbonne Université - CNRS - INSERM, Institut de Biologie Paris Seine, Neuroscience Paris SeineParisFrance
| | - Clara Franco
- Sorbonne Université - CNRS - INSERM, Institut de Biologie Paris Seine, Neuroscience Paris SeineParisFrance
| | - Agnès Chaperon
- Sorbonne Université - CNRS - INSERM, Institut de Biologie Paris Seine, Neuroscience Paris SeineParisFrance
| | - Vincent Vialou
- Sorbonne Université - CNRS - INSERM, Institut de Biologie Paris Seine, Neuroscience Paris SeineParisFrance
| | - Tomokazu Tsurugizawa
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)TsukubaJapan
- Faculty of Engineering, University of TsukubaTsukubaJapan
| | - Bruno Cauli
- Sorbonne Université - CNRS - INSERM, Institut de Biologie Paris Seine, Neuroscience Paris SeineParisFrance
| | - Dongdong Li
- Sorbonne Université - CNRS - INSERM, Institut de Biologie Paris Seine, Neuroscience Paris SeineParisFrance
| |
Collapse
|
6
|
Nie FY, Jin RY, Wu SS, Yuan W, Wu YW, Xue SM, Yang XH, Qiao HF. AQP4 is upregulated in schizophrenia and Its inhibition attenuates MK-801-induced schizophrenia-like behaviors in mice. Behav Brain Res 2024; 475:115220. [PMID: 39214422 DOI: 10.1016/j.bbr.2024.115220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/17/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND The pathophysiology and molecular mechanisms of schizophrenia (SCZ) remain unclear, and the effective treatment resources are still limited. The goal of this study is to identify the expression of AQP4 in SCZ patients and explore whether AQP4 inhibition could ameliorate schizophrenia-like behaviors and its mechanisms. METHODS Microarray datasets of PFC compared with healthy control were searched in the Gene Expression Omnibus (GEO) database, and differentially expressed genes (DEGs) were analyzed with the GEO2R online tool. The Venny online tool and metascape online software were used to identify common abnormally expressed genes and conduct cell type signature enrichment analysis. SCZ mouse models were induced with MK-801, an NMDA receptor antagonist (intraperitoneal injection, 0.1 mg/kg/day for 7 days), and C6 cell models were treated with 100 μM MK-801. RT-qPCR, Western Blotting, and immunofluorescence were employed to determine the expression of AQP4, proinflammatory cytokines, and GFAP. Open field tests and social interaction tests were performed to evaluate the schizophrenia-like behaviors. RESULTS Bioinformatics analysis identified upregulation of AQP4 in the PFC of SCZ patients compared with healthy controls. Cell type signature enrichment analysis showed that all three DEGs lists were strongly enriched in the FAN EMBRYONIC CTX ASTROCYTE 2 category. Upregulation of AQP4 was also observed in MK-801-treated C6 cells and the PFC of MK-801-induced SCZ mouse model. Moreover, AQP4 inhibition with TGN-020 (an inhibitor of AQP4) improved anxiety-like behavior and social novelty preference defects in MK-801-treated mice. AQP4 inhibition also reduced the expression of IL-1β, IL-6, and TNF-α in MK-801-treated C6 cells and mouse model. CONCLUSIONS AQP4 is upregulated in the PFC of SCZ patients compared with healthy controls. AQP4 inhibition could alleviate the anxiety-like behavior and social novelty defects in MK-801-treated mice, this may be due to the role of AQP4 in the regulation of the expression of proinflammatory cytokines.
Collapse
Affiliation(s)
- Fa-Yi Nie
- Shaanxi Key Laboratory of Acupuncture and Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, China; Shaanxi Collaborative Innovation Center of TCM Technologies and Devices, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Ru-Yi Jin
- Shaanxi Key Lab Basic & New Herbal Medicament Research Center, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Shan-Shan Wu
- School of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Wei Yuan
- Shaanxi Key Laboratory of Acupuncture and Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Yu-Wei Wu
- Shaanxi Key Laboratory of Acupuncture and Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Si-Meng Xue
- Shaanxi Key Laboratory of Acupuncture and Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Xiao-Hang Yang
- Shaanxi Collaborative Innovation Center of TCM Technologies and Devices, Shaanxi University of Chinese Medicine, Xianyang 712046, China.
| | - Hai-Fa Qiao
- Shaanxi Key Laboratory of Acupuncture and Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, China.
| |
Collapse
|
7
|
Jia P, Peng Q, Fan X, Zhang Y, Xu H, Li J, Sonita H, Liu S, Le A, Hu Q, Zhao T, Zhang S, Wang J, Zille M, Jiang C, Chen X, Wang J. Immune-mediated disruption of the blood-brain barrier after intracerebral hemorrhage: Insights and potential therapeutic targets. CNS Neurosci Ther 2024; 30:e14853. [PMID: 39034473 PMCID: PMC11260770 DOI: 10.1111/cns.14853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/21/2024] [Accepted: 07/02/2024] [Indexed: 07/23/2024] Open
Abstract
AIMS Intracerebral hemorrhage (ICH) is a condition that arises due to the rupture of cerebral blood vessels, leading to the flow of blood into the brain tissue. One of the pathological alterations that occurs during an acute ICH is an impairment of the blood-brain barrier (BBB), which leads to severe perihematomal edema and an immune response. DISCUSSION A complex interplay between the cells of the BBB, for example, pericytes, astrocytes, and brain endothelial cells, with resident and infiltrating immune cells, such as microglia, monocytes, neutrophils, T lymphocytes, and others accounts for both damaging and protective mechanisms at the BBB following ICH. However, the precise immunological influence of BBB disruption has yet to be richly ascertained, especially at various stages of ICH. CONCLUSION This review summarizes the changes in different cell types and molecular components of the BBB associated with immune-inflammatory responses during ICH. Furthermore, it highlights promising immunoregulatory therapies to protect the integrity of the BBB after ICH. By offering a comprehensive understanding of the mechanisms behind BBB damage linked to cellular and molecular immunoinflammatory responses after ICH, this article aimed to accelerate the identification of potential therapeutic targets and expedite further translational research.
Collapse
Affiliation(s)
- Peijun Jia
- Department of Pain MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- Department of Human AnatomySchool of Basic Medical Sciences of Zhengzhou UniversityZhengzhouChina
- School of Life SciencesZhengzhou UniversityZhengzhouChina
| | - Qinfeng Peng
- Department of Human AnatomySchool of Basic Medical Sciences of Zhengzhou UniversityZhengzhouChina
| | - Xiaochong Fan
- Department of Pain MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Yumeng Zhang
- Department of Human AnatomySchool of Basic Medical Sciences of Zhengzhou UniversityZhengzhouChina
| | - Hanxiao Xu
- Department of Human AnatomySchool of Basic Medical Sciences of Zhengzhou UniversityZhengzhouChina
| | - Jiaxin Li
- Department of Human AnatomySchool of Basic Medical Sciences of Zhengzhou UniversityZhengzhouChina
| | - Houn Sonita
- Department of Human AnatomySchool of Basic Medical Sciences of Zhengzhou UniversityZhengzhouChina
| | - Simon Liu
- David Geffen School of MedicineUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - Anh Le
- George Washington School of Medicine and Health SciencesWashingtonDCUSA
| | - Qiongqiong Hu
- Department of NeurologyZhengzhou Central Hospital Affiliated to Zhengzhou UniversityZhengzhouHenanChina
| | - Ting Zhao
- Department of NeurologyPeople's Hospital of Zhengzhou UniversityZhengzhouChina
| | - Shijie Zhang
- School of Life SciencesZhengzhou UniversityZhengzhouChina
| | - Junmin Wang
- Department of Human AnatomySchool of Basic Medical Sciences of Zhengzhou UniversityZhengzhouChina
| | - Marietta Zille
- Division of Pharmacology and Toxicology, Department of Pharmaceutical SciencesUniversity of ViennaViennaAustria
| | - Chao Jiang
- Department of NeurologyPeople's Hospital of Zhengzhou UniversityZhengzhouChina
| | - Xuemei Chen
- Department of Human AnatomySchool of Basic Medical Sciences of Zhengzhou UniversityZhengzhouChina
| | - Jian Wang
- Department of Pain MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- Department of Human AnatomySchool of Basic Medical Sciences of Zhengzhou UniversityZhengzhouChina
| |
Collapse
|
8
|
Carstens G, Verbeek MM, Rohlwink UK, Figaji AA, te Brake L, van Laarhoven A. Metabolite transport across central nervous system barriers. J Cereb Blood Flow Metab 2024; 44:1063-1077. [PMID: 38546534 PMCID: PMC11179608 DOI: 10.1177/0271678x241241908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/02/2024] [Accepted: 02/27/2024] [Indexed: 06/13/2024]
Abstract
Metabolomic analysis of cerebrospinal fluid (CSF) is used to improve diagnostics and pathophysiological understanding of neurological diseases. Alterations in CSF metabolite levels can partly be attributed to changes in brain metabolism, but relevant transport processes influencing CSF metabolite concentrations should be considered. The entry of molecules including metabolites into the central nervous system (CNS), is tightly controlled by the blood-brain, blood-CSF, and blood-spinal cord barriers, where aquaporins and membrane-bound carrier proteins regulate influx and efflux via passive and active transport processes. This report therefore provides reference for future CSF metabolomic work, by providing a detailed summary of the current knowledge on the location and function of the involved transporters and routing of metabolites from blood to CSF and from CSF to blood.
Collapse
Affiliation(s)
- Gesa Carstens
- Department of Internal Medicine and Radboud Center of Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, Netherlands
| | - Marcel M Verbeek
- Departments of Neurology and Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behavior, Nijmegen, Netherlands
| | - Ursula K Rohlwink
- Division of Neurosurgery, Department of Surgery, Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Anthony A Figaji
- Division of Neurosurgery, Department of Surgery, Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Lindsey te Brake
- Department of Pharmacy, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Arjan van Laarhoven
- Department of Internal Medicine and Radboud Center of Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
9
|
Qi M, Liu R, Zhang F, Yao Z, Zhou ML, Jiang X, Ling S. Roles of mechanosensitive ion channel PIEZO1 in the pathogenesis of brain injury after experimental intracerebral hemorrhage. Neuropharmacology 2024; 251:109896. [PMID: 38490299 DOI: 10.1016/j.neuropharm.2024.109896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/17/2024] [Accepted: 03/03/2024] [Indexed: 03/17/2024]
Abstract
Secondary brain injury after intracerebral hemorrhage (ICH) is the main cause of poor prognosis in ICH patients, but the underlying mechanisms remain less known. The involvement of Piezo1 in brain injury after ICH was studied in a mouse model of ICH. ICH was established by injecting autologous arterial blood into the basal ganglia in mice. After vehicle, Piezo1 blocker, GsMTx4, Piezo1 activator, Yoda-1, or together with mannitol (tail vein injection) was injected into the left lateral ventricle of mouse brain, Piezo1 level and the roles of Piezo1 in neuronal injury, brain edema, and neurological dysfunctions after ICH were determined by the various indicated methods. Piezo1 protein level in neurons was significantly upregulated 24 h after ICH in vivo (human and mice). Piezo1 protein level was also dramatically upregulated in HT22 cells (a murine neuron cell line) cultured in vitro 24 h after hemin treatment as an in vitro ICH model. GsMTx4 treatment or together with mannitol significantly downregulated Piezo1 and AQP4 levels, markedly increased Bcl2 level, maintained more neurons alive, considerably restored brain blood flow, remarkably relieved brain edema, substantially decreased serum IL-6 level, and almost fully reversed the neurological dysfunctions at ICH 24 h group mice. In contrast, Yoda-1 treatment achieved the opposite effects. In conclusion, Piezo1 plays a crucial role in the pathogenesis of brain injury after ICH and may be a target for clinical treatment of ICH.
Collapse
Affiliation(s)
- Min Qi
- The Translational Research Institute for Neurological Disorders of Wannan Medical College, Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), No. 2 West Zheshan Road, Wuhu, 241001, Anhui, China; The Institutes of Brain Science, Wannan Medical College, No. 22 Wenchang West Road, Higher Education Park, Wuhu, 241002, Anhui, China
| | - Ran Liu
- The Translational Research Institute for Neurological Disorders of Wannan Medical College, Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), No. 2 West Zheshan Road, Wuhu, 241001, Anhui, China
| | - Fan Zhang
- The Translational Research Institute for Neurological Disorders of Wannan Medical College, Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), No. 2 West Zheshan Road, Wuhu, 241001, Anhui, China; School of Chemistry and Chemical Engineering & Interdisciplinary Innovation Institute for Medicine and Engineering, Southeast University, Nanjing, 211189, China
| | - Zhipeng Yao
- The Translational Research Institute for Neurological Disorders of Wannan Medical College, Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), No. 2 West Zheshan Road, Wuhu, 241001, Anhui, China; School of Chemistry and Chemical Engineering & Interdisciplinary Innovation Institute for Medicine and Engineering, Southeast University, Nanjing, 211189, China
| | - Meng-Liang Zhou
- The Translational Research Institute for Neurological Disorders of Wannan Medical College, Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), No. 2 West Zheshan Road, Wuhu, 241001, Anhui, China; Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, 210002, China
| | - Xiaochun Jiang
- The Translational Research Institute for Neurological Disorders of Wannan Medical College, Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), No. 2 West Zheshan Road, Wuhu, 241001, Anhui, China; The Institutes of Brain Science, Wannan Medical College, No. 22 Wenchang West Road, Higher Education Park, Wuhu, 241002, Anhui, China.
| | - Shizhang Ling
- The Translational Research Institute for Neurological Disorders of Wannan Medical College, Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), No. 2 West Zheshan Road, Wuhu, 241001, Anhui, China; The Institutes of Brain Science, Wannan Medical College, No. 22 Wenchang West Road, Higher Education Park, Wuhu, 241002, Anhui, China.
| |
Collapse
|
10
|
Czyżewski W, Litak J, Sobstyl J, Mandat T, Torres K, Staśkiewicz G. Aquaporins: Gatekeepers of Fluid Dynamics in Traumatic Brain Injury. Int J Mol Sci 2024; 25:6553. [PMID: 38928258 PMCID: PMC11204105 DOI: 10.3390/ijms25126553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Aquaporins (AQPs), particularly AQP4, play a crucial role in regulating fluid dynamics in the brain, impacting the development and resolution of edema following traumatic brain injury (TBI). This review examines the alterations in AQP expression and localization post-injury, exploring their effects on brain edema and overall injury outcomes. We discuss the underlying molecular mechanisms regulating AQP expression, highlighting potential therapeutic strategies to modulate AQP function. These insights provide a comprehensive understanding of AQPs in TBI and suggest novel approaches for improving clinical outcomes through targeted interventions.
Collapse
Affiliation(s)
- Wojciech Czyżewski
- Department of Neurosurgery, Maria Sklodowska-Curie National Research Institute of Oncology, ul. W.K. Roentgena 5, 02-781 Warsaw, Poland;
- Department of Didactics and Medical Simulation, Medical University of Lublin, 20-954 Lublin, Poland
| | - Jakub Litak
- Department of Clinical Immunology, Medical University of Lublin, 20-954 Lublin, Poland;
| | - Jan Sobstyl
- Department of Interventional Radiology and Neuroradiology, Medical University of Lublin, 20-954 Lublin, Poland;
| | - Tomasz Mandat
- Department of Neurosurgery, Maria Sklodowska-Curie National Research Institute of Oncology, ul. W.K. Roentgena 5, 02-781 Warsaw, Poland;
| | - Kamil Torres
- Department of Plastic, Reconstructive Surgery with Microsurgery, Medical University of Lublin, 20-954 Lublin, Poland;
| | - Grzegorz Staśkiewicz
- Department of Human, Clinical and Radiological Anatomy, Medical University, 20-954 Lublin, Poland;
| |
Collapse
|
11
|
Su Q, Su C, Zhang Y, Guo Y, Liu Y, Liu Y, Yong VW, Xue M. Adjudin protects blood-brain barrier integrity and attenuates neuroinflammation following intracerebral hemorrhage in mice. Int Immunopharmacol 2024; 132:111962. [PMID: 38565042 DOI: 10.1016/j.intimp.2024.111962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/09/2024] [Accepted: 03/26/2024] [Indexed: 04/04/2024]
Abstract
Secondary brain injury exacerbates neurological dysfunction and neural cell death following intracerebral hemorrhage (ICH), targeting the pathophysiological mechanism of the secondary brain injury holds promise for improving ICH outcomes. Adjudin, a potential male contraceptive, exhibits neuroprotective effects in brain injury disease models, yet its impact in the ICH model remains unknown. In this study, we investigated the effects of adjudin on brain injury in a mouse ICH model and explored its underlying mechanisms. ICH was induced in male C57BL/6 mice by injecting collagenase into the right striatum. Mice received adjudin treatment (50 mg/kg/day) for 3 days before euthanization and the perihematomal tissues were collected for further analysis. Adjudin significantly reduced hematoma volume and improved neurological function compared with the vehicle group. Western blot showed that Adjudin markedly decreased the expression of MMP-9 and increased the expression of tight junctions (TJs) proteins, Occludin and ZO-1, and adherens junctions (AJs) protein VE-cadherin. Adjudin also decreased the blood-brain barrier (BBB) permeability, as indicated by the reduced albumin and Evans Blue leakage, along with a decrease in brain water content. Immunofluorescence staining revealed that adjudin noticeably reduced the infiltration of neutrophil, activation of microglia/macrophages, and reactive astrogliosis, accompanied by an increase in CD206 positive microglia/macrophages which exhibit phagocytic characteristics. Adjudin concurrently decreased the generation of proinflammatory cytokines, such as TNF-α and IL-1β. Additionally, adjudin increased the expression of aquaporin 4 (AQP4). Furthermore, adjudin reduced brain cell apoptosis, as evidenced by increased expression of anti-apoptotic protein Bcl-2, and decreased expression of apoptosis related proteins Bax, cleaved caspase-3 and fewer TUNEL positive cells. Our data suggest that adjudin protects against ICH-induced secondary brain injury and may serve as a potential neuroprotective agent for ICH treatment.
Collapse
Affiliation(s)
- Qiuyang Su
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Chunhe Su
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Yan Zhang
- Department of Neurology, People's Hospital of Qianxinan Prefecture, Guizhou, China
| | - Yan Guo
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Yang Liu
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Yuanyuan Liu
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan 450000, China
| | - V Wee Yong
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada.
| | - Mengzhou Xue
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan 450000, China.
| |
Collapse
|
12
|
Cao H, Li B, Mu M, Li S, Chen H, Tao H, Wang W, Zou Y, Zhao Y, Liu Y, Tao X. Nicotine suppresses crystalline silica-induced astrocyte activation and neuronal death by inhibiting NF-κB in the mouse hippocampus. CNS Neurosci Ther 2024; 30:e14508. [PMID: 37864452 PMCID: PMC11017465 DOI: 10.1111/cns.14508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/25/2023] [Accepted: 10/06/2023] [Indexed: 10/22/2023] Open
Abstract
AIMS Exposure to crystalline silica (CS) in occupational settings induces chronic inflammation in the respiratory system and, potentially, the brain. Some workers are frequently concurrently exposed to both CS and nicotine. Here, we explored the impact of nicotine on CS-induced neuroinflammation in the mouse hippocampus. METHODS In this study, we established double-exposed models of CS and nicotine in C57BL/6 mice. To assess depression-like behavior, experiments were conducted at 3, 6, and 9 weeks. Serum inflammatory factors were analyzed by ELISA. Hippocampus was collected for RNA sequencing analysis and examining the gene expression patterns linked to inflammation and cell death. Microglia and astrocyte activation and hippocampal neuronal death were assessed using immunohistochemistry and immunofluorescence staining. Western blotting was used to analyze the NF-κB expression level. RESULTS Mice exposed to CS for 3 weeks showed signs of depression. This was accompanied by elevated IL-6 in blood, destruction of the blood-brain barrier, and activation of astrocytes caused by an increased NF-κB expression in the CA1 area of the hippocampus. The elevated levels of astrocyte-derived Lcn2 and upregulated genes related to inflammation led to higher neuronal mortality. Moreover, nicotine mitigated the NF-κB expression, astrocyte activation, and neuronal death, thereby ameliorating the associated symptoms. CONCLUSION Silica exposure induces neuroinflammation and neuronal death in the mouse hippocampal CA1 region and depressive behavior. However, nicotine inhibits CS-induced neuroinflammation and neuronal apoptosis, alleviating depressive-like behaviors in mice.
Collapse
Affiliation(s)
- Hangbing Cao
- Key Laboratory of Industrial Dust Control and Occupational Health of the Ministry of EducationAnhui University of Science and TechnologyHuainanChina
- Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety of Anhui Higher Education InstitutesAnhui University of Science and TechnologyHuainanChina
- Anhui Province Engineering Laboratory of Occupational Health and SafetyAnhui University of Science and TechnologyHuainanChina
- School of Medicine, Department of Medical Frontier Experimental CenterAnhui University of Science and TechnologyHuainanChina
| | - Bing Li
- Key Laboratory of Industrial Dust Control and Occupational Health of the Ministry of EducationAnhui University of Science and TechnologyHuainanChina
- Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety of Anhui Higher Education InstitutesAnhui University of Science and TechnologyHuainanChina
- Anhui Province Engineering Laboratory of Occupational Health and SafetyAnhui University of Science and TechnologyHuainanChina
- School of Medicine, Department of Medical Frontier Experimental CenterAnhui University of Science and TechnologyHuainanChina
| | - Min Mu
- Key Laboratory of Industrial Dust Control and Occupational Health of the Ministry of EducationAnhui University of Science and TechnologyHuainanChina
- Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety of Anhui Higher Education InstitutesAnhui University of Science and TechnologyHuainanChina
- Anhui Province Engineering Laboratory of Occupational Health and SafetyAnhui University of Science and TechnologyHuainanChina
- School of Medicine, Department of Medical Frontier Experimental CenterAnhui University of Science and TechnologyHuainanChina
| | - Shanshan Li
- School of PharmacyBengbu Medical CollegeBengbuChina
| | - Haoming Chen
- Key Laboratory of Industrial Dust Control and Occupational Health of the Ministry of EducationAnhui University of Science and TechnologyHuainanChina
- Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety of Anhui Higher Education InstitutesAnhui University of Science and TechnologyHuainanChina
- Anhui Province Engineering Laboratory of Occupational Health and SafetyAnhui University of Science and TechnologyHuainanChina
- School of Medicine, Department of Medical Frontier Experimental CenterAnhui University of Science and TechnologyHuainanChina
| | - Huihui Tao
- Key Laboratory of Industrial Dust Control and Occupational Health of the Ministry of EducationAnhui University of Science and TechnologyHuainanChina
- Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety of Anhui Higher Education InstitutesAnhui University of Science and TechnologyHuainanChina
- Anhui Province Engineering Laboratory of Occupational Health and SafetyAnhui University of Science and TechnologyHuainanChina
- School of Medicine, Department of Medical Frontier Experimental CenterAnhui University of Science and TechnologyHuainanChina
| | - Wenyang Wang
- Key Laboratory of Industrial Dust Control and Occupational Health of the Ministry of EducationAnhui University of Science and TechnologyHuainanChina
- Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety of Anhui Higher Education InstitutesAnhui University of Science and TechnologyHuainanChina
- Anhui Province Engineering Laboratory of Occupational Health and SafetyAnhui University of Science and TechnologyHuainanChina
- School of Medicine, Department of Medical Frontier Experimental CenterAnhui University of Science and TechnologyHuainanChina
| | - Yuanjie Zou
- Key Laboratory of Industrial Dust Control and Occupational Health of the Ministry of EducationAnhui University of Science and TechnologyHuainanChina
- Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety of Anhui Higher Education InstitutesAnhui University of Science and TechnologyHuainanChina
- Anhui Province Engineering Laboratory of Occupational Health and SafetyAnhui University of Science and TechnologyHuainanChina
- School of Medicine, Department of Medical Frontier Experimental CenterAnhui University of Science and TechnologyHuainanChina
| | - Yehong Zhao
- Key Laboratory of Industrial Dust Control and Occupational Health of the Ministry of EducationAnhui University of Science and TechnologyHuainanChina
- Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety of Anhui Higher Education InstitutesAnhui University of Science and TechnologyHuainanChina
- Anhui Province Engineering Laboratory of Occupational Health and SafetyAnhui University of Science and TechnologyHuainanChina
- School of Medicine, Department of Medical Frontier Experimental CenterAnhui University of Science and TechnologyHuainanChina
| | - Yang Liu
- Anhui Province Engineering Laboratory of Occupational Health and SafetyAnhui University of Science and TechnologyHuainanChina
- School of Medicine, Department of Medical Frontier Experimental CenterAnhui University of Science and TechnologyHuainanChina
| | - Xinrong Tao
- Key Laboratory of Industrial Dust Control and Occupational Health of the Ministry of EducationAnhui University of Science and TechnologyHuainanChina
- Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety of Anhui Higher Education InstitutesAnhui University of Science and TechnologyHuainanChina
- Anhui Province Engineering Laboratory of Occupational Health and SafetyAnhui University of Science and TechnologyHuainanChina
- School of Medicine, Department of Medical Frontier Experimental CenterAnhui University of Science and TechnologyHuainanChina
| |
Collapse
|
13
|
Das N, Dhamija R, Sarkar S. The role of astrocytes in the glymphatic network: a narrative review. Metab Brain Dis 2024; 39:453-465. [PMID: 38008886 DOI: 10.1007/s11011-023-01327-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 11/17/2023] [Indexed: 11/28/2023]
Abstract
To date, treatment of Central Nervous System (CNS) pathology has largely focused on neuronal structure and function. Yet, revived attention towards fluid circulation within the CNS has exposed the need to further explore the role of glial cells in maintaining homeostasis within neural networks. In the past decade, discovery of the neural glymphatic network has revolutionized traditional understanding of fluid dynamics within the CNS. Advancements in neuroimaging have revealed alternative pathways of cerebrospinal fluid (CSF) generation and efflux. Here, we discuss emerging perspectives on the role of astrocytes in CSF hydrodynamics, with particular focus on the contribution of aquaporin-4 channels to the glymphatic network. Astrocytic structural features and expression patterns are detailed in relation to their function in maintaining integrity of the Blood Brain Barrier (BBB) as part of the neurovascular unit (NVU). This narrative also highlights the potential role of glial dysfunction in pathogenesis of neurodegenerative disease, hydrocephalus, intracranial hemorrhage, ischemic stroke, and traumatic brain injury. The purpose of this literature summary is to provide an update on the changing landscape of scientific theory surrounding production, flow, and absorption of cerebrospinal fluid. The overarching aim of this narrative review is to advance the conception of basic, translational, and clinical research endeavors investigating glia as therapeutic targets for neurological disease.
Collapse
Affiliation(s)
- Nikita Das
- Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Ravi Dhamija
- Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Sumit Sarkar
- Division of Neurotoxicology, HFT-132, National Center for Toxicological Research, U.S. Food & Drug Administration, Jefferson, AR, 72079, USA.
| |
Collapse
|
14
|
Dong H, Wen X, Zhang BW, Wu Z, Zou W. Astrocytes in intracerebral hemorrhage: impact and therapeutic objectives. Front Mol Neurosci 2024; 17:1327472. [PMID: 38419793 PMCID: PMC10899346 DOI: 10.3389/fnmol.2024.1327472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/25/2024] [Indexed: 03/02/2024] Open
Abstract
Intracerebral hemorrhage (ICH) manifests precipitously and profoundly impairs the neurological function in patients who are affected. The etiology of subsequent injury post-ICH is multifaceted, characterized by the intricate interplay of various factors, rendering therapeutic interventions challenging. Astrocytes, a distinct class of glial cells, interact with neurons and microglia, and are implicated in a series of pathophysiological alterations following ICH. A comprehensive examination of the functions and mechanisms associated with astrocytic proteins may shed light on the role of astrocytes in ICH pathology and proffer innovative therapeutic avenues for ICH management.
Collapse
Affiliation(s)
- Hao Dong
- The First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xin Wen
- The First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Bai-Wen Zhang
- The First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Zhe Wu
- The First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Wei Zou
- The Third Department of Acupuncture and Moxibustion, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
15
|
Seblani M, Ertlen C, Coyle T, Decherchi P, Brezun JM. Combined effect of trifluoperazine and sodium cromoglycate on reducing acute edema and limiting lasting functional impairments after spinal cord injury in rats. Exp Neurol 2024; 372:114612. [PMID: 37993080 DOI: 10.1016/j.expneurol.2023.114612] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 11/10/2023] [Accepted: 11/15/2023] [Indexed: 11/24/2023]
Abstract
Edema formation is one of the very first events to occur after spinal cord injury (SCI) leading to an increase of the intrathecal pressure and consequently to serious spinal tissue and functional impairments. Current edema treatments are still symptomatic and/or non-specific. Since edema formation mechanisms are mainly described as vasogenic and cytotoxic, it becomes crucial to understand the interplay between these two subtypes. Acting on key targets to inhibit edema formation may reduce secondary damage and related functional impairments. In this study, we characterize the edema kinetic after T9-10 spinal contusion. We use trifluoperazine (TFP) to block the expression and the functional subcellular localization of aquaporin-4 supposed to be implicated in the cytotoxic edema formation. We also use sodium cromoglycate (SCG) to deactivate mast cell degranulation known to be implicated in the vasogenic edema formation. Our results show a significant reduction of edema after TFP treatment and after TFP-SCG combined treatment compared to control. This reduction is correlated with limited onset of initial sensorimotor impairments particularly after combined treatment. Our results highlight the importance of potential synergetic targets in early edema therapy after SCI as part of tissue sparing strategies.
Collapse
Affiliation(s)
- Mostafa Seblani
- Aix Marseille Univ, CNRS, ISM, UMR7287, Institut des Sciences du Mouvement: Etienne-Jules MAREY, Team "Plasticité des Systèmes Nerveux et Musculaire" (PSNM), Parc Scientifique et Technologique de Luminy, CC910-163, Avenue de Luminy, F-13288 Marseille, Cedex 09, France
| | - Céline Ertlen
- Aix Marseille Univ, CNRS, ISM, UMR7287, Institut des Sciences du Mouvement: Etienne-Jules MAREY, Team "Plasticité des Systèmes Nerveux et Musculaire" (PSNM), Parc Scientifique et Technologique de Luminy, CC910-163, Avenue de Luminy, F-13288 Marseille, Cedex 09, France
| | - Thelma Coyle
- Aix Marseille Univ, CNRS, ISM, UMR7287, Institut des Sciences du Mouvement: Etienne-Jules MAREY, Team "Plasticité des Systèmes Nerveux et Musculaire" (PSNM), Parc Scientifique et Technologique de Luminy, CC910-163, Avenue de Luminy, F-13288 Marseille, Cedex 09, France
| | - Patrick Decherchi
- Aix Marseille Univ, CNRS, ISM, UMR7287, Institut des Sciences du Mouvement: Etienne-Jules MAREY, Team "Plasticité des Systèmes Nerveux et Musculaire" (PSNM), Parc Scientifique et Technologique de Luminy, CC910-163, Avenue de Luminy, F-13288 Marseille, Cedex 09, France
| | - Jean-Michel Brezun
- Aix Marseille Univ, CNRS, ISM, UMR7287, Institut des Sciences du Mouvement: Etienne-Jules MAREY, Team "Plasticité des Systèmes Nerveux et Musculaire" (PSNM), Parc Scientifique et Technologique de Luminy, CC910-163, Avenue de Luminy, F-13288 Marseille, Cedex 09, France.
| |
Collapse
|
16
|
Zhao YT, Yuan Y, Tang YG, Zhang SW, Zhou H, Xie ZY. The association between high-oxygen saturation and prognosis for intracerebral hemorrhage. Neurosurg Rev 2024; 47:45. [PMID: 38217753 DOI: 10.1007/s10143-024-02283-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/30/2023] [Accepted: 01/06/2024] [Indexed: 01/15/2024]
Abstract
BACKGROUND Concerns about the adverse effects of excessive oxygen have grown over the years. This study investigated the relationship between high oxygen saturation and short-term prognosis of patients with spontaneous intracerebral hemorrhage (sICH) after liberal use of oxygen. METHODS This retrospective cohort study collected data from the Medical Information Mart for Intensive Care III (MIMIC-III) database (ICU cohort) and a tertiary stroke center (general ward cohort). The data on pulse oximetry-derived oxygen saturation (SpO2) during the first 24 h in ICU and general wards were respectively extracted. RESULTS Overall, 1117 and 372 patients were included in the ICU and general ward cohort, respectively. Among the patients from the ICU cohort, a spoon-shaped association was observed between minimum SpO2 and the risk of in-hospital mortality (non-linear P<0.0001). In comparison with minimum SpO2 of 93-97%, the minimum SpO2>97% was associated with a significantly higher risk of in-hospital mortality after adjustment for confounders. Sensitivity analysis conducted using propensity score matching did not change this significance. The same spoon-shaped association between minimum SpO2 and the risk of in-hospital mortality was also detected for the general ward cohort. In comparison with the group with 95-97% SpO2, the group with SpO2>97% showed a stronger association with, but non-significant risk for, in-hospital mortality after adjustment for confounders. The time-weighted average SpO2>97% was associated significantly with in-hospital mortality in both cohorts. CONCLUSION Higher SpO2 (especially a minimum SpO2>97%) was unrewarding after liberal use of oxygen among patients with sICH and might even be potentially detrimental.
Collapse
Affiliation(s)
- Yu-Tong Zhao
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 76 Linjiang Road, Chongqing, 400010, China
| | - Ye Yuan
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 76 Linjiang Road, Chongqing, 400010, China
| | - Yu-Guang Tang
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 76 Linjiang Road, Chongqing, 400010, China
| | - Shu-Wei Zhang
- Department of Intensive Care Unit, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
| | - Hai Zhou
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 76 Linjiang Road, Chongqing, 400010, China
| | - Zong-Yi Xie
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 76 Linjiang Road, Chongqing, 400010, China.
| |
Collapse
|
17
|
Schiera G, Di Liegro CM, Schirò G, Sorbello G, Di Liegro I. Involvement of Astrocytes in the Formation, Maintenance, and Function of the Blood-Brain Barrier. Cells 2024; 13:150. [PMID: 38247841 PMCID: PMC10813980 DOI: 10.3390/cells13020150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 01/23/2024] Open
Abstract
The blood-brain barrier (BBB) is a fundamental structure that protects the composition of the brain by determining which ions, metabolites, and nutrients are allowed to enter the brain from the blood or to leave it towards the circulation. The BBB is structurally composed of a layer of brain capillary endothelial cells (BCECs) bound to each other through tight junctions (TJs). However, its development as well as maintenance and properties are controlled by the other brain cells that contact the BCECs: pericytes, glial cells, and even neurons themselves. Astrocytes seem, in particular, to have a very important role in determining and controlling most properties of the BBB. Here, we will focus on these latter cells, since the comprehension of their roles in brain physiology has been continuously expanding, even including the ability to participate in neurotransmission and in complex functions such as learning and memory. Accordingly, pathological conditions that alter astrocytic functions can alter the BBB's integrity, thus compromising many brain activities. In this review, we will also refer to different kinds of in vitro BBB models used to study the BBB's properties, evidencing its modifications under pathological conditions.
Collapse
Affiliation(s)
- Gabriella Schiera
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (Dipartimento di Scienzee Tecnologie Biologiche, Chimiche e Farmaceutiche) (STEBICEF), University of Palermo, 90128 Palermo, Italy; (G.S.); (C.M.D.L.)
| | - Carlo Maria Di Liegro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (Dipartimento di Scienzee Tecnologie Biologiche, Chimiche e Farmaceutiche) (STEBICEF), University of Palermo, 90128 Palermo, Italy; (G.S.); (C.M.D.L.)
| | - Giuseppe Schirò
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy; (G.S.); (G.S.)
- Neurology and Multiple Sclerosis Center, Unità Operativa Complessa (UOC), Foundation Institute “G. Giglio”, 90015 Cefalù, Italy
| | - Gabriele Sorbello
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy; (G.S.); (G.S.)
| | - Italia Di Liegro
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy; (G.S.); (G.S.)
| |
Collapse
|
18
|
Alkhalifa AE, Al-Ghraiybah NF, Odum J, Shunnarah JG, Austin N, Kaddoumi A. Blood-Brain Barrier Breakdown in Alzheimer's Disease: Mechanisms and Targeted Strategies. Int J Mol Sci 2023; 24:16288. [PMID: 38003477 PMCID: PMC10671257 DOI: 10.3390/ijms242216288] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
The blood-brain barrier (BBB) is a unique and selective feature of the central nervous system's vasculature. BBB dysfunction has been observed as an early sign of Alzheimer's Disease (AD) before the onset of dementia or neurodegeneration. The intricate relationship between the BBB and the pathogenesis of AD, especially in the context of neurovascular coupling and the overlap of pathophysiology in neurodegenerative and cerebrovascular diseases, underscores the urgency to understand the BBB's role more deeply. Preserving or restoring the BBB function emerges as a potentially promising strategy for mitigating the progression and severity of AD. Molecular and genetic changes, such as the isoform ε4 of apolipoprotein E (ApoEε4), a significant genetic risk factor and a promoter of the BBB dysfunction, have been shown to mediate the BBB disruption. Additionally, receptors and transporters like the low-density lipoprotein receptor-related protein 1 (LRP1), P-glycoprotein (P-gp), and the receptor for advanced glycation end products (RAGEs) have been implicated in AD's pathogenesis. In this comprehensive review, we endeavor to shed light on the intricate pathogenic and therapeutic connections between AD and the BBB. We also delve into the latest developments and pioneering strategies targeting the BBB for therapeutic interventions, addressing its potential as a barrier and a carrier. By providing an integrative perspective, we anticipate paving the way for future research and treatments focused on exploiting the BBB's role in AD pathogenesis and therapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Amal Kaddoumi
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, 720 S. Donahue Dr., Auburn, AL 36849, USA; (A.E.A.); (N.F.A.-G.); (J.O.); (J.G.S.); (N.A.)
| |
Collapse
|
19
|
Lecordier S, Menet R, Allain AS, ElAli A. Non-classical monocytes promote neurovascular repair in cerebral small vessel disease associated with microinfarctions via CX3CR1. J Cereb Blood Flow Metab 2023; 43:1873-1890. [PMID: 37340860 PMCID: PMC10676133 DOI: 10.1177/0271678x231183742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/12/2023] [Accepted: 05/17/2023] [Indexed: 06/22/2023]
Abstract
Cerebral small vessel disease (cSVD) constitutes a major risk factor for dementia. Monocytes play important roles in cerebrovascular disorders. Herein, we aimed to investigate the contribution of non-classical C-X3-C motif chemokine receptor (CX3CR)1 monocytes to cSVD pathobiology and therapy. To this end, we generated chimeric mice in which CX3CR1 in non-classical monocytes was either functional (CX3CR1GFP/+) or dysfunctional (CX3CR1GFP/GFP). cSVD was induced in mice via the micro-occlusion of cerebral arterioles, and novel immunomodulatory approaches targeting CX3CR1 monocyte production were used. Our findings demonstrate that CX3CR1GFP/+ monocytes transiently infiltrated the ipsilateral hippocampus and were recruited to the microinfarcts 7 days after cSVD, inversely associated with neuronal degeneration and blood-brain barrier (BBB) disruption. Dysfunctional CX3CR1GFP/GFP monocytes failed to infiltrate the injured hippocampus and were associated with exacerbated microinfarctions and accelerated cognitive decline, accompanied with an impaired microvascular structure. Pharmacological stimulation of CX3CR1GFP/+ monocyte generation attenuated neuronal loss and improved cognitive functions by promoting microvascular function and preserving cerebral blood flow (CBF). These changes were associated with elevated levels of pro-angiogenic factors and matrix stabilizers in the blood circulation. The results indicate that non-classical CX3CR1 monocytes promote neurovascular repair after cSVD and constitute a promising target for the development of new therapies.
Collapse
Affiliation(s)
- Sarah Lecordier
- Neuroscience Axis, Research Center of CHU de Quebec – Université Laval, Quebec City, QC, Canada
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Romain Menet
- Neuroscience Axis, Research Center of CHU de Quebec – Université Laval, Quebec City, QC, Canada
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Anne-Sophie Allain
- Neuroscience Axis, Research Center of CHU de Quebec – Université Laval, Quebec City, QC, Canada
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Ayman ElAli
- Neuroscience Axis, Research Center of CHU de Quebec – Université Laval, Quebec City, QC, Canada
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| |
Collapse
|
20
|
Zhang X, Zhou Y, Liu Q, Wang F, Fu L, Wei Y, Ye Y, Guo Y. The therapeutic value of adipose-derived pericyte transplantation after intracerebral hemorrhage in rats. J Mol Histol 2023; 54:499-508. [PMID: 37498471 DOI: 10.1007/s10735-023-10140-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 07/09/2023] [Indexed: 07/28/2023]
Abstract
Intracerebral hemorrhage (ICH) is a devastating cerebrovascular associated with inflammation and BBB disruption. Pericytes plays a critical role in neurological diseases, while whether pericytes could be utilized to treat ICH remains to be elucidated. Here, we isolated CD146+CD34- pericytes from rat adipose tissues (ADPs). Fluorescence-activated cells maintained their cell morphology and differentiation potential and expressed pericytes markers (CD146, NG2, and PDGFRβ) but not endothelial markers (CD31, CD34, and CD45). ADPs transplantation improved the neuro-behavioral functions in ICH rats and resulted in decreased hematoma volume and neuron loss after ICH. Besides, ADPs graft restrained the infiltration of neutrophils and reactive microgliosis after ICH injury around the peri-hematoma area of rats, as evidenced by increased Iba1- and MPO immunoreactivity. The transplanted pericytes were covered on endothelial cells, and promoted angiogenesis and vascular basement membrane formation in the peri-hematoma area of ICH rats, as shown by double staining of PDGFRβ and CD31/CollagenIV. The decreased brain water content and Evans Blue leakage proved the protective role of ADPs graft on BBB permeability. Finally, transplanted ADPs increased the expression of VE-cadherin, ZO-1, and claudin-5, leading to stable endothelial cell-cell adhesion and tight junction. In conclusion, the transplantation of APDs improved neuronal after ICH, which involved different mechanisms including neuroinflammation regulation and BBB dysfunction recovery. Our results supported that ADPs might be the ideal cell type for ICH therapy and provided insights into the potential cell therapy for further ICH treatment.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Neurology, Liuzhou People's Hospital affiliated to Guangxi Medical University, Liuzhou, Guangxi, 545006, People's Republic of China
- Department of Geriatrics, Liuzhou People's Hospital affiliated to Guangxi Medical University, No. 8, Wenchang Road, Liuzhou, Guangxi, 545006, People's Republic of China
- Guangxi Health Commission Key Laboratory of Clinical Biotechnology, Liuzhou People's Hospital affiliated Guangxi Medical University, Liuzhou, Guangxi, 545006, People's Republic of China
- Guangxi Postdoctoral Innovation Practice Base, Liuzhou People's Hospital affiliated to Guangxi Medical University, Liuzhou, Guangxi, 545006, People's Republic of China
| | - Ying Zhou
- Department of Geriatrics, Liuzhou People's Hospital affiliated to Guangxi Medical University, No. 8, Wenchang Road, Liuzhou, Guangxi, 545006, People's Republic of China
| | - Qiongxia Liu
- Department of Geriatrics, Liuzhou People's Hospital affiliated to Guangxi Medical University, No. 8, Wenchang Road, Liuzhou, Guangxi, 545006, People's Republic of China
| | - Fang Wang
- Department of Neurology, Liuzhou People's Hospital affiliated to Guangxi Medical University, Liuzhou, Guangxi, 545006, People's Republic of China
| | - Lin Fu
- Department of Neurology, Liuzhou People's Hospital affiliated to Guangxi Medical University, Liuzhou, Guangxi, 545006, People's Republic of China
| | - Yizhi Wei
- Department of Neurology, Liuzhou People's Hospital affiliated to Guangxi Medical University, Liuzhou, Guangxi, 545006, People's Republic of China
| | - Yuanliang Ye
- Department of Neurosurgery, Liuzhou People's Hospital affiliated to Guangxi Medical University, Liuzhou, Guangxi, 545006, People's Republic of China
| | - Yujie Guo
- Department of Geriatrics, Liuzhou People's Hospital affiliated to Guangxi Medical University, No. 8, Wenchang Road, Liuzhou, Guangxi, 545006, People's Republic of China.
| |
Collapse
|
21
|
Que M, Li Y, Wang X, Zhan G, Luo X, Zhou Z. Role of astrocytes in sleep deprivation: accomplices, resisters, or bystanders? Front Cell Neurosci 2023; 17:1188306. [PMID: 37435045 PMCID: PMC10330732 DOI: 10.3389/fncel.2023.1188306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/05/2023] [Indexed: 07/13/2023] Open
Abstract
Sleep plays an essential role in all studied animals with a nervous system. However, sleep deprivation leads to various pathological changes and neurobehavioral problems. Astrocytes are the most abundant cells in the brain and are involved in various important functions, including neurotransmitter and ion homeostasis, synaptic and neuronal modulation, and blood-brain barrier maintenance; furthermore, they are associated with numerous neurodegenerative diseases, pain, and mood disorders. Moreover, astrocytes are increasingly being recognized as vital contributors to the regulation of sleep-wake cycles, both locally and in specific neural circuits. In this review, we begin by describing the role of astrocytes in regulating sleep and circadian rhythms, focusing on: (i) neuronal activity; (ii) metabolism; (iii) the glymphatic system; (iv) neuroinflammation; and (v) astrocyte-microglia cross-talk. Moreover, we review the role of astrocytes in sleep deprivation comorbidities and sleep deprivation-related brain disorders. Finally, we discuss potential interventions targeting astrocytes to prevent or treat sleep deprivation-related brain disorders. Pursuing these questions would pave the way for a deeper understanding of the cellular and neural mechanisms underlying sleep deprivation-comorbid brain disorders.
Collapse
Affiliation(s)
- Mengxin Que
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Department of Anesthesiology, Tongji Medical College, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yujuan Li
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Department of Anesthesiology, Tongji Medical College, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Xuan Wang
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Department of Anesthesiology, Tongji Medical College, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Gaofeng Zhan
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Department of Anesthesiology, Tongji Medical College, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoxiao Luo
- Department of Oncology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiqiang Zhou
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Department of Anesthesiology, Tongji Medical College, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
22
|
Li X, Tan X, Zhou Q, Xie Z, Meng W, Pang Y, Huang L, Ding Z, Hu Y, Li R, Huang G, Li H. Limb Remote Ischemic Postconditioning Improves Glymphatic Dysfunction After Cerebral Ischemia-Reperfusion Injury. Neuroscience 2023; 521:20-30. [PMID: 37121383 DOI: 10.1016/j.neuroscience.2023.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/29/2023] [Accepted: 04/22/2023] [Indexed: 05/02/2023]
Abstract
BACKGROUND Delayed neuronal damage can be caused or aggravated after cerebral ischemia-reperfusion (I/R) injury. Recent studies have shown that glymphatic system dysfunction after cerebral ischemia-reperfusion injury is involved in ischemic brain edema and neuroinflammation, thereby regulating cerebral ischemia-reperfusion injury. The aim of this study is to investigate the changes of glymphatic system after cerebral ischemia-reperfusion injury and whether limb remote ischemic postconditioning (LRIP) can improve the function of glymphatic system to protect the brain. METHODS To establish a focal brain I/R injury mouse model, this study utilized the middle cerebral artery occlusion/reperfusion (MCAO/R) method. The present study classified eight-week-old C57BL/6 male mice into three groups. The changes in glymphatic function in different periods of ischemia and reperfusion were analyzed through immunofluorescence, transmission electron microscopy (TEM), and Western-Blot (WB) assays. The contents of the evaluation included cerebrospinal fluid flow, swelling degree of brain tissue, aquaporin-4 (AQP4) expression and polarization, and amyloid-β (Aβ) excretion. RESULTS In the early stages of cerebral ischemia, cerebrospinal fluid (CSF) flow is disturbed, accompanied by a decrease in AQP4 polarization. The polarity of AQP4 decreased from 12 h to 72 h of reperfusion, the Aβ deposition. LRIP can increase the expression of β-DG and AQP4 polarization, reduce the deposition of Aβ, improve the function of the glymphatic system, and reduce the expression of AQP4 to play A protective role in brain. CONCLUSION Glymphatic system impaired after cerebral ischemia-reperfusion injury in mice. LRIP may play a neuroprotective role by improving glymphatic function after I/R.
Collapse
Affiliation(s)
- Xiaohong Li
- Department of Neurology, Affiliated Hospital of Guilin Medical University, Guilin 541001, China
| | - Xiaoli Tan
- Department of Neurology, Affiliated Hospital of Guilin Medical University, Guilin 541001, China
| | - Qian Zhou
- Department of Neurology, the Second Affiliated Hospital of Guilin Medical University, Guilin 541199, China
| | - Zhuoxi Xie
- Department of Neurology, Affiliated Hospital of Guilin Medical University, Guilin 541001, China
| | - Weiting Meng
- Department of Neurology, Affiliated Hospital of Guilin Medical University, Guilin 541001, China
| | - Yeyu Pang
- Department of Neurology, Affiliated Hospital of Guilin Medical University, Guilin 541001, China
| | - Lizhen Huang
- Department of Neurology, Affiliated Hospital of Guilin Medical University, Guilin 541001, China
| | - Zhihao Ding
- Department of Neurology, Affiliated Hospital of Guilin Medical University, Guilin 541001, China
| | - Yuanhong Hu
- Department of Neurology, Affiliated Hospital of Guilin Medical University, Guilin 541001, China
| | - Ruhua Li
- Department of Neurology, Affiliated Hospital of Guilin Medical University, Guilin 541001, China
| | - Guilan Huang
- Department of Neurology, Affiliated Hospital of Guilin Medical University, Guilin 541001, China
| | - Hao Li
- Department of Neurology, Affiliated Hospital of Guilin Medical University, Guilin 541001, China.
| |
Collapse
|
23
|
Cliteur MP, Sondag L, Cunningham L, Al-Shahi Salman R, Samarasekera N, Klijn CJM, Schreuder FHBM. The association between perihaematomal oedema and functional outcome after spontaneous intracerebral haemorrhage: A systematic review and meta-analysis. Eur Stroke J 2023; 8:423-433. [PMID: 37231691 PMCID: PMC10334181 DOI: 10.1177/23969873231157884] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 01/27/2023] [Indexed: 08/17/2023] Open
Abstract
PURPOSE Perihaematomal oedema (PHO) formation has gained increasing interest as a therapeutic target after spontaneous intracerebral haemorrhage (ICH). Whether PHO contributes to poor outcome is unclear. We aimed to determine the association between PHO and outcome in patients with spontaneous ICH. METHOD We searched five databases up to 17 November 2021 for studies of ⩾10 adults with ICH reporting the presence of PHO and outcome. We assessed risk of bias, extracted aggregate data and used random effects meta-analysis to pool studies that reported odds ratios (OR) with 95% confidence intervals (CI). Primary outcome was poor functional outcome defined as modified Rankin Scale score of 3-6 at 3 months. Additionally, we assessed PHO growth and poor outcome at any time of follow-up. We prospectively registered the protocol in PROSPERO (CRD42020157088). FINDINGS We identified 12,968 articles, of which we included 27 studies (n = 9534). Eighteen studies reported an association between larger PHO volume and poor outcome, six a neutral result and three an inverse relationship. Larger absolute PHO volume was associated with poor functional outcome at 3 months (OR per mL increase of absolute PHO 1.03, 95% CI 1.00-1.06, I2 44%, four studies). Additionally, PHO growth was associated with poor outcome (OR 1.04, 95% CI 1.02-1.06, I2 0%, seven studies). DISCUSSION In patients with spontaneous ICH, larger PHO volume is associated with poor functional outcome at 3 months. These findings support the development and investigation of new therapeutic interventions targeting PHO formation to evaluate if reduction of PHO improves outcome after ICH.
Collapse
Affiliation(s)
- Maaike P Cliteur
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Lotte Sondag
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Laura Cunningham
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK
| | | | | | - Catharina JM Klijn
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Floris HBM Schreuder
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
24
|
Deng X, Wu Y, Hu Z, Wang S, Zhou S, Zhou C, Gao X, Huang Y. The mechanism of ferroptosis in early brain injury after subarachnoid hemorrhage. Front Immunol 2023; 14:1191826. [PMID: 37266433 PMCID: PMC10229825 DOI: 10.3389/fimmu.2023.1191826] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/04/2023] [Indexed: 06/03/2023] Open
Abstract
Subarachnoid hemorrhage (SAH) is a cerebrovascular accident with an acute onset, severe disease characteristics, and poor prognosis. Within 72 hours after the occurrence of SAH, a sequence of pathological changes occur in the body including blood-brain barrier breakdown, cerebral edema, and reduced cerebrovascular flow that are defined as early brain injury (EBI), and it has been demonstrated that EBI exhibits an obvious correlation with poor prognosis. Ferroptosis is a novel programmed cell death mode. Ferroptosis is induced by the iron-dependent accumulation of lipid peroxides and reactive oxygen species (ROS). Ferroptosis involves abnormal iron metabolism, glutathione depletion, and lipid peroxidation. Recent study revealed that ferroptosis is involved in EBI and is significantly correlated with poor prognosis. With the gradual realization of the importance of ferroptosis, an increasing number of studies have been conducted to examine this process. This review summarizes the latest work in this field and tracks current research progress. We focused on iron metabolism, lipid metabolism, reduction systems centered on the GSH/GPX4 system, other newly discovered GSH/GPX4-independent antioxidant systems, and their related targets in the context of early brain injury. Additionally, we examined certain ferroptosis regulatory mechanisms that have been studied in other fields but not in SAH. A link between death and oxidative stress has been described. Additionally, we highlight the future research direction of ferroptosis in EBI of SAH, and this provides new ideas for follow-up research.
Collapse
Affiliation(s)
- Xinpeng Deng
- Department of Neurosurgery, Ningbo First Hospital, Ningbo Hospital, Zhejiang University, Ningbo, Zhejiang, China
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Yiwen Wu
- Department of Neurosurgery, Ningbo First Hospital, Ningbo Hospital, Zhejiang University, Ningbo, Zhejiang, China
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Ziliang Hu
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
- Cixi Biomedical Research Institute, Wenzhou Medical University, Cixi, Zhejiang, China
| | - Shiyi Wang
- Medical School of Ningbo University, Ningbo, Zhejiang, China
| | - Shengjun Zhou
- Department of Neurosurgery, Ningbo First Hospital, Ningbo Hospital, Zhejiang University, Ningbo, Zhejiang, China
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Chenhui Zhou
- Department of Neurosurgery, Ningbo First Hospital, Ningbo Hospital, Zhejiang University, Ningbo, Zhejiang, China
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Xiang Gao
- Department of Neurosurgery, Ningbo First Hospital, Ningbo Hospital, Zhejiang University, Ningbo, Zhejiang, China
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Yi Huang
- Department of Neurosurgery, Ningbo First Hospital, Ningbo Hospital, Zhejiang University, Ningbo, Zhejiang, China
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, Zhejiang, China
| |
Collapse
|
25
|
Thakur A, Liang L, Banerjee S, Zhang K. Single-Cell Transcriptomics Reveals Evidence of Endothelial Dysfunction in the Brains of COVID-19 Patients with Implications for Glioblastoma Progression. Brain Sci 2023; 13:brainsci13050762. [PMID: 37239234 DOI: 10.3390/brainsci13050762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 04/25/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND Endothelial dysfunction is implicated in various inflammatory diseases such as ischemic stroke, heart attack, organ failure, and COVID-19. Recent studies have shown that endothelial dysfunction in the brain is attributed to excessive inflammatory responses caused by the SARS-CoV-2 infection, leading to increased permeability of the blood-brain barrier and consequently neurological damage. Here, we aim to examine the single-cell transcriptomic landscape of endothelial dysfunction in COVID-19 and its implications for glioblastoma (GBM) progression. METHODS Single-cell transcriptome data GSE131928 and GSE159812 were obtained from the gene expression omnibus (GEO) to analyze the expression profiles of key players in innate immunity and inflammation between brain endothelial dysfunction caused by COVID-19 and GBM progression. RESULTS Single-cell transcriptomic analysis of the brain of COVID-19 patients revealed that endothelial cells had undergone significant transcriptomic changes, with several genes involved in immune responses and inflammation upregulated. Moreover, transcription factors were observed to modulate this inflammation, including interferon-regulated genes. CONCLUSIONS The results indicate a significant overlap between COVID-19 and GBM in the context of endothelial dysfunction, suggesting that there may be an endothelial dysfunction link connecting severe SARS-CoV-2 infection in the brain to GBM progression.
Collapse
Affiliation(s)
- Abhimanyu Thakur
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation-CAS Limited, Hong Kong 999077, China
| | - Lifan Liang
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA 15206, USA
| | - Sourav Banerjee
- Department of Cellular and Systems Medicine, School of Medicine, University of Dundee, Dundee DD1 9SY, UK
| | - Kui Zhang
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400716, China
- Cancer Centre, Medical Research Institute, Southwest University, Chongqing 400716, China
| |
Collapse
|
26
|
Peng S, Liu J, Liang C, Yang L, Wang G. Aquaporin-4 in glymphatic system, and its implication for central nervous system disorders. Neurobiol Dis 2023; 179:106035. [PMID: 36796590 DOI: 10.1016/j.nbd.2023.106035] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023] Open
Abstract
The clearance function is essential for maintaining brain tissue homeostasis, and the glymphatic system is the main pathway for removing brain interstitial solutes. Aquaporin-4 (AQP4) is the most abundantly expressed aquaporin in the central nervous system (CNS) and is an integral component of the glymphatic system. In recent years, many studies have shown that AQP4 affects the morbidity and recovery process of CNS disorders through the glymphatic system, and AQP4 shows notable variability in CNS disorders and is part of the pathogenesis of these diseases. Therefore, there has been considerable interest in AQP4 as a potential and promising target for regulating and improving neurological impairment. This review aims to summarize the pathophysiological role that AQP4 plays in several CNS disorders by affecting the clearance function of the glymphatic system. The findings can contribute to a better understanding of the self-regulatory functions in CNS disorders that AQP4 were involved in and provide new therapeutic alternatives for incurable debilitating neurodegenerative disorders of CNS in the future.
Collapse
Affiliation(s)
- Shasha Peng
- 56 Xinjian southern St, Department of Pharmacology, School of Basical Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Jiachen Liu
- 172 Tongzipo Rd, Xiangya Medical College of Central South University, Changsha, Hunan 410013, China
| | - Chuntian Liang
- 56 Xinjian southern St, Department of Neurology, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Lijun Yang
- 56 Xinjian southern St, Department of Pharmacology, School of Basical Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Gaiqing Wang
- 56 Xinjian southern St, Department of Neurology, Shanxi Medical University, Taiyuan, Shanxi 030001, China; 146 JieFang forth Rd, Department of Neurology, SanYa Central Hospital (Hainan Third People's Hospital), Hainan Medical University, SanYa, Hainan 572000, China.
| |
Collapse
|
27
|
Pepe G, Fioriniello S, Marracino F, Capocci L, Maglione V, D'Esposito M, Di Pardo A, Della Ragione F. Blood–Brain Barrier Integrity Is Perturbed in a Mecp2-Null Mouse Model of Rett Syndrome. Biomolecules 2023; 13:biom13040606. [PMID: 37189354 DOI: 10.3390/biom13040606] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
Rett syndrome (RTT, online MIM 312750) is a devastating neurodevelopmental disorder characterized by motor and cognitive disabilities. It is mainly caused by pathogenetic variants in the X-linked MECP2 gene, encoding an epigenetic factor crucial for brain functioning. Despite intensive studies, the RTT pathogenetic mechanism remains to be fully elucidated. Impaired vascular function has been previously reported in RTT mouse models; however, whether an altered brain vascular homeostasis and the subsequent blood–brain barrier (BBB) breakdown occur in RTT and contribute to the disease-related cognitive impairment is still unknown. Interestingly, in symptomatic Mecp2-null (Mecp2-/y, Mecp2tm1.1Bird) mice, we found enhanced BBB permeability associated with an aberrant expression of the tight junction proteins Ocln and Cldn-5 in different brain areas, in terms of both transcript and protein levels. Additionally, Mecp2-null mice showed an altered expression of different genes encoding factors with a role in the BBB structure and function, such as Cldn3, Cldn12, Mpdz, Jam2, and Aqp4. With this study, we provide the first evidence of impaired BBB integrity in RTT and highlight a potential new molecular hallmark of the disease that might open new perspectives for the setting-up of novel therapeutic strategies.
Collapse
Affiliation(s)
| | - Salvatore Fioriniello
- Institute of Genetics and Biophysics 'A. Buzzati-Traverso', CNR, 80131 Naples, Italy
| | | | | | | | - Maurizio D'Esposito
- IRCCS Neuromed, 86077 Pozzilli, Italy
- Institute of Genetics and Biophysics 'A. Buzzati-Traverso', CNR, 80131 Naples, Italy
| | | | - Floriana Della Ragione
- IRCCS Neuromed, 86077 Pozzilli, Italy
- Institute of Genetics and Biophysics 'A. Buzzati-Traverso', CNR, 80131 Naples, Italy
| |
Collapse
|
28
|
Zhang W, Wu Q, Hao S, Chen S. The hallmark and crosstalk of immune cells after intracerebral hemorrhage: Immunotherapy perspectives. Front Neurosci 2023; 16:1117999. [PMID: 36711145 PMCID: PMC9877537 DOI: 10.3389/fnins.2022.1117999] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 12/30/2022] [Indexed: 01/13/2023] Open
Abstract
Intracerebral hemorrhage (ICH) is one of the most dangerous types of strokes with a high morbidity and mortality rate. Currently, the treatment of ICH is not well developed, mainly because its mechanisms are still unclear. Inflammation is one of the main types of secondary injury after ICH and catalyzes the adverse consequences of ICH. A large number of immune cells are involved in neuroinflammation, such as microglia, astrocytes, oligodendrocytes, lymphocytes, macrophages, and neutrophils. Nevertheless, the characteristics and crosstalk of immune cells have not been fully elucidated. In this review, we endeavor to delve into the respective characteristics of immune cells and their interactions in neuroimmune inflammation, and further elucidate favorable immunotherapeutic approaches regarding ICH, and finally present an outlook.
Collapse
Affiliation(s)
- Wenqing Zhang
- School of Medicine, Chongqing University, Chongqing, China,Department of Neurology, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Qingyuan Wu
- Department of Neurology, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Shilei Hao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China,*Correspondence: Shilei Hao,
| | - Shengli Chen
- Department of Neurology, Chongqing University Three Gorges Hospital, Chongqing, China,Shengli Chen,
| |
Collapse
|
29
|
Wan Y, Holste KG, Hua Y, Keep RF, Xi G. Brain edema formation and therapy after intracerebral hemorrhage. Neurobiol Dis 2023; 176:105948. [PMID: 36481437 PMCID: PMC10013956 DOI: 10.1016/j.nbd.2022.105948] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/28/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022] Open
Abstract
Intracerebral hemorrhage (ICH) accounts for about 10% of all strokes in the United States of America causing a high degree of disability and mortality. There is initial (primary) brain injury due to the mechanical disruption caused by the hematoma. There is then secondary injury, triggered by the initial injury but also the release of various clot-derived factors (e.g., thrombin and hemoglobin). ICH alters brain fluid homeostasis. Apart from the initial hematoma mass, ICH causes blood-brain barrier disruption and parenchymal cell swelling, which result in brain edema and intracranial hypertension affecting patient prognosis. Reducing brain edema is a critical part of post-ICH care. However, there are limited effective treatment methods for reducing perihematomal cerebral edema and intracranial pressure in ICH. This review discusses the mechanisms underlying perihematomal brain edema formation, the effects of sex and age, as well as how edema is resolved. It examines progress in pharmacotherapy, particularly focusing on drugs which have been or are currently being investigated in clinical trials.
Collapse
Affiliation(s)
- Yingfeng Wan
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
| | | | - Ya Hua
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
| | - Richard F Keep
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA.
| | - Guohua Xi
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
30
|
Hasegawa H, Kondo M. Astrocytic Responses to Binge Alcohol Intake in the Mouse Hindbrain. Biol Pharm Bull 2023; 46:1194-1202. [PMID: 37661398 DOI: 10.1248/bpb.b23-00140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Ethanol is the most commonly used toxic chemical in human cultures. Ethanol predominantly damages the brain causing various neurological disorders. Astrocytes are important cellular targets of ethanol in the brain and are involved in alcoholic symptoms. Recent studies have revealed the diversity of astrocyte populations in the brain. However, it is unclear how the different astrocyte populations respond to an excess of ethanol. Here we examined the effect of binge ethanol levels on astrocytes in the mouse brainstem and cerebellum. Ethanol administration for four consecutive days increased the glial fibrillary acidic protein (GFAP)-immunoreactive signals in the spinal tract of the trigeminal nerve (stTN) and reticular nucleus (RN). Another astrocyte marker, aquaporin 4 (AQP4), was also increased in the stTN with a pattern similar to that of GFAP. However, in the RN, the immunoreactive signals of AQP4 were different from that of GFAP and were not changed by ethanol administration. In the cerebellum, GFAP-positive signals were found in all four astrocytic populations, and those in the Bergmann glia were selectively eliminated by ethanol administration. We next examined the effect of estradiol on the ethanol-induced changes in astrocytic immunoreactive signals. The administration of estradiol alone increased the AQP4-immunoreactivity in the stTN with a pattern similar to that of ethanol, whereas the co-administration of estradiol and ethanol suppressed the intensity of the AQP4-positive signals. Thus, binge levels of ethanol intake selectively affect astrocyte populations in the brainstem and cerebellum. Sex hormones can affect the ethanol-induced neurotoxicity via modulation of astrocyte reactivity.
Collapse
Affiliation(s)
| | - Mari Kondo
- Laboratory of Hygienic Sciences, Kobe Pharmaceutical University
| |
Collapse
|
31
|
Aragón-González A, Shaw PJ, Ferraiuolo L. Blood-Brain Barrier Disruption and Its Involvement in Neurodevelopmental and Neurodegenerative Disorders. Int J Mol Sci 2022; 23:ijms232315271. [PMID: 36499600 PMCID: PMC9737531 DOI: 10.3390/ijms232315271] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
The blood-brain barrier (BBB) is a highly specialized and dynamic compartment which regulates the uptake of molecules and solutes from the blood. The relevance of the maintenance of a healthy BBB underpinning disease prevention as well as the main pathomechanisms affecting BBB function will be detailed in this review. Barrier disruption is a common aspect in both neurodegenerative diseases, such as amyotrophic lateral sclerosis, and neurodevelopmental diseases, including autism spectrum disorders. Throughout this review, conditions altering the BBB during the earliest and latest stages of life will be discussed, revealing common factors involved. Due to the barrier's role in protecting the brain from exogenous components and xenobiotics, drug delivery across the BBB is challenging. Potential therapies based on the BBB properties as molecular Trojan horses, among others, will be reviewed, as well as innovative treatments such as stem cell therapies. Additionally, due to the microbiome influence on the normal function of the brain, microflora modulation strategies will be discussed. Finally, future research directions are highlighted to address the current gaps in the literature, emphasizing the idea that common therapies for both neurodevelopmental and neurodegenerative pathologies exist.
Collapse
Affiliation(s)
- Ana Aragón-González
- Sheffield Institute for Translational Neuroscience, University of Sheffield, SITraN, 385a Glossop Road, Sheffield S10 2HQ, UK
- Facultad de Medicina, Universidad de Málaga, 29010 Málaga, Spain
| | - Pamela J. Shaw
- Sheffield Institute for Translational Neuroscience, University of Sheffield, SITraN, 385a Glossop Road, Sheffield S10 2HQ, UK
| | - Laura Ferraiuolo
- Sheffield Institute for Translational Neuroscience, University of Sheffield, SITraN, 385a Glossop Road, Sheffield S10 2HQ, UK
- Correspondence: ; Tel.: +44-(0)114-222-2257; Fax: +44-(0)114-222-2290
| |
Collapse
|
32
|
Zhang Y, Lei L, Zhou H, Lu X, Cai F, Li T. Roles of Micro Ribonucleic Acids in Astrocytes After Cerebral Stroke. Front Cell Neurosci 2022; 16:890762. [PMID: 35755778 PMCID: PMC9218061 DOI: 10.3389/fncel.2022.890762] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
Cerebral stroke is one of the highest-ranking causes of death and the leading cause of disability globally, particularly with an increasing incidence and prevalence in developing countries. Steadily more evidence has indicated that micro ribonucleic acids (miRNAs) have important regulatory functions in gene transcription and translation in the course of cerebral stroke. It is beyond arduous to understand the pathophysiology of cerebral stroke, due in part to the perplexity of influencing the network of the inflammatory response, brain edema, autophagy and neuronal apoptosis. The recent research shows miRNA plays a key role in regulating aquaporin 4 (AQP4), and many essential pathological processes after cerebral stroke. This article reviews the recent knowledge on how miRNA influences the inflammatory response, brain edema, infarction size, and neuronal injury after cerebral stroke. In addition, some miRNAs may serve as potential biomarkers in stroke diagnosis and therapy since the expression of some miRNAs in the blood is stable after cerebral stroke.
Collapse
Affiliation(s)
- Yuansheng Zhang
- Department of Neurosurgery, The Affiliated Hospital of Medical College, Kunming University of Science and Technology, The First People's Hospital of Yunnan Province, Kunming, China
| | - Li Lei
- Department of Neurosurgery, The Affiliated Hospital of Medical College, Kunming University of Science and Technology, The First People's Hospital of Yunnan Province, Kunming, China
| | - Hu Zhou
- Department of Neurosurgery, The Affiliated Hospital of Medical College, Kunming University of Science and Technology, The First People's Hospital of Yunnan Province, Kunming, China
| | - Xiaoyang Lu
- Translational Neurosurgery and Neurobiology, University Hospital Aachen, RWTH Aachen, Aachen, Germany
| | - Feifei Cai
- Department of Radiology, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Tao Li
- Department of Neurosurgery, The Affiliated Hospital of Medical College, Kunming University of Science and Technology, The First People's Hospital of Yunnan Province, Kunming, China
| |
Collapse
|
33
|
Liu Y, Wang Z, Cao C, Xu Z, Lu J, Shen H, Li X, Li H, Wu J, Chen G. Aquaporin 4 Depolarization-Enhanced Transferrin Infiltration Leads to Neuronal Ferroptosis after Subarachnoid Hemorrhage in Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8808677. [PMID: 35761873 PMCID: PMC9233479 DOI: 10.1155/2022/8808677] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/30/2022] [Accepted: 06/03/2022] [Indexed: 12/19/2022]
Abstract
The infiltration of blood components into the brain parenchyma through the lymphoid system is an important cause of subarachnoid hemorrhage injury. AQP4, a water channel protein located at the astrocyte foot, has been reported to regulate blood-brain barrier integrity, and its polarization is disrupted after SAH. Neuronal ferroptosis is involved in subarachnoid hemorrhage- (SAH-) induced brain injury, but the inducing factors are not completely clear. Transferrin is one of the inducing factors of ferroptosis. This study is aimed at researching the role and mechanism of AQP4 in brain injury after subarachnoid hemorrhage in mice. An experimental mouse SAH model was established by endovascular perforation. An AAV vector encoding AQP4 with a GFAP-specific promoter was administered to mice to achieve specific overexpression of AQP4 in astrocytes. PI staining, Fer-1 intervention, and transmission electron microscopy were used to detect neuronal ferroptosis, and dextran (40 kD) leakage was used to detect BBB integrity. Western blot analysis of perfused brain tissue protein samples was used to detect transferrin infiltration. First, neuronal ferroptosis 24 h after SAH was observed by PI staining and Fer-1 intervention. Second, a significant increase in transferrin infiltration was found in the brain parenchyma 24 h after SAH modeling, while transferrin content was positively correlated with neuronal ferroptosis. Then, we observed that AQP4 overexpression effectively improved AQP depolarization and BBB injury induced by SAH and significantly reduced transferrin infiltration and neuronal ferroptosis after SAH. Finally, we found that AQP4 overexpression could effectively improve the neurobehavioral ability of SAH mice, and the neurobehavioral ability was negatively correlated with transferrin brain content. Taken together, these data indicate that overexpression of AQP4 in the mouse brain can effectively improve post-SAH neuronal ferroptosis and brain injury, at least partly by inhibiting transferrin infiltration into the brain parenchyma in the glymphatic system.
Collapse
Affiliation(s)
- Yuan Liu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street Suzhou Jiangsu Province 215006, China
- Institute of Stroke Research, Soochow University, China
| | - Zongqi Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street Suzhou Jiangsu Province 215006, China
- Institute of Stroke Research, Soochow University, China
| | - Chang Cao
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street Suzhou Jiangsu Province 215006, China
- Institute of Stroke Research, Soochow University, China
| | - Zhongmou Xu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street Suzhou Jiangsu Province 215006, China
- Institute of Stroke Research, Soochow University, China
| | - Jinxin Lu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street Suzhou Jiangsu Province 215006, China
- Institute of Stroke Research, Soochow University, China
| | - Haitao Shen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street Suzhou Jiangsu Province 215006, China
- Institute of Stroke Research, Soochow University, China
| | - Xiang Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street Suzhou Jiangsu Province 215006, China
- Institute of Stroke Research, Soochow University, China
| | - Haiying Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street Suzhou Jiangsu Province 215006, China
- Institute of Stroke Research, Soochow University, China
| | - Jiang Wu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street Suzhou Jiangsu Province 215006, China
- Institute of Stroke Research, Soochow University, China
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street Suzhou Jiangsu Province 215006, China
- Institute of Stroke Research, Soochow University, China
| |
Collapse
|
34
|
Luo MY, Su JH, Gong SX, Liang N, Huang WQ, Chen W, Wang AP, Tian Y. Ferroptosis: New Dawn for Overcoming the Cardio-Cerebrovascular Diseases. Front Cell Dev Biol 2021; 9:733908. [PMID: 34858973 PMCID: PMC8632439 DOI: 10.3389/fcell.2021.733908] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/25/2021] [Indexed: 12/21/2022] Open
Abstract
The dynamic balance of cardiomyocytes and neurons is essential to maintain the normal physiological functions of heart and brain. If excessive cells die in tissues, serious Cardio-Cerebrovascular Diseases would occur, namely, hypertension, myocardial infarction, and ischemic stroke. The regulation of cell death plays a role in promoting or alleviating Cardio-Cerebrovascular Diseases. Ferroptosis is an iron-dependent new type of cell death that has been proved to occur in a variety of diseases. In our review, we focus on the critical role of ferroptosis and its regulatory mechanisms involved in Cardio-Cerebrovascular Diseases, and discuss the important function of ferroptosis-related inhibitors in order to propose potential implications for the prevention and treatment of Cardio-Cerebrovascular Diseases.
Collapse
Affiliation(s)
- Meng-Yi Luo
- Institute of Clinical Research, Affiliated Nanhua Hospital, University of South China, Hengyang, China
- Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Department of Physiology, Institute of Neuroscience Research, Hengyang Medical College, University of South China, Hengyang, China
| | - Jian-Hui Su
- Institute of Clinical Research, Affiliated Nanhua Hospital, University of South China, Hengyang, China
- Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Department of Physiology, Institute of Neuroscience Research, Hengyang Medical College, University of South China, Hengyang, China
| | - Shao-Xin Gong
- Department of Pathology, First Affiliated Hospital, University of South China, Hengyang, China
| | - Na Liang
- Department of Anesthesiology, Affiliated Nanhua Hospital, University of South China, Hengyang, China
| | - Wen-Qian Huang
- Institute of Clinical Research, Affiliated Nanhua Hospital, University of South China, Hengyang, China
- Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Department of Physiology, Institute of Neuroscience Research, Hengyang Medical College, University of South China, Hengyang, China
| | - Wei Chen
- Institute of Clinical Research, Affiliated Nanhua Hospital, University of South China, Hengyang, China
- Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Department of Physiology, Institute of Neuroscience Research, Hengyang Medical College, University of South China, Hengyang, China
| | - Ai-Ping Wang
- Institute of Clinical Research, Affiliated Nanhua Hospital, University of South China, Hengyang, China
- Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Department of Physiology, Institute of Neuroscience Research, Hengyang Medical College, University of South China, Hengyang, China
| | - Ying Tian
- Institute of Clinical Research, Affiliated Nanhua Hospital, University of South China, Hengyang, China
| |
Collapse
|